WO2016113825A1 - Refrigerant evaporator - Google Patents

Refrigerant evaporator Download PDF

Info

Publication number
WO2016113825A1
WO2016113825A1 PCT/JP2015/006432 JP2015006432W WO2016113825A1 WO 2016113825 A1 WO2016113825 A1 WO 2016113825A1 JP 2015006432 W JP2015006432 W JP 2015006432W WO 2016113825 A1 WO2016113825 A1 WO 2016113825A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
core
evaporator
upper tank
evaporation
Prior art date
Application number
PCT/JP2015/006432
Other languages
French (fr)
Japanese (ja)
Inventor
長屋 誠一
直久 石坂
森本 正和
章太 茶谷
鳥越 栄一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016113825A1 publication Critical patent/WO2016113825A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • This disclosure relates to a refrigerant evaporator that cools a fluid to be cooled by absorbing heat from the fluid to be cooled and evaporating the refrigerant.
  • the refrigerant evaporator constitutes a refrigeration cycle together with a compressor and the like, and a refrigerant evaporator is disclosed in Patent Document 1.
  • the refrigerant evaporator includes a first evaporator and a second evaporator disposed in series with respect to the flow direction of the fluid to be cooled.
  • Each of the first evaporation section and the second evaporation section includes a heat exchange core section configured by stacking a plurality of tubes extending in the vertical direction, an upper tank section connected to both end sides in the vertical direction of the plurality of tubes, and And a lower tank portion.
  • the heat exchange core part of the first evaporation part includes a first core part having a tube group on one side in the tube stacking direction and a second core part having a tube group on the other side in the tube stacking direction. Yes.
  • the heat exchange core part of the second evaporation part has a third core part having a tube group facing the first core part, and a fourth core part having a tube group facing the second core part.
  • the upper tank part of the first evaporation part is provided with a refrigerant inlet part at an end part on one side in the tube stacking direction which is closer to the first core part than the second core part.
  • the upper tank section of the second evaporation section is provided with a refrigerant outlet section on the same side as the refrigerant inlet section, that is, on one end in the tube stacking direction, which is closer to the third core section than the fourth core section. ing.
  • the first evaporation section and the second evaporation section are configured such that the refrigerant flows into the first core section and the second core section from the upper tank section of the first evaporation section, and the refrigerant flowing out from the first core section is the second evaporation section.
  • the refrigerant flowing into the fourth core portion and flowing out from the second core portion flows into the third core portion of the second evaporation portion, the refrigerant flowing out from the third core portion and the fourth core portion undergoes second evaporation. It is comprised so that it may flow into the upper tank part of a part.
  • the refrigerant flowing on one side in the width direction of the heat exchange core part of the first evaporation part flows to the other side in the width direction of the heat exchange core part of the second evaporation part.
  • the refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part flows to one side in the width direction of the heat exchange core part of the second evaporation part.
  • the refrigerant flowing into the upper tank portion of the first evaporation unit from the refrigerant inlet portion because the refrigerant flow rate required for heat exchange is small under the condition of a small heat load.
  • the flow rate is low.
  • the refrigerant flowing from the refrigerant inlet is a gas-liquid two-phase refrigerant.
  • the upper tank part falls from the communicating portion communicating with each tube constituting the third core portion.
  • the force relationship between the falling liquid-phase refrigerant and the gas-phase refrigerant trying to ascend the third core portion is balanced, and the refrigerant flow in the third core portion stagnates or the dropped liquid-phase refrigerant is transferred to the lower tank portion. Or even flows. As a result, the refrigerant stagnates inside the refrigerant evaporator.
  • the refrigerant circulating in the refrigeration cycle contains oil (refrigerator oil) for internal lubrication of the compressor. Therefore, when the refrigerant stagnates inside the refrigerant evaporator, the oil also stagnates, and the amount of oil returning to the compressor is reduced.
  • oil refrigerator oil
  • the heat exchange core part of the first evaporation part has a core part other than the first and second core parts, and the heat exchange core part of the second evaporation part is other than the third and fourth core parts. It also occurs in a refrigerant evaporator having a core.
  • Such a problem is particularly likely to occur in a refrigeration cycle in which the refrigerant flowing out of the refrigerant evaporator does not have to be completely gas phase refrigerant.
  • a refrigeration cycle include a refrigeration cycle including an accumulator, a refrigeration cycle including an internal heat exchanger, and the like.
  • the accumulator separates the refrigerant flowing out from the refrigerant evaporator into a liquid phase refrigerant and a gas phase refrigerant, and causes the gas phase refrigerant to flow into the compressor.
  • the internal heat exchanger heats the refrigerant that has flowed out of the refrigerant evaporator by heat exchange with the refrigerant on the upstream side of the refrigerant flow from the refrigerant evaporator, and converts the liquid-phase refrigerant contained in the refrigerant that has flowed out of the refrigerant evaporator into a gas phase.
  • a refrigerant a gas-phase refrigerant is allowed to flow into the compressor.
  • This indication aims at providing the refrigerant evaporator which can control stagnation of the oil inside a refrigerant evaporator in view of the above-mentioned point.
  • the refrigerant evaporator performs heat exchange between the fluid to be cooled flowing outside and the refrigerant.
  • the refrigerant evaporator includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the fluid to be cooled.
  • Each of the first evaporator and the second evaporator has a heat exchange core, an upper tank, and a lower tank.
  • the heat exchange core portion is configured by stacking a plurality of tubes that extend in the vertical direction and through which a refrigerant flows.
  • the upper tank portion and the lower tank portion are arranged on both ends in the vertical direction of the plurality of tubes, and collect or distribute the refrigerant flowing through the plurality of tubes.
  • the heat exchange core part of the first evaporation part has a first core part including a part of the tube group and a second core part including a tube group different from the tube group among the plurality of tubes.
  • the heat exchange core part of the second evaporation part includes a third core part including a tube group facing at least a part of the first core part in the flow direction of the fluid to be cooled, and the flow of the fluid to be cooled. And a fourth core part including a tube group facing at least a part of the second core part in the direction.
  • the upper tank part of the first evaporation part has a refrigerant inside the upper tank part of the first evaporation part at the end part closer to the first core part than the second core part among both end parts in the stacking direction of the tubes.
  • the upper tank part of the second evaporation part is a refrigerant from the inside of the upper tank part of the second evaporation part to the end part closer to the third core part than the fourth core part among both end parts in the stacking direction of the tubes.
  • the refrigerant flows from the upper tank of the first evaporator to the first and second cores, and the refrigerant that flows out of the first core flows into the fourth core.
  • the refrigerant flowing out from the second core portion flows into the third core portion
  • the refrigerant flowing out from the third core portion and the fourth core portion flows into the upper tank portion of the second evaporation portion.
  • the upper tank section of the second evaporation section includes a first independent flow path and a second independent flow path where the refrigerant flowing out from the third core section and the refrigerant flowing out from the fourth core section flow independently from each other toward the refrigerant outlet section. have.
  • the first independent flow path and the second independent flow path are the refrigerant outlet portion than the communication portion communicating with the tube closest to the refrigerant outlet portion in the tube group constituting the third core portion in the upper tank portion of the second evaporation portion.
  • the refrigerant that has flowed out of the third and fourth core parts flows independently of each other up to a predetermined position located on the side.
  • the upper tank section of the second evaporation section has first and second independent flow paths. For this reason, in the upper tank part of the 2nd evaporation part, each tube which constitutes the 3rd core part in the middle of the refrigerant channel from each communicating part which communicates with each tube which constitutes the 4th core part to the refrigerant outlet part There is no communication part that communicates with. Thereby, when the liquid phase refrigerant
  • the refrigerant evaporator according to the second aspect of the present disclosure performs heat exchange between the fluid to be cooled flowing outside and the refrigerant.
  • the refrigerant evaporator includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the fluid to be cooled.
  • Each of the first evaporator and the second evaporator has a heat exchange core, an upper tank, and a lower tank.
  • the heat exchange core portion is configured by stacking a plurality of tubes that extend in the vertical direction and through which a refrigerant flows.
  • the upper tank portion and the lower tank portion are arranged on both ends in the vertical direction of the plurality of tubes, and collect or distribute the refrigerant flowing through the plurality of tubes.
  • the heat exchange core part of the first evaporation part has a first core part including a part of the tube group and a second core part including a tube group different from the tube group among the plurality of tubes.
  • the heat exchange core part of the second evaporation part includes a third core part including a tube group facing at least a part of the first core part in the flow direction of the fluid to be cooled, and the flow of the fluid to be cooled. And a fourth core part including a tube group facing at least a part of the second core part in the direction.
  • the upper tank part of the first evaporation part has a refrigerant inlet part into which refrigerant flows into the upper tank part of the first evaporation part at a position closer to the first core part than the second core part.
  • the refrigerant flows from the upper tank of the first evaporator to the first and second cores, and the refrigerant that flows out of the first core flows into the fourth core.
  • the refrigerant flowing out from the second core portion flows into the third core portion
  • the refrigerant flowing out from the third core portion and the fourth core portion flows into the upper tank portion of the second evaporation portion.
  • the upper tank part of the second evaporation part has a refrigerant outlet part through which the refrigerant flows out from the inside of the upper tank part of the second evaporation part at a position closer to the fourth core part than the third core part.
  • the refrigerant outlet portion is provided in a portion of the upper tank portion of the second evaporation portion that is closer to the fourth core portion than the third core portion. For this reason, in the upper tank part of the 2nd evaporation part, each tube which constitutes the 3rd core part in the middle of the refrigerant channel from each communicating part which communicates with each tube which constitutes the 4th core part to the refrigerant outlet part There is no communication part that communicates with.
  • FIG. 1st Embodiment It is a schematic diagram of the refrigerating cycle which concerns on 1st Embodiment. It is a typical perspective view of the refrigerant evaporator concerning a 1st embodiment. It is a disassembled perspective view of the refrigerant evaporator shown in FIG. It is sectional drawing of the windward upper tank part which concerns on 1st Embodiment. It is a typical perspective view of the intermediate tank part concerning a 1st embodiment. It is explanatory drawing for demonstrating the flow of the refrigerant
  • the refrigerant evaporator according to the present embodiment is applied to a vapor compression refrigeration cycle apparatus of a vehicle air conditioner that adjusts the temperature in the vehicle interior, and absorbs heat from the air blown into the vehicle interior to evaporate the refrigerant. It is a heat exchanger for cooling which cools air.
  • the air blown into the vehicle interior corresponds to the “cooled fluid flowing outside” in the present disclosure.
  • the refrigeration cycle apparatus 100 of the present embodiment includes a compressor 101, a condenser 102, an expansion valve 103, an accumulator 104, and the like in addition to the refrigerant evaporator 1.
  • the compressor 101 compresses and discharges the sucked refrigerant.
  • the condenser 102 is a radiator that radiates and condenses the gas-phase refrigerant discharged from the compressor 101.
  • the expansion valve 103 is a decompressor that decompresses and expands the refrigerant flowing out of the condenser 102.
  • the refrigerant evaporator 1 evaporates the refrigerant decompressed by the expansion valve 103.
  • the accumulator 104 is disposed between the refrigerant evaporator 1 and the compressor 101, separates the refrigerant flowing out of the refrigerant evaporator 1 into a gas phase refrigerant and a liquid phase refrigerant, and supplies the separated gas phase refrigerant to the compressor 101. It is a gas-liquid separator to be inhaled.
  • the condenser 102 includes a condensing unit (not shown) that condenses the gas-phase refrigerant flowing out of the compressor 101, and a gas-liquid separator (not shown) that separates the gas-liquid two-phase refrigerant condensed in the condensing unit.
  • the condenser may include a supercooling unit (not shown) that cools the liquid-phase refrigerant that has been gas-liquid separated. In this way, in the case of a refrigeration cycle apparatus having a gas-liquid separator and a condenser having a supercooling unit, the accumulator 104 may be eliminated.
  • the two evaporation units 10 and 20 are arranged in series with respect to the flow direction X of the air (cooled fluid) blown into the vehicle interior.
  • the evaporation unit arranged on the windward side (upstream side) in the air flow direction is referred to as the windward evaporation unit 10
  • the leeward side in the air flow direction The evaporator disposed on the downstream side is referred to as a leeward evaporator 20.
  • the windward evaporator 10 in the present embodiment constitutes a “second evaporator” of the present disclosure
  • the leeward evaporator 20 forms a “first evaporator” of the present disclosure.
  • the basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange cores 11 and 21 and a pair of tanks disposed on both ends of the heat exchange cores 11 and 21 in the vertical direction, respectively. Parts 12, 13, 22, and 23.
  • the heat exchange core part in the windward evaporator 10 is referred to as the windward heat exchange core part 11
  • the heat exchange core part in the leeward evaporator 20 is referred to as the leeward heat exchange core part 21.
  • the tank unit disposed on the upper side is referred to as the windward upper tank unit 12, and the tank unit disposed on the lower side is referred to as the windward lower tank unit. 13 is called.
  • the tank portion disposed on the upper side is referred to as the leeward side upper tank portion 22
  • the tank portion disposed on the lower side is referred to as the leeward side lower tank. This will be referred to as part 23.
  • Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 joined between the adjacent tubes 111 and 211, 212 is configured as a stacked body in which the layers are alternately stacked.
  • the lamination direction in the laminated body of the some tubes 111 and 211 and the several fins 112 and 212 is called a tube lamination direction.
  • the tube stacking direction is a direction in which the plurality of tubes 111 and 211 and the plurality of fins 112 and 212 are stacked.
  • the tube stacking direction is the core width direction of the heat exchange core part.
  • the windward side heat exchange core part 11 includes a first windward core part 11 a including a part of the plurality of tubes 111 and a second wind including the remaining tube group. It has the upper core part 11b.
  • illustration of the tubes 111 and 211 and the fins 112 and 212 in each heat exchange core part 11 and 21 is abbreviate
  • the first windward core portion 11a in the present embodiment constitutes the “third core portion” of the present disclosure
  • the second windward core portion 11b constitutes the “fourth core portion” of the present disclosure.
  • the first windward core portion 11a is configured by the tube group existing in the right half in the tube stacking direction as viewed from the air flow direction X, and is formed in the left half in the tube stacking direction as viewed from the air flow direction X.
  • the existing wind group constitutes the second upwind core portion 11b.
  • the leeward side heat exchange core portion 21 includes a first leeward side core portion 21 a including a part of the tube 211 and a second tube group including the remaining tube group. It has the leeward side core part 21b.
  • the 1st leeward side core part 21a in this embodiment comprises the "1st core part” of this indication
  • the 2nd leeward side core part 21b comprises the "2nd core part” of this indication.
  • the first leeward side core portion 21a is configured by the tube group existing in the right half of the tube stacking direction as viewed from the air flow direction X, and the left half of the tube stacking direction is viewed from the air flow direction X.
  • a second group of leeward cores 21b is formed by the existing tube group.
  • the entire tube stacking direction of the first leeward core portion 11a and the entire tube stacking direction of the first leeward core portion 21a are superposed (opposed).
  • the entire tube stacking direction of the second leeward core portion 11b and the entire tube stacking direction of the second leeward core portion 21b are superposed (opposed).
  • Each tube 111, 211 is formed with a refrigerant passage through which a refrigerant flows.
  • Each of the tubes 111 and 211 is a flat tube whose cross-sectional shape is a flat shape extending along the air flow direction X.
  • the tube 111 of the windward side heat exchange core part 11 has an upper end side in the longitudinal direction connected to the windward upper tank part 12 and a lower end side in the longitudinal direction connected to the windward lower tank part 13.
  • the tube 211 of the leeward heat exchange core portion 21 has an upper end side in the longitudinal direction connected to the leeward upper tank portion 22 and a lower end side in the longitudinal direction connected to the leeward lower tank portion 23.
  • the fins 112 and 212 are corrugated fins formed by bending a thin plate material into a wave. Each fin 112, 212 is joined to the flat outer surface side of the tubes 111, 211, and constitutes a heat exchange promoting part for expanding the heat transfer area between the air and the refrigerant.
  • side plates 113 and 213 that reinforce the heat exchange core portions 11 and 12 are disposed at both ends in the tube lamination direction.
  • the side plates 113 and 213 are joined to the fins 112 and 212 arranged on the outermost side in the tube stacking direction.
  • the windward upper tank portion 12 has a refrigerant outlet portion (opening portion) 12a at one end portion in the tube stacking direction, and is formed by a cylindrical member with the other end portion closed in the tube stacking direction. ing.
  • the refrigerant outlet portion 12a constitutes a refrigerant outlet portion 12a through which the refrigerant flows out from the inside of the windward upper tank portion 12 to the outside.
  • coolant exit part 12a is provided in the right end part of the windward upper tank part 12 when it sees from the flow direction X of air.
  • the windward upper tank unit 12 includes a cylindrical tank body member 121 having both ends opened, and two joining members 122 and 123 joined to both ends of the tank body member 121. It is configured.
  • the refrigerant outlet portion 12 a is provided in one joining member 122.
  • FIG. 4 is a cross-sectional view of the windward upper tank portion 12 as viewed from the direction of the arrow Y in FIG. Moreover, it is good also considering the one opening edge part of the tank main body member 121 as the refrigerant
  • This windward upper tank section 12 is joined to each tube 111 in a state where the upper end side of each tube 111 is inserted into a through hole formed in the bottom. That is, the windward upper tank portion 12 is configured such that the internal space thereof communicates with each tube 111 of the windward heat exchange core portion 11, and from the core portions 11 a and 11 b of the windward heat exchange core portion 11. It functions as a refrigerant collecting part that collects the refrigerant.
  • the leeward upper tank section 22 has a refrigerant inlet portion (opening) 22a at one end in the tube stacking direction, and the other end in the tube stacking direction is the same as the windward upper tank section 12. It is formed by a closed cylindrical member.
  • the refrigerant inlet portion 22a constitutes a refrigerant inlet portion 22a into which the refrigerant flows from the outside to the inside of the leeward upper tank portion 22.
  • the refrigerant inlet portion 22a is provided at the right end of the leeward upper tank portion 22 when viewed from the air flow direction X.
  • the leeward side upper tank portion 22 is joined to each tube 211 in a state where the upper end side of each tube 211 is inserted into a through hole formed in the bottom portion. That is, the leeward side upper tank portion 22 is configured such that the internal space thereof communicates with each tube 211 of the leeward side heat exchange core portion 21, and to the core portions 21 a and 21 b of the leeward side heat exchange core portion 21. It functions as a refrigerant distributor that distributes the refrigerant.
  • the windward upper tank section 12 is different from the leeward upper tank section 22 in that the first independent flow path 12 b communicating with each tube 111 constituting the first windward core section 11 a and the second It has the 2nd independent flow path 12c connected to each tube 111 which comprises the windward core part 11b.
  • the first and second independent flow paths 12b and 12c are configured such that the refrigerant flowing out of the first windward core portion 11a and the refrigerant flowing out of the second windward core portion 11b are independent of each other toward the refrigerant outlet portion 12a. It is a flowing refrigerant channel. “The refrigerant and the refrigerant flow independently of each other” means that the refrigerant and the refrigerant flow without being mixed.
  • the first and second independent flow paths 12b and 12c are formed by dividing the internal space of the tank body member 121 into two spaces by a partition member 124 provided inside the tank body member 121.
  • the partition member 124 includes a first portion 124a that partitions the internal space of the tank body member 121 into an upper side and a lower side, and a second portion 124b that partitions the internal space of the tank body member 121 into one side and the other side in the tube stacking direction. .
  • the 1st, 2nd independent flow path 12b, 12c is located in a line up and down.
  • the end of the partition member 124 on the refrigerant outlet portion 12a side is located at the open end of the tank main body member 121. Therefore, the refrigerant flowing out from the first and second upwind core portions 11a and 11b flows through the first and second independent flow paths 12b and 12c independently of each other up to the position of the opening end of the tank body member 121. It is configured.
  • the refrigerant outlet portion 12 a of the windward upper tank portion 12 is connected to the outlet side portion 41 of the joint 40.
  • the outlet side portion 41 of the joint 40 is connected to a single refrigerant pipe (not shown) for flowing the refrigerant that has flowed out of the windward upper tank portion 12.
  • the internal space 41a in the outlet side portion 41 of the joint 40 communicates with the inside of a refrigerant pipe (not shown) and communicates with the first and second independent flow paths 12b and 12c of the windward upper tank portion 12. ing.
  • the joint 40 is a pipe connection member for connecting the upper tank portions 12 and 22 and the refrigerant pipe as shown in FIG.
  • an outlet side portion 41 connected to the refrigerant outlet portion 12a and an inlet side portion 42 connected to the refrigerant inlet portion 22a of the leeward side upper tank portion 22 are integrally formed.
  • the inlet side portion 42 of the joint 40 is also connected to one refrigerant pipe for flowing the refrigerant flowing into the leeward upper tank portion 22.
  • the joint 40 in which the outlet side portion 41 and the inlet side portion 42 are integrally formed is used. However, even if the outlet side portion 41 and the inlet side portion 42 use separate joints. Good.
  • the windward lower tank portion 13 is formed of a cylindrical member that is closed at both ends in the tube stacking direction.
  • the windward lower tank portion 13 is joined to each tube 111 in a state where the lower end side of each tube 111 is inserted into a through hole formed in the ceiling portion. That is, the windward lower tank portion 13 is configured such that the internal space thereof communicates with each tube 111.
  • a partition member 131 is disposed inside the windward lower tank portion 13 at the center position in the tube stacking direction.
  • the tank internal space is partitioned into a space where each tube 111 constituting the first upwind core portion 11a communicates and a space where each tube 111 constituting the second upwind core portion 11b communicates. ing.
  • a space communicating with each tube 111 constituting the first upwind core part 11a distributes the refrigerant to the first upwind core part 11a.
  • the space which communicates with each tube 111 which comprises 13a and comprises the 2nd windward core part 11b comprises the 2nd refrigerant
  • the leeward side lower tank portion 23 is configured by a cylindrical member that is closed at both ends in the tube stacking direction.
  • the leeward lower tank portion 23 is joined to each tube 211 in a state where the lower end side of each tube 211 is inserted into a through hole formed in the ceiling portion. That is, the leeward side lower tank portion 23 is configured such that its internal space communicates with each tube 211.
  • a partition member 231 is disposed inside the leeward side lower tank portion 23 at a central position in the tube stacking direction, and each partition 211 having the tank internal space constituting the first leeward core portion 21a by the partition member 231. Is partitioned into a space where the tubes 211 constituting the second leeward core portion 21b communicate.
  • a space communicating with each tube 211 constituting the first leeward side core part 21a gathers the refrigerant from the first leeward side core part 21a.
  • the space which comprises the part 23a and the tube 211 which comprises the 2nd leeward core part 21b communicates comprises the 2nd refrigerant
  • the refrigerant replacement unit 30 guides the refrigerant in the first refrigerant collecting unit 23a in the leeward lower tank unit 23 to the second refrigerant distribution unit 13b in the leeward lower tank unit 13, and the second in the leeward lower tank unit 23.
  • the refrigerant in the refrigerant collecting portion 23b is guided to the first refrigerant distribution portion 13a in the upwind lower tank portion 13. That is, the refrigerant replacement unit 30 switches the refrigerant flow in the core width direction in each of the heat exchange core units 11 and 21.
  • the refrigerant replacement unit 30 includes a pair of collecting unit connecting members 31 a and 31 b connected to the first and second refrigerant collecting units 23 a and 23 b in the leeward lower tank unit 23, and the leeward lower tank unit 13.
  • FIG. 3 the lengths of the connecting members 31a, 31b, 32a, and 32b in the air flow direction X are shown in FIG. 2 so that the connecting relationship between the connecting members 31a, 31b, 32a, and 32b can be easily understood.
  • the length of each connecting member 31a, 31b, 32a, 32b in the refrigerant evaporator 1 is shown.
  • Each of the pair of collecting portion connecting members 31a and 31b is configured by a cylindrical member in which a refrigerant flow passage in which a refrigerant flows is formed, and one end side thereof is connected to the leeward side lower tank portion 23, The other end side is connected to the intermediate tank portion 33.
  • the first collecting portion connecting member 31a constituting one is connected to the leeward lower tank portion 23 so that one end side communicates with the first refrigerant collecting portion 23a.
  • the other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant flow passage 33a in the intermediate tank portion 33 described later.
  • the second collecting portion connecting member 31b constituting the other is connected to the leeward lower tank portion 23 so that one end side thereof communicates with the second refrigerant collecting portion 23b, and the other end side thereof is in an intermediate tank portion 33 described later. Is connected to the intermediate tank portion 33 so as to communicate with the second refrigerant flow passage 33b.
  • Each of the pair of distribution unit connecting members 32a and 32b is configured by a cylindrical member in which a refrigerant flow passage in which a refrigerant flows is formed, and one end side thereof is connected to the windward lower tank unit 13, The other end side is connected to the intermediate tank portion 33.
  • the first distribution part connection member 32a constituting one of the pair of distribution part connection members 32a and 32b is connected to the upwind lower tank part 13 so that one end side communicates with the first refrigerant distribution part 13a.
  • the other end side is connected to the intermediate tank portion 33 so as to communicate with a second refrigerant flow passage 33b in the intermediate tank portion 33 described later. That is, the 1st distribution part connection member 32a is connected with the above-mentioned 2nd gathering part connection member 31b via the 2nd refrigerant flow passage 33b of intermediate tank part 33.
  • the second distributor connecting member 32b constituting the other of the pair of distributor connecting members 32a and 32b is connected to the upwind lower tank section 13 so that one end side thereof communicates with the second refrigerant distributing section 13b.
  • the other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant flow passage 33a in the intermediate tank portion 33 described later.
  • the second distribution part connecting member 32 b communicates with the first collecting part connecting member 31 a described above via the first refrigerant flow passage 33 a of the intermediate tank part 33.
  • the intermediate tank portion 33 is configured by a cylindrical member whose both ends in the tube stacking direction are closed.
  • the intermediate tank portion 33 is disposed between the leeward lower tank portion 13 and the leeward lower tank portion 23.
  • a partition member 331 is arranged inside the intermediate tank portion 33, and the partition member 331 allows the internal space of the intermediate tank portion 33 to flow between the first refrigerant flow passage 33 a and the second refrigerant flow. It is partitioned off from the path 33b.
  • coolant flow path 33a comprises the refrigerant
  • the second refrigerant flow passage 33b constitutes a refrigerant flow passage that guides the refrigerant from the second collecting portion connecting member 31b to the first distribution portion connecting member 32a.
  • the gas-liquid two-phase low-pressure refrigerant decompressed by the expansion valve 103 in FIG. 1 is introduced into the leeward upper tank section 22 from the refrigerant inlet section 22 a as indicated by an arrow A.
  • the refrigerant introduced into the leeward upper tank portion 22 descends the first leeward core portion 21a of the leeward heat exchange core portion 21 as indicated by an arrow B, and at the leeward side heat exchange core portion 21 as indicated by an arrow C.
  • the second leeward core portion 21b is lowered.
  • the refrigerant descending the first leeward core portion 21a flows into the first refrigerant assembly portion 23a of the leeward lower tank portion 23 as indicated by an arrow D.
  • the refrigerant descending the second leeward core portion 21b flows into the second refrigerant collecting portion 23b of the leeward lower tank portion 23 as indicated by an arrow E.
  • the refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the first refrigerant flow passage 33a of the intermediate tank portion 33 through the first collecting portion connecting member 31a as indicated by the arrow F. Further, the refrigerant flowing into the second refrigerant collecting portion 23b flows into the second refrigerant flow passage 33b of the intermediate tank portion 33 through the second collecting portion connecting member 31b as indicated by an arrow G.
  • the refrigerant that has flowed into the first refrigerant flow passage 33a flows into the second refrigerant distribution portion 13b of the upwind lower tank portion 13 through the second distribution portion connecting member 32b as indicated by an arrow H. Further, the refrigerant flowing into the second refrigerant flow passage 33b flows into the first refrigerant distribution portion 13a of the upwind lower tank portion 13 through the first distribution portion connecting member 32a as indicated by an arrow I.
  • the refrigerant that has flowed into the second refrigerant distribution portion 13b of the windward lower tank portion 13 ascends the second windward core portion 11b of the windward heat exchange core portion 11 as indicated by an arrow J.
  • the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind core unit 11a of the upwind heat exchange core unit 11 as indicated by an arrow K.
  • the refrigerant that has moved up the second upwind core portion 11b flows into the second independent flow path 12c of the upwind upper tank section 12 as indicated by the arrow L, and flows through the second independent flow path 12c toward the refrigerant outlet portion 12a.
  • the refrigerant that has moved up the first upwind core portion 11a flows into the first independent flow path 12b of the upwind upper tank section 12 as indicated by the arrow M, and flows through the first independent flow path 12b toward the refrigerant outlet portion 12a.
  • the refrigerant flowing through the first and second independent flow paths 12b and 12c flows out of the refrigerant outlet portion 12a as indicated by an arrow N and merges in the inner space 41a of the outlet side portion 41 of the joint 40 shown in FIG.
  • the inside of the pipe flows toward the compressor 101 in FIG.
  • FIGS. 8A and 8B show the distribution of the liquid-phase refrigerant and the gas-phase refrigerant in each of the leeward evaporation unit 20 and the leeward evaporation unit 10 of the refrigerant evaporator 1 of the present embodiment when the heat load is small.
  • FIG. 8A and 8B show the distribution of the liquid-phase refrigerant and the gas-phase refrigerant in each of the leeward evaporation unit 20 and the leeward evaporation unit 10 of the refrigerant evaporator 1 of the present embodiment when the heat load is small.
  • the internal space of the windward upper tank portion 12 is not partitioned, and the windward upper tank portion 12 has only one refrigerant flow path.
  • this embodiment is different.
  • the other structure of the refrigerant evaporator J1 of a comparative example is the same as this embodiment.
  • the air blown into the passenger compartment does not need to be cooled by the refrigerant evaporator. Since the refrigerant flow rate required for heat exchange is small, the flow rate of the refrigerant flowing into the leeward upper tank portion 22 from the refrigerant inlet portion 22a is low.
  • the windward upper tank portion 12 includes the first windward core portion in the middle of the refrigerant flow path from each communicating portion where each tube 111 constituting the second windward core portion 11b communicates to the refrigerant outlet portion 12a.
  • Each communication part which each tube 111 which comprises 11a communicates exists.
  • the gas phase refrigerant and the liquid phase refrigerant are separated by the accumulator 104, and only the gas phase refrigerant flows into the compressor 101. Therefore, the refrigerant flowing out from the refrigerant evaporator J1 It may not be completely in the gas phase.
  • the force relationship between the falling liquid-phase refrigerant and the gas-phase refrigerant trying to ascend the first windward core portion 11a is balanced, and the refrigerant flow in the first windward core portion 11a stagnates or falls.
  • the phase refrigerant flows to the windward lower tank section 13.
  • the refrigerant stagnates inside the refrigerant evaporator J1. Since the refrigerant circulating in the refrigeration cycle contains oil for internal lubrication of the compressor 101, if the refrigerant stagnates in the refrigerant evaporator J1, the oil also stagnates and returns to the compressor 101. The amount of oil will decrease.
  • the windward upper tank section 12 has first and second independent flow paths 12b and 12c.
  • the gas-phase refrigerant flowing out from the first windward core portion 11a moves toward the refrigerant outlet portion 12a.
  • coolant which flowed out from the 2nd windward core part 11b flows through the 2nd independent flow path 12c toward the refrigerant
  • the region R1 (where the liquid phase refrigerant flowing out from the second windward core portion 11b has communication portions communicating with the tubes 111 constituting the first windward core portion 11a). It flows toward the refrigerant outlet portion 12a without flowing through it (see FIG. 4).
  • the windward upper tank portion 12 of the present embodiment includes the first in the refrigerant flow path from the communicating portions communicating with the tubes 111 constituting the second windward core portion 11b toward the refrigerant outlet portion 12a. It has a structure in which each communicating portion communicating with each tube 111 constituting the windward core portion 11a does not exist.
  • the liquid-phase refrigerant that has not been completely evaporated out of the liquid-phase refrigerant that has flowed into the second windward-side core part 11b moves from the inside of the windward-side upper tank part 12 toward the refrigerant outlet part 12a. Can be prevented from falling to the first upwind core portion 11a.
  • oil stagnation inside the refrigerant evaporator 1 can be suppressed, and the amount of oil returning to the compressor 101 can be secured.
  • the configuration of the windward upper tank unit 12 is changed with respect to the refrigerant evaporator 1 of the first embodiment.
  • Other configurations of the refrigerant evaporator 1 are the same as those in the first embodiment.
  • the windward upper tank unit 12 of the present embodiment is configured by two separate cylindrical members 125 and 126.
  • the 1st cylindrical member 125 forms the 1st independent flow path 12b
  • the 2nd cylindrical member 126 forms the 2nd independent flow path 12c.
  • the first cylindrical member 125 has an opening 125a at one end in the tube stacking direction, in the present embodiment, at the right end when viewed from the air flow direction X.
  • the 2nd cylindrical member 126 also has the opening part 126a in the edge part of the one side in a tube lamination direction.
  • first and second cylindrical members 125 and 126 in the tube stacking direction is connected to the outlet side portion 41 of the joint 40 via the joining member 122, as in the first embodiment ( (See FIG. 4). For this reason, the first and second independent flow paths 12 b and 12 c communicate with the internal space 41 a in the outlet side portion 41 of the joint 40.
  • windward upper tank section 12 since the windward upper tank section 12 has the first and second independent flow paths 12b and 12c, the same effects as in the first embodiment can be obtained.
  • the openings 125a and 126a of the first and second cylindrical members 125 and 126 constitute the refrigerant outlet portion 12a.
  • the ends of the first and second cylindrical members 125 and 126 are connected to one refrigerant pipe via a common joint, the first and second cylindrical members 125 and The openings 125a and 126a of 126 may be separated from each other.
  • the position of the refrigerant outlet portion 12a provided in the windward upper tank portion 12 is changed with respect to the refrigerant evaporator 1 of the first embodiment.
  • Other configurations of the refrigerant evaporator 1 are the same as those in the first embodiment.
  • the refrigerant outlet portion 12 a is provided at the left end of the windward upper tank portion 12 when viewed from the air flow direction X.
  • the refrigerant outlet portion 12 a is closer to the second windward core portion 11 b than the first windward core portion 11 a among both ends in the tube stacking direction of the windward upper tank portion 12. It is provided at the end of the side.
  • a joint 41 ⁇ / b> A is provided at the left end of the windward upper tank portion 12.
  • the joint 41A corresponds to the outlet side portion 41 of the joint 40 of the first embodiment.
  • the refrigerant inlet portion 22a is provided at the right end of the leeward upper tank portion 22 when viewed from the air flow direction X.
  • the refrigerant inlet portion 22a is closer to the first leeward core portion 21a than the second leeward core portion 21b among the both ends of the leeward upper tank portion 22 in the tube stacking direction. It is provided at the end of the side.
  • a joint 42 ⁇ / b> A is provided at the right end of the leeward upper tank section 22.
  • the joint 42A corresponds to the inlet side portion 42 of the joint 40 of the first embodiment.
  • the refrigerant flow in the present embodiment differs from the refrigerant flow of the first embodiment shown in FIG. 6 in the following points. That is, in the present embodiment, the refrigerant that has risen in the first windward core portion 11a and the second windward core portion 11b flows into the windward upper tank portion 12 as indicated by arrows O and P and travels toward the refrigerant outlet portion 12a. Then, it flows through the windward upper tank section 12 and flows out from the refrigerant outlet section 12a as indicated by an arrow Q.
  • the both ends of the windward upper tank portion 12 in the tube stacking direction are located on the opposite side of the leeward upper tank portion 22 from the side where the refrigerant inlet 22a is provided.
  • a refrigerant outlet 12a is provided at the end.
  • the windward upper tank portion 12 of the present embodiment is configured so that the first wind is in the middle of the refrigerant flow path from each communication portion communicating with each tube 111 constituting the second windward core portion 11b toward the refrigerant outlet portion 12a. It has a structure in which each communicating portion communicating with each tube 111 constituting the upper core portion 11a does not exist.
  • the position of the refrigerant inlet portion 22a in the leeward upper tank portion 22 and the position of the refrigerant outlet portion 12a in the leeward upper tank portion 12 are changed with respect to the refrigerant evaporator 1 of the third embodiment.
  • Other configurations of the refrigerant evaporator 1 are the same as those in the third embodiment.
  • the refrigerant inlet portion 22a is provided in a portion of the ceiling portion of the leeward upper tank portion 22 that is closer to the first leeward core portion 21a than the second leeward core portion 21b. More specifically, the refrigerant inlet portion 22a is connected to each communication portion communicating with each tube 111 constituting the second leeward core portion 21b in the leeward upper tank portion 22 in the ceiling portion of the leeward upper tank portion 22.
  • the leeward side upper tank portion 22 is also provided at a portion close to each communicating portion communicating with each tube 111 constituting the first leeward side core portion 21a.
  • the refrigerant outlet portion 12a is provided in a portion of the ceiling portion of the windward upper tank portion 12 that is closer to the second windward core portion 11b than the first windward core portion 11a.
  • the refrigerant outlet portion 12a is connected to each of the communication portions communicating with the tubes 111 constituting the first upwind core portion 11a in the upwind upper tank portion 12 of the ceiling portion of the upwind upper tank portion 12. Is also provided in a portion near each communication portion communicating with each tube 111 constituting the second windward core portion 11b in the windward upper tank portion 12.
  • the refrigerant inlet portion 22a and the refrigerant outlet portion 12a are provided on the ceiling portion of the leeward upper tank portion 22 and the windward upper tank portion 12, but may be provided on portions other than the ceiling portion.
  • the refrigeration cycle apparatus 200 of this embodiment includes a compressor 101, a condenser 102, an expansion valve 103, a refrigerant evaporator 1, an internal heat exchanger 105, and the like.
  • the configuration of the refrigerant evaporator 1 is the same as that of the first embodiment.
  • the internal heat exchanger 105 heats the refrigerant flowing out of the refrigerant evaporator 1 by heat exchange with the refrigerant upstream of the refrigerant evaporator 1 and flows in the liquid phase contained in the refrigerant flowing out of the refrigerant evaporator 1.
  • the refrigerant is a gas phase refrigerant, and the gas phase refrigerant is sucked into the compressor 101.
  • the internal heat exchanger 105 exchanges heat between the high-pressure refrigerant between the condenser 102 and the expansion valve 103 and the low-pressure refrigerant between the refrigerant evaporator 1 and the compressor 101.
  • the internal heat exchanger 105 is configured by a single double pipe having an inner pipe and an outer pipe. The inside of the inner pipe is a refrigerant flow path for low-pressure refrigerant, and the space between the inner pipe and the outer pipe is a refrigerant flow path for high-pressure refrigerant.
  • the refrigerant flowing out of the refrigerant evaporator 1 is heated by the internal heat exchanger 105 to form a gas phase refrigerant, and only the gas phase refrigerant flows into the compressor 101. Therefore, the refrigerant evaporator 1
  • the refrigerant flowing out of the refrigerant may not be completely in the gas phase. For this reason, the problem shown to FIG. 7A and 7B tends to generate
  • the refrigeration cycle apparatus 200 of the present embodiment uses the refrigerant evaporator 1 of the first embodiment, but may use the refrigerant evaporator 1 of the second to fourth embodiments.
  • the end of the partition member 124 on the refrigerant outlet 12a side is located at the open end of the tank body member 121.
  • the position of the end of the partition member 124 on the refrigerant outlet 12a side may be changed to another position.
  • a portion where the first independent flow path 12b communicates with the tube 111 closest to the refrigerant outlet portion 12a in the tube group constituting the first windward core portion 11a in the windward upper tank portion 12 is defined as a communicating portion 12d ( (See FIG. 4).
  • the end of the partition member 124 on the refrigerant outlet portion 12a side only needs to be positioned at a predetermined position located on the refrigerant outlet portion 12a side of the communication portion 12d (see FIG. 4).
  • the end of the partition member 124 on the refrigerant outlet portion 12a side only needs to be located at a predetermined position between the communication portion 12d and the refrigerant outlet portion 12a in the stacking direction.
  • the open end of the tube 111 is the communication portion 12 d.
  • first and second upwind core portions 11a of the first and second independent flow paths 12b and 12c of the upwind upper tank portion 12 reach a predetermined position located closer to the refrigerant outlet portion 12a than the communication portion 12d.
  • 11b may be configured such that the refrigerants flowing out from 11b flow independently of each other. Thereby, the effect similar to 1st Embodiment is acquired.
  • the refrigerant replacement unit 30 includes the pair of collecting unit connecting members 31a and 31b, the pair of distributing unit connecting members 32a and 32b, and the intermediate tank unit 33 has been described.
  • the intermediate tank part 33 of the refrigerant replacement part 30 may be eliminated, and the connecting members 31a, 31b, 32a, 32b may be directly connected to each other.
  • the refrigerant replacement unit 30 is provided separately from the leeward lower tank unit 13 and the leeward lower tank unit 23. However, as described in JP 2014-13104 A, the refrigerant replacement unit 30 is provided. May be provided in the leeward side tank part 13 and the leeward side lower tank part 23.
  • the two evaporators 10 and 20 cause the refrigerant to flow into the first leeward core portion 21a and the second leeward core portion 21b from the leeward upper tank portion 22, and the first leeward core portion 21a.
  • the refrigerant flowing out of the second windward core portion 11b flows into the second windward core portion 11b, and the refrigerant flowing out of the second leeward core portion 21b flows into the first windward core portion 11a. It suffices that the refrigerant that has flowed out of the two upwind core portion 11 b flows into the upwind upper tank portion 12.
  • the refrigerant evaporator 1 when viewed from the air flow direction X, all of the first leeward core portion 11a and all of the first leeward core portion 21a are superposed.
  • the example in which all of the second leeward core portion 11b and all of the second leeward core portion 21b are superposed is described.
  • the refrigerant evaporator 1 is arranged so that part of the first windward core portion 11a and the first leeward core portion 21a are superposed when viewed from the air flow direction X, or the second wind
  • the upper core portion 11b and the second leeward core portion 21b may be arranged so as to overlap each other.
  • the first windward core portion 11a and the first leeward core portion 21a are arranged so that at least a part of them overlaps, and the second windward core portion 11b and second What is necessary is just to arrange
  • each heat exchange core part 11 and 21 of two evaporation parts 10 and 20 had two core parts, but has three or more core parts. May be. Therefore, the windward heat exchange core part 11 includes a first windward core part 11a including a part of the plurality of tubes 111 and a second windward core including a tube group different from the tube group. What is necessary is just to have the part 11b. Similarly, the leeward side heat exchange core part 21 includes a first leeward side core part 21a including a part of the plurality of tubes 211 and a second leeward side including a tube group different from the tube group. What is necessary is just to have the core part 21b.
  • the present invention is not limited to this.
  • the windward evaporator 10 may be disposed downstream of the leeward evaporator 20 in the air flow direction X.
  • each heat exchange core portion 11 and 21 includes a plurality of tubes 111 and 211 and fins 112 and 212 .
  • Each of the heat exchange core parts 11 and 21 may be configured by only 111 and 211.
  • the fins 112 and 212 may be not only a corrugated fin but a plate fin.
  • the tube and the tank portion are configured by separate members.
  • the tube and the tank unit are integrated by stacking a plurality of tube units that constitute a tube and a part of the tank unit by joining a pair of core plates. A laminated structure formed in the above may be adopted.
  • the partition member 124 may include a first portion 124c and a second portion 124d.
  • the first portion 124c partitions the internal space of the tank body member 121 into an upper side and a lower side.
  • the second portion 124d partitions the internal space of the tank body member 121 into one side and the other side in the tube stacking direction.
  • the partition member 124 allows the refrigerant flowing out from the first windward core 11 a to flow to the refrigerant outlet 12 a, and flows out from the second windward core 11 b.
  • a second flow path 12f that guides the refrigerant to the refrigerant outlet 12a is formed.

Abstract

This refrigerant evaporator exchanges heat between a refrigerant and a fluid to be cooled, said fluid flowing outside. The refrigerant evaporator is provided with a first evaporating section (20) and a second evaporating section (10), which respectively have heat exchanging core sections (11, 21), upper tank sections (12, 22), and lower tank sections (13, 23). The heat exchanging core section (21) of the first evaporating section has a first core section (21a) and a second core section (21b), and the heat exchanging core section (11) of the second evaporating section has a third core section (11a) and a fourth core section (11b). The upper tank section (22) of the first evaporating section has a refrigerant inlet section (22a), and an upper tank section (12) of the second evaporating section has a refrigerant outlet section (12a). The upper tank section of the second evaporating section has a first independent flow channel (12b) and a second independent flow channel (12c), in which the refrigerant flowed out from the third core section and the refrigerant flowed out from the fourth core section independently flow toward the refrigerant outlet section.

Description

冷媒蒸発器Refrigerant evaporator 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年1月14日に出願された日本特許出願2015-005282号を基にしている。 This application is based on Japanese Patent Application No. 2015-005282 filed on Jan. 14, 2015, the disclosure of which is incorporated herein by reference.
 本開示は、被冷却流体から吸熱して冷媒を蒸発させることで、被冷却流体を冷却する冷媒蒸発器に関するものである。 This disclosure relates to a refrigerant evaporator that cools a fluid to be cooled by absorbing heat from the fluid to be cooled and evaporating the refrigerant.
 冷媒蒸発器は、圧縮機等とともに冷凍サイクルを構成するものであり、冷媒蒸発器としては、特許文献1に記載のものがある。この冷媒蒸発器は、被冷却流体の流れ方向に対して直列に配置された第1蒸発部および第2蒸発部を備えている。第1蒸発部および第2蒸発部のそれぞれは、上下方向に延びる複数のチューブを積層して構成された熱交換コア部と、複数のチューブの上下方向における両端側に接続された上方タンク部および下方タンク部とを有している。 The refrigerant evaporator constitutes a refrigeration cycle together with a compressor and the like, and a refrigerant evaporator is disclosed in Patent Document 1. The refrigerant evaporator includes a first evaporator and a second evaporator disposed in series with respect to the flow direction of the fluid to be cooled. Each of the first evaporation section and the second evaporation section includes a heat exchange core section configured by stacking a plurality of tubes extending in the vertical direction, an upper tank section connected to both end sides in the vertical direction of the plurality of tubes, and And a lower tank portion.
 第1蒸発部の熱交換コア部は、チューブの積層方向における一方側のチューブ群を有する第1コア部と、チューブの積層方向における他方側のチューブ群を有する第2コア部とを有している。第2蒸発部の熱交換コア部は、第1コア部と対向するチューブ群を有する第3コア部と、第2コア部と対向するチューブ群を有する第4コア部とを有している。第1蒸発部の上方タンク部は、第2コア部よりも第1コア部に近い側であるチューブ積層方向における一方側の端部に冷媒入口部が設けられている。第2蒸発部の上方タンク部は、冷媒入口部と同じ側、すなわち、第4コア部よりも第3コア部に近い側であるチューブ積層方向における一方側の端部に冷媒出口部が設けられている。 The heat exchange core part of the first evaporation part includes a first core part having a tube group on one side in the tube stacking direction and a second core part having a tube group on the other side in the tube stacking direction. Yes. The heat exchange core part of the second evaporation part has a third core part having a tube group facing the first core part, and a fourth core part having a tube group facing the second core part. The upper tank part of the first evaporation part is provided with a refrigerant inlet part at an end part on one side in the tube stacking direction which is closer to the first core part than the second core part. The upper tank section of the second evaporation section is provided with a refrigerant outlet section on the same side as the refrigerant inlet section, that is, on one end in the tube stacking direction, which is closer to the third core section than the fourth core section. ing.
 そして、第1蒸発部および第2蒸発部は、第1蒸発部の上方タンク部から第1コア部および第2コア部に冷媒が流入し、第1コア部から流出した冷媒が第2蒸発部の第4コア部に流入するとともに、第2コア部から流出した冷媒が第2蒸発部の第3コア部に流入した後、第3コア部および第4コア部から流出した冷媒が第2蒸発部の上方タンク部に流入するように構成されている。 The first evaporation section and the second evaporation section are configured such that the refrigerant flows into the first core section and the second core section from the upper tank section of the first evaporation section, and the refrigerant flowing out from the first core section is the second evaporation section. After the refrigerant flowing into the fourth core portion and flowing out from the second core portion flows into the third core portion of the second evaporation portion, the refrigerant flowing out from the third core portion and the fourth core portion undergoes second evaporation. It is comprised so that it may flow into the upper tank part of a part.
 このように、特許文献1の冷媒蒸発器では、第1蒸発部の熱交換コア部の幅方向における一方側を流れる冷媒が第2蒸発部の熱交換コア部の幅方向における他方側に流れるとともに、第1蒸発部の熱交換コア部の幅方向における他方側を流れる冷媒が第2蒸発部の熱交換コア部の幅方向における一方側に流れる。 Thus, in the refrigerant evaporator of Patent Document 1, the refrigerant flowing on one side in the width direction of the heat exchange core part of the first evaporation part flows to the other side in the width direction of the heat exchange core part of the second evaporation part. The refrigerant flowing on the other side in the width direction of the heat exchange core part of the first evaporation part flows to one side in the width direction of the heat exchange core part of the second evaporation part.
特許第4124136号公報Japanese Patent No. 4124136
 本開示の発明者らの検討によると、熱負荷の小さい条件下においては、熱交換に必要な冷媒流量が少ないことから、冷媒入口部から第1蒸発部の上方タンク部の内部に流入する冷媒の流速が低い。また、冷媒入口部から流入する冷媒は、気液二相状態の冷媒である。このため、第1蒸発部において、上方タンク部から第1、第2コア部に冷媒が流入する際では、冷媒入口部に近い第1コア部に液相冷媒が多く流入し、冷媒入口部から遠い第2コア部に気相冷媒が多く流入する。これにより、第2蒸発部においては、冷媒出口部から遠い第4コア部に液相冷媒が多く流れ、冷媒出口部に近い第3コア部に気相冷媒が多く流れる。 According to the study by the inventors of the present disclosure, the refrigerant flowing into the upper tank portion of the first evaporation unit from the refrigerant inlet portion because the refrigerant flow rate required for heat exchange is small under the condition of a small heat load. The flow rate is low. The refrigerant flowing from the refrigerant inlet is a gas-liquid two-phase refrigerant. For this reason, when the refrigerant flows into the first and second core parts from the upper tank part in the first evaporation part, a large amount of liquid phase refrigerant flows into the first core part near the refrigerant inlet part, and from the refrigerant inlet part. A large amount of gas-phase refrigerant flows into the far second core portion. As a result, in the second evaporator, a large amount of liquid-phase refrigerant flows in the fourth core part far from the refrigerant outlet part, and a large amount of gas-phase refrigerant flows in the third core part near the refrigerant outlet part.
 この結果、第2蒸発部において、第4コア部に流入した液相冷媒のうち蒸発しきれなかった液相冷媒が、上方タンク部の内部を冷媒出口部に向かって流れる際に、上方タンク部における第3コア部を構成する各チューブと連通する連通部から第3コア部に落下する。このとき、落下する液相冷媒と第3コア部を上昇しようとする気相冷媒との力関係がつりあって、第3コア部の冷媒流れが停滞したり、落下した液相冷媒が下方タンク部まで流れたりする。この結果、冷媒蒸発器の内部に冷媒が停滞してしまう。冷凍サイクルを循環する冷媒には、圧縮機の内部潤滑用のオイル(冷凍機油)が含まれている。従って、冷媒蒸発器の内部に冷媒が停滞すると、オイルも停滞することになり、圧縮機へ戻るオイルの量が少なくなってしまう。 As a result, in the second evaporation part, when the liquid phase refrigerant that has not completely evaporated out of the liquid phase refrigerant that has flowed into the fourth core part flows in the upper tank part toward the refrigerant outlet part, the upper tank part The third core portion falls from the communicating portion communicating with each tube constituting the third core portion. At this time, the force relationship between the falling liquid-phase refrigerant and the gas-phase refrigerant trying to ascend the third core portion is balanced, and the refrigerant flow in the third core portion stagnates or the dropped liquid-phase refrigerant is transferred to the lower tank portion. Or even flows. As a result, the refrigerant stagnates inside the refrigerant evaporator. The refrigerant circulating in the refrigeration cycle contains oil (refrigerator oil) for internal lubrication of the compressor. Therefore, when the refrigerant stagnates inside the refrigerant evaporator, the oil also stagnates, and the amount of oil returning to the compressor is reduced.
 このような不具合は、第1蒸発部の熱交換コア部が第1、第2コア部以外のコア部を有し、第2蒸発部の熱交換コア部が第3、第4コア部以外のコア部を有する冷媒蒸発器においても発生する。 Such a problem is that the heat exchange core part of the first evaporation part has a core part other than the first and second core parts, and the heat exchange core part of the second evaporation part is other than the third and fourth core parts. It also occurs in a refrigerant evaporator having a core.
 また、このような不具合は、冷媒蒸発器から流出した冷媒を完全に気相冷媒としなくてもよい冷凍サイクルにおいて、特に発生し易い。このような冷凍サイクルとしては、アキュムレータを備える冷凍サイクルや、内部熱交換器を備える冷凍サイクル等が挙げられる。アキュムレータは、冷媒蒸発器から流出した冷媒を液相冷媒と気相冷媒に分離し、気相冷媒を圧縮機に流入させる。内部熱交換器は、冷媒蒸発器から流出した冷媒を冷媒蒸発器よりも冷媒流れ上流側の冷媒との熱交換によって加熱して、冷媒蒸発器から流出した冷媒に含まれる液相冷媒を気相冷媒とし、気相冷媒を圧縮機に流入させる。 Also, such a problem is particularly likely to occur in a refrigeration cycle in which the refrigerant flowing out of the refrigerant evaporator does not have to be completely gas phase refrigerant. Examples of such a refrigeration cycle include a refrigeration cycle including an accumulator, a refrigeration cycle including an internal heat exchanger, and the like. The accumulator separates the refrigerant flowing out from the refrigerant evaporator into a liquid phase refrigerant and a gas phase refrigerant, and causes the gas phase refrigerant to flow into the compressor. The internal heat exchanger heats the refrigerant that has flowed out of the refrigerant evaporator by heat exchange with the refrigerant on the upstream side of the refrigerant flow from the refrigerant evaporator, and converts the liquid-phase refrigerant contained in the refrigerant that has flowed out of the refrigerant evaporator into a gas phase. As a refrigerant, a gas-phase refrigerant is allowed to flow into the compressor.
 本開示は上記点に鑑みて、冷媒蒸発器内部でのオイルの停滞を抑制できる冷媒蒸発器を提供することを目的とする。 This indication aims at providing the refrigerant evaporator which can control stagnation of the oil inside a refrigerant evaporator in view of the above-mentioned point.
 本開示の第1態様に係る冷媒蒸発器は、外部を流れる被冷却流体と冷媒との間で熱交換を行う。冷媒蒸発器は、被冷却流体の流れ方向に対して直列に配置された第1蒸発部および第2蒸発部を備える。 The refrigerant evaporator according to the first aspect of the present disclosure performs heat exchange between the fluid to be cooled flowing outside and the refrigerant. The refrigerant evaporator includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the fluid to be cooled.
 第1蒸発部および第2蒸発部のそれぞれは、熱交換コア部、上方タンク部、および下方タンク部を有している。熱交換コア部は、上下方向に延びるとともに冷媒が流れる複数のチューブを積層して構成されている。上方タンク部および下方タンク部は、複数のチューブの上下方向における両端側に配置され、複数のチューブを流れる冷媒の集合あるいは分配を行う。 Each of the first evaporator and the second evaporator has a heat exchange core, an upper tank, and a lower tank. The heat exchange core portion is configured by stacking a plurality of tubes that extend in the vertical direction and through which a refrigerant flows. The upper tank portion and the lower tank portion are arranged on both ends in the vertical direction of the plurality of tubes, and collect or distribute the refrigerant flowing through the plurality of tubes.
 第1蒸発部の熱交換コア部は、複数のチューブのうち、一部のチューブ群を含む第1コア部と、チューブ群とは別のチューブ群を含む第2コア部とを有している。第2蒸発部の熱交換コア部は、複数のチューブのうち、被冷却流体の流れ方向において第1コア部の少なくとも一部と対向するチューブ群を含む第3コア部と、被冷却流体の流れ方向において第2コア部の少なくとも一部と対向するチューブ群を含む第4コア部とを有している。 The heat exchange core part of the first evaporation part has a first core part including a part of the tube group and a second core part including a tube group different from the tube group among the plurality of tubes. . The heat exchange core part of the second evaporation part includes a third core part including a tube group facing at least a part of the first core part in the flow direction of the fluid to be cooled, and the flow of the fluid to be cooled. And a fourth core part including a tube group facing at least a part of the second core part in the direction.
 第1蒸発部の上方タンク部は、チューブの積層方向における両端部のうち、第2コア部よりも第1コア部に近い側の端部に、第1蒸発部の上方タンク部の内部に冷媒が流入する冷媒入口部を有している。第2蒸発部の上方タンク部は、チューブの積層方向における両端部のうち、第4コア部よりも第3コア部に近い側の端部に、第2蒸発部の上方タンク部の内部から冷媒が流出する冷媒出口部を有している。 The upper tank part of the first evaporation part has a refrigerant inside the upper tank part of the first evaporation part at the end part closer to the first core part than the second core part among both end parts in the stacking direction of the tubes. Has a refrigerant inlet portion into which the gas flows. The upper tank part of the second evaporation part is a refrigerant from the inside of the upper tank part of the second evaporation part to the end part closer to the third core part than the fourth core part among both end parts in the stacking direction of the tubes. Has a refrigerant outlet part from which the refrigerant flows out.
 第1蒸発部および第2蒸発部は、第1蒸発部の上方タンク部から第1コア部および第2コア部に冷媒が流入し、第1コア部から流出した冷媒が第4コア部に流入するとともに、第2コア部から流出した冷媒が第3コア部に流入した後、第3コア部および第4コア部から流出した冷媒が第2蒸発部の上方タンク部に流入するように構成されている。 In the first and second evaporators, the refrigerant flows from the upper tank of the first evaporator to the first and second cores, and the refrigerant that flows out of the first core flows into the fourth core. In addition, after the refrigerant flowing out from the second core portion flows into the third core portion, the refrigerant flowing out from the third core portion and the fourth core portion flows into the upper tank portion of the second evaporation portion. ing.
 第2蒸発部の上方タンク部は、第3コア部から流出した冷媒と第4コア部から流出した冷媒が冷媒出口部に向かって互いに独立して流れる第1独立流路および第2独立流路を有している。第1独立流路および第2独立流路は、第2蒸発部の上方タンク部における第3コア部を構成するチューブ群のうち冷媒出口部に最も近いチューブと連通する連通部よりも冷媒出口部側に位置する所定位置まで、第3、第4コア部から流出した冷媒が互いに独立して流れるように構成されている。 The upper tank section of the second evaporation section includes a first independent flow path and a second independent flow path where the refrigerant flowing out from the third core section and the refrigerant flowing out from the fourth core section flow independently from each other toward the refrigerant outlet section. have. The first independent flow path and the second independent flow path are the refrigerant outlet portion than the communication portion communicating with the tube closest to the refrigerant outlet portion in the tube group constituting the third core portion in the upper tank portion of the second evaporation portion. The refrigerant that has flowed out of the third and fourth core parts flows independently of each other up to a predetermined position located on the side.
 本開示の第1態様にかかる冷媒蒸発器は、第2蒸発部の上方タンク部が第1、第2独立流路を有している。このため、第2蒸発部の上方タンク部において、第4コア部を構成する各チューブと連通する各連通部から冷媒出口部までの冷媒流路の途中に、第3コア部を構成する各チューブと連通する各連通部が存在しない。これにより、第2蒸発部の上方タンク部内部に、第4コア部から流出の液相冷媒が流入したときに、その液相冷媒が第3コア部に流入することを防止できる。この結果、冷媒蒸発器内部でのオイルの停滞を抑制できる。 In the refrigerant evaporator according to the first aspect of the present disclosure, the upper tank section of the second evaporation section has first and second independent flow paths. For this reason, in the upper tank part of the 2nd evaporation part, each tube which constitutes the 3rd core part in the middle of the refrigerant channel from each communicating part which communicates with each tube which constitutes the 4th core part to the refrigerant outlet part There is no communication part that communicates with. Thereby, when the liquid phase refrigerant | coolant which flowed out from the 4th core part flows in into the upper tank part of a 2nd evaporation part, it can prevent that liquid phase refrigerant | coolant flowing into a 3rd core part. As a result, oil stagnation inside the refrigerant evaporator can be suppressed.
 本開示の第2態様に係る冷媒蒸発器は、外部を流れる被冷却流体と冷媒との間で熱交換を行う。冷媒蒸発器は、被冷却流体の流れ方向に対して直列に配置された第1蒸発部および第2蒸発部を備える。 The refrigerant evaporator according to the second aspect of the present disclosure performs heat exchange between the fluid to be cooled flowing outside and the refrigerant. The refrigerant evaporator includes a first evaporator and a second evaporator arranged in series with respect to the flow direction of the fluid to be cooled.
 第1蒸発部および第2蒸発部のそれぞれは、熱交換コア部、上方タンク部、および下方タンク部を有している。熱交換コア部は、上下方向に延びるとともに冷媒が流れる複数のチューブを積層して構成されている。上方タンク部および下方タンク部は、複数のチューブの上下方向における両端側に配置され、複数のチューブを流れる冷媒の集合あるいは分配を行う。 Each of the first evaporator and the second evaporator has a heat exchange core, an upper tank, and a lower tank. The heat exchange core portion is configured by stacking a plurality of tubes that extend in the vertical direction and through which a refrigerant flows. The upper tank portion and the lower tank portion are arranged on both ends in the vertical direction of the plurality of tubes, and collect or distribute the refrigerant flowing through the plurality of tubes.
 第1蒸発部の熱交換コア部は、複数のチューブのうち、一部のチューブ群を含む第1コア部と、チューブ群とは別のチューブ群を含む第2コア部とを有している。第2蒸発部の熱交換コア部は、複数のチューブのうち、被冷却流体の流れ方向において第1コア部の少なくとも一部と対向するチューブ群を含む第3コア部と、被冷却流体の流れ方向において第2コア部の少なくとも一部と対向するチューブ群を含む第4コア部とを有している。 The heat exchange core part of the first evaporation part has a first core part including a part of the tube group and a second core part including a tube group different from the tube group among the plurality of tubes. . The heat exchange core part of the second evaporation part includes a third core part including a tube group facing at least a part of the first core part in the flow direction of the fluid to be cooled, and the flow of the fluid to be cooled. And a fourth core part including a tube group facing at least a part of the second core part in the direction.
 第1蒸発部の上方タンク部は、第2コア部よりも第1コア部に近い部位に、第1蒸発部の上方タンク部の内部に冷媒が流入する冷媒入口部を有している。第1蒸発部および第2蒸発部は、第1蒸発部の上方タンク部から第1コア部および第2コア部に冷媒が流入し、第1コア部から流出した冷媒が第4コア部に流入するとともに、第2コア部から流出した冷媒が第3コア部に流入した後、第3コア部および第4コア部から流出した冷媒が第2蒸発部の上方タンク部に流入するように構成されている。第2蒸発部の上方タンク部は、第3コア部よりも第4コア部に近い部位に、第2蒸発部の上方タンク部の内部から冷媒が流出する冷媒出口部を有している。 The upper tank part of the first evaporation part has a refrigerant inlet part into which refrigerant flows into the upper tank part of the first evaporation part at a position closer to the first core part than the second core part. In the first and second evaporators, the refrigerant flows from the upper tank of the first evaporator to the first and second cores, and the refrigerant that flows out of the first core flows into the fourth core. In addition, after the refrigerant flowing out from the second core portion flows into the third core portion, the refrigerant flowing out from the third core portion and the fourth core portion flows into the upper tank portion of the second evaporation portion. ing. The upper tank part of the second evaporation part has a refrigerant outlet part through which the refrigerant flows out from the inside of the upper tank part of the second evaporation part at a position closer to the fourth core part than the third core part.
 本開示の第2態様に係る冷媒蒸発器によれば、第2蒸発部の上方タンク部のうち、第3コア部よりも第4コア部に近い部位に、冷媒出口部が設けられている。このため、第2蒸発部の上方タンク部において、第4コア部を構成する各チューブと連通する各連通部から冷媒出口部までの冷媒流路の途中に、第3コア部を構成する各チューブと連通する各連通部が存在しない。これにより、第2蒸発部の上方タンク部内部に、第4コア部から流出の液相冷媒が流入したときに、その液相冷媒が第3コア部に流入することを防止できる。この結果、冷媒蒸発器内部でのオイルの停滞を抑制できる。 According to the refrigerant evaporator according to the second aspect of the present disclosure, the refrigerant outlet portion is provided in a portion of the upper tank portion of the second evaporation portion that is closer to the fourth core portion than the third core portion. For this reason, in the upper tank part of the 2nd evaporation part, each tube which constitutes the 3rd core part in the middle of the refrigerant channel from each communicating part which communicates with each tube which constitutes the 4th core part to the refrigerant outlet part There is no communication part that communicates with. Thereby, when the liquid phase refrigerant | coolant which flowed out from the 4th core part flows in into the upper tank part of a 2nd evaporation part, it can prevent that liquid phase refrigerant | coolant flowing into a 3rd core part. As a result, oil stagnation inside the refrigerant evaporator can be suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態に係る冷凍サイクルの模式図である。 第1実施形態に係る冷媒蒸発器の模式的な斜視図である。 図2に示す冷媒蒸発器の分解斜視図である。 第1実施形態に係る風上側上方タンク部の断面図である。 第1実施形態に係る中間タンク部の模式的な斜視図である。 第1実施形態に係る冷媒蒸発器における冷媒の流れを説明するための説明図である。 比較例に係る冷媒蒸発器の風下側蒸発部を流れる冷媒を説明するための説明図である。 比較例に係る冷媒蒸発器の風上側蒸発部を流れる冷媒を説明するための説明図である。 第1実施形態に係る冷媒蒸発器の風下側蒸発部を流れる冷媒を説明するための説明図である。 第1実施形態に係る冷媒蒸発器の風上側蒸発部を流れる冷媒を説明するための説明図である。 第2実施形態に係る風上側上方タンク部の模式的な分解斜視図である。 第3実施形態に係る冷媒蒸発器の模式的な斜視図である。 第3実施形態に係る冷媒蒸発器における冷媒の流れを説明するための説明図である。 第3実施形態に係る冷媒蒸発器の風下側蒸発部を流れる冷媒を説明するための説明図である。 第3実施形態に係る冷媒蒸発器の風上側蒸発部を流れる冷媒を説明するための説明図である。 第4実施形態に係る冷媒蒸発器の風下側蒸発部を流れる冷媒を説明するための説明図である。 第4実施形態に係る冷媒蒸発器の風上側蒸発部を流れる冷媒を説明するための説明図である。 第5実施形態に係る冷凍サイクルの模式図である。 他の実施形態に係る風上側上方タンク部の断面図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a schematic diagram of the refrigerating cycle which concerns on 1st Embodiment. It is a typical perspective view of the refrigerant evaporator concerning a 1st embodiment. It is a disassembled perspective view of the refrigerant evaporator shown in FIG. It is sectional drawing of the windward upper tank part which concerns on 1st Embodiment. It is a typical perspective view of the intermediate tank part concerning a 1st embodiment. It is explanatory drawing for demonstrating the flow of the refrigerant | coolant in the refrigerant evaporator which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the leeward side evaporation part of the refrigerant evaporator which concerns on a comparative example. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the windward evaporation part of the refrigerant evaporator which concerns on a comparative example. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the leeward side evaporation part of the refrigerant evaporator which concerns on 1st Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the windward evaporation part of the refrigerant evaporator which concerns on 1st Embodiment. It is a typical disassembled perspective view of the windward upper tank part which concerns on 2nd Embodiment. It is a typical perspective view of the refrigerant evaporator which concerns on 3rd Embodiment. It is explanatory drawing for demonstrating the flow of the refrigerant | coolant in the refrigerant evaporator which concerns on 3rd Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the leeward side evaporation part of the refrigerant evaporator which concerns on 3rd Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the windward evaporation part of the refrigerant evaporator which concerns on 3rd Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the leeward side evaporation part of the refrigerant evaporator which concerns on 4th Embodiment. It is explanatory drawing for demonstrating the refrigerant | coolant which flows through the windward evaporation part of the refrigerant evaporator which concerns on 4th Embodiment. It is a schematic diagram of the refrigerating cycle which concerns on 5th Embodiment. It is sectional drawing of the windward upper tank part which concerns on other embodiment.
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組み合せることも可能である。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In the following embodiments, parts that are the same or equivalent to each other may be assigned the same reference numerals and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described above. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder.
 (第1実施形態)
 本実施形態の冷媒蒸発器は、車室内の温度を調整する車両用空調装置の蒸気圧縮式の冷凍サイクル装置に適用され、車室内へ送風する空気から吸熱して冷媒を蒸発させることで、当該空気を冷却する冷却用熱交換器である。なお、本実施形態では、車室内へ送風する空気が、本開示における「外部を流れる被冷却流体」に相当する。
(First embodiment)
The refrigerant evaporator according to the present embodiment is applied to a vapor compression refrigeration cycle apparatus of a vehicle air conditioner that adjusts the temperature in the vehicle interior, and absorbs heat from the air blown into the vehicle interior to evaporate the refrigerant. It is a heat exchanger for cooling which cools air. In the present embodiment, the air blown into the vehicle interior corresponds to the “cooled fluid flowing outside” in the present disclosure.
 図1に示すように、本実施形態の冷凍サイクル装置100は、冷媒蒸発器1以外に、圧縮機101、凝縮器102、膨張弁103、アキュムレータ104等を備えている。圧縮機101は、吸入した冷媒を圧縮して吐出する。凝縮器102は、圧縮機101から吐出された気相冷媒を放熱させて凝縮させる放熱器である。膨張弁103は、凝縮器102から流出した冷媒を減圧膨張させる減圧器である。冷媒蒸発器1は、膨張弁103で減圧された冷媒を蒸発させる。アキュムレータ104は、冷媒蒸発器1と圧縮機101との間に配置され、冷媒蒸発器1から流出した冷媒を気相冷媒と液相冷媒とに分離し、分離した気相冷媒を圧縮機101に吸入させる気液分離器である。 As shown in FIG. 1, the refrigeration cycle apparatus 100 of the present embodiment includes a compressor 101, a condenser 102, an expansion valve 103, an accumulator 104, and the like in addition to the refrigerant evaporator 1. The compressor 101 compresses and discharges the sucked refrigerant. The condenser 102 is a radiator that radiates and condenses the gas-phase refrigerant discharged from the compressor 101. The expansion valve 103 is a decompressor that decompresses and expands the refrigerant flowing out of the condenser 102. The refrigerant evaporator 1 evaporates the refrigerant decompressed by the expansion valve 103. The accumulator 104 is disposed between the refrigerant evaporator 1 and the compressor 101, separates the refrigerant flowing out of the refrigerant evaporator 1 into a gas phase refrigerant and a liquid phase refrigerant, and supplies the separated gas phase refrigerant to the compressor 101. It is a gas-liquid separator to be inhaled.
 凝縮器102は、圧縮機101から流出した気相冷媒を凝縮する凝縮部(図示せず)、凝縮部で凝縮された気液二相冷媒を気液分離する気液分離器(図示せず)、気液分離された液相冷媒を冷却する過冷却部(図示せず)を有する凝縮器であってもよい。なお、このように、気液分離器、過冷却部を有する凝縮器を有する冷凍サイクル装置の場合、アキュムレータ104を廃止してもよい。 The condenser 102 includes a condensing unit (not shown) that condenses the gas-phase refrigerant flowing out of the compressor 101, and a gas-liquid separator (not shown) that separates the gas-liquid two-phase refrigerant condensed in the condensing unit. The condenser may include a supercooling unit (not shown) that cools the liquid-phase refrigerant that has been gas-liquid separated. In this way, in the case of a refrigeration cycle apparatus having a gas-liquid separator and a condenser having a supercooling unit, the accumulator 104 may be eliminated.
 図2に示すように、本実施形態の冷媒蒸発器1は、2つの蒸発部10、20と、冷媒入替部30と、ジョイント40とを備えている。 As shown in FIG. 2, the refrigerant evaporator 1 of the present embodiment includes two evaporators 10, 20, a refrigerant replacement unit 30, and a joint 40.
 2つの蒸発部10、20は、車室内へ送風する空気(被冷却流体)の流れ方向Xに対して直列に配置されている。本実施形態では、2つの蒸発部10、20のうち、空気の空気流れ方向の風上側(上流側)に配置される蒸発部を風上側蒸発部10と称し、空気の流れ方向の風下側(下流側)に配置される蒸発部を風下側蒸発部20と称する。なお、本実施形態における風上側蒸発部10が、本開示の「第2蒸発部」を構成し、風下側蒸発部20が、本開示の「第1蒸発部」を構成している。 The two evaporation units 10 and 20 are arranged in series with respect to the flow direction X of the air (cooled fluid) blown into the vehicle interior. In the present embodiment, of the two evaporation units 10 and 20, the evaporation unit arranged on the windward side (upstream side) in the air flow direction is referred to as the windward evaporation unit 10, and the leeward side in the air flow direction ( The evaporator disposed on the downstream side is referred to as a leeward evaporator 20. Note that the windward evaporator 10 in the present embodiment constitutes a “second evaporator” of the present disclosure, and the leeward evaporator 20 forms a “first evaporator” of the present disclosure.
 風上側蒸発部10および風下側蒸発部20の基本的構成は同一であり、それぞれ熱交換コア部11、21と、熱交換コア部11、21の上下方向における両端側に配置された一対のタンク部12、13、22、23とを有している。本実施形態では、風上側蒸発部10における熱交換コア部を風上側熱交換コア部11と称し、風下側蒸発部20における熱交換コア部を風下側熱交換コア部21と称する。また、風上側蒸発部10における一対のタンク部12、13のうち、上方側に配置されるタンク部を風上側上方タンク部12と称し、下方側に配置されるタンク部を風上側下方タンク部13と称する。同様に、風下側蒸発部20における一対のタンク部22、23のうち、上方側に配置されるタンク部を風下側上方タンク部22と称し、下方側に配置されるタンク部を風下側下方タンク部23と称する。 The basic configurations of the windward side evaporator 10 and the leeward side evaporator 20 are the same, and the heat exchange cores 11 and 21 and a pair of tanks disposed on both ends of the heat exchange cores 11 and 21 in the vertical direction, respectively. Parts 12, 13, 22, and 23. In this embodiment, the heat exchange core part in the windward evaporator 10 is referred to as the windward heat exchange core part 11, and the heat exchange core part in the leeward evaporator 20 is referred to as the leeward heat exchange core part 21. Of the pair of tank units 12 and 13 in the windward side evaporation unit 10, the tank unit disposed on the upper side is referred to as the windward upper tank unit 12, and the tank unit disposed on the lower side is referred to as the windward lower tank unit. 13 is called. Similarly, of the pair of tank portions 22 and 23 in the leeward side evaporation portion 20, the tank portion disposed on the upper side is referred to as the leeward side upper tank portion 22, and the tank portion disposed on the lower side is referred to as the leeward side lower tank. This will be referred to as part 23.
 本実施形態の風上側熱交換コア部11および風下側熱交換コア部21のそれぞれは、上下方向に延びる複数のチューブ111、211と、隣合うチューブ111、211の間に接合されるフィン112、212とが交互に積層配置された積層体として構成されている。以下では、複数のチューブ111、211および複数のフィン112、212の積層体における積層方向をチューブ積層方向と称する。換言すれば、チューブ積層方向とは、複数のチューブ111、211および複数のフィン112、212が積層される方向である。チューブ積層方向が熱交換コア部のコア幅方向である。 Each of the windward side heat exchange core part 11 and the leeward side heat exchange core part 21 of the present embodiment includes a plurality of tubes 111 and 211 extending in the vertical direction and fins 112 joined between the adjacent tubes 111 and 211, 212 is configured as a stacked body in which the layers are alternately stacked. Below, the lamination direction in the laminated body of the some tubes 111 and 211 and the several fins 112 and 212 is called a tube lamination direction. In other words, the tube stacking direction is a direction in which the plurality of tubes 111 and 211 and the plurality of fins 112 and 212 are stacked. The tube stacking direction is the core width direction of the heat exchange core part.
 ここで、風上側熱交換コア部11は、図3示すように、複数のチューブ111のうち、一部のチューブ群を含む第1風上側コア部11a、および残部のチューブ群を含む第2風上側コア部11bを有している。なお、図3では、各熱交換コア部11、21におけるチューブ111、211およびフィン112、212の図示を省略している。また、本実施形態における第1風上側コア部11aが、本開示の「第3コア部」を構成し、第2風上側コア部11bが、本開示の「第4コア部」を構成する。 Here, as shown in FIG. 3, the windward side heat exchange core part 11 includes a first windward core part 11 a including a part of the plurality of tubes 111 and a second wind including the remaining tube group. It has the upper core part 11b. In addition, in FIG. 3, illustration of the tubes 111 and 211 and the fins 112 and 212 in each heat exchange core part 11 and 21 is abbreviate | omitted. Further, the first windward core portion 11a in the present embodiment constitutes the “third core portion” of the present disclosure, and the second windward core portion 11b constitutes the “fourth core portion” of the present disclosure.
 本実施形態では、空気の流れ方向Xから見てチューブ積層方向の右側半分に存するチューブ群で第1風上側コア部11aが構成され、空気の流れ方向Xから見てチューブ積層方向の左側半分に存するチューブ群で第2風上側コア部11bが構成されている。 In the present embodiment, the first windward core portion 11a is configured by the tube group existing in the right half in the tube stacking direction as viewed from the air flow direction X, and is formed in the left half in the tube stacking direction as viewed from the air flow direction X. The existing wind group constitutes the second upwind core portion 11b.
 同様に、風下側熱交換コア部21は、図3に示すように、複数のチューブ211のうち、一部のチューブ群を含む第1風下側コア部21a、および残部のチューブ群を含む第2風下側コア部21bを有している。なお、本実施形態における第1風下側コア部21aが、本開示の「第1コア部」を構成し、第2風下側コア部21bが、本開示の「第2コア部」を構成する。 Similarly, as shown in FIG. 3, the leeward side heat exchange core portion 21 includes a first leeward side core portion 21 a including a part of the tube 211 and a second tube group including the remaining tube group. It has the leeward side core part 21b. In addition, the 1st leeward side core part 21a in this embodiment comprises the "1st core part" of this indication, and the 2nd leeward side core part 21b comprises the "2nd core part" of this indication.
 本実施形態では、空気の流れ方向Xから見てチューブ積層方向の右側半分に存するチューブ群で第1風下側コア部21aが構成され、空気の流れ方向Xから見てチューブ積層方向の左側半分に存するチューブ群で第2風下側コア部21bが構成されている。なお、本実施形態では、空気の流れ方向Xから見たときに、第1風上側コア部11aのチューブ積層方向全部と第1風下側コア部21aのチューブ積層方向全部が重合(対向)するように配置されると共に、第2風上側コア部11bのチューブ積層方向全部と第2風下側コア部21bのチューブ積層方向全部が重合(対向)するように配置されている。 In the present embodiment, the first leeward side core portion 21a is configured by the tube group existing in the right half of the tube stacking direction as viewed from the air flow direction X, and the left half of the tube stacking direction is viewed from the air flow direction X. A second group of leeward cores 21b is formed by the existing tube group. In this embodiment, when viewed from the air flow direction X, the entire tube stacking direction of the first leeward core portion 11a and the entire tube stacking direction of the first leeward core portion 21a are superposed (opposed). And the entire tube stacking direction of the second leeward core portion 11b and the entire tube stacking direction of the second leeward core portion 21b are superposed (opposed).
 各チューブ111、211は、内部に冷媒が流れる冷媒通路が形成される。各チューブ111、211は、その断面形状が空気の流れ方向Xに沿って延びる扁平形状となる扁平チューブである。風上側熱交換コア部11のチューブ111は、長手方向の上端側が風上側上方タンク部12に接続されると共に、長手方向の下端側が風上側下方タンク部13に接続されている。また、風下側熱交換コア部21のチューブ211は、長手方向の上端側が風下側上方タンク部22に接続されると共に、長手方向の下端側が風下側下方タンク部23に接続されている。 Each tube 111, 211 is formed with a refrigerant passage through which a refrigerant flows. Each of the tubes 111 and 211 is a flat tube whose cross-sectional shape is a flat shape extending along the air flow direction X. The tube 111 of the windward side heat exchange core part 11 has an upper end side in the longitudinal direction connected to the windward upper tank part 12 and a lower end side in the longitudinal direction connected to the windward lower tank part 13. Further, the tube 211 of the leeward heat exchange core portion 21 has an upper end side in the longitudinal direction connected to the leeward upper tank portion 22 and a lower end side in the longitudinal direction connected to the leeward lower tank portion 23.
 各フィン112、212は、薄板材を波上に曲げて成形したコルゲートフィンである。各フィン112、212は、チューブ111、211における平坦な外面側に接合され、空気と冷媒との伝熱面積を拡大させるための熱交換促進部を構成する。 The fins 112 and 212 are corrugated fins formed by bending a thin plate material into a wave. Each fin 112, 212 is joined to the flat outer surface side of the tubes 111, 211, and constitutes a heat exchange promoting part for expanding the heat transfer area between the air and the refrigerant.
 チューブ111、211およびフィン112、212を積層した積層体には、チューブ積層方向の両端部に、各熱交換コア部11、12を補強するサイドプレート113、213が配置されている。なお、サイドプレート113、213は、チューブ積層方向において最も外側に配置されたフィン112、212に接合されている。 In the laminate in which the tubes 111 and 211 and the fins 112 and 212 are laminated, side plates 113 and 213 that reinforce the heat exchange core portions 11 and 12 are disposed at both ends in the tube lamination direction. The side plates 113 and 213 are joined to the fins 112 and 212 arranged on the outermost side in the tube stacking direction.
 風上側上方タンク部12は、チューブ積層方向における一方側の端部に冷媒出口部(開口部)12aを有するとともに、チューブ積層方向における他方側の端部が閉塞された筒状の部材により形成されている。冷媒出口部12aが、風上側上方タンク部12の内部から外部へ冷媒が流出する冷媒出口部12aを構成している。本実施形態では、冷媒出口部12aは、空気の流れ方向Xから見たときの風上側上方タンク部12の右側の端部に設けられている。 The windward upper tank portion 12 has a refrigerant outlet portion (opening portion) 12a at one end portion in the tube stacking direction, and is formed by a cylindrical member with the other end portion closed in the tube stacking direction. ing. The refrigerant outlet portion 12a constitutes a refrigerant outlet portion 12a through which the refrigerant flows out from the inside of the windward upper tank portion 12 to the outside. In this embodiment, the refrigerant | coolant exit part 12a is provided in the right end part of the windward upper tank part 12 when it sees from the flow direction X of air.
 また、風上側上方タンク部12は、図4に示すように、両端が開口した筒状のタンク本体部材121と、タンク本体部材121の両端部に接合された2つの接合部材122、123とによって構成されている。冷媒出口部12aは、一方の接合部材122に設けられている。なお、図4は、図2の矢印Y方向、すなわち、空気の流れ方向Xの逆方向から見た風上側上方タンク部12の断面図である。また、接合部材122を用いずに、タンク本体部材121の一方の開口端部を冷媒出口部12aとしてもよい。 Further, as shown in FIG. 4, the windward upper tank unit 12 includes a cylindrical tank body member 121 having both ends opened, and two joining members 122 and 123 joined to both ends of the tank body member 121. It is configured. The refrigerant outlet portion 12 a is provided in one joining member 122. FIG. 4 is a cross-sectional view of the windward upper tank portion 12 as viewed from the direction of the arrow Y in FIG. Moreover, it is good also considering the one opening edge part of the tank main body member 121 as the refrigerant | coolant exit part 12a, without using the joining member 122. FIG.
 この風上側上方タンク部12は、底部に形成された貫通孔に各チューブ111の上端側が挿入された状態で、各チューブ111と接合されている。つまり、風上側上方タンク部12は、その内部空間が風上側熱交換コア部11の各チューブ111に連通するように構成されており、風上側熱交換コア部11の各コア部11a、11bからの冷媒を集合させる冷媒集合部として機能する。 This windward upper tank section 12 is joined to each tube 111 in a state where the upper end side of each tube 111 is inserted into a through hole formed in the bottom. That is, the windward upper tank portion 12 is configured such that the internal space thereof communicates with each tube 111 of the windward heat exchange core portion 11, and from the core portions 11 a and 11 b of the windward heat exchange core portion 11. It functions as a refrigerant collecting part that collects the refrigerant.
 風下側上方タンク部22は、風上側上方タンク部12と同様に、チューブ積層方向における一方側の端部に冷媒入口部(開口部)22aを有するとともに、チューブ積層方向における他方側の端部が閉塞された筒状の部材により形成されている。冷媒入口部22aが、風下側上方タンク部22の外部から内部へ冷媒が流入する冷媒入口部22aを構成している。本実施形態では、冷媒入口部22aは、空気の流れ方向Xから見たときの風下側上方タンク部22の右側の端部に設けられている。 The leeward upper tank section 22 has a refrigerant inlet portion (opening) 22a at one end in the tube stacking direction, and the other end in the tube stacking direction is the same as the windward upper tank section 12. It is formed by a closed cylindrical member. The refrigerant inlet portion 22a constitutes a refrigerant inlet portion 22a into which the refrigerant flows from the outside to the inside of the leeward upper tank portion 22. In the present embodiment, the refrigerant inlet portion 22a is provided at the right end of the leeward upper tank portion 22 when viewed from the air flow direction X.
 この風下側上方タンク部22は、底部に形成された貫通孔に各チューブ211の上端側が挿入された状態で、各チューブ211と接合されている。つまり、風下側上方タンク部22は、その内部空間が風下側熱交換コア部21の各チューブ211に連通するように構成されており、風下側熱交換コア部21の各コア部21a、21bへ冷媒を分配する冷媒分配部として機能する。 The leeward side upper tank portion 22 is joined to each tube 211 in a state where the upper end side of each tube 211 is inserted into a through hole formed in the bottom portion. That is, the leeward side upper tank portion 22 is configured such that the internal space thereof communicates with each tube 211 of the leeward side heat exchange core portion 21, and to the core portions 21 a and 21 b of the leeward side heat exchange core portion 21. It functions as a refrigerant distributor that distributes the refrigerant.
 風上側上方タンク部12は、図4に示すように、風下側上方タンク部22と異なり、第1風上側コア部11aを構成する各チューブ111に連通する第1独立流路12bと、第2風上側コア部11bを構成する各チューブ111に連通する第2独立流路12cとを有している。 As shown in FIG. 4, the windward upper tank section 12 is different from the leeward upper tank section 22 in that the first independent flow path 12 b communicating with each tube 111 constituting the first windward core section 11 a and the second It has the 2nd independent flow path 12c connected to each tube 111 which comprises the windward core part 11b.
 第1、第2独立流路12b、12cは、第1風上側コア部11aから流出した冷媒と第2風上側コア部11bから流出した冷媒が、冷媒出口部12aに向かって、互いに独立して流れる冷媒流路である。「冷媒と冷媒が互いに独立して流れる」とは、冷媒と冷媒とが混ざることなく流れるという意味である。 The first and second independent flow paths 12b and 12c are configured such that the refrigerant flowing out of the first windward core portion 11a and the refrigerant flowing out of the second windward core portion 11b are independent of each other toward the refrigerant outlet portion 12a. It is a flowing refrigerant channel. “The refrigerant and the refrigerant flow independently of each other” means that the refrigerant and the refrigerant flow without being mixed.
 本実施形態では、第1、第2独立流路12b、12cは、タンク本体部材121の内部に設けられた仕切部材124がタンク本体部材121の内部空間を2つの空間に仕切ることによって形成されている。仕切部材124は、タンク本体部材121の内部空間を上側と下側に仕切る第1部分124aと、タンク本体部材121の内部空間をチューブ積層方向一方側と他方側に仕切る第2部分124bとを有する。このため、第1、第2独立流路12b、12cは、上下に並んでいる。 In the present embodiment, the first and second independent flow paths 12b and 12c are formed by dividing the internal space of the tank body member 121 into two spaces by a partition member 124 provided inside the tank body member 121. Yes. The partition member 124 includes a first portion 124a that partitions the internal space of the tank body member 121 into an upper side and a lower side, and a second portion 124b that partitions the internal space of the tank body member 121 into one side and the other side in the tube stacking direction. . For this reason, the 1st, 2nd independent flow path 12b, 12c is located in a line up and down.
 また、本実施形態では、仕切部材124の冷媒出口部12a側の端部がタンク本体部材121の開口端部に位置している。したがって、第1、第2独立流路12b、12cは、タンク本体部材121の開口端部の位置まで、第1、第2風上側コア部11a、11bから流出した冷媒が互いに独立して流れるように構成されている。 In the present embodiment, the end of the partition member 124 on the refrigerant outlet portion 12a side is located at the open end of the tank main body member 121. Therefore, the refrigerant flowing out from the first and second upwind core portions 11a and 11b flows through the first and second independent flow paths 12b and 12c independently of each other up to the position of the opening end of the tank body member 121. It is configured.
 風上側上方タンク部12の冷媒出口部12aは、ジョイント40の出口側部分41に接続されている。ジョイント40の出口側部分41は、風上側上方タンク部12から流出した冷媒を流すための図示しない一本の冷媒配管と接続される。このため、ジョイント40の出口側部分41における内部空間41aは、図示しない冷媒配管の内部と連通しているとともに、風上側上方タンク部12の第1、第2独立流路12b、12cと連通している。 The refrigerant outlet portion 12 a of the windward upper tank portion 12 is connected to the outlet side portion 41 of the joint 40. The outlet side portion 41 of the joint 40 is connected to a single refrigerant pipe (not shown) for flowing the refrigerant that has flowed out of the windward upper tank portion 12. For this reason, the internal space 41a in the outlet side portion 41 of the joint 40 communicates with the inside of a refrigerant pipe (not shown) and communicates with the first and second independent flow paths 12b and 12c of the windward upper tank portion 12. ing.
 なお、ジョイント40は、図2に示すように、各上方タンク部12、22と冷媒配管とを接続する配管接続部材である。ジョイント40は、冷媒出口部12aと接続される出口側部分41と、風下側上方タンク部22の冷媒入口部22aに接続される入口側部分42とが一体に形成されている。ジョイント40の入口側部分42も、風下側上方タンク部22に流入する冷媒を流すための一本の冷媒配管と接続される。なお、本実施形態では、出口側部分41と入口側部分42とが一体に形成されたジョイント40を用いているが、出口側部分41と入口側部分42とが別体のジョイントを用いてもよい。 In addition, the joint 40 is a pipe connection member for connecting the upper tank portions 12 and 22 and the refrigerant pipe as shown in FIG. In the joint 40, an outlet side portion 41 connected to the refrigerant outlet portion 12a and an inlet side portion 42 connected to the refrigerant inlet portion 22a of the leeward side upper tank portion 22 are integrally formed. The inlet side portion 42 of the joint 40 is also connected to one refrigerant pipe for flowing the refrigerant flowing into the leeward upper tank portion 22. In this embodiment, the joint 40 in which the outlet side portion 41 and the inlet side portion 42 are integrally formed is used. However, even if the outlet side portion 41 and the inlet side portion 42 use separate joints. Good.
 風上側下方タンク部13は、図3に示すように、チューブ積層方向における両端側が閉塞された筒状の部材により形成されている。この風上側下方タンク部13は、天井部に形成された貫通孔に各チューブ111の下端側が挿入された状態で、各チューブ111と接合されている。つまり、風上側下方タンク部13は、その内部空間が各チューブ111に連通するように構成されている。 As shown in FIG. 3, the windward lower tank portion 13 is formed of a cylindrical member that is closed at both ends in the tube stacking direction. The windward lower tank portion 13 is joined to each tube 111 in a state where the lower end side of each tube 111 is inserted into a through hole formed in the ceiling portion. That is, the windward lower tank portion 13 is configured such that the internal space thereof communicates with each tube 111.
 また、風上側下方タンク部13の内部には、チューブ積層方向の中央位置に仕切部材131が配置されている。この仕切部材131によって、タンク内部空間が第1風上側コア部11aを構成する各チューブ111が連通する空間と、第2風上側コア部11bを構成する各チューブ111が連通する空間とに仕切られている。 Moreover, a partition member 131 is disposed inside the windward lower tank portion 13 at the center position in the tube stacking direction. By this partition member 131, the tank internal space is partitioned into a space where each tube 111 constituting the first upwind core portion 11a communicates and a space where each tube 111 constituting the second upwind core portion 11b communicates. ing.
 ここで、風上側下方タンク部13の内部のうち、第1風上側コア部11aを構成する各チューブ111に連通する空間が、第1風上側コア部11aに冷媒を分配する第1冷媒分配部13aを構成し、第2風上側コア部11bを構成する各チューブ111に連通する空間が、第2風上側コア部11bに冷媒を分配する第2冷媒分配部13bを構成する。 Here, in the inside of the upwind side lower tank part 13, a space communicating with each tube 111 constituting the first upwind core part 11a distributes the refrigerant to the first upwind core part 11a. The space which communicates with each tube 111 which comprises 13a and comprises the 2nd windward core part 11b comprises the 2nd refrigerant | coolant distribution part 13b which distributes a refrigerant | coolant to the 2nd windward core part 11b.
 風下側下方タンク部23は、図3に示すように、チューブ積層方向における両端側が閉塞された筒状の部材により構成されている。この風下側下方タンク部23は、天井部に形成された貫通孔に各チューブ211の下端側が挿入された状態で、各チューブ211と接合されている。つまり、風下側下方タンク部23は、その内部空間が各チューブ211に連通するように構成されている。 As shown in FIG. 3, the leeward side lower tank portion 23 is configured by a cylindrical member that is closed at both ends in the tube stacking direction. The leeward lower tank portion 23 is joined to each tube 211 in a state where the lower end side of each tube 211 is inserted into a through hole formed in the ceiling portion. That is, the leeward side lower tank portion 23 is configured such that its internal space communicates with each tube 211.
 風下側下方タンク部23の内部には、チューブ積層方向の中央位置に仕切部材231が配置されており、この仕切部材231によって、タンク内部空間が第1風下側コア部21aを構成する各チューブ211が連通する空間と、第2風下側コア部21bを構成する各チューブ211が連通する空間とに仕切られている。 A partition member 231 is disposed inside the leeward side lower tank portion 23 at a central position in the tube stacking direction, and each partition 211 having the tank internal space constituting the first leeward core portion 21a by the partition member 231. Is partitioned into a space where the tubes 211 constituting the second leeward core portion 21b communicate.
 ここで、風下側下方タンク部23の内部のうち、第1風下側コア部21aを構成する各チューブ211に連通する空間が、第1風下側コア部21aからの冷媒を集合させる第1冷媒集合部23aを構成し、第2風下側コア部21bを構成する各チューブ211が連通する空間が、第2風下側コア部21bからの冷媒を集合させる第2冷媒集合部23bを構成する。 Here, in the inside of the leeward side lower tank part 23, a space communicating with each tube 211 constituting the first leeward side core part 21a gathers the refrigerant from the first leeward side core part 21a. The space which comprises the part 23a and the tube 211 which comprises the 2nd leeward core part 21b communicates comprises the 2nd refrigerant | coolant collection part 23b which collects the refrigerant | coolant from the 2nd leeward core part 21b.
 風上側下方タンク部13および風下側下方タンク部23のそれぞれは、図3に示すように、冷媒入替部30を介して連結されている。この冷媒入替部30は、風下側下方タンク部23における第1冷媒集合部23a内の冷媒を風上側下方タンク部13における第2冷媒分配部13bに導くと共に、風下側下方タンク部23における第2冷媒集合部23b内の冷媒を風上側下方タンク部13における第1冷媒分配部13aに導く。すなわち、冷媒入替部30は、冷媒の流れを各熱交換コア部11、21においてコア幅方向に入れ替える。 Each of the leeward side lower tank part 13 and the leeward side lower tank part 23 is connected via the refrigerant | coolant replacement | exchange part 30, as shown in FIG. The refrigerant replacement unit 30 guides the refrigerant in the first refrigerant collecting unit 23a in the leeward lower tank unit 23 to the second refrigerant distribution unit 13b in the leeward lower tank unit 13, and the second in the leeward lower tank unit 23. The refrigerant in the refrigerant collecting portion 23b is guided to the first refrigerant distribution portion 13a in the upwind lower tank portion 13. That is, the refrigerant replacement unit 30 switches the refrigerant flow in the core width direction in each of the heat exchange core units 11 and 21.
 具体的には、冷媒入替部30は、風下側下方タンク部23における第1、第2冷媒集合部23a、23bに連結された一対の集合部連結部材31a、31bと、風上側下方タンク部13における各冷媒分配部13a、13bに連結された一対の分配部連結部材32a、32bと、一対の集合部連結部材31a、31bおよび一対の分配部連結部材32a、32bそれぞれに連結された中間タンク部33と、を有して構成されている。なお、図3では、各連結部材31a、31b、32a、32bの連結関係が理解しやすいように、各連結部材31a、31b、32a、32bの空気の流れ方向Xにおける長さを、図2の冷媒蒸発器1における各連結部材31a、31b、32a、32bの長さよりも長く示している。 Specifically, the refrigerant replacement unit 30 includes a pair of collecting unit connecting members 31 a and 31 b connected to the first and second refrigerant collecting units 23 a and 23 b in the leeward lower tank unit 23, and the leeward lower tank unit 13. A pair of distributor connecting members 32a, 32b connected to each refrigerant distributor 13a, 13b, and a pair of collecting member connecting members 31a, 31b and a pair of distributor connecting members 32a, 32b. 33. In FIG. 3, the lengths of the connecting members 31a, 31b, 32a, and 32b in the air flow direction X are shown in FIG. 2 so that the connecting relationship between the connecting members 31a, 31b, 32a, and 32b can be easily understood. The length of each connecting member 31a, 31b, 32a, 32b in the refrigerant evaporator 1 is shown.
 一対の集合部連結部材31a、31bそれぞれは、内部に冷媒が流通する冷媒流通路が形成された筒状の部材によって構成されており、その一端側が風下側下方タンク部23に接続されると共に、他端側が中間タンク部33に接続されている。 Each of the pair of collecting portion connecting members 31a and 31b is configured by a cylindrical member in which a refrigerant flow passage in which a refrigerant flows is formed, and one end side thereof is connected to the leeward side lower tank portion 23, The other end side is connected to the intermediate tank portion 33.
 一対の集合部連結部材31a、31bのうち、一方を構成する第1集合部連結部材31aは、一端側が第1冷媒集合部23aに連通するように風下側下方タンク部23に接続されており、他端側が後述する中間タンク部33内の第1冷媒流通路33aに連通するように中間タンク部33に接続されている。 Of the pair of collecting portion connecting members 31a, 31b, the first collecting portion connecting member 31a constituting one is connected to the leeward lower tank portion 23 so that one end side communicates with the first refrigerant collecting portion 23a. The other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant flow passage 33a in the intermediate tank portion 33 described later.
 また、他方を構成する第2集合部連結部材31bは、一端側が第2冷媒集合部23bに連通するように風下側下方タンク部23に接続されており、他端側が後述する中間タンク部33内の第2冷媒流通路33bに連通するように中間タンク部33に接続されている。 Further, the second collecting portion connecting member 31b constituting the other is connected to the leeward lower tank portion 23 so that one end side thereof communicates with the second refrigerant collecting portion 23b, and the other end side thereof is in an intermediate tank portion 33 described later. Is connected to the intermediate tank portion 33 so as to communicate with the second refrigerant flow passage 33b.
 一対の分配部連結部材32a、32bそれぞれは、内部に冷媒が流通する冷媒流通路が形成された筒状の部材によって構成されており、その一端側が風上側下方タンク部13に接続されると共に、他端側が中間タンク部33に接続されている。 Each of the pair of distribution unit connecting members 32a and 32b is configured by a cylindrical member in which a refrigerant flow passage in which a refrigerant flows is formed, and one end side thereof is connected to the windward lower tank unit 13, The other end side is connected to the intermediate tank portion 33.
 一対の分配部連結部材32a、32bのうちの一方を構成する第1分配部連結部材32aは、一端側が第1冷媒分配部13aに連通するように風上側下方タンク部13に接続されており、他端側が後述する中間タンク部33内の第2冷媒流通路33bに連通するように中間タンク部33に接続されている。すなわち、第1分配部連結部材32aは、中間タンク部33の第2冷媒流通路33bを介して、上述の第2集合部連結部材31bと連通している。 The first distribution part connection member 32a constituting one of the pair of distribution part connection members 32a and 32b is connected to the upwind lower tank part 13 so that one end side communicates with the first refrigerant distribution part 13a. The other end side is connected to the intermediate tank portion 33 so as to communicate with a second refrigerant flow passage 33b in the intermediate tank portion 33 described later. That is, the 1st distribution part connection member 32a is connected with the above-mentioned 2nd gathering part connection member 31b via the 2nd refrigerant flow passage 33b of intermediate tank part 33.
 また、一対の分配部連結部材32a、32bのうちの他方を構成する第2分配部連結部材32bは、一端側が第2冷媒分配部13bに連通するように風上側下方タンク部13に接続されており、他端側が後述する中間タンク部33内の第1冷媒流通路33aに連通するように中間タンク部33に接続されている。すなわち、第2分配部連結部材32bは、中間タンク部33の第1冷媒流通路33aを介して、上述の第1集合部連結部材31aと連通している。 Further, the second distributor connecting member 32b constituting the other of the pair of distributor connecting members 32a and 32b is connected to the upwind lower tank section 13 so that one end side thereof communicates with the second refrigerant distributing section 13b. The other end side is connected to the intermediate tank portion 33 so as to communicate with a first refrigerant flow passage 33a in the intermediate tank portion 33 described later. In other words, the second distribution part connecting member 32 b communicates with the first collecting part connecting member 31 a described above via the first refrigerant flow passage 33 a of the intermediate tank part 33.
 中間タンク部33は、チューブ積層方向における両端側が閉塞された筒状の部材によって構成されている。この中間タンク部33は、風上側下方タンク部13、および風下側下方タンク部23との間に配置されている。 The intermediate tank portion 33 is configured by a cylindrical member whose both ends in the tube stacking direction are closed. The intermediate tank portion 33 is disposed between the leeward lower tank portion 13 and the leeward lower tank portion 23.
 図5に示すように、中間タンク部33の内部には、仕切部材331が配置されており、この仕切部材331によって、中間タンク部33の内部空間が第1冷媒流通路33aと第2冷媒流通路33bとに仕切られている。第1冷媒流通路33aは、第1集合部連結部材31aからの冷媒を第2分配部連結部材32bへ導く冷媒流通路を構成している。一方、第2冷媒流通路33bは、第2集合部連結部材31bからの冷媒を第1分配部連結部材32aへ導く冷媒流通路を構成している。 As shown in FIG. 5, a partition member 331 is arranged inside the intermediate tank portion 33, and the partition member 331 allows the internal space of the intermediate tank portion 33 to flow between the first refrigerant flow passage 33 a and the second refrigerant flow. It is partitioned off from the path 33b. The 1st refrigerant | coolant flow path 33a comprises the refrigerant | coolant flow path which guide | induces the refrigerant | coolant from the 1st gathering part connection member 31a to the 2nd distribution part connection member 32b. On the other hand, the second refrigerant flow passage 33b constitutes a refrigerant flow passage that guides the refrigerant from the second collecting portion connecting member 31b to the first distribution portion connecting member 32a.
 次に、本実施形態の冷媒蒸発器1における冷媒流れについて図6を用いて説明する。 Next, the refrigerant flow in the refrigerant evaporator 1 of the present embodiment will be described with reference to FIG.
 図6に示すように、図1の膨張弁103にて減圧された気液二相状態の低圧冷媒は、矢印Aの如く冷媒入口部22aから風下側上方タンク部22の内部に導入される。風下側上方タンク部22の内部に導入された冷媒は、矢印Bの如く風下側熱交換コア部21の第1風下側コア部21aを下降すると共に、矢印Cの如く風下側熱交換コア部21の第2風下側コア部21bを下降する。 As shown in FIG. 6, the gas-liquid two-phase low-pressure refrigerant decompressed by the expansion valve 103 in FIG. 1 is introduced into the leeward upper tank section 22 from the refrigerant inlet section 22 a as indicated by an arrow A. The refrigerant introduced into the leeward upper tank portion 22 descends the first leeward core portion 21a of the leeward heat exchange core portion 21 as indicated by an arrow B, and at the leeward side heat exchange core portion 21 as indicated by an arrow C. The second leeward core portion 21b is lowered.
 第1風下側コア部21aを下降した冷媒は、矢印Dの如く風下側下方タンク部23の第1冷媒集合部23aに流入する。一方、第2風下側コア部21bを下降した冷媒は、矢印Eの如く風下側下方タンク部23の第2冷媒集合部23bに流入する。 The refrigerant descending the first leeward core portion 21a flows into the first refrigerant assembly portion 23a of the leeward lower tank portion 23 as indicated by an arrow D. On the other hand, the refrigerant descending the second leeward core portion 21b flows into the second refrigerant collecting portion 23b of the leeward lower tank portion 23 as indicated by an arrow E.
 第1冷媒集合部23aに流入した冷媒は、矢印Fの如く第1集合部連結部材31aを介して中間タンク部33の第1冷媒流通路33aに流入する。また、第2冷媒集合部23bに流入した冷媒は、矢印Gの如く第2集合部連結部材31bを介して中間タンク部33の第2冷媒流通路33bに流入する。 The refrigerant that has flowed into the first refrigerant collecting portion 23a flows into the first refrigerant flow passage 33a of the intermediate tank portion 33 through the first collecting portion connecting member 31a as indicated by the arrow F. Further, the refrigerant flowing into the second refrigerant collecting portion 23b flows into the second refrigerant flow passage 33b of the intermediate tank portion 33 through the second collecting portion connecting member 31b as indicated by an arrow G.
 第1冷媒流通路33aに流入した冷媒は、矢印Hの如く第2分配部連結部材32bを介して風上側下方タンク部13の第2冷媒分配部13bに流入する。また、第2冷媒流通路33bに流入した冷媒は、矢印Iの如く第1分配部連結部材32aを介して風上側下方タンク部13の第1冷媒分配部13aに流入する。 The refrigerant that has flowed into the first refrigerant flow passage 33a flows into the second refrigerant distribution portion 13b of the upwind lower tank portion 13 through the second distribution portion connecting member 32b as indicated by an arrow H. Further, the refrigerant flowing into the second refrigerant flow passage 33b flows into the first refrigerant distribution portion 13a of the upwind lower tank portion 13 through the first distribution portion connecting member 32a as indicated by an arrow I.
 風上側下方タンク部13の第2冷媒分配部13bに流入した冷媒は、矢印Jの如く風上側熱交換コア部11の第2風上側コア部11bを上昇する。一方、第1冷媒分配部13aに流入した冷媒は、矢印Kの如く風上側熱交換コア部11の第1風上側コア部11aを上昇する。 The refrigerant that has flowed into the second refrigerant distribution portion 13b of the windward lower tank portion 13 ascends the second windward core portion 11b of the windward heat exchange core portion 11 as indicated by an arrow J. On the other hand, the refrigerant that has flowed into the first refrigerant distribution unit 13a ascends the first upwind core unit 11a of the upwind heat exchange core unit 11 as indicated by an arrow K.
 第2風上側コア部11bを上昇した冷媒は、矢印Lの如く風上側上方タンク部12の第2独立流路12cに流入し、冷媒出口部12aに向かって第2独立流路12cを流れる。一方、第1風上側コア部11aを上昇した冷媒は、矢印Mの如く風上側上方タンク部12の第1独立流路12bに流入し、冷媒出口部12aに向かって第1独立流路12bを流れる。第1、第2独立流路12b、12cを流れる冷媒は、矢印Nの如く冷媒出口部12aから流出して図4に示すジョイント40の出口側部分41の内部空間41aで合流し、図示しない冷媒配管内部を図1の圧縮機101に向かって流れる。 The refrigerant that has moved up the second upwind core portion 11b flows into the second independent flow path 12c of the upwind upper tank section 12 as indicated by the arrow L, and flows through the second independent flow path 12c toward the refrigerant outlet portion 12a. On the other hand, the refrigerant that has moved up the first upwind core portion 11a flows into the first independent flow path 12b of the upwind upper tank section 12 as indicated by the arrow M, and flows through the first independent flow path 12b toward the refrigerant outlet portion 12a. Flowing. The refrigerant flowing through the first and second independent flow paths 12b and 12c flows out of the refrigerant outlet portion 12a as indicated by an arrow N and merges in the inner space 41a of the outlet side portion 41 of the joint 40 shown in FIG. The inside of the pipe flows toward the compressor 101 in FIG.
 次に、本実施形態の主な特徴について説明する。 Next, main features of this embodiment will be described.
 図7A、7Bは、熱負荷の小さい条件のときの従来の冷媒蒸発器J1の風下側蒸発部20と風上側蒸発部10のそれぞれにおける液相冷媒と気相冷媒の分布を示す、比較例としての図である。一方、図8A、8Bは、熱負荷の小さい条件のときの本実施形態の冷媒蒸発器1の風下側蒸発部20と風上側蒸発部10のそれぞれにおける液相冷媒と気相冷媒の分布を示す図である。 7A and 7B are comparative examples showing the distribution of the liquid-phase refrigerant and the gas-phase refrigerant in each of the leeward-side evaporator 20 and the leeward-side evaporator 10 of the conventional refrigerant evaporator J1 when the heat load is small. FIG. On the other hand, FIGS. 8A and 8B show the distribution of the liquid-phase refrigerant and the gas-phase refrigerant in each of the leeward evaporation unit 20 and the leeward evaporation unit 10 of the refrigerant evaporator 1 of the present embodiment when the heat load is small. FIG.
 比較例の冷媒蒸発器J1は、図7Bに示すように、風上側上方タンク部12の内部空間が仕切られておらず、風上側上方タンク部12は1つの冷媒流路しか有していない点が、本実施形態と異なる。なお、比較例の冷媒蒸発器J1のその他の構成は、本実施形態と同じである。 In the refrigerant evaporator J1 of the comparative example, as shown in FIG. 7B, the internal space of the windward upper tank portion 12 is not partitioned, and the windward upper tank portion 12 has only one refrigerant flow path. However, this embodiment is different. In addition, the other structure of the refrigerant evaporator J1 of a comparative example is the same as this embodiment.
 熱負荷の小さい条件下、例えば、春や秋などの外気温度および内気温度が比較的低い時期のように、車室内へ送風する空気を冷媒蒸発器によってあまり冷やさなくてもよい条件下においては、熱交換に必要な冷媒流量が少ないことから、冷媒入口部22aから風下側上方タンク部22の内部に流入する冷媒の流速が低い。 Under conditions where the heat load is low, for example, when the outside air temperature and the inside air temperature such as spring and autumn are relatively low, the air blown into the passenger compartment does not need to be cooled by the refrigerant evaporator. Since the refrigerant flow rate required for heat exchange is small, the flow rate of the refrigerant flowing into the leeward upper tank portion 22 from the refrigerant inlet portion 22a is low.
 このため、風下側蒸発部20では、図7Aに示すように、風下側上方タンク部22から第1、第2風下側コア部21a、21bに冷媒が流入する際では、冷媒入口部22aに近い第1風下側コア部21aに液相冷媒が多く流入し、冷媒入口部22aから遠い第2風下側コア部21bに気相冷媒が多く流入する。風上側蒸発部10では、図7Bに示すように、冷媒出口部12aから遠い第2風上側コア部11bに液相冷媒が多く流れ、冷媒出口部12aに近い第1風上側コア部11aに気相冷媒が多く流れる。 For this reason, in the leeward side evaporation unit 20, as shown in FIG. 7A, when the refrigerant flows into the first and second leeward side core portions 21a and 21b from the leeward side upper tank portion 22, it is close to the refrigerant inlet portion 22a. A large amount of liquid phase refrigerant flows into the first leeward core portion 21a, and a large amount of gas phase refrigerant flows into the second leeward core portion 21b far from the refrigerant inlet portion 22a. In the upwind evaporator 10, as shown in FIG. 7B, a large amount of liquid phase refrigerant flows through the second upwind core portion 11b far from the coolant outlet portion 12a, and the first upwind core portion 11a close to the refrigerant outlet portion 12a flows into the air. A lot of phase refrigerant flows.
 このとき、風上側上方タンク部12は、第2風上側コア部11bを構成する各チューブ111が連通する各連通部から冷媒出口部12aまでの冷媒流路の途中に、第1風上側コア部11aを構成する各チューブ111が連通する各連通部が存在する。また、アキュムレータ104を備える冷凍サイクル装置100では、アキュムレータ104で気相冷媒と液相冷媒とを分離して、気相冷媒のみを圧縮機101へ流入させるため、冷媒蒸発器J1から流出した冷媒が完全に気相状態でなくてもよい。 At this time, the windward upper tank portion 12 includes the first windward core portion in the middle of the refrigerant flow path from each communicating portion where each tube 111 constituting the second windward core portion 11b communicates to the refrigerant outlet portion 12a. Each communication part which each tube 111 which comprises 11a communicates exists. Further, in the refrigeration cycle apparatus 100 including the accumulator 104, the gas phase refrigerant and the liquid phase refrigerant are separated by the accumulator 104, and only the gas phase refrigerant flows into the compressor 101. Therefore, the refrigerant flowing out from the refrigerant evaporator J1 It may not be completely in the gas phase.
 この結果、比較例の冷媒蒸発器J1では、図7Bに示すように、風上側蒸発部10において、第2風上側コア部11bに流入した液相冷媒のうち蒸発しきれなかった液相冷媒が、風上側上方タンク部12の内部を冷媒出口部12aに向かって流れる際に、第1風上側コア部11aに落下する。すなわち、図7B中の破線で囲まれた領域を液相冷媒が逆流する。このとき、落下する液相冷媒と第1風上側コア部11aを上昇しようとする気相冷媒との力関係がつりあって、第1風上側コア部11aの冷媒流れが停滞したり、落下した液相冷媒が風上側下方タンク部13まで流れたりする。この結果、冷媒蒸発器J1の内部に冷媒が停滞してしまう。冷凍サイクルを循環する冷媒には、圧縮機101の内部潤滑用のオイルが含まれているため、冷媒蒸発器J1の内部に冷媒が停滞すると、オイルも停滞することになり、圧縮機101へ戻るオイルの量が少なくなってしまう。 As a result, in the refrigerant evaporator J1 of the comparative example, as shown in FIG. 7B, the liquid-phase refrigerant that could not be evaporated out of the liquid-phase refrigerant that flowed into the second windward-side core part 11 b in the windward-side evaporator 10. When flowing through the inside of the windward upper tank portion 12 toward the refrigerant outlet portion 12a, it falls to the first windward core portion 11a. That is, the liquid-phase refrigerant flows backward through the area surrounded by the broken line in FIG. 7B. At this time, the force relationship between the falling liquid-phase refrigerant and the gas-phase refrigerant trying to ascend the first windward core portion 11a is balanced, and the refrigerant flow in the first windward core portion 11a stagnates or falls. The phase refrigerant flows to the windward lower tank section 13. As a result, the refrigerant stagnates inside the refrigerant evaporator J1. Since the refrigerant circulating in the refrigeration cycle contains oil for internal lubrication of the compressor 101, if the refrigerant stagnates in the refrigerant evaporator J1, the oil also stagnates and returns to the compressor 101. The amount of oil will decrease.
 これに対して、本実施形態の冷媒蒸発器1では、風上側上方タンク部12は第1、第2独立流路12b、12cを有している。このため、図8A、8Bに示すように、熱負荷が小さい条件のとき、風上側上方タンク部12では、第1風上側コア部11aから流出の気相冷媒が冷媒出口部12aに向かって第1独立流路12bを流れるとともに、第2風上側コア部11bから流出の液相冷媒が冷媒出口部12aに向かって第2独立流路12cを流れる。すなわち、風上側上方タンク部12では、第2風上側コア部11bから流出の液相冷媒は、第1風上側コア部11aを構成する各チューブ111と連通する各連通部が存在する領域R1(図4参照)を流れることなく、冷媒出口部12aに向かって流れる。 On the other hand, in the refrigerant evaporator 1 of the present embodiment, the windward upper tank section 12 has first and second independent flow paths 12b and 12c. For this reason, as shown in FIGS. 8A and 8B, when the thermal load is small, in the windward upper tank portion 12, the gas-phase refrigerant flowing out from the first windward core portion 11a moves toward the refrigerant outlet portion 12a. While flowing in the 1 independent flow path 12b, the liquid phase refrigerant | coolant which flowed out from the 2nd windward core part 11b flows through the 2nd independent flow path 12c toward the refrigerant | coolant exit part 12a. That is, in the windward upper tank portion 12, the region R1 (where the liquid phase refrigerant flowing out from the second windward core portion 11b has communication portions communicating with the tubes 111 constituting the first windward core portion 11a). It flows toward the refrigerant outlet portion 12a without flowing through it (see FIG. 4).
 このように、本実施形態の風上側上方タンク部12は、第2風上側コア部11bを構成する各チューブ111と連通する各連通部から冷媒出口部12aに向かう冷媒流路途中に、第1風上側コア部11aを構成する各チューブ111と連通する各連通部が存在しない構造となっている。これにより、風上側蒸発部10において、第2風上側コア部11bに流入した液相冷媒のうち蒸発しきれなかった液相冷媒が、風上側上方タンク部12の内部を冷媒出口部12aに向かって流れる際に、第1風上側コア部11aに落下することを防止できる。 As described above, the windward upper tank portion 12 of the present embodiment includes the first in the refrigerant flow path from the communicating portions communicating with the tubes 111 constituting the second windward core portion 11b toward the refrigerant outlet portion 12a. It has a structure in which each communicating portion communicating with each tube 111 constituting the windward core portion 11a does not exist. As a result, in the windward-side evaporator 10, the liquid-phase refrigerant that has not been completely evaporated out of the liquid-phase refrigerant that has flowed into the second windward-side core part 11b moves from the inside of the windward-side upper tank part 12 toward the refrigerant outlet part 12a. Can be prevented from falling to the first upwind core portion 11a.
 したがって、本実施形態によれば、冷媒蒸発器1内部でのオイルの停滞を抑制でき、圧縮機101へ戻るオイルの量を確保できる。 Therefore, according to the present embodiment, oil stagnation inside the refrigerant evaporator 1 can be suppressed, and the amount of oil returning to the compressor 101 can be secured.
 (第2実施形態)
 本実施形態は、第1実施形態の冷媒蒸発器1に対して、風上側上方タンク部12の構成を変更している。冷媒蒸発器1のその他の構成は、第1実施形態と同じである。
(Second Embodiment)
In the present embodiment, the configuration of the windward upper tank unit 12 is changed with respect to the refrigerant evaporator 1 of the first embodiment. Other configurations of the refrigerant evaporator 1 are the same as those in the first embodiment.
 図9に示すように、本実施形態の風上側上方タンク部12は、別体の2つの筒状部材125、126によって構成されている。第1筒状部材125が第1独立流路12bを形成し、第2筒状部材126が第2独立流路12cを形成している。第1筒状部材125は、チューブ積層方向における一方側、本実施形態では、空気の流れ方向Xから見たときの右側の端部に開口部125aを有している。同様に、第2筒状部材126も、チューブ積層方向における一方側の端部に開口部126aを有している。 As shown in FIG. 9, the windward upper tank unit 12 of the present embodiment is configured by two separate cylindrical members 125 and 126. The 1st cylindrical member 125 forms the 1st independent flow path 12b, and the 2nd cylindrical member 126 forms the 2nd independent flow path 12c. The first cylindrical member 125 has an opening 125a at one end in the tube stacking direction, in the present embodiment, at the right end when viewed from the air flow direction X. Similarly, the 2nd cylindrical member 126 also has the opening part 126a in the edge part of the one side in a tube lamination direction.
 第1、第2筒状部材125、126のチューブ積層方向における一方側の端部が、第1実施形態と同様に、接合部材122を介して、ジョイント40の出口側部分41と接続される(図4参照)。このため、第1、第2独立流路12b、12cは、ジョイント40の出口側部分41における内部空間41aと連通する。 One end of the first and second cylindrical members 125 and 126 in the tube stacking direction is connected to the outlet side portion 41 of the joint 40 via the joining member 122, as in the first embodiment ( (See FIG. 4). For this reason, the first and second independent flow paths 12 b and 12 c communicate with the internal space 41 a in the outlet side portion 41 of the joint 40.
 本実施形態においても、風上側上方タンク部12が第1、第2独立流路12b、12cを有しているので、第1実施形態と同様の効果を奏する。 Also in the present embodiment, since the windward upper tank section 12 has the first and second independent flow paths 12b and 12c, the same effects as in the first embodiment can be obtained.
 なお、接合部材122を用いずに、第1、第2筒状部材125、126の端部をジョイント40の出口側部分41と接続してもよい。この場合、第1、第2筒状部材125、126の開口部125a、126aが冷媒出口部12aを構成する。また、この場合、第1、第2筒状部材125、126の端部が、共通のジョイントを介して、一本の冷媒配管と接続されていれば、第1、第2筒状部材125、126の開口部125a、126aは、互いに離れていてもよい。 In addition, you may connect the edge part of the 1st, 2nd cylindrical members 125 and 126 with the exit side part 41 of the joint 40, without using the joining member 122. FIG. In this case, the openings 125a and 126a of the first and second cylindrical members 125 and 126 constitute the refrigerant outlet portion 12a. In this case, if the ends of the first and second cylindrical members 125 and 126 are connected to one refrigerant pipe via a common joint, the first and second cylindrical members 125 and The openings 125a and 126a of 126 may be separated from each other.
 (第3実施形態)
 本実施形態は、第1実施形態の冷媒蒸発器1に対して、風上側上方タンク部12に設けられる冷媒出口部12aの位置を変更している。冷媒蒸発器1のその他の構成は、第1実施形態と同じである。
(Third embodiment)
In the present embodiment, the position of the refrigerant outlet portion 12a provided in the windward upper tank portion 12 is changed with respect to the refrigerant evaporator 1 of the first embodiment. Other configurations of the refrigerant evaporator 1 are the same as those in the first embodiment.
 図10に示すように、本実施形態では、冷媒出口部12aは、空気の流れ方向Xから見たときの風上側上方タンク部12の左側の端部に設けられている。換言すると、冷媒出口部12aは、図11に示すように、風上側上方タンク部12のチューブ積層方向における両端部のうち、第1風上側コア部11aよりも第2風上側コア部11bに近い側の端部に設けられている。そして、図10に示すように、風上側上方タンク部12の左側の端部に、ジョイント41Aが設けられている。ジョイント41Aは、第1実施形態のジョイント40の出口側部分41に対応する。 As shown in FIG. 10, in the present embodiment, the refrigerant outlet portion 12 a is provided at the left end of the windward upper tank portion 12 when viewed from the air flow direction X. In other words, as shown in FIG. 11, the refrigerant outlet portion 12 a is closer to the second windward core portion 11 b than the first windward core portion 11 a among both ends in the tube stacking direction of the windward upper tank portion 12. It is provided at the end of the side. As shown in FIG. 10, a joint 41 </ b> A is provided at the left end of the windward upper tank portion 12. The joint 41A corresponds to the outlet side portion 41 of the joint 40 of the first embodiment.
 なお、第1実施形態と同様に、冷媒入口部22aは、空気の流れ方向Xから見たときの風下側上方タンク部22の右側の端部に設けられている。換言すると、冷媒入口部22aは、図11に示すように、風下側上方タンク部22のチューブ積層方向両側端部のうち、第2風下側コア部21bよりも第1風下側コア部21aに近い側の端部に設けられている。そして、図10に示すように、風下側上方タンク部22の右側の端部に、ジョイント42Aが設けられている。ジョイント42Aは、第1実施形態のジョイント40の入口側部分42に対応する。 Note that, similarly to the first embodiment, the refrigerant inlet portion 22a is provided at the right end of the leeward upper tank portion 22 when viewed from the air flow direction X. In other words, as shown in FIG. 11, the refrigerant inlet portion 22a is closer to the first leeward core portion 21a than the second leeward core portion 21b among the both ends of the leeward upper tank portion 22 in the tube stacking direction. It is provided at the end of the side. As shown in FIG. 10, a joint 42 </ b> A is provided at the right end of the leeward upper tank section 22. The joint 42A corresponds to the inlet side portion 42 of the joint 40 of the first embodiment.
 このため、本実施形態の冷媒蒸発器1では、図11に示すように冷媒が流れる。本実施形態における冷媒の流れは、以下の点において図6に示す第1実施形態の冷媒の流れと異なる。すなわち、本実施形態では、第1風上側コア部11aおよび第2風上側コア部11bを上昇した冷媒は、矢印O、Pの如く風上側上方タンク部12に流入し、冷媒出口部12aに向かって、風上側上方タンク部12を流れ、矢印Qの如く冷媒出口部12aから流出する。 For this reason, in the refrigerant evaporator 1 of the present embodiment, the refrigerant flows as shown in FIG. The refrigerant flow in the present embodiment differs from the refrigerant flow of the first embodiment shown in FIG. 6 in the following points. That is, in the present embodiment, the refrigerant that has risen in the first windward core portion 11a and the second windward core portion 11b flows into the windward upper tank portion 12 as indicated by arrows O and P and travels toward the refrigerant outlet portion 12a. Then, it flows through the windward upper tank section 12 and flows out from the refrigerant outlet section 12a as indicated by an arrow Q.
 以上の説明の通り、本実施形態では、風上側上方タンク部12のチューブ積層方向における両端部のうち、風下側上方タンク部22における冷媒入口部22aが設けられた側とは反対側に位置する端部に、冷媒出口部12aを設けている。このため、本実施形態の風上側上方タンク部12は、第2風上側コア部11bを構成する各チューブ111と連通する各連通部から冷媒出口部12aに向かう冷媒流路途中に、第1風上側コア部11aを構成する各チューブ111と連通する各連通部が存在しない構造となっている。 As described above, in the present embodiment, the both ends of the windward upper tank portion 12 in the tube stacking direction are located on the opposite side of the leeward upper tank portion 22 from the side where the refrigerant inlet 22a is provided. A refrigerant outlet 12a is provided at the end. For this reason, the windward upper tank portion 12 of the present embodiment is configured so that the first wind is in the middle of the refrigerant flow path from each communication portion communicating with each tube 111 constituting the second windward core portion 11b toward the refrigerant outlet portion 12a. It has a structure in which each communicating portion communicating with each tube 111 constituting the upper core portion 11a does not exist.
 これにより、図12A、12Bに示すように、熱負荷が小さく、熱交換に必要な冷媒流量が少ないとき、風上側上方タンク部12では、第2風上側コア部11bから流出の液相冷媒が、風上側上方タンク部12のうち第1風上側コア部11aを構成する各チューブ111との各連通部を通過せずに、直接、冷媒出口部12aから流出する。したがって、本実施形態によっても、第1実施形態と同様の効果が得られる。 Thus, as shown in FIGS. 12A and 12B, when the heat load is small and the refrigerant flow rate required for heat exchange is small, in the windward upper tank portion 12, the liquid phase refrigerant flowing out from the second windward core portion 11b is discharged. The refrigerant flows out directly from the refrigerant outlet portion 12a without passing through the communicating portions with the tubes 111 constituting the first windward core portion 11a in the windward upper tank portion 12. Therefore, the present embodiment can provide the same effects as those of the first embodiment.
 (第4実施形態)
 本実施形態は、第3実施形態の冷媒蒸発器1に対して、風下側上方タンク部22における冷媒入口部22aの位置および風上側上方タンク部12における冷媒出口部12aの位置を変更している。冷媒蒸発器1のその他の構成は、第3実施形態と同じである。
(Fourth embodiment)
In the present embodiment, the position of the refrigerant inlet portion 22a in the leeward upper tank portion 22 and the position of the refrigerant outlet portion 12a in the leeward upper tank portion 12 are changed with respect to the refrigerant evaporator 1 of the third embodiment. . Other configurations of the refrigerant evaporator 1 are the same as those in the third embodiment.
 冷媒入口部22aは、図13Aに示すように、風下側上方タンク部22の天井部のうち、第2風下側コア部21bよりも第1風下側コア部21aに近い部位に設けられている。より詳細には、冷媒入口部22aは、風下側上方タンク部22の天井部のうち、風下側上方タンク部22における第2風下側コア部21bを構成する各チューブ111と連通する各連通部よりも風下側上方タンク部22における第1風下側コア部21aを構成する各チューブ111と連通する各連通部に近い部位に設けられている。 As shown in FIG. 13A, the refrigerant inlet portion 22a is provided in a portion of the ceiling portion of the leeward upper tank portion 22 that is closer to the first leeward core portion 21a than the second leeward core portion 21b. More specifically, the refrigerant inlet portion 22a is connected to each communication portion communicating with each tube 111 constituting the second leeward core portion 21b in the leeward upper tank portion 22 in the ceiling portion of the leeward upper tank portion 22. The leeward side upper tank portion 22 is also provided at a portion close to each communicating portion communicating with each tube 111 constituting the first leeward side core portion 21a.
 一方、冷媒出口部12aは、図13Bに示すように、風上側上方タンク部12の天井部のうち、第1風上側コア部11aよりも第2風上側コア部11bに近い部位に設けられている。より詳細には、冷媒出口部12aは、風上側上方タンク部12の天井部のうち、風上側上方タンク部12における第1風上側コア部11aを構成する各チューブ111と連通する各連通部よりも風上側上方タンク部12における第2風上側コア部11bを構成する各チューブ111と連通する各連通部に近い部位に設けられている。これにより、本実施形態においても、第1実施形態と同様の効果が得られる。 On the other hand, as shown in FIG. 13B, the refrigerant outlet portion 12a is provided in a portion of the ceiling portion of the windward upper tank portion 12 that is closer to the second windward core portion 11b than the first windward core portion 11a. Yes. More specifically, the refrigerant outlet portion 12a is connected to each of the communication portions communicating with the tubes 111 constituting the first upwind core portion 11a in the upwind upper tank portion 12 of the ceiling portion of the upwind upper tank portion 12. Is also provided in a portion near each communication portion communicating with each tube 111 constituting the second windward core portion 11b in the windward upper tank portion 12. Thereby, also in this embodiment, the effect similar to 1st Embodiment is acquired.
 なお、本実施形態では、冷媒入口部22aおよび冷媒出口部12aを、風下側上方タンク部22および風上側上方タンク部12の天井部に設けたが、天井部以外の部位に設けてもよい。 In the present embodiment, the refrigerant inlet portion 22a and the refrigerant outlet portion 12a are provided on the ceiling portion of the leeward upper tank portion 22 and the windward upper tank portion 12, but may be provided on portions other than the ceiling portion.
 (第5実施形態)
 本実施形態は、第1実施形態に対して冷凍サイクル装置の構成を変更している。
(Fifth embodiment)
In the present embodiment, the configuration of the refrigeration cycle apparatus is changed with respect to the first embodiment.
 図14に示すように、本実施形態の冷凍サイクル装置200は、圧縮機101、凝縮器102、膨張弁103、冷媒蒸発器1、内部熱交換器105等を備えている。冷媒蒸発器1の構成は、第1実施形態と同様である。 As shown in FIG. 14, the refrigeration cycle apparatus 200 of this embodiment includes a compressor 101, a condenser 102, an expansion valve 103, a refrigerant evaporator 1, an internal heat exchanger 105, and the like. The configuration of the refrigerant evaporator 1 is the same as that of the first embodiment.
 内部熱交換器105は、冷媒蒸発器1から流出した冷媒を冷媒蒸発器1よりも冷媒流れ上流側の冷媒との熱交換によって加熱して、冷媒蒸発器1から流出した冷媒に含まれる液相冷媒を気相冷媒とし、気相冷媒を圧縮機101に吸入させる。 The internal heat exchanger 105 heats the refrigerant flowing out of the refrigerant evaporator 1 by heat exchange with the refrigerant upstream of the refrigerant evaporator 1 and flows in the liquid phase contained in the refrigerant flowing out of the refrigerant evaporator 1. The refrigerant is a gas phase refrigerant, and the gas phase refrigerant is sucked into the compressor 101.
 本実施形態では、内部熱交換器105は、凝縮器102と膨張弁103との間の高圧冷媒と冷媒蒸発器1と圧縮機101との間の低圧冷媒とを熱交換する。また、内部熱交換器105は、内管と外管を有する1本の二重管によって構成されている。内管の内部が低圧冷媒の冷媒流路であり、内管と外管の間が高圧冷媒の冷媒流路である。なお、内部熱交換器105として、他の構成のものを採用してもよい。 In the present embodiment, the internal heat exchanger 105 exchanges heat between the high-pressure refrigerant between the condenser 102 and the expansion valve 103 and the low-pressure refrigerant between the refrigerant evaporator 1 and the compressor 101. Further, the internal heat exchanger 105 is configured by a single double pipe having an inner pipe and an outer pipe. The inside of the inner pipe is a refrigerant flow path for low-pressure refrigerant, and the space between the inner pipe and the outer pipe is a refrigerant flow path for high-pressure refrigerant. In addition, you may employ | adopt the thing of another structure as the internal heat exchanger 105. FIG.
 本実施形態の冷凍サイクル装置200は、内部熱交換器105によって冷媒蒸発器1から流出した冷媒を加熱して気相冷媒とし、気相冷媒のみを圧縮機101へ流入させるため、冷媒蒸発器1から流出した冷媒が完全に気相状態でなくてもよい。このため、図7A、7Bに示す課題が発生しやすい。そこで、第1実施形態の冷媒蒸発器1を用いることで、この課題を解決することができる。 In the refrigeration cycle apparatus 200 of the present embodiment, the refrigerant flowing out of the refrigerant evaporator 1 is heated by the internal heat exchanger 105 to form a gas phase refrigerant, and only the gas phase refrigerant flows into the compressor 101. Therefore, the refrigerant evaporator 1 The refrigerant flowing out of the refrigerant may not be completely in the gas phase. For this reason, the problem shown to FIG. 7A and 7B tends to generate | occur | produce. Therefore, this problem can be solved by using the refrigerant evaporator 1 of the first embodiment.
 なお、本実施形態の冷凍サイクル装置200は、第1実施形態の冷媒蒸発器1を用いているが、第2~第4実施形態の冷媒蒸発器1を用いてもよい。 The refrigeration cycle apparatus 200 of the present embodiment uses the refrigerant evaporator 1 of the first embodiment, but may use the refrigerant evaporator 1 of the second to fourth embodiments.
 (他の実施形態)
 本開示は上記した実施形態に限定されるものではなく、下記のように、本開示の範囲を逸脱しない範囲内において適宜変更が可能である。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the scope of the present disclosure as described below.
 (1)第1実施形態では、仕切部材124の冷媒出口部12a側の端部が、タンク本体部材121の開口端部に位置していた。しかしながら、仕切部材124の冷媒出口部12a側の端部の位置を他の位置に変更してもよい。例えば、第1独立流路12bと、風上側上方タンク部12における第1風上側コア部11aを構成するチューブ群のうち冷媒出口部12aに最も近いチューブ111とが連通する部分を連通部12d(図4参照)とする。この場合、連通部12d(図4参照)よりも、冷媒出口部12a側に位置する所定位置に、仕切部材124の冷媒出口部12a側の端部が位置していればよい。換言すれば、仕切部材124の冷媒出口部12a側の端部が、積層方向において連通部12dと冷媒出口部12aとの間の所定位置に位置していればよい。なお、図4においては、チューブ111の開口端部が連通部12dである。 (1) In the first embodiment, the end of the partition member 124 on the refrigerant outlet 12a side is located at the open end of the tank body member 121. However, the position of the end of the partition member 124 on the refrigerant outlet 12a side may be changed to another position. For example, a portion where the first independent flow path 12b communicates with the tube 111 closest to the refrigerant outlet portion 12a in the tube group constituting the first windward core portion 11a in the windward upper tank portion 12 is defined as a communicating portion 12d ( (See FIG. 4). In this case, the end of the partition member 124 on the refrigerant outlet portion 12a side only needs to be positioned at a predetermined position located on the refrigerant outlet portion 12a side of the communication portion 12d (see FIG. 4). In other words, the end of the partition member 124 on the refrigerant outlet portion 12a side only needs to be located at a predetermined position between the communication portion 12d and the refrigerant outlet portion 12a in the stacking direction. In FIG. 4, the open end of the tube 111 is the communication portion 12 d.
 換言すると、風上側上方タンク部12の第1、第2独立流路12b、12cは、連通部12dよりも冷媒出口部12a側に位置する所定位置まで、第1、第2風上側コア部11a、11bから流出した冷媒が互いに独立して流れるように構成されていればよい。これにより、第1実施形態と同様の効果が得られる。 In other words, the first and second upwind core portions 11a of the first and second independent flow paths 12b and 12c of the upwind upper tank portion 12 reach a predetermined position located closer to the refrigerant outlet portion 12a than the communication portion 12d. , 11b may be configured such that the refrigerants flowing out from 11b flow independently of each other. Thereby, the effect similar to 1st Embodiment is acquired.
 (2)上述の各実施形態では、冷媒入替部30が一対の集合部連結部材31a、31b、一対の分配部連結部材32a、32b、および中間タンク部33を有する例を説明した。しかしながら、例えば、冷媒入替部30の中間タンク部33を廃し、各連結部材31a、31b、32a、32b同士を直接接続してもよい。 (2) In each of the above-described embodiments, the example in which the refrigerant replacement unit 30 includes the pair of collecting unit connecting members 31a and 31b, the pair of distributing unit connecting members 32a and 32b, and the intermediate tank unit 33 has been described. However, for example, the intermediate tank part 33 of the refrigerant replacement part 30 may be eliminated, and the connecting members 31a, 31b, 32a, 32b may be directly connected to each other.
 また、上述の各実施形態では、冷媒入替部30を風上側下方タンク部13および風下側下方タンク部23とは別に設けたが、特開2014-13104号公報に記載のように、冷媒入替部を風上側タンク部13および風下側下方タンク部23に設けてもよい。 In each of the above-described embodiments, the refrigerant replacement unit 30 is provided separately from the leeward lower tank unit 13 and the leeward lower tank unit 23. However, as described in JP 2014-13104 A, the refrigerant replacement unit 30 is provided. May be provided in the leeward side tank part 13 and the leeward side lower tank part 23.
 要するに、本開示では、2つの蒸発部10、20が、風下側上方タンク部22から第1風下側コア部21aおよび第2風下側コア部21bに冷媒が流入し、第1風下側コア部21aから流出した冷媒が第2風上側コア部11bに流入するとともに、第2風下側コア部21bから流出した冷媒が第1風上側コア部11aに流入した後、第1風上側コア部11aおよび第2風上側コア部11bから流出した冷媒が風上側上方タンク部12に流入するように構成されていればよい。 In short, in the present disclosure, the two evaporators 10 and 20 cause the refrigerant to flow into the first leeward core portion 21a and the second leeward core portion 21b from the leeward upper tank portion 22, and the first leeward core portion 21a. The refrigerant flowing out of the second windward core portion 11b flows into the second windward core portion 11b, and the refrigerant flowing out of the second leeward core portion 21b flows into the first windward core portion 11a. It suffices that the refrigerant that has flowed out of the two upwind core portion 11 b flows into the upwind upper tank portion 12.
 (3)上述の各実施形態では、冷媒蒸発器1として、空気の流れ方向Xから見たときに、第1風上側コア部11aの全部および第1風下側コア部21aの全部が重合するように配置されると共に、第2風上側コア部11bの全部および第2風下側コア部21bの全部が重合するように配置される例について説明した。しかしながら、冷媒蒸発器1としては、空気の流れ方向Xから見たときに、第1風上側コア部11aおよび第1風下側コア部21aの一部が重合するように配置したり、第2風上側コア部11bおよび第2風下側コア部21bの一部が重合するように配置したりしてもよい。 (3) In each of the above-described embodiments, as the refrigerant evaporator 1, when viewed from the air flow direction X, all of the first leeward core portion 11a and all of the first leeward core portion 21a are superposed. In addition, the example in which all of the second leeward core portion 11b and all of the second leeward core portion 21b are superposed is described. However, the refrigerant evaporator 1 is arranged so that part of the first windward core portion 11a and the first leeward core portion 21a are superposed when viewed from the air flow direction X, or the second wind Alternatively, the upper core portion 11b and the second leeward core portion 21b may be arranged so as to overlap each other.
 要するに、空気の流れ方向Xから見たときに、第1風上側コア部11aおよび第1風下側コア部21aの少なくとも一部が重合するように配置し、第2風上側コア部11bおよび第2風下側コア部21bの少なくとも一部が重合するように配置すればよい。 In short, when viewed from the air flow direction X, the first windward core portion 11a and the first leeward core portion 21a are arranged so that at least a part of them overlaps, and the second windward core portion 11b and second What is necessary is just to arrange | position so that at least one part of the leeward side core part 21b may superpose | polymerize.
 (4)上述の各実施形態では、2つの蒸発部10、20のそれぞれの熱交換コア部11、21は、2つのコア部を有していたが、3つ以上のコア部を有していてもよい。したがって、風上側熱交換コア部11は、複数のチューブ111のうち、一部のチューブ群を含む第1風上側コア部11aと、そのチューブ群とは別のチューブ群を含む第2風上側コア部11bを有していればよい。同様に、風下側熱交換コア部21は、複数のチューブ211のうち、一部のチューブ群を含む第1風下側コア部21aと、そのチューブ群とは別のチューブ群を含む第2風下側コア部21bとを有していればよい。 (4) In each above-mentioned embodiment, each heat exchange core part 11 and 21 of two evaporation parts 10 and 20 had two core parts, but has three or more core parts. May be. Therefore, the windward heat exchange core part 11 includes a first windward core part 11a including a part of the plurality of tubes 111 and a second windward core including a tube group different from the tube group. What is necessary is just to have the part 11b. Similarly, the leeward side heat exchange core part 21 includes a first leeward side core part 21a including a part of the plurality of tubes 211 and a second leeward side including a tube group different from the tube group. What is necessary is just to have the core part 21b.
 (5)上述の各実施形態の如く、冷媒蒸発器1における風上側蒸発部10を風下側蒸発部20よりも空気の流れ方向Xにおける上流側に配置することが望ましいが、これに限らず、風上側蒸発部10を風下側蒸発部20よりも空気の流れ方向Xにおける下流側に配置するようにしてもよい。 (5) Although it is desirable to arrange the windward evaporator 10 in the refrigerant evaporator 1 on the upstream side in the air flow direction X with respect to the leeward evaporator 20 as in the above embodiments, the present invention is not limited to this. The windward evaporator 10 may be disposed downstream of the leeward evaporator 20 in the air flow direction X.
 (6)上述の各実施形態では、各熱交換コア部11、21が複数のチューブ111、211とフィン112、212を含んで構成される例を説明したが、これに限らず、複数のチューブ111、211だけで各熱交換コア部11、21を構成するようにしてもよい。また、各熱交換コア部11、21を複数のチューブ111、211とフィン112、212だけで構成する場合、フィン112、212は、コルゲートフィンに限らずプレートフィンであってもよい。 (6) In each of the above-described embodiments, an example in which each heat exchange core portion 11 and 21 includes a plurality of tubes 111 and 211 and fins 112 and 212 has been described. Each of the heat exchange core parts 11 and 21 may be configured by only 111 and 211. Moreover, when each heat exchange core part 11 and 21 is comprised only with the some tubes 111 and 211 and the fins 112 and 212, the fins 112 and 212 may be not only a corrugated fin but a plate fin.
 (7)上述の各実施形態の冷媒蒸発器1では、チューブとタンク部とが別体の部材によって構成されている。しかしながら、特開2014-13104号公報に記載のように、一対のコアプレートを接合してチューブとタンク部の一部とを構成するチューブユニットを複数積層することにより、チューブとタンク部とを一体に形成した積層型構造を採用してもよい。 (7) In the refrigerant evaporator 1 of each of the above-described embodiments, the tube and the tank portion are configured by separate members. However, as described in Japanese Patent Application Laid-Open No. 2014-13104, the tube and the tank unit are integrated by stacking a plurality of tube units that constitute a tube and a part of the tank unit by joining a pair of core plates. A laminated structure formed in the above may be adopted.
 (8)第1実施形態では、第1風上側コア部(第3コア部)11aから流出した冷媒が通過する第1独立流路12bと第2風上側コア部(第4コア部)11bから流出した冷媒が通過する第2独立流路12cとは独立して設けられている。しかしながら、圧縮機101の焼き付きの発生を抑制できる程度の量であれば、第2風上側コア部11bから流出した冷媒中に含まれるオイルが、第1風上側コア部11aへと流入してもよい。 (8) In the first embodiment, from the first independent flow path 12b and the second windward core part (fourth core part) 11b through which the refrigerant flowing out from the first windward core part (third core part) 11a passes. It is provided independently of the second independent flow path 12c through which the refrigerant that has flowed out passes. However, even if the oil contained in the refrigerant that has flowed out of the second windward core portion 11b flows into the first windward core portion 11a as long as it is an amount that can suppress the occurrence of seizure of the compressor 101. Good.
 例えば、図15に示すように、仕切部材124は、第1部分124cと、第2部分124dと、を有していても良い。第1部分124cは、タンク本体部材121の内部空間を上側と下側に仕切る。第2部分124dは、タンク本体部材121の内部空間をチューブ積層方向一方側と他方側に仕切る。風上側上方タンク部12の内部には、仕切部材124によって、第1風上側コア部11aから流出した冷媒を冷媒出口部12aに導く第1流路12eと、第2風上側コア部11bから流出した冷媒を冷媒出口部12aに導く第2流路12fとが形成されている。 For example, as shown in FIG. 15, the partition member 124 may include a first portion 124c and a second portion 124d. The first portion 124c partitions the internal space of the tank body member 121 into an upper side and a lower side. The second portion 124d partitions the internal space of the tank body member 121 into one side and the other side in the tube stacking direction. Inside the windward upper tank 12, the partition member 124 allows the refrigerant flowing out from the first windward core 11 a to flow to the refrigerant outlet 12 a, and flows out from the second windward core 11 b. A second flow path 12f that guides the refrigerant to the refrigerant outlet 12a is formed.
 このような構造において、仕切部材124の第1部分124aに連通穴124eが形成されていたとしても、連通穴124eを介して第2流路12fから第1流路12eへと流入する冷媒に含まれるオイルの量が、圧縮機101の焼き付け発生を抑制できる程度であればよい。連通穴124eは、仕切部材124の第2部分124bに形成されていても良い。 In such a structure, even if the communication hole 124e is formed in the first portion 124a of the partition member 124, it is included in the refrigerant flowing from the second flow path 12f to the first flow path 12e through the communication hole 124e. It suffices that the amount of oil to be produced is such that the occurrence of baking of the compressor 101 can be suppressed. The communication hole 124e may be formed in the second portion 124b of the partition member 124.
 (9)上述の各実施形態では、冷媒蒸発器1を車両用空調装置の冷凍サイクルに適用する例について説明したが、これに限らず、例えば、給湯機等に用いられる他の冷凍サイクルに適用してもよい。 (9) In each of the above-described embodiments, the example in which the refrigerant evaporator 1 is applied to the refrigeration cycle of the vehicle air conditioner has been described. However, the present invention is not limited to this example. May be.
 上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。

 
The above embodiments are not irrelevant to each other and can be appropriately combined except when the combination is clearly impossible. In each of the above-described embodiments, it is needless to say that elements constituting the embodiment are not necessarily essential unless explicitly stated as essential and clearly considered essential in principle. Yes.

Claims (8)

  1.  外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
     前記被冷却流体の流れ方向(X)に対して直列に配置された第1蒸発部(20)および第2蒸発部(10)を備え、
     前記第1蒸発部および前記第2蒸発部のそれぞれは、
      上下方向に延びるとともに冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
      前記複数のチューブの上下方向における両端側に配置され、前記複数のチューブを流れる冷媒の集合あるいは分配を行う上方タンク部(12、22)および下方タンク部(13、23)と、を有し、
     前記第1蒸発部の熱交換コア部(21)は、前記複数のチューブ(211)のうち、一部のチューブ群を含む第1コア部(21a)と、前記チューブ群とは別のチューブ群を含む第2コア部(21b)とを有し、
     前記第2蒸発部の熱交換コア部(11)は、
      前記複数のチューブ(111)のうち、前記被冷却流体の流れ方向において前記第1コア部の少なくとも一部と対向するチューブ群を含む第3コア部(11a)と、
      前記被冷却流体の流れ方向において前記第2コア部の少なくとも一部と対向するチューブ群を含む第4コア部(11b)とを有し、
     前記第1蒸発部の上方タンク部(22)は、前記チューブの積層方向における両端部のうち、前記第2コア部よりも前記第1コア部に近い側の端部に、前記第1蒸発部の上方タンク部の内部に冷媒が流入する冷媒入口部(22a)を有し、
     前記第2蒸発部の上方タンク部(12)は、前記チューブの積層方向における両端部のうち、前記第4コア部よりも前記第3コア部に近い側の端部に、前記第2蒸発部の上方タンク部の内部から冷媒が流出する冷媒出口部(12a)を有し、
     前記第1蒸発部および前記第2蒸発部は、前記第1蒸発部の上方タンク部から前記第1コア部および前記第2コア部に冷媒が流入し、前記第1コア部から流出した冷媒が前記第4コア部に流入するとともに、前記第2コア部から流出した冷媒が前記第3コア部に流入した後、前記第3コア部および前記第4コア部から流出した冷媒が前記第2蒸発部の上方タンク部に流入するように構成されており、
     前記第2蒸発部の上方タンク部は、前記第3コア部から流出した冷媒と前記第4コア部から流出した冷媒が前記冷媒出口部に向かって互いに独立して流れる第1独立流路(12b)および第2独立流路(12c)を有し、
     前記第1独立流路および前記第2独立流路は、前記第2蒸発部の上方タンク部における前記第3コア部を構成する前記チューブ群のうち前記冷媒出口部に最も近い前記チューブと連通する連通部(12d)よりも前記冷媒出口部側に位置する所定位置まで、前記第3、第4コア部から流出した冷媒が互いに独立して流れるように構成されている冷媒蒸発器。
    A refrigerant evaporator that exchanges heat between a cooled fluid flowing outside and a refrigerant,
    A first evaporator (20) and a second evaporator (10) arranged in series with respect to the flow direction (X) of the fluid to be cooled;
    Each of the first evaporator and the second evaporator is
    A heat exchange core portion (11, 21) configured by laminating a plurality of tubes (111, 211) extending in the vertical direction and through which the refrigerant flows;
    An upper tank part (12, 22) and a lower tank part (13, 23) that are arranged on both ends in the vertical direction of the plurality of tubes and collect or distribute the refrigerant flowing through the plurality of tubes;
    The heat exchange core section (21) of the first evaporation section includes a first core section (21a) including a part of the plurality of tubes (211) and a tube group different from the tube group. A second core portion (21b) including
    The heat exchange core part (11) of the second evaporation part is
    A third core portion (11a) including a tube group facing at least a part of the first core portion in the flow direction of the fluid to be cooled among the plurality of tubes (111);
    A fourth core portion (11b) including a tube group facing at least a part of the second core portion in the flow direction of the fluid to be cooled;
    The upper tank part (22) of the first evaporation part has the first evaporation part at an end part closer to the first core part than the second core part among both end parts in the stacking direction of the tubes. A refrigerant inlet portion (22a) into which the refrigerant flows into the upper tank portion of
    The upper tank part (12) of the second evaporation part has the second evaporation part at an end part closer to the third core part than the fourth core part among both end parts in the stacking direction of the tubes. A refrigerant outlet part (12a) through which the refrigerant flows out from the inside of the upper tank part of
    The first evaporator and the second evaporator are configured such that the refrigerant flows into the first core and the second core from the upper tank of the first evaporator, and the refrigerant that flows out of the first core is The refrigerant flowing into the fourth core portion and flowing out from the second core portion flows into the third core portion, and then the refrigerant flowing out from the third core portion and the fourth core portion is subjected to the second evaporation. Configured to flow into the upper tank part of the part,
    The upper tank section of the second evaporation section includes a first independent flow path (12b) in which the refrigerant flowing out from the third core section and the refrigerant flowing out from the fourth core section flow independently from each other toward the refrigerant outlet section. ) And a second independent flow path (12c),
    The first independent flow path and the second independent flow path communicate with the tube closest to the refrigerant outlet portion in the tube group constituting the third core portion in the upper tank portion of the second evaporation portion. A refrigerant evaporator configured such that the refrigerant flowing out of the third and fourth core parts flows independently from each other up to a predetermined position located closer to the refrigerant outlet part than the communication part (12d).
  2.  前記第2蒸発部の上方タンク部は、
      筒状のタンク本体部材(121)と、
      前記タンク本体部材の内部に設けられた仕切部材(124)と、を有し、
     前記第1、第2独立流路は、前記仕切部材が前記タンク本体部材の内部空間を2つの空間に仕切ることによって形成されている請求項1に記載の冷媒蒸発器。
    The upper tank part of the second evaporation part is
    A tubular tank body member (121);
    A partition member (124) provided inside the tank body member,
    2. The refrigerant evaporator according to claim 1, wherein the first and second independent flow paths are formed by the partition member partitioning an internal space of the tank body member into two spaces.
  3.  外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
     前記被冷却流体の流れ方向(X)に対して直列に配置された第1蒸発部(20)および第2蒸発部(10)を備え、
     前記第1蒸発部および前記第2蒸発部のそれぞれは、
      上下方向に延びるとともに冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
      前記複数のチューブの上下方向における両端側に配置され、前記複数のチューブを流れる冷媒の集合あるいは分配を行う上方タンク部(12、22)および下方タンク部(13、23)と、を有し、
     前記第1蒸発部の熱交換コア部(21)は、前記複数のチューブ(211)のうち、一部のチューブ群を含む第1コア部(21a)と、前記チューブ群とは別のチューブ群を含む第2コア部(21b)とを有し、
     前記第2蒸発部の熱交換コア部(11)は、
      前記複数のチューブ(111)のうち、前記被冷却流体の流れ方向において前記第1コア部の少なくとも一部と対向するチューブ群を含む第3コア部(11a)と、
      前記被冷却流体の流れ方向において前記第2コア部の少なくとも一部と対向するチューブ群を含む第4コア部(11b)と、を有し、
     前記第1蒸発部の上方タンク部(22)は、前記第2コア部よりも前記第1コア部に近い部位に、前記第1蒸発部の上方タンク部の内部に冷媒が流入する冷媒入口部が設けられており、
     前記第1蒸発部および前記第2蒸発部は、前記第1蒸発部の上方タンク部から前記第1コア部および前記第2コア部に冷媒が流入し、前記第1コア部から流出した冷媒が前記第4コア部に流入するとともに、前記第2コア部から流出した冷媒が前記第3コア部に流入した後、前記第3コア部および前記第4コア部から流出した冷媒が前記第2蒸発部の上方タンク部(12)に流入するように構成されており、
     前記第2蒸発部の上方タンク部は、前記第3コア部よりも前記第4コア部に近い部位に、前記第2蒸発部の上方タンク部の内部から冷媒が流出する冷媒出口部(12a)が設けられている冷媒蒸発器。
    A refrigerant evaporator that exchanges heat between a cooled fluid flowing outside and a refrigerant,
    A first evaporator (20) and a second evaporator (10) arranged in series with respect to the flow direction (X) of the fluid to be cooled;
    Each of the first evaporator and the second evaporator is
    A heat exchange core portion (11, 21) configured by laminating a plurality of tubes (111, 211) extending in the vertical direction and through which the refrigerant flows;
    An upper tank part (12, 22) and a lower tank part (13, 23) that are arranged on both ends in the vertical direction of the plurality of tubes and collect or distribute the refrigerant flowing through the plurality of tubes;
    The heat exchange core section (21) of the first evaporation section includes a first core section (21a) including a part of the plurality of tubes (211) and a tube group different from the tube group. A second core portion (21b) including
    The heat exchange core part (11) of the second evaporation part is
    A third core portion (11a) including a tube group facing at least a part of the first core portion in the flow direction of the fluid to be cooled among the plurality of tubes (111);
    A fourth core part (11b) including a tube group facing at least a part of the second core part in the flow direction of the fluid to be cooled;
    The upper tank part (22) of the first evaporation part is a refrigerant inlet part into which a refrigerant flows into the upper tank part of the first evaporation part at a position closer to the first core part than the second core part. Is provided,
    The first evaporator and the second evaporator are configured such that the refrigerant flows into the first core and the second core from the upper tank of the first evaporator, and the refrigerant that flows out of the first core is The refrigerant flowing into the fourth core portion and flowing out from the second core portion flows into the third core portion, and then the refrigerant flowing out from the third core portion and the fourth core portion is subjected to the second evaporation. Configured to flow into the upper tank section (12) of the section,
    The upper tank part of the second evaporation part has a refrigerant outlet part (12a) through which the refrigerant flows out from the inside of the upper tank part of the second evaporation part at a position closer to the fourth core part than the third core part. A refrigerant evaporator.
  4.  前記冷媒入口部は、前記第1蒸発部の上方タンク部における前記チューブの積層方向における両端部のうち、前記第2コア部よりも前記第1コア部に近い側の端部に設けられており、
     前記冷媒出口部は、前記第2蒸発部の上方タンク部における前記チューブの積層方向における両端部のうち、前記第3コア部よりも前記第4コア部に近い側の端部に設けられている請求項3に記載の冷媒蒸発器。
    The refrigerant inlet portion is provided at an end portion closer to the first core portion than the second core portion among both end portions of the upper tank portion of the first evaporation portion in the tube stacking direction. ,
    The refrigerant outlet portion is provided at an end portion closer to the fourth core portion than the third core portion among both end portions in the tube stacking direction of the upper tank portion of the second evaporation portion. The refrigerant evaporator according to claim 3.
  5.  外部を流れる被冷却流体と冷媒との間で熱交換を行う冷媒蒸発器であって、
     前記被冷却流体の流れ方向(X)に対して直列に配置された第1蒸発部(20)および第2蒸発部(10)を備え、
     前記第1蒸発部および前記第2蒸発部のそれぞれは、
      上下方向に延びるとともに冷媒が流れる複数のチューブ(111、211)を積層して構成された熱交換コア部(11、21)と、
      前記複数のチューブの上下方向における両端側に配置され、前記複数のチューブを流れる冷媒の集合あるいは分配を行う上方タンク部(12、22)および下方タンク部(13、23)と、を有し、
     前記第1蒸発部の熱交換コア部(21)は、前記複数のチューブ(211)のうち、一部のチューブ群を含む第1コア部(21a)と、前記チューブ群とは別のチューブ群を含む第2コア部(21b)とを有し、
     前記第2蒸発部の熱交換コア部(11)は、
      前記複数のチューブ(111)のうち、前記被冷却流体の流れ方向において前記第1コア部の少なくとも一部と対向するチューブ群を含む第3コア部(11a)と、
      前記被冷却流体の流れ方向において前記第2コア部の少なくとも一部と対向するチューブ群を含む第4コア部(11b)とを有し、
     前記第1蒸発部の上方タンク部(22)は、前記チューブの積層方向における両端部のうち、前記第2コア部よりも前記第1コア部に近い側の端部に、前記第1蒸発部の上方タンク部の内部に冷媒が流入する冷媒入口部(22a)を有し、
     前記第2蒸発部の上方タンク部(12)は、前記チューブの積層方向における両端部のうち、前記第4コア部よりも前記第3コア部に近い側の端部に、前記第2蒸発部の上方タンク部の内部から冷媒が流出する冷媒出口部(12a)を有し、
     前記第1蒸発部および前記第2蒸発部は、前記第1蒸発部の上方タンク部から前記第1コア部および前記第2コア部に冷媒が流入し、前記第1コア部から流出した冷媒が前記第4コア部に流入するとともに、前記第2コア部から流出した冷媒が前記第3コア部に流入した後、前記第3コア部および前記第4コア部から流出した冷媒が前記第2蒸発部の上方タンク部に流入するように構成されており、
     前記第2蒸発部の上方タンク部は、
      前記第3コア部から流出した冷媒を前記冷媒出口部に向けて導く第1流路(12e)と、
      前記第4コア部から流出した冷媒を前記冷媒出口部に向けて導く第2流路(12f)と、を有し、
     前記第1流路および前記第2流路は、前記第3コア部を構成する前記チューブ群のうち前記冷媒出口部に最も近い前記チューブと前記第2蒸発部の上方タンク部とが連通する連通部(12d)よりも前記冷媒出口部側に位置する所定位置まで、前記第3、第4コア部から流出した冷媒が流れるように構成されている冷媒蒸発器。
    A refrigerant evaporator that exchanges heat between a cooled fluid flowing outside and a refrigerant,
    A first evaporator (20) and a second evaporator (10) arranged in series with respect to the flow direction (X) of the fluid to be cooled;
    Each of the first evaporator and the second evaporator is
    A heat exchange core portion (11, 21) configured by laminating a plurality of tubes (111, 211) extending in the vertical direction and through which the refrigerant flows;
    An upper tank part (12, 22) and a lower tank part (13, 23) that are arranged on both ends in the vertical direction of the plurality of tubes and collect or distribute the refrigerant flowing through the plurality of tubes;
    The heat exchange core section (21) of the first evaporation section includes a first core section (21a) including a part of the plurality of tubes (211) and a tube group different from the tube group. A second core portion (21b) including
    The heat exchange core part (11) of the second evaporation part is
    A third core portion (11a) including a tube group facing at least a part of the first core portion in the flow direction of the fluid to be cooled among the plurality of tubes (111);
    A fourth core portion (11b) including a tube group facing at least a part of the second core portion in the flow direction of the fluid to be cooled;
    The upper tank part (22) of the first evaporation part has the first evaporation part at an end part closer to the first core part than the second core part among both end parts in the stacking direction of the tubes. A refrigerant inlet portion (22a) into which the refrigerant flows into the upper tank portion of
    The upper tank part (12) of the second evaporation part has the second evaporation part at an end part closer to the third core part than the fourth core part among both end parts in the stacking direction of the tubes. A refrigerant outlet part (12a) through which the refrigerant flows out from the inside of the upper tank part of
    The first evaporator and the second evaporator are configured such that the refrigerant flows into the first core and the second core from the upper tank of the first evaporator, and the refrigerant that flows out of the first core is The refrigerant flowing into the fourth core portion and flowing out from the second core portion flows into the third core portion, and then the refrigerant flowing out from the third core portion and the fourth core portion is subjected to the second evaporation. Configured to flow into the upper tank part of the part,
    The upper tank part of the second evaporation part is
    A first flow path (12e) for guiding the refrigerant flowing out of the third core part toward the refrigerant outlet part;
    A second flow path (12f) for guiding the refrigerant flowing out of the fourth core portion toward the refrigerant outlet portion,
    The first flow path and the second flow path communicate with each other so that the tube closest to the refrigerant outlet portion in the tube group constituting the third core portion communicates with the upper tank portion of the second evaporation portion. A refrigerant evaporator configured to allow the refrigerant flowing out of the third and fourth core parts to flow to a predetermined position located closer to the refrigerant outlet part than the part (12d).
  6.  吸入した冷媒を圧縮して吐出する圧縮機(101)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(102)と、
     前記放熱器から流出した冷媒を減圧させる減圧器(103)と、
     前記減圧器で減圧された冷媒を蒸発させる冷媒蒸発器(1)と、
     前記冷媒蒸発器から流出した冷媒を気相冷媒と液相冷媒とに分離し、分離した気相冷媒を前記圧縮機に吸入させる気液分離器(104)とを備え、
     前記冷媒蒸発器は、請求項1ないし5のいずれか1つに記載の冷媒蒸発器である冷凍サイクル装置。
    A compressor (101) for compressing and discharging the sucked refrigerant;
    A radiator (102) for dissipating heat from the refrigerant discharged from the compressor;
    A decompressor (103) for decompressing the refrigerant flowing out of the radiator;
    A refrigerant evaporator (1) for evaporating the refrigerant decompressed by the decompressor;
    A gas-liquid separator (104) for separating the refrigerant flowing out of the refrigerant evaporator into a gas-phase refrigerant and a liquid-phase refrigerant, and sucking the separated gas-phase refrigerant into the compressor;
    The refrigeration cycle apparatus, wherein the refrigerant evaporator is the refrigerant evaporator according to any one of claims 1 to 5.
  7.  吸入した冷媒を圧縮して吐出する圧縮機(101)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(102)と、
     前記放熱器から流出した冷媒を減圧させる減圧器(103)と、
     前記減圧器で減圧された冷媒を蒸発させる冷媒蒸発器(1)と、
     前記冷媒蒸発器から流出した冷媒を、前記冷媒蒸発器よりも冷媒流れ上流側の冷媒との熱交換によって加熱し、加熱した冷媒を前記圧縮機に吸入させる内部熱交換器(105)とを備え、
     前記冷媒蒸発器は、請求項1ないし5のいずれか1つに記載の冷媒蒸発器である冷凍サイクル装置。
    A compressor (101) for compressing and discharging the sucked refrigerant;
    A radiator (102) for dissipating heat from the refrigerant discharged from the compressor;
    A decompressor (103) for decompressing the refrigerant flowing out of the radiator;
    A refrigerant evaporator (1) for evaporating the refrigerant decompressed by the decompressor;
    An internal heat exchanger (105) for heating the refrigerant flowing out of the refrigerant evaporator by heat exchange with the refrigerant upstream of the refrigerant evaporator and flowing the refrigerant to the compressor; ,
    The refrigeration cycle apparatus, wherein the refrigerant evaporator is the refrigerant evaporator according to any one of claims 1 to 5.
  8.  吸入した冷媒を圧縮して吐出する圧縮機(101)と、
     前記圧縮機から吐出された冷媒を放熱させる放熱器(102)と、
     前記放熱器から流出した冷媒を減圧させる減圧器(103)と、
     前記減圧器で減圧された冷媒を蒸発させる冷媒蒸発器(1)と、を備え、
     前記冷媒蒸発器は、請求項1ないし5のいずれか1つに記載の冷媒蒸発器である冷凍サイクル装置。
    A compressor (101) for compressing and discharging the sucked refrigerant;
    A radiator (102) for dissipating heat from the refrigerant discharged from the compressor;
    A decompressor (103) for decompressing the refrigerant flowing out of the radiator;
    A refrigerant evaporator (1) for evaporating the refrigerant decompressed by the decompressor,
    The refrigeration cycle apparatus, wherein the refrigerant evaporator is the refrigerant evaporator according to any one of claims 1 to 5.
PCT/JP2015/006432 2015-01-14 2015-12-24 Refrigerant evaporator WO2016113825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015005282A JP6341099B2 (en) 2015-01-14 2015-01-14 Refrigerant evaporator
JP2015-005282 2015-01-14

Publications (1)

Publication Number Publication Date
WO2016113825A1 true WO2016113825A1 (en) 2016-07-21

Family

ID=56405393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006432 WO2016113825A1 (en) 2015-01-14 2015-12-24 Refrigerant evaporator

Country Status (2)

Country Link
JP (1) JP6341099B2 (en)
WO (1) WO2016113825A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352491B2 (en) 2016-09-08 2022-06-07 Schaefer Kalk Gmbh & Co. Kg Calcium-salt-containing composite powder having microstructured particles
US11441008B2 (en) 2016-09-08 2022-09-13 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles
US11760874B2 (en) 2016-09-08 2023-09-19 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107062705A (en) * 2016-12-06 2017-08-18 广东美芝制冷设备有限公司 Heat-exchanger rig and the refrigeration system with it
JP6717256B2 (en) 2017-05-10 2020-07-01 株式会社デンソー Refrigerant evaporator and manufacturing method thereof
JP7115069B2 (en) * 2018-06-28 2022-08-09 株式会社デンソー refrigeration cycle equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511952A1 (en) * 1985-04-02 1986-10-09 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Heat exchanger for a heating or air-conditioning system of a motor vehicle
JP2004003810A (en) * 2002-04-03 2004-01-08 Denso Corp Heat exchanger
JP4124136B2 (en) * 2003-04-21 2008-07-23 株式会社デンソー Refrigerant evaporator
US20090120627A1 (en) * 2006-07-25 2009-05-14 Delphi Technologies, Inc. Heat exchanger assembly
JP2010223464A (en) * 2009-03-23 2010-10-07 Showa Denko Kk Evaporator
WO2013132826A1 (en) * 2012-03-06 2013-09-12 株式会社デンソー Coolant evaporator
US20130312453A1 (en) * 2012-05-22 2013-11-28 Halla Climate Control Corp. Evaporator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188689A1 (en) * 2013-05-20 2014-11-27 株式会社デンソー Refrigerant evaporator
JP6458617B2 (en) * 2015-04-15 2019-01-30 株式会社デンソー Refrigerant evaporator
JP6477306B2 (en) * 2015-07-06 2019-03-06 株式会社デンソー Refrigerant evaporator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511952A1 (en) * 1985-04-02 1986-10-09 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Heat exchanger for a heating or air-conditioning system of a motor vehicle
JP2004003810A (en) * 2002-04-03 2004-01-08 Denso Corp Heat exchanger
JP4124136B2 (en) * 2003-04-21 2008-07-23 株式会社デンソー Refrigerant evaporator
US20090120627A1 (en) * 2006-07-25 2009-05-14 Delphi Technologies, Inc. Heat exchanger assembly
JP2010223464A (en) * 2009-03-23 2010-10-07 Showa Denko Kk Evaporator
WO2013132826A1 (en) * 2012-03-06 2013-09-12 株式会社デンソー Coolant evaporator
US20130312453A1 (en) * 2012-05-22 2013-11-28 Halla Climate Control Corp. Evaporator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11352491B2 (en) 2016-09-08 2022-06-07 Schaefer Kalk Gmbh & Co. Kg Calcium-salt-containing composite powder having microstructured particles
US11441008B2 (en) 2016-09-08 2022-09-13 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles
US11760874B2 (en) 2016-09-08 2023-09-19 Schaefer Kalk Gmbh & Co. Kg Composite powder containing calcium carbonate and having microstructured particles having inhibiting calcium carbonate

Also Published As

Publication number Publication date
JP2016130612A (en) 2016-07-21
JP6341099B2 (en) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2016113825A1 (en) Refrigerant evaporator
JP6497262B2 (en) Laminate heat exchanger
US20160298890A1 (en) Flash gas bypass evaporator
JP2009085569A (en) Evaporator unit
WO2014181546A1 (en) Refrigerant evaporator
WO2018116929A1 (en) Heat exchanger and air conditioner
US10514189B2 (en) Microchannel suction line heat exchanger
US9797656B2 (en) Vehicle interior heat exchanger and inter-header connecting member of vehicle interior heat exchanger
JP4358981B2 (en) Air conditioning condenser
WO2014068842A1 (en) Refrigerant evaporation device
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
WO2016136266A1 (en) Refrigerant evaporator
JP6322982B2 (en) Refrigerant evaporator
JP2004239598A (en) Heat exchanger
WO2018207556A1 (en) Refrigerant evaporator and method for manufacturing same
JP6131705B2 (en) Refrigerant evaporator
JP6477306B2 (en) Refrigerant evaporator
WO2016067551A1 (en) Stacked heat exchanger
JP2002228299A (en) Composite heat exchanger
WO2014181547A1 (en) Refrigerant evaporator
JP2014228233A (en) Refrigerant evaporator
KR102173383B1 (en) Air conditioner system for vehicle
US20220136785A1 (en) Heat exchanger
JP2014159956A (en) Condenser
JP6098358B2 (en) Refrigerant evaporator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877780

Country of ref document: EP

Kind code of ref document: A1