JP4845943B2 - Finned tube heat exchanger and refrigeration cycle air conditioner - Google Patents

Finned tube heat exchanger and refrigeration cycle air conditioner Download PDF

Info

Publication number
JP4845943B2
JP4845943B2 JP2008216176A JP2008216176A JP4845943B2 JP 4845943 B2 JP4845943 B2 JP 4845943B2 JP 2008216176 A JP2008216176 A JP 2008216176A JP 2008216176 A JP2008216176 A JP 2008216176A JP 4845943 B2 JP4845943 B2 JP 4845943B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
tube
flat tube
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008216176A
Other languages
Japanese (ja)
Other versions
JP2010054060A (en
Inventor
晃 石橋
厚志 望月
相武 李
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008216176A priority Critical patent/JP4845943B2/en
Publication of JP2010054060A publication Critical patent/JP2010054060A/en
Application granted granted Critical
Publication of JP4845943B2 publication Critical patent/JP4845943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

この発明は、冷媒と気体等の流体間での熱交換を行うためのフィンチューブ型熱交換器およびフィンチューブ型熱交換器製造方法並びにそれを用いた冷凍サイクル空調装置に関するものである。   The present invention relates to a finned tube heat exchanger and a finned tube heat exchanger manufacturing method for performing heat exchange between a refrigerant and a fluid such as a gas, and a refrigeration cycle air conditioner using the same.

冷凍サイクル空調装置に用いられる従来の熱交換器として、伝熱管に扁平管を用い、扁平管形状を概ね翼形状とし、フィン上に多くの切り起しを用いて構成されたフィンチューブ型熱交換器が開示されている(例えば特許文献1参照)。   As a conventional heat exchanger used in refrigeration cycle air conditioners, a flat tube is used for the heat transfer tube, the flat tube shape is generally a wing shape, and a fin tube type heat exchange constructed with many cuts on the fins. A vessel is disclosed (see, for example, Patent Document 1).

この従来例では、主熱交換器の伝熱管に翼形状の偏平管を用いることにより、円管と比較し、通風抵抗が大幅に小さくできるという利点がある。また、翼形状とすることで、フィンへの挿入性も向上する。   In this conventional example, the use of a blade-shaped flat tube as the heat transfer tube of the main heat exchanger has an advantage that the ventilation resistance can be significantly reduced as compared with the circular tube. Moreover, the insertion property to a fin improves also by setting it as a wing | blade shape.

偏平状の伝熱管を用いた熱交換器を製造する際に、適宜間隔をおいて多数重ねられた板状フィン1を治具で固定し、各板状フィンの挿通穴に挿入して板状フィンと偏平熱交換器を密着させ、その後、ロウ材や、接着剤によって密着させている。   When manufacturing a heat exchanger using flat heat transfer tubes, a large number of plate-like fins 1 stacked at appropriate intervals are fixed with a jig and inserted into the insertion holes of each plate-like fin to form a plate shape. The fin and the flat heat exchanger are brought into close contact with each other, and then brought into close contact with a brazing material or an adhesive.

また、別の従来の熱交換器として、伝熱管に扁平管を用い、補助熱交換器部分とメイン熱交換器部分のパス数を変化させることで凝縮器の伝熱性能の向上を図ったフィンチューブ型熱交換器が開示されている(例えば特許文献2参照)。   Another conventional heat exchanger is a fin that uses a flat tube as the heat transfer tube and improves the heat transfer performance of the condenser by changing the number of passes between the auxiliary heat exchanger part and the main heat exchanger part. A tube heat exchanger is disclosed (see, for example, Patent Document 2).

特開2002−139282号公報(第4頁、図1〜図3)JP 2002-139282 A (page 4, FIGS. 1 to 3) 特開2005−265263号公報(第10頁、図10)Japanese Patent Laying-Open No. 2005-265263 (page 10, FIG. 10)

しかしながら、特許文献1で開示された従来の方法では、図15の熱交換器は、フィン上の切り起しを多数設けているため、通風抵抗が大きくなり、死水域が生じるという問題があった。   However, in the conventional method disclosed in Patent Document 1, the heat exchanger of FIG. 15 has a problem in that a large number of cuts and protrusions on the fins are provided, so that ventilation resistance increases and a dead water area is generated. .

また、扁平管熱交の扁平管形状を翼形状としており、加工が困難となるという問題があった。   In addition, the flat tube shape of the flat tube heat exchange is a wing shape, which makes it difficult to process.

また、図16のように熱交換器を全て扁平管とした場合、凝縮器として用いる場合、冷媒が過冷却となった場合、補助熱交換器において十分に液を保持出来ないという問題があった。また、蒸発器として用いられる場合、補助熱交換器における管内圧損が大きく性能低下を引き起こすという問題があった。   Further, when all the heat exchangers are flat tubes as shown in FIG. 16, when used as a condenser, there is a problem that the auxiliary heat exchanger cannot sufficiently hold the liquid when the refrigerant is supercooled. . In addition, when used as an evaporator, there is a problem in that the pressure loss in the tube in the auxiliary heat exchanger is large and the performance is reduced.

この発明は、上で述べたような問題点を解決するためになされたものであり、扁平管後流の死水域を減少させ、通風抵抗の減少および熱交換効率の高い熱交換器並びにそれを用いた冷凍サイクル空調装置を提供することを主な目的としている。   The present invention has been made to solve the above-described problems, and reduces a dead water area in the wake of a flat tube, reduces a draft resistance, and has a high heat exchange efficiency, and a heat exchanger thereof. The main purpose is to provide a used refrigeration cycle air conditioner.

この発明に係る熱交換器は、上記の目標を達成するために、主熱交換器と、円管の伝熱管を有する補助熱交換器とを備え、主熱交換器は、複数平行に配置され、その間を空気が流動する開口部を有した板状フィンと、板状フィンに直角に挿入され、内部を作動冷媒が通過し、空気の通過方向に対して直角方向の段方向へ複数段設けられるとともに空気の通過方向の列方向に複数列設けられた扁平管と、板状フィンに空気流れに対し複数列設けられた切り起しと、を備え、複数の切り起しの内、空気の通過方向の下流側の切り起しの後縁部は扁平管下流後縁部よりも下流側に配置され、上流側の切り起しの迎え角より下流側の切り起しの迎え角を大きくし、さらに上流側の切り起しの脚部切り起し角度β1と下流側の切り起しの脚部切り起し角度β2の比率β1/β2を1.0<β1/β2<2.0となるようにしたものである。 The heat exchanger according to the present invention includes a main heat exchanger and an auxiliary heat exchanger having a circular heat transfer tube, and a plurality of main heat exchangers are arranged in parallel in order to achieve the above-described goal. A plate-like fin having an opening through which air flows between the plate-like fin and a plate-like fin inserted perpendicularly to the plate-like fin, the working refrigerant passes through the inside, and a plurality of steps are provided in a step direction perpendicular to the air passage direction. A plurality of flat tubes provided in a plurality of rows in the row direction of the air passing direction, and a plurality of rows of raised portions provided in the plate fin for the air flow. The trailing edge of the cut-and-raised downstream side in the passing direction is arranged downstream of the downstream trailing edge of the flat tube, and the angle of attack on the downstream side is made larger than the angle of attack on the upstream side. Further, the leg cut and raised angle β1 of the upstream cut and the leg cut and raised angle of the downstream cut and raised The ratio .beta.1 / .beta.2 of .beta.2 is obtained as a 1.0 <β1 / β2 <2.0.

この発明によれば、主熱交換器と、円管の伝熱管を有する補助熱交換器とを備え、主熱交換器は、複数平行に配置され、その間を空気が流動する開口部を有した板状フィンと、板状フィンに直角に挿入され、内部を作動冷媒が通過し、空気の通過方向に対して直角方向の段方向へ複数段設けられるとともに空気の通過方向の列方向に複数列設けられた扁平管と、板状フィンに空気流れに対し複数列設けられた切り起しと、を備え、複数の切り起しの内、空気の通過方向の下流側の切り起しの後縁部は扁平管下流後縁部よりも下流側に配置され、上流側の切り起しの迎え角より下流側の切り起しの迎え角を大きくし、さらに上流側の切り起しの脚部切り起し角度β1と下流側の切り起しの脚部切り起し角度β2の比率β1/β2を1.0<β1/β2<2.0となるようにしたので、扁平管後流の死水域が減少し、通風抵抗を減少させることができる。また、補助熱交換器は円管の伝熱管を使用するので、高い熱交換性能を確保することができる。また、切り起し脚部裏面の剥離を大幅に抑えることが出来、通風抵抗の低減、熱伝達率の増加に寄与することが出来る。そして、熱交換効率が増大し、送風機の入力が低減できる。 According to this invention, it is provided with a main heat exchanger and an auxiliary heat exchanger having a circular heat transfer tube, and the main heat exchangers are arranged in parallel and have openings through which air flows. Plate-shaped fins, inserted into the plate-shaped fins at right angles, through which the working refrigerant passes, are provided in a plurality of stages in a step direction perpendicular to the air passage direction, and a plurality of rows in the row direction of the air passage direction A flat tube provided on the plate-like fin, and a plurality of rows of cuts and raiseds for the air flow, and a trailing edge of the cut and raised downstream in the air passage direction among the plurality of cuts Is arranged downstream from the downstream trailing edge of the flat tube, the angle of attack on the downstream side is larger than the angle of attack on the upstream side, and the leg portion on the upstream side is further raised. The ratio β1 / β2 between the raising angle β1 and the lower leg raising angle β2 is 1.0 <β1 / β2. Since was set to be 2.0, it is possible to dead water of flat tube downstream is reduced, reducing the ventilation resistance. Further, since the auxiliary heat exchanger uses a circular heat transfer tube, high heat exchange performance can be ensured. In addition, it is possible to greatly suppress peeling of the back surface of the cut leg and contribute to the reduction of the ventilation resistance and the increase of the heat transfer coefficient. And heat exchange efficiency increases and the input of a fan can be reduced.

実施の形態1.
図1はこの発明の実施の形態1の熱交換器の側面断面を示す図である。この実施の形態1において熱交換器は前面上部に置かれた扁平管を用いた主熱交換器9、10と前面下部に置かれた扁平管を用いた主熱交換器11、12背面に置かれた扁平管を用いた主熱交換器7,8および空気流れ方向の1列目に配置される補助熱交換器4、5、6で構成される。
Embodiment 1 FIG.
1 is a side sectional view of a heat exchanger according to Embodiment 1 of the present invention. In the first embodiment, the heat exchanger is placed on the back of the main heat exchangers 9 and 10 using flat tubes placed on the upper front and the main heat exchangers 11 and 12 using flat tubes placed on the lower front. The main heat exchangers 7 and 8 using the flat tubes and the auxiliary heat exchangers 4, 5 and 6 arranged in the first row in the air flow direction.

この実施の形態1において、矢印で示された空気流れ方向の2列目と3列目に配置される主熱交換器について説明する。前面上部に配置される主熱交換器9,10は、板状フィン1の積層方向のピッチFpはFp=0.0011mであり、フィン厚みFt=0.0001m、また空気の流れ方向のフィン幅はL=0.0142m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.0102m、また、前面下部に配置される主熱交換器11,12はFp=0.0011mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0137m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.0095m、また、前面下部に配置される主熱交換器7,8はFp=0.0011mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0137m、熱交換器の段方向に隣接する伝熱管の距離DpはDp=0.009mである。伝熱管は扁平形状とし、フィンカラーと伝熱管がロウ付けにより、完全接合されている。また、主熱交換器において、扁平管は千鳥状に配列され、列毎に板状フィンは分割されており、この列間に隙間19が介在する。また、伝熱管内には耐圧を保持するため、隔壁が設けられており、管内は多数の室に分割されている。また、空気のながれ方向に平行な伝熱管の長軸径をdb=0.0105m、空気の流れ方向に対し前縁部の伝熱管の短軸径をdb=0.0022mとする。列数は2列の例である。また、スリットを1列につき2つ備えている。   In the first embodiment, the main heat exchangers arranged in the second and third rows in the air flow direction indicated by arrows will be described. In the main heat exchangers 9 and 10 arranged at the upper front, the pitch Fp in the stacking direction of the plate-like fins 1 is Fp = 0.0011 m, the fin thickness Ft = 0.0001 m, and the fin width in the air flow direction Is L = 0.0142 m, the distance Dp between the heat transfer tubes adjacent in the stage direction of the heat exchanger is Dp = 0.0102 m, and the main heat exchangers 11 and 12 arranged at the lower part of the front face are Fp = 0.0011 m. Yes, fin thickness Ft = 0.0001m, fin width in the direction of air flow is L = 0.0137m, distance Dp of heat transfer tubes adjacent in the heat exchanger step direction is Dp = 0.0095m, and lower front part The main heat exchangers 7 and 8 arranged in the above are Fp = 0.0011 m, the fin thickness Ft = 0.0001 m, and the fin width in the air flow direction is L = 0.137m, in the step direction of the heat exchanger The distance Dp between adjacent heat transfer tubes is Dp = 0.09 m. The heat transfer tube has a flat shape, and the fin collar and the heat transfer tube are completely joined by brazing. Further, in the main heat exchanger, the flat tubes are arranged in a staggered manner, the plate-like fins are divided for each row, and a gap 19 is interposed between the rows. Further, in order to maintain a pressure resistance in the heat transfer tube, a partition wall is provided, and the inside of the tube is divided into a number of chambers. In addition, the major axis diameter of the heat transfer tube parallel to the air flow direction is db = 0.0105 m, and the minor axis diameter of the heat transfer tube at the leading edge with respect to the air flow direction is db = 0.0022 m. The number of columns is an example of two columns. Two slits are provided per row.

円管を用いた補助熱交換器4、5、6は、板状フィン1の積層方向のピッチFpはFp=0.0013mであり、フィン厚みFt=0.0001m、また空気のながれ方向のフィン幅はL=0.0127m、熱交換器の段方向に隣接する伝熱管の中心の距離DpはDp=0.0204、伝熱管は円形状とし、フィン前縁部まで、フィンカラー39と伝熱管が機械拡管により、圧接合されている。   The auxiliary heat exchangers 4, 5, and 6 using circular pipes have a pitch Fp in the stacking direction of the plate-like fins 1 of Fp = 0.0013 m, a fin thickness Ft = 0.0001 m, and fins in the direction of air flow. The width is L = 0.0127 m, the distance Dp between the centers of the heat transfer tubes adjacent in the direction of the heat exchanger is Dp = 0.0204, the heat transfer tubes are circular, and the fin collar 39 and the heat transfer tubes are connected to the fin front edge. Are pressure bonded by mechanical expansion.

上記のように構成される扁平管を用いた熱交換器において、扁平管2および円管はアルミニウム合金製押し出し形材にて形成され、板状フィン1はアルミニウム合金製板材にて形成されている。このように熱交換器全てを同じ材質とすることで、腐食の耐力は向上する。   In the heat exchanger using the flat tube configured as described above, the flat tube 2 and the circular tube are formed of an extruded shape made of aluminum alloy, and the plate-like fins 1 are formed of a plate material made of aluminum alloy. . Thus, by making all the heat exchangers the same material, the proof stress of corrosion improves.

また、主熱交換器において扁平管を千鳥状に配列することで、扁平管前縁の熱伝達率が向上し、熱交換器性能は向上する。   Moreover, by arranging the flat tubes in a staggered manner in the main heat exchanger, the heat transfer coefficient of the leading edge of the flat tubes is improved, and the heat exchanger performance is improved.

また、主熱交換器において、2列目と3列目の板状フィンを分割することで、熱交換器の配置が室内機箱内において様々に対応でき、2列目の板状フィンにおける前縁効果(空気境界層分断効果)による熱伝達率向上も期待出来る。   Further, in the main heat exchanger, by dividing the second and third plate fins, the arrangement of the heat exchanger can be variously accommodated in the indoor unit box, and the leading edge of the second plate fins An improvement in heat transfer coefficient due to the effect (air boundary layer separation effect) can also be expected.

また、実験結果により、切り起しの列方向の長さを切り起し間距離と等しくすることにより、熱伝達率が向上することが見出された。   Further, it has been found from the experimental results that the heat transfer coefficient is improved by making the length of the row direction of the cut and raised equal to the distance between the cut and raised.

また、主熱交換器において、前面上部のフィン幅Lp2を前面下部および背面のフィン幅Lp1およびLp3よりも大きくすることで、風速の大きい前面上部の熱交換器出口温度を空気入り口温度に接近させ温度効率を熱交換器全体で一様に近づけることが出来る。また、重力方向に対し傾斜の大きい前面上部のフィン幅を大きくすることで、扁平管とフィン後縁部の距離が拡大し、蒸発器として用いられるときの露垂れを防止出来る。   Moreover, in the main heat exchanger, the fin width Lp2 at the upper front is made larger than the fin widths Lp1 and Lp3 at the lower front and the rear, so that the heat exchanger outlet temperature at the front upper part where the wind speed is high approaches the air inlet temperature. The temperature efficiency can be made uniform throughout the heat exchanger. Further, by increasing the fin width at the front upper portion having a large inclination with respect to the gravitational direction, the distance between the flat tube and the fin rear edge is increased, thereby preventing dripping when used as an evaporator.

図2は扁平管を用いた主熱交換器の板状フィンの詳細図である。板状は空気流れ方向前縁部で開口されており、前縁部には板状フィンを積層する時にピッチを規制するフィンカラーが無い。フィンカラーの無い部位の板状フィンは円弧状の切り欠を設けており、板状フィン上に切り起しを2本設けている。   FIG. 2 is a detailed view of a plate-like fin of a main heat exchanger using a flat tube. The plate shape is opened at the front edge portion in the air flow direction, and the front edge portion has no fin collar for regulating the pitch when the plate fins are stacked. A plate-like fin at a portion having no fin collar is provided with an arc-shaped notch, and two cuts and ridges are provided on the plate-like fin.

板状フィン状に設けられる2本の切り起しについて、空気流れ方向の上流部の切り起しの脚部はほぼ列方向(空気流れ方向)と平行に配置される。一方、空気流れ方向の下流部の切り起しは列方向に対し、迎え角度θを成すように配置される。空気流れ方向の上流部の切り起しは扁平管に挟まれ、板状フィン間の空気流れもほぼ列方向と同一であるため、空気流れ方向と平行であることが有効であるが、空気流れ方向の下流部の切り起しは、扁平管の後方まで切り起しが進入しているため、迎え角度θを成すことで扁平管の後流部の淀み(死水域)を抑えることができる。また、空気流れ方向の上流部の切り起しの脚部の切り起し角β1よりも下流部の切り起しの脚部の切り起し角β2の方が小さく形成される。下流部の切り起しは迎え角度θを成しているため、β2を大きくすると、切り起し脚部の紙面裏側に剥離が生じ、通風抵抗が増え、熱伝達率が減少するが、β1よりβ2を小さくすることで、切り起し脚部裏面の剥離を大幅に抑えることが出来、通風抵抗の低減、熱伝達率の増加に寄与することが出来る。   With respect to the two cut-and-raised portions provided in a plate-like fin shape, the cut-and-raised leg portions in the upstream portion in the air flow direction are arranged substantially parallel to the row direction (air flow direction). On the other hand, the cut-and-raised portion in the downstream portion in the air flow direction is arranged so as to form an angle of attack θ with respect to the row direction. The upstream part of the air flow direction is sandwiched between flat tubes, and the air flow between the plate fins is almost the same as the row direction, so it is effective to be parallel to the air flow direction. Since the cut-and-raised portion of the downstream portion in the direction has advanced to the rear of the flat tube, it is possible to suppress the stagnation (dead water area) of the wake portion of the flat tube by forming the angle of attack θ. Further, the cut-and-raised angle β2 of the cut-and-raised leg portion in the downstream portion is formed smaller than the cut-and-raised angle β1 of the cut-and-raised leg portion in the upstream portion in the air flow direction. Since the cut-and-raft of the downstream portion forms an angle of attack θ, if β2 is increased, peeling occurs on the back side of the paper surface of the leg and the draft resistance is increased and the heat transfer rate is decreased, but from β1 By making β2 small, it is possible to greatly suppress the separation and peeling of the back surface of the leg portion, which can contribute to a reduction in ventilation resistance and an increase in heat transfer coefficient.

図3は、空気流れ方向の上流部の切り起しの脚部の切り起し角β1と下流部の切り起しの脚部の切り起し角β2の比率β1/β2に対する管外熱伝達率αoと通風抵抗ΔPの比率αo/ΔPの関係を示した特性図である。β1/β2を大きくするとαo/ΔPは向上し、β1/β2=2.0付近で最大となり、β1/β2=2.3以上でβ1/β2=1.0でのαo/ΔP以下となる。管外熱伝達率αoが増大すると熱交換効率が増大し、ΔPが減少すると送風機の入力が低減できる。よって、αo/ΔPは大きい程良いが、特に1.0<β1/β2<2.0の範囲で性能の良い空調機が構成できる。
FIG. 3 shows the heat transfer coefficient outside the tube with respect to the ratio β1 / β2 of the cut-and-raft angle β1 of the upstream leg portion in the air flow direction and the cut-and-raft angle β2 of the downstream leg portion. FIG. 5 is a characteristic diagram showing the relationship between the ratio αo / ΔP of αo and ventilation resistance ΔP. When β1 / β2 is increased, αo / ΔP is improved, becomes maximum near β1 / β2 = 2.0, becomes equal to or larger than β1 / β2 = 2.3, and becomes less than αo / ΔP at β1 / β2 = 1.0. When the external heat transfer coefficient αo increases, the heat exchange efficiency increases, and when ΔP decreases, the input of the blower can be reduced. Therefore, it is better that αo / ΔP is larger, but an air conditioner with good performance can be configured particularly in the range of 1.0 <β1 / β2 <2.0.

図4〜図7は板状フィンと扁平管を炉中で接合するために配置されるロウ材23について示したものである。図4は扁平管および板状フィンの空気方向前縁の切り欠き部に2本の丸棒を配置したものである。このようにロウ材を板状フィン(フィンカラー)と扁平管の接する重力方向上部に配置することで、ロウ材は扁平管の左右に行き渡り、十分に板状フィンと扁平管が接合される。   4 to 7 show a brazing material 23 arranged for joining plate-like fins and flat tubes in a furnace. FIG. 4 shows a case where two round bars are arranged in the cutout portion of the front edge of the flat tube and the plate fin in the air direction. By arranging the brazing material at the upper part in the gravity direction where the plate-like fin (fin collar) and the flat tube are in contact with each other, the brazing material spreads to the left and right of the flat tube, and the plate-like fin and the flat tube are sufficiently joined.

図5は、図4の2本の丸ロウ材を繋ぎ、扁平管の真上に配置したもので、ロウ材配置時の位置安定性が向上する。また、ロウ材は扁平管の左右に行き渡り、十分にフィンと扁平管が接合される。   FIG. 5 connects the two round brazing members of FIG. 4 and arranges them directly above the flat tube, so that the positional stability at the time of brazing material arrangement is improved. Also, the brazing material spreads to the left and right of the flat tube, and the fin and the flat tube are sufficiently joined.

図6は、板状のロウ材を概ね扁平管の前縁円弧を覆い被せるように半円弧形状としたもので、ロウ材配置時の位置安定性が向上する。また、ロウ材は扁平管の左右に行き渡り、十分にフィンと扁平管が接合される。   In FIG. 6, a plate-shaped brazing material is formed in a semicircular arc shape so as to cover the front edge arc of the flat tube, and the positional stability when the brazing material is arranged is improved. Also, the brazing material spreads to the left and right of the flat tube, and the fin and the flat tube are sufficiently joined.

図7は、板状のロウ材を概ね扁平管の前縁円弧と接するようにへの字形状としたもので、ロウ材配置時の位置安定性が向上する。また、ロウ材は扁平管の左右に行き渡り、十分にフィンと扁平管が接合される。   In FIG. 7, the plate-like brazing material is formed in a U-shape so as to be substantially in contact with the front edge arc of the flat tube, and the positional stability when the brazing material is arranged is improved. Also, the brazing material spreads to the left and right of the flat tube, and the fin and the flat tube are sufficiently joined.

次に、この実施の形態1の熱交換器の製造工程について記す。主熱交換器において、扁平管は押し出し加工で成形され、その後プレス加工にて外周形状をテーパ状に加工され、冷媒の流路を構成する角状ヘッダに挿入され、治具によって固定された積層されたフィンに挿入され、角状ヘッダに蓋を付加し、蓋に冷媒配管を付加したのち、ロウ材を扁平管上部、角状ヘッダ-扁平管間、角状ヘッダとヘッダの蓋間、ヘッダの蓋と配管間、角状ヘッダと接続配管間に配置し、冷媒配管によって接続され2列毎組み合わされた熱交換器組み立てを炉中ロウ付けし、洗浄後、親水処理材を塗布し、乾燥した後、複数の熱交換器組み立てと分配器および再熱弁をバーナーロウ付けにより接合した後、拡管により製造された円管補助熱交換器に付加された配管とバーナーロウ付けにより接合されるという手順で製造される。   Next, the manufacturing process of the heat exchanger according to the first embodiment will be described. In the main heat exchanger, the flat tube is formed by extrusion processing, and then the outer peripheral shape is processed into a taper shape by press processing, inserted into a rectangular header that constitutes the flow path of the refrigerant, and fixed by a jig After inserting the lid into the square fin, adding a lid to the square header and adding refrigerant piping to the lid, brazing the brazing material to the upper part of the flat pipe, between the square header and flat pipe, between the square header and the header lid, header The heat exchanger assembly that is placed between the lid and the pipe, between the square header and the connection pipe, connected by the refrigerant pipe and combined in two rows is brazed in the furnace, washed, then coated with hydrophilic treatment material, and dried After that, a plurality of heat exchanger assemblies, distributors and reheat valves are joined by burner brazing, and then joined by pipes and burner brazing added to the circular tube auxiliary heat exchanger manufactured by expansion Manufactured in The

図8はこの実施の形態1の蒸発器として用いられた場合の冷媒流路を示す簡易説明図であり、図9(a)は、冷媒流路を示す図であり、図9(b)は主熱交換器の冷媒の流路の拡大図である。次に、冷媒経路について図8、図9(a)及び図9(b)を用いて説明する。
冷房時、蒸発器として用いられる場合、冷媒は2パス部の補助熱交換器4,5,6を通り、合流後、3分岐する分配器を通過し、前面上部に配置される扁平管を用いた主熱交換器に付加される角ヘッダ内25で更に2分岐され、熱交換器を通過し、分配器により合流後、絞り弁26を通過、6分岐する分配器27を通過後、前面下部と背面に配置される扁平管を用いた主熱交換器に付加される角ヘッダ内で更に2分岐され、主熱交換器を通過し、円柱状のヘッダ28を通過する。この際、3分岐分配管24または6分岐分配管27によって分配された冷媒流路はそれぞれ上流(2列目)の主熱交換器7、9、11に3本ずつ接続される。そして、それぞれの主熱交換器では等間隔(ここでは4部屋毎に扁平管をグループ化して得られる距離)に配置された3つの入口を中心として対称の位置に2部屋ずつ配置されており、上記3本の冷媒流路はそれぞれこの3つの入口に接続されている。従って、各扁平管グループにおいて、冷媒は上記配管から上記入口を介して対称な位置に2部屋ずつ設けられた都合4つの部屋へ均等に送られる。これにより、熱交換に偏りがなく均一な熱交換が行われるため、熱交換効率がよくなる。そして、熱交換を終了した冷媒は各扁平管グループの端の部屋に設けられた出口から出た後、下流(3列目)の主熱交換器に送られる。
下流の主熱交換器でも上流と同様に等間隔(ここでは4部屋毎に扁平管をグループ化して得られる距離)に配置された3つの出口を中心として対称の位置に2部屋ずつ配置されており、この3つの出口に3本の冷媒流路がそれぞれ接続されている。また、上流の熱交換器の各扁平管グループの端の部屋から出た冷媒は、下流の主熱交換器の各扁平管グループの端の部屋に送られる。従って、下流の主熱交換器の各扁平管グループにおいて、冷媒は上記出口から対称な位置に2部屋ずつ設けられた都合4つの部屋から均等に送られ上記出口を介して出口の配管へ出てくる。これにより、下流の主熱交換でも偏りがなく均一な熱交換が行われるため、熱交換効率がよくなる。
FIG. 8 is a simplified explanatory view showing the refrigerant flow path when used as the evaporator of the first embodiment, FIG. 9 (a) is a view showing the refrigerant flow path, and FIG. It is an enlarged view of the flow path of the refrigerant | coolant of a main heat exchanger. Next, the refrigerant path will be described with reference to FIG. 8, FIG. 9 (a) and FIG. 9 (b).
When used as an evaporator during cooling, the refrigerant passes through auxiliary heat exchangers 4, 5, 6 in the two-pass section, passes through a distributor that divides into three after joining, and uses a flat tube arranged at the upper part of the front surface. It is further branched into two in the corner header 25 added to the main heat exchanger, passed through the heat exchanger, merged by the distributor, passed through the throttle valve 26, passed through the distributor 26 divided into six branches, and the lower part of the front surface. Further, it is further branched into two in a square header added to the main heat exchanger using a flat tube arranged on the back, passes through the main heat exchanger, and passes through the cylindrical header 28. At this time, three refrigerant flow paths distributed by the three-branch pipe 24 or the six-branch pipe 27 are connected to the upstream (second row) main heat exchangers 7, 9, and 11, respectively. In each main heat exchanger, two rooms are arranged at symmetrical positions around three inlets arranged at regular intervals (here, a distance obtained by grouping flat tubes every four rooms), The three refrigerant flow paths are respectively connected to the three inlets. Therefore, in each flat tube group, the refrigerant is equally sent from the pipe to the four convenient rooms provided at two symmetrical positions via the inlet. Thereby, since heat exchange is uniform and uniform heat exchange is performed, heat exchange efficiency is improved. And the refrigerant | coolant which complete | finished heat exchange comes out from the exit provided in the room | chamber end of each flat tube group, and is sent to the main heat exchanger of a downstream (3rd row).
In the downstream main heat exchanger, two rooms are arranged at symmetrical positions around three outlets arranged at regular intervals (here, a distance obtained by grouping flat tubes every four rooms) as in the upstream. The three refrigerant flow paths are connected to the three outlets, respectively. Moreover, the refrigerant | coolant which came out of the room | chamber of the end of each flat tube group of an upstream heat exchanger is sent to the room | chamber of the end of each flat tube group of a downstream main heat exchanger. Accordingly, in each flat tube group of the downstream main heat exchanger, the refrigerant is sent evenly from the four convenient rooms provided by two rooms at symmetrical positions from the outlet, and exits to the outlet pipe through the outlet. come. Thereby, even in the downstream main heat exchange, there is no bias and uniform heat exchange is performed, so that the heat exchange efficiency is improved.

また、空気流れ方向に対し風速の大きい部位と風速の小さい部位が顕著な前面下部と背面に配置される主熱交換器11、12、7、8の場合には、風速の不均一による熱負荷の大きい箇所での過熱により熱交換能力の低下を招くおそれがある。そこで、このような主熱交換器では、図9(b)に示すように上流で風速の大きい熱交換器の扁平管グループ40aと下流で風速の小さい熱交換器の扁平管グループ41cとを配管でたすき状に接続し、上流で風速の大きい熱交換器の扁平管グループ40cと下流で風速の小さい熱交換器の扁平管グループ41aとを配管でたすき状に接続している。また、風速が中間の熱交換器の扁平管グループ40bを風速が中間の熱交換器の扁平管グループ41bに接続している。
このように前面下部と背面に配置される扁平管を用いた主熱交換器11、12、7、8において、空気流れ方向に対し2列目と3列目の風速の大きい部位と風速の小さい部位の冷媒流路を列毎に冷媒配管によりたすき状に入れ替えることで、出口冷媒乾き度を均一に保つことが出来、冷媒の風速が大きく、熱負荷の大きい箇所で過熱し熱交換性能を低下させることを防止出来る。
Further, in the case of the main heat exchangers 11, 12, 7, and 8 in which the portion where the wind speed is high and the portion where the wind speed is low are conspicuous in the lower part of the front surface and the rear surface in the air flow direction, The heat exchange capacity may be reduced due to overheating at a large area. Therefore, in such a main heat exchanger, as shown in FIG. 9 (b), a flat tube group 40a of a heat exchanger having a high wind speed upstream and a flat tube group 41c of a heat exchanger having a low wind speed downstream are piped. The flat tube group 40c of the heat exchanger having a high wind speed upstream and the flat tube group 41a of the heat exchanger having a low wind speed downstream are connected in a pipe shape by a pipe. Further, the flat tube group 40b of the heat exchanger having an intermediate wind speed is connected to the flat tube group 41b of the heat exchanger having an intermediate wind speed.
In the main heat exchangers 11, 12, 7, and 8 using the flat tubes arranged on the lower front surface and the rear surface in this way, the second row and third row where the wind speed is high and the wind speed is low with respect to the air flow direction. By changing the refrigerant flow path of each part into a plow shape by the refrigerant piping for each row, the dryness of the outlet refrigerant can be kept uniform, the refrigerant wind speed is high, it is overheated at a place with a large heat load, and heat exchange performance is reduced Can be prevented.

蒸発器として用いられる場合、絞り弁26の前に前面上部の主熱交換器9,10を冷媒が流れることで、重力方向に対する傾斜が大きく、凝縮水が垂れやすい前面上部主熱交換器に冷媒出口が配置されない。よって、信頼性の高い熱交換器が形成出来る。また、この実施の形態1では、扁平管の両端に角ヘッダ25を用いており、冷媒入り口部で2分岐され、分配器における分岐数の倍の分岐数で熱交換器を冷媒が通過する。図10は角ヘッダ25の冷媒入り口内部に設けられた冷媒衝突部を示す図であり、図10(a)は冷媒衝突部の概略配置位置を示す外観図、図10(b)は冷媒衝突部の横断面図、図10(c)は、図10(b)のA−A断面図である。図10(b)に示すように角ヘッダ25の冷媒入り口内部の中心に窪みを有した冷媒衝突部29が設けられており、この冷媒衝突部29から角ヘッダ25の長手方向のほぼ対称の位置に2つの扁平管が設けられている。従って、扁平管を通過して角ヘッダ25に入ってきた冷媒はこの冷媒衝突部29に衝突すると、冷媒は冷媒衝突部29の窪みによって上下左右方向の360度に渡り周囲にほぼ均等に散乱された後、扁平管2に入り込む。この際、冷媒が周囲に散乱されるので、ここで気液の混合がなされ、また、周囲にほぼ均等に散乱された冷媒はほぼ対称の位置に設けられた2つの扁平管に入り込むので、2つの扁平管に入り込んだ冷媒の量も偏りがなくほぼ均等に分配される。このように冷媒の気液混合と混合された冷媒量の等分配が行われることにより、冷媒分岐のばらつきを抑えることが出来る。これにより、分配器の分岐数を低減出来、分配器のコンパクト化、低コスト化が実現出来る。   When used as an evaporator, the refrigerant flows through the main heat exchangers 9 and 10 at the front upper part in front of the throttle valve 26, so that the refrigerant is added to the front upper main heat exchanger where the inclination with respect to the direction of gravity is large and condensate can easily drip. The exit is not located. Therefore, a highly reliable heat exchanger can be formed. Moreover, in this Embodiment 1, the square header 25 is used for the both ends of a flat tube, and it branches into 2 at a refrigerant | coolant inlet part, and a refrigerant | coolant passes through a heat exchanger by the branch number double of the branch number in a divider | distributor. FIG. 10 is a diagram showing a refrigerant collision part provided inside the refrigerant inlet of the corner header 25, FIG. 10 (a) is an external view showing a schematic arrangement position of the refrigerant collision part, and FIG. 10 (b) is a refrigerant collision part. FIG. 10C is a cross-sectional view taken along the line AA of FIG. 10B. As shown in FIG. 10B, a refrigerant collision part 29 having a depression at the center inside the refrigerant inlet of the corner header 25 is provided, and the longitudinal direction of the corner header 25 from the refrigerant collision part 29 is substantially symmetrical. There are two flat tubes. Therefore, when the refrigerant that has passed through the flat tube and entered the corner header 25 collides with the refrigerant collision portion 29, the refrigerant is scattered substantially uniformly around 360 degrees in the vertical and horizontal directions by the depression of the refrigerant collision portion 29. After that, it enters the flat tube 2. At this time, since the refrigerant is scattered to the surroundings, gas and liquid are mixed here, and the refrigerant scattered almost uniformly to the surroundings enters the two flat tubes provided at substantially symmetrical positions. The amount of refrigerant that has entered the two flat tubes is distributed evenly with no bias. As described above, by equally distributing the amount of refrigerant mixed with the gas-liquid mixture of the refrigerant, variation in refrigerant branching can be suppressed. Thereby, the number of branches of the distributor can be reduced, and the distributor can be made compact and low in cost.

図11は、前面下部および背面の主熱交換器11、12、7、8において、6分岐分配器27と熱交換器を接合する冷媒配管径を風速の大きい部位で大きく、風速の小さい部位で小さくしたものである。これにより、風速が大きく、熱負荷の大きい部位での冷媒流量を大きくし、風速の小さい部位での熱負荷の小さい部位での冷媒流量を小さくすることが出来、出口冷媒乾き度を均一に保つことが出来る。   FIG. 11 shows that in the main heat exchangers 11, 12, 7, and 8 at the front lower part and the rear part, the refrigerant pipe diameter for joining the six-branch distributor 27 and the heat exchanger is large at the part where the wind speed is large and the part where the wind speed is small. It is a small one. As a result, it is possible to increase the refrigerant flow rate at the part where the wind speed is high and the heat load is large, and to reduce the refrigerant flow rate at the part where the heat load is low and the part where the wind speed is low. I can do it.

図12は封止板を示す説明図であり、図12(a)は冷媒流路を示す図であり、同時に熱交換器における封止板31の配置位置を示している。また、図12(b)は角ヘッダ25内における扁平管の穴(入口)を塞ぐ封止板の取付け状況を示す図であり、図中の塗りつぶし部が封止板31である。図12(a)に示すように前面下部と背面の熱交換器において角ヘッダ25内に扁平管の穴を塞ぐ板を配置し、図12(b)に示すようにこの板の列方向の長さを扁平管内の穴数を風速の大きい部位でより多く、風速の小さい部位でより少なくなるように変えている。これにより、風速が大きく、熱負荷の大きい部位での冷媒流量を大きくし、風速が小さく熱負荷の小さい部位での冷媒流量を小さくすることが出来、出口冷媒乾き度を均一に保つことが出来る。
なお、図10(b)の例では、封止板31の形状が連続的に変わるように直線の傾斜をもたせているが、これに限る必要はない。例えば階段状に変わるようにしてもよく、扁平管内の穴数を風速の大きい部位でより多く、風速の小さい部位でより少なくなるようにできればどのような形状のものでもよい。
また、扁平管穴を塞ぐ板を用いず、扁平管形状を変化させ、穴数を変化させてもよく、同様な効果を奏する。
FIG. 12 is an explanatory view showing the sealing plate, and FIG. 12 (a) is a view showing the refrigerant flow path, and at the same time, shows the arrangement position of the sealing plate 31 in the heat exchanger. FIG. 12B is a diagram showing a mounting state of a sealing plate that closes the hole (inlet) of the flat tube in the square header 25, and the filled portion in the drawing is the sealing plate 31. As shown in FIG. 12 (a), a plate that closes the hole of the flat tube is disposed in the square header 25 in the heat exchangers at the lower front portion and the rear surface, and the length of this plate in the row direction is shown in FIG. 12 (b). The number of holes in the flat tube is changed so as to increase at a portion where the wind speed is high and to decrease at a portion where the wind speed is low. As a result, the refrigerant flow rate at the part where the wind speed is large and the heat load is large can be increased, the refrigerant flow rate at the part where the wind speed is small and the heat load is small can be reduced, and the outlet refrigerant dryness can be kept uniform. .
In addition, in the example of FIG.10 (b), although the linear inclination is given so that the shape of the sealing board 31 may change continuously, it is not necessary to restrict to this. For example, the shape may be changed to a step shape, and any shape may be used as long as the number of holes in the flat tube is larger at a portion where the wind speed is high and smaller at a portion where the wind speed is low.
Further, without using a plate for closing the flat tube hole, the shape of the flat tube may be changed and the number of holes may be changed, and the same effect is obtained.

図13は、角ヘッダおよびリング状板を示す外観図であり、前面下部と背面の熱交換器において角ヘッダと冷媒配管間にリング状の板32を設け、前記リング状の板32の穴径は風速の大きい部位が大きく風速の小さい部位にいくにしたがって、リング状の板の穴径を小さくするようにしたものである。これにより、風速が大きく、熱負荷の大きい部位の冷媒流量を大きくし、風速が小さく熱負荷の小さい部位での冷媒流量を小さくすることが出来、出口冷媒乾き度を均一に保つことが出来る。   FIG. 13 is an external view showing the square header and the ring-shaped plate. In the heat exchangers at the lower front and the rear, a ring-shaped plate 32 is provided between the square header and the refrigerant pipe, and the hole diameter of the ring-shaped plate 32 is shown. In this example, the hole diameter of the ring-shaped plate is made smaller as the part where the wind speed is large goes to the part where the wind speed is large and the wind speed is low. Thereby, the refrigerant | coolant flow rate of a part with a large wind speed and a large heat load can be enlarged, the refrigerant | coolant flow rate in a part with a small wind speed and a small heat load can be made small, and an exit refrigerant | coolant dryness can be kept uniform.

図14は空調冷凍装置の冷媒回路図である。図に示す冷媒回路は、圧縮機33、凝縮熱交換器34、絞り装置35、蒸発熱交換器36、送風機37により構成されている。上述の実施の形態1による熱交換器を凝縮熱交換器34または蒸発熱交換器36、もしくは両方に用いることにより、エネルギー効率の高い空調冷凍装置を実現することが出来る。
ここで、エネルギー効率は、次式で構成されるものである。
暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力
FIG. 14 is a refrigerant circuit diagram of the air conditioning refrigeration apparatus. The refrigerant circuit shown in the figure includes a compressor 33, a condensation heat exchanger 34, an expansion device 35, an evaporating heat exchanger 36, and a blower 37. By using the heat exchanger according to the first embodiment for the condensation heat exchanger 34, the evaporating heat exchanger 36, or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / all inputs Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / all inputs

なお、上述の実施の形態1で述べた熱交換器およびそれを用いた空調冷凍装置については、HCFC(R22)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41,RC318などや、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなどや、これら冷媒の数種の混合冷媒)、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することが出来る。   In addition, about the heat exchanger described in Embodiment 1 and the air-conditioning refrigeration apparatus using the same, HCFC (R22) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc., and several mixed refrigerants R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B, etc.), HC (butane, etc.) Isobutane, ethane, propane, propylene, etc., and some mixed refrigerants of these refrigerants), natural refrigerant (air, carbon dioxide, ammonia, etc., some mixed refrigerants of these refrigerants), and some mixed refrigerants of these refrigerants Any kind of refrigerant Be used, it is possible to achieve its effect.

また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。   Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.

また、伝熱管と板状フィンは異なった材料を用いていることが多いが、伝熱管と板状フィンに銅、伝熱管と板状フィンにアルミなど、同じ材料を用いることで、板状フィンと伝熱管のロウ付けが可能となり、板状フィンと伝熱管の接触熱伝達率が飛躍的に向上し、熱交換能力が大幅に向上する。また、リサイクル性も向上させることができる。   In addition, heat transfer tubes and plate fins often use different materials. However, by using the same material such as copper for heat transfer tubes and plate fins and aluminum for heat transfer tubes and plate fins, plate fins are used. The heat transfer tube can be brazed, the contact heat transfer coefficient between the plate fin and the heat transfer tube is dramatically improved, and the heat exchange capacity is greatly improved. Moreover, recyclability can also be improved.

また、伝熱管と板状フィンを密着させる方法として、炉中ロウ付けを行う場合、板状フィンへの親水材塗布を後処理で行うことで、前処理の場合のロウ付け中の親水材の焼け落ちを防ぐことができる。   In addition, as a method of closely attaching the heat transfer tube and the plate fin, when performing brazing in the furnace, by applying the hydrophilic material to the plate fin by post-processing, the hydrophilic material during brazing in the pre-treatment Burnout can be prevented.

なお、上述の実施の形態1で述べた熱交換器およびそれを用いた空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。   The heat exchanger described in the first embodiment and the air-conditioning refrigeration apparatus using the heat exchanger are soluble in refrigerant and oil such as mineral oil, alkylbenzene oil, ester oil, ether oil, and fluorine oil. The effect can be achieved with any refrigeration oil, whether or not it melts.

この発明の実施の形態1の熱交換器の側面断面を示す図である。It is a figure which shows the side surface cross section of the heat exchanger of Embodiment 1 of this invention. この発明の実施の形態1の板状フィンおよび扁平管の構成を示す正面図および側面図である。It is the front view and side view which show the structure of the plate-shaped fin and flat tube of Embodiment 1 of this invention. この発明の実施の形態1の熱交換器性能を示す特性図である。It is a characteristic view which shows the heat exchanger performance of Embodiment 1 of this invention. この発明の実施の形態1のロウ材の配置位置を示す断面図である。It is sectional drawing which shows the arrangement position of the brazing material of Embodiment 1 of this invention. この発明の実施の形態1のロウ材の配置位置を示す断面図である。It is sectional drawing which shows the arrangement position of the brazing material of Embodiment 1 of this invention. この発明の実施の形態1のロウ材の配置位置を示す断面図である。It is sectional drawing which shows the arrangement position of the brazing material of Embodiment 1 of this invention. この発明の実施の形態1のロウ材の配置位置を示す断面図である。It is sectional drawing which shows the arrangement position of the brazing material of Embodiment 1 of this invention. この発明の実施の形態1の冷媒流路を示す簡易説明図である。It is a simplified explanatory drawing which shows the refrigerant | coolant flow path of Embodiment 1 of this invention. この発明の実施の形態1の冷媒流路を示す図である。It is a figure which shows the refrigerant | coolant flow path of Embodiment 1 of this invention. 図9(a)における主熱交換器の冷媒の流路の拡大図である。It is an enlarged view of the flow path of the refrigerant | coolant of the main heat exchanger in Fig.9 (a). この発明の実施の形態1の角ヘッダの冷媒入り口内部に設けられた冷媒衝突部を示す図である。FIG. 5 is a diagram showing a refrigerant collision portion provided inside the refrigerant inlet of the corner header according to Embodiment 1 of the present invention. この発明の偏平管熱交換器の構成を表す外観図である。It is an external view showing the structure of the flat tube heat exchanger of this invention. この発明の実施の形態1の冷媒流路を示す図である。It is a figure which shows the refrigerant | coolant flow path of Embodiment 1 of this invention. 角ヘッダ25内における扁平管の穴(入口)を塞ぐ封止板の取付け状況を示す図である。It is a figure which shows the attachment condition of the sealing board which plugs up the hole (inlet) of the flat tube in the square header. この発明の実施の形態1の角ヘッダおよびリング状板を示す外観図である。It is an external view which shows the square header and ring-shaped board of Embodiment 1 of this invention. この発明の実施の形態1が用いられる空調冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the air-conditioning refrigerating device in which Embodiment 1 of this invention is used.

符号の説明Explanation of symbols

1 板状フィン、2 扁平管、3 円管、4 円管を用いた補助熱交換器、5 円管を用いた補助熱交換器、6 円管を用いた補助熱交換器、7 扁平管を用いた主熱交換器、8 扁平管を用いた主熱交換器、9 扁平管を用いた主熱交換器、10 扁平管を用いた主熱交換器、11 扁平管を用いた主熱交換器、12 扁平管を用いた主熱交換器、13 送風機、14 ケーシング、15 前面パネル、16 お掃除ボックス、17 フィルター、18 天面パネル、19 隙間、20 フィン前縁の切り欠き、21 板状フィン上の切り起し、22 板状フィン上の切り起し、23 ロウ材、24 分岐分配器、25 角ヘッダ、26 絞り弁、27 6分岐分配器、28 円柱状ガスヘッダ、29 冷媒衝突部、30 接続配管、31 封止板、32 リング状板、33 圧縮機、34 凝縮器熱交換器、35 絞り装置、36 蒸発器熱交換器、37 送風機、38 送風機用モータ、39 フィンカラー、40a〜c 扁平管グループ、41a〜c 扁平管グループ。   1 Plate-shaped fin, 2 flat tube, 3 circular tube, 4 auxiliary heat exchanger using circular tube, 5 auxiliary heat exchanger using circular tube, 6 auxiliary heat exchanger using circular tube, 7 flat tube Main heat exchanger used, 8 Main heat exchanger using flat tube, 9 Main heat exchanger using flat tube, 10 Main heat exchanger using flat tube, 11 Main heat exchanger using flat tube , 12 Main heat exchanger using a flat tube, 13 Blower, 14 Casing, 15 Front panel, 16 Cleaning box, 17 Filter, 18 Top panel, 19 Gap, 20 Notch on the front edge of the fin, 21 Plate fin Cut and raised on the top, 22 Cut and raised on the plate fin, 23 Brazing material, 24 Branch distributor, 25 Square header, 26 Throttle valve, 276 Branch distributor, 28 Cylindrical gas header, 29 Refrigerant collision part, 30 Connection piping, 31 sealing plate, 32 rings Plate, 33 compressor, 34 condenser heat exchanger, 35 expansion device, 36 evaporator heat exchanger, 37 blower, 38 blower motor, 39 fin collar, 40a-c flat tube group, 41a-c flat tube group .

Claims (19)

主熱交換器と、
円管の伝熱管を有する補助熱交換器と、を備え、
前記主熱交換器は、複数平行に配置され、その間を空気が流動する開口部を有した板状フィンと、
この板状フィンに直角に挿入され、内部を作動冷媒が通過し、前記空気の通過方向に対して直角方向の段方向へ複数段設けられるとともに前記空気の通過方向の列方向に複数列設けられた扁平管と、
前記板状フィンに空気流れに対し複数列設けられた切り起しと、を備え、
前記複数の切り起しの内、前記空気の通過方向の下流側の切り起しの後縁部は扁平管下流後縁部よりも下流側に配置され、上流側の切り起しの迎え角より下流側の切り起しの迎え角を大きくし、さらに上流側の切り起しの脚部切り起し角度β1と下流側の切り起しの脚部切り起し角度β2の比率β1/β2を1.0<β1/β2<2.0となるようにしたことを特徴とするフィンチューブ型熱交換器。
A main heat exchanger;
An auxiliary heat exchanger having a circular heat transfer tube, and
The main heat exchanger is a plurality of plate-like fins arranged in parallel and having openings through which air flows.
The plate-like fins are inserted at right angles, the working refrigerant passes through them, and is provided in a plurality of stages in a step direction perpendicular to the air passage direction and in a plurality of rows in the row direction of the air passage direction. Flat tube,
The plate-like fins are provided with a plurality of rows and raised portions for the air flow,
Of the plurality of cuts and raised portions, the rear edge of the cut and raised downstream in the air passage direction is arranged on the downstream side of the downstream downstream edge of the flat tube, and from the angle of attack of the upstream cut and raised The angle of attack of the cut and raised on the downstream side is increased , and the ratio β1 / β2 between the leg cut and raised angle β1 of the upstream cut and the cut and raised leg β2 of the downstream cut is 1 0.0 <β1 / β2 <2.0 . A finned tube heat exchanger characterized by the above .
前記扁平管と、前記円管と、前記板状フィンとは同じ材質で構成されることを特徴とする請求項1記載のフィンチューブ型熱交換器。   The fin tube type heat exchanger according to claim 1, wherein the flat tube, the circular tube, and the plate-like fin are made of the same material. 前記主熱交換器の板状フィンは列毎に分割されることを特徴とする請求項1または請求項2に記載のフィンチューブ型熱交換器。   The finned tube heat exchanger according to claim 1 or 2, wherein the plate-like fins of the main heat exchanger are divided for each row. 前記扁平管は千鳥状に配列されることを特徴とする請求項3記載のフィンチューブ型熱交換器。   4. The finned tube heat exchanger according to claim 3, wherein the flat tubes are arranged in a staggered pattern. 前記切り起しの列方向の長さを切り起し間距離と等しくしたことを特徴とする請求項1または請求項1〜4のいずれかに記載のフィンチューブ型熱交換器。   The fin tube type heat exchanger according to any one of claims 1 to 4, wherein a length in the row direction of the cut and raised is equal to a distance between the cut and raised. 前記主熱交換器は、前記板状フィンの空気流れ方向の前縁部と扁平管が接する部分に円弧上の切り込みを設け、前記切り込み部にロウ材を配置して炉中ロウ付けにより接合して成ることを特徴とする請求項1〜のいずれかに記載のフィンチューブ型熱交換器。 The main heat exchanger is provided with a cut on a circular arc at a portion where the front edge of the plate fin in the air flow direction and the flat tube are in contact, and a brazing material is disposed at the cut and joined by brazing in a furnace. The finned tube heat exchanger according to any one of claims 1 to 5 , wherein 前記炉中ロウ付けの際に丸棒形状のロウ材を2個配置することを特徴とする請求項記載のフィンチューブ型熱交換器。 The finned tube heat exchanger according to claim 6 , wherein two round bar-shaped brazing members are arranged at the time of brazing in the furnace. 前記炉中ロウ付けの際に前記ロウ材の形状を2個の丸形状を接続した形状とすることを特徴とする請求項記載のフィンチューブ型熱交換器。 The finned tube heat exchanger according to claim 6 , wherein the brazing material is formed by connecting two round shapes when brazing in the furnace. 前記炉中ロウ付けの際に前記ロウ材の形状を扁平管の空気流れ方向前縁部の円周部と概ね接するように半円弧板形状として配置することを特徴とする請求項記載のフィンチューブ型熱交換器。 The fin according to claim 6 , wherein when brazing in the furnace, the shape of the brazing material is arranged as a semicircular arc plate shape so as to substantially contact the circumferential portion of the front edge portion of the flat tube in the air flow direction. Tube heat exchanger. 前記炉中ロウ付けの際に前記ロウ材の形状を扁平管の空気流れ方向前縁部の円周部の風上側に概ねへの字形状とし、への字の頂部と扁平管の頂部が一致するように配置することを特徴とする請求項記載のフィンチューブ型熱交換器。 At the time of brazing in the furnace, the shape of the brazing material is generally a U-shape on the windward side of the circumferential portion of the front edge of the flat tube, and the top of the U-shape and the top of the flat tube coincide The finned tube heat exchanger according to claim 6 , wherein the finned tube heat exchanger is arranged as described above. 前記補助熱交換器は、フィンカラーを有し、前記板状フィンの前縁まで前記フィンカラーと機械拡管により圧接合されて成る円管の伝熱管を有することを特徴とする請求項1〜10のいずれかに記載のフィンチューブ型熱交換器。 Said auxiliary heat exchanger has a fin collar, claim 1-10, characterized in that it comprises a heat transfer tube of the fin collar and the mechanical tube expansion by circular tube formed by pressure bonding to the leading edge of the plate-like fin The finned tube heat exchanger according to any one of the above. 前記主熱交換器は、
室内機の前面上部に配置され、第1の扁平管を有する第1の主熱交換器と、
前記室内機の前面下部および背面部に配置され、第2の扁平管を有する第2の主熱交換器と、を備え、
蒸発器として用いられる場合、前記補助熱交換器は、前記円管に室外機からの冷媒を入力する1もしくは2つの第1の冷媒流路と、前記円管の冷媒出口に設けられ前記円管を通過した冷媒を合流する第1の角状ヘッダと、を備え、
前記第1の角状ヘッダによって合流された冷媒を複数流路に分岐する第1の分配器を備え、
前記第1の主熱交換器は、前記第1の扁平管の端部に設けられ、前記第1の分配器によって分岐された複数の流路の各々を更に倍に分岐する第2の角状ヘッダを備え、
前記第1の扁平管の出口に接続された複数の流路を合流させる第2の分配器を備え、
この第2の分配器から出力された冷媒を絞る絞り弁を備え、
この絞り弁の出口側流路を前記第1の分配器の分岐数の倍に分岐する第3の分配器を備え、
前記第2の熱交換器は、前記第2の扁平管の端部に設けられ、前記第3の分配器によって分岐された流路を更に倍に分岐して冷媒を前記第2の扁平管に入力する第3の角状ヘッダと、前記第2の扁平管の出口に設けられた円柱状のヘッダと、を備えたことを特徴とする請求項1記載のフィンチューブ型熱交換器。
The main heat exchanger is
A first main heat exchanger disposed on the front upper portion of the indoor unit and having a first flat tube;
Wherein arranged in the lower front and rear portions of the indoor unit, it includes a second main heat exchanger having a second flat tube, and
When used as an evaporator, the auxiliary heat exchanger is provided at one or two first refrigerant flow paths for inputting refrigerant from an outdoor unit to the circular pipe and at the refrigerant outlet of the circular pipe. A first rectangular header that merges the refrigerant that has passed through,
A first distributor for branching the refrigerant merged by the first square header into a plurality of flow paths;
The first main heat exchanger is provided at an end portion of the first flat tube, and has a second square shape that further doubles each of the plurality of flow paths branched by the first distributor. With a header,
A second distributor for joining a plurality of flow paths connected to the outlet of the first flat tube;
A throttle valve that throttles the refrigerant output from the second distributor;
A third distributor for branching the outlet side flow path of the throttle valve to twice the number of branches of the first distributor;
The second heat exchanger is provided at an end portion of the second flat tube, and the flow path branched by the third distributor is further branched to double the refrigerant to the second flat tube. The finned tube heat exchanger according to claim 1 , further comprising a third rectangular header to be input and a columnar header provided at an outlet of the second flat tube.
前記第1〜第3の角状ヘッダは、冷媒を2分岐する機構を備えたことを特徴とする請求項12記載のフィンチューブ型熱交換器。 The fin tube type heat exchanger according to claim 12, wherein the first to third square headers have a mechanism for bifurcating the refrigerant. 前記第2の主熱交換器において、風速の相対的に大きい部位と風速の相対的に小さい部位の冷媒流路を列毎に冷媒配管によりたすき状に入れ替えることを特徴とする請求項12または請求項13に記載のフィンチューブ型熱交換器。 13. The second main heat exchanger according to claim 12, wherein the refrigerant flow paths of a portion having a relatively high wind speed and a portion having a relatively low wind speed are replaced by a refrigerant pipe for each row. Item 14. The finned tube heat exchanger according to item 13 . 前記第2の主熱交換器において、分配器と熱交換器を接合する冷媒配管の径を風速の相対的に大きい部位で相対的に大きく、風速の相対的に小さい部位で相対的に小さく構成したことを特徴とする請求項12または請求項13に記載のフィンチューブ型熱交換器。 In the second main heat exchanger, the diameter of the refrigerant pipe joining the distributor and the heat exchanger is relatively large at a portion where the wind speed is relatively large and relatively small at a portion where the wind speed is relatively small. The finned tube heat exchanger according to claim 12 or 13 , wherein the finned tube heat exchanger is characterized by the above. 前記第2の主熱交換器において、前記第2の扁平管内の穴数を風速の相対的に大きい部位で相対的に多く、風速の相対的に小さい部位で相対的に少なくなるように構成することを特徴とする請求項12または請求項13に記載のフィンチューブ型熱交換器。 The second main heat exchanger is configured such that the number of holes in the second flat tube is relatively large at a portion where the wind speed is relatively large and relatively small at a portion where the wind speed is relatively small. The finned tube heat exchanger according to claim 12 or 13 , characterized in that 前記前面下部および背面の主熱交換器において、前記第1〜第3の角状ヘッダ内に設けられる扁平管内の穴を封止する板の列方向長さを風速の相対的に大きい部位から風速のより小さい部位にいくにしたがって大きくすることを特徴とする請求項12または請求項13に記載のフィンチューブ型熱交換器。 In the main heat exchanger at the lower part of the front face and the rear face, the length in the row direction of the plate that seals the hole in the flat tube provided in the first to third square headers is changed from the portion where the wind speed is relatively large to the wind speed. finned tube heat exchanger according to claim 12 or claim 13, characterized in that to increase toward the smaller sites. 前記第2の主熱交換器において、前記第1〜第3の角状ヘッダと冷媒配管間にリング状の板を設け、前記リング状の板は風速の相対的に大きい部位から風速のより小さい部位にいくにしたがって、リング状の板の穴径を小さくすることを特徴とする請求項12または請求項13に記載のフィンチューブ型熱交換器。 In the second main heat exchanger, a ring-shaped plate is provided between the first to third square headers and the refrigerant pipe, and the ring-shaped plate has a lower wind speed from a portion having a relatively high wind speed. toward the site, finned tube heat exchanger according to claim 12 or claim 13, characterized in that to reduce the hole diameter of the ring-shaped plate. 圧縮機と絞り弁と請求項1〜18のいずれかに記載のフィンチューブ型熱交換器を備えたことを特徴とする冷凍サイクル空調装置。 A refrigeration cycle air conditioner comprising a compressor, a throttle valve, and the finned tube heat exchanger according to any one of claims 1 to 18 .
JP2008216176A 2008-08-26 2008-08-26 Finned tube heat exchanger and refrigeration cycle air conditioner Active JP4845943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216176A JP4845943B2 (en) 2008-08-26 2008-08-26 Finned tube heat exchanger and refrigeration cycle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216176A JP4845943B2 (en) 2008-08-26 2008-08-26 Finned tube heat exchanger and refrigeration cycle air conditioner

Publications (2)

Publication Number Publication Date
JP2010054060A JP2010054060A (en) 2010-03-11
JP4845943B2 true JP4845943B2 (en) 2011-12-28

Family

ID=42070192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216176A Active JP4845943B2 (en) 2008-08-26 2008-08-26 Finned tube heat exchanger and refrigeration cycle air conditioner

Country Status (1)

Country Link
JP (1) JP4845943B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119742A (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Indoor equipment of air conditioner
US10801784B2 (en) 2016-04-13 2020-10-13 Daikin Industries, Ltd. Heat exchanger with air flow passage for exchanging heat
US10900721B2 (en) 2016-10-07 2021-01-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011209684A (en) 2010-03-11 2011-10-20 Ricoh Co Ltd Fixing device, fixing method, image forming apparatus, and image forming method
CN102338570A (en) * 2010-07-16 2012-02-01 乐金电子(天津)电器有限公司 Heat exchanger structure and assembly process thereof
JP2012032100A (en) * 2010-08-02 2012-02-16 Mitsubishi Electric Corp Finned tube hear exchanger, method for manufacturing the same, and air conditioner having the finned tube heat exchanger
JP5573698B2 (en) * 2011-01-21 2014-08-20 ダイキン工業株式会社 Heat exchanger and air conditioner
JP5177307B2 (en) 2011-01-21 2013-04-03 ダイキン工業株式会社 Heat exchanger
JP5569408B2 (en) * 2011-01-21 2014-08-13 ダイキン工業株式会社 Heat exchanger and air conditioner
JP5569409B2 (en) * 2011-01-21 2014-08-13 ダイキン工業株式会社 Heat exchanger and air conditioner
AU2012208126B2 (en) * 2011-01-21 2015-07-02 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP2012154500A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
JP5689033B2 (en) * 2011-06-28 2015-03-25 三菱電機株式会社 Fin tube type heat exchanger and refrigeration cycle apparatus using the same
WO2014091536A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus
JP6157217B2 (en) * 2013-05-24 2017-07-05 三菱電機株式会社 Flat tube heat exchanger, outdoor unit of air conditioner equipped with the same, and method of manufacturing flat tube heat exchanger
EP3062037B1 (en) 2013-10-25 2020-07-15 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device using said heat exchanger
CN106716042B (en) 2014-09-08 2019-04-05 三菱电机株式会社 The manufacturing method of the plate-shaped fins of heat exchanger and heat exchanger
JP6531063B2 (en) * 2016-04-26 2019-06-12 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and air conditioner
JP6972158B2 (en) * 2017-10-20 2021-11-24 三菱電機株式会社 Dehumidifier
JP6865353B2 (en) 2018-01-09 2021-04-28 パナソニックIpマネジメント株式会社 Heat exchanger
JP7092987B2 (en) * 2018-01-22 2022-06-29 ダイキン工業株式会社 Indoor heat exchanger and air conditioner
RU197680U1 (en) * 2020-01-09 2020-05-21 Константин Николаевич Деулин HEATING CONVECTOR
JP7394722B2 (en) * 2020-07-28 2023-12-08 三菱電機株式会社 dehumidifier
CN114543352B (en) * 2022-03-29 2023-12-01 山东华业阳光新能源有限公司 Self-cleaning heat exchanger with high ventilation effect
JP7392757B2 (en) * 2022-03-30 2023-12-06 株式会社富士通ゼネラル Air conditioner indoor unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145283U (en) * 1979-03-31 1980-10-18
JP3700562B2 (en) * 2000-08-31 2005-09-28 松下電器産業株式会社 Manufacturing method of heat exchanger
JP2002139282A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP4143955B2 (en) * 2001-11-30 2008-09-03 株式会社ティラド Heat exchanger
JP4096226B2 (en) * 2002-03-07 2008-06-04 三菱電機株式会社 FIN TUBE HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND REFRIGERATION AIR CONDITIONER
JP2005188769A (en) * 2003-12-24 2005-07-14 Mitsubishi Electric Corp Heat exchanger
JP4178472B2 (en) * 2004-03-18 2008-11-12 三菱電機株式会社 Heat exchanger and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801784B2 (en) 2016-04-13 2020-10-13 Daikin Industries, Ltd. Heat exchanger with air flow passage for exchanging heat
US10900721B2 (en) 2016-10-07 2021-01-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
JP2018119742A (en) * 2017-01-25 2018-08-02 日立ジョンソンコントロールズ空調株式会社 Indoor equipment of air conditioner

Also Published As

Publication number Publication date
JP2010054060A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4749373B2 (en) Air conditioner
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP4055449B2 (en) Heat exchanger and air conditioner using the same
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP4096226B2 (en) FIN TUBE HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND REFRIGERATION AIR CONDITIONER
EP2972037B1 (en) Heat exchanger for air-cooled chiller
JP4827882B2 (en) Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
WO2015004720A1 (en) Heat exchanger, and air conditioner
CN102192673A (en) Flat-tube heat exchanger structure and assembling method thereof
JP2012032089A (en) Finned tube heat exchanger and air conditioner using the same
WO2016029115A1 (en) Heat exchanger coil with offset fins
JP5171983B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5014372B2 (en) Finned tube heat exchanger and air-conditioning refrigeration system
JP5030932B2 (en) Heat exchanger and air-conditioning refrigeration system
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP3945575B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner using the same
JP5689033B2 (en) Fin tube type heat exchanger and refrigeration cycle apparatus using the same
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP6788763B2 (en) Heat exchangers, indoor units, outdoor units, and air conditioners
JP4143973B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250