JP4055449B2 - Heat exchanger and air conditioner using the same - Google Patents

Heat exchanger and air conditioner using the same Download PDF

Info

Publication number
JP4055449B2
JP4055449B2 JP2002088108A JP2002088108A JP4055449B2 JP 4055449 B2 JP4055449 B2 JP 4055449B2 JP 2002088108 A JP2002088108 A JP 2002088108A JP 2002088108 A JP2002088108 A JP 2002088108A JP 4055449 B2 JP4055449 B2 JP 4055449B2
Authority
JP
Japan
Prior art keywords
heat transfer
header
refrigerant
transfer tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002088108A
Other languages
Japanese (ja)
Other versions
JP2003287390A (en
Inventor
雅弘 中山
晃 石橋
邦彦 加賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002088108A priority Critical patent/JP4055449B2/en
Publication of JP2003287390A publication Critical patent/JP2003287390A/en
Application granted granted Critical
Publication of JP4055449B2 publication Critical patent/JP4055449B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve problems wherein a heat exchange quantity of the whole heat exchanger reduces since a leeward side heat transfer pipe inside passage reduces in heat exchange efficiency though a windward side heat transfer pipe inside passage efficiently exchanges heat, and a flat heat transfer pipe is worse in drainability of dewing water than a circular pipe-shaped heat transfer pipe in a heat exchanger using the flat heat transfer pipe. <P>SOLUTION: This heat exchanger has the heat transfer pipe arranging a plurality of passages inside a flat cross section bent in a U shape, a header for communicating with an end part of the heat transfer pipe, a vertical partition plate, and a horizontal partition plate for forming a refrigerant flow to an outflow pipe from an inflow pipe by separating a space in the header, and constitutes the refrigerant flow of an opposed flow or a parallel flow to a gas flow. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明はヘッダー内を熱交換空気の流れ方向に対向して2以上に分離し、その内部に複数のヘッダ室を形成した熱交換器に関するものである。
【0002】
【従来の技術】
従来、空調機を構成する熱交換器として図26に示すものが知られている。この熱交換器100はプレートフィンアンドチューブタイプと呼ばれるものであり、上下に延び対向して配置された一対のヘッダー103,104と、この各ヘッダー103,104に両側が連通し上下に複数段に架設された扁平伝熱管102とを備えており、この各伝熱管は熱交換用板状フィン1に挿入されている。扁平伝熱管102内は冷媒が流れ、熱交換器外部を流れる空気と熱交換する形態である。この一方のヘッダー103の上方には冷媒の流入管110を、ヘッダー104下方には流出管111をそれぞれ設けている。
【0003】
また、図27に示すように前記扁平伝熱管102は、その内部を幅方向に複数に仕切る隔壁を有し、この隔壁により熱交換空気5の流れ方向に対向する複数の冷媒流路6a,6bを形成している。
この熱交換器100によれば、図28は図26の熱交換器100を扁平伝熱管の水平断面で切断した図であり、冷媒が流入管110を介して一方のヘッダー103に流入し、この冷媒が扁平伝熱管102を通って他方のヘッダー104に流入する。そしてヘッダー104に設けられた流出管111を介して流出する。
【0004】
【発明が解決しようとする課題】
上記のような従来の熱交換器100において、前述の如く扁平伝熱管102の幅方向に熱交換空気が流れ、この熱交換空気と冷熱媒との間で熱交換が行なわれるが、この熱交換器が蒸発器として作用する場合、扁平伝熱管102の風上側の伝熱管内冷媒流路6aに流れる冷媒は未だ十分に熱交換が行なわれていない熱交換空気(低温空気)により冷却されるから、効率良く熱交換され、冷媒温度も低くなっている。これに対して、風下側の伝熱管内冷媒流路6bに流れる冷媒は既に熱交換が行なわれ高温となっている熱交換空気と熱交換されるため、熱交換効率が低下し、冷媒を十分に冷却することができない。
【0005】
このように、従来の熱交換器100においては扁平伝熱管102の風上側と風下側とではその熱交換量に大きな差が生じ、全体の熱交換量が小さくなるという問題点を有していた。
また、このような熱交換器100に用いている扁平伝熱管102の形は扁平形状のため、扁平管の長軸方向と空気流れ主流方向とが一致するように熱交換器100を設置すると、空気流れの通風抵抗が大幅に減少し、空気流れを発生させる送風機の駆動動力を大幅に削減することができる。
【0006】
しかし、このような熱交換器100を蒸発器として用いたとき、結露水が発生するが、扁平伝熱管102の形が扁平形状のため、円管形状の伝熱管に比べて結露水の排水性が悪く、結露水がホールドしてしまい、通風抵抗低減効果が十分に得られないという問題点を有していた。
【0007】
本発明の目的は前記従来の問題点に鑑み、熱交換効率を向上させる熱交換器を提供することにある。
【0008】
【課題を解決するための手段】
本発明の請求項1に係る熱交換器は、平行に配列され、個々の間を気体が流動する複数の板状フィンと、前記板状フィンに貫通して配列され、扁平断面の内部に作動流体が流通する複数の流路を設けたU字形状に曲げられた伝熱管と、前記伝熱管の端部が連通するとともに作動流体の流入管と流出管が接続したヘッダと、前記ヘッダ内に設けられ前記流入管から前記伝熱管に連通する空間と前記伝熱管から前記流出管へ連通する空間とを分離するヘッダ長手方向の第1の縦仕切り板と、隣り合う前記U字形状の伝熱管に亘って設けられ、ヘッダ内空間を空気の流れ方向に対向して分離するヘッダ長手方向の第2の縦仕切り板と、前記U字形状の伝熱管の両端部を前記ヘッダ内空間にて隔てる横仕切り板と、を備え、前記ヘッダ内空間を前記第1および第2の縦仕切り板により気体の流れ方向に対して風上側流路と風下側流路に分離し、前記横仕切り板によりヘッダ長手方向の作動流体流れを区切る構成とするとともに、前記流入管から流入した作動冷媒が、蒸発器として用いる場合は前記扁平断面の伝熱管の風上側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風下側流路を流れて前記流出管から流出して、空気の流れ方向に対して並行流となる構成とし、凝縮器として用いる場合は前記扁平断面の伝熱管の風下側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風上側流路を流れて前記流出管から流出し、空気の流れ方向に対して対向流となる構成としたものである。
【0009】
また、本発明の請求項2に係る熱交換器は、前記伝熱管の内部に隔壁で隔てられた作動流体が流通する複数の流路において、前記縦仕切り板により分離された領域毎に前記流路断面積が異なるものである。
【0010】
本発明の請求項3に係る熱交換器は、前記U字形状の伝熱管を気体の流れ方向に対して複数列配設したものである。
【0011】
また、本発明の請求項4に係る熱交換器は、前記ヘッダ内の流路断面積を伝熱管の流路断面積の和以下としたものである。
【0012】
また、本発明の請求項5に係る熱交換器は、前記ヘッダに前記伝熱管が連通する貫通孔と前記縦仕切り板に前記伝熱管が挿入係止する嵌合溝を形成したものである。
【0013】
また、本発明の請求項6に係る熱交換器は、前記板状フィンの前記伝熱管間に切り起こしを有し、前記きり起こしは前記扁平伝熱管の長軸中央部に位置しないものである。
【0014】
また、本発明の請求項7に係る空気調和機は、少なくとも、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続し、作動流体として冷媒を用い、前記請求項記載の熱交換器を蒸発器または凝縮器として用いたものである。
【0015】
また、本発明の請求項8に係る空気調和機は、冷媒として、HC冷媒の単一、またはHCを含む混合冷媒、R32、アンモニア、二酸化炭素のいずれかを用いるものである。
【0016】
【発明の実施の実施】
実施の形態1.
図1は、本発明の実施の形態1による熱交換器の斜視図であり、従来例と同一構成部分は同一符号をもって表わす。熱交換器50は、伝熱管内は冷媒が流れ、熱交換器外部を流れる空気と熱交換する形態で、一般にプレートフィンアンドチューブタイプと呼ばれるものである。この熱交換器50は、板状フィン1と、前記板状フィン1に対して垂直に挿入された1列の扁平伝熱管2より構成され、複数の扁平伝熱管2の片側には、ヘッダ3が接続され、ヘッダ3には所定の間隔で穴を開けて複数の偏平伝熱管の一端を夫々接続すると共に、上記各偏平伝熱管の他端2aは、U字状に曲げられ、再びヘッダ3に夫々接続されている。図1では、冷媒の流入から流出までの1パス流路に、U字状に曲げられた扁平伝熱管を4組使用した例を示している。フィン間を流動する気体は送風機(図3に示す)で送られる空気であり、その流れ方向は前記伝熱管軸方向と直交し、かつ前記伝熱管断面短軸方向が直交する方向5で白抜きの矢印で示す。また熱交換器101を蒸発器として使用したときの冷媒流れ方向を黒矢印で示す。ヘッダー3には冷媒の流入管10a、10bと、冷媒の流出管11a、11bとが設けられている。
【0017】
図2は、図1の熱交換器を板状フィン1に平行な断面で切断したときの形状で、前記伝熱管には隔壁14により隔てられた複数の流路6が設けられている。この実施形態においてフィン1の積層方向のピッチFpはFp=0.001mであり、フィン厚みFt=0.0001m、また空気流れに沿ったフィンの幅LpはLp=0.025m、伝熱管の段方向に隣接する伝熱管の中心の距離である段ピッチDpはDp=0.012m、伝熱管の長軸長さDlはDl=0.02m、短軸長さはDsはDs=0.002m、空気流れ上流フィン端部から伝熱管までの距離LaはLa=0.0025mである。また流路6は8個設けられている例であり、その断面形状がほぼ正方形で、隔壁14の厚みDtはDt=0.0003mの例である。なお図2に示した板状フィン1面には、段方向に隣接する伝熱管の間に切り起こし7を設けて、フィン間を通過する空気とフィンとの伝熱促進を図っている。また伝熱管2を挿入したときに伝熱管2と板状フィン1を密着固定させ、かつフィン積層方向ピッチを確保するため、扁平伝熱管挿入部にフィンカラー(図示せず)が設けられている。
【0018】
図3は、図1に示す熱交換器50をヒートポンプ式冷凍空調サイクル装置に使用した冷媒回路を示す。伝熱管内を流れる作動流体は例えば二酸化炭素や、HC冷媒であるプロパンであり、図3の冷媒回路は、圧縮機21、四方弁22、室外熱交換器23、絞り装置24、室内熱交換器25より構成されている。図3においては、本発明の第1の実施形態による熱交換器50を、室内熱交換器25に用いた例を示す。冷媒の流れ方向は実線の矢印が冷房時、点線の矢印が暖房時である。冷房時室内熱交換器25は蒸発器として動作する。26は室外送風機、27は室外送風機用モータ、28は室内送風機、29は室内送風機用モータ、31、32はそれぞれ、室外機33と室内機34を接続する冷媒配管である。
【0019】
図4には、熱交換器50のヘッダ3を図1に示す長軸方向断面にて切断したときの断面図を示す。なお伝熱管2の複数の流路6は省略している。この時、円筒状ヘッダ3内には、ヘッダ内空間を気体の流れ方向に対向して2以上に分離し、内部作動流体を気体の流れ方向に対向して2列以上に流す仕切り部材とともに、縦仕切り部材8a,8bと横仕切り部材9a,9bから構成されている。具体的には、ヘッダ内にて内部作動流体の流入口と流出口を仕切るヘッダ長手軸方向の第1の縦仕切り部材8aと、ヘッダ内にて隣接する上下の伝熱管の作動流体を列単位で区切り上下方向に流す第2の縦仕切り部材8bと、ヘッダ内にて隣接する上下の伝熱管の作動流体上下方向流れを区切るヘッダ横断面の横仕切り部材9a,9bが設けられている。なお図4において、これら仕切部材の最小組み合わせは伝熱管4本であり、図4はこれが2つ組合わさった形態で、この仕切部にパス仕切り部材9cを設けている。図4において、熱交換器50を蒸発器として使用する時、冷媒流れ方向は実線の矢印で、板状フィン1をはさんだ伝熱管2のU字曲げ部での冷媒流れ方向は点線の矢印である。ヘッダ3に設けた仕切り板8,9により、流入管10から流入した冷媒は、伝熱管2の風上側流路を流れ、最上部または最下部のヘッダ空間に到達後、冷媒流れは伝熱管2の風下側流路を流れ、流出管11から流出する。この時の熱交換器の内部作動流体の冷媒流れ模式図を図5(a),(b)に示す。
【0020】
蒸発器として用いられる熱交換器50において、冷媒流入管10から流出管11方向に対して、冷媒圧力損失により冷媒温度は低下する。一方、空気は流れ方向5に対して温度は低下していく。図4に示したヘッダ構造により伝熱管2での冷媒流れ方向を規定することにより、伝熱管2内に設けた複数の流路6での伝熱管2管軸方向に直交した伝熱管2断面長軸方向の冷媒流れ方向が、空気流れ方向5と並向しているため、空気流れ方向に対して常に空気温度と冷媒温度との温度差が確保できる熱交換形態を実現することができる。この時の空気温度と熱交換器内冷媒温度分布を図6に示す。図6から明らかなように、本実施の形態1では常に空気温度と冷媒温度の温度差を確保することができ、熱交換効率の高い熱交換器を提供することができる。
【0021】
一方凝縮器として用いられる熱交換器50の作用について説明する。空気流れ方向は蒸発器と同一であるが、図4における冷媒流れ方向は矢印と逆方向となるため、流出管11側から流入して流入管10側へ流出していく。冷媒流れ方向に対して冷媒温度は低下し、空気は流れ方向5に対して温度が上昇していく。図4に示したヘッダ構造により伝熱管2での冷媒流れ方向を規定することにより、伝熱管2内に設けた複数の流路6での伝熱管2軸方向に直交した伝熱管2断面長軸方向の冷媒流れ方向が、空気流れ方向5と対向しているため、空気流れ方向に対して常に空気温度と冷媒温度との温度差が確保できる熱交換形態を実現することができる。この時の空気温度と熱交換器内冷媒温度分布を図7に示す。図7から明らかなように、本実施の形態1では常に空気温度と冷媒温度の温度差を確保することができ、熱交換効率の高い熱交換器を提供することができる。
【0022】
図8はこの縦仕切部材8と伝熱管2との組付け構造を示す。即ち、縦仕切部材8の幅方向一端面(分離端面15)には伝熱管2の挿入勘合用の嵌合溝19aを設け、ヘッダ3の貫通孔13を介して挿入される伝熱管2が嵌合溝19a内に挿入嵌合されとめられる。
【0023】
図9もこの縦仕切部材8と伝熱管2との組付け構造の他の実施例を示す。即ち、前記伝熱管2に縦仕切部材8の挿入勘合用の溝19bを設けるとともに縦仕切部材には溝を設けず、ヘッダ3の貫通孔13を介して挿入される伝熱管2が係止される。
【0024】
縦仕切部材8と勘合溝19a,19bをこのように構成することにより、ヘッダー3に伝熱管を勘合する際、この伝熱管2が確実に固定されるし、また伝熱管2のヘッダー3への挿入量が適正なものとなり、製造ばらつきが減少して、生産性が向上し、製造コストの低減を図ることができる。
【0025】
図8,9,10はヘッダ3の形状と仕切部材8の各種の例を示すもので、図8には前述した縦仕切部材8がヘッダー3に挿入溶着されている。図9にはヘッダー3と縦仕切部材8とが押出成形により一体に形成された例を示している。
【0026】
図10(a),(b)はヘッダ3の曲げ加工により仕切部材を成形したものである。図10(a)に示す例は板状のヘッダ素材を略長方形断面形状に曲げ加工してヘッダ3の外郭を構成するとともに、そのヘッダ素材の一端を折曲してヘッダ3の内面に溶着して縦仕切部材8を構成するものである。なおヘッダの断面形状は略円形としても構わず、ヘッダー素材の他端を短く折曲してこの仕切部材8の一面に溶着してもよい。図10(b)に示す例は、ヘッダ断面が略半円形状に形成されたものである。図8,9,10に示した構造によれば、ヘッダ3を安価にかつ大量に製造することができる。また伝熱管2とヘッダ3をアルミ材やアルミクラッド材、フラックスなどを用いて炉中ろう付け溶着させて製造する場合には、各部の勘合隙間を確実に密着させて接合させることができ、冷媒漏れなどの不具合を防ぐことができる。なお、ヘッダ3が軸方向断面が円形の方が内圧強度は高いが、ヘッダ板材に強度向上材料や板圧拡大を図り内圧強度が確保されれば、その断面形状は略長方形でよく、他の断面形状でも良い。なお略長方形断面形状や略半円断面形状とした方が、ヘッダ3容積が減少し、熱交換器50のコンパクト化を図ることが可能となる。
【0027】
図11はこの縦仕切部材9と伝熱管2との組付け構造を示す図である。ヘッダ3にはその断面方向に縦仕切部材9を挿入する勘合溝18が設けられている。図11に示した構造によれば、図10と同じくヘッダ3を安価にかつ大量に製造することができる。また伝熱管2とヘッダ3をアルミ材やアルミクラッド材、フラックスなどを用いて炉中ろう付け溶着させて製造する場合には、各部の勘合隙間を確実に密着させて接合させることができ、冷媒漏れなどの不具合を防ぐことができる。
【0028】
次に、ヘッダ3内のヘッダ空間12の寸法について説明する。図12は略長方形断面をしたヘッダ3を伝熱管内作動流体流れ方向と一致する面で縦方向に切断した断面図であり、図13は扁平伝熱管2と直行する断面で切断した断面図である。図12、13中に矢印で示した冷媒流れ方向のヘッダ空間12における冷媒流れ方向の最小流路断面積は、扁平伝熱管2の複数の流路6の断面積の合計以下、望ましくは扁平伝熱管2の複数の流路6の断面積の水力相当直径以下に設定されている。その理由は以下の通りである。すなわち、扁平伝熱管2においては風上側の冷媒流路6aの方が熱交換が促進されやすいため、各冷媒流路6の風上側から風下側につれて冷媒乾き度が異なってヘッダ空間12内に流入してくる。例えば熱交換器50が蒸発器として作用するときは、風下側よりも風上側の冷媒乾き度が大きい値、凝縮器として作用するときは風下側よりも風上側の冷媒乾き度が小さい値となって、ヘッダ空間12内に流入してくる。このままの冷媒状態で次の扁平伝熱管に冷媒が流れると、風下側と風上側との間の冷媒流路において冷媒乾き度の差が更に拡大し、熱交換量の低下を引き起こす。このためにはヘッダ空間12に流入してくる冷媒を混合して冷媒乾き度を均一化し、次扁平伝熱管に冷媒を流してやればよい。ただしヘッダ空間12の容積や断面積が大きすぎると、ヘッダ空間12での冷媒流速が低下し、気液二相冷媒が分離しやすくなり、次扁平伝熱管への乾き度均一流れを保持できなくなる。
【0029】
図14はこの熱交換器50を空調機の室内熱交換器に用いた例を示す室内機構成の断面図である。熱交換器50は室内機の垂直方向に対してある角度を持って装備されており、ヘッダ空間12の容積や断面積が大きすぎると、ヘッダ空間12での冷媒流速が低下し、気液二相冷媒がさらに分離しやすくなり、次扁平伝熱管への乾き度均一流れを保持できなくなる。そこで図12、13においては、ヘッダ空間12における冷媒流れ方向の断面積を、扁平伝熱管2の複数の流路6の断面積の合計以下、望ましくは扁平伝熱管2の複数の流路6の断面積の水力相当直径以下に設定することにより、二相分離を回避することができる冷媒流速を保持する構造としている。これにより熱交換量の低下を防ぐことができ、高性能な熱交換器を得ることができる。なお最小流路断面積はヘッダ空間内で流れ方向に対して同一で無くてもよく、例えば図13のようにヘッダの隔壁厚を局所的に厚くし、絞る形としてもよい。
【0030】
図15(a)、(b)、(c)は伝熱管の各種の例を示すもので、図15(a)は前述した伝熱管2が示され、複数の隔壁14間に複数の冷媒流路6が形成されている。この隔壁14においてその略中央に位置する隔壁14aには縦仕切部材8の分離端面15が接し、各冷媒流路を左右の冷媒流路、即ち熱交換空気の風上側の冷媒流路と風下側の冷媒流路に分離している。また、隔壁14において分離端面15が接する中央の隔壁14aの厚さを他の隔壁14の厚さより大きく形成して伝熱管2を構成している。このように隔壁14aの厚さを大きくすることにより、分離端面15の接合スペースに余裕ができ、伝熱管2のヘッダー3への組付け自由度が大きくなり、生産性を向上させることができる。
【0031】
図15(b)および図15(c)は風下側の冷媒流路6bの冷媒流量を風上側の冷媒流路6aの冷媒流量より少なく構成してなるものである。即ち、図15(b)に示す伝熱管2はその風下側の冷媒流路6bのそれぞれ流通断面積を少なくして形成し、冷媒流量を少なくしている。このように構成することにより、多量の冷媒を風上側の冷媒流路6aに流通させることができ、熱交換量を向上させることができる。また、図15(c)に示す伝熱管3は隔壁14aの位置をその伝熱管中心から風下側にずらすことにより、風下側の冷媒流路6bが小さな流通断面積になり、風上側の冷媒流路6aの数を多くすることにより、冷媒の総流通断面積を風上側に大きくしている。このように構成することにより、多量の冷媒を風上側の冷媒流路6aに流通させることができ、熱交換量を向上させることができる。
【0032】
実施の形態2.
図16は本発明の実施の形態2における熱交換器の斜視図であり、実施の形態1の図1と同一構成部分は同一符号をもって表わし、蒸発器として使用する例を示す。空気流れ方向は5で、冷媒流れ方向は黒矢印の方向である。図16において熱交換器50は、板状フィン1と、前記板状フィンに対して垂直に挿入された2列の扁平伝熱管2より構成され、複数の扁平伝熱管2の片側には、ヘッダ3が接続されヘッダ3には所定の間隔で穴を開けて複数の偏平伝熱管の一端を夫々接続すると共に、上記各偏平伝熱管の他端は、U字状に曲げられ、再びヘッダ3に夫々接続されている。図16では、冷媒が流入して流出するまでの1つのパス流路に、U字状に曲げられた扁平伝熱管を4組使用した例を示している。フィン間を流動する気体は送風機で送られる空気であり、その流れ方向は前記伝熱管軸方向と直交し、かつ前記伝熱管断面短軸方向が直交する方向5で白抜きの矢印で示す。また熱交換器101を蒸発器として使用したときの冷媒流れ方向を黒矢印で示す。ヘッダ3には冷媒の流入管10a,10bと、冷媒の流出管11a,11bとが設けられている。
【0033】
図17は、図16の熱交換器を板状フィン1に平行な断面で切断したときの断面図で、前記伝熱管2には隔壁14により隔てられた複数の流路6が設けられている。この実施の形態においてフィン1の積層方向のピッチFpはFp=0.001mであり、フィン厚みFt=0.0001m、また空気流れに沿ったフィンの幅LpはLp=0.025m、伝熱管の段方向に隣接する伝熱管の中心の距離である段ピッチDpはDp=0.012m、伝熱管の列方向に隣接する伝熱管の中心の距離である列ピッチDLはDL=0.012m、伝熱管の長軸長さDlはDl=0.01m、短軸長さはDsはDs=0.002m、空気流れ上流フィン端部から伝熱管までの距離LaはLa=0.0015mである。また流路6は4個設けられている例であり、その断面形状が正方形で、隔壁14の厚みDtはDt=0.0003mの例である。なお図17に示した板状フィン面には、図2と同じく段方向に隣接する伝熱管の間に切り起こし7を設けて、フィン間を通過する空気とフィンとの伝熱促進を図っている。
【0034】
なお、図16に示す熱交換器50を冷房運転時のヒートポンプ式冷凍空調サイクル装置の蒸発器として室内熱交換器25に使用した冷媒回路の例は図3と同様である。
【0035】
図18には、実施の形態2における熱交換器50のヘッダ3を図16に示す長軸方向断面にて切断したときの断面図を示す。なお伝熱管2の複数の流路6は省略している。この時、ヘッダには2列の伝熱管2が挿入されるため貫通孔13が2列にわたって設けられている。ヘッダ3内には、図4と同様に、長軸方向に第1および第2の縦仕切部材8a,8bを設け、ヘッダ3内の断面方向には、横仕切部材9a,9b,9cが設けられているが、これら縦および横仕切部材8,9の構成、目的、効果は、実施の形態1と同様である。 以下、この熱交換器50の動作について説明する。
【0036】
蒸発器として用いられる熱交換器50において、冷媒流入管10から流出管11方向に冷媒が流れると、冷媒圧力損失により冷媒温度は低下する。一方空気は流れ方向5に対して温度は低下していく。図18に示したヘッダ構造により伝熱管2での冷媒流れ方向を図中の矢印で示すように規定することにより、伝熱管2内に設けた複数の流路6での伝熱管2管軸方向に直交した伝熱管2断面長軸方向の冷媒流れ方向が、空気流れ方向5と並向しているため、空気流れ方向に対して常に空気温度と冷媒温度との温度差が確保できる熱交換形態を実現することができ、熱交換効率の高い熱交換器を提供することができる。また伝熱管を2列構成としているが、フィン面積や伝熱管面積、切り起こし7は、図2と寸法、形状としているため、熱交換効率は実施の形態1と同様に高い値となる。
【0037】
加えて空調機の蒸発器として動作するときは、多湿条件において空気が減湿され、板状フィン1上に結露水が発生する。この時結露水が板状フィン1上にフォールドしたままの状態だと伝熱性能の低下や、通風抵抗の増加による風量低下や送風機駆動動力の増大を招き、熱交換性能の低下や空調機の運転効率の低下を引き起こすので、結露水を重力下方に速やかに配する必要がある。結露水は図19に示すように伝熱管2上部や下部に溜まりやすく、表面張力の影響により扁平伝熱管長軸長さが長い方がより溜まる量が多くなる。この実施の形態2では、扁平伝熱管2を2列構成とすることにより、この溜まり込み量を減少させることができる。また、扁平伝熱管長軸長さが長い方が上段側伝熱管から滴下してきた結露水を下方へ流す流動抵抗が大きくなってしまう。実施の形態2では、扁平伝熱管を2列構成とすることにより、図19に示すように上段側伝熱管から滴下してきた結露水を速やかに下方に流すことができる。さらに、伝熱管2下部の結露水は伝熱管長軸中心に集まりやすいので、本実施の形態では、切り起こし7を伝熱管長軸中心に設けない構成とすることにより、図19に示すように伝熱管下部から滴下してきた結露水を速やかに下方に流すことができる。
【0038】
一方凝縮器として用いられる熱交換器50の作用、効果については、実施の形態1と同等の値を得ることができる。
【0039】
以上、実施の形態1、2において、熱交換器50への蒸発器として使用した場合の冷媒流入管10と冷媒流出管11をヘッダ3中央に設置した例を示したが、図20の熱交換器斜視図、および図21(a)のヘッダ断面図に示すように、冷媒流入管10と冷媒流出管11をヘッダ3上下に配置しても良い。また図21(b)に示すように、本実施の形態におけるヘッダ構造の伝熱管組み合わせの最小単位はU字状に曲げられた扁平伝熱管2の使用数が4本なので、伝熱管4本ごとに1つのヘッダとし、これらを組み合わせて1つの熱交換器としてもよい。この時内部作動流体の流入管10a,10b,10c、流出管11a,11b,11cは、それぞれ任意の位置に設定できる。また実施の形態1、2においては、ヘッダ3内軸方向に2列に仕切る例を示したが、更に多列としてもよい。この場合のヘッダ内での冷媒の流し方も、蒸発器として使用するときは空気流れに対して並向流、凝縮器として使用するときは空気流れに対して対向流となるように、仕切部材の形状や位置、厚み、伝熱管の隔壁厚みを決めればよい。また実施の形態2のように伝熱管を多列にした場合も同様である。また実施の形態1、2においては、1パス流路当たりU字曲げ伝熱管2を4組用いた例を示したが、更に多数のU字曲げ伝熱管2で構成しても良い。また実施の形態1、2においては、U字曲げ伝熱管2を用いた例を示したが、図26に示したようにヘッダを伝熱管軸方向端部両側に設置してもよい。この時、ヘッダ4の仕切部材の形状は、U字曲げ伝熱管で構成したときと同様の冷媒流れとなるように構成すればよい。また伝熱管2内に設けた正方形流路6の数や大きさも任意に設定してもよい。また図2、図17において説明した各種形状パラメータや切り起こし7も任意の値や形に設定しても良い。
【0040】
また、実施の形態1、2に述べた前記伝熱管2の複数の流路6内には、図22に示すように突起41を設けてもよい。この突起により冷媒伝熱面積を非常に多く確保することができるので、熱交換器性能を高めることができる。また前記突起は、作動流体流れ管軸方向に対してねじられていてもよい。この時冷媒流れの巻き上げ効果により管内での冷媒液膜厚さを均一にしかも薄くすることができるので、熱交換器性能を高めることができる。また前記突起は、作動流体流れ管軸方向方向に対して左方向と右方向にねじられた突起の組み合わせでもよい。この時冷媒流れの衝突効果により管内での冷媒伝熱性能を高めることができ、熱交換器性能を高めることができる。また伝熱管の形状は、短軸長さが扁平管と同じならば、円管より通風抵抗が大幅に減少するため、図23、24に示すように楕円形状や卯形状でもよい。
【0041】
また実施の形態1、2に述べた伝熱管2の複数の流路6の形状は、冷媒伝熱面積を確保することができれば、長方形状でも円でも楕円でもよい。
【0042】
また実施の形態2に述べた2列構成の伝熱管2の配置は、図25に示すように、板状フィン1にフィンカラーを設け、板状フィン1端部両側から挿入、かち込む方式としても良い。これにより板状フィンのフィンカラー隙間寸法と挿入伝熱管の隙間管理が緩い方向となり、伝熱管が挿入しやすくなって、生産性を向上させることができる。またこの時の伝熱管端部の間隔42は、図17に示したフィン端部から伝熱管端部までの距離と両伝熱管端部の間隔との合計値とすればよい。図25は2列伝熱管の場合を示したが、1列の場合もフィン片側端面から挿入、かち込む方式としても良い。
【0043】
実施の形態1、2に述べた熱交換器の製造方法は以下の通りである。まずアルミ材や銅材など熱伝導率の高い材料の引き抜き加工、または押し出し加工などにより伝熱管2を製作する。またアルミ材や銅材など熱伝導率の高い材料のプレス加工等によりフィン1を製作する。またパイプの押し出し加工や鍛造加工、または平板のプレス加工、または角柱の削りだし加工等により、ヘッダ3を製作する。これら材料には、表面に炉中ろう付け用のフラックスがコーティングする。例えばアルミ材を使用する時には、伝熱管側にアルミクラッド材、フィン側にアルミ材、もしくはその逆の組み合わせで材料を用いる。また伝熱管側、フィン側ともにアルミ材を用い、伝熱管表面にブレージング材を塗布しても良い。そして治具等の固定によりフィンと伝熱管を固定したり、圧接加工等によりヘッダと伝熱管を固定する。その後真空炉や窒素炉を用いることにより、フィンと伝熱管とヘツダのろう付けによる接合を高速にしかも大量に行うことができ、生産性を上げることができる。またろう付けによりフィンと伝熱管の接触熱伝達率を無限大とすることができ、熱交換器の性能を飛躍的に高めることができる。また炉中ろう付けによりヘッダと伝熱管を一度に接合することにより、ろう付け不良による冷媒漏れを防ぐことができ、HCなどの可燃性冷媒やアンモニアなどの有毒冷媒、二酸化炭素などの高圧冷媒を用いたときの冷媒漏れに対する安全性を確保することができる。またフィン、伝熱管、ヘッダを同一材料にて製造することにより、リサイクル性を高めることができる。
【0044】
実施の形態1、2に述べたフィンには、表面に親水性材料がコーティングされている。蒸発器として使用したときに結露水のスムーズな排水性を確保することができ、熱交換器内での結露水溜まり込みによる通風抵抗増加を防止し、熱交換空気風量の増加による熱交換量の増加や、低騒音化を図ることができ、装置のエネルギ効率向上、快適性向上を達成することができる。また炉中ろう付け前にコーティングしてもよいし、ろう付け後にコーティングしてもよい。
【0045】
上記フィン、伝熱管、ヘッダパイプは炉中ろう付けにて製造され、親水性材料がコーティングされるので、蒸発器として使用したときに結露水のスムーズな排水性を確保することができ、熱交換器内での結露水溜まり込みによる通風抵抗増加を防止し、熱交換空気風量の増加による熱交換量の増加や、低騒音化を図ることができ、装置のエネルギ効率向上、快適性向上を達成することができる。また結露水は熱交換器腐食の原因となるが、フィン材と伝熱管素材に電位差を持たせるような材料を選定し、フィン材が腐食しやすい構成すれば、仮に腐食が進行しても伝熱管の腐食を防ぐことができ、冷媒の漏洩をさけることができ、安全性を確保できる。
【0046】
また、実施の形態1、2の熱交換器およびこれを用いた冷凍空調サイクル装置の冷媒として、メタン、エタン、プロパン、ブタン、イソブタン、プロピレン、イソプロピレンなどのHC冷媒の単一、またはHCを含む混合冷媒を用いることにより、地球温暖化係数を非常に小さくすることができる。プロパンは冷媒圧力損失に対する温度降下度合いが、従来冷媒R22より大きい。例えば、冷媒飽和温度が10℃から0℃へ変化するとき、R22は0.183MPaの圧力変化であるが、プロパンは0.162MPaの圧力変化となる。またイソブタンも冷媒圧力損失に対する温度降下度合いが、従来冷媒R134aよりも大きい。例えば冷媒飽和温度が−20℃から−30℃へ変化するとき、R134aは0.0483MPaの圧力変化であるが、イソブタンは0.0258MPaの圧力変化となる。このためこれら冷媒を用いた冷凍空調サイクル装置においては、冷媒圧力損失の絶対値を従来冷媒以上に小さくする必要がある。本実施例の熱交換器は、偏平伝熱管に隔壁により隔てられた複数の流路(例えば径1.5mmの流路を10流路以上)を設け、かつ1つのヘッダあたりに接続する偏平伝熱管本数を多くすることにより、超多流路の熱交換器を構成することができ、冷媒圧力損失の絶対値を小さくすることが非常に簡単にできる。従って、HC冷媒の単一、またはHCを含む混合冷媒を用いた時にも、高効率な冷凍空調サイクル装置を提供することができる。
【0047】
また、本実施の形態1、2の熱交換器およびこれを用いた冷凍空調サイクル装置の冷媒として、R32の単一、またはR32を含む混合冷媒(R407A、R407B、R407C、R407D、R407E、R410A、R410B、など)を用いることにより、地球温暖化係数を非常に小さくすることができる。しかしR32冷媒は従来冷媒R22より動作圧力が高い。例えばR22の飽和温度50℃における圧力が1.94MPaであるのに対して、R32では3.14MPa、R410Aでは3.06MPaとなる。この実施例の熱交換器は、偏平伝熱管に厚さ0.3mm程度の隔壁により隔てられた複数の流路(例えば径1.5mmの流路を10流路以上)を設けられているので、耐圧強度を高めることができる。従って、高効率かつ、十分な信頼性を確保した冷凍空調サイクル装置を提供することができる。またヘッダー3内には、縦および横の仕切り板8、9を設けているので、耐圧強度をより高めることができる。
【0048】
また、本実施の形態1、2の熱交換器およびこれを用いた冷凍空調サイクル装置の冷媒として、アンモニアの単一、またはアンモニアを含む混合冷媒を用いることにより、地球温暖化係数を非常に小さくすることができる。しかしアンモニアは従来の円管プレートフィンタイプ熱交換器に使われていた銅製の伝熱管を腐食させてしまう。この実施例の熱交換器は、腐食耐力のあるアルミニウムを、板状フィン材、偏平伝熱管、ヘッダに使用して、一体炉中ろう付けすることにより、耐食性の確保ならびにろう付け不良による冷媒漏れを防ぐことができ、高効率かつ、十分な安全性を確保した冷凍空調サイクル装置を提供することかできる。
【0049】
また、本実施の形態1、2の熱交換器およびこれを用いた冷凍空調サイクル装置の冷媒として、二酸化炭素、空気、水、の単一、またはこれらの混合冷媒を用いることにより、地球温暖化係数を非常に小さくすることができる。しかしこれら冷媒は、R32冷媒以上に動作圧力が高い。例えば二酸化炭素の飽和温度30℃における圧力は7.205MPaにもなる。本実施例の熱交換器は、偏平伝熱管に厚さ0.3mm程度の隔壁により隔てられた複数の流路(例えば径1.5mmの流路を10流路以上)を設けられているので、これら超高圧冷媒に足しても、耐圧強度を高めることができる。したがって、高効率かつ、十分な信頼性を確保した冷凍空調サイクル装置を提供することかできる。また、ヘッダ3内には、8、9といった仕切り板を設けているので、耐圧強度をより高めることができる。
【0050】
また、本実施の形態1、2の熱交換器およびこれを用いた冷凍空調サイクル装置における、伝熱管流路6の断面積はかなり小さいので、冷媒回路内にスラッジ等の微少な物質が混入したり、圧縮機などからスラッジが発生すると冷媒回路を閉塞してしまうおそれがある。このため、ドライヤーやフィルターなどのスラッジ補足装置を冷媒回路内に導入することにより、これらスラッジにする伝熱管流路6の閉塞を防ぐことができ、信頼性の高い冷凍空調サイクル装置を提供することができる。また本実施例1、2の熱交換器およびこれを用いた冷凍空調サイクル装置の冷凍機油として、鉱油やアルキルベンゼン油、エーテル油、エステル油、フッ素油などを導入することにより、スラッジの発生を抑制することができ、併せて信頼性の向上を図ることができる。また前述各冷媒に対して非相溶性、または弱相溶性である冷凍機油を用いた場合においても、伝熱管流路6は微細なため、冷媒と冷凍機油が非常に良く混合され、油の滞留等による圧縮機内冷凍機油不足等が生じにくく、冷凍機油不足による圧縮機機械部の摺動不良が発生しない。また冷媒と冷凍機油が非常に良く混合されることにより、冷凍機油による冷媒伝熱性能の低下や油溜まり込みによる冷媒圧力損失の増加が生じる恐れもない。
【0051】
なお、上記実施の形態1から2に示した冷凍空調サイクル装置において、圧縮機はどんな形式のもの、例えば、レシプロ圧縮機(単気筒、複数気筒)、ロータリー圧縮機(単気筒、複数気筒)、スクロール圧縮機、リニア圧縮機など、を用いても良い。また前記圧縮機シェル内に圧縮部を回転数させる電気モータを内蔵するとき、そのシェル内の圧力構造は、高圧でも低圧でも良い。高圧シェル方式では圧縮シリンダーを出た冷媒がモーターを冷却して加熱され圧縮機から吐出されるので、吐出温度は高くなる。一方低圧シェル方式ではシェル内に流入した冷媒はモーターを冷却して加熱されてから圧縮シリンダーに吸入されるので、吸入温度は高くなる。しかし圧縮シリンダーから流出する冷媒は直接圧縮機外へ吐出されるので、吐出温度は低くなる。使用する冷媒に応じて、吐出温度を高くするか低くするか、特にR32冷媒はR410A冷媒より吐出温度が高くなり、プロパンはR410A冷媒より吐出温度が低くなるので、その冷媒の特性を考慮して高圧か低圧かを選択すればよい。また一般に低圧シェルより高圧シェルの方が圧縮機内冷凍機油への冷媒とけ込み量が多い。従って冷媒充填量を削減したいときには低圧シェル方式を選択した方が良いが、冷媒が溶けにくい冷凍機油を使用すれば高圧シェルでも冷媒量を削減することができる。
【0052】
【発明の効果】
以上説明したように、本発明の請求項1に係る熱交換器は、平行に配列され、個々の間を気体が流動する複数の板状フィンと、前記板状フィンに貫通して配列され、扁平断面の内部に作動流体が流通する複数の流路を設けたU字形状に曲げられた伝熱管と、前記伝熱管の端部が連通するとともに作動流体の流入管と流出管が接続したヘッダと、前記ヘッダ内に設けられ前記流入管から前記伝熱管に連通する空間と前記伝熱管から前記流出管へ連通する空間とを分離するヘッダ長手方向の第1の縦仕切り板と、隣り合う前記U字形状の伝熱管に亘って設けられ、ヘッダ内空間を空気の流れ方向に対向して分離するヘッダ長手方向の第2の縦仕切り板と、前記U字形状の伝熱管の両端部を前記ヘッダ内空間にて隔てる横仕切り板と、を備え、前記ヘッダ内空間を前記第1および第2の縦仕切り板により気体の流れ方向に対して風上側流路と風下側流路に分離し、前記横仕切り板によりヘッダ長手方向の作動流体流れを区切る構成とするとともに、前記流入管から流入した作動冷媒が、蒸発器として用いる場合は前記扁平断面の伝熱管の風上側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風下側流路を流れて前記流出管から流出して、空気の流れ方向に対して並行流となる構成とし、凝縮器として用いる場合は前記扁平断面の伝熱管の風下側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風上側流路を流れて前記流出管から流出し、空気の流れ方向に対して対向流となる構成としたので、一連に連通する冷媒流路を複数形成し、多種多様な冷媒の経路を確実に形成することができる。また、冷媒を用いた蒸気圧縮式の空気調和機の蒸発器として使用した場合には、伝熱管の風上側の冷媒流路に流れた冷媒を風下側の冷媒流路に流して、冷媒を往復流動させることができ、空気流れと並向流化することに熱交換効率が向上する。また凝縮器として使用した場合には、伝熱管の風下側の冷媒流路に流れた冷媒を風上側の冷媒流路に流して、冷媒を往復流動させることができ、空気流れと対向流化することに熱交換効率が向上する。これにより空気調和機の能力増加やエネルギ効率向上を図ることができる。
【0053】
また本発明の請求項2に係る熱交換器は、前記伝熱管の内部に隔壁で隔てられた作動流体が流通する複数の流路において、前記縦仕切り板により分離された領域毎に前記流路断面積が異なるので、伝熱管中心隔壁の空気流れ方方向上流、下流に形成される冷媒流路の通過断面積を相違させて、空気側の熱交換量に対応させて冷媒流量を設定することができるという利点を有するので、熱交換器の性能を最大限に引き出すことができる。
【0054】
また本発明の請求項3に係る熱交換器は、前記U字形状の伝熱管を気体の流れ方向に対して複数列配設したので、この熱交換器を空気調和機の蒸発器として使用したとき、空気との熱交換により発生した結露水の排水性を高めることができるので、通風抵抗を低く押さえることができ空気風量を高めることができるので熱交換性能が向上するとともに、送風機駆動力が減少するので、空気調和機の能力増加やエネルギ効率向上を図ることができる。
【0055】
また、本発明の請求項4に係る熱交換器は、前記ヘッダ内の流路断面積を伝熱管の流路断面積の和以下としたので、ヘッダ内を流れる気液二相冷媒の分配性能を高めることかでき、熱交換器効率の向上や、空気調和機の能力増加や運転エネルギ効率向上を図ることができる。
【0056】
また、本発明の請求項5に係る熱交換器は、前記ヘッダに前記伝熱管が連通する貫通孔と前記縦仕切り板に前記伝熱管が挿入係合する嵌合溝を形成したので、伝熱管のヘッダへの組付けが確実で、かつ、伝熱管のヘッダへの挿入量も適正なものとなるという利点を有する。
【0057】
また、本発明の請求項6に係る空気調和機は、前記板状フィンの前記伝熱管間に切り起こしを有し、前記切り起こしは前記扁平伝熱管の長軸中央部に位置しないので、扁平伝熱管下部から滴下してきた結露水を速やかに下方に流すことができる。
【0058】
また、本発明の請求項7に係る空気調和機は、少なくとも、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続し、作動流体として冷媒を用いるとともに、請求項1乃至請求項6のいずれかに記載の熱交換器を蒸発器または凝縮器として用いたので、空気調和機の能力増加やエネルギ効率向上を図ることができる。
【0059】
また、本発明の請求項7に係る空気調和機は、冷媒として、HC冷媒の単一、またはHCを含む混合冷媒、R32,アンモニア、二酸化炭素のいずれかを用いるので、地球温暖化を防止する空気調和機を提供することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における熱交換器の斜視図である。
【図2】 本発明の実施の形態1における熱交換器の断面図である。
【図3】 本発明の実施の形態1における冷媒回路図である。
【図4】 本発明の実施の形態1に係わりヘッダの縦断面図である。
【図5】 本発明の実施の形態1に係わり熱交換器の内部作動流体流れを表す図である。
【図6】 本発明の実施の形態1に係わり熱交換器の特性を表す図である。
【図7】 本発明の実施の形態1に係わり熱交換器のさらに別の特性を表す図である。
【図8】 本発明の実施の形態1に係わり仕切部材と伝熱管とヘッダの接合部の構造を表す図である。
【図9】 本発明の実施の形態1に係わり仕切部材と伝熱管とヘッダの接合部のさらに別の構造を表す図である。
【図10】 本発明の実施の形態1に係わりさらに別のヘッダの横断面図である。
【図11】 本発明の実施の形態1に係わり仕切部材とヘッダの接合部の構造を表す図である。
【図12】 本発明の実施の形態1に係わりヘッダの別方向からの断面図である。
【図13】 本発明の実施の形態1に係わりヘッダのさらに別方向からの断面図である。
【図14】 本発明の実施の形態1に係わり室内機の構成を表す図である。
【図15】 本発明の実施の形態1に係わり伝熱管の複数流路を表す図である。
【図16】 本発明の実施の形態2における熱交換器の斜視図である。
【図17】 本発明の実施の形態2における熱交換器の断面図である。
【図18】 本発明の実施の形態2に係わりヘッダの断面図である。
【図19】 本発明の実施の形態2に係わり熱交換器での結露水の流れを表す図である。
【図20】 本発明の実施の形態1、2に係わり他の例における熱交換器の斜視図である。
【図21】 本発明の実施の形態1、2に係わり他の例におけるヘッダの断面図である。
【図22】 本発明の実施の形態1、2に係わり他の例における伝熱管の断面図である。
【図23】 本発明の実施の形態1、2に係わりさらに他の例における伝熱管の断面図である。
【図24】 本発明の実施の形態1、2に係わりさらに他の例における伝熱管の断面図である。
【図25】 本発明の実施の形態1、2に係わり他の例における熱交換器の断面図である。
【図26】 従来の熱交換器の斜視図である。
【図27】 従来の伝熱管の断面図である。
【図28】 従来の熱交換器の断面図である。
【符号の説明】
1 フィン、 2 扁平伝熱管、 3 ヘッダー、 5 空気流れ方向、 6伝熱管内冷媒流路、 8 縦仕切り部材、 9 横仕切り部材、 10 流入管、 11 流出管、 12 ヘッダー空間、 13 貫通孔、 14 隔壁、18 嵌合溝、 19 嵌合溝、 21 圧縮機、 22 四方弁、 23 室外熱交換器、 24 絞り装置、 25 室内熱交換器、 26 室外送風機、 28 室内送風機、 31,32 冷媒配管、 33 室外機、 34 室内機、 41 突起、 50 熱交換器、 100 熱交換器、 103、104 ヘッダー、 102 扁平伝熱管、 110 流入管、 111 流出管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger in which a header is separated into two or more in the direction of the flow of heat exchange air and a plurality of header chambers are formed therein.
[0002]
[Prior art]
Conventionally, what is shown in FIG. 26 is known as a heat exchanger which comprises an air conditioner. This heat exchanger 100 is called a plate fin and tube type, and is a pair of headers 103 and 104 that extend vertically and are opposed to each other. A flat heat transfer tube 102 is provided, and each heat transfer tube is inserted into the plate fin 1 for heat exchange. A refrigerant flows in the flat heat transfer tube 102, and heat is exchanged with air flowing outside the heat exchanger. A refrigerant inflow pipe 110 is provided above the one header 103, and an outflow pipe 111 is provided below the header 104.
[0003]
In addition, as shown in FIG. 27, the flat heat transfer tube 102 has a partition wall that divides the inside thereof in the width direction, and a plurality of refrigerant flow paths 6a and 6b that oppose in the flow direction of the heat exchange air 5 by the partition wall. Is forming.
According to this heat exchanger 100, FIG. 28 is a view of the heat exchanger 100 of FIG. 26 cut along a horizontal cross section of a flat heat transfer tube, and the refrigerant flows into one header 103 via the inflow tube 110. The refrigerant flows into the other header 104 through the flat heat transfer tube 102. Then, it flows out through the outflow pipe 111 provided in the header 104.
[0004]
[Problems to be solved by the invention]
In the conventional heat exchanger 100 as described above, heat exchange air flows in the width direction of the flat heat transfer tube 102 as described above, and heat exchange is performed between the heat exchange air and the cooling medium. When the evaporator acts as an evaporator, the refrigerant flowing through the refrigerant flow path 6a in the heat transfer tube on the windward side of the flat heat transfer tube 102 is cooled by heat exchange air (low temperature air) that has not been sufficiently exchanged heat. The heat is exchanged efficiently and the refrigerant temperature is low. On the other hand, since the refrigerant flowing through the leeward heat transfer pipe refrigerant flow path 6b is already heat-exchanged and heat-exchanged with high-temperature heat exchange air, the heat exchange efficiency is lowered and the refrigerant is sufficiently used. Can not be cooled to.
[0005]
As described above, the conventional heat exchanger 100 has a problem that a large difference occurs in the heat exchange amount between the windward side and the leeward side of the flat heat transfer tube 102, and the overall heat exchange amount becomes small. .
Further, since the shape of the flat heat transfer tube 102 used in such a heat exchanger 100 is a flat shape, when the heat exchanger 100 is installed so that the long axis direction of the flat tube and the air flow main flow direction coincide with each other, The ventilation resistance of the air flow is greatly reduced, and the driving power of the blower that generates the air flow can be greatly reduced.
[0006]
However, when such a heat exchanger 100 is used as an evaporator, dew condensation water is generated. However, since the shape of the flat heat transfer tube 102 is flat, drainage of the dew condensation water compared to the circular heat transfer tube. However, the condensed water is held, and there is a problem that the effect of reducing the ventilation resistance cannot be obtained sufficiently.
[0007]
An object of the present invention is to provide a heat exchanger that improves the heat exchange efficiency in view of the conventional problems.
[0008]
[Means for Solving the Problems]
The heat exchanger according to claim 1 of the present invention is arranged in parallel, a plurality of plate-like fins in which gas flows between them, and arranged through the plate-like fins, and operates inside a flat cross section. A heat transfer pipe bent into a U-shape provided with a plurality of flow channels through which fluid flows, a header in which the end of the heat transfer pipe communicates, and an inflow pipe and an outflow pipe for the working fluid are connected, and in the header A first vertical partition plate in the header longitudinal direction that separates a space communicating from the inflow pipe to the heat transfer pipe and a space communicating from the heat transfer pipe to the outflow pipe; and the adjacent U-shaped heat transfer pipe Over Provided in the header space in the direction of air flow Opposite The second longitudinal partition plate in the header longitudinal direction to be separated, and both ends of the U-shaped heat transfer tube In the header space A separating partition, The header inner space is separated into a windward flow channel and a leeward flow channel with respect to the gas flow direction by the first and second vertical partition plates, and the working fluid flow in the header longitudinal direction is partitioned by the horizontal partition plates. When the working refrigerant that has flowed in from the inflow pipe is used as an evaporator, it flows through the windward flow path of the heat transfer pipe having the flat cross section and reaches the end space of the header to reach the leeward side of the heat transfer pipe. It flows through the flow path and flows out from the outflow pipe, and becomes a parallel flow with respect to the air flow direction.When used as a condenser, it flows through the leeward flow path of the heat transfer pipe having the flat cross section and flows through the header. When it reaches the end space, it flows through the windward flow path of the heat transfer tube and flows out of the outflow tube, and becomes a counterflow with respect to the air flow direction. Is.
[0009]
Further, the heat exchanger according to claim 2 of the present invention is configured such that, in a plurality of flow paths through which the working fluid separated by a partition flows inside the heat transfer pipe, the flow is separated for each region separated by the vertical partition plate. The road cross-sectional area is different.
[0010]
A heat exchanger according to a third aspect of the present invention includes the U-shaped heat transfer tubes arranged in a plurality of rows in the gas flow direction.
[0011]
Moreover, the heat exchanger which concerns on Claim 4 of this invention makes the flow-path cross-sectional area in the said header below the sum of the flow-path cross-sectional area of a heat exchanger tube.
[0012]
Moreover, the heat exchanger which concerns on Claim 5 of this invention forms the fitting groove into which the said heat exchanger tube inserts and locks in the through-hole which the said heat exchanger tube communicates with the said header, and the said vertical partition plate.
[0013]
Moreover, the heat exchanger which concerns on Claim 6 of this invention has a cut and raised between the said heat exchanger tubes of the said plate-shaped fin, and the said raise is not located in the long-axis center part of the said flat heat exchanger tube. .
[0014]
An air conditioner according to a seventh aspect of the present invention comprises at least a compressor, a condenser, a throttling device, and an evaporator connected in order by a pipe, and a refrigerant is used as a working fluid. Is used as an evaporator or a condenser.
[0015]
The air conditioner according to claim 8 of the present invention uses any one of HC refrigerant or a mixed refrigerant containing HC, R32, ammonia, and carbon dioxide as the refrigerant.
[0016]
Implementation of the Invention
Embodiment 1 FIG.
FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1 of the present invention, and the same components as those in the conventional example are denoted by the same reference numerals. The heat exchanger 50 is generally called a plate fin-and-tube type in which a refrigerant flows inside the heat transfer tube and exchanges heat with air flowing outside the heat exchanger. The heat exchanger 50 includes a plate-like fin 1 and a row of flat heat transfer tubes 2 inserted perpendicularly to the plate-like fin 1, and a header 3 is provided on one side of the plurality of flat heat transfer tubes 2. Are connected to one end of each of the plurality of flat heat transfer tubes, and the other end 2a of each of the flat heat transfer tubes is bent into a U shape. Connected to each. FIG. 1 shows an example in which four sets of flat heat transfer tubes bent in a U shape are used in a one-pass flow path from the inflow to the outflow of the refrigerant. The gas flowing between the fins is air sent by a blower (shown in FIG. 3), the flow direction of which is perpendicular to the heat transfer tube axial direction and the heat transfer tube cross-section short axis direction is perpendicular to white. Indicated by an arrow. Further, the direction of refrigerant flow when the heat exchanger 101 is used as an evaporator is indicated by black arrows. The header 3 is provided with refrigerant inflow pipes 10a and 10b and refrigerant outflow pipes 11a and 11b.
[0017]
FIG. 2 is a shape when the heat exchanger of FIG. 1 is cut in a cross section parallel to the plate-like fin 1, and the heat transfer tube is provided with a plurality of flow paths 6 separated by partition walls 14. In this embodiment, the pitch Fp in the stacking direction of the fins 1 is Fp = 0.001 m, the fin thickness Ft = 0.0001 m, and the fin width Lp along the air flow is Lp = 0.025 m. The step pitch Dp, which is the distance between the centers of the heat transfer tubes adjacent in the direction, is Dp = 0.012 m, the long axis length Dl of the heat transfer tube is Dl = 0.02 m, the short axis length is Ds is Ds = 0.002 m, The distance La from the end of the air flow upstream fin to the heat transfer tube is La = 0.0025 m. In addition, eight channels 6 are provided, and the cross-sectional shape thereof is substantially square, and the thickness Dt of the partition wall 14 is Dt = 0.0003 m. In addition, the plate-like fin 1 surface shown in FIG. 2 is provided with a cut-and-raised portion 7 between the heat transfer tubes adjacent in the step direction to promote heat transfer between the air passing between the fins and the fin. In addition, when the heat transfer tube 2 is inserted, a fin collar (not shown) is provided in the flat heat transfer tube insertion portion in order to firmly fix the heat transfer tube 2 and the plate-like fins 1 and to secure a fin stacking direction pitch. .
[0018]
FIG. 3 shows a refrigerant circuit in which the heat exchanger 50 shown in FIG. 1 is used in a heat pump type refrigerating and air-conditioning cycle apparatus. The working fluid flowing in the heat transfer pipe is, for example, carbon dioxide or propane, which is an HC refrigerant, and the refrigerant circuit in FIG. 3 includes the compressor 21, the four-way valve 22, the outdoor heat exchanger 23, the expansion device 24, and the indoor heat exchanger. 25. In FIG. 3, the example which used the heat exchanger 50 by the 1st Embodiment of this invention for the indoor heat exchanger 25 is shown. As for the flow direction of the refrigerant, the solid line arrow is during cooling, and the dotted line arrow is during heating. The indoor heat exchanger 25 during cooling operates as an evaporator. Reference numeral 26 denotes an outdoor fan, 27 denotes an outdoor fan motor, 28 denotes an indoor fan, 29 denotes an indoor fan motor, and 31 and 32 denote refrigerant pipes connecting the outdoor unit 33 and the indoor unit 34, respectively.
[0019]
FIG. 4 shows a cross-sectional view of the header 3 of the heat exchanger 50 taken along the long-axis cross section shown in FIG. In addition, the some flow path 6 of the heat exchanger tube 2 is abbreviate | omitted. At this time, in the cylindrical header 3, the header space is separated into two or more facing the gas flow direction, and the internal working fluid is separated into two or more rows facing the gas flow direction, It comprises vertical partition members 8a and 8b and horizontal partition members 9a and 9b. Specifically, the first longitudinal partition member 8a in the header longitudinal axis direction that partitions the inlet and outlet of the internal working fluid in the header, and the working fluid of the upper and lower heat transfer tubes adjacent in the header And a second vertical partition member 8b that flows in the up-down direction and a horizontal partition member 9a, 9b in the header cross section that separates the vertical flow of the working fluid in the upper and lower heat transfer tubes adjacent in the header. In FIG. 4, the minimum combination of these partition members is four heat transfer tubes. FIG. 4 is a form in which two of these are combined, and a path partition member 9 c is provided in this partition portion. In FIG. 4, when the heat exchanger 50 is used as an evaporator, the refrigerant flow direction is indicated by a solid line arrow, and the refrigerant flow direction at the U-shaped bent portion of the heat transfer tube 2 across the plate-like fin 1 is indicated by a dotted line arrow. is there. Due to the partition plates 8 and 9 provided in the header 3, the refrigerant flowing from the inflow pipe 10 flows through the windward flow path of the heat transfer pipe 2 and reaches the uppermost or lowermost header space. And flows out from the outflow pipe 11. A schematic diagram of the refrigerant flow of the internal working fluid of the heat exchanger at this time is shown in FIGS.
[0020]
In the heat exchanger 50 used as an evaporator, the refrigerant temperature decreases from the refrigerant inflow pipe 10 toward the outflow pipe 11 due to refrigerant pressure loss. On the other hand, the temperature of the air decreases with respect to the flow direction 5. By defining the refrigerant flow direction in the heat transfer tube 2 by the header structure shown in FIG. 4, the heat transfer tube 2 cross-sectional length orthogonal to the heat transfer tube 2 tube axial direction in the plurality of flow paths 6 provided in the heat transfer tube 2. Since the axial refrigerant flow direction is parallel to the air flow direction 5, it is possible to realize a heat exchange mode in which a temperature difference between the air temperature and the refrigerant temperature can always be secured with respect to the air flow direction. FIG. 6 shows the air temperature and the refrigerant temperature distribution in the heat exchanger at this time. As can be seen from FIG. 6, in the first embodiment, a temperature difference between the air temperature and the refrigerant temperature can always be ensured, and a heat exchanger with high heat exchange efficiency can be provided.
[0021]
On the other hand, the operation of the heat exchanger 50 used as a condenser will be described. Although the air flow direction is the same as that of the evaporator, the refrigerant flow direction in FIG. 4 is opposite to the arrow, and therefore flows in from the outflow pipe 11 side and flows out to the inflow pipe 10 side. The refrigerant temperature decreases with respect to the refrigerant flow direction, and the temperature of air increases with respect to the flow direction 5. By defining the refrigerant flow direction in the heat transfer tube 2 by the header structure shown in FIG. 4, the long axis of the cross section of the heat transfer tube 2 orthogonal to the direction of the heat transfer tube 2 axis in the plurality of flow paths 6 provided in the heat transfer tube 2. Since the refrigerant flow direction of the direction is opposite to the air flow direction 5, it is possible to realize a heat exchange mode that can always ensure a temperature difference between the air temperature and the refrigerant temperature with respect to the air flow direction. FIG. 7 shows the air temperature and the refrigerant temperature distribution in the heat exchanger at this time. As can be seen from FIG. 7, in the first embodiment, a temperature difference between the air temperature and the refrigerant temperature can always be ensured, and a heat exchanger with high heat exchange efficiency can be provided.
[0022]
FIG. 8 shows an assembly structure of the vertical partition member 8 and the heat transfer tube 2. That is, a fitting groove 19a for insertion fitting of the heat transfer tube 2 is provided on one end surface (separation end surface 15) in the width direction of the vertical partition member 8, and the heat transfer tube 2 inserted through the through hole 13 of the header 3 is fitted. It is inserted into the mating groove 19a and stopped.
[0023]
FIG. 9 also shows another embodiment of the assembly structure of the vertical partition member 8 and the heat transfer tube 2. That is, the heat transfer tube 2 is provided with a groove 19b for insertion fitting of the vertical partition member 8, and the vertical partition member is not provided with a groove, and the heat transfer tube 2 inserted through the through hole 13 of the header 3 is locked. The
[0024]
By configuring the vertical partition member 8 and the fitting grooves 19a and 19b in this way, when the heat transfer tube is fitted to the header 3, the heat transfer tube 2 is securely fixed, and the heat transfer tube 2 is connected to the header 3. The amount of insertion becomes appropriate, manufacturing variations are reduced, productivity is improved, and manufacturing costs can be reduced.
[0025]
8, 9, and 10 show various examples of the shape of the header 3 and the partition member 8, and the vertical partition member 8 described above is inserted and welded to the header 3 in FIG. 8. FIG. 9 shows an example in which the header 3 and the vertical partition member 8 are integrally formed by extrusion molding.
[0026]
10A and 10B show a partition member formed by bending the header 3. In the example shown in FIG. 10 (a), a plate-shaped header material is bent into a substantially rectangular cross-sectional shape to constitute the outer shape of the header 3, and one end of the header material is bent and welded to the inner surface of the header 3. Thus, the vertical partition member 8 is configured. The cross-sectional shape of the header may be substantially circular, and the other end of the header material may be bent short and welded to one surface of the partition member 8. In the example shown in FIG. 10B, the header cross section is formed in a substantially semicircular shape. According to the structure shown in FIGS. 8, 9, and 10, the header 3 can be manufactured at low cost and in large quantities. Further, when the heat transfer tube 2 and the header 3 are manufactured by brazing and welding in an oven using an aluminum material, an aluminum clad material, a flux, etc., the fitting gaps of the respective parts can be securely adhered and joined together. Problems such as leakage can be prevented. The header 3 having a circular cross section in the axial direction has a higher internal pressure strength. However, if the header plate material is expanded in strength or the plate pressure is increased to ensure the internal pressure strength, the cross-sectional shape may be substantially rectangular. A cross-sectional shape may be used. Note that the volume of the header 3 is reduced and the heat exchanger 50 can be made compact when the substantially rectangular or semicircular cross-sectional shape is used.
[0027]
FIG. 11 is a view showing an assembly structure of the vertical partition member 9 and the heat transfer tube 2. The header 3 is provided with a fitting groove 18 into which the vertical partition member 9 is inserted in the cross-sectional direction. According to the structure shown in FIG. 11, the header 3 can be manufactured at a low cost and in a large amount as in FIG. Further, when the heat transfer tube 2 and the header 3 are manufactured by brazing and welding in an oven using an aluminum material, an aluminum clad material, a flux, etc., the fitting gaps of the respective parts can be securely adhered and joined together. Problems such as leakage can be prevented.
[0028]
Next, the dimensions of the header space 12 in the header 3 will be described. 12 is a cross-sectional view in which the header 3 having a substantially rectangular cross section is cut in a longitudinal direction along a surface that coincides with the flow direction of the working fluid in the heat transfer tube, and FIG. 13 is a cross-sectional view cut in a cross section orthogonal to the flat heat transfer tube 2. is there. The minimum flow path cross-sectional area in the refrigerant flow direction in the header space 12 in the refrigerant flow direction indicated by the arrows in FIGS. 12 and 13 is equal to or less than the sum of the cross-sectional areas of the plurality of flow paths 6 of the flat heat transfer tube 2, and preferably flat transfer. The cross-sectional area of the plurality of flow paths 6 of the heat pipe 2 is set to a hydraulic equivalent diameter or less. The reason is as follows. That is, in the flat heat transfer tube 2, heat exchange is more facilitated in the windward side refrigerant flow path 6 a, so that the refrigerant dryness varies from the windward side to the leeward side of each refrigerant flow path 6 and flows into the header space 12. Come on. For example, when the heat exchanger 50 acts as an evaporator, the refrigerant dryness on the windward side is larger than that on the leeward side, and when the heat exchanger 50 acts as a condenser, the refrigerant dryness on the windward side is smaller than that on the leeward side. And flows into the header space 12. When the refrigerant flows into the next flat heat transfer tube in the refrigerant state as it is, the difference in the dryness of the refrigerant further expands in the refrigerant flow path between the leeward side and the upwind side, causing a decrease in the heat exchange amount. For this purpose, the refrigerant flowing into the header space 12 is mixed to equalize the dryness of the refrigerant, and the refrigerant is allowed to flow through the next flat heat transfer tube. However, if the volume or the cross-sectional area of the header space 12 is too large, the refrigerant flow rate in the header space 12 is lowered, the gas-liquid two-phase refrigerant is easily separated, and the dryness uniform flow to the next flat heat transfer tube cannot be maintained. .
[0029]
FIG. 14 is a sectional view of an indoor unit configuration showing an example in which the heat exchanger 50 is used as an indoor heat exchanger of an air conditioner. The heat exchanger 50 is installed at an angle with respect to the vertical direction of the indoor unit. If the volume or the cross-sectional area of the header space 12 is too large, the refrigerant flow rate in the header space 12 decreases, and the gas-liquid It becomes easier to separate the phase refrigerant and it becomes impossible to maintain a uniform dryness flow to the next flat heat transfer tube. Accordingly, in FIGS. 12 and 13, the cross-sectional area in the refrigerant flow direction in the header space 12 is equal to or less than the sum of the cross-sectional areas of the plurality of flow paths 6 of the flat heat transfer tubes 2, preferably the flow paths 6 of the flat heat transfer tubes 2. By setting the cross-sectional area to be equal to or less than the hydraulic equivalent diameter, the refrigerant flow rate that can avoid two-phase separation is maintained. Thereby, the fall of the heat exchange amount can be prevented and a high-performance heat exchanger can be obtained. The minimum flow path cross-sectional area may not be the same in the header space with respect to the flow direction. For example, as shown in FIG. 13, the header partition wall thickness may be locally increased and narrowed.
[0030]
15A, 15B, and 15C show various examples of heat transfer tubes. FIG. 15A shows the heat transfer tube 2 described above, and a plurality of refrigerant flows between the plurality of partition walls 14. A path 6 is formed. In the partition wall 14, the separation end surface 15 of the vertical partition member 8 is in contact with the partition wall 14 a located substantially in the center, and the respective coolant channels are connected to the left and right coolant channels, that is, the coolant channel on the windward side of the heat exchange air and the leeward side. The refrigerant flow path is separated. In addition, the heat transfer tube 2 is configured by forming the central partition wall 14 a in contact with the separation end face 15 in the partition wall 14 to be larger than the thicknesses of the other partition walls 14. By increasing the thickness of the partition wall 14a in this way, the joining space of the separation end face 15 can be afforded, the degree of freedom in assembling the heat transfer tube 2 to the header 3 can be increased, and productivity can be improved.
[0031]
FIG. 15B and FIG. 15C are configured such that the refrigerant flow rate in the leeward refrigerant flow path 6b is smaller than the refrigerant flow rate in the leeward refrigerant flow path 6a. That is, the heat transfer tube 2 shown in FIG. 15B is formed by reducing the flow cross-sectional area of each of the refrigerant flow paths 6b on the leeward side to reduce the refrigerant flow rate. With this configuration, a large amount of refrigerant can be circulated through the refrigerant channel 6a on the windward side, and the amount of heat exchange can be improved. Further, in the heat transfer tube 3 shown in FIG. 15 (c), by shifting the position of the partition wall 14a from the center of the heat transfer tube to the leeward side, the leeward refrigerant flow path 6b has a small flow cross-sectional area, and the leeward refrigerant flow By increasing the number of paths 6a, the total flow cross-sectional area of the refrigerant is increased to the windward side. By comprising in this way, a large amount of refrigerant | coolants can be distribute | circulated to the refrigerant | coolant flow path 6a of an upwind side, and the amount of heat exchange can be improved.
[0032]
Embodiment 2. FIG.
FIG. 16 is a perspective view of the heat exchanger according to the second embodiment of the present invention, in which the same components as those in FIG. 1 of the first embodiment are denoted by the same reference numerals and used as an evaporator. The air flow direction is 5, and the refrigerant flow direction is the direction of the black arrow. In FIG. 16, the heat exchanger 50 includes a plate-like fin 1 and two rows of flat heat transfer tubes 2 inserted perpendicularly to the plate-like fin, and a header on one side of the plurality of flat heat transfer tubes 2. 3 is connected to the header 3 at predetermined intervals to connect one end of each of the plurality of flat heat transfer tubes, and the other end of each of the flat heat transfer tubes is bent into a U shape. Each is connected. FIG. 16 shows an example in which four sets of flat heat transfer tubes bent in a U-shape are used in one path flow path until the refrigerant flows in and out. The gas flowing between the fins is air sent by a blower, and the flow direction thereof is indicated by a white arrow in a direction 5 perpendicular to the heat transfer tube axial direction and the heat transfer tube section short axis direction orthogonal. Further, the direction of refrigerant flow when the heat exchanger 101 is used as an evaporator is indicated by black arrows. The header 3 is provided with refrigerant inflow pipes 10a and 10b and refrigerant outflow pipes 11a and 11b.
[0033]
FIG. 17 is a cross-sectional view of the heat exchanger of FIG. 16 taken along a cross section parallel to the plate-like fin 1, and the heat transfer tube 2 is provided with a plurality of flow paths 6 separated by partition walls 14. . In this embodiment, the pitch Fp in the stacking direction of the fins 1 is Fp = 0.001 m, the fin thickness Ft = 0.0001 m, and the fin width Lp along the air flow is Lp = 0.025 m. The step pitch Dp, which is the distance between the centers of the heat transfer tubes adjacent in the step direction, is Dp = 0.012 m, and the row pitch DL, which is the distance between the centers of the heat transfer tubes adjacent in the row direction of the heat transfer tubes, is DL = 0.012 m. The major axis length Dl of the heat tube is Dl = 0.01 m, the minor axis length is Ds = 0.002 m, and the distance La from the air flow upstream fin end to the heat transfer tube is La = 0.015 m. In addition, four channels 6 are provided, and the cross-sectional shape thereof is square, and the thickness Dt of the partition wall 14 is an example in which Dt = 0.0003 m. In addition, the plate-like fin surface shown in FIG. 17 is provided with a cut-and-raised portion 7 between the heat transfer tubes adjacent in the step direction as in FIG. 2 to promote heat transfer between the air passing between the fins and the fin. Yes.
[0034]
An example of the refrigerant circuit in which the heat exchanger 50 shown in FIG. 16 is used in the indoor heat exchanger 25 as an evaporator of a heat pump refrigeration air-conditioning cycle apparatus during cooling operation is the same as that in FIG.
[0035]
FIG. 18 shows a cross-sectional view of the header 3 of the heat exchanger 50 according to the second embodiment when cut along the cross section in the major axis direction shown in FIG. In addition, the some flow path 6 of the heat exchanger tube 2 is abbreviate | omitted. At this time, since two rows of heat transfer tubes 2 are inserted into the header, the through holes 13 are provided in two rows. As in FIG. 4, first and second vertical partition members 8 a and 8 b are provided in the header 3 in the major axis direction, and horizontal partition members 9 a, 9 b and 9 c are provided in the cross-sectional direction in the header 3. However, the configuration, purpose, and effect of the vertical and horizontal partition members 8 and 9 are the same as those of the first embodiment. Hereinafter, the operation of the heat exchanger 50 will be described.
[0036]
In the heat exchanger 50 used as an evaporator, when the refrigerant flows from the refrigerant inflow pipe 10 toward the outflow pipe 11, the refrigerant temperature decreases due to refrigerant pressure loss. On the other hand, the temperature of the air decreases with respect to the flow direction 5. By defining the refrigerant flow direction in the heat transfer tube 2 by the header structure shown in FIG. 18 as indicated by the arrows in the figure, the axial direction of the heat transfer tube 2 in the plurality of flow paths 6 provided in the heat transfer tube 2 Exchange direction in which the refrigerant flow direction in the longitudinal direction of the cross section of the heat transfer tube 2 orthogonal to the air flow direction 5 is parallel to the air flow direction 5, so that a temperature difference between the air temperature and the refrigerant temperature can always be secured with respect to the air flow direction And a heat exchanger with high heat exchange efficiency can be provided. Further, although the heat transfer tubes have a two-row configuration, the fin area, the heat transfer tube area, and the cut-and-raised portion 7 have the same size and shape as in FIG.
[0037]
In addition, when operating as an evaporator of an air conditioner, air is dehumidified under humid conditions, and condensed water is generated on the plate-like fins 1. At this time, if the condensed water is still folded on the plate-like fins 1, the heat transfer performance will decrease, the air flow will decrease due to the increase in ventilation resistance, and the blower drive power will increase. It is necessary to distribute the condensed water promptly under gravity because it causes a decrease in operating efficiency. As shown in FIG. 19, the dew condensation water tends to be accumulated at the upper and lower portions of the heat transfer tube 2, and the amount of accumulation becomes larger as the flat heat transfer tube major axis length is longer due to the influence of surface tension. In the second embodiment, the amount of accumulation can be reduced by forming the flat heat transfer tubes 2 in a two-row configuration. Moreover, the flow resistance which flows the dew condensation water dripped from the upper stage side heat exchanger tube will become large, the one where the long axis length of the flat heat exchanger tube is long. In the second embodiment, by forming the flat heat transfer tubes in a two-row configuration, the condensed water dripped from the upper heat transfer tubes as shown in FIG. 19 can be quickly flowed downward. Furthermore, since the dew condensation water at the lower part of the heat transfer tube 2 is likely to gather at the center of the heat transfer tube long axis, in the present embodiment, the cut-and-raised portion 7 is not provided at the center of the heat transfer tube long axis, as shown in FIG. The condensed water dripped from the lower part of the heat transfer tube can be quickly flowed downward.
[0038]
On the other hand, the value equivalent to Embodiment 1 can be obtained about the effect | action and effect of the heat exchanger 50 used as a condenser.
[0039]
In the first and second embodiments, the example in which the refrigerant inflow pipe 10 and the refrigerant outflow pipe 11 are installed at the center of the header 3 when used as an evaporator to the heat exchanger 50 has been shown. The refrigerant inflow pipe 10 and the refrigerant outflow pipe 11 may be arranged above and below the header 3 as shown in the perspective view of the vessel and the header cross-sectional view of FIG. Further, as shown in FIG. 21 (b), the minimum unit of the heat transfer tube combination of the header structure in the present embodiment is four flat heat transfer tubes 2 bent in a U-shape, so every four heat transfer tubes. One header may be combined, and these may be combined to form one heat exchanger. At this time, the inflow pipes 10a, 10b, and 10c and the outflow pipes 11a, 11b, and 11c for the internal working fluid can be set at arbitrary positions, respectively. In the first and second embodiments, the example in which the header 3 is partitioned into two rows in the inner shaft direction is shown, but multiple rows may be used. In this case, the partition member is also arranged so that the refrigerant flows in a parallel flow with respect to the air flow when used as an evaporator and an opposite flow with respect to the air flow when used as a condenser. The shape, position, thickness, and partition wall thickness of the heat transfer tube may be determined. The same applies to the case where the heat transfer tubes are arranged in multiple rows as in the second embodiment. In the first and second embodiments, an example in which four sets of U-shaped bending heat transfer tubes 2 are used per one flow path is shown, but a larger number of U-shaped bending heat transfer tubes 2 may be used. In the first and second embodiments, the U-shaped bending heat transfer tube 2 is used. However, as shown in FIG. 26, headers may be installed on both sides of the end portion in the axial direction of the heat transfer tube. At this time, the shape of the partition member of the header 4 may be configured such that the refrigerant flow is the same as that of the U-shaped bent heat transfer tube. Further, the number and size of the square flow paths 6 provided in the heat transfer tube 2 may be arbitrarily set. Also, the various shape parameters and the cut-and-raised portions 7 described in FIGS. 2 and 17 may be set to arbitrary values and shapes.
[0040]
Further, protrusions 41 may be provided in the plurality of flow paths 6 of the heat transfer tube 2 described in the first and second embodiments as shown in FIG. Since this protrusion can secure a large amount of the heat transfer area of the refrigerant, the performance of the heat exchanger can be improved. The protrusion may be twisted with respect to the working fluid flow tube axis direction. At this time, the film thickness of the refrigerant liquid in the pipe can be made uniform and thin by the effect of raising the refrigerant flow, so that the heat exchanger performance can be improved. The protrusion may be a combination of protrusions twisted leftward and rightward with respect to the direction of the working fluid flow tube axis. At this time, the refrigerant heat collision performance can be improved by the refrigerant flow collision effect, and the heat exchanger performance can be improved. Further, if the short axis length is the same as the flat tube, the heat transfer tube may have an elliptical shape or a bowl shape as shown in FIGS.
[0041]
Further, the shape of the plurality of flow paths 6 of the heat transfer tube 2 described in the first and second embodiments may be rectangular, circular, or oval as long as the refrigerant heat transfer area can be secured.
[0042]
As shown in FIG. 25, the arrangement of the heat transfer tubes 2 having the two-row configuration described in the second embodiment is a method in which a fin collar is provided on the plate-like fin 1 and inserted and held in from both ends of the plate-like fin 1. Also good. As a result, the fin collar gap size of the plate-like fins and the gap management of the inserted heat transfer tube become loose, and the heat transfer tube can be easily inserted, thereby improving the productivity. Further, the interval 42 between the heat transfer tube end portions at this time may be the total value of the distance from the fin end portion to the heat transfer tube end portion and the interval between both heat transfer tube end portions shown in FIG. FIG. 25 shows the case of a two-row heat transfer tube, but it is also possible to adopt a method of inserting and inserting from the end face on one side of the fin in the case of one row.
[0043]
The manufacturing method of the heat exchanger described in the first and second embodiments is as follows. First, the heat transfer tube 2 is manufactured by drawing or extruding a material having high thermal conductivity such as aluminum or copper. Further, the fin 1 is manufactured by pressing a material having high thermal conductivity such as an aluminum material or a copper material. Further, the header 3 is manufactured by extruding or forging a pipe, pressing a flat plate, or cutting a prism. These materials are coated on the surface with a flux for brazing in the furnace. For example, when using an aluminum material, an aluminum clad material is used on the heat transfer tube side, an aluminum material is used on the fin side, or vice versa. Further, an aluminum material may be used for both the heat transfer tube side and the fin side, and a brazing material may be applied to the surface of the heat transfer tube. Then, the fin and the heat transfer tube are fixed by fixing a jig or the like, or the header and the heat transfer tube are fixed by pressure welding or the like. After that, by using a vacuum furnace or a nitrogen furnace, it is possible to perform a large amount of joining by brazing the fins, the heat transfer tubes, and the headers at a high speed, thereby increasing productivity. Also, the contact heat transfer coefficient between the fin and the heat transfer tube can be made infinite by brazing, and the performance of the heat exchanger can be greatly improved. Also, by joining the header and heat transfer tube at once by brazing in the furnace, it is possible to prevent leakage of refrigerant due to poor brazing, flammable refrigerants such as HC, toxic refrigerants such as ammonia, and high-pressure refrigerants such as carbon dioxide. Safety against refrigerant leakage when used can be ensured. Moreover, recyclability can be improved by manufacturing a fin, a heat exchanger tube, and a header with the same material.
[0044]
The fin described in the first and second embodiments is coated with a hydrophilic material on the surface. Smooth drainage of condensed water when used as an evaporator, prevents increase in ventilation resistance due to accumulation of condensed water in the heat exchanger, and increases heat exchange volume due to increased air volume of heat exchange air In addition, the noise can be reduced, and the energy efficiency and comfort of the apparatus can be improved. Further, the coating may be performed before brazing in the furnace or after brazing.
[0045]
The fins, heat transfer tubes, and header pipes are manufactured by brazing in the furnace and coated with a hydrophilic material, so that smooth drainage of condensed water can be ensured when used as an evaporator, heat exchange. The increase in ventilation resistance due to the accumulation of condensed water in the chamber is prevented, the heat exchange amount can be increased due to the increase in the amount of heat exchange air, and the noise can be reduced, improving the energy efficiency and comfort of the device. be able to. Condensed water causes heat exchanger corrosion, but if a material is selected that gives a potential difference between the fin material and the heat transfer tube material, and the fin material is prone to corrode, the material will be transmitted even if corrosion proceeds. Corrosion of the heat pipe can be prevented, leakage of the refrigerant can be avoided, and safety can be ensured.
[0046]
In addition, as a refrigerant of the heat exchanger of Embodiments 1 and 2 and a refrigerating and air-conditioning cycle apparatus using the same, a single HC refrigerant such as methane, ethane, propane, butane, isobutane, propylene, isopropylene, or HC is used. By using the mixed refrigerant containing, the global warming potential can be made very small. Propane has a greater temperature drop with respect to refrigerant pressure loss than conventional refrigerant R22. For example, when the refrigerant saturation temperature changes from 10 ° C. to 0 ° C., R22 has a pressure change of 0.183 MPa, while propane has a pressure change of 0.162 MPa. Isobutane also has a greater temperature drop with respect to refrigerant pressure loss than the conventional refrigerant R134a. For example, when the refrigerant saturation temperature changes from −20 ° C. to −30 ° C., R134a has a pressure change of 0.0483 MPa, while isobutane has a pressure change of 0.0258 MPa. For this reason, in the refrigerating and air-conditioning cycle apparatus using these refrigerants, it is necessary to make the absolute value of the refrigerant pressure loss smaller than that of the conventional refrigerant. The heat exchanger of this embodiment is provided with a plurality of flow paths (for example, 10 or more flow paths having a diameter of 1.5 mm) provided in a flat heat transfer tube and separated by a partition wall, and connected to one header. By increasing the number of heat tubes, it is possible to construct a super multi-channel heat exchanger, and it is very easy to reduce the absolute value of the refrigerant pressure loss. Accordingly, even when a single HC refrigerant or a mixed refrigerant containing HC is used, a highly efficient refrigeration / air-conditioning cycle apparatus can be provided.
[0047]
Further, as the refrigerant of the heat exchangers of the first and second embodiments and the refrigerating and air-conditioning cycle apparatus using the same, R32 single or a mixed refrigerant containing R32 (R407A, R407B, R407C, R407D, R407E, R410A, R410B, etc.) can be used to make the global warming potential very small. However, the R32 refrigerant has a higher operating pressure than the conventional refrigerant R22. For example, the pressure at the saturation temperature of 50 ° C. for R22 is 1.94 MPa, whereas it is 3.14 MPa for R32 and 3.06 MPa for R410A. Since the heat exchanger of this embodiment is provided with a plurality of channels (for example, a channel having a diameter of 1.5 mm having 10 or more channels) separated by a partition wall having a thickness of about 0.3 mm in the flat heat transfer tube. The pressure strength can be increased. Therefore, it is possible to provide a refrigerating and air-conditioning cycle device that ensures high efficiency and sufficient reliability. Moreover, since the vertical and horizontal partition plates 8 and 9 are provided in the header 3, the pressure resistance can be further increased.
[0048]
In addition, by using a single ammonia or a mixed refrigerant containing ammonia as the refrigerant of the heat exchangers of the first and second embodiments and the refrigerating and air-conditioning cycle apparatus using the heat exchanger, the global warming potential is very small. can do. However, ammonia corrodes the copper heat transfer tube used in the conventional circular plate fin type heat exchanger. In the heat exchanger of this embodiment, corrosion-resistant aluminum is used for plate fin materials, flat heat transfer tubes and headers and brazed in an integrated furnace, ensuring corrosion resistance and refrigerant leakage due to poor brazing. It is possible to provide a refrigerating and air-conditioning cycle apparatus that can prevent the above-described problem and ensure high efficiency and sufficient safety.
[0049]
Further, as a refrigerant for the heat exchangers of the first and second embodiments and the refrigerating and air-conditioning cycle apparatus using the heat exchanger, global warming is achieved by using a single refrigerant of carbon dioxide, air, water, or a mixed refrigerant thereof. The coefficient can be made very small. However, these refrigerants have a higher operating pressure than R32 refrigerants. For example, the pressure of carbon dioxide at a saturation temperature of 30 ° C. is 7.205 MPa. The heat exchanger of the present embodiment is provided with a plurality of channels (for example, a channel having a diameter of 1.5 mm having 10 or more channels) separated by a partition wall having a thickness of about 0.3 mm in the flat heat transfer tube. Even if added to these ultra-high pressure refrigerants, the pressure resistance can be increased. Therefore, it is possible to provide a refrigerating and air-conditioning cycle device that ensures high efficiency and sufficient reliability. Moreover, since the partition plates 8 and 9 are provided in the header 3, the pressure strength can be further increased.
[0050]
Further, in the heat exchangers of the first and second embodiments and the refrigerating and air-conditioning cycle apparatus using the same, the cross-sectional area of the heat transfer tube channel 6 is considerably small, so that a minute substance such as sludge is mixed in the refrigerant circuit. If sludge is generated from a compressor or the like, the refrigerant circuit may be blocked. For this reason, by introducing sludge supplement devices such as a dryer and a filter into the refrigerant circuit, it is possible to prevent the heat transfer tube flow path 6 from becoming sludge from being blocked, and to provide a highly reliable refrigerating and air-conditioning cycle device. Can do. Moreover, by introducing mineral oil, alkylbenzene oil, ether oil, ester oil, fluorine oil, etc. as the refrigerating machine oil of the heat exchangers of the present embodiments 1 and 2 and the refrigerating and air-conditioning cycle apparatus using the same, the generation of sludge is suppressed. In addition, the reliability can be improved. Even when refrigeration oil that is incompatible or weakly compatible with each of the refrigerants described above is used, since the heat transfer tube channel 6 is fine, the refrigerant and the refrigeration oil are mixed very well, and the oil stays there. Insufficient refrigeration oil in the compressor due to, for example, is difficult to occur, and sliding failure of the compressor machine part due to insufficient refrigeration oil does not occur. Further, since the refrigerant and the refrigerating machine oil are mixed very well, there is no possibility that the refrigerant heat transfer performance is lowered by the refrigerating machine oil or the refrigerant pressure loss is increased due to oil accumulation.
[0051]
In the refrigerating and air-conditioning cycle apparatuses shown in the first and second embodiments, the compressor has any type, for example, a reciprocating compressor (single cylinder, multiple cylinders), a rotary compressor (single cylinder, multiple cylinders), A scroll compressor, a linear compressor, or the like may be used. Further, when an electric motor for rotating the compression portion is built in the compressor shell, the pressure structure in the shell may be high or low. In the high-pressure shell method, the refrigerant exiting the compression cylinder cools the motor and is heated and discharged from the compressor, so the discharge temperature increases. On the other hand, in the low-pressure shell method, the refrigerant flowing into the shell is sucked into the compression cylinder after being heated by cooling the motor, so that the suction temperature becomes high. However, since the refrigerant flowing out from the compression cylinder is directly discharged out of the compressor, the discharge temperature is lowered. Depending on the refrigerant used, the discharge temperature is increased or decreased. In particular, the R32 refrigerant has a higher discharge temperature than the R410A refrigerant, and the propane has a lower discharge temperature than the R410A refrigerant. You can select either high or low pressure. In general, the high-pressure shell has a larger amount of refrigerant and penetration into the compressor refrigeration oil than the low-pressure shell. Therefore, it is better to select the low-pressure shell method when it is desired to reduce the refrigerant charging amount, but the refrigerant amount can be reduced even in the high-pressure shell by using refrigerating machine oil in which the refrigerant does not dissolve easily.
[0052]
【The invention's effect】
As described above, the heat exchanger according to claim 1 of the present invention is arranged in parallel, and a plurality of plate-like fins in which gas flows between them, and is arranged through the plate-like fins, A heat transfer pipe bent into a U shape provided with a plurality of flow paths through which the working fluid flows inside a flat cross section, and a header in which the end of the heat transfer pipe communicates with the working fluid inflow pipe and the outflow pipe And a first longitudinal partition plate in the longitudinal direction of the header that separates a space that is provided in the header and communicates from the inflow pipe to the heat transfer pipe and a space that communicates from the heat transfer pipe to the outflow pipe. U-shaped heat transfer tube Over Provided in the header space in the air flow Opposite The second longitudinal partition plate in the header longitudinal direction to be separated, and both ends of the U-shaped heat transfer tube In the header space A separating partition, The header inner space is separated into a windward flow channel and a leeward flow channel with respect to the gas flow direction by the first and second vertical partition plates, and the working fluid flow in the header longitudinal direction is partitioned by the horizontal partition plates. When the working refrigerant that has flowed in from the inflow pipe is used as an evaporator, it flows through the windward flow path of the heat transfer pipe having the flat cross section and reaches the end space of the header to reach the leeward side of the heat transfer pipe. It flows through the flow path and flows out from the outflow pipe, and becomes a parallel flow with respect to the air flow direction.When used as a condenser, it flows through the leeward flow path of the heat transfer pipe having the flat cross section and flows through the header. When it reaches the end space, it flows through the windward flow path of the heat transfer tube and flows out of the outflow tube, and becomes a counterflow with respect to the air flow direction. Therefore, a plurality of refrigerant flow paths communicating in series can be formed, and a wide variety of refrigerant paths can be reliably formed. In addition, when used as an evaporator of a vapor compression type air conditioner using a refrigerant, the refrigerant flowing in the refrigerant channel on the windward side of the heat transfer tube flows in the refrigerant channel on the leeward side to reciprocate the refrigerant. It can be made to flow and heat exchange efficiency is improved by co-current with the air flow. In addition, when used as a condenser, the refrigerant that has flowed through the refrigerant channel on the lee side of the heat transfer tube can be caused to flow through the refrigerant channel on the leeward side to reciprocate the refrigerant, and counterflow with the air flow. In particular, the heat exchange efficiency is improved. Thereby, the capability increase and energy efficiency improvement of an air conditioner can be aimed at.
[0053]
In addition, the heat exchanger according to claim 2 of the present invention is configured such that, in a plurality of flow paths through which the working fluid separated by a partition flows inside the heat transfer tube, the flow paths are separated for each region separated by the vertical partition plate. Since the cross-sectional areas are different, the refrigerant flow rate is set in accordance with the heat exchange amount on the air side by making the passage cross-sectional areas of the refrigerant flow passages formed upstream and downstream of the heat transfer tube central partition in the air flow direction. Therefore, the performance of the heat exchanger can be maximized.
[0054]
Moreover, since the heat exchanger which concerns on Claim 3 of this invention has arrange | positioned the said U-shaped heat exchanger tube in multiple rows with respect to the flow direction of gas, this heat exchanger was used as an evaporator of an air conditioner. When it is possible to improve the drainage of the condensed water generated by heat exchange with the air, the ventilation resistance can be kept low and the air volume can be increased, improving the heat exchange performance and the fan driving force Since it decreases, the capacity | capacitance increase and energy efficiency improvement of an air conditioner can be aimed at.
[0055]
Further, in the heat exchanger according to claim 4 of the present invention, the flow passage cross-sectional area in the header is made equal to or less than the sum of the flow passage cross-sectional areas of the heat transfer tubes, so the distribution performance of the gas-liquid two-phase refrigerant flowing in the header The heat exchanger efficiency can be improved, the capacity of the air conditioner can be increased, and the operating energy efficiency can be improved.
[0056]
Moreover, since the heat exchanger which concerns on Claim 5 of this invention formed the fitting groove into which the said heat exchanger tube inserts and engages in the said through-hole and the said vertical partition plate which the said heat exchanger tube communicates, the heat exchanger tube Assembling to the header is reliable, and the insertion amount of the heat transfer tube into the header is also appropriate.
[0057]
In addition, the air conditioner according to claim 6 of the present invention has a cut-and-raised portion between the heat transfer tubes of the plate-like fins, and the cut-and-raised portion is not located at the center of the long axis of the flat heat transfer tube. The condensed water dripped from the lower part of the heat transfer tube can be quickly flowed downward.
[0058]
An air conditioner according to a seventh aspect of the present invention includes at least a compressor, a condenser, a throttling device, and an evaporator that are sequentially connected by a pipe and uses a refrigerant as a working fluid. Since the heat exchanger described in any of the above is used as an evaporator or a condenser, the capacity of the air conditioner can be increased and the energy efficiency can be improved.
[0059]
In addition, the air conditioner according to claim 7 of the present invention uses a single HC refrigerant or a mixed refrigerant containing HC, R32, ammonia, or carbon dioxide as the refrigerant, thereby preventing global warming. An air conditioner can be provided.
[Brief description of the drawings]
FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1 of the present invention.
FIG. 2 is a cross-sectional view of a heat exchanger according to Embodiment 1 of the present invention.
FIG. 3 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.
FIG. 4 is a longitudinal sectional view of a header according to the first embodiment of the present invention.
FIG. 5 is a diagram illustrating an internal working fluid flow of the heat exchanger according to the first embodiment of the present invention.
FIG. 6 is a diagram illustrating characteristics of the heat exchanger according to the first embodiment of the present invention.
FIG. 7 is a diagram illustrating still another characteristic of the heat exchanger according to the first embodiment of the present invention.
FIG. 8 is a diagram illustrating a structure of a joint portion of a partition member, a heat transfer tube, and a header according to the first embodiment of the present invention.
FIG. 9 is a diagram illustrating still another structure of the joining portion of the partition member, the heat transfer tube, and the header according to the first embodiment of the present invention.
FIG. 10 is a cross-sectional view of still another header according to the first embodiment of the present invention.
FIG. 11 is a diagram illustrating a structure of a joining portion of a partition member and a header according to the first embodiment of the present invention.
FIG. 12 is a cross-sectional view from another direction of the header according to the first embodiment of the present invention.
FIG. 13 is a cross-sectional view from yet another direction of the header according to the first embodiment of the present invention.
FIG. 14 is a diagram illustrating a configuration of an indoor unit according to the first embodiment of the present invention.
FIG. 15 is a diagram illustrating a plurality of flow paths of a heat transfer tube according to the first embodiment of the present invention.
FIG. 16 is a perspective view of a heat exchanger according to Embodiment 2 of the present invention.
FIG. 17 is a cross-sectional view of a heat exchanger according to Embodiment 2 of the present invention.
FIG. 18 is a sectional view of a header according to the second embodiment of the present invention.
FIG. 19 is a diagram illustrating the flow of condensed water in the heat exchanger according to the second embodiment of the present invention.
FIG. 20 is a perspective view of a heat exchanger in another example according to the first and second embodiments of the present invention.
FIG. 21 is a sectional view of a header in another example according to the first and second embodiments of the present invention.
FIG. 22 is a sectional view of a heat transfer tube in another example according to the first and second embodiments of the present invention.
FIG. 23 is a cross-sectional view of a heat transfer tube in still another example according to the first and second embodiments of the present invention.
FIG. 24 is a cross-sectional view of a heat transfer tube in still another example according to the first and second embodiments of the present invention.
FIG. 25 is a cross-sectional view of a heat exchanger in another example according to the first and second embodiments of the present invention.
FIG. 26 is a perspective view of a conventional heat exchanger.
FIG. 27 is a cross-sectional view of a conventional heat transfer tube.
FIG. 28 is a cross-sectional view of a conventional heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fin, 2 Flat heat exchanger tube, 3 Header, 5 Air flow direction, 6 Heat transfer pipe refrigerant flow path, 8 Vertical partition member, 9 Horizontal partition member, 10 Inflow pipe, 11 Outflow pipe, 12 Header space, 13 Through-hole, 14 Bulkhead, 18 Fitting groove, 19 Fitting groove, 21 Compressor, 22 Four-way valve, 23 Outdoor heat exchanger, 24 Throttle device, 25 Indoor heat exchanger, 26 Outdoor blower, 28 Indoor blower, 31, 32 Refrigerant piping 33 outdoor units, 34 indoor units, 41 protrusions, 50 heat exchangers, 100 heat exchangers, 103, 104 headers, 102 flat heat transfer tubes, 110 inflow tubes, 111 outflow tubes.

Claims (8)

平行に配列され、個々の間を気体が流動する複数の板状フィンと、前記板状フィンに貫通して配列され、扁平断面の内部に作動流体が流通する複数の流路を設けたU字形状に曲げられた伝熱管と、前記伝熱管の端部が連通するとともに作動流体の流入管と流出管が接続したヘッダと、前記ヘッダ内に設けられ前記流入管から前記伝熱管に連通する空間と前記伝熱管から前記流出管へ連通する空間とを分離するヘッダ長手方向の第1の縦仕切り板と、隣り合う前記U字形状の伝熱管に亘って設けられ、ヘッダ内空間を空気の流れ方向に対向して分離するヘッダ長手方向の第2の縦仕切り板と、前記U字形状の伝熱管の両端部を前記ヘッダ内空間にて隔てる横仕切り板と、を備え、前記ヘッダ内空間を前記第1および第2の縦仕切り板により気体の流れ方向に対して風上側流路と風下側流路に分離し、前記横仕切り板によりヘッダ長手方向の作動流体流れを区切る構成とするとともに、前記流入管から流入した作動冷媒が、蒸発器として用いる場合は前記扁平断面の伝熱管の風上側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風下側流路を流れて前記流出管から流出して、空気の流れ方向に対して並行流となる構成とし、凝縮器として用いる場合は前記扁平断面の伝熱管の風下側流路を流れて前記ヘッダの端部空間に到達すると前記伝熱管の風上側流路を流れて前記流出管から流出し、空気の流れ方向に対して対向流となる構成としたことを特徴とする熱交換器。A plurality of plate-like fins arranged in parallel and through which gas flows, and a U-shape provided with a plurality of channels arranged through the plate-like fins and through which a working fluid flows in a flat cross section A heat transfer tube bent into a shape, a header in which an end of the heat transfer tube communicates, and an inflow tube and an outflow tube for working fluid are connected, and a space provided in the header and communicated from the inflow tube to the heat transfer tube And a first longitudinal partition plate in the header longitudinal direction that separates the space communicating from the heat transfer tube to the outflow tube, and the adjacent U-shaped heat transfer tube , and air flows in the header inner space. a second vertical partition plate of the header longitudinal separating opposite direction, both end portions of the heat transfer tube of the U-shaped and a lateral partition plate that separates at the header space, said header space Gas is generated by the first and second vertical partition plates. It separates into a windward flow path and a leeward flow path with respect to the flow direction, and the working fluid flow in the header longitudinal direction is divided by the horizontal partition plate, and the working refrigerant flowing in from the inflow pipe serves as an evaporator. When using, when it flows through the windward flow path of the heat transfer tube of the flat cross section and reaches the end space of the header, it flows through the leeward flow path of the heat transfer tube and flows out of the outflow pipe in the air flow direction. In contrast, when used as a condenser, when it is used as a condenser, it flows through the leeward flow path of the heat transfer tube having the flat cross section and reaches the end space of the header, and then flows through the windward flow path of the heat transfer tube. A heat exchanger characterized in that it flows out of the outflow pipe and becomes a counterflow with respect to the air flow direction . 前記伝熱管の内部に隔壁で隔てられた作動流体が流通する複数の流路において、前記縦仕切り板により分離された領域毎に前記流路断面積が異なることを特徴とする請求項1に記載の熱交換器。  2. The flow path cross-sectional area is different for each region separated by the vertical partition plate in a plurality of flow paths in which a working fluid separated by a partition flows inside the heat transfer tube. Heat exchanger. 前記U字形状の伝熱管を気体の流れ方向に対して複数列配設したことを特徴とする請求項1に記載の熱交換器。  The heat exchanger according to claim 1, wherein the U-shaped heat transfer tubes are arranged in a plurality of rows in the gas flow direction. 前記ヘッダ内の流路断面積を伝熱管の流路断面積の和以下としたことを特徴とする請求項1乃至請求項3のいずれかに記載の熱交換器。  The heat exchanger according to any one of claims 1 to 3, wherein a flow path cross-sectional area in the header is equal to or less than a sum of flow path cross-sectional areas of the heat transfer tubes. 前記ヘッダに前記伝熱管が連通する貫通孔と前記縦仕切り板に前記伝熱管が挿入係止する嵌合溝を形成したことを特徴とする請求項1乃至請求項3のいずれかに記載の熱交換器。  The heat according to any one of claims 1 to 3, wherein a through hole through which the heat transfer tube communicates with the header and a fitting groove into which the heat transfer tube is inserted and locked are formed in the vertical partition plate. Exchanger. 前記板状フィンの前記伝熱管間に切り起こしを有し、前記切り起こしは前記扁平伝熱管の長軸中央部に位置しないことを特徴とする請求項1乃至請求項5のいずれかに記載の熱交換器。  6. The plate-like fin has a cut-and-raised portion between the heat transfer tubes, and the cut-and-raised portion is not located at the center of the long axis of the flat heat transfer tube. Heat exchanger. 少なくとも、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続し、作動流体として冷媒を用いるとともに、請求項1乃至請求項6のいずれかに記載の熱交換器を前記蒸発器または凝縮器として用いたことを特徴とする空気調和機。  7. At least a compressor, a condenser, a throttle device, and an evaporator are connected sequentially by piping, and a refrigerant is used as a working fluid, and the heat exchanger according to claim 1 is used as the evaporator or the condenser. An air conditioner characterized by being used as a container. 冷媒として、HC冷媒の単一、またはHCを含む混合冷媒、R32、アンモニア、二酸化炭素のいずれかを用いたことを特徴とする請求項7に記載の空気調和機。  The air conditioner according to claim 7, wherein the refrigerant is a single HC refrigerant or a mixed refrigerant containing HC, R32, ammonia, or carbon dioxide.
JP2002088108A 2002-03-27 2002-03-27 Heat exchanger and air conditioner using the same Expired - Lifetime JP4055449B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088108A JP4055449B2 (en) 2002-03-27 2002-03-27 Heat exchanger and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088108A JP4055449B2 (en) 2002-03-27 2002-03-27 Heat exchanger and air conditioner using the same

Publications (2)

Publication Number Publication Date
JP2003287390A JP2003287390A (en) 2003-10-10
JP4055449B2 true JP4055449B2 (en) 2008-03-05

Family

ID=29234083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088108A Expired - Lifetime JP4055449B2 (en) 2002-03-27 2002-03-27 Heat exchanger and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP4055449B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329832A (en) * 2014-03-28 2015-02-04 海尔集团公司 Heat exchange device and semiconductor refrigerator with heat exchange device
CN105135753A (en) * 2015-08-12 2015-12-09 浙江康盛热交换器有限公司 Micro channel heat exchanger for heat pump air conditioner
CN106152619A (en) * 2016-07-19 2016-11-23 上海交通大学 Rectangle split-flow baffles formula parallel-flow evaporator
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561305B2 (en) * 2004-10-18 2010-10-13 三菱電機株式会社 Heat exchanger
JP4622492B2 (en) * 2004-12-06 2011-02-02 パナソニック株式会社 Heat exchanger and manufacturing method thereof
JP2007163114A (en) * 2005-12-12 2007-06-28 Atago Seisakusho:Kk Plate laminated type heat exchanger
JP2007183071A (en) * 2006-01-10 2007-07-19 Tokyo Bureizu Kk High-pressure-resistant compact heat exchanger and manufacturing method of the same
EP1870658A1 (en) * 2006-06-20 2007-12-26 Delphi Technologies, Inc. A heat exchanger and a method of manufacturing thereof
US8205470B2 (en) * 2006-09-29 2012-06-26 Daikin Industries, Ltd. Indoor unit for air conditioner
JP4749373B2 (en) * 2007-04-10 2011-08-17 三菱電機株式会社 Air conditioner
JP2009085468A (en) * 2007-09-28 2009-04-23 Mitsubishi Materials Corp Fin tube-type heat exchanger and its manufacturing method
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
FR2933484A1 (en) * 2008-07-03 2010-01-08 2F2C METHOD OF REFRIGERATING AT LEAST ONE FURNITURE AND / OR A REFRIGERATING CHAMBER AND HEATING AT LEAST ONE LOCAL, INSTALLATION AND HEAT EXCHANGER FOR ITS IMPLEMENTATION
US8234881B2 (en) * 2008-08-28 2012-08-07 Johnson Controls Technology Company Multichannel heat exchanger with dissimilar flow
JP2010127510A (en) * 2008-11-26 2010-06-10 Sharp Corp Heat exchanger
JP5279514B2 (en) * 2009-01-05 2013-09-04 三菱電機株式会社 HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND AIR CONDITIONER HAVING THE HEAT EXCHANGER
JP2011080655A (en) * 2009-10-06 2011-04-21 Toshiba Electric Appliance Co Ltd Ice-making machine
JP5195733B2 (en) * 2009-12-17 2013-05-15 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus equipped with the same
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP5171983B2 (en) * 2011-04-15 2013-03-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP5523495B2 (en) * 2011-04-22 2014-06-18 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle apparatus
JP5595343B2 (en) * 2011-06-29 2014-09-24 三菱電機株式会社 Heat exchanger, refrigeration cycle circuit using the same, refrigerator using the refrigeration cycle circuit, and air conditioner
JP5626254B2 (en) * 2012-04-05 2014-11-19 ダイキン工業株式会社 Heat exchanger
WO2013160957A1 (en) 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, indoor unit, and refrigeration cycle device
JP5591285B2 (en) * 2012-06-18 2014-09-17 三菱電機株式会社 Heat exchanger and air conditioner
CN102748964B (en) * 2012-07-31 2014-02-05 淮南润成科技股份有限公司 Coiler type cooling grid
CN103277942B (en) * 2013-05-14 2015-06-03 广东美的制冷设备有限公司 Parallel flow heat exchanger and air conditioner
WO2015045105A1 (en) 2013-09-27 2015-04-02 三菱電機株式会社 Heat exchanger and air conditioner using same
WO2015059832A1 (en) * 2013-10-25 2015-04-30 三菱電機株式会社 Heat exchanger and refrigeration cycle device using said heat exchanger
AU2013404239B2 (en) 2013-10-29 2016-11-03 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
JP6200280B2 (en) * 2013-11-05 2017-09-20 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Method for expanding heat exchanger tube and air conditioner
WO2015132963A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Heat exchanger and air conditioner
JP6582373B2 (en) * 2014-09-01 2019-10-02 株式会社富士通ゼネラル Heat exchanger
DE102015207844A1 (en) * 2015-04-28 2016-11-03 BSH Hausgeräte GmbH Refrigerating appliance with a heat exchanger
JP6502904B2 (en) * 2015-09-04 2019-04-17 ダイキン工業株式会社 Heat exchanger
CN105371687B (en) * 2015-10-27 2017-07-11 珠海格力电器股份有限公司 Heat exchange assembly, heat exchanger and refrigerating system
DK201570883A1 (en) * 2015-12-29 2017-04-18 Dantherm Cooling As Heat Transfer System or Element with Fewer or No Headers
KR102595179B1 (en) * 2016-01-21 2023-10-30 삼성전자주식회사 Air conditioner
KR20170087807A (en) * 2016-01-21 2017-07-31 삼성전자주식회사 Air conditioner
CN105865090A (en) * 2016-04-22 2016-08-17 青岛科创蓝新能源股份有限公司 Heat transfer enhancing and fouling preventing and removing heat pump unit
CN106196739A (en) * 2016-07-19 2016-12-07 上海交通大学 Arch deflector parallel-flow evaporator
CN106196740A (en) * 2016-07-19 2016-12-07 上海交通大学 U-shaped connector type parallel-flow evaporator
JPWO2019155571A1 (en) * 2018-02-08 2020-11-19 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
JP6693588B1 (en) 2019-03-29 2020-05-13 株式会社富士通ゼネラル Heat exchanger
WO2021025156A1 (en) * 2019-08-07 2021-02-11 ダイキン工業株式会社 Heat exchanger and heat pump device
EP4043823A4 (en) * 2019-10-10 2022-10-05 Mitsubishi Electric Corporation Heat exchanger, heat exchanger unit, refrigeration cycle apparatus, and heat exchange member manufacturing method
JP7327213B2 (en) * 2020-03-03 2023-08-16 株式会社富士通ゼネラル Heat exchanger

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937564Y2 (en) * 1979-03-10 1984-10-18 カルソニックカンセイ株式会社 Heat exchanger
JPS63163785A (en) * 1986-12-25 1988-07-07 Nippon Denso Co Ltd Heat exchanger
JP2510248Y2 (en) * 1990-04-13 1996-09-11 株式会社ゼクセル Pipe joint structure for heat exchanger tank
JPH0525173U (en) * 1991-09-11 1993-04-02 三菱重工業株式会社 Air heat exchanger
JPH0719783A (en) * 1993-06-21 1995-01-20 Sanden Corp Heat exchanger
JPH10281684A (en) * 1997-04-07 1998-10-23 Sanden Corp Heat exchanger
JPH10332212A (en) * 1997-06-02 1998-12-15 Toshiba Corp Refrigeration cycle of air conditioner
JP3485006B2 (en) * 1998-12-22 2004-01-13 三菱電機株式会社 Refrigeration air conditioner using flammable refrigerant
JP4358981B2 (en) * 2000-10-24 2009-11-04 昭和電工株式会社 Air conditioning condenser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104329832A (en) * 2014-03-28 2015-02-04 海尔集团公司 Heat exchange device and semiconductor refrigerator with heat exchange device
CN104329832B (en) * 2014-03-28 2017-04-26 海尔集团公司 Heat exchange device and semiconductor refrigerator with heat exchange device
CN105135753A (en) * 2015-08-12 2015-12-09 浙江康盛热交换器有限公司 Micro channel heat exchanger for heat pump air conditioner
US11105538B2 (en) * 2015-12-01 2021-08-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN106152619A (en) * 2016-07-19 2016-11-23 上海交通大学 Rectangle split-flow baffles formula parallel-flow evaporator

Also Published As

Publication number Publication date
JP2003287390A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
JP4055449B2 (en) Heat exchanger and air conditioner using the same
JP4180801B2 (en) Refrigeration and air conditioning cycle equipment
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP4749373B2 (en) Air conditioner
JP4827882B2 (en) Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
KR101462173B1 (en) Heat exchanger
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
EP3569938B1 (en) Air conditioner
JP6890509B2 (en) Air conditioner
CN115298507A (en) Heat exchanger
CN115280092A (en) Heat exchanger
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
CN110651162B (en) Refrigerant evaporator and method for manufacturing same
JP2004108647A (en) Fin tube type heat exchanger and refrigeration cycle air conditioner using it
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
WO2019215837A1 (en) Heat exchanger, indoor unit, outdoor unit, air conditioner, method for manufacturing communication pipe, and method for manufacturing heat exchanger
EP4130632B1 (en) Heat exchanger, outdoor unit, and air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R151 Written notification of patent or utility model registration

Ref document number: 4055449

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term