JP4358981B2 - Air conditioning condenser - Google Patents

Air conditioning condenser Download PDF

Info

Publication number
JP4358981B2
JP4358981B2 JP2000323808A JP2000323808A JP4358981B2 JP 4358981 B2 JP4358981 B2 JP 4358981B2 JP 2000323808 A JP2000323808 A JP 2000323808A JP 2000323808 A JP2000323808 A JP 2000323808A JP 4358981 B2 JP4358981 B2 JP 4358981B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
path
air conditioning
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000323808A
Other languages
Japanese (ja)
Other versions
JP2002130866A (en
Inventor
宏泰 嶋貫
良一 星野
昇 小笠原
喬 田村
隆 寺田
太 渡辺
博文 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2000323808A priority Critical patent/JP4358981B2/en
Publication of JP2002130866A publication Critical patent/JP2002130866A/en
Application granted granted Critical
Publication of JP4358981B2 publication Critical patent/JP4358981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0445Condensers with an integrated receiver with throttle portions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、例えばカーエアコンやルームエアコン等の空調システムに使用される凝縮器、特にマルチフロータイプの空調用凝縮器に関する。
【0002】
【従来の技術】
一般的に、空調システムでは、冷媒が圧縮機、凝縮器、膨張弁、蒸発器を順次経て圧縮機に戻る蒸気圧縮式の冷凍サイクルが採用されている。図6は、この冷凍サイクルにおける冷媒の状態を示すモリエル線図であり、縦軸に圧力、横軸にエンタルピーをとっている。しかして、冷媒は、同図中の液相線よりも左側の領域で液相状態、液相線と気相線との間の領域では気液混相状態、気相線よりも右側の領域で気相状態となる。
【0003】
この冷凍サイクルが稼働する際、同図の太線で示すように、圧縮機にて圧縮される冷媒はA点からB点へ移行して高温高圧のガス冷媒となり、続いて凝縮器にて空気との熱交換によって冷却されてB点からC点へ移行して液冷媒となり、この液冷媒が膨張弁を介した減圧膨張によってC点からD点へ移行して低温低圧の霧化状態となり、次いで蒸発器において空気との熱交換によって蒸発・気化し、D点からA点へ移行してガス冷媒となる。
【0004】
ところで、このような空調システムに使用される凝縮器においては、熱交換効率を高める上で高い伝熱性と低い回路抵抗が要求されると共に、地球環境保全の面から冷媒使用量の削減が求められており、また特にカーエアコン用では設置スペースの制約からもコンパクト化が重要課題となっている。しかして、伝熱性を向上させるには、冷媒回路内の伝熱特性が重要な要素となるため、冷媒を流通させる熱交換管路として内表面積の大きいものを使用することが望ましい。
【0005】
近来、カーエアコン用の凝縮器としては、多数の偏平管を円筒形ヘッダーで集合した所謂マルチフロータイプのものが汎用されている。このマルチフロータイプの凝縮器は、例えば図8で示すように、間隔を置いて互いに平行に配置する一対のヘッダー(21)(22)間に、両端を両ヘッダー(21)(22)に連通接続して多数本の偏平管(23)…が平行状に配置されると共に、各隣接する偏平管(23)(23)間にフィン(24)が配置されてコア部(20)を構成し、前記ヘッダー(21)(22)の内部に設けられた仕切り板(25)によって多数本の偏平管(23)…が複数のパス(P1)〜(P3)に区分けされ、ヘッダー(21)に設けた冷媒導入口(26)より流入する冷媒が各パス(P1)(P2)(P3)を順に通過して冷媒導出口(27)に至るようになっている。なお、(28)はコア部(20)の上下に配置したサイドプレートである。
【0006】
このようなマルチフロータイプの凝縮器では、冷媒を並列した複数本の偏平管(23)…に分流させて冷媒の流通抵抗を小さくでき、個々の偏平管(23)の通路断面積を小さくして伝熱面積密度(単位体積当たりの表面積)を大きくとることが可能になるから、カーエアコン用凝縮器としての小型化及び軽量化に対応できると共に、内容積を小さくして冷媒使用量を削減することも可能となる利点がある。
【0007】
【発明が解決しようとする課題】
近年のマルチフロータイプの凝縮器においては、偏平管(23)として通路断面積を小さくする上で管全体の厚みが薄いものを使用するのに伴い、空気側とのバランスからフィン(24)の高さも低くすることから、偏平管(23)とフィン(24)の積層段数が増加すると共に、偏平管(23)一本当たりの通路断面積の減少に対応してヘッダー(21)(22)の仕切り数、つまり冷媒流路のパス数を少なくし、1パス当たりの偏平管(23)の本数を多くする傾向にある。その結果、冷媒回路を構成するためのヘッダーでの冷媒流路の多分岐による圧力損失が問題になっている。
【0008】
これを既述同様のモリエル線図によって説明すれば、図6、7で示すように、圧縮機にて圧縮される冷媒はA点からB点へ移行して高温高圧のガス冷媒となり、続いて凝縮器にて空気との熱交換によって冷却されて凝縮するが、凝縮器の冷媒導入口ではB1点の状態になるのに対し、該導入口より遠い位置ではヘッダー内の圧力損失によって圧力が低下しB2点の状態となり、当該凝縮器の冷媒回路を流れる過程で圧力を低下しつつC2点へ移行して液冷媒となる。このとき、冷媒導入口に近い偏平管を通る冷媒はB1点から二点鎖線S2を通ってC2点へ移動するが、該導入口から遠い偏平管を通る冷媒はB2点から一点鎖線S1を通ってC2点へ移動するから、前者の偏平管ではB1とC2の差圧、後者の偏平管ではB2とC2の差圧となり、偏平管相互で差圧の違いが発生し、各偏平管内の冷媒流量に差ができる。
【0009】
従って、冷媒導入口から遠くて入口側と出口側との差圧が小さい偏平管内では、冷媒流量が少ないために急速に液化し、これが滞留して伝熱を阻害することになる。すなわち、1パス当たりの偏平管の本数が多くなるほど、当該パスにおける冷媒流入側から遠い偏平管内での液冷媒の滞留を生じ易くなり、これによって熱交換効率が低下することから、必要な交換熱量を確保する上で凝縮圧力の上昇を招き、それだけ圧縮機の負荷が大きくなり、当該圧縮機の大型化及び高性能化が求められると共に、冷媒使用量の増加を余儀なくされ、空調システムのコンパクト化及び軽量化が困難になる。
【0010】
この発明は、上述の事情に鑑みて、マルチフロータイプの空調用凝縮器として、1パス当たりの熱交換管路の本数が多くなっても、偏平管相互での入口側と出口側の差圧の違いが少なく、各偏平管内の冷媒流量が均等化し、もって冷媒流入側から遠い偏平管内での液冷媒の滞留が抑制されて高い熱交換効率を確保でき、冷媒使用量を少なくして、空調システムのコンパクト化及び軽量化を容易にするものを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記目的を達成するために、第一の発明に係る空調用凝縮器は、間隔を置いて互いに平行に配置する一対のヘッダー間に、両端を両ヘッダーに連通接続する多数本の熱交換管が配置されると共に、各隣接する熱交換管間にフィンが配置されてコア部を構成し、前記ヘッダーの内部に設けられた仕切りによって前記多数本の熱交換管群が複数のパスに区分けされ、一方のヘッダーに設けた冷媒導入口より流入する冷媒が各パスを順に通過して両ヘッダーのいずれかに設けた冷媒導出口に至る冷媒経路を備えた空調用凝縮器であって、
前記冷媒導入口を有する第一パスにおける出口側ヘッダー内に、該冷媒導入口への対向部と第二パスへの移行部との間に位置して、流通抵抗を付与する抵抗付与手段が設けられてなることを特徴としている。
【0012】
この凝縮器においては、第一パスの出口側ヘッダー内に配置した抵抗付与手段が減圧機構として作用するから、該抵抗付与手段の上流側の圧力は下流側の圧力より僅かに高い程度となり、各熱交換管路の入口側と出口側との差圧が冷媒導入口に近い部分と遠い部分とで均衡する。従って、第一パス全体として入口側ヘッダーから各熱交換管路へ均等に冷媒が配分されることになり、該導入口から遠い熱交換管路における液冷媒の滞留が防止され、この滞留による熱交換効率の低下を回避でき、もって凝縮器全体として高い熱交換効率を確保できる。
【0013】
第二の発明は、上記第一の発明の空調用凝縮器において、抵抗付与手段を、少なくとも1つの冷媒流通孔を有するオリフィスプレートをもって構成することを特徴とする。これにより上記抵抗付与手段を簡易に設置可能なものとすることができ、凝縮器の組立製造上有利である。
【0014】
第三の発明は、上記第二の発明において、オリフィスプレートを、開口面積が1π〜9π・mm2 (πは円周率)の冷媒流通孔を有する平板からなる構成としている。この場合、特に自動車用空調装置に用いられるような前面面積の凝縮器において、オリフィスプレートの流通抵抗が好適範囲になるため、前記の冷媒導入口に近い部分と遠い部分での差圧の均衡化が適正になされ、該導入口から遠い熱交換管路における液冷媒の滞留がより確実に防止される。
【0015】
第四の発明は、上記第二又は第三の発明の空調用凝縮器において、冷媒経路が2パス又は3パスである構成としている。この場合、凝縮器のパス数が少ないため、前記オリフィスプレートによる差圧の均等化効果がより顕著に発揮される。
【0016】
第五の発明は、上記第一〜第四のいずれか発明の空調用凝縮器において、第一パスにおける出口側ヘッダー内に、複数個のオリフィスが配置してなる構成としている。この場合、第一パスの熱交換管路の数が多くなっても、複数のオリフィスによる多段の絞り作用により、第一パス全体として冷媒導入口に近い部分と遠い部分での差圧を均衡して、冷媒分配を均等化することができる。
【0017】
第六の発明は、上記第一〜第五のいずれか発明の空調用凝縮器において、冷媒経路が2パスであり、第二パスが凝縮冷媒を過冷却させるサブクール部を構成すると共に、第一パスから第二パスへの移行部にレシーバータンクが介在してなるものとしている。この発明では、凝縮部が1パスでサブクール部を一体化した凝縮器において、凝縮部全体の熱交換管路の入口側と出口側との差圧を均等化でき、出口側の熱交換管路における液冷媒の滞留を抑制できると共に、凝縮部からサブクール部への移行部に介在するレシーバータンクでの気液分離により、サブクール部へ液冷媒のみを導入して、サブクール部での過冷却作用を充分に発揮させることができる。
【0018】
【発明の実施の形態】
以下、この発明に係る空調用凝縮器の実施例について、図面を参照して具体的に説明する。図1(A)は第一実施例の凝縮器の正面図、図1(B)は同凝縮器の冷媒回路図、図2は図1(A)のII─II線の断面矢視図、図3は同凝縮器の要部の分解斜視図、図4は第二実施例の凝縮器の冷媒回路図、図5は第三実施例の凝縮器の冷媒回路図である。なお、第一〜第三実施例の凝縮器は、いずれもマルチフロータイプであって、各構成部材にアルミニウム又はその合金製のものを用いている。
【0019】
図1及び図2に示すように、第一実施例の凝縮器は、間隔を置いて互いに平行に配置する一対のヘッダー(1)(2)間に、熱交換管路として両端を両ヘッダー(1)(2)に連通接続する多数本の偏平管(3)…が配置されると共に、各隣接する偏平管(3)(3)間にコルゲートフィン(4)が配置されてコア部(10)を構成しており、左側ヘッダー(1)の上部には冷媒導入口(5)、同下部には冷媒導出口(6)がそれぞれ設けられている。
【0020】
そして、左側ヘッダー(1)の中間下寄りの位置に設けた仕切り板(7)により、多数本の偏平管(3)…が上部側つまり冷媒導入口(5)側の第一パス(P1)と下部側つまり冷媒導出口(6)側の第二パス(P2)とに区分けされている。一方、第一パス(P1)の出口側である右側ヘッダー(2)の内部には、左側ヘッダー(1)における冷媒導入口(5)への対向部(2a)と、第一パス(P1)から第二パス(P2)への移行部(2b)との間に位置して、抵抗付与手段としてのオリフィスプレート(8)が配置されている。図1における(9)はコア部(10)の上下に配置したサイドプレートである。
【0021】
オリフィスプレート(8)は、図2及び図3に示すように、円形の冷媒流通孔(81)を有するリング状の平板(80)からなり、この平板(80)の略半周が右側ヘッダー(2)の外径に等しい外径の径大部(8a)をなすと共に、残りの略半周が該ヘッダー(2)の内径に等しい外径の径小部(8b)をなし、該ヘッダー(2)に設けた周方向半周にわたるスリット孔(11)に径小部(8b)側から挿嵌してロウ付け固着されている。また、仕切り板(7)は、オリフィス(8)と同様の外形を有する孔無しの平板からなり、左側ヘッダー(1)に設けた同様のスリット孔に挿嵌してロウ付け固着されている。
【0022】
両ヘッダー(1)(2)は、アルミニウム又はその合金からなる芯材の両面にロウ材層を設けたブレージングシートを、その両側縁部が突き合うように円筒状に成形したものであり、予め該ブレージングシートを打ち抜き加工することにより、図3に示すように、周方向に沿うスリット状の接続用孔(12)…が一定間隔置きに形成され、各接続用孔(12)に偏平管(3)の端部を挿嵌してロウ付け固着するようになされている。
【0023】
なお、凝縮器の組立製作においては、各構成部材を製品形態に仮組みし、この仮組み状態で炉中ロウ付けを行うことにより、各接合部を一括して固着一体化すればよい。しかして、この炉中ロウ付けを行う上で、コルゲートフィン(4)として前記同様に芯材の両面にロウ材層を設けたブレージングシート製のものを使用するが、オリフィスプレート(8)と仕切り板(7)についてもブレージングシート製のものを用いることが望ましい。
【0024】
上記構成の凝縮器にあっては、圧縮機より吐出される高温高圧のガス冷媒が冷媒導入口(5)より左側ヘッダー(1)内に流入し、第一パス(P1)の偏平管(3)群に分流して右側ヘッダー(2)内で合流し、次いで第二パス(P2)の偏平管(3)群に分流して右側ヘッダー(1)内の下部で合流するが、この過程でコア部(10)の偏平管(3)…の間つまりコルゲートフィン(4)の配置部を通過する空気と熱交換することにより、冷却されて凝縮し、液冷媒として冷媒導出口(6)より流出する。しかして、第一パス(P1)においては、その出口側ヘッダー(2)内に配置したオリフィスプレート(8)が減圧機構として作用するから、該オリフィス(8)の上流側の圧力は下流側の圧力より高くなり、各偏平管(3)の入口側と出口側との差圧が第一パス(P1)全体として均等化される。
【0025】
これを、図7のモリエル線図によって説明すれば、凝縮器に流入する冷媒は、第一パス(P1)において、左側ヘッダー(1)内の冷媒導入口(5)に近い位置ではB1点の状態、該導入口(5)より遠い位置では該ヘッダー(1)内の圧力損失でB2点の状態となり、偏平管(3)内で圧力を下げつつ、B2点からは一点鎖線S1を通ってC2点へ移行するが、右側ヘッダー(2)内ではオリフィス(8)の流通抵抗によって当該オリフィス(8)の上流側の圧力が上昇するため、B1点からは破線S3を通ってC1点へ移行することになる。従って、冷媒導入口(5)に近い側の偏平管(3)…における入口側と出口側との差圧はB1とC1との関係となり、該導入口(5)から遠い偏平管(3)…におけるB2とC2との差圧に近くなる。
【0026】
この結果、冷媒導入口(5)に近い位置にある偏平管(3)の出入口間の差圧と遠い位置にある偏平管(3)の同差圧とが均衡し、第一パス(P1)全体として入口側ヘッダー(1)から各偏平管(3)へ均等に冷媒が配分され、該導入口(5)から遠い偏平管(3)における液冷媒の滞留が防止され、この滞留による熱交換効率の低下を回避でき、もって凝縮器全体として高い熱交換効率を確保できる。従って、このような凝縮器の構成を採用することにより、空調システムの冷媒使用量を少なくして、システム全体をコンパクト化及び軽量化することが容易になる。
【0027】
第二実施例の凝縮器は、図4に示すように、前記第一実施例と同様に左側ヘッダー(1)に設けた仕切り板(7)によって多数本の偏平管(3)…が上部側の第一パス(P1)と下部側の第二パス(P2)とに区分けされているが、右側ヘッダー(2)の内部には、冷媒導入口(5)への対向部(2a)と第二パス(P2)への移行部(2b)との間に位置して、2個のオリフィスプレート(8A)(8B)が間隔を置いて配置されている。なお、他の各部構成は前記第一実施例と同様である。
【0028】
この第二実施例の凝縮器では、第一パス(P1)において、出口側である右側ヘッダー(2)内で2個のオリフィスプレート(8A)(8B)による流通抵抗によって2段階に差圧を生じ、入口側である左側ヘッダー(1)内の圧力損失に対応して、オリフィスプレート(8A)の上流側の圧力が最も高く、オリフィスプレート(8B)の下流側の圧力が最も低くなるから、冷媒導入口(5)に対して近い位置、中間位置、遠い位置の各偏平管(3)における出入口間の差圧が均衡し、第一パス(P1)全体として入口側ヘッダー(1)から各偏平管(3)へより均等に冷媒が配分される。従って、第一パス(P1)における偏平管(3)の数が多い場合でも、該導入口(5)から遠い偏平管(3)における液冷媒の滞留が防止され、凝縮器全体として高い熱交換効率を確保できる。
【0029】
なお、第二実施例では第一パス(P1)の出口側である右側ヘッダー(2)内に2個のオリフィスプレート(8A)(8B)を配置しているが、第一パス(P1)の偏平管(3)の本数によっては3個以上のオリフィスプレート(8)を配置してもよい。このように複数のオリフィスプレート(8)を配置する場合は、各オリフィスプレート(8)の設置位置による冷媒流量の違いに対応して、冷媒流通孔(81)の開口面積が異なるものを用いることにより、第一パス(P1)全体として冷媒分配をより均等化させることができる。
【0030】
また、前記第一及び第二実施例ではコア部(10)を第一パス(P1)と第二パス(P2)の2パスとしているが、この発明は3パス以上のマルチフロータイプの凝縮器にも同様に適用可能である。そして、第二パス(P2)以降の各パスについても、熱交換管路の数が多い場合にはその出口側ヘッダー内にオリフィスプレート(8)を配置して管路間の差圧均衡を図るようにしても差し支えない。ただし、オリフィスプレート(8)による前記の作用効果は、パス数の少ないもの、特に2パス又は3パスの凝縮器や、熱交換管として特に内部圧力損失の大きいもの、たとえば流路の相当径(流体直径)が約0.8mm以下の小さいもの、あるいは管内の長さ方向に連続する流路仕切壁に開口部を有して隣接する流路間で冷媒が往き来するようになされたもの等を用いた凝縮器において、より顕著に発揮される。
【0031】
第三実施例の凝縮器は、図5に示すように、前記第一及び第二実施例と同様にコア部(10)が2パスであるが、所謂サブクールシステムコンデンサとして、第一パス(P1)が凝縮部をなすと共に、第二パス(P2)が凝縮した液冷媒を過冷却するサブクール部をなし、右側ヘッダー(2)の近傍にレシーバータンク(13)が付設された構成となっている。
【0032】
すなわち、左側ヘッダー(1)には上部に冷媒導入口(5)、同下部に冷媒導出口(6)がそれぞれ付設されているが、左右の両ヘッダー(1)(2)内は下部寄りで同高さの位置に配置した仕切り板(7)によって上下に区割されており、右側ヘッダー(2)の仕切り板(7)の上側近傍からレシーバータンク(13)内に連通する上部管路(14)と、該レシーバータンク(13)の下部から右側ヘッダー(2)の仕切り板(7)の下方空間に連通する下部管路(15)とを備えている。つまり、レシーバータンク(13)は第一パス(P1)から第二パス(P2)への移行部(2b)に介在している。そして、右側ヘッダー(2)の区割された上部側空間内のやや下部寄りの位置に、オリフィスプレート(8)が配置されている。
【0033】
この第三実施例の凝縮器では、冷媒導入口(5)より左側ヘッダー(1)内に流入した冷媒は、第一パス(P1)の偏平管(3)群に分流し、外部の空気との熱交換によって凝縮しつつ右側ヘッダー(2)内で合流し、次いで上部管路(14)よりレシーバータンク(13)内に流入して気液分離され、その液冷媒が下部管路(15)を通って第二パス(P2)の偏平管(3)群に分流し、外部の空気との熱交換によって過冷却された上で、右側ヘッダー(1)内の下部で合流して冷媒導出口(6)より流出する。しかして、第一パス(P1)においては、その出口側ヘッダー(2)内に配置したオリフィスプレート(8)による既述同様の作用により、各偏平管(3)の入口側と出口側との差圧が第一パス(P1)全体として均等化されるから、出口側の偏平管(3)における液冷媒の滞留が抑制され、高い熱交換効率が得られる。
【0034】
なお、図2及び図3に示すオリフィスプレート(8)は冷媒流通孔(81)を円形に形成したものを示したが、該冷媒流通孔(81)は楕円形や多角形等の様々な形状に設定できる。しかして、この発明で用いるオリフィスプレート(8)としては、自動車の空調システムに用いるような凝縮器の場合、冷媒流通孔(81)の開口面積を1π〜9π・mm2 (πは円周率)の範囲に設定するのが好適である。すなわち、この開口面積が小さ過ぎては、当該オリフィスプレート(8)の上流側の偏平管(3)…における冷媒流量が過少となり、却って熱交換効率が低下する。また逆に開口面積が大き過ぎては、オリフィスプレート(8)による減圧作用が不足し、冷媒導入口(5)から離れた位置にある偏平管(3)内での液冷媒の滞留を防止できなくなる。
【0035】
【発明の効果】
請求項1の発明によれば、マルチフロータイプの空調用凝縮器として、冷媒導入口を有する第一パスにおける出口側ヘッダー内に流通抵抗を付与する抵抗付与手段が設けられていることから、1パス当たりの熱交換管路の本数が多くなっても、偏平管相互での入口側と出口側の差圧の違いが少なく、各偏平管内の冷媒流量が均等化し、もって冷媒流入側から遠い偏平管内での液冷媒の滞留が抑制されて高い熱交換効率を確保でき、冷媒使用量を少なくして、空調システムのコンパクト化及び軽量化を容易にするものが提供される。
【0036】
請求項2の発明によれば、上記抵抗付与手段としてオリフィスプレートを用いることにより、当該抵抗付与手段の簡易な設置が可能となり、凝縮器の組立製作上有利である。
【0037】
請求項3の発明によれば、上記の凝縮器において、オリフィスプレートの冷媒流通孔の開口面積が適正範囲に設定されていることから、前記の冷媒導入口に近い部分と遠い部分での差圧の均衡化が適正になされ、該導入口から遠い熱交換管路における液冷媒の滞留がより確実に防止される。
【0038】
請求項4の発明によれば、上記の凝縮器において、冷媒経路が2パス又は3パスであることから、前記オリフィスプレートによる差圧の均等化効果がより顕著に発揮される。
【0039】
請求項5の発明によれば、上記の凝縮器において、第一パスにおける出口側ヘッダー内に複数個のオリフィスプレートが配置されていることから、第一パスの熱交換管路の数が多くなっても、複数のオリフィスプレートによる多段の絞り作用により、第一パス全体として冷媒導入口に近い部分と遠い部分での差圧が均衡し、冷媒分配を均等化することができる。
【0040】
請求項6の発明によれば、凝縮部が1パスでサブクール部を一体化した上記の凝縮器において、凝縮部全体の熱交換管路の入口側と出口側との差圧を均等化でき、出口側の熱交換管路における液冷媒の滞留を抑制され、高い熱交換効率が得られる。
【図面の簡単な説明】
【図1】 この発明の第一実施例に係る空調用凝縮器を示し、(A)図は凝縮器全体の正面図、(B)図は同凝縮器の冷媒管路図である。
【図2】 図1(A)のII─II線の断面矢視図である。
【図3】 同凝縮器の要部の分解斜視図である。
【図4】 第二実施例に係る空調用凝縮器の冷媒回路図である。
【図5】 第二実施例に係る空調用凝縮器の冷媒回路図である。
【図6】 一般的な冷凍サイクルにおけるモリエル線図である。
【図7】 この発明の凝縮器ならびに従来構成のを用いた冷凍サイクルにおけるモリエル線図である。
【図8】 従来の空調用凝縮器の構成例を示す正面図である。
【符号の説明】
1・・・・・・右側ヘッダー
2・・・・・・左側ヘッダー
3・・・・・・偏平管(熱交換管)
4・・・・・・コルゲートフィン
5・・・・・・冷媒導入口
6・・・・・・冷媒導出口
7・・・・・・仕切り板
8・・・・・・オリフィス
80・・・・・平板
81・・・・・冷媒流通孔
10・・・・・コア部
P1・・・・・第一パス
P2・・・・・第二パス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a condenser used in an air conditioning system such as a car air conditioner or a room air conditioner, and more particularly to a multiflow type air conditioning condenser.
[0002]
[Prior art]
In general, an air conditioning system employs a vapor compression refrigeration cycle in which refrigerant passes through a compressor, a condenser, an expansion valve, and an evaporator, and then returns to the compressor. FIG. 6 is a Mollier diagram showing the state of the refrigerant in this refrigeration cycle, with the vertical axis representing pressure and the horizontal axis representing enthalpy. Thus, the refrigerant is in the liquid phase state in the region on the left side of the liquid phase line in the figure, in the gas-liquid mixed phase state in the region between the liquid phase line and the gas phase line, and in the region on the right side of the gas phase line. It becomes a gas phase state.
[0003]
When this refrigeration cycle is in operation, as indicated by the thick line in the figure, the refrigerant compressed by the compressor moves from point A to point B to become a high-temperature and high-pressure gas refrigerant, and then the air is The liquid refrigerant is cooled by the heat exchange of point B to shift to point C to become liquid refrigerant, and this liquid refrigerant is shifted from point C to point D by decompression expansion via the expansion valve to become a low-temperature and low-pressure atomized state. It evaporates and vaporizes by heat exchange with air in the evaporator, and moves from point D to point A to become a gas refrigerant.
[0004]
By the way, in a condenser used in such an air conditioning system, high heat transfer and low circuit resistance are required to increase heat exchange efficiency, and reduction of refrigerant usage is required from the viewpoint of global environmental conservation. In particular, for car air conditioners, downsizing is an important issue due to the limited installation space. Therefore, in order to improve heat transfer, the heat transfer characteristic in the refrigerant circuit is an important factor. Therefore, it is desirable to use a heat exchange pipe having a large inner surface area for circulating the refrigerant.
[0005]
Recently, as a condenser for a car air conditioner, a so-called multiflow type condenser in which a large number of flat tubes are assembled by a cylindrical header has been widely used. For example, as shown in FIG. 8, this multi-flow type condenser is connected to both headers (21) and (22) at both ends between a pair of headers (21) and (22) arranged parallel to each other at intervals. A plurality of flat tubes (23) are connected and arranged in parallel, and fins (24) are arranged between adjacent flat tubes (23) and (23) to constitute the core portion (20). A plurality of flat tubes (23) are divided into a plurality of paths (P1) to (P3) by a partition plate (25) provided inside the headers (21) and (22). The refrigerant flowing from the provided refrigerant inlet (26) sequentially passes through the paths (P1), (P2), and (P3) to reach the refrigerant outlet (27). In addition, (28) is the side plate arrange | positioned at the upper and lower sides of the core part (20).
[0006]
In such a multi-flow type condenser, the refrigerant can be divided into a plurality of parallel flat tubes (23) to reduce the flow resistance of the refrigerant, and the passage cross-sectional area of each flat tube (23) can be reduced. This makes it possible to increase the heat transfer area density (surface area per unit volume), so it can be made smaller and lighter as a condenser for car air conditioners and reduce the volume of refrigerant by reducing the internal volume. There is an advantage that can be done.
[0007]
[Problems to be solved by the invention]
In recent multi-flow type condensers, as the flat tube (23) has a small cross-sectional area and the entire tube has a small thickness, the balance of the fin (24) is reduced due to the balance with the air side. Since the height is also lowered, the number of stacked stages of the flat tubes (23) and fins (24) increases, and the headers (21) (22) correspond to the reduction of the passage cross-sectional area per flat tube (23). There is a tendency to reduce the number of partitions, that is, the number of passes of the refrigerant flow path, and increase the number of flat tubes (23) per pass. As a result, pressure loss due to multiple branching of the refrigerant flow path in the header for constituting the refrigerant circuit has become a problem.
[0008]
Explaining this with the same Mollier diagram as described above, as shown in FIGS. 6 and 7, the refrigerant compressed by the compressor is shifted from point A to point B to become a high-temperature and high-pressure gas refrigerant, Although it is cooled and condensed by heat exchange with air in the condenser, the pressure at the refrigerant inlet of the condenser is at the B1 point, but at a position far from the inlet, the pressure drops due to pressure loss in the header. In the process of flowing through the refrigerant circuit of the condenser, the pressure moves down to the point C2, and becomes liquid refrigerant. At this time, the refrigerant passing through the flat tube close to the refrigerant introduction port moves from the point B1 to the point C2 through the two-dot chain line S2, but the refrigerant passing through the flat tube far from the introduction port passes through the one-dot chain line S1 from the point B2. Therefore, in the former flat tube, the differential pressure between B1 and C2, and in the latter flat tube, the differential pressure between B2 and C2, a difference in differential pressure occurs between the flat tubes, and the refrigerant in each flat tube There is a difference in flow rate.
[0009]
Accordingly, in a flat tube that is far from the refrigerant inlet and has a small differential pressure between the inlet side and the outlet side, the refrigerant flow rate is small, so that it rapidly liquefies and stays there, impeding heat transfer. That is, as the number of flat tubes per pass increases, liquid refrigerant tends to stay in the flat tubes far from the refrigerant inflow side in the pass, thereby reducing the heat exchange efficiency. As a result, the compressor pressure increases, and the compressor's load increases accordingly, and the compressor must be increased in size and performance, and the amount of refrigerant used must be increased, resulting in a more compact air conditioning system. In addition, weight reduction becomes difficult.
[0010]
In view of the above circumstances, the present invention is a multi-flow type air conditioning condenser, even if the number of heat exchange pipes per pass increases, the differential pressure between the inlet side and the outlet side between the flat pipes. The flow rate of refrigerant in each flat tube is equalized, so that liquid refrigerant stays in the flat tube far from the refrigerant inflow side, and high heat exchange efficiency can be ensured. An object of the present invention is to provide a system that facilitates a reduction in size and weight of the system.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioning condenser according to a first aspect of the present invention includes a plurality of heat exchange pipes that are connected to both headers at both ends between a pair of headers that are arranged in parallel to each other at intervals. The fins are arranged between the adjacent heat exchange tubes to constitute a core portion, and the multiple heat exchange tube groups are divided into a plurality of paths by a partition provided inside the header, An air conditioning condenser having a refrigerant path in which refrigerant flowing from a refrigerant inlet provided in one header passes through each path in turn and reaches a refrigerant outlet provided in either of the headers,
In the outlet header in the first pass having the refrigerant inlet, there is provided a resistance applying means for providing a flow resistance located between a portion facing the refrigerant inlet and a transition portion to the second path. It is characterized by being made.
[0012]
In this condenser, since the resistance applying means arranged in the outlet header of the first pass acts as a pressure reducing mechanism, the pressure on the upstream side of the resistance applying means is slightly higher than the pressure on the downstream side. The differential pressure between the inlet side and the outlet side of the heat exchange line is balanced between the portion close to the refrigerant inlet and the portion far from the refrigerant inlet. Accordingly, the refrigerant is evenly distributed from the inlet side header to each heat exchange pipe as a whole in the first path, and the liquid refrigerant is prevented from staying in the heat exchange pipe far from the inlet, and the heat generated by this stay is reduced. A decrease in the exchange efficiency can be avoided, so that a high heat exchange efficiency can be secured for the entire condenser.
[0013]
According to a second aspect of the present invention, in the air conditioning condenser of the first aspect, the resistance applying means includes an orifice plate having at least one refrigerant flow hole. Thereby, the resistance applying means can be easily installed, which is advantageous in assembling and manufacturing the condenser.
[0014]
According to a third aspect, in the second aspect, the orifice plate is configured by a flat plate having a refrigerant flow hole having an opening area of 1π to 9π · mm 2 (where π is a circumference). In this case, especially in a condenser having a front area such as that used in an air conditioner for automobiles, the flow resistance of the orifice plate is in a preferable range, so that the differential pressure is balanced between the portion near and far from the refrigerant inlet. Thus, the liquid refrigerant is more reliably prevented from staying in the heat exchange line far from the inlet.
[0015]
According to a fourth aspect, in the air conditioning condenser according to the second or third aspect, the refrigerant path has two or three passes. In this case, since the number of passes of the condenser is small, the effect of equalizing the differential pressure by the orifice plate is more remarkably exhibited.
[0016]
According to a fifth invention, in the air conditioning condenser according to any one of the first to fourth inventions, a plurality of orifices are arranged in the outlet side header in the first pass. In this case, even if the number of heat exchange pipes in the first pass increases, the differential pressure between the portion close to the refrigerant inlet and the portion far from the refrigerant inlet is balanced as a whole by the multistage throttling action of the plurality of orifices. Thus, the refrigerant distribution can be equalized.
[0017]
According to a sixth aspect of the present invention, in the air conditioning condenser according to any one of the first to fifth aspects of the present invention, the refrigerant path has two paths, and the second path constitutes a subcool portion for supercooling the condensed refrigerant, and the first It is assumed that a receiver tank is interposed at the transition from the pass to the second pass. In the present invention, in the condenser in which the condensing unit is integrated in one pass and the subcooling unit, the differential pressure between the inlet side and the outlet side of the heat exchanging line of the entire condensing part can be equalized, and the heat exchanging line on the outlet side In addition to suppressing liquid refrigerant stagnation in the subcooling section, only liquid refrigerant is introduced into the subcooling section by gas-liquid separation at the receiver tank interposed in the transition section from the condensation section to the subcooling section. It can be fully exerted.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of an air conditioning condenser according to the present invention will be specifically described below with reference to the drawings. 1A is a front view of the condenser of the first embodiment, FIG. 1B is a refrigerant circuit diagram of the condenser, and FIG. 2 is a cross-sectional view taken along line II-II in FIG. 3 is an exploded perspective view of the main part of the condenser, FIG. 4 is a refrigerant circuit diagram of the condenser of the second embodiment, and FIG. 5 is a refrigerant circuit diagram of the condenser of the third embodiment. In addition, the condensers of the first to third embodiments are all multi-flow types, and aluminum or an alloy thereof is used for each constituent member.
[0019]
As shown in FIGS. 1 and 2, the condenser of the first embodiment has both headers (1) and (2) as a heat exchange line between a pair of headers (1) and (2) arranged in parallel with each other. 1) A large number of flat tubes (3)... Connected in communication with (2) are arranged, and corrugated fins (4) are arranged between the adjacent flat tubes (3) and (3) to form the core portion (10). The refrigerant inlet (5) is provided in the upper part of the left header (1), and the refrigerant outlet (6) is provided in the lower part thereof.
[0020]
And by the partition plate (7) provided in the middle lower position of the left side header (1), a large number of flat tubes (3) are connected to the upper side, that is, the first path (P1) on the refrigerant inlet (5) side. And a second path (P2) on the lower side, that is, on the refrigerant outlet (6) side. On the other hand, inside the right header (2) which is the outlet side of the first pass (P1), there are a portion (2a) facing the refrigerant inlet (5) in the left header (1), and the first pass (P1). An orifice plate (8) as a resistance applying means is disposed between the transition portion (2b) from the first path (P2) to the second path (P2). (9) in FIG. 1 is the side plate arrange | positioned up and down of the core part (10).
[0021]
As shown in FIGS. 2 and 3, the orifice plate (8) is formed of a ring-shaped flat plate (80) having a circular coolant circulation hole (81), and a substantially half circumference of the flat plate (80) is formed on the right header (2). The outer diameter of the outer diameter is equal to the outer diameter of the outer diameter of the header (2), and the smaller outer circumference (8b) is equal to the inner diameter of the header (2). Is inserted into the slit hole (11) extending in the circumferential direction around the small diameter portion (8b) and fixed by brazing. The partition plate (7) is a flat plate without holes having the same outer shape as that of the orifice (8), and is fixed by brazing by being inserted into the same slit hole provided in the left header (1).
[0022]
Both headers (1) and (2) are formed by brazing a brazing sheet in which a brazing material layer is provided on both surfaces of a core material made of aluminum or an alloy thereof so that both side edges abut each other. By punching the brazing sheet, as shown in FIG. 3, slit-like connecting holes (12) along the circumferential direction are formed at regular intervals, and a flat tube ( The end of 3) is inserted and fixed by brazing.
[0023]
In the assembly production of the condenser, it is only necessary to temporarily assemble each component into a product form and perform brazing in the furnace in this temporarily assembled state so that the joints are fixed and integrated together. Therefore, when brazing in this furnace, a corrugated fin (4) made of a brazing sheet provided with a brazing material layer on both sides of the core is used, but the orifice plate (8) and the partition are used. It is desirable to use a brazing sheet as the plate (7).
[0024]
In the condenser having the above configuration, the high-temperature and high-pressure gas refrigerant discharged from the compressor flows into the left header (1) from the refrigerant inlet (5), and the flat pipe (3 of the first path (P1) (3). ) Split into groups and merge in the right header (2), then split into the flat tube (3) group in the second pass (P2) and merge in the lower part in the right header (1). The heat is exchanged with the air passing between the flat tubes (3) of the core portion (10), that is, through the arrangement portion of the corrugated fins (4), thereby cooling and condensing from the refrigerant outlet (6) as liquid refrigerant. leak. Thus, in the first path (P1), the orifice plate (8) arranged in the outlet side header (2) acts as a pressure reducing mechanism, so that the pressure on the upstream side of the orifice (8) is on the downstream side. The pressure becomes higher than the pressure, and the differential pressure between the inlet side and the outlet side of each flat tube (3) is equalized as a whole of the first path (P1).
[0025]
Explaining this by referring to the Mollier diagram of FIG. 7, the refrigerant flowing into the condenser is B1 at a position close to the refrigerant inlet (5) in the left header (1) in the first pass (P1). At a position far from the introduction port (5), the pressure loss in the header (1) results in a point B2, and the pressure in the flat tube (3) is lowered while the point B2 passes through the alternate long and short dash line S1. Since the pressure on the upstream side of the orifice (8) rises due to the flow resistance of the orifice (8) in the right header (2), the point B1 moves to the point C1 through the broken line S3. Will do. Therefore, the differential pressure between the inlet side and the outlet side in the flat tube (3)... On the side close to the refrigerant inlet (5) becomes a relationship between B1 and C1, and the flat tube (3) far from the inlet (5). It becomes close to the differential pressure between B2 and C2.
[0026]
As a result, the differential pressure between the inlet and outlet of the flat tube (3) located near the refrigerant inlet (5) and the same differential pressure of the flat tube (3) located far away are balanced, and the first path (P1) As a whole, the refrigerant is equally distributed from the inlet side header (1) to each flat tube (3), and the liquid refrigerant is prevented from staying in the flat tube (3) far from the inlet (5), and heat exchange due to this stay A decrease in efficiency can be avoided, so that a high heat exchange efficiency can be secured as a whole condenser. Therefore, by adopting such a configuration of the condenser, it becomes easy to reduce the amount of refrigerant used in the air conditioning system and to make the entire system compact and lightweight.
[0027]
As shown in FIG. 4, in the condenser of the second embodiment, a number of flat tubes (3) are arranged on the upper side by a partition plate (7) provided on the left header (1) as in the first embodiment. The first path (P1) and the lower second path (P2) are divided into a right-side header (2) and a second portion (2a) facing the refrigerant inlet (5) and the second path (P2). Two orifice plates (8A) and (8B) are arranged at a distance from each other so as to be located between the transition part (2b) to the second path (P2). The other components are the same as those in the first embodiment.
[0028]
In the condenser of this second embodiment, in the first pass (P1), the pressure difference is divided in two stages by the flow resistance by the two orifice plates (8A) (8B) in the right header (2) on the outlet side. The pressure on the upstream side of the orifice plate (8A) is the highest and the pressure on the downstream side of the orifice plate (8B) is the lowest, corresponding to the pressure loss in the left header (1) on the inlet side. The differential pressure between the inlets and outlets in each of the flat tubes (3) close to, intermediate and far from the refrigerant inlet (5) is balanced, and the first path (P1) as a whole is separated from the inlet header (1). The refrigerant is distributed more evenly to the flat tube (3). Accordingly, even when the number of flat tubes (3) in the first path (P1) is large, the liquid refrigerant is prevented from staying in the flat tubes (3) far from the inlet (5), and the entire condenser has high heat exchange. Efficiency can be secured.
[0029]
In the second embodiment, two orifice plates (8A) (8B) are arranged in the right header (2) which is the outlet side of the first pass (P1). Depending on the number of flat tubes (3), three or more orifice plates (8) may be arranged. When a plurality of orifice plates (8) are arranged in this way, the ones with different opening areas of the refrigerant flow holes (81) should be used corresponding to the difference in the refrigerant flow rate depending on the installation position of each orifice plate (8). As a result, the refrigerant distribution can be made more uniform for the entire first path (P1).
[0030]
Further, in the first and second embodiments, the core part (10) has two paths of the first path (P1) and the second path (P2), but the present invention is a multi-flow type condenser having three or more paths. The same applies to the above. For each path after the second path (P2), when the number of heat exchange pipes is large, an orifice plate (8) is arranged in the outlet side header to balance the differential pressure between the pipes. You can do that. However, the above-mentioned effect by the orifice plate (8) is that the number of passes is small, particularly a two-pass or three-pass condenser, or a heat exchange pipe having a particularly large internal pressure loss, for example, the equivalent diameter of the flow path ( (Diameter of fluid) is about 0.8 mm or less, or has a channel partition wall that is continuous in the longitudinal direction in the pipe, and has an opening to allow refrigerant to come and go between adjacent channels, etc. It is more prominent in the condenser using the.
[0031]
As shown in FIG. 5, the condenser of the third embodiment has a two-pass core portion (10) as in the first and second embodiments. ) Forms a condensing part, and forms a subcooling part for supercooling the liquid refrigerant condensed in the second pass (P2), and a receiver tank (13) is provided in the vicinity of the right header (2). .
[0032]
That is, the left header (1) has a refrigerant inlet (5) at the top and a refrigerant outlet (6) at the bottom, but the left and right headers (1) and (2) are close to the bottom. An upper pipe line that is divided vertically by a partition plate (7) disposed at the same height and communicates with the inside of the receiver tank (13) from above the partition plate (7) of the right header (2) ( 14) and a lower pipe line (15) communicating from the lower part of the receiver tank (13) to the lower space of the partition plate (7) of the right header (2). That is, the receiver tank (13) is interposed in the transition part (2b) from the first path (P1) to the second path (P2). And the orifice plate (8) is arrange | positioned in the position of a little lower side in the upper side space divided by the right side header (2).
[0033]
In the condenser of the third embodiment, the refrigerant flowing into the left header (1) from the refrigerant inlet (5) is divided into the flat tube (3) group of the first path (P1), and the external air and Condenses in the right header (2) while condensing by heat exchange, and then flows into the receiver tank (13) from the upper pipe (14) to be separated into gas and liquid, and the liquid refrigerant is transferred to the lower pipe (15). Through the second pass (P2) flat tube (3) group, and after being supercooled by heat exchange with the external air, merged at the lower part in the right header (1) to enter the refrigerant outlet Outflow from (6). Thus, in the first pass (P1), the orifice plate (8) arranged in the outlet side header (2) has the same action as described above, so that the inlet side and the outlet side of each flat tube (3) are connected. Since the differential pressure is equalized for the entire first path (P1), the liquid refrigerant is prevented from staying in the flat tube (3) on the outlet side, and high heat exchange efficiency is obtained.
[0034]
In addition, although the orifice plate (8) shown in FIG.2 and FIG.3 showed what formed the refrigerant | coolant circulation hole (81) circularly, this refrigerant | coolant circulation hole (81) has various shapes, such as an ellipse and a polygon. Can be set. Therefore, as the orifice plate (8) used in the present invention, in the case of a condenser used for an air conditioning system of an automobile, the opening area of the refrigerant circulation hole (81) is 1π to 9π · mm 2 (where π is the circumference). It is preferable to set within the range. That is, if the opening area is too small, the refrigerant flow rate in the flat tubes (3) on the upstream side of the orifice plate (8) becomes too small, and the heat exchange efficiency is lowered. On the other hand, if the opening area is too large, the pressure reducing action by the orifice plate (8) is insufficient, and liquid refrigerant can be prevented from staying in the flat pipe (3) located away from the refrigerant inlet (5). Disappear.
[0035]
【The invention's effect】
According to the first aspect of the present invention, as the multi-flow type air-conditioning condenser, the resistance applying means for providing the flow resistance is provided in the outlet side header in the first pass having the refrigerant introduction port. Even if the number of heat exchange pipes per path increases, there is little difference in the differential pressure between the inlet and outlet sides of the flat tubes, and the flow rate of refrigerant in each flat tube is equalized. There is provided a liquid refrigerant that can be prevented from staying in the pipe and high heat exchange efficiency can be secured, and that the amount of refrigerant used can be reduced and the air conditioning system can be easily made compact and light.
[0036]
According to the invention of claim 2, by using an orifice plate as the resistance applying means, it is possible to easily install the resistance applying means, which is advantageous in assembling and manufacturing the condenser.
[0037]
According to the invention of claim 3, in the above condenser, since the opening area of the refrigerant flow hole of the orifice plate is set to an appropriate range, the pressure difference between the portion close to the refrigerant inlet and the portion far from the refrigerant inlet. Is properly balanced, and the liquid refrigerant is more reliably prevented from staying in the heat exchange line far from the inlet.
[0038]
According to the invention of claim 4, in the above condenser, the refrigerant path has two paths or three paths, so that the effect of equalizing the differential pressure by the orifice plate is more remarkably exhibited.
[0039]
According to the invention of claim 5, in the above condenser, since the plurality of orifice plates are arranged in the outlet side header in the first pass, the number of heat exchange pipes in the first pass is increased. However, the multistage throttling action by the plurality of orifice plates balances the differential pressure between the portion close to the refrigerant introduction port and the portion far from the refrigerant introduction port as a whole, and can equalize the refrigerant distribution.
[0040]
According to the invention of claim 6, in the condenser in which the condensing unit is integrated with the subcooling unit in one pass, the differential pressure between the inlet side and the outlet side of the heat exchange conduit of the entire condensing unit can be equalized, The retention of the liquid refrigerant in the heat exchange pipeline on the outlet side is suppressed, and high heat exchange efficiency is obtained.
[Brief description of the drawings]
FIG. 1 shows an air conditioning condenser according to a first embodiment of the present invention, in which FIG. 1 (A) is a front view of the whole condenser, and FIG. 1 (B) is a refrigerant pipe diagram of the condenser.
FIG. 2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is an exploded perspective view of a main part of the condenser.
FIG. 4 is a refrigerant circuit diagram of an air conditioning condenser according to a second embodiment.
FIG. 5 is a refrigerant circuit diagram of an air conditioning condenser according to a second embodiment.
FIG. 6 is a Mollier diagram in a general refrigeration cycle.
FIG. 7 is a Mollier diagram in a refrigeration cycle using the condenser of the present invention and the conventional configuration.
FIG. 8 is a front view showing a configuration example of a conventional air conditioning condenser.
[Explanation of symbols]
1 ···· Right side header 2 ····· Left side header 3 ·································· flat tube
4 .... corrugated fin 5 .... refrigerant inlet 6 .... refrigerant outlet 7 .... partition plate 8 .... orifice 80 ... .... Flat plate 81 ... Refrigerant flow hole 10 ... Core part P1 ... First pass P2 ... Second pass

Claims (5)

上下方向に延び、かつ間隔を置いて互いに平行に配置する左右一対のヘッダー間に、両端を両ヘッダーに連通接続する多数本の熱交換管が配置されると共に、各隣接する熱交換管間にフィンが配置されてコア部を構成し、前記ヘッダーの内部に設けられた仕切りによって前記多数本の熱交換管群が複数のパスに区分けされ、一方のヘッダーに設けた冷媒導入口より流入する冷媒が各パスを順に通過して両ヘッダーのいずれかに設けた冷媒導出口に至る冷媒経路を備えた空調用凝縮器であって、
前記冷媒導入口を有する第一パスにおける出口側ヘッダー内に、該冷媒導入口への対向部と第二パスへの移行部との間に位置して、流通抵抗を付与する抵抗付与手段が設けられ、
抵抗付与手段は、少なくとも1つの冷媒流通孔を備えたオリフィスプレートからなり、
前記第二パスへの移行部は、前記出口側ヘッダー内における第一パスの最下部に設けられ、
熱交換管は、流路の相当径が、0.8mm以下であることを特徴とする空調用凝縮器。
Between a pair of left and right headers that extend in the vertical direction and are arranged parallel to each other at intervals, a plurality of heat exchange tubes that are connected to both headers in communication with each other are disposed, and between each adjacent heat exchange tube Refrigerant in which fins are arranged to form a core portion, and the multiple heat exchange tube groups are divided into a plurality of paths by a partition provided in the header, and flows from a refrigerant inlet provided in one header Is an air conditioning condenser having a refrigerant path that passes through each path in turn and reaches a refrigerant outlet provided in either of the headers,
In the outlet header in the first pass having the refrigerant inlet, there is provided a resistance applying means for providing a flow resistance located between a portion facing the refrigerant inlet and a transition portion to the second path. And
The resistance applying means comprises an orifice plate provided with at least one refrigerant flow hole,
The transition part to the second path is provided at the lowermost part of the first path in the outlet side header,
The heat exchange pipe has an equivalent diameter of the flow path of 0.8 mm or less, and is an air conditioning condenser.
オリフィスプレートは、開口面積が1π〜9π・mm2 (πは円周率)の冷媒流通孔を有する平板からなる請求項1に記載の空調用凝縮器。  2. The air conditioning condenser according to claim 1, wherein the orifice plate comprises a flat plate having a refrigerant circulation hole having an opening area of 1π to 9π · mm 2 (π is a circumferential ratio). 冷媒経路が2パス又は3パスである請求項1または2に記載の空調用凝縮器。  The condenser for air conditioning according to claim 1 or 2, wherein the refrigerant path is two-pass or three-pass. 第一パスにおける出口側ヘッダー内に、複数個のオリフィスプレートが配置されてなる請求項1〜3のいずれかに記載の空調用凝縮器。  The condenser for air conditioning according to any one of claims 1 to 3, wherein a plurality of orifice plates are arranged in the outlet-side header in the first pass. 熱交換管は、管内の長さ方向に連続する流路仕切壁に開口部を有して隣接する流路間で冷媒が往き来するようになされたものである請求項1〜4のいずれかに記載の空調用凝縮器。  The heat exchange pipe has an opening in a flow path partition wall continuous in the longitudinal direction in the pipe so that the refrigerant can come and go between adjacent flow paths. A condenser for air conditioning described in 1.
JP2000323808A 2000-10-24 2000-10-24 Air conditioning condenser Expired - Fee Related JP4358981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323808A JP4358981B2 (en) 2000-10-24 2000-10-24 Air conditioning condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323808A JP4358981B2 (en) 2000-10-24 2000-10-24 Air conditioning condenser

Publications (2)

Publication Number Publication Date
JP2002130866A JP2002130866A (en) 2002-05-09
JP4358981B2 true JP4358981B2 (en) 2009-11-04

Family

ID=18801429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323808A Expired - Fee Related JP4358981B2 (en) 2000-10-24 2000-10-24 Air conditioning condenser

Country Status (1)

Country Link
JP (1) JP4358981B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512903B2 (en) 2018-10-30 2022-11-29 Denso Corporation Heat exchanger
JP7501756B1 (en) 2023-08-29 2024-06-18 スズキ株式会社 Saddle-type vehicle

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055449B2 (en) * 2002-03-27 2008-03-05 三菱電機株式会社 Heat exchanger and air conditioner using the same
JP4222137B2 (en) 2003-07-22 2009-02-12 株式会社デンソー Radiator
JP4852307B2 (en) * 2005-12-27 2012-01-11 昭和電工株式会社 Heat exchanger
JP2007192447A (en) * 2006-01-19 2007-08-02 Showa Denko Kk Evaporator
CN101392946B (en) * 2007-09-20 2011-05-25 苏州三星电子有限公司 Outdoor heat exchanger of air conditioner
JP2009092337A (en) * 2007-10-11 2009-04-30 Panasonic Corp Air conditioner
CN101482378B (en) * 2008-12-29 2011-08-10 清华大学 Vapor-liquid separation method of segmented vapor-liquid phase change heat exchanger and phase change heat exchanger
CN101504255B (en) * 2009-03-02 2011-03-23 清华大学 Vapor-liquid separation method for horizontal condenser and condenser
KR101612365B1 (en) 2010-08-31 2016-04-14 현대자동차주식회사 Structure of condenser for automobile air-conditioning apparatus
JP5533685B2 (en) * 2011-01-14 2014-06-25 株式会社デンソー Air conditioner for vehicles
DE102011080673B4 (en) * 2011-08-09 2024-01-11 Mahle International Gmbh Refrigerant condenser assembly
FR2988825B1 (en) * 2012-03-30 2015-05-01 Valeo Systemes Thermiques THERMAL EXCHANGER, IN PARTICULAR FOR VEHICLE
KR101462176B1 (en) * 2013-07-16 2014-11-21 삼성전자주식회사 Heat exchanger
JP5975971B2 (en) * 2013-12-03 2016-08-23 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2016121125A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2018136107A (en) * 2017-02-23 2018-08-30 株式会社デンソー Refrigeration cycle apparatus
CN109080409B (en) * 2018-09-29 2024-04-09 重庆超力电器有限责任公司 Heat pump system, air conditioner and car
CN110207430A (en) * 2019-06-03 2019-09-06 珠海格力电器股份有限公司 Supercooling device capable of improving supercooling degree and air conditioning unit
JP7542382B2 (en) * 2020-09-30 2024-08-30 三菱重工サーマルシステムズ株式会社 Heat exchanger and vehicle air conditioning device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11512903B2 (en) 2018-10-30 2022-11-29 Denso Corporation Heat exchanger
JP7501756B1 (en) 2023-08-29 2024-06-18 スズキ株式会社 Saddle-type vehicle

Also Published As

Publication number Publication date
JP2002130866A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP4358981B2 (en) Air conditioning condenser
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
AU740183B2 (en) Heat exchanger
JP6202451B2 (en) Heat exchanger and air conditioner
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
US6250103B1 (en) Condenser and air conditioning refrigeration system and using same
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US20110127023A1 (en) Design characteristics for heat exchangers distribution insert
US10041710B2 (en) Heat exchanger and air conditioner
WO2018116929A1 (en) Heat exchanger and air conditioner
JP4069804B2 (en) Condenser with integrated heat exchanger and receiver
JP2001235255A (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001174103A (en) Refrigerant condenser
JP2005127529A (en) Heat exchanger
JP2002228299A (en) Composite heat exchanger
JP2004239598A (en) Heat exchanger
KR20200001019A (en) Condenser
JP4106718B2 (en) Heat exchanger
JPH10170098A (en) Laminated evaporator
WO2021214849A1 (en) Air conditioner, freezer, and distributor
JP4275835B2 (en) Condenser
KR100842209B1 (en) Heat exchanger having a receiver drier
JP2019027685A (en) Condenser
KR100858514B1 (en) Receiver drier - integrated condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4358981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees