WO2015004720A1 - Heat exchanger, and air conditioner - Google Patents

Heat exchanger, and air conditioner Download PDF

Info

Publication number
WO2015004720A1
WO2015004720A1 PCT/JP2013/068677 JP2013068677W WO2015004720A1 WO 2015004720 A1 WO2015004720 A1 WO 2015004720A1 JP 2013068677 W JP2013068677 W JP 2013068677W WO 2015004720 A1 WO2015004720 A1 WO 2015004720A1
Authority
WO
WIPO (PCT)
Prior art keywords
fins
heat exchanger
refrigerant
air conditioner
header
Prior art date
Application number
PCT/JP2013/068677
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 晃
拓也 松田
岡崎 多佳志
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2013/068677 priority Critical patent/WO2015004720A1/en
Priority to JP2015526356A priority patent/JPWO2015005352A1/en
Priority to PCT/JP2014/068203 priority patent/WO2015005352A1/en
Priority to CN201480039081.4A priority patent/CN105452794A/en
Priority to US14/902,031 priority patent/US20160298886A1/en
Priority to EP14823375.2A priority patent/EP3021064B1/en
Publication of WO2015004720A1 publication Critical patent/WO2015004720A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2260/00Heat exchangers or heat exchange elements having special size, e.g. microstructures
    • F28F2260/02Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels

Definitions

  • the present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
  • the present invention has been made to solve the above-described problems, and provides a heat exchanger and an air conditioner that can improve heat exchange performance.
  • the heat exchanger according to the present invention includes a plurality of fins in which fluids flow between them and a flow path through which a medium that exchanges heat with the fluid flows is formed, and both ends of the plurality of fins A plurality of fins, wherein the fins have a pitch of Fp as the gap between adjacent fins, and Ft is the thickness of the fins, and 3 ⁇ Fp / Ft ⁇ 21 It is characterized by satisfying the relationship.
  • the present invention provides a pair of fins that are arranged with a space therebetween, in which a fluid flows between them and in which a channel through which a medium that exchanges heat with the fluid flows is formed, and to which both ends of the plurality of fins are connected.
  • the heat exchange performance can be improved.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is an enlarged view which shows the B section of FIG. It is a figure which shows the performance characteristic of the heat exchanger which concerns on Embodiment 1 of this invention. It is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention. It is a perspective view which shows the heat exchanger which concerns on Embodiment 2 of this invention. It is sectional drawing which shows the arrangement
  • FIG. 1 is a perspective view showing a heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view showing the heat exchanger according to Embodiment 1 of the present invention.
  • 3 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 4 is an enlarged view showing a portion B of FIG.
  • the heat exchanger includes a plurality of fins 1 and a pair of headers (an inlet side header 2 and an outlet side header 3).
  • the plurality of fins 1 are arranged at intervals, and a fluid (for example, air) flows between them.
  • one or a plurality of flow paths 11 through which a medium (for example, a refrigerant) flows are formed.
  • a pair of headers (inlet side header 2 and outlet side header 3) connect both ends of the plurality of fins 1, respectively.
  • the refrigerant flows from the refrigerant inlet 4 of the inlet header 2.
  • the refrigerant that has flowed into the inlet header 2 flows into the outlet header 3 through the plurality of fins 1.
  • the refrigerant flows out from the refrigerant outlet 5 of the outlet side header 3.
  • coolant is not limited to this, A reverse direction may be sufficient. With such a configuration, the heat exchanger exchanges heat between the air passing between the plurality of fins 1 and the refrigerant flowing through the flow paths 11 inside the plurality of fins 1.
  • the plurality of fins 1 satisfy the relationship of 3 ⁇ Fp / Ft ⁇ 21, where Fp is the pitch between adjacent fins 1 and Ft is the thickness of the fins 1.
  • FIG. 5 is a diagram showing the performance characteristics of the heat exchanger according to Embodiment 1 of the present invention.
  • the relationship with the ratio (Fp / Ft) of fin pitch Fp with respect to Ft is shown.
  • the AK value is a value obtained by multiplying the heat transfer rate K and the heat transfer area A in the heat exchanger, and represents the heat transfer characteristics of the heat exchanger.
  • standard is a plate fin type heat exchanger which performs heat exchange with the air which passes between several radiation fins, and the refrigerant
  • the heat transfer tubes of the conventional heat exchanger are arranged in two rows in the air flow direction, and are arranged in a plurality of stages in a direction orthogonal to the air flow.
  • AK / ⁇ P decreases when Fp / Ft becomes too small. Further, AK / ⁇ P decreases when Fp / Ft becomes too large. That is, Fp / Ft has an appropriate range in which AK / ⁇ P can be improved.
  • Fp / Ft has an appropriate range in which AK / ⁇ P can be improved.
  • Fp increases in the case of the same fin pitch Fp.
  • the thickness Ft of the fin 1 is increased, the flow area of the flow path 11 is increased, the heat transfer rate K is increased due to an increase in the flow velocity of the refrigerant, and the heat transfer performance AK is increased.
  • ⁇ P increases. However, if the thickness Ft of the fin 1 becomes too thick, the air-side ventilation resistance ⁇ P increases and AK / ⁇ P decreases.
  • the air-side ventilation resistance ⁇ P is reduced and AK / ⁇ P is increased.
  • the thickness Ft of the fin 1 becomes too thin, the flow path area of the flow path 11 decreases, the heat flow rate K decreases due to a decrease in the flow rate of the refrigerant, the heat transfer performance AK decreases, and AK / ⁇ P is reduced. descend.
  • the heat exchanger according to the first embodiment is 3 ⁇ Fp / Ft ⁇ so that the value (100%) or more can be improved as compared with the conventional heat exchanger. 21 relationships are satisfied. Thereby, the heat exchange performance of a heat exchanger can be improved.
  • FIG. 6 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention.
  • the refrigerant circuit shown in FIG. 6 includes a compressor 33, a condenser 34, a throttling device 35, and an evaporator 36.
  • the air conditioner includes a blower 37 that blows air to the condenser 34 and the evaporator 36, and a blower motor 38 that drives the blower 37.
  • Cooling energy efficiency indoor heat exchanger (evaporator) capacity / total input
  • a heat exchanger is arrange
  • coolant flows in the inlet side header 2 arrange
  • the refrigerant flowing into the inlet header 2 is distributed to the same number of paths (refrigerant paths) as the number of the plurality of fins 1 and flows from the bottom to the top of the plurality of fins 1. Thereafter, the refrigerant flows out from the outlet header 3.
  • the inlet header 2 corresponds to the “lower header” in the present invention.
  • the outlet header 3 corresponds to the “header disposed on the upper side” in the present invention.
  • the refrigerant flowing through the evaporator 36 is in a gas-liquid two-phase state.
  • the gas-liquid two-phase refrigerant may have a plug flow or a slag flow.
  • the heat exchanger is used for the evaporator 36, the refrigerant flows through the flow paths 11 of the plurality of fins 1 from the bottom to the top. Therefore, in the case of a plug flow or a slag flow, the refrigerant does not stagnate due to bubble buoyancy. It can flow upward. Thereby, the heat exchange performance of a heat exchanger can be improved.
  • Embodiment 2 FIG. Hereinafter, the difference between the heat exchanger of the second embodiment and the first embodiment will be described. In addition, the same code
  • FIG. 1
  • FIG. 7 is a perspective view showing a heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view showing an arrangement of fins of the heat exchanger according to Embodiment 2 of the present invention.
  • the heat exchanger according to the second embodiment is provided in two rows in the fluid (air) flow direction. Further, the plurality of fins 1 on the upstream side and the plurality of fins 1 on the downstream side are arranged so as not to overlap each other in the fluid (air) flow direction. That is, the arrangement of the plurality of fins 1 is staggered.
  • the air flow developed between the plurality of fins 1 in the first row can develop a new boundary layer at the leading edge of the plurality of fins 1 in the second row, thereby promoting heat transfer. be able to.
  • Embodiment 3 the difference between the heat exchanger of the third embodiment and the first embodiment will be described.
  • symbol is attached
  • FIG. 9 is a perspective view showing a heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 10 is a cross-sectional view showing the inlet header of the heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 11 is a diagram showing an inner tube of a heat exchanger according to Embodiment 3 of the present invention.
  • the inlet-side header 2 of the heat exchanger according to the third embodiment includes an outer tube 6 and an inner tube 7 provided inside the outer tube 6.
  • the outer tube 6 is connected to the ends of the plurality of fins 1.
  • the outer tube 6 is a tube having a rectangular cross section, for example, and is closed at both ends.
  • a pipe constituting the refrigerant inlet 4 through which the refrigerant flows into the inner pipe 7 passes through the side surface of the outer pipe 6.
  • the inner tube 7 is, for example, a circular tube.
  • the inner pipe 7 is formed with a refrigerant inlet 4 through which refrigerant flows and a plurality of outlets 71 through which the refrigerant flowing in from the inlet flows out into the outer pipe 6.
  • the width of the inner tube 7 is substantially equal to the arrangement range of the plurality of fins 1.
  • the plurality of outlets 71 are formed only on the lower side (lower part in the direction of gravity) of the inner tube 7.
  • the plurality of outlets 71 are arranged substantially evenly in the width direction of the inner tube 7.
  • the liquid phase refrigerant flows from the refrigerant inlet 4 into the inner pipe 7.
  • the liquid-phase refrigerant that has flowed into the inner pipe 7 flows out of each of the plurality of outlets 71 into the outer pipe 6.
  • the liquid phase refrigerant is agitated, and the liquid phase refrigerant flows evenly into the plurality of fins 1. Therefore, local drying of the refrigerant hardly occurs in a part of the plurality of fins 1, and the heat exchange performance of the heat exchanger can be improved.
  • Embodiment 4 FIG.
  • the difference between the heat exchanger of the fourth embodiment and the first embodiment will be described.
  • symbol is attached
  • FIG. 12 is a side view showing a heat exchanger according to Embodiment 4 of the present invention. As shown in FIG. 12, two heat exchangers according to the fourth embodiment are provided so as to overlap in the direction of gravity.
  • the flow paths 11 of the plurality of fins 1 have a fluid equivalent diameter (equivalent diameter) of 0.05 to 0.2 mm.
  • the rectangular channel having a tube inner diameter of 1 mm or less has a constant or increased heat transfer coefficient in the tube even if the refrigerant flow rate is reduced. This is because when the flow rate of the refrigerant decreases, the liquid phase refrigerant stays and the boiling of the refrigerant easily occurs.
  • the refrigerant flow rate per one flow path 11 inside the plurality of fins 1 is small, but the number of passes is the same as the number of the plurality of fins 1 and the number of passes is very large. it can. For this reason, a heat transfer rate is a grade which is not different from the inside of the circular pipe used for the conventional heat exchanger.
  • the length of the heat transfer section required for the dryness to exceed 1 (the length of the plurality of fins 1) needs to be smaller than that of the conventional heat exchanger.
  • two heat exchangers according to the fourth embodiment are provided so as to overlap in the direction of gravity, thereby ensuring a sufficient heat exchange volume even when the length of the plurality of fins 1 is shortened. be able to.
  • a sufficient heat exchange volume can be ensured even if the unit height of the outdoor unit is the same as that of the conventional unit.
  • coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.
  • the same effect can be obtained when the heat exchanger described in the first to fourth embodiments is used in either an indoor unit or an outdoor unit of an air conditioner.
  • the heat exchanger described in the first to fourth embodiments and the air conditioner using the heat exchanger may be a mineral oil, an alkylbenzene oil system, an ester oil system, an ether oil system, a fluorine oil system, or the like.
  • the effect can be achieved with any refrigeration oil, whether the oil is soluble or not.
  • the utilization example of the present invention is not limited to the above-described air conditioner, but can be used for a heat pump apparatus that needs to improve heat exchange performance and energy saving performance.

Abstract

This heat exchanger is characterized by being provided with: a plurality of fins (1) which are disposed with a clearance therebetween, which have a fluid flowing therebetween, and in which passages are formed, said passages having, flowing therethrough, a medium for performing heat exchange with the fluid; and a pair of headers which respectively connect both ends of the plurality of fins (1). The heat exchanger is further characterized in that, in cases when Fp is the fin pitch, i.e. the clearance between neighbouring fins (1), and Ft is the fin thickness, the plurality of fins (1) satisfy the relationship 3 ≤ Fp/Ft ≤ 21.

Description

熱交換器、及び空気調和機Heat exchanger and air conditioner
 本発明は、熱交換器、及び熱交換器を備えた空気調和機に関する。 The present invention relates to a heat exchanger and an air conditioner including the heat exchanger.
 従来の技術においては、間隔を置いて配置されたヘッダ間に、複数の平坦な多流路伝熱管を備える熱交換器が提案されている(例えば、特許文献1参照)。 In the conventional technology, a heat exchanger having a plurality of flat multi-channel heat transfer tubes between headers arranged at intervals is proposed (see, for example, Patent Document 1).
特表2008-528943号公報(要約)Japanese translation of PCT publication No. 2008-528943 (summary)
 上記特許文献1に記載の技術では、複数の平坦な多流路伝熱管(内部に流路が形成された複数のフィン)の厚さ及び管ピッチについては何ら考慮されていない。
 このため、複数のフィンの厚さと管ピッチが適切でないと、熱交換器の熱交換性能が低下する、という問題点があった。
 例えば、フィンの厚さを厚くしすぎると流路面積が増加するが、複数のフィンの間を通過する空気の通風抵抗が大きくなり、熱交換性能が低下する。また、逆に、フィンの厚さを薄くすれば複数のフィンの間を通過する空気の通風抵抗が小さくなるが、流路面積が減少し、熱交換性能が低下する。
In the technique described in Patent Document 1, no consideration is given to the thickness and tube pitch of a plurality of flat multi-channel heat transfer tubes (a plurality of fins having channels formed therein).
For this reason, if the thickness and pipe pitch of the plurality of fins are not appropriate, there is a problem that the heat exchange performance of the heat exchanger decreases.
For example, if the fins are too thick, the flow path area increases, but the ventilation resistance of the air passing between the plurality of fins increases and the heat exchange performance decreases. Conversely, if the fin thickness is reduced, the airflow resistance of the air passing between the plurality of fins is reduced, but the flow path area is reduced and the heat exchange performance is reduced.
 本発明は、上記のような課題を解決するためになされたもので、熱交換性能を向上することができる熱交換器、及び空気調和機を得るものである。 The present invention has been made to solve the above-described problems, and provides a heat exchanger and an air conditioner that can improve heat exchange performance.
 本発明に係る熱交換器は、間隔を空けて配置されその間を流体が流れ、内部に前記流体と熱交換する媒体が流れる流路が形成された複数のフィンと、前記複数のフィンの両端部をそれぞれ接続する一対のヘッダと、を備え、前記複数のフィンは、隣り合う前記フィンの間隔であるフィンピッチをFp、前記フィンの厚さをFtとした場合、3≦Fp/Ft≦21の関係を満たすことを特徴とする。 The heat exchanger according to the present invention includes a plurality of fins in which fluids flow between them and a flow path through which a medium that exchanges heat with the fluid flows is formed, and both ends of the plurality of fins A plurality of fins, wherein the fins have a pitch of Fp as the gap between adjacent fins, and Ft is the thickness of the fins, and 3 ≦ Fp / Ft ≦ 21 It is characterized by satisfying the relationship.
 本発明は、間隔を空けて配置されその間を流体が流れ、内部に前記流体と熱交換する媒体が流れる流路が形成された複数のフィンと、前記複数のフィンの両端部をそれぞれ接続する一対のヘッダとを備えた熱交換器において、熱交換性能を向上することができる。 The present invention provides a pair of fins that are arranged with a space therebetween, in which a fluid flows between them and in which a channel through which a medium that exchanges heat with the fluid flows is formed, and to which both ends of the plurality of fins are connected. In the heat exchanger provided with the header, the heat exchange performance can be improved.
本発明の実施の形態1に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 図2のA-A断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図3のB部を示す拡大図である。It is an enlarged view which shows the B section of FIG. 本発明の実施の形態1に係る熱交換器の性能特性を示す図である。It is a figure which shows the performance characteristic of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る空気調和機の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器のフィンの配列を示す断面図である。It is sectional drawing which shows the arrangement | sequence of the fin of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器の入口側ヘッダを示す断面図である。It is sectional drawing which shows the inlet side header of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器の内管を示す図である。It is a figure which shows the inner tube | pipe of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器を示す側面図である。It is a side view which shows the heat exchanger which concerns on Embodiment 4 of this invention.
実施の形態1.
 図1は、本発明の実施の形態1に係る熱交換器を示す斜視図である。
 図2は、本発明の実施の形態1に係る熱交換器を示す側面図である。
 図3は、図2のA-A断面図である。
 図4は、図3のB部を示す拡大図である。
 図1~図4に示すように、熱交換器は、複数のフィン1と、一対のヘッダ(入口側ヘッダ2、出口側ヘッダ3)と、を備えている。
 複数のフィン1は、間隔を空けて配置され、その間を流体(例えば空気)が流れる。複数のフィン1は、内部に媒体(例えば冷媒)が流れる1つ又は複数の流路11が形成されている。
 一対のヘッダ(入口側ヘッダ2、出口側ヘッダ3)は、複数のフィン1の両端部をそれぞれ接続する。例えば、入口側ヘッダ2の冷媒流入口4から冷媒が流入する。入口側ヘッダ2に流入した冷媒は、複数のフィン1を通って出口側ヘッダ3に流入する。そして、出口側ヘッダ3の冷媒出口5から冷媒が流出する。なお、冷媒の流通方向はこれに限定されず逆向きでも良い。
 このような構成により、熱交換器は、複数のフィン1の間を通過する空気と、複数のフィン1の内部の流路11を流れる冷媒とを熱交換する。
Embodiment 1 FIG.
FIG. 1 is a perspective view showing a heat exchanger according to Embodiment 1 of the present invention.
FIG. 2 is a side view showing the heat exchanger according to Embodiment 1 of the present invention.
3 is a cross-sectional view taken along the line AA in FIG.
FIG. 4 is an enlarged view showing a portion B of FIG.
As shown in FIGS. 1 to 4, the heat exchanger includes a plurality of fins 1 and a pair of headers (an inlet side header 2 and an outlet side header 3).
The plurality of fins 1 are arranged at intervals, and a fluid (for example, air) flows between them. In the plurality of fins 1, one or a plurality of flow paths 11 through which a medium (for example, a refrigerant) flows are formed.
A pair of headers (inlet side header 2 and outlet side header 3) connect both ends of the plurality of fins 1, respectively. For example, the refrigerant flows from the refrigerant inlet 4 of the inlet header 2. The refrigerant that has flowed into the inlet header 2 flows into the outlet header 3 through the plurality of fins 1. Then, the refrigerant flows out from the refrigerant outlet 5 of the outlet side header 3. In addition, the distribution direction of a refrigerant | coolant is not limited to this, A reverse direction may be sufficient.
With such a configuration, the heat exchanger exchanges heat between the air passing between the plurality of fins 1 and the refrigerant flowing through the flow paths 11 inside the plurality of fins 1.
 また、複数のフィン1は、隣り合うフィン1の間隔であるフィンピッチをFp、フィン1の厚さをFtとした場合、3≦Fp/Ft≦21、の関係を満たしている。 Further, the plurality of fins 1 satisfy the relationship of 3 ≦ Fp / Ft ≦ 21, where Fp is the pitch between adjacent fins 1 and Ft is the thickness of the fins 1.
 図5は、本発明の実施の形態1に係る熱交換器の性能特性を示す図である。
 図5においては、従来の熱交換器を基準(100%)として、熱交換器の空気側通風抵抗ΔPに対する伝熱性能AK[W/K]の割合(AK/ΔP)と、フィン1の厚さFtに対するフィンピッチFpの割合(Fp/Ft)との関係を示している。
 ここで、AK値は熱交換器における熱通過率Kと伝熱面積Aとを乗じた値であり、熱交換器の伝熱特性を表すものである。
 なお、基準となる従来の熱交換器は、複数の放熱フィンの間を通過する空気と、複数の伝熱管を流通する冷媒との熱交換を行うプレートフィン型の熱交換器である。また、従来の熱交換器の伝熱管は、空気の流れ方向に2列配置され、空気の流れと直交する方向に複数段配置されている。また、伝熱管として、Φ7.94mmの円管を用い、フィンピッチFp=1.6mm、伝熱管の段ピッチDp=20.4mm、伝熱管の列ピッチLp=17.7mmの構成である。
FIG. 5 is a diagram showing the performance characteristics of the heat exchanger according to Embodiment 1 of the present invention.
In FIG. 5, the ratio (AK / ΔP) of the heat transfer performance AK [W / K] to the air side ventilation resistance ΔP of the heat exchanger and the thickness of the fin 1 with the conventional heat exchanger as a reference (100%) The relationship with the ratio (Fp / Ft) of fin pitch Fp with respect to Ft is shown.
Here, the AK value is a value obtained by multiplying the heat transfer rate K and the heat transfer area A in the heat exchanger, and represents the heat transfer characteristics of the heat exchanger.
In addition, the conventional heat exchanger used as a reference | standard is a plate fin type heat exchanger which performs heat exchange with the air which passes between several radiation fins, and the refrigerant | coolant which distribute | circulates several heat exchanger tubes. Further, the heat transfer tubes of the conventional heat exchanger are arranged in two rows in the air flow direction, and are arranged in a plurality of stages in a direction orthogonal to the air flow. Further, a circular pipe having a diameter of Φ7.94 mm is used as the heat transfer tube, and the fin pitch Fp = 1.6 mm, the step pitch Dp = 20.4 mm of the heat transfer tube, and the row pitch Lp of the heat transfer tube = 17.7 mm.
 図5に示されるように、AK/ΔPは、Fp/Ftが小さくなりすぎると低下する。また、AK/ΔPは、Fp/Ftが大きくなりすぎると低下する。つまり、Fp/Ftには、AK/ΔPを向上できる適正な範囲が存在する。
 例えば同一のフィンピッチFpの場合、フィン1の厚さFtが厚くなると流路11の流通面積が増加し、冷媒の流速増加により熱通過率Kが増えて伝熱性能AKが大きくなり、AK/ΔPが増加する。しかし、フィン1の厚さFtが厚くなりすぎると、空気側通風抵抗ΔPが大きくなり、AK/ΔPが低下する。
 また例えば、フィン1の厚さFtが薄くなると、空気側通風抵抗ΔPが小さくなり、AK/ΔPが増加する。しかし、フィン1の厚さFtが薄くなりすぎると、流路11の流路面積が減少し、冷媒の流速減少により熱通過率Kが低下して伝熱性能AKが小さくなり、AK/ΔPが低下する。
As shown in FIG. 5, AK / ΔP decreases when Fp / Ft becomes too small. Further, AK / ΔP decreases when Fp / Ft becomes too large. That is, Fp / Ft has an appropriate range in which AK / ΔP can be improved.
For example, in the case of the same fin pitch Fp, when the thickness Ft of the fin 1 is increased, the flow area of the flow path 11 is increased, the heat transfer rate K is increased due to an increase in the flow velocity of the refrigerant, and the heat transfer performance AK is increased. ΔP increases. However, if the thickness Ft of the fin 1 becomes too thick, the air-side ventilation resistance ΔP increases and AK / ΔP decreases.
Further, for example, when the thickness Ft of the fin 1 is reduced, the air-side ventilation resistance ΔP is reduced and AK / ΔP is increased. However, if the thickness Ft of the fin 1 becomes too thin, the flow path area of the flow path 11 decreases, the heat flow rate K decreases due to a decrease in the flow rate of the refrigerant, the heat transfer performance AK decreases, and AK / ΔP is reduced. descend.
 以上のようなことから、本実施の形態1における熱交換器は、従来の熱交換器と比較してAK/ΔPを向上できる値(100%)以上となるように、3≦Fp/Ft≦21の関係を満たしている。
 これにより、熱交換器の熱交換性能を向上することができる。
From the above, the heat exchanger according to the first embodiment is 3 ≦ Fp / Ft ≦ so that the value (100%) or more can be improved as compared with the conventional heat exchanger. 21 relationships are satisfied.
Thereby, the heat exchange performance of a heat exchanger can be improved.
 また、従来の熱交換器のように、複数の放熱フィンの間を通過する空気と、複数の伝熱管を流通する冷媒との熱交換を行うプレートフィン型の熱交換器の場合、伝熱管と放熱フィンとの間に接触熱抵抗が存在する。また、放熱フィンには熱伝導による抵抗が存在する。
 一方、本実施の形態1における熱交換器は、フィン1の内部に冷媒が流通する流路11が形成されている。このため、フィン効率はほぼ1である。また、従来の熱交換器のように、放熱フィンと伝熱管との間の接触熱抵抗は発生しない。よって、従来の熱交換器と比較して、フィン効率を向上することができ、熱交換器の熱交換性能を向上することができる。
Further, in the case of a plate fin type heat exchanger that performs heat exchange between air passing between a plurality of heat radiating fins and a refrigerant flowing through the plurality of heat transfer tubes, as in a conventional heat exchanger, A contact thermal resistance exists between the radiating fins. Moreover, the heat dissipation fin has resistance due to heat conduction.
On the other hand, in the heat exchanger according to the first embodiment, the flow path 11 through which the refrigerant flows is formed inside the fin 1. For this reason, the fin efficiency is approximately 1. Moreover, unlike the conventional heat exchanger, contact thermal resistance between the radiation fin and the heat transfer tube does not occur. Therefore, compared with the conventional heat exchanger, fin efficiency can be improved and the heat exchange performance of a heat exchanger can be improved.
 次に、上記熱交換器を空気調和機の冷媒回路に適用した場合を説明する。 Next, the case where the heat exchanger is applied to a refrigerant circuit of an air conditioner will be described.
 図6は、本発明の実施の形態1に係る空気調和機の冷媒回路図である。
 図6に示す冷媒回路は、圧縮機33、凝縮器34、絞り装置35、蒸発器36により構成されている。また、空気調和機は、凝縮器34及び蒸発器36へ空気を送風する送風機37と、送風機37を駆動する送風機用モータ38とを備えている。
 上記熱交換器を、凝縮器34又は蒸発器36、もしくは両方に用いることにより、エネルギー効率の高い空気調和機を実現することができる。
 ここで、エネルギー効率は、次式で構成されるものである。
  暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力
  冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力
FIG. 6 is a refrigerant circuit diagram of the air conditioner according to Embodiment 1 of the present invention.
The refrigerant circuit shown in FIG. 6 includes a compressor 33, a condenser 34, a throttling device 35, and an evaporator 36. The air conditioner includes a blower 37 that blows air to the condenser 34 and the evaporator 36, and a blower motor 38 that drives the blower 37.
By using the heat exchanger in the condenser 34 or the evaporator 36 or both, an air conditioner with high energy efficiency can be realized.
Here, energy efficiency is constituted by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input
 蒸発器36に上記熱交換器を用いる場合、熱交換器は、複数のフィン1の長手方向が重力方向となるように配置される。
 また、蒸発器36として用いられる場合、一対のヘッダ(入口側ヘッダ2、出口側ヘッダ3)のうち、下側に配置された入口側ヘッダ2に冷媒が流入する。入口側ヘッダ2に流入した冷媒は、複数のフィン1のそれぞれの流路11を通過し、上側に配置された出口側ヘッダ3に流入する。
 つまり、入口側ヘッダ2に流入した冷媒は、複数のフィン1の数と同じ数のパス(冷媒経路)に分配され、複数のフィン1の下から上に向かって流動する。その後、出口側ヘッダ3から冷媒が流出する。
When using the said heat exchanger for the evaporator 36, a heat exchanger is arrange | positioned so that the longitudinal direction of the several fin 1 may turn into a gravity direction.
Moreover, when using as the evaporator 36, a refrigerant | coolant flows in the inlet side header 2 arrange | positioned below among a pair of headers (inlet side header 2, outlet side header 3). The refrigerant that has flowed into the inlet header 2 passes through the flow paths 11 of the plurality of fins 1 and flows into the outlet header 3 disposed on the upper side.
That is, the refrigerant flowing into the inlet header 2 is distributed to the same number of paths (refrigerant paths) as the number of the plurality of fins 1 and flows from the bottom to the top of the plurality of fins 1. Thereafter, the refrigerant flows out from the outlet header 3.
 なお、入口側ヘッダ2は、本発明における「下側に配置されたヘッダ」に相当する。
 また、出口側ヘッダ3は、本発明における「上側に配置されたヘッダ」に相当する。
The inlet header 2 corresponds to the “lower header” in the present invention.
The outlet header 3 corresponds to the “header disposed on the upper side” in the present invention.
 ここで、蒸発器36を流通する冷媒は気液二相状態となる。この気液二相状態の冷媒は、流動様式がプラグ流又はスラグ流となる場合がある。蒸発器36に上記熱交換器を用いる場合、冷媒が複数のフィン1の流路11を、下から上に流動するので、プラグ流又はスラグ流の場合には、気泡の浮力により冷媒が滞りなく上方に流動できる。
 これにより、熱交換器の熱交換性能を向上することができる。
Here, the refrigerant flowing through the evaporator 36 is in a gas-liquid two-phase state. The gas-liquid two-phase refrigerant may have a plug flow or a slag flow. When the heat exchanger is used for the evaporator 36, the refrigerant flows through the flow paths 11 of the plurality of fins 1 from the bottom to the top. Therefore, in the case of a plug flow or a slag flow, the refrigerant does not stagnate due to bubble buoyancy. It can flow upward.
Thereby, the heat exchange performance of a heat exchanger can be improved.
 また、蒸発器36を流通する冷媒の蒸発温度が低くなると、複数のフィン1の表面で空気中の水蒸気が結露し、結露水(凝縮水)が発生する場合がある。蒸発器36に上記熱交換器を用いる場合、熱交換器は、複数のフィン1の長手方向が重力方向となるように配置される。このため、結露水は重力方向と平行な複数のフィン1の間を流下するので、結露水の排水性を向上することができる。また、蒸発器36に着霜した霜を溶かすデフロスト運転時においても、熱交換器の下部に根氷が積層することを防ぐことができる。 Further, when the evaporation temperature of the refrigerant flowing through the evaporator 36 is lowered, water vapor in the air may condense on the surfaces of the plurality of fins 1 to generate condensed water (condensed water). When using the said heat exchanger for the evaporator 36, a heat exchanger is arrange | positioned so that the longitudinal direction of the several fin 1 may turn into a gravity direction. For this reason, since the dew condensation water flows down between the plurality of fins 1 parallel to the direction of gravity, the drainage of the dew condensation water can be improved. Further, even during the defrost operation in which the frost that has formed on the evaporator 36 is melted, root ice can be prevented from being stacked on the lower portion of the heat exchanger.
実施の形態2.
 以下、本実施の形態2の熱交換器について、上記実施の形態1との相違点を説明する。なお、上記実施の形態1と同一の構成には同一の符号を付する。
Embodiment 2. FIG.
Hereinafter, the difference between the heat exchanger of the second embodiment and the first embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure same as the said Embodiment 1. FIG.
 図7は、本発明の実施の形態2に係る熱交換器を示す斜視図である。
 図8は、本発明の実施の形態2に係る熱交換器のフィンの配列を示す断面図である。
 図7、図8に示すように、本実施の形態2における熱交換器は、流体(空気)の流れ方向に2列設けている。また、流体(空気)の流れ方向において、上流側の複数のフィン1と下流側の複数のフィン1とが重ならないように配置している。即ち、複数のフィン1の配列を千鳥状にしている。
FIG. 7 is a perspective view showing a heat exchanger according to Embodiment 2 of the present invention.
FIG. 8 is a cross-sectional view showing an arrangement of fins of the heat exchanger according to Embodiment 2 of the present invention.
As shown in FIGS. 7 and 8, the heat exchanger according to the second embodiment is provided in two rows in the fluid (air) flow direction. Further, the plurality of fins 1 on the upstream side and the plurality of fins 1 on the downstream side are arranged so as not to overlap each other in the fluid (air) flow direction. That is, the arrangement of the plurality of fins 1 is staggered.
 これにより、1列目の複数のフィン1の間に発達した空気の流れを、2列目の複数のフィン1の前縁で、新規の境界層を発達させることができ、伝熱を促進することができる。 As a result, the air flow developed between the plurality of fins 1 in the first row can develop a new boundary layer at the leading edge of the plurality of fins 1 in the second row, thereby promoting heat transfer. be able to.
 なお、本実施の形態2では、熱交換器を2列設ける場合を説明したが、本発明はこれに限定されず、3列以上設けても良い。 In addition, in this Embodiment 2, although the case where two rows of heat exchangers were provided was demonstrated, this invention is not limited to this, You may provide three or more rows.
実施の形態3.
 以下、本実施の形態3の熱交換器について、上記実施の形態1との相違点を説明する。なお、上記実施の形態1と同一の構成には同一の符号を付する。
Embodiment 3 FIG.
Hereinafter, the difference between the heat exchanger of the third embodiment and the first embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure same as the said Embodiment 1. FIG.
 図9は、本発明の実施の形態3に係る熱交換器を示す斜視図である。
 図10は、本発明の実施の形態3に係る熱交換器の入口側ヘッダを示す断面図である。
 図11は、本発明の実施の形態3に係る熱交換器の内管を示す図である。
 図9~図11に示すように、本実施の形態3における熱交換器の入口側ヘッダ2は、外管6と、外管6の内部に設けられた内管7とを備えている。
 外管6は、複数のフィン1の端部が接続されている。外管6は、例えば断面が矩形形状の管であり、両端が閉塞されている。外管6の側面には、内管7に冷媒を流入する冷媒流入口4を構成する管が貫通している。
 内管7は、例えば円管である。内管7は、冷媒が流入する冷媒流入口4と、流入口から流入した冷媒を外管6内へ流出させる複数の流出口71とが形成されている。内管7の幅は複数のフィン1の配置範囲と略同等である。複数の流出口71は、内管7の下側(重力方向下部)にのみ形成されている。複数の流出口71は、内管7の幅方向に略均等に配置されている。
FIG. 9 is a perspective view showing a heat exchanger according to Embodiment 3 of the present invention.
FIG. 10 is a cross-sectional view showing the inlet header of the heat exchanger according to Embodiment 3 of the present invention.
FIG. 11 is a diagram showing an inner tube of a heat exchanger according to Embodiment 3 of the present invention.
As shown in FIGS. 9 to 11, the inlet-side header 2 of the heat exchanger according to the third embodiment includes an outer tube 6 and an inner tube 7 provided inside the outer tube 6.
The outer tube 6 is connected to the ends of the plurality of fins 1. The outer tube 6 is a tube having a rectangular cross section, for example, and is closed at both ends. A pipe constituting the refrigerant inlet 4 through which the refrigerant flows into the inner pipe 7 passes through the side surface of the outer pipe 6.
The inner tube 7 is, for example, a circular tube. The inner pipe 7 is formed with a refrigerant inlet 4 through which refrigerant flows and a plurality of outlets 71 through which the refrigerant flowing in from the inlet flows out into the outer pipe 6. The width of the inner tube 7 is substantially equal to the arrangement range of the plurality of fins 1. The plurality of outlets 71 are formed only on the lower side (lower part in the direction of gravity) of the inner tube 7. The plurality of outlets 71 are arranged substantially evenly in the width direction of the inner tube 7.
 このような構成により、熱交換器が蒸発器36として用いられる場合、冷媒流入口4から内管7に液相状態の冷媒が流入する。内管7に流入した液相状態の冷媒は、複数の流出口71のそれぞれから外管6内へ流出する。これにより、入口側ヘッダ2の内部では、液相状態の冷媒が攪拌され、液相状態の冷媒が、均等に複数のフィン1へ流入する。よって、複数のフィン1のうちの一部に、局所的な冷媒の乾きが生じにくくなり、熱交換器の熱交換性能を向上することができる。 With such a configuration, when the heat exchanger is used as the evaporator 36, the liquid phase refrigerant flows from the refrigerant inlet 4 into the inner pipe 7. The liquid-phase refrigerant that has flowed into the inner pipe 7 flows out of each of the plurality of outlets 71 into the outer pipe 6. Thereby, inside the inlet side header 2, the liquid phase refrigerant is agitated, and the liquid phase refrigerant flows evenly into the plurality of fins 1. Therefore, local drying of the refrigerant hardly occurs in a part of the plurality of fins 1, and the heat exchange performance of the heat exchanger can be improved.
実施の形態4.
 以下、本実施の形態4の熱交換器について、上記実施の形態1との相違点を説明する。なお、上記実施の形態1と同一の構成には同一の符号を付する。
Embodiment 4 FIG.
Hereinafter, the difference between the heat exchanger of the fourth embodiment and the first embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure same as the said Embodiment 1. FIG.
 図12は、本発明の実施の形態4に係る熱交換器を示す側面図である。
 図12に示すように、本実施の形態4における熱交換器は、重力方向に重ねて2つ設けている。また、複数のフィン1の流路11は、0.05~0.2mmの流体相当直径(等価直径)である。
FIG. 12 is a side view showing a heat exchanger according to Embodiment 4 of the present invention.
As shown in FIG. 12, two heat exchangers according to the fourth embodiment are provided so as to overlap in the direction of gravity. The flow paths 11 of the plurality of fins 1 have a fluid equivalent diameter (equivalent diameter) of 0.05 to 0.2 mm.
 熱交換器が蒸発器36として用いられる場合、管内径が1mm以下の矩形流路は冷媒流量が小さくなっても、管内熱伝達率は一定若しくは上昇しやすい。これは、冷媒流量が低下すると、液相状態の冷媒が滞留し、冷媒の沸騰が起きやすくなるためである。
 本実施の形態4の熱交換器は、複数のフィン1内部の一つの流路11当りの冷媒流量は小さいが、パス数は複数のフィン1の数と同じ数となり、パス数を非常に大きくできる。このため、熱伝達率は、従来の熱交換器に用いられる円管内と変わらない程度である。
 この場合、乾き度が1を超えるのに要する伝熱部の長さ(複数のフィン1の長さ)は、従来の熱交換器より小さくする必要がある。
 このようなことから本実施の形態4における熱交換器は、重力方向に重ねて2つ設けることで、複数のフィン1の長さを短くする場合であっても十分な熱交換容積を確保することができる。例えば、空気調和機の室外機に熱交換器を搭載する場合、室外機のユニット高さが従来と同等であっても十分な熱交換容積を確保することができる。
When the heat exchanger is used as the evaporator 36, the rectangular channel having a tube inner diameter of 1 mm or less has a constant or increased heat transfer coefficient in the tube even if the refrigerant flow rate is reduced. This is because when the flow rate of the refrigerant decreases, the liquid phase refrigerant stays and the boiling of the refrigerant easily occurs.
In the heat exchanger of the fourth embodiment, the refrigerant flow rate per one flow path 11 inside the plurality of fins 1 is small, but the number of passes is the same as the number of the plurality of fins 1 and the number of passes is very large. it can. For this reason, a heat transfer rate is a grade which is not different from the inside of the circular pipe used for the conventional heat exchanger.
In this case, the length of the heat transfer section required for the dryness to exceed 1 (the length of the plurality of fins 1) needs to be smaller than that of the conventional heat exchanger.
For this reason, two heat exchangers according to the fourth embodiment are provided so as to overlap in the direction of gravity, thereby ensuring a sufficient heat exchange volume even when the length of the plurality of fins 1 is shortened. be able to. For example, when a heat exchanger is mounted on an outdoor unit of an air conditioner, a sufficient heat exchange volume can be ensured even if the unit height of the outdoor unit is the same as that of the conventional unit.
 なお、上述の実施の形態1~4の熱交換器の構成を任意に組み合わせても良い。このような構成においても、熱交換器の熱交換効率を向上することができる。 In addition, you may combine arbitrarily the structure of the heat exchanger of the above-mentioned Embodiment 1-4. Even in such a configuration, the heat exchange efficiency of the heat exchanger can be improved.
 なお、上述の実施の形態1~4で述べた熱交換器、及びそれを用いた空気調和機については、R410A、R32、HFO1234yf等の何れの冷媒においても、その効果を達成することができる。 It should be noted that the effects of the heat exchanger described in the first to fourth embodiments and the air conditioner using the heat exchanger can be achieved in any refrigerant such as R410A, R32, HFO1234yf, and the like.
 また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効果を奏する。 Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.
 また、上述の実施の形態1~4で述べた熱交換器を、空気調和機の室内機及び室外機の何れで用いた場合においても同様な効果を奏することができる。 In addition, the same effect can be obtained when the heat exchanger described in the first to fourth embodiments is used in either an indoor unit or an outdoor unit of an air conditioner.
 なお、上述の実施の形態1~4で述べた熱交換器、及びそれを用いた空気調和機については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける又は溶けないにかかわらず、どんな冷凍機油についても、その効果を達成することができる。 Note that the heat exchanger described in the first to fourth embodiments and the air conditioner using the heat exchanger may be a mineral oil, an alkylbenzene oil system, an ester oil system, an ether oil system, a fluorine oil system, or the like. The effect can be achieved with any refrigeration oil, whether the oil is soluble or not.
 本発明の活用例としては、上述した空気調和機に限らず、熱交換性能を向上し、省エネルギー性能を向上することが必要なヒートポンプ装置に使用することができる。 The utilization example of the present invention is not limited to the above-described air conditioner, but can be used for a heat pump apparatus that needs to improve heat exchange performance and energy saving performance.
 1 フィン、2 入口側ヘッダ、3 出口側ヘッダ、4 冷媒流入口、5 冷媒出口、6 外管、7 内管、11 流路、33 圧縮機、34 凝縮器、35 絞り装置、36 蒸発器、37 送風機、38 送風機用モータ、71 流出口。 1 fin, 2 inlet side header, 3 outlet side header, 4 refrigerant inlet, 5 refrigerant outlet, 6 outer pipe, 7 inner pipe, 11 flow path, 33 compressor, 34 condenser, 35 throttling device, 36 evaporator, 37 blower, 38 blower motor, 71 outlet.

Claims (7)

  1.  間隔を空けて配置されその間を流体が流れ、内部に前記流体と熱交換する媒体が流れる流路が形成された複数のフィンと、
     前記複数のフィンの両端部をそれぞれ接続する一対のヘッダと、
    を備え、
     前記複数のフィンは、
     隣り合う前記フィンの間隔であるフィンピッチをFp、前記フィンの厚さをFtとした場合、
     3≦Fp/Ft≦21
     の関係を満たす
    ことを特徴とする熱交換器。
    A plurality of fins that are arranged at intervals and in which a fluid flows therethrough and in which a flow path through which a medium that exchanges heat with the fluid flows is formed;
    A pair of headers respectively connecting both ends of the plurality of fins;
    With
    The plurality of fins are:
    When the fin pitch that is the interval between the adjacent fins is Fp, and the thickness of the fin is Ft,
    3 ≦ Fp / Ft ≦ 21
    A heat exchanger characterized by satisfying the relationship of
  2.  圧縮機、凝縮器、膨張手段、及び蒸発器を配管で接続し冷媒を循環させる冷媒回路を備え、
     前記凝縮器及び前記蒸発器の少なくとも一方に、請求項1に記載の熱交換器を用いた
    ことを特徴とする空気調和機。
    A compressor, a condenser, an expansion means, and a refrigerant circuit that connects the evaporator with piping and circulates the refrigerant;
    An air conditioner using the heat exchanger according to claim 1 for at least one of the condenser and the evaporator.
  3.  圧縮機、凝縮器、膨張手段、及び蒸発器を配管で接続し冷媒を循環させる冷媒回路を備え、
     前記蒸発器に、請求項1に記載の熱交換器を用い、
     前記熱交換器は、
     前記複数のフィンの長手方向が重力方向となるように配置され、
     前記一対のヘッダのうち、下側に配置された前記ヘッダに前記冷媒が流入し、下側に配置された前記ヘッダに流入した前記冷媒が前記複数のフィンを通って、上側に配置された前記ヘッダに流入し、上側に配置された前記ヘッダから前記冷媒が流出する
    ことを特徴とする空気調和機。
    A compressor, a condenser, an expansion means, and a refrigerant circuit that connects the evaporator with piping and circulates the refrigerant;
    The heat exchanger according to claim 1 is used for the evaporator,
    The heat exchanger is
    It is arranged so that the longitudinal direction of the plurality of fins is the direction of gravity,
    Of the pair of headers, the refrigerant flows into the header disposed on the lower side, and the refrigerant that has flowed into the header disposed on the lower side passes through the plurality of fins and is disposed on the upper side. An air conditioner, wherein the refrigerant flows into the header and the refrigerant flows out from the header disposed on the upper side.
  4.  前記一対のヘッダのうち、下側に配置された前記ヘッダは、
     前記複数のフィンの端部が接続された外管と、
     前記外管の内部に設けられた内管と、
     を備え、
     前記内管は、
     前記冷媒が流入する流入口と、
     前記流入口から流入した前記冷媒を前記外管へ流出させる複数の流出口と、が形成された
    ことを特徴とする請求項2または3に記載の空気調和機。
    Of the pair of headers, the header arranged on the lower side is:
    An outer tube to which ends of the plurality of fins are connected;
    An inner pipe provided inside the outer pipe;
    With
    The inner tube is
    An inlet into which the refrigerant flows;
    The air conditioner according to claim 2 or 3, wherein a plurality of outlets for allowing the refrigerant flowing in from the inlet to flow out to the outer pipe are formed.
  5.  前記複数の流出口は、前記内管の下側にのみ形成された
    ことを特徴とする請求項4に記載の空気調和機。
    The air conditioner according to claim 4, wherein the plurality of outlets are formed only on a lower side of the inner pipe.
  6.  前記熱交換器を、前記流体の流れ方向に複数設け、
     前記流体の流れ方向において、上流側の前記複数のフィンと下流側の前記複数のフィンとが重ならないように配置した
    ことを特徴とする請求項2~5の何れか一項に記載の空気調和機。
    A plurality of the heat exchangers are provided in the fluid flow direction,
    The air conditioning according to any one of claims 2 to 5, wherein the plurality of fins on the upstream side and the plurality of fins on the downstream side are arranged so as not to overlap each other in the fluid flow direction. Machine.
  7.  前記熱交換器を、重力方向に複数設けた
    ことを特徴とする請求項2~6の何れか一項に記載の空気調和機。
    The air conditioner according to any one of claims 2 to 6, wherein a plurality of the heat exchangers are provided in the direction of gravity.
PCT/JP2013/068677 2013-07-08 2013-07-08 Heat exchanger, and air conditioner WO2015004720A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2013/068677 WO2015004720A1 (en) 2013-07-08 2013-07-08 Heat exchanger, and air conditioner
JP2015526356A JPWO2015005352A1 (en) 2013-07-08 2014-07-08 Heat pump equipment
PCT/JP2014/068203 WO2015005352A1 (en) 2013-07-08 2014-07-08 Heat exchanger, and heat pump device
CN201480039081.4A CN105452794A (en) 2013-07-08 2014-07-08 Heat exchanger, and heat pump device
US14/902,031 US20160298886A1 (en) 2013-07-08 2014-07-08 Heat exchanger and heat pump apparatus
EP14823375.2A EP3021064B1 (en) 2013-07-08 2014-07-08 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/068677 WO2015004720A1 (en) 2013-07-08 2013-07-08 Heat exchanger, and air conditioner

Publications (1)

Publication Number Publication Date
WO2015004720A1 true WO2015004720A1 (en) 2015-01-15

Family

ID=52279452

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/068677 WO2015004720A1 (en) 2013-07-08 2013-07-08 Heat exchanger, and air conditioner
PCT/JP2014/068203 WO2015005352A1 (en) 2013-07-08 2014-07-08 Heat exchanger, and heat pump device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068203 WO2015005352A1 (en) 2013-07-08 2014-07-08 Heat exchanger, and heat pump device

Country Status (5)

Country Link
US (1) US20160298886A1 (en)
EP (1) EP3021064B1 (en)
JP (1) JPWO2015005352A1 (en)
CN (1) CN105452794A (en)
WO (2) WO2015004720A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3038059A1 (en) 2016-08-26 2018-03-01 Inertech Ip Llc Cooling systems and methods using single-phase fluid and a flat tube heat exchanger with counter-flow circuiting
JP6869800B2 (en) * 2017-04-28 2021-05-12 株式会社前川製作所 Air cooler, refrigeration system and defrosting method for air cooler
JP7113819B2 (en) * 2017-05-25 2022-08-05 三菱電機株式会社 Propeller fan and refrigeration cycle device
CN107017728B (en) * 2017-05-27 2019-11-26 中山大洋电机股份有限公司 A kind of phase-change heat motor case and its ventilated machine of application
US20190162455A1 (en) * 2017-11-29 2019-05-30 Lennox Industries, Inc. Microchannel heat exchanger
JP7092987B2 (en) * 2018-01-22 2022-06-29 ダイキン工業株式会社 Indoor heat exchanger and air conditioner
JP7140552B2 (en) * 2018-05-29 2022-09-21 株式会社前川製作所 Air cooler, refrigeration system and air cooler defrosting method
EP3971507B1 (en) 2019-05-14 2023-11-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
CN217636884U (en) * 2022-05-17 2022-10-21 丹佛斯有限公司 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280467A (en) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd Heat exchanger
JPH08504027A (en) * 1992-12-07 1996-04-30 マルチスタック インターナショナル リミテッド Improved plate heat exchanger
JP2002139295A (en) * 2000-10-31 2002-05-17 Toyo Radiator Co Ltd Heat exchanger for air conditioning
JP2002181487A (en) * 2000-12-12 2002-06-26 Daikin Ind Ltd Heat exchanger for air conditioner
JP2005195325A (en) * 2005-03-14 2005-07-21 Denso Corp Refrigerant condenser
JP2007017061A (en) * 2005-07-06 2007-01-25 Calsonic Kansei Corp Gas cooler for carbon dioxide air conditioner
WO2013008464A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Outdoor heat exchanger, and air conditioning device for vehicle

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1684083A (en) * 1927-06-02 1928-09-11 Samuel C Bloom Refrigerating coil
KR100497847B1 (en) * 1996-10-24 2005-09-30 쇼와 덴코 가부시키가이샤 Evaporator
DE69902614T2 (en) * 1998-10-19 2003-08-07 Denso Corp Double heat exchanger, with condenser and radiator
JP2000227265A (en) * 1999-02-03 2000-08-15 Denso Corp Refrigerant condenser integrated with liquid receiver
US6339937B1 (en) * 1999-06-04 2002-01-22 Denso Corporation Refrigerant evaporator
JP2001091099A (en) * 1999-09-17 2001-04-06 Sanyo Electric Co Ltd Heat exchanger
US20040173341A1 (en) * 2002-04-25 2004-09-09 George Moser Oil cooler and production method
KR20050002569A (en) * 2003-06-27 2005-01-07 마츠시타 덴끼 산교 가부시키가이샤 Heat exchanger
US7228885B2 (en) * 2003-11-26 2007-06-12 Proliance International, Inc. Heat exchanger package with split radiator and split charge air cooler
EP1548380A3 (en) * 2003-12-22 2006-10-04 Hussmann Corporation Flat-tube evaporator with micro-distributor
WO2005073655A1 (en) * 2004-01-29 2005-08-11 Calsonic Kansei Corporation Heat exchanger and air-conditioning system employing same
US7281387B2 (en) * 2004-04-29 2007-10-16 Carrier Commercial Refrigeration Inc. Foul-resistant condenser using microchannel tubing
US7331195B2 (en) * 2004-10-01 2008-02-19 Advanced Heat Transfer Llc Refrigerant distribution device and method
US20060113068A1 (en) * 2004-11-30 2006-06-01 Valeo, Inc. Multi fluid heat exchanger assembly
US20060130517A1 (en) * 2004-12-22 2006-06-22 Hussmann Corporation Microchannnel evaporator assembly
CA2596336A1 (en) * 2005-02-02 2006-08-10 Carrier Corporation Mini-channel heat exchanger with reduced dimension header
BRPI0519933A2 (en) * 2005-02-02 2009-08-18 Carrier Corp heat exchanger and refrigerant vapor compression system
DE102006028017A1 (en) * 2006-02-10 2007-08-16 Behr Gmbh & Co. Kg Heat exchanger, in particular with cold storage
JP4882504B2 (en) * 2006-05-16 2012-02-22 ダイキン工業株式会社 Heat exchanger
US20080023184A1 (en) * 2006-07-25 2008-01-31 Henry Earl Beamer Heat exchanger assembly
US8113269B2 (en) * 2007-02-22 2012-02-14 Thomas & Betts International, Inc. Multi-channel heat exchanger
US20110056668A1 (en) * 2008-04-29 2011-03-10 Carrier Corporation Modular heat exchanger
JP5444782B2 (en) * 2008-09-12 2014-03-19 株式会社デンソー Cold storage heat exchanger
KR101086917B1 (en) * 2009-04-20 2011-11-29 주식회사 경동나비엔 Heat exchanger
US20100269521A1 (en) * 2009-04-28 2010-10-28 Steven Clay Moore Air-conditioning with dehumidification
US8434324B2 (en) * 2010-04-05 2013-05-07 Denso Corporation Evaporator unit
US9151540B2 (en) * 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
WO2012018803A2 (en) * 2010-08-03 2012-02-09 Johnson Controls Technology Company Multichannel tubes with deformable webs
EP2602578B1 (en) * 2010-08-05 2019-01-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air conditioning device
JP5626194B2 (en) * 2010-12-21 2014-11-19 株式会社デンソー Heat exchange system
CN105004213B (en) * 2011-05-04 2017-11-28 翰昂汽车零部件有限公司 Cold-storage heat exchanger
KR101936243B1 (en) * 2012-04-26 2019-01-08 엘지전자 주식회사 A heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08504027A (en) * 1992-12-07 1996-04-30 マルチスタック インターナショナル リミテッド Improved plate heat exchanger
JPH07280467A (en) * 1994-04-01 1995-10-27 Nippon Light Metal Co Ltd Heat exchanger
JP2002139295A (en) * 2000-10-31 2002-05-17 Toyo Radiator Co Ltd Heat exchanger for air conditioning
JP2002181487A (en) * 2000-12-12 2002-06-26 Daikin Ind Ltd Heat exchanger for air conditioner
JP2005195325A (en) * 2005-03-14 2005-07-21 Denso Corp Refrigerant condenser
JP2007017061A (en) * 2005-07-06 2007-01-25 Calsonic Kansei Corp Gas cooler for carbon dioxide air conditioner
WO2013008464A1 (en) * 2011-07-14 2013-01-17 パナソニック株式会社 Outdoor heat exchanger, and air conditioning device for vehicle

Also Published As

Publication number Publication date
JPWO2015005352A1 (en) 2017-03-02
WO2015005352A1 (en) 2015-01-15
CN105452794A (en) 2016-03-30
EP3021064B1 (en) 2019-05-01
EP3021064A4 (en) 2017-03-22
EP3021064A1 (en) 2016-05-18
US20160298886A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
WO2015004720A1 (en) Heat exchanger, and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
JP6109303B2 (en) Heat exchanger and refrigeration cycle apparatus
US10508862B2 (en) Heat exchanger for air-cooled chiller
WO2013161802A1 (en) Heat exchanger and air conditioner
EP3156752B1 (en) Heat exchanger
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
WO2015046275A1 (en) Heat exchanger and air conditioner using same
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP6575895B2 (en) Heat exchanger
JP5627635B2 (en) Air conditioner
WO2018185824A1 (en) Heat exchanger and refrigeration cycle device
JP5591285B2 (en) Heat exchanger and air conditioner
JP5404571B2 (en) Heat exchanger and equipment
WO2018040036A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP2008215737A (en) Fin tube type heat exchanger and refrigerating cycle
WO2018040037A1 (en) Micro-channel heat exchanger and air-cooled refrigerator
JP6415597B2 (en) Refrigeration cycle equipment
JP5815128B2 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP