JP7092987B2 - Indoor heat exchanger and air conditioner - Google Patents

Indoor heat exchanger and air conditioner Download PDF

Info

Publication number
JP7092987B2
JP7092987B2 JP2018008352A JP2018008352A JP7092987B2 JP 7092987 B2 JP7092987 B2 JP 7092987B2 JP 2018008352 A JP2018008352 A JP 2018008352A JP 2018008352 A JP2018008352 A JP 2018008352A JP 7092987 B2 JP7092987 B2 JP 7092987B2
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
outdoor
flat
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018008352A
Other languages
Japanese (ja)
Other versions
JP2019128060A (en
Inventor
俊 吉岡
祥志 松本
智歩 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018008352A priority Critical patent/JP7092987B2/en
Priority to ES18901558T priority patent/ES2941545T3/en
Priority to US16/964,027 priority patent/US20210041115A1/en
Priority to PCT/JP2018/048147 priority patent/WO2019142642A1/en
Priority to EP18901558.9A priority patent/EP3745075B1/en
Priority to CN201880087296.1A priority patent/CN111630336B/en
Publication of JP2019128060A publication Critical patent/JP2019128060A/en
Application granted granted Critical
Publication of JP7092987B2 publication Critical patent/JP7092987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Description

本開示は、室内熱交換器および空気調和装置に関する。 The present disclosure relates to indoor heat exchangers and air conditioners.

従来より、空気調和装置の室外機が有する室外熱交換器として、例えば、特許文献1(特開2016-041986号)に記載されているように、複数の扁平管に対して伝熱フィンが接合されたものがある。 Conventionally, as an outdoor heat exchanger included in an outdoor unit of an air conditioner, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2016-041986), heat transfer fins are joined to a plurality of flat tubes. There is something that has been done.

このような、複数の扁平管に対して伝熱フィンが接合されて構成される熱交換器を、空気調和装置の室内機において用いる場合には、冷媒の蒸発器として機能させる際に生じる結露水の室内空間への飛散が問題となる。 When such a heat exchanger configured by joining heat transfer fins to a plurality of flat tubes is used in an indoor unit of an air conditioner, dew condensation water generated when the heat exchanger functions as an evaporator of a refrigerant. Scattering into the indoor space becomes a problem.

本開示は、上述した点に鑑みてなされたものであり、本開示における課題は、結露水の飛散を抑制することが可能な複数の扁平管を有する室内熱交換器および空気調和装置を提供することにある。 The present disclosure has been made in view of the above-mentioned points, and an object of the present disclosure is to provide an indoor heat exchanger and an air conditioner having a plurality of flat tubes capable of suppressing the scattering of dew condensation water. There is something in it.

第1観点に係る室内熱交換器は、空気調和装置の室内機に用いられる室内熱交換器である。室内熱交換器は、複数の扁平管と複数の伝熱フィンを備えている。扁平管は、内部に冷媒を通過させる流路を有している。複数の扁平管は、上下に並んでいる。複数の伝熱フィンは、複数の扁平管に接合されている。伝熱フィンは、連通部を有している。連通部は、上下に延びている。伝熱フィンの連通部は、伝熱フィンの一部であって、上下に並んだ扁平管同士の間に位置する各部分と繋がっている。室内熱交換器は、4.0≦DP/HT≦10.0の関係を満たす。ここで、HTは、扁平管の高さである。DPは、上下に並んだ扁平管のピッチである。 The indoor heat exchanger according to the first aspect is an indoor heat exchanger used in an indoor unit of an air conditioner. The indoor heat exchanger is equipped with a plurality of flat tubes and a plurality of heat transfer fins. The flat tube has a flow path inside which the refrigerant passes. Multiple flat tubes are lined up and down. A plurality of heat transfer fins are joined to a plurality of flat tubes. The heat transfer fin has a communication portion. The communication part extends up and down. The communication portion of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged one above the other. The indoor heat exchanger satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. Here, HT is the height of the flat tube. DP is the pitch of flat tubes arranged one above the other.

この室内熱交換器では、室内熱交換器に対して供給される空気流れの流速を大きくする場合であっても、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, even when the flow velocity of the air flow supplied to the indoor heat exchanger is increased, it is possible to suppress the scattering of condensed water that occurs when it is used as an evaporator of a refrigerant. It will be possible.

第2観点に係る室内熱交換器は、室内機に用いられる室内熱交換器である。当該室内機は、室外熱交換器を有する室外機と共に空気調和装置を構成するものである。室外熱交換器は、複数の扁平管と複数の伝熱フィンを備えている。室内熱交換器も、複数の扁平管と複数の伝熱フィンを備えている。これらの扁平管は、内部に冷媒を通過させる流路を有している。複数の扁平管は、上下に並んでいる。複数のフィンは、複数の扁平管に接合されている。伝熱フィンは、連通部を有している、連通部は、上下に延びている。伝熱フィンの連通部は、伝熱フィンの一部であって、上下に並んだ扁平管同士の間に位置する各部分と繋がっている。室内熱交換器のDP/HTの値は室外熱交換器のDP/HTの値よりも小さい。ここで、HTは、扁平管の高さである。DPは、上下に並んだ扁平管のピッチである。 The indoor heat exchanger according to the second aspect is an indoor heat exchanger used for an indoor unit. The indoor unit constitutes an air conditioner together with an outdoor unit having an outdoor heat exchanger. The outdoor heat exchanger is equipped with a plurality of flat tubes and a plurality of heat transfer fins. The indoor heat exchanger also has a plurality of flat tubes and a plurality of heat transfer fins. These flat tubes have a flow path inside which the refrigerant passes. Multiple flat tubes are lined up and down. The plurality of fins are joined to a plurality of flat tubes. The heat transfer fin has a communication portion, the communication portion extending vertically. The communication portion of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged one above the other. The value of DP / HT of the indoor heat exchanger is smaller than the value of DP / HT of the outdoor heat exchanger. Here, HT is the height of the flat tube. DP is the pitch of flat tubes arranged one above the other.

この室内熱交換器では、室外熱交換器が冷媒の蒸発器として用いられた場合における着霜を抑制させつつ、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, while suppressing frost formation when the outdoor heat exchanger is used as the refrigerant evaporator, the scattering of condensed water that occurs when the indoor heat exchanger is used as the refrigerant evaporator is suppressed. It becomes possible to suppress it.

第3観点に係る室内熱交換器は、第1観点または第2観点に係る室内熱交換器であって、扁平管は、空気流れ方向の上流側に配置された複数の上流側扁平管と、上流側扁平管よりも空気流れ方向の下流側に配置された複数の下流側扁平管と、を有している。 The indoor heat exchanger according to the third aspect is the indoor heat exchanger according to the first aspect or the second aspect, and the flat tube is a plurality of upstream flat tubes arranged on the upstream side in the air flow direction. It has a plurality of downstream flat tubes arranged on the downstream side in the air flow direction with respect to the upstream flat tube.

この室内熱交換器では、下流側扁平管の空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。 In this indoor heat exchanger, it becomes possible to suppress the scattering of dew condensation water from the downstream end portion in the air flow direction of the downstream flat tube.

第4観点に係る室内熱交換器は、第1観点から第3観点のいずれかに係る室内熱交換器であって、連通部は、空気流れ方向における扁平管の風下側に位置している。 The indoor heat exchanger according to the fourth aspect is the indoor heat exchanger according to any one of the first to third viewpoints, and the communication portion is located on the leeward side of the flat tube in the air flow direction.

この室内熱交換器では、扁平管で生じた結露水を、空気流れ方向における下流側に位置している伝熱フィンの連通部に伝わせながら下方に導くことで、伝熱フィンの空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。 In this indoor heat exchanger, the dew condensation water generated in the flat tube is guided downward while being transmitted to the communication portion of the heat transfer fins located on the downstream side in the air flow direction, so that the air flow direction of the heat transfer fins. It is possible to suppress the scattering of condensed water from the downstream end of the.

第5観点に係る室内熱交換器は、第1観点から第4観点のいずれかに係る室内熱交換器であって、0.2≦WL/WF≦0.5の関係を満たす。ここで、WFは、空気流れ方向における伝熱フィンの長さである。WLは、空気流れ方向における連通部の長さである。 The indoor heat exchanger according to the fifth aspect is the indoor heat exchanger according to any one of the first aspect to the fourth aspect, and satisfies the relationship of 0.2 ≦ WL / WF ≦ 0.5. Here, WF is the length of the heat transfer fin in the air flow direction. WL is the length of the communication portion in the air flow direction.

この室内熱交換器では、伝熱フィンの材料費を抑制しつつ連通部を十分に確保することで結露水の飛散を抑制できる。 In this indoor heat exchanger, the scattering of dew condensation water can be suppressed by sufficiently securing the communication portion while suppressing the material cost of the heat transfer fins.

第6観点に係る室内熱交換器は、第1観点から第5観点のいずれかに係る室内熱交換器であって、伝熱フィンは、切り起こし部を有している。切り起こし部の長手方向は、上下方向である。 The indoor heat exchanger according to the sixth aspect is the indoor heat exchanger according to any one of the first to fifth aspects, and the heat transfer fin has a cut-up portion. The longitudinal direction of the cut-up portion is the vertical direction.

この室内熱交換器では、伝熱フィンが切り起こし部を有しているため、伝熱性能を向上させることが可能になっている。 In this indoor heat exchanger, since the heat transfer fin has a cut-up portion, it is possible to improve the heat transfer performance.

第7観点に係る室内熱交換器は、第1観点から第6観点のいずれかに係る室内熱交換器であって、4.6≦DP/HT≦8.0の関係を満たす。 The indoor heat exchanger according to the seventh aspect is the indoor heat exchanger according to any one of the first to sixth aspects, and satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0.

この室内熱交換器では、冷媒の蒸発器として用いられた場合に生じる結露水の飛散をより抑制させやすい。 In this indoor heat exchanger, it is easier to suppress the scattering of condensed water that occurs when it is used as an evaporator of a refrigerant.

第8観点に係る空気調和装置は、第1観点から第7観点のいずれかに係る室内熱交換器を有する室内機と、室外熱交換器を有する室外機と、を備えている。 The air conditioner according to the eighth aspect includes an indoor unit having an indoor heat exchanger according to any one of the first to seventh aspects and an outdoor unit having an outdoor heat exchanger.

この空気調和装置では、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させやすい。 In this air conditioner, it is easy to suppress the scattering of condensed water that occurs when the indoor heat exchanger is used as an evaporator of the refrigerant.

空気調和装置の概略構成図である。It is a schematic block diagram of an air conditioner. 室外ユニットの概略外観斜視図である。It is a schematic external perspective view of an outdoor unit. 室外ユニットの平面視概略構成図である。It is a plan view schematic block diagram of an outdoor unit. 室外熱交換器の概略外観斜視図である。It is a schematic external perspective view of an outdoor heat exchanger. 室外フィンと室外扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship between the outdoor fin and the outdoor flat tube. 室内ユニットの概略外観斜視図である。It is a schematic external perspective view of an indoor unit. 室内ユニットの平面視概略構成図である。It is a schematic block diagram in a plan view of an indoor unit. 室内ユニットの図7のA-A断面における側面視概略構成図である。It is a side view schematic block diagram in the AA cross section of FIG. 7 of an indoor unit. 室内熱交換器の概略外観斜視図である。It is a schematic external perspective view of an indoor heat exchanger. 室内熱交換器の部分拡大概略外観斜視図である。It is a partially enlarged schematic external perspective view of the indoor heat exchanger. 室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship between a room fin and a room flat tube. 室内フィンと室内扁平管との接合状体を示す説明図である。It is explanatory drawing which shows the joint-like body of the room fin and the room flat tube. 変形例Aに係る室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship between the room fin and the room flat tube which concerns on modification A. 変形例Aに係る室内フィンが有する導水リブの、図13におけるB-B断面のうちの空気流れ方向の下流側近傍部分の説明図である。It is explanatory drawing of the downstream side vicinity part in the air flow direction in the BB cross section in FIG. 13 of the water guide rib which the indoor fin which concerns on modification A has.

(1)空気調和装置の構成
図1に、空気調和装置1の概略構成図を示す。
(1) Configuration of Air Conditioning Device FIG. 1 shows a schematic configuration diagram of the air conditioning device 1.

空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房および暖房を行うことが可能な装置である。 The air conditioner 1 is a device capable of cooling and heating a room such as a building by performing a steam compression type refrigeration cycle.

空気調和装置1は、主として、室外ユニット2と、室内ユニット3と、室外ユニット2と室内ユニット3とを接続する冷媒経路である液冷媒連絡管4およびガス冷媒連絡管5と、を有している。そして、空気調和装置1の蒸気圧縮式の冷媒回路6は、室外ユニット2と、室内ユニット3とが冷媒連絡管4、5を介して接続されることによって構成されている。冷媒連絡管4、5は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管である。特に限定されないが、本実施形態では、当該冷媒回路6に作動冷媒としてR32が充填されている。 The air conditioner 1 mainly has an outdoor unit 2, an indoor unit 3, a liquid refrigerant connecting pipe 4 and a gas refrigerant connecting pipe 5, which are refrigerant paths connecting the outdoor unit 2 and the indoor unit 3. There is. The steam compression type refrigerant circuit 6 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via the refrigerant connecting pipes 4 and 5. The refrigerant connecting pipes 4 and 5 are refrigerant pipes to be installed on site when the air conditioner 1 is installed at an installation location such as a building. Although not particularly limited, in the present embodiment, the refrigerant circuit 6 is filled with R32 as an operating refrigerant.

(2)室外ユニット
(2-1)室外ユニットの概略構成
室外ユニット2は、室外(建物の屋上や建物の壁面近傍等)に設置されており、冷媒回路6の一部を構成している。室外ユニット2は、主として、アキュムレータ7、圧縮機8と、四路切換弁10と、室外熱交換器11と、膨張機構としての室外膨張弁12と、液側閉鎖弁13と、ガス側閉鎖弁14と、室外ファン15と、ケーシング40と、を有している。
(2) Outdoor unit (2-1) Schematic configuration of the outdoor unit The outdoor unit 2 is installed outdoors (on the roof of a building, near the wall surface of a building, etc.) and constitutes a part of the refrigerant circuit 6. The outdoor unit 2 mainly includes an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12 as an expansion mechanism, a liquid side closing valve 13, and a gas side closing valve. It has 14, an outdoor fan 15, and a casing 40.

アキュムレータ7は、ガス冷媒を圧縮機に供給するための容器であり、圧縮機8の吸入側に設けられている。 The accumulator 7 is a container for supplying the gas refrigerant to the compressor, and is provided on the suction side of the compressor 8.

圧縮機8は、低圧のガス冷媒を吸入し、圧縮して高圧のガス冷媒を吐出する。 The compressor 8 sucks in the low-pressure gas refrigerant, compresses it, and discharges the high-pressure gas refrigerant.

室外熱交換器11は、冷房運転時には圧縮機8から吐出された冷媒の放熱器として機能し、暖房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能する熱交換器である。室外熱交換器11は、その液側が室外膨張弁12に接続されており、ガス側が四路切換弁10に接続されている。 The outdoor heat exchanger 11 is a heat exchanger that functions as a radiator of the refrigerant discharged from the compressor 8 during the cooling operation and as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the heating operation. .. The liquid side of the outdoor heat exchanger 11 is connected to the outdoor expansion valve 12, and the gas side is connected to the four-way switching valve 10.

室外膨張弁12は、冷房運転時には室外熱交換器11において放熱された冷媒を室内熱交換器51に送る前に減圧し、暖房運転時には室内熱交換器51において放熱された冷媒を室外熱交換器11に送る前に減圧することが可能な電動膨張弁である。 The outdoor expansion valve 12 decompresses the refrigerant dissipated in the outdoor heat exchanger 11 before sending it to the indoor heat exchanger 51 during the cooling operation, and decompresses the refrigerant dissipated in the indoor heat exchanger 51 during the heating operation in the outdoor heat exchanger 51. It is an electric expansion valve capable of reducing the pressure before sending to 11.

室外ユニット2の液側閉鎖弁13には、液冷媒連絡管4の一端が接続されている。室外ユニット2のガス側閉鎖弁14には、ガス冷媒連絡管5の一端が接続されている。 One end of the liquid refrigerant connecting pipe 4 is connected to the liquid side closing valve 13 of the outdoor unit 2. One end of the gas refrigerant connecting pipe 5 is connected to the gas side closing valve 14 of the outdoor unit 2.

室外ユニット2の各機器および弁間は、冷媒管16~22によって接続されている。 Each device and the valve of the outdoor unit 2 are connected by a refrigerant pipe 16 to 22.

四路切換弁10は、圧縮機8の吐出側が室外熱交換器11側に接続されるとともに圧縮機8の吸入側がガス側閉鎖弁14側に接続される状態(図1における四路切換弁10の実線を参照)と、圧縮機8の吐出側がガス側閉鎖弁14側に接続されるとともに圧縮機8の吸入側が室外熱交換器11側に接続される状態(図1における四路切換弁10の破線を参照)と、を切り換えることにより、後述する冷房運転の接続状態と暖房運転の接続状態とを切り換える。 The four-way switching valve 10 has a state in which the discharge side of the compressor 8 is connected to the outdoor heat exchanger 11 side and the suction side of the compressor 8 is connected to the gas side closing valve 14 side (four-way switching valve 10 in FIG. 1). (See the solid line) and the state where the discharge side of the compressor 8 is connected to the gas side closing valve 14 side and the suction side of the compressor 8 is connected to the outdoor heat exchanger 11 side (four-way switching valve 10 in FIG. 1). By switching between (see the broken line in) and, the connection state of the cooling operation and the connection state of the heating operation, which will be described later, are switched.

室外ファン15は、室外ユニット2の内部に配置され、室外空気を吸入して、室外熱交換器11に室外空気を供給した後に、ユニット外に排出する空気流れ(図3において矢印で示す。)を形成する。このように、室外ファン15によって供給される室外空気は、室外熱交換器11の冷媒との熱交換における冷却源又は加熱源として用いられる。 The outdoor fan 15 is arranged inside the outdoor unit 2, sucks in the outdoor air, supplies the outdoor air to the outdoor heat exchanger 11, and then discharges the outdoor air to the outside of the unit (indicated by an arrow in FIG. 3). To form. As described above, the outdoor air supplied by the outdoor fan 15 is used as a cooling source or a heating source in heat exchange with the refrigerant of the outdoor heat exchanger 11.

ケーシング40は、図2の室外ユニット2の概略外観斜視図および図3の室外ユニット2の平面視概略構成図に示すように、主として、底フレーム40aと、天板40bと、左前板40cと、右前板40dと、右側板40eとを有している。底フレーム40aは、ケーシング40の底面部分を構成する横長の略長方形状の板状部材であり、下面に固定された固定脚41によって現地設置面に設置される。天板40bは、ケーシング40の天面部分を構成する横長の略長方形状の板状部材である。左前板40cは、主として、ケーシング40の左正面部分及び左側面部分を構成する板状部材であり、室外ファン15によって背面側及び左側面側からケーシング40内に取り込まれた空気を前面側に吹き出すための吹出口が、上下に2つ並んで形成されている。各吹出口には、それぞれにファングリル42が設けられている。右前板40dは、主として、ケーシング40の右正面部分及び右側面の前部を構成する板状部材である。右側板40eは、主として、ケーシング40の右側面の後部及び右背面部分を構成する板状部材である。 The casing 40 mainly includes a bottom frame 40a, a top plate 40b, and a left front plate 40c, as shown in a schematic external perspective view of the outdoor unit 2 of FIG. 2 and a schematic plan view of the outdoor unit 2 of FIG. It has a right front plate 40d and a right front plate 40e. The bottom frame 40a is a horizontally long substantially rectangular plate-shaped member constituting the bottom surface portion of the casing 40, and is installed on the site installation surface by the fixing legs 41 fixed to the lower surface. The top plate 40b is a horizontally long substantially rectangular plate-shaped member constituting the top surface portion of the casing 40. The left front plate 40c is a plate-shaped member mainly constituting the left front portion and the left surface portion of the casing 40, and the air taken into the casing 40 from the back side and the left surface side by the outdoor fan 15 is blown out to the front side. Two outlets for the casing are formed side by side on the upper and lower sides. Each outlet is provided with a fan grill 42. The right front plate 40d is a plate-shaped member mainly constituting the right front portion and the front portion of the right side surface of the casing 40. The right side plate 40e is a plate-shaped member mainly constituting the rear portion and the right back surface portion of the right side surface of the casing 40.

なお、ケーシング40内には、室外ファン15等が配置される送風機室と、圧縮機8等が配置される機械室と、を仕切る仕切板43が設けられている。 In the casing 40, a partition plate 43 for partitioning the blower room in which the outdoor fan 15 and the like are arranged and the machine room in which the compressor 8 and the like are arranged is provided.

(2-2)室外熱交換器の概略構造
図4に、室外熱交換器11の概略外観斜視図を示す。
(2-2) Schematic Structure of Outdoor Heat Exchanger FIG. 4 shows a schematic external perspective view of the outdoor heat exchanger 11.

室外熱交換器11は、主として、ガス側分流器23と、液側分流器24と、複数の流入側折返し部材25と、複数の反流入側折返し部材26と、複数の室外扁平管90と、複数の室外フィン91と、を有している。ここでは、室外熱交換器11を構成するこれらのすべてが、アルミニウムまたはアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。 The outdoor heat exchanger 11 mainly includes a gas side shunt 23, a liquid side shunt 24, a plurality of inflow side folding members 25, a plurality of anti-inflow side folding members 26, and a plurality of outdoor flat pipes 90. It has a plurality of outdoor fins 91. Here, all of these constituting the outdoor heat exchanger 11 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.

複数の室外扁平管90は、上下に並んで配置されている。 The plurality of outdoor flat tubes 90 are arranged side by side in the vertical direction.

複数の室外フィン91は、室外扁平管90に沿うようにして、板厚方向に並べられており、複数の室外扁平管90に対して固定されている。 The plurality of outdoor fins 91 are arranged in the plate thickness direction along the outdoor flat pipe 90, and are fixed to the plurality of outdoor flat pipes 90.

ガス側分流器23は、冷媒管19と、複数の室外扁平管90のうちの上方に配置されているものと、に接続されている。室外熱交換器11が冷媒の放熱器として機能する際には、冷媒管19から室外熱交換器11に流入した冷媒を、複数の高さ位置に分流して、複数の室外扁平管90のうちの上方に配置されているものに送る。 The gas side shunt 23 is connected to a refrigerant pipe 19 and a plurality of outdoor flat pipes 90 arranged above. When the outdoor heat exchanger 11 functions as a radiator for the refrigerant, the refrigerant flowing from the refrigerant pipe 19 into the outdoor heat exchanger 11 is divided into a plurality of height positions, and among the plurality of outdoor flat pipes 90. Send to what is located above.

液側分流器24は、冷媒管20と、複数の室外扁平管90のうちの下方に配置されているものと、に接続されている。室外熱交換器11が冷媒の放熱器として機能する際には、複数の室外扁平管90のうちの下方に配置されているものから流れ込んだ冷媒を合流させ、冷媒管20を介して室外熱交換器11の外部に流出させる。 The liquid side shunt 24 is connected to a refrigerant pipe 20 and a plurality of outdoor flat pipes 90 arranged below. When the outdoor heat exchanger 11 functions as a radiator for the refrigerant, the refrigerant flowing from the one arranged below the plurality of outdoor flat pipes 90 is merged, and the outdoor heat exchange is performed through the refrigerant pipe 20. Let it flow out of the vessel 11.

複数の流入側折返し部材25は、ガス側分流器23と液側分流器24の間に配置されており、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する。 The plurality of inflow side folding members 25 are arranged between the gas side shunt 23 and the liquid side shunt 24, and connect the ends of the outdoor flat pipes 90 provided at different height positions from each other.

反流入側折返し部材26と、室外熱交換器11のうち、ガス側分流器23と液側分流器24と複数の流入側折返し部材25が設けられている側の端部とは反対側の端部に設けられており、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する。 The end of the anti-inflow side folding member 26 and the outdoor heat exchanger 11 opposite to the end on the side where the gas side shunt 23, the liquid side shunt 24, and the plurality of inflow side folding members 25 are provided. The ends of the outdoor flat tubes 90 provided in the portions and provided at different height positions are connected to each other.

このように、室外熱交換器11では、複数の流入側折返し部材25や反流入側折返し部材26が設けられていることで、室外熱交換器11の両端で冷媒を折返しながら冷媒を流すことが可能になっている。 As described above, since the outdoor heat exchanger 11 is provided with a plurality of inflow side folding members 25 and anti-inflow side folding members 26, it is possible to flow the refrigerant while folding the refrigerant at both ends of the outdoor heat exchanger 11. It is possible.

(2-3)室外扁平管
図5に、室外扁平管90の内部の流路90cが延びる方向に垂直な断面で切断した状態で、当該流路90cが延びる方向から見た室外フィン91と室外扁平管90との位置関係を示す。
(2-3) Outdoor flat pipe In FIG. 5, the outdoor fin 91 and the outdoor are viewed from the direction in which the flow path 90c extends in a state of being cut in a cross section perpendicular to the direction in which the flow path 90c inside the outdoor flat pipe 90 extends. The positional relationship with the flat tube 90 is shown.

室外扁平管90は、鉛直上方を向いて上面を構成している上側扁平面90aと、鉛直下方を向いて下面を構成している下側扁平面90bと、冷媒が流れる多数の小さな流路90cを有している。室外扁平管90が有する複数の流路90cは、空気流れ方向(図5において矢印で示す。流路90cの流路断面視における室外扁平管90の長手方向)に並んで設けられている。複数の室外扁平管90は、いずれも、上下方向の高さHTで同じものが用いられている。ここで、高さHTは、室外扁平管90の上側扁平面90aと下側扁平面90bとの高さ方向における幅をいう。これらの複数の室外扁平管90は、上下方向に所定のピッチ(段ピッチDP)で配列されている。ここで、段ピッチDPは、室外扁平管90の上側扁平面90aの間隔である。 The outdoor flat pipe 90 has an upper flat surface 90a facing vertically upward and forming an upper surface, a lower flat surface 90b facing vertically downward and forming a lower surface, and a large number of small flow paths 90c through which a refrigerant flows. Have. The plurality of flow paths 90c included in the outdoor flat tube 90 are provided side by side in the air flow direction (indicated by an arrow in FIG. 5; the longitudinal direction of the outdoor flat tube 90 in the cross-sectional view of the flow path of the flow path 90c). As the plurality of outdoor flat tubes 90, the same one is used with the same height HT in the vertical direction. Here, the height HT refers to the width of the upper flat surface 90a and the lower flat surface 90b of the outdoor flat tube 90 in the height direction. These plurality of outdoor flat tubes 90 are arranged in the vertical direction at a predetermined pitch (step pitch DP). Here, the step pitch DP is the distance between the upper flat plane 90a of the outdoor flat pipe 90.

なお、本実施形態の室外熱交換器11は、複数の室外扁平管90の空気流れ方向下流側端部は、室外フィン91の空気流れ方向の下流側端部よりもさらに下流側に位置するように構成されている。これにより、室外熱交換器11の製造時または運搬時における室外フィン91の風下側端部の損傷や破損が抑制される。 In the outdoor heat exchanger 11 of the present embodiment, the downstream end of the plurality of outdoor flat pipes 90 in the air flow direction is located further downstream than the downstream end of the outdoor fin 91 in the air flow direction. It is configured in. As a result, damage or breakage of the leeward end of the outdoor fin 91 during manufacturing or transportation of the outdoor heat exchanger 11 is suppressed.

(2-4)室外フィン
室外フィン91は、空気流れ方向および上下方向に広がる板状部材であり、板厚方向に所定の間隔で複数配置されており、室外扁平管90に固定されている。
(2-4) Outdoor Fins The outdoor fins 91 are plate-shaped members that spread in the air flow direction and the vertical direction, are arranged at predetermined intervals in the plate thickness direction, and are fixed to the outdoor flat pipe 90.

室外フィン91は、複数の差し込み部92、室外連通部97a、複数の風下部97b、ワッフル部93、風上側フィンタブ94a、風下側フィンタブ94b、室外スリット95、風上側リブ96a、風下側リブ96b等を有している。なお、室外フィン91の平坦な箇所における板厚方向の厚みは、例えば、0.05mm以上0.15mm以下である。 The outdoor fin 91 includes a plurality of insertion portions 92, an outdoor communication portion 97a, a plurality of leeward lower parts 97b, a waffle portion 93, a leeward fin tab 94a, a leeward fin tab 94b, an outdoor slit 95, a leeward rib 96a, a leeward rib 96b, and the like. have. The thickness of the outdoor fin 91 in the flat portion in the plate thickness direction is, for example, 0.05 mm or more and 0.15 mm or less.

差し込み部92は、室外フィン91風下側の縁部から風上側に向けて風上側縁部の手前まで水平方向に切り込まれるようにして形成されている。複数の差し込み部92は、上下方向に並ぶように設けられている。なお、差し込み部92は、バーリング等によって形成されるフィンカラーを構成している。この差し込み部92の形状は、室外扁平管90の断面の外形にほぼ一致しており、当該差し込み部92には、室外扁平管90が挿入された状態で互いにロウ付け固定されている。 The insertion portion 92 is formed so as to be cut horizontally from the leeward edge portion of the outdoor fin 91 to the front of the leeward side edge portion toward the leeward side. The plurality of insertion portions 92 are provided so as to be arranged in the vertical direction. The insertion portion 92 constitutes a fin collar formed by burring or the like. The shape of the insertion portion 92 substantially matches the outer shape of the cross section of the outdoor flat tube 90, and the outdoor flat tube 90 is brazed and fixed to the insertion portion 92 with the outdoor flat tube 90 inserted.

室外連通部97aは、室外フィン91のうち、室外扁平管90の風上側端部よりも更に風上側において、上下方向に連続した部分である。なお、着霜耐力を確保する観点から、室外扁平管90の風上端から室外フィン91の室外連通部97aにおける風上端までの空気流れ方向の距離は4mm以上であることが好ましい。 The outdoor communication portion 97a is a portion of the outdoor fin 91 that is continuous in the vertical direction on the windward side of the outdoor flat pipe 90 on the windward side. From the viewpoint of ensuring the frost bearing capacity, the distance in the air flow direction from the upper end of the wind of the outdoor flat pipe 90 to the upper end of the wind in the outdoor communication portion 97a of the outdoor fin 91 is preferably 4 mm or more.

複数の風下部97bは、室外連通部97aにおける異なる高さ位置から、空気流れ方向下流側に向けて伸び出している。なお、各風下部97bは、隣り合う差し込み部92によって上下方向に囲まれている。 The plurality of wind lower parts 97b extend from different height positions in the outdoor communication portion 97a toward the downstream side in the air flow direction. Each wind lower part 97b is surrounded in the vertical direction by adjacent insertion portions 92.

ワッフル部93は、室外フィン91のうち空気流れ方向の中央近傍に形成されており、板厚方向における隆起部分と非隆起部分を含んで構成されている。 The waffle portion 93 is formed in the vicinity of the center of the outdoor fin 91 in the air flow direction, and includes a raised portion and a non-raised portion in the plate thickness direction.

風上側フィンタブ94aおよび風下側フィンタブ94bは、室外フィン91同士の間隔を規制するために、それぞれ風上側端部近傍と風下側端部近傍に設けられている。 The leeward fin tab 94a and the leeward fin tab 94b are provided near the leeward end and near the leeward end, respectively, in order to regulate the distance between the outdoor fins 91.

室外スリット95は、室外フィン91における伝熱性能を向上させるために平坦部分から板厚方向に切り起こされて構成された部分であり、ワッフル部93の空気流れ方向下流側に形成されている。室外スリット95は、その長手方向が上下方向(室外扁平管90の配列方向)となるように形成されており、空気流れ方向に複数(本実施形態では2つ)が並ぶように形成されている。これらの室外スリット95では、平坦な部分から板厚方向の同じ側に切り起こされることで、空気流れ方向上流側と下流側にそれぞれ開口を有するものである。 The outdoor slit 95 is a portion formed by being cut up from a flat portion in the plate thickness direction in order to improve the heat transfer performance of the outdoor fin 91, and is formed on the downstream side of the waffle portion 93 in the air flow direction. The outdoor slit 95 is formed so that its longitudinal direction is in the vertical direction (arrangement direction of the outdoor flat tubes 90), and a plurality of (two in the present embodiment) are arranged in the air flow direction. .. These outdoor slits 95 have openings on the upstream side and the downstream side in the air flow direction by being cut up from the flat portion to the same side in the plate thickness direction.

風上側リブ96aは、風上側フィンタブ94aの上下において、互いに上下に隣り合う室外扁平管90同士の間で、空気流れ方向に延びるように形成されている。風下側リブ96bは、風上側リブ96aの風下側端部から連続してさらに風下側に延びるように設けられている。 The windward rib 96a is formed so as to extend in the air flow direction between the outdoor flat pipes 90 vertically adjacent to each other above and below the windward fin tab 94a. The leeward rib 96b is provided so as to continuously extend from the leeward end of the leeward rib 96a to the leeward side.

(3)室内ユニット
(3-1)室内ユニットの概略構成
図6に、室内ユニット3の外観斜視図を示す。図7に、室内ユニット3の天板を取り除いた状態を示す概略平面図を示す。図8に、図7中にA-Aで示す切断面における室内ユニット3の概略側面断面図を示す。
(3) Indoor unit (3-1) Schematic configuration of the indoor unit FIG. 6 shows an external perspective view of the indoor unit 3. FIG. 7 shows a schematic plan view showing a state in which the top plate of the indoor unit 3 is removed. FIG. 8 shows a schematic side sectional view of the indoor unit 3 in the cut surface shown by AA in FIG. 7.

室内ユニット3は、本実施形態では、空調対象空間である室内等の天井に天井の開口に埋め込まれることで設置されるタイプの室内機であり、冷媒回路6の一部を構成している。室内ユニット3は、主として、室内熱交換器51と、室内ファン52と、ケーシング30と、フラップ39と、ベルマウス33と、ドレンパン32と、を有している。 In the present embodiment, the indoor unit 3 is a type of indoor unit installed by being embedded in a ceiling opening in a ceiling such as a room which is an air-conditioned space, and constitutes a part of a refrigerant circuit 6. The indoor unit 3 mainly has an indoor heat exchanger 51, an indoor fan 52, a casing 30, a flap 39, a bell mouth 33, and a drain pan 32.

室内熱交換器51は、冷房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能し、暖房運転時には圧縮機8から吐出された冷媒の放熱器として機能する熱交換器である。室内熱交換器51は、その液側が液冷媒連絡管4の室内側端部に接続されており、ガス側がガス冷媒連絡管5の室内側端部に接続されている。 The indoor heat exchanger 51 is a heat exchanger that functions as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the cooling operation and as a radiator of the refrigerant discharged from the compressor 8 during the heating operation. .. The liquid side of the indoor heat exchanger 51 is connected to the indoor end of the liquid refrigerant connecting pipe 4, and the gas side is connected to the indoor end of the gas refrigerant connecting pipe 5.

室内ファン52は、室内ユニット3のケーシング本体31の内部に配置された遠心送風機である。室内ファン52は、室内の空気を化粧パネル35の吸込口36を通じてケーシング30内に吸入し、室内熱交換器51を通過させた後、化粧パネル35の吹出口37を通じてケーシング30外へ吹き出す空気流れ(図8において矢印で示す。)を形成する。このように、室内ファン52によって供給される室内空気は、室内熱交換器51の冷媒と熱交換することにより温度が調節される。 The indoor fan 52 is a centrifugal blower arranged inside the casing main body 31 of the indoor unit 3. The indoor fan 52 sucks indoor air into the casing 30 through the suction port 36 of the decorative panel 35, passes through the indoor heat exchanger 51, and then blows out the air to the outside of the casing 30 through the outlet 37 of the decorative panel 35. (Indicated by an arrow in FIG. 8) is formed. In this way, the temperature of the indoor air supplied by the indoor fan 52 is adjusted by exchanging heat with the refrigerant of the indoor heat exchanger 51.

ケーシング30は、ケーシング本体31と、化粧パネル35と、を主として有している。 The casing 30 mainly includes a casing main body 31 and a decorative panel 35.

ケーシング本体31は、空調室の天井Uに形成された開口に挿入されるようにして配置されており、その平面視において、長辺と短辺とが交互に形成された略8角形状の箱状体であり、下面が開口している。このケーシング本体31は、天板および天板の周縁部から下方に延びる複数の側板を有している。 The casing main body 31 is arranged so as to be inserted into an opening formed in the ceiling U of the air-conditioning chamber, and in a plan view thereof, a substantially octagonal box in which long sides and short sides are alternately formed. It is a shaped body with an open lower surface. The casing main body 31 has a top plate and a plurality of side plates extending downward from the peripheral edge of the top plate.

化粧パネル35は、天井Uの開口に嵌め込まれるようにして配置されており、ケーシング本体31の天板および側板よりも平面視における外側に広がっており、ケーシング本体31の下方に室内側から取り付けられる。化粧パネル35は、内枠35aと外枠35bを有している。内枠35aの内側には、下方に向けて開口した略四角形状の吸込口36が形成されている。吸込口36の上方には、吸込口36から吸入された空気中の塵埃を除去するためのフィルタ34が設けられている。外枠35bの内側であって内枠35aの外側には、下方から斜め下方に向けて開口した吹出口37と角部吹出口38が形成されている。吹出口37は、化粧パネル35の平面視における略四角形状の各辺に対応する位置に、第1吹出口37aと、第2吹出口37bと、第3吹出口37cと、第4吹出口37dと、を有している。角部吹出口38は、化粧パネル35の平面視における略四角形状の4角に対応する位置に、第1角部吹出口38aと、第2角部吹出口38bと、第3角部吹出口38cと、第4角部吹出口38dと、を有している。 The decorative panel 35 is arranged so as to be fitted into the opening of the ceiling U, extends outward in a plan view from the top plate and side plates of the casing main body 31, and is attached below the casing main body 31 from the indoor side. .. The decorative panel 35 has an inner frame 35a and an outer frame 35b. Inside the inner frame 35a, a substantially square suction port 36 that opens downward is formed. Above the suction port 36, a filter 34 for removing dust in the air sucked from the suction port 36 is provided. On the inside of the outer frame 35b and on the outside of the inner frame 35a, an air outlet 37 and a corner air outlet 38 that open diagonally downward from below are formed. The outlet 37 has a first outlet 37a, a second outlet 37b, a third outlet 37c, and a fourth outlet 37d at positions corresponding to each side of a substantially square shape in a plan view of the decorative panel 35. And have. The corner outlet 38 has a first corner outlet 38a, a second corner outlet 38b, and a third corner outlet 38 at positions corresponding to substantially square squares in the plan view of the decorative panel 35. It has 38c and a fourth corner outlet 38d.

フラップ39は、吹出口37を通過する空気流れの方向を変更可能な部材である。フラップ39は、第1吹出口37aに配置される第1フラップ39aと、第2吹出口37bに配置される第2フラップ39bと、第3吹出口37cに配置される第3フラップ39cと、第4吹出口37dに配置される第4フラップ39dと、を有している。各フラップ39a~dは、ケーシング30の所定の位置において回動可能に軸支されている。 The flap 39 is a member capable of changing the direction of the air flow passing through the outlet 37. The flap 39 includes a first flap 39a arranged at the first outlet 37a, a second flap 39b arranged at the second outlet 37b, a third flap 39c arranged at the third outlet 37c, and a first flap 39. It has a fourth flap 39d arranged at the four outlets 37d. Each flap 39a to d is rotatably supported at a predetermined position of the casing 30.

ドレンパン32は、室内熱交換器51の下側に配置され、室内熱交換器51において空気中の水分が凝縮して生じるドレン水を受けとる。このドレンパン32は、ケーシング本体31の下部に装着されている。ドレンパン32には、平面視において、室内熱交換器51の内側において上下方向に伸びた円筒形状の空間が形成されており、当該空間の内側下方にベルマウス33が配置されている。ベルマウス33は、吸込口36から吸入される空気を室内ファン52に案内する。また、ドレンパン32には、平面視において、室内熱交換器51の外側において上下方向に伸びた複数の吹出流路47a~d、角部吹出流路48a~cが形成されている。吹出流路47a~dは、下端において第1吹出口37aと連通する第1吹出流路47aと、下端において第2吹出口37bと連通する第2吹出流路47bと、下端において第3吹出口37cと連通する第3吹出流路47cと、下端において第4吹出口37dと連通する第4吹出流路47dと、を有している。角部吹出流路48a~cは、下端において第1角部吹出口38aと連通する第1角部吹出流路48aと、下端において第2角部吹出口38bと連通する第2角部吹出流路48bと、下端において第3角部吹出口38cと連通する第3角部吹出流路48cと、を有している。 The drain pan 32 is arranged below the indoor heat exchanger 51, and receives the drain water generated by the condensation of the moisture in the air in the indoor heat exchanger 51. The drain pan 32 is attached to the lower part of the casing main body 31. In the drain pan 32, a cylindrical space extending in the vertical direction is formed inside the indoor heat exchanger 51 in a plan view, and the bell mouth 33 is arranged below the inside of the space. The bell mouth 33 guides the air sucked from the suction port 36 to the indoor fan 52. Further, in a plan view, the drain pan 32 is formed with a plurality of blowout channels 47a to d extending in the vertical direction and corner blowout channels 48a to c extending in the vertical direction on the outside of the indoor heat exchanger 51. The outlet flow paths 47a to d are a first outlet flow path 47a communicating with the first outlet 37a at the lower end, a second outlet flow path 47b communicating with the second outlet 37b at the lower end, and a third outlet at the lower end. It has a third outlet flow path 47c communicating with 37c and a fourth outlet flow path 47d communicating with the fourth outlet 37d at the lower end. The corner outlets 48a to c are the first corner outlet 48a communicating with the first corner outlet 38a at the lower end and the second corner outlet 38b communicating with the second corner outlet 38b at the lower end. It has a path 48b and a third corner outlet flow path 48c that communicates with the third corner outlet 38c at the lower end.

(3-2)室内熱交換器の概略構造
図9に、室内熱交換器51の概略外観斜視図を示す。図10に、室内熱交換器51の複数の室内フィン60の風上側の部分拡大外観斜視図を示す。
(3-2) Schematic Structure of Indoor Heat Exchanger FIG. 9 shows a schematic external perspective view of the indoor heat exchanger 51. FIG. 10 shows a partially enlarged external perspective view of the windward side of the plurality of indoor fins 60 of the indoor heat exchanger 51.

室内熱交換器51は、室内ファン52と同一高さ位置においてその周囲を囲むように曲げられた状態で、ケーシング本体31の内部に配置されている。この室内熱交換器51は、主として、液側ヘッダ81と、ガス側ヘッダ71と、折返しヘッダ59と、複数の室内扁平管55と、複数の室内フィン60と、を有している。ここでは、室内熱交換器51を構成するこれらのすべてが、アルミニウムまたはアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。 The indoor heat exchanger 51 is arranged inside the casing main body 31 at the same height as the indoor fan 52 in a bent state so as to surround the periphery thereof. The indoor heat exchanger 51 mainly has a liquid side header 81, a gas side header 71, a folded header 59, a plurality of indoor flat tubes 55, and a plurality of indoor fins 60. Here, all of these constituting the indoor heat exchanger 51 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.

なお、室内熱交換器51は、空気流れ方向における風上側を構成する風上熱交換部70(平面視における内側部分)と、空気流れ方向における風下側を構成する風下熱交換部80(平面視における外側部分)と、を有している。 The indoor heat exchanger 51 includes an upwind heat exchange unit 70 (inner portion in a plan view) constituting the leeward side in the air flow direction and a leeward heat exchange unit 80 (plan view) constituting the leeward side in the air flow direction. The outer part of) and.

液側ヘッダ81は、室内熱交換器51のうち風下熱交換部80の平面視における一端を構成しており、上下方向に延びた円筒形状部材である。液側ヘッダ81には、液冷媒連絡管4の室内側の端部が接続されている。さらに、液側ヘッダ81には、室内熱交換器51のうち風下熱交換部80を構成している室内扁平管55が上下に並んで複数接続されている。 The liquid side header 81 constitutes one end of the indoor heat exchanger 51 in the plan view of the leeward heat exchange section 80, and is a cylindrical member extending in the vertical direction. The end of the liquid refrigerant connecting pipe 4 on the indoor side is connected to the liquid side header 81. Further, a plurality of indoor flat tubes 55 constituting the leeward heat exchange section 80 of the indoor heat exchanger 51 are connected to the liquid side header 81 side by side.

ガス側ヘッダ71は、室内熱交換器51のうち風上熱交換部70の平面視における一端を構成しており、上下方向に延びた円筒形状部材である。ガス側ヘッダ71には、ガス冷媒連絡管5の室内側の端部が接続されている。さらに、ガス側ヘッダ71には、室内熱交換器51のうち風上熱交換部70を構成している室内扁平管55が上下に並んで複数接続されている。 The gas side header 71 constitutes one end of the indoor heat exchanger 51 in the plan view of the upwind heat exchange section 70, and is a cylindrical member extending in the vertical direction. An indoor end of the gas-refrigerant connecting pipe 5 is connected to the gas-side header 71. Further, a plurality of indoor flat pipes 55 constituting the upwind heat exchange unit 70 of the indoor heat exchanger 51 are connected to the gas side header 71 side by side.

折返しヘッダ59は、室内熱交換器51のうち平面視における液側ヘッダ81やガス側ヘッダ71とは反対側の端部を構成しており、内部において上下方向に並んだ複数の折返し空間を有している。各折返し空間には、互いに同一高さ位置に設けられた風上熱交換部70を構成している室内扁平管55と風下熱交換部80を構成している室内扁平管55とがそれぞれ接続されている。これにより、折返しヘッダ59では、異なる高さ位置の室内扁平管55を流れた冷媒同士の混ざり合いを抑制しつつ、各高さ位置の室内扁平管55を流れた冷媒を同一高さ位置の風上側(室内熱交換器51が冷媒の蒸発器として機能する場合)もしくは風下側(室内熱交換器51が冷媒の放熱器として機能する場合)の室内扁平管55に折り返して送ることが可能になっている。 The folded header 59 constitutes an end portion of the indoor heat exchanger 51 opposite to the liquid side header 81 and the gas side header 71 in a plan view, and has a plurality of folded spaces arranged in the vertical direction inside. is doing. In each folded space, the indoor flat tube 55 constituting the upwind heat exchange section 70 and the indoor flat tube 55 constituting the leeward heat exchange section 80 are connected to each other. ing. As a result, in the folded header 59, the refrigerant flowing through the indoor flat pipe 55 at each height position is blown at the same height position while suppressing the mixing of the refrigerants flowing through the indoor flat pipe 55 at different height positions. It can be folded back and sent to the indoor flat tube 55 on the upper side (when the indoor heat exchanger 51 functions as a refrigerant evaporator) or on the leeward side (when the indoor heat exchanger 51 functions as a refrigerant radiator). ing.

複数の室内扁平管55は、風上熱交換部70を構成しているものと、風下熱交換部80を構成しているものが設けられている。すなわち、複数の室内扁平管55は、室内熱交換器51のうちの風上熱交換部70において、上下方向に並んで配置されたものと、室内熱交換器51のうちの風下熱交換部80において、上下方向に並んで配置されたものと、を含んでいる。風上熱交換部70を構成する複数の室内扁平管55は、それぞれ、一端がガス側ヘッダ71に接続されており、他端が折返しヘッダ59の風上側部分に接続されている。風下熱交換部80を構成する複数の室内扁平管55は、それぞれ、一端が液側ヘッダ81に接続されており、他端が折返しヘッダ59の風下側部分に接続されている。 The plurality of indoor flat tubes 55 are provided with one constituting the upwind heat exchange section 70 and one constituting the leeward heat exchange section 80. That is, the plurality of indoor flat tubes 55 are arranged side by side in the upwind heat exchange section 70 of the indoor heat exchanger 51, and the downwind heat exchange section 80 of the indoor heat exchanger 51. Including those arranged side by side in the vertical direction. One end of each of the plurality of indoor flat pipes 55 constituting the upwind heat exchange unit 70 is connected to the gas side header 71, and the other end is connected to the windward side portion of the folded header 59. One end of each of the plurality of indoor flat tubes 55 constituting the leeward heat exchange section 80 is connected to the liquid side header 81, and the other end is connected to the leeward side portion of the folded header 59.

複数の室内フィン60も、同様に、風上熱交換部70を構成しているものと、風下熱交換部80を構成しているものが設けられている。すなわち、複数の室内フィン60は、室内熱交換器51のうちの風上熱交換部70を構成している室内扁平管55に対して固定されたものと、室内熱交換器51のうちの風下熱交換部80を構成している室内扁平管55に対して固定されたものと、を含んでいる。各室内フィン60は、いずれも、室内扁平管55に沿うようにして、室内フィン60の板厚方向に並べられている。 Similarly, the plurality of indoor fins 60 are provided with one constituting the upwind heat exchange unit 70 and one constituting the leeward heat exchange unit 80. That is, the plurality of indoor fins 60 are fixed to the indoor flat pipe 55 constituting the upwind heat exchange section 70 of the indoor heat exchanger 51, and the leeward of the indoor heat exchanger 51. It includes one fixed to the indoor flat tube 55 constituting the heat exchange unit 80. Each of the indoor fins 60 is arranged along the indoor flat pipe 55 in the plate thickness direction of the indoor fins 60.

(3-3)室内扁平管
図11に、室内扁平管55の内部の流路55cが延びる方向に垂直な断面で切断した状態で、当該流路55cが延びる方向から見た室内フィン60と室内扁平管55との位置関係を示す。
(3-3) Indoor flat pipe In FIG. 11, the indoor fin 60 and the room viewed from the direction in which the flow path 55c extends are cut in a cross section perpendicular to the direction in which the flow path 55c inside the indoor flat pipe 55 extends. The positional relationship with the flat tube 55 is shown.

室内扁平管55は、鉛直上方を向いて上面を構成している上側扁平面55aと、鉛直下方を向いて下面を構成している下側扁平面55bと、冷媒が流れる多数の小さな流路55cを有している。室内扁平管55が有する複数の流路55cは、空気流れ方向(図11において矢印で示す。流路55cの流路断面視における室内扁平管55の長手方向)に並んで設けられている。複数の室内扁平管55は、いずれも、上下方向の高さHTで同じものが用いられている。ここで、高さHTは、室内扁平管55の上側扁平面55aと下側扁平面55bとの高さ方向における幅をいい、1.2mm以上2.5mm以下であることが好ましい。これらの複数の室内扁平管55は、風上熱交換部70においても風下熱交換部80においても同様に、上下方向に所定のピッチ(段ピッチDP)で配列されている。ここで、段ピッチDPは、室内扁平管55の上側扁平面55aの間隔であり、8.0mm以上15.0mm以下であることが好ましい。ここで、室内熱交換器51は、4.0≦DP/HT≦10.0の関係を満たしている。なお、室内熱交換器51のDP/HTの下限としては、4.6以上であることが好ましく、室内熱交換器51のDP/HTの上限としては、8.0以下であることが好ましく、室内熱交換器51が4.6≦DP/HT≦8.0の関係を満たしていることが好ましい。 The indoor flat pipe 55 has an upper flat surface 55a facing vertically upward and forming an upper surface, a lower flat surface 55b facing vertically downward and forming a lower surface, and a large number of small flow paths 55c through which a refrigerant flows. Have. The plurality of flow paths 55c included in the indoor flat tube 55 are provided side by side in the air flow direction (indicated by an arrow in FIG. 11; the longitudinal direction of the indoor flat tube 55 in the cross-sectional view of the flow path of the flow path 55c). As the plurality of indoor flat tubes 55, the same one is used with the same height HT in the vertical direction. Here, the height HT refers to the width of the upper flat surface 55a and the lower flat surface 55b of the indoor flat tube 55 in the height direction, and is preferably 1.2 mm or more and 2.5 mm or less. These plurality of indoor flat pipes 55 are similarly arranged in the upwind heat exchange unit 70 and the leeward heat exchange unit 80 at a predetermined pitch (step pitch DP) in the vertical direction. Here, the step pitch DP is an interval of the upper flat surface 55a of the indoor flat tube 55, and is preferably 8.0 mm or more and 15.0 mm or less. Here, the indoor heat exchanger 51 satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. The lower limit of DP / HT of the indoor heat exchanger 51 is preferably 4.6 or more, and the upper limit of DP / HT of the indoor heat exchanger 51 is preferably 8.0 or less. It is preferable that the indoor heat exchanger 51 satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0.

また、本実施形態の空気調和装置1では、室内熱交換器51のDP/HTの値が、上述した室外熱交換器11のDP/HTの値よりも小さい関係を満たすようにしている。 Further, in the air conditioner 1 of the present embodiment, the DP / HT value of the indoor heat exchanger 51 satisfies the relationship smaller than the DP / HT value of the outdoor heat exchanger 11 described above.

なお、風上熱交換部70を構成する室内扁平管55と、風下熱交換部80を構成する室内扁平管55とは、本実施形態では、空気流れ方向視において、各高さ位置で互いに重なるように配置されている。 In the present embodiment, the indoor flat pipe 55 constituting the upwind heat exchange unit 70 and the indoor flat pipe 55 constituting the leeward heat exchange unit 80 overlap each other at each height position in the air flow direction view. It is arranged like this.

また、本実施形態の室内熱交換器51では、複数の室内扁平管55の空気流れ方向上流側端部と、室内フィン60の空気流れ方向の上流側端部とは、空気流れ方向において概ね同じ位置に設けられている。 Further, in the indoor heat exchanger 51 of the present embodiment, the upstream end portion of the plurality of indoor flat pipes 55 in the air flow direction and the upstream end portion of the indoor fin 60 in the air flow direction are substantially the same in the air flow direction. It is provided at the position.

(3-4)室内フィン
室内フィン60は、空気流れ方向および上下方向に広がる板状部材であり、板厚方向に所定の間隔で複数配置されており、室内扁平管55に固定されている。なお、風上熱交換部70を構成する室内フィン60と、風下熱交換部80を構成する室内フィン60とは、本実施形態では、空気流れ方向視において、それぞれ概ね互いに重なるように配置されている。また、風上熱交換部70を構成する室内フィン60の風下側端部と、風下熱交換部80を構成する室内フィン60の風上側端部は、少なくとも一部分において互いに接触するように配置されている。
(3-4) Indoor Fins The indoor fins 60 are plate-shaped members that spread in the air flow direction and the vertical direction, and a plurality of indoor fins are arranged at predetermined intervals in the plate thickness direction and are fixed to the indoor flat pipe 55. In the present embodiment, the indoor fins 60 constituting the upwind heat exchange unit 70 and the indoor fins 60 constituting the leeward heat exchange unit 80 are arranged so as to substantially overlap each other in the air flow direction view. There is. Further, the leeward end of the indoor fin 60 constituting the leeward heat exchange unit 70 and the leeward end of the indoor fin 60 constituting the leeward heat exchange unit 80 are arranged so as to be in contact with each other at least in a part. There is.

室内フィン60は、風上熱交換部70を構成するものも風下熱交換部80を構成するものも同様に、主面61、複数のフィンカラー部65a、室内連通部64、複数の風上部65、メインスリット62、連通位置スリット63、等を有している。なお、室内フィン60の平坦な主面61における板厚方向の厚みは、例えば、0.05mm以上0.15mm以下である。また、複数の室内フィン60の板厚方向におけるピッチ(互いに隣り合う室内フィン60における同じ側の面同士の間隔)は、1.0mm以上1.6mm以下であることが好ましい。 The indoor fins 60, both those constituting the upwind heat exchange section 70 and those constituting the leeward heat exchange section 80, have a main surface 61, a plurality of fin collar sections 65a, an indoor communication section 64, and a plurality of windward upper portions 65. , Main slit 62, communication position slit 63, and the like. The thickness of the indoor fin 60 on the flat main surface 61 in the plate thickness direction is, for example, 0.05 mm or more and 0.15 mm or less. Further, the pitch of the plurality of indoor fins 60 in the plate thickness direction (distance between the surfaces on the same side of the indoor fins 60 adjacent to each other) is preferably 1.0 mm or more and 1.6 mm or less.

主面61は、室内フィン60のうち、フィンカラー部65aやメインスリット62や連通位置スリット63が設けられていない平坦部分を構成している。 The main surface 61 constitutes a flat portion of the indoor fins 60, which is not provided with the fin collar portion 65a, the main slit 62, or the communication position slit 63.

フィンカラー部65aは、室内フィン60の風上側の縁部から風下側に向けて風下側縁部の手前まで水平方向に延びるように形成されている。複数のフィンカラー部65aは、上下方向に並ぶように設けられている。なお、フィンカラー部65aは、バーリング等によって形成されている。このフィンカラー部65aの輪郭形状は、室内扁平管55の断面の外形にほぼ一致しており、当該フィンカラー部65aには、室内扁平管55が挿入された状態で互いにロウ付け固定されている。ここで、図12に、室内扁平管55の流路55cを冷媒通過方向に沿って鉛直方向を含む面で切断した断面における、室内フィン60と室内扁平管55との接合状態を示す。フィンカラー部65aは、図12に示すように、主面61に対して、主面61の板厚方向のうちメインスリット62の切り起こし側とは反対側に立ち上げられて構成されている。また、フィンカラー部65aの主面61側とは反対側には、対応する室内扁平管55の上側扁平面55a(または下側扁平面55b)から遠ざかる方向に延びるように曲げられた位置決め部65xが設けられている。この位置決め部65xは、隣接する室内フィン60の主面61に面接触することで、各室内フィン60の板厚方向の間隔を規定している。このようなフィンカラー部65aは、図12に示すように、室内扁平管55の上側扁平面55a(または下側扁平面55b)との間にロウ材58が介在した状態でロウ付けにより接合されている。なお、特に限定されないが、図12に示すように、室内扁平管55の下側扁平面55b側において、主面61に対するフィンカラー部65aの立ち上げが始まっている箇所と、メインスリット62の切り起こしが始まっている箇所と、の間の距離DSは、1mm以下であることが好ましい。室内扁平管55の下側扁平面55bにおける結露水は、メインスリット62の切り起こしが始まっている箇所を介して下方に導かれて排水されることから、当該距離DSを1mm以下の短い距離とすることで、室内扁平管55の下側扁平面55bにおいて結露水が保持され続けることを抑制することができる。 The fin collar portion 65a is formed so as to extend horizontally from the leeward edge portion of the indoor fin 60 toward the leeward side to the front of the leeward side edge portion. The plurality of fin collar portions 65a are provided so as to be arranged in the vertical direction. The fin collar portion 65a is formed by burring or the like. The contour shape of the fin collar portion 65a substantially matches the outer shape of the cross section of the indoor flat tube 55, and the indoor flat tube 55 is brazed and fixed to the fin collar portion 65a with the indoor flat tube 55 inserted. .. Here, FIG. 12 shows a joint state between the indoor fin 60 and the indoor flat pipe 55 in a cross section obtained by cutting the flow path 55c of the indoor flat pipe 55 along a plane including a vertical direction along the refrigerant passage direction. As shown in FIG. 12, the fin collar portion 65a is configured to be raised from the main surface 61 in the plate thickness direction of the main surface 61 on the side opposite to the cut-up side of the main slit 62. Further, on the side of the fin collar portion 65a opposite to the main surface 61 side, a positioning portion 65x bent so as to extend away from the upper flat surface 55a (or the lower flat surface 55b) of the corresponding indoor flat tube 55 is provided. It is provided. The positioning portion 65x defines the distance between the indoor fins 60 in the plate thickness direction by making surface contact with the main surface 61 of the adjacent indoor fins 60. As shown in FIG. 12, such a fin collar portion 65a is joined by brazing with a brazing material 58 interposed between the upper flat surface 55a (or the lower flat surface 55b) of the indoor flat tube 55. There is. Although not particularly limited, as shown in FIG. 12, on the lower flat surface 55b side of the indoor flat tube 55, a portion where the fin collar portion 65a starts to rise with respect to the main surface 61 and a cut-up of the main slit 62 are raised. The distance DS between the place where is started and the place where is started is preferably 1 mm or less. Since the dew condensation water on the lower flat surface 55b of the indoor flat tube 55 is guided downward through the portion where the cutting of the main slit 62 has started and is drained, the distance DS is set to a short distance of 1 mm or less. As a result, it is possible to prevent the dew condensation water from being continuously retained in the lower flat surface 55b of the indoor flat tube 55.

室内連通部64は、室内フィン60のうち、室内扁平管55の風下側端部よりも更に風下側において、上下方向に連続した部分である。なお、室内フィン60のうちの室内連通部64の空気流れ方向における幅WLと、室内フィン60の空気流れ方向における幅WFと、の関係は、0.2≦WL/WF≦0.5の関係を満たすことが好ましい。 The indoor communication portion 64 is a portion of the indoor fins 60 that is continuous in the vertical direction on the leeward side of the indoor flat pipe 55 on the leeward side. The relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fins 60 and the width WF in the air flow direction of the indoor fins 60 is 0.2 ≦ WL / WF ≦ 0.5. It is preferable to satisfy.

複数の風上部65は、室内連通部64における異なる高さ位置から、空気流れ方向上流側に向けて伸び出している。なお、各風上部65は、隣り合うフィンカラー部65aによって上下方向に囲まれている。この各風上部65の上下方向の長さは、DP-HTで定義される。 The plurality of wind upper portions 65 extend from different height positions in the indoor communication portion 64 toward the upstream side in the air flow direction. Each wind upper portion 65 is surrounded in the vertical direction by adjacent fin collar portions 65a. The vertical length of each wind upper 65 is defined by DP-HT.

メインスリット62は、室内フィン60における伝熱性能を向上させるために平坦な主面61から板厚方向に切り起こされて構成された部分であり、室内フィン60のうちの各風上部65に形成されている。メインスリット62は、空気流れ方向に複数(本実施形態では4つ)が並ぶように形成されている。 The main slit 62 is a portion formed by cutting up from a flat main surface 61 in the plate thickness direction in order to improve the heat transfer performance of the indoor fins 60, and is formed on each wind upper portion 65 of the indoor fins 60. Has been done. The main slits 62 are formed so that a plurality (four in the present embodiment) are lined up in the air flow direction.

連通位置スリット63も、室内フィン60における伝熱性能を向上させるために平坦な主面61から板厚方向に切り起こされて構成された部分であり、室内フィン60のうちの室内連通部64において、複数の高さ位置に形成されている。連通位置スリット63は、各高さ位置に設けられたメインスリット62の空気流れ方の下流側に、それぞれ対応するように設けられている。連通位置スリット63は、その長手方向が上下方向となるように形成されており、上端が対応するメインスリット62の上端よりもさらに高く、下端が対応するメインスリット62の下端よりもさらに低い位置まで上下方向に長く形成されている。 The communication position slit 63 is also a portion formed by cutting up from a flat main surface 61 in the plate thickness direction in order to improve the heat transfer performance in the indoor fin 60, and in the indoor communication portion 64 of the indoor fin 60. , It is formed at multiple height positions. The communication position slit 63 is provided so as to correspond to the downstream side of the air flow direction of the main slit 62 provided at each height position. The communication position slit 63 is formed so that its longitudinal direction is in the vertical direction, and the upper end is higher than the upper end of the corresponding main slit 62 and the lower end is lower than the lower end of the corresponding main slit 62. It is formed long in the vertical direction.

これらのメインスリット62および連通位置スリット63は、平坦な主面61から板厚方向の同じ側に切り起こされることで、空気流れ方向上流側と下流側にそれぞれ開口を有するものである。 These main slits 62 and communication position slits 63 are cut up from the flat main surface 61 to the same side in the plate thickness direction, and thus have openings on the upstream side and the downstream side in the air flow direction, respectively.

(4)空気調和装置の動作
次に、図1を用いて、空気調和装置1の動作について説明する。空気調和装置1では、圧縮機8、室外熱交換器11、室外膨張弁12、室内熱交換器51の順に冷媒を流す冷房運転と、圧縮機8、室内熱交換器51、室外膨張弁12、室外熱交換器11の順に冷媒を流す暖房運転と、が行われる。
(4) Operation of the air conditioner Next, the operation of the air conditioner 1 will be described with reference to FIG. In the air conditioner 1, the compressor 8, the outdoor heat exchanger 11, the outdoor expansion valve 12, the indoor heat exchanger 51, and the cooling operation in which the refrigerant flows in this order, and the compressor 8, the indoor heat exchanger 51, the outdoor expansion valve 12, The heating operation in which the refrigerant flows in the order of the outdoor heat exchanger 11 is performed.

(4-1)冷房運転
冷房運転時には、室外熱交換器11が冷媒の放熱器となり室内熱交換器51が冷媒の蒸発器となるように、四路切換弁10の接続状態が切り換えられる(図1の実線参照)。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10を通じて、室外熱交換器11に送られる。室外熱交換器11に送られた高圧のガス冷媒は、冷媒の放熱器として機能する室外熱交換器11において、室外ファン15によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。この高圧の液冷媒は、室外膨張弁12を通過する際に冷凍サイクルにおける低圧になるまで減圧され、気液二相状態の冷媒となって、液側閉鎖弁13および液冷媒連絡管4を通じて、室内ユニット3に送られる。
(4-1) Cooling operation During the cooling operation, the connection state of the four-way switching valve 10 is switched so that the outdoor heat exchanger 11 serves as a refrigerant radiator and the indoor heat exchanger 51 serves as a refrigerant evaporator (Fig.). See the solid line in 1). In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8, compressed to a high pressure in the refrigeration cycle, and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 is sent to the outdoor heat exchanger 11 through the four-way switching valve 10. The high-pressure gas refrigerant sent to the outdoor heat exchanger 11 dissipates heat by exchanging heat with the outdoor air supplied as a cooling source by the outdoor fan 15 in the outdoor heat exchanger 11 that functions as a radiator of the refrigerant. , Becomes a high pressure liquid refrigerant. This high-pressure liquid refrigerant is depressurized to a low pressure in the refrigeration cycle when passing through the outdoor expansion valve 12, becomes a gas-liquid two-phase state refrigerant, and is passed through the liquid side closing valve 13 and the liquid refrigerant connecting pipe 4. It is sent to the indoor unit 3.

低圧の気液二相状態の冷媒は、室内熱交換器51において、冷房運転時は室内ファン52によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内熱交換器51を通過する空気は冷却され、室内の冷房が行われる。なお、この際に、室内熱交換器51を通過する空気に含まれる水分が凝縮することで、室内熱交換器51の表面に結露水が生じる。室内熱交換器51において蒸発した低圧のガス冷媒は、ガス冷媒連絡管5を通じて、室外ユニット2に送られる。 The low-pressure gas-liquid two-phase state refrigerant evaporates in the indoor heat exchanger 51 by exchanging heat with the indoor air supplied as a heating source by the indoor fan 52 during the cooling operation. As a result, the air passing through the indoor heat exchanger 51 is cooled, and the indoor is cooled. At this time, moisture contained in the air passing through the indoor heat exchanger 51 is condensed, so that dew condensation water is generated on the surface of the indoor heat exchanger 51. The low-pressure gas refrigerant evaporated in the indoor heat exchanger 51 is sent to the outdoor unit 2 through the gas refrigerant connecting pipe 5.

室外ユニット2に送られた低圧のガス冷媒は、ガス側閉鎖弁14、四路切換弁10およびアキュムレータ7を通じて、再び、圧縮機8に吸入される。冷房運転では、以上のようにして、冷媒が冷媒回路6を循環する。 The low-pressure gas refrigerant sent to the outdoor unit 2 is sucked into the compressor 8 again through the gas side closing valve 14, the four-way switching valve 10, and the accumulator 7. In the cooling operation, the refrigerant circulates in the refrigerant circuit 6 as described above.

(4-2)暖房運転
暖房運転時には、室外熱交換器11が冷媒の蒸発器となり室内熱交換器51が冷媒の放熱器となるように、四路切換弁10の接続状態が切り換えられる(図1の破線参照)。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10、ガス側閉鎖弁14およびガス冷媒連絡管5を通じて、室内ユニット3に送られる。
(4-2) Heating operation During the heating operation, the connection state of the four-way switching valve 10 is switched so that the outdoor heat exchanger 11 serves as a refrigerant evaporator and the indoor heat exchanger 51 serves as a refrigerant radiator (FIG. See the broken line in 1). In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8, compressed to a high pressure in the refrigeration cycle, and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 is sent to the indoor unit 3 through the four-way switching valve 10, the gas side closing valve 14, and the gas refrigerant connecting pipe 5.

高圧のガス冷媒は、室内熱交換器51において、室内ファン52によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内熱交換器51を通過する空気は加熱され、室内の暖房が行われる。室内熱交換器51で放熱した高圧の液冷媒は、液冷媒連絡管4を通じて、室外ユニット2に送られる。 The high-pressure gas refrigerant exchanges heat with the indoor air supplied as a cooling source by the indoor fan 52 in the indoor heat exchanger 51 to dissipate heat and becomes a high-pressure liquid refrigerant. As a result, the air passing through the indoor heat exchanger 51 is heated to heat the room. The high-pressure liquid refrigerant radiated by the indoor heat exchanger 51 is sent to the outdoor unit 2 through the liquid refrigerant connecting pipe 4.

室外ユニット2に送られた高圧の液冷媒は、液側閉鎖弁13を通じて、室外膨張弁12において冷凍サイクルの低圧まで減圧され、低圧の気液二相状態の冷媒になる。室外膨張弁12で減圧された低圧の気液二相状態の冷媒は、冷媒の蒸発器として機能する室外熱交換器11において、室外ファン15によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。この低圧のガス冷媒は、四路切換弁10およびアキュムレータ7を通じて、再び、圧縮機8に吸入される。暖房運転では、以上のようにして、冷媒が冷媒回路6を循環する。 The high-pressure liquid refrigerant sent to the outdoor unit 2 is depressurized to the low pressure of the refrigeration cycle in the outdoor expansion valve 12 through the liquid side closing valve 13, and becomes a low-pressure gas-liquid two-phase state refrigerant. The low-pressure gas-liquid two-phase refrigerant decompressed by the outdoor expansion valve 12 exchanges heat with the outdoor air supplied as a heating source by the outdoor fan 15 in the outdoor heat exchanger 11 that functions as an evaporator of the refrigerant. Evaporates to become a low-pressure gas refrigerant. This low-pressure gas refrigerant is sucked into the compressor 8 again through the four-way switching valve 10 and the accumulator 7. In the heating operation, the refrigerant circulates in the refrigerant circuit 6 as described above.

(5)特徴
(5-1)
一般に、室内熱交換器における室内フィンの熱伝達率は、室内扁平管を設ける間隔を狭めるほど高くすることができる。しかし、室内扁平管を設ける間隔を狭めてしまうと、室内扁平管の間を通過する空気流れの流速が増大してしまい、結露水が飛散してしまいやすい。また、室内扁平管の上下方向の高さが大きい場合についても、同様に、室内扁平管の間を通過する空気流れの流速が増大してしまい、結露水が飛散してしまいやすい。他方で、室内扁平管を設ける間隔を広くすると、室内フィンの熱伝達率が低下することから、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすい環境になってしまう。
(5) Features (5-1)
In general, the heat transfer coefficient of the indoor fins in the indoor heat exchanger can be increased by narrowing the interval in which the indoor flat tubes are provided. However, if the interval in which the indoor flat pipes are provided is narrowed, the flow velocity of the air flow passing between the indoor flat pipes increases, and the dew condensation water tends to scatter. Similarly, when the height of the indoor flat pipe in the vertical direction is large, the flow velocity of the air flow passing between the indoor flat pipes increases, and the dew condensation water tends to scatter. On the other hand, if the interval between the indoor flat tubes is widened, the heat transfer coefficient of the indoor fins will decrease, so the evaporation temperature of the refrigerant in the indoor heat exchanger will have to be lowered, and the environment will be prone to dew condensation water. It ends up.

これに対して、本実施形態の室内熱交換器51およびこれを備えた空気調和装置1では、HTを室内扁平管55の上下方向の高さとし、DPを複数の室内扁平管55の上下方向のピッチとした場合に、4.0≦DP/HT≦10.0の関係を満たすものを採用している。このように、室内熱交換器51のDP/HTの値を当該数値範囲とすることが結露水抑制のために良好であることは、DPおよびHTの各値を変化させた解析データにより明らかとなった。 On the other hand, in the indoor heat exchanger 51 of the present embodiment and the air conditioner 1 provided with the indoor heat exchanger 51, the HT is set to the vertical height of the indoor flat tube 55, and the DP is set to the vertical height of the plurality of indoor flat tubes 55. When the pitch is set, the one that satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0 is adopted. As described above, it is clear from the analysis data in which the values of DP and HT are changed that it is good to set the value of DP / HT of the indoor heat exchanger 51 in the numerical range for suppressing dew condensation. became.

すなわち、このように、室内熱交換器51のDP/HTの値を4.0以上とすることにより、室内フィン60を横切るように流れる空気流れの流速が大きくなりすぎることを抑制し、室内ファン52の風量を増大させて用いる場合であっても、空気流れが大きいことによって生じる風下側端部からの結露水の飛散を抑制することが可能になる。 That is, by setting the DP / HT value of the indoor heat exchanger 51 to 4.0 or more in this way, it is possible to prevent the flow velocity of the air flow flowing across the indoor fin 60 from becoming too large, and to prevent the indoor fan from becoming too large. Even when the air volume of 52 is increased and used, it is possible to suppress the scattering of dew condensation water from the leeward end portion caused by the large air flow.

さらに、室内熱交換器51のDP/HTの値を10.0以下とすることにより、室内フィン60の領域のうち室内扁平管55から遠く離れた領域を小さく抑えて室内フィン60の熱伝達率を向上させることができるため、能力を確保するために室内熱交換器51の冷媒の蒸発温度を低下させる必要性を抑制し、結露水が生じにくくすることにより、室内ファン52の風量を増大させて用いる場合であっても、室内フィン60からの結露水の飛散を抑制することが可能になる。 Further, by setting the DP / HT value of the indoor heat exchanger 51 to 10.0 or less, the region of the indoor fin 60 far away from the indoor flat tube 55 is suppressed to a small size, and the heat transfer coefficient of the indoor fin 60 is suppressed. Therefore, the need to lower the evaporation temperature of the refrigerant of the indoor heat exchanger 51 in order to secure the capacity is suppressed, and the air volume of the indoor fan 52 is increased by making it difficult for dew condensation water to occur. It is possible to suppress the scattering of dew condensation water from the indoor fins 60 even when the indoor fins 60 are used.

なお、室内熱交換器51を4.6≦DP/HT≦8.0の関係を満たすように構成した場合には、結露水の飛散を抑制する効果をより顕著なものとすることが可能になる。 When the indoor heat exchanger 51 is configured to satisfy the relationship of 4.6 ≤ DP / HT ≤ 8.0, the effect of suppressing the scattering of dew condensation water can be made more remarkable. Become.

(5-2)
一般に、空気調和装置の室外ユニットにおいて用いられる室外熱交換器では、冷媒の蒸発器として機能させる際の室外フィンでの着霜により、通風抵抗が増大しがちになることから、室外扁平管のピッチを広くとることが求められる。このような扁平管のピッチが広い構造の室外熱交換器と同じ構造の熱交換器を、室内熱交換器にも流用しようとすると、扁平管のピッチが広いために室内フィンの熱伝達率が低下し、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすくなってしまう。
(5-2)
Generally, in an outdoor heat exchanger used in an outdoor unit of an air conditioner, ventilation resistance tends to increase due to frost formation at the outdoor fins when the refrigerant is made to function as an evaporator. It is required to take a wide range. When an attempt is made to divert a heat exchanger having the same structure as an outdoor heat exchanger having a structure having a wide flat tube pitch to an indoor heat exchanger, the heat transfer rate of the indoor fins increases due to the wide pitch of the flat tube. The temperature is lowered, and the evaporation temperature of the refrigerant in the indoor heat exchanger has to be lowered, so that dew condensation water is likely to occur.

これに対して、本実施形態の室内熱交換器51およびこれを備えた空気調和装置1ではでは、HTを扁平管90、55の上下方向の高さとし、DPを複数の扁平管90、55の上下方向のピッチとした場合に、室内熱交換器51のDP/HTの値が室外熱交換器11のDP/HTの値よりも小さい関係を満たすようにしている。 On the other hand, in the indoor heat exchanger 51 of the present embodiment and the air conditioner 1 provided with the indoor heat exchanger 51, the HT is set to the vertical height of the flat tubes 90 and 55, and the DP is set to the height of the plurality of flat tubes 90 and 55. When the pitch is set in the vertical direction, the relationship in which the DP / HT value of the indoor heat exchanger 51 is smaller than the DP / HT value of the outdoor heat exchanger 11 is satisfied.

このため、結露水の飛散が問題とならない室外熱交換器11においては、蒸発器として用いられる場合の着霜を抑制させつつ、結露水の飛散が問題となりがちな室内熱交換器51においては、室内フィン60の熱伝達率を向上させて、蒸発器として用いられる場合について、室内熱交換器51の冷媒の蒸発温度を低下させる必要性を抑制し、結露水が生じにくくすることにより、結露水の飛散を抑制させることが可能になる。 Therefore, in the outdoor heat exchanger 11 in which the scattering of the dew condensation water is not a problem, the indoor heat exchanger 51 in which the scattering of the dew condensation water tends to be a problem while suppressing frost formation when used as an evaporator is used. When the heat transfer rate of the indoor fin 60 is improved and used as an evaporator, the need to lower the evaporation temperature of the refrigerant of the indoor heat exchanger 51 is suppressed, and dew condensation water is less likely to occur. It is possible to suppress the scattering of water.

(5-3)
本実施形態の室内熱交換器51では、風上熱交換部70と風下熱交換部80を有しており、少なくとも室内扁平管55が2列以上配置された構造が採用されている。
(5-3)
The indoor heat exchanger 51 of the present embodiment has an upwind heat exchange unit 70 and a leeward heat exchange unit 80, and adopts a structure in which at least two or more rows of indoor flat tubes 55 are arranged.

このため、室内熱交換器51において生じる結露水のうち風上熱交換部70において生じた結露水は、風上熱交換部70と風下熱交換部80との間の部分または風下熱交換部80において下方に導いて排水させることが容易となる。また、風下熱交換部80には、風上熱交換部70を通過する際に風上熱交換部70において結露水を生じさせることで乾き度が増した空気が供給されるため、風下熱交換部80で生じる結露水を少なく抑えることが可能になり、風下熱交換部80の風下側端部からの結露水の飛散を抑制することが可能になる。 Therefore, of the dew condensation water generated in the indoor heat exchanger 51, the dew condensation water generated in the upwind heat exchange section 70 is a portion between the upwind heat exchange section 70 and the downwind heat exchange section 80 or the downwind heat exchange section 80. It becomes easy to guide it downward and drain it. Further, since the leeward heat exchange unit 80 is supplied with air having an increased degree of dryness due to the formation of dew condensation water in the leeward heat exchange unit 70 when passing through the leeward heat exchange unit 70, the leeward heat exchange unit 80 is supplied with air. It is possible to suppress the amount of dew condensation water generated in the portion 80 to a small extent, and it is possible to suppress the scattering of the dew condensation water from the leeward side end portion of the leeward heat exchange portion 80.

(5-4)
本実施形態の室内熱交換器51では、室内フィン60は、室内扁平管55の風下側に室内連通部64が設けられている。このため、室内扁平管55で生じた結露水を、空気流れ方向における下流側に位置している室内フィン60の室内連通部64に伝わせながら下方に導いて排水させやすい。したがって、室内フィン60の空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。
(5-4)
In the indoor heat exchanger 51 of the present embodiment, the indoor fin 60 is provided with an indoor communication portion 64 on the leeward side of the indoor flat tube 55. Therefore, it is easy to guide the dew condensation water generated in the indoor flat pipe 55 downward while transmitting it to the indoor communication portion 64 of the indoor fin 60 located on the downstream side in the air flow direction to drain the water. Therefore, it is possible to suppress the scattering of dew condensation water from the downstream end portion of the indoor fin 60 in the air flow direction.

特に、本実施形態の室内熱交換器51では、室内扁平管55が2列以上配置された構造において、風下熱交換部80の室内フィン60の下流側に室内連通部64が設けられているため、室内フィン60の下流側端部における結露水の発生を抑制させつつ、発生した結露水の排水性を高めることが可能になっている。 In particular, in the indoor heat exchanger 51 of the present embodiment, in a structure in which two or more rows of indoor flat tubes 55 are arranged, an indoor communication portion 64 is provided on the downstream side of the indoor fin 60 of the leeward heat exchange portion 80. It is possible to improve the drainage property of the generated dew condensation water while suppressing the generation of the dew condensation water at the downstream end portion of the indoor fin 60.

(5-5)
本実施形態の室内熱交換器51では、WFを空気流れ方向における室内フィン60の長さとし、WLを空気流れ方向における室内連通部64の長さとした場合に、0.2≦WL/WF≦0.5の関係を満たすようにしている。このように、室内フィン60においてWL/WFの値を0.2以上とすることで、室内連通部64の空気流れ方向の幅を十分に確保し、室内熱交換器51において生じた結露水を室内連通部64を介して下方に排水させやすくしている。また、室内フィン60においてWL/WFの値を0.5以下とすることで、室内フィン60の領域のうち室内扁平管55から遠く離れて伝熱性能の向上に寄与しにくい領域を小さく抑えることで、室内フィン60の性能を維持しつつ材料費を抑制させることが可能になる。
(5-5)
In the indoor heat exchanger 51 of the present embodiment, when the WF is the length of the indoor fin 60 in the air flow direction and the WL is the length of the indoor communication portion 64 in the air flow direction, 0.2 ≦ WL / WF ≦ 0. I try to satisfy the relationship of .5. In this way, by setting the WL / WF value in the indoor fin 60 to 0.2 or more, the width of the indoor communication portion 64 in the air flow direction is sufficiently secured, and the dew condensation water generated in the indoor heat exchanger 51 is removed. It is easy to drain the water downward through the indoor communication portion 64. Further, by setting the WL / WF value of the indoor fin 60 to 0.5 or less, the region of the indoor fin 60 that is far from the indoor flat tube 55 and is difficult to contribute to the improvement of heat transfer performance can be suppressed to a small size. Therefore, it becomes possible to suppress the material cost while maintaining the performance of the indoor fin 60.

特に、室内フィン60に室内連通部64を、室内扁平管55の空気流れ方向の下流側に位置させつつ、室内フィン60のWL/WFの値を0.2以上のものとすることで、室内扁平管55で生じた結露水の室内連通部64を介した排水性を高めることが可能になる。 In particular, the indoor communication portion 64 is located on the indoor fin 60 on the downstream side in the air flow direction of the indoor flat pipe 55, and the WL / WF value of the indoor fin 60 is set to 0.2 or more. It is possible to improve the drainage property of the dew condensation water generated in the flat pipe 55 through the indoor communication portion 64.

(5-6)
本実施形態の室内熱交換器51では、室内フィン60において、空気流れ方向に開口が生じるように切り起こされて構成されたメインスリット62および連通位置スリット63が設けられている。このため、室内熱交換器51に供給される空気を、室内フィン60に十分に接するようにすることが可能となり、空気熱源を十分に利用することが可能となる。
(5-6)
In the indoor heat exchanger 51 of the present embodiment, the indoor fin 60 is provided with a main slit 62 and a communication position slit 63 which are cut and raised so as to generate an opening in the air flow direction. Therefore, the air supplied to the indoor heat exchanger 51 can be sufficiently brought into contact with the indoor fins 60, and the air heat source can be fully utilized.

なお、メインスリット62および連通位置スリット63の上端は、直上に位置する室内扁平管55の下方部分の近くに位置するように設けられているため、当該直上の室内扁平管55において生じた結露水を捕らえて下方に導きやすく、排水性を高めることが可能になっている。特に、図12に示すように、室内扁平管55の下側扁平面55b側において、室内フィン60の主面61に対するフィンカラー部65aの立ち上げが始まっている箇所と、室内フィン60のメインスリット62の切り起こしが始まっている箇所と、の間の距離DSが1mm以下に設計されることで、室内扁平管55の下側扁平面55b側での結露水の滞留を抑制し、排水性能を高めることができている。 Since the upper ends of the main slit 62 and the communication position slit 63 are provided so as to be located near the lower portion of the indoor flat pipe 55 located directly above, dew condensation water generated in the indoor flat pipe 55 directly above the main slit 62 and the communication position slit 63. It is easy to catch and guide it downward, and it is possible to improve drainage. In particular, as shown in FIG. 12, on the lower flat surface 55b side of the indoor flat tube 55, the position where the fin collar portion 65a has started to rise with respect to the main surface 61 of the indoor fin 60 and the main slit 62 of the indoor fin 60. By designing the distance DS between the point where the cutting and raising of the pipe is started to be 1 mm or less, the retention of dew condensation water on the lower flat surface 55b side of the indoor flat pipe 55 is suppressed and the drainage performance is improved. Is done.

(6)変形例
(6-1)変形例A
上記実施形態では、室内フィン60の下流側端部が平坦な形状である場合を例に挙げて説明した。
(6) Modification example (6-1) Modification example A
In the above embodiment, the case where the downstream end portion of the indoor fin 60 has a flat shape has been described as an example.

しかし、室内フィン60の下流側端部の形状は、これに限られるものではなく、例えば、以下に述べるように、空気流れ方向の下流側端部に沿うように延びた導水リブ99を有する室内フィン60aを用いてもよい。 However, the shape of the downstream end of the indoor fin 60 is not limited to this, and for example, as described below, the interior has a water guiding rib 99 extending along the downstream end in the air flow direction. Fins 60a may be used.

図13に、室内フィン60aと室内扁平管55との位置関係を、図14に、導水リブ99の図13におけるB-B断面のうちの空気流れ方向の下流側近傍部分を、それぞれ示す。 FIG. 13 shows the positional relationship between the indoor fin 60a and the indoor flat pipe 55, and FIG. 14 shows the portion of the water guide rib 99 in the BB cross section of FIG. 13 near the downstream side in the air flow direction.

本変形例Aに係る室内熱交換器51においても、上記実施形態と同様に、風上熱交換部70と風下熱交換部80を有して構成されており、風上熱交換部70と風下熱交換部80のそれぞれの室内フィン60aにおいて、空気流れ方向の下流側に設けられた室内連通部64の空気流れ方向下流側端部に沿うように上下に延びた導水リブ99が設けられている。当該導水リブ99は、図14に示すように、周囲の主面61に対して、室内フィン60aの板厚方向に凹むようにして構成されている。導水リブ99は、特に限定されないが、室内フィン60aの板厚以上凹んで構成されていることが好ましい。 The indoor heat exchanger 51 according to the present modification A also has an upwind heat exchange unit 70 and a downwind heat exchange unit 80, as in the above embodiment, and is configured to include an upwind heat exchange unit 70 and a downwind heat exchange unit 70. In each of the indoor fins 60a of the heat exchange portion 80, a water guiding rib 99 extending vertically along the downstream end of the indoor communication portion 64 provided on the downstream side in the air flow direction is provided. .. As shown in FIG. 14, the water guide rib 99 is configured to be recessed in the plate thickness direction of the indoor fin 60a with respect to the surrounding main surface 61. The water guide rib 99 is not particularly limited, but is preferably configured to be recessed by a plate thickness or more of the indoor fin 60a.

このように室内フィン60aに導水リブ99を設けることで、室内熱交換器51において生じた結露水を、当該導水リブ99において捕らえさせ、当該導水リブ99を伝って下方に結露水を導きやすくなる。このため、結露水が室内フィン60aの風下側端部に到達することを抑制し、結露水の飛散を十分に抑制することが可能になる。 By providing the water guide rib 99 in the indoor fin 60a in this way, the dew condensation water generated in the indoor heat exchanger 51 is captured by the water guide rib 99, and it becomes easy to guide the dew condensation water downward through the water guide rib 99. .. Therefore, it is possible to prevent the dew condensation water from reaching the leeward end of the indoor fin 60a, and to sufficiently suppress the scattering of the dew condensation water.

なお、導水リブ99は、室内フィン60aの室内連通部64における空気流れ方向の幅の半分よりも下流側に設けられていることが好ましく、室内連通部64の空気流れ方向の幅のうち空気流れ方向の下流側端部から20%以内の位置に設けられていることがより好ましい。 The water guide rib 99 is preferably provided on the downstream side of half the width of the indoor communication portion 64 in the indoor communication portion 64 in the air flow direction, and the air flow in the width of the indoor communication portion 64 in the air flow direction. It is more preferable that it is provided at a position within 20% from the downstream end in the direction.

なお、導水リブ99を設ける室内フィン60aにおいては、特に、室内フィン60のうちの室内連通部64の空気流れ方向における幅WLと、室内フィン60の空気流れ方向における幅WFと、の関係が、0.2≦WL/WFの関係を満たしていることが好ましい。 In the indoor fin 60a provided with the water guide rib 99, the relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fin 60 and the width WF in the air flow direction of the indoor fin 60 is particularly high. It is preferable that the relationship of 0.2 ≦ WL / WF is satisfied.

(6-2)変形例B
上記実施形態では、室内熱交換器51が風上熱交換部70と風下熱交換部80を有し、室内扁平管55が2列に並んで設けられている場合を例に挙げて説明した。
(6-2) Modification B
In the above embodiment, the case where the indoor heat exchanger 51 has the upwind heat exchange unit 70 and the leeward heat exchange unit 80 and the indoor flat pipes 55 are provided side by side in two rows has been described as an example.

しかし、室内熱交換器51が備える室内扁平管55の空気流れ方向に並ぶ列の数は2つに限られるものではなく、3列以上の複数列としてもよい。このように室内扁平管55の列数を増大させることで、室内熱交換器51の空気流れ方向の下流側端部からの結露水の飛散をより効果的に抑制することが可能となる。 However, the number of rows of the indoor flat tube 55 included in the indoor heat exchanger 51 in the air flow direction is not limited to two, and may be three or more rows. By increasing the number of rows of the indoor flat pipe 55 in this way, it becomes possible to more effectively suppress the scattering of dew condensation water from the downstream end portion of the indoor heat exchanger 51 in the air flow direction.

(6-3)変形例C
上記実施形態では、室内熱交換器51において、風上熱交換部70に属する複数の室内扁平管55と、風下熱交換部80に属する複数の室内扁平管55とが、空気流れ方向視において互いに重なるように配置される場合を例に挙げて説明した。
(6-3) Modification C
In the above embodiment, in the indoor heat exchanger 51, the plurality of indoor flat tubes 55 belonging to the upwind heat exchange section 70 and the plurality of indoor flat tubes 55 belonging to the downwind heat exchange section 80 are mutually arranged in the air flow direction view. The case where they are arranged so as to overlap each other has been described as an example.

しかし、室内熱交換器51としては、これに限られるものではなく、より風上側の熱交換部に属する複数の室内扁平管55と、より風下側の熱交換部に属する複数の室内扁平管55とが、空気流れ方向視において互いに重ならないように配置されていてもよい。これにより、風上側に位置する室内扁平管55にも風下側に位置する室内扁平管55にも、十分に空気流れを当てることが可能になる。 However, the indoor heat exchanger 51 is not limited to this, and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the leeward side and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the leeward side. And may be arranged so as not to overlap each other in the air flow direction view. As a result, it becomes possible to sufficiently apply the air flow to both the indoor flat pipe 55 located on the windward side and the indoor flat pipe 55 located on the leeward side.

(6-4)変形例D
上記実施形態では、室内熱交換器51の室内フィン60において、室内フィン60の主面61に対して板厚方向の一方側にスリット片全体が位置するように切り起こされて構成されるメインスリット62や連通位置スリット63が設けられている場合を例に挙げて説明した。
(6-4) Modification D
In the above embodiment, in the indoor fin 60 of the indoor heat exchanger 51, a main slit configured by being cut up so that the entire slit piece is located on one side in the plate thickness direction with respect to the main surface 61 of the indoor fin 60. The case where the 62 and the communication position slit 63 are provided has been described as an example.

しかし、室内フィン60に形成される切り起こしとしては、これに限られず、メインスリット62や連通位置スリット63の変わりに、例えば、切り起こされるスリット片について、スリット片の空気流れ方向の風上側端部が室内フィン60の主面61の板厚方向の一方側に位置し、スリット片の空気流れ方向の風下側端部が室内フィン60の主面61の板厚方向の他方側に位置するようなルーバーと称される構造を採用するようにしてもよい。 However, the cut-up formed in the indoor fin 60 is not limited to this, and instead of the main slit 62 and the communication position slit 63, for example, for the cut-up raised slit piece, the windward end of the slit piece in the air flow direction. The portion is located on one side of the main surface 61 of the indoor fin 60 in the plate thickness direction, and the leeward end portion of the slit piece in the air flow direction is located on the other side of the main surface 61 of the indoor fin 60 in the plate thickness direction. A structure called a louver may be adopted.

以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments and modifications of the present disclosure have been described above, it is understood that various changes in the form and details are possible without departing from the spirit and scope of the present disclosure described in the claims. Will.

1 空気調和装置
2 室外ユニット(室外機)
3 室内ユニット(室内機)
11 室外熱交換器
51 室内熱交換器
55 室内扁平管
55c 流路
60 室内フィン(伝熱フィン)
62 メインスリット(切り起こし部)
63 連通位置スリット(切り起こし部)
64 室内連通部(連通部)
65 風上部(上下に並んだ前記扁平管同士の間に位置する各部分)
90 室外扁平管(扁平管)
90c 流路
91 室外フィン
97a 連通部
97b 風下部
1 Air conditioner 2 Outdoor unit (outdoor unit)
3 Indoor unit (indoor unit)
11 Outdoor heat exchanger 51 Indoor heat exchanger 55 Indoor flat tube 55c Flow path 60 Indoor fin (heat transfer fin)
62 Main slit (raised part)
63 Communication position slit (cut-up part)
64 Indoor communication section (communication section)
65 Wind upper part (each part located between the flat pipes lined up and down)
90 Outdoor flat tube (flat tube)
90c Flow path 91 Outdoor fin 97a Communication part 97b Wind lower

特許文献1:特開2016-041986号公報 Patent Document 1: Japanese Unexamined Patent Publication No. 2016-041986

Claims (4)

空気調和装置(1)の室内機(3)に用いられる室内熱交換器(51)であって、
内部に冷媒を通過させる流路(55c)を有しており、上下に並んだ複数の扁平管(55)と、
複数の前記扁平管に接合された複数の伝熱フィン(60)と、
を備え、
前記伝熱フィンは、上下に並んだ前記扁平管同士の間に位置する各部分(65)と繋がっており、空気流れ方向における前記扁平管の風下側に位置し、上下に延びた連通部(64)と、長手方向が上下方向である切り起こし部(62、63)と、を有しており、
前記扁平管の高さをHTとし、上下に並んだ前記扁平管のピッチをDPとした場合に、
4.≦DP/HT≦.0の関係を満たす、
室内熱交換器。
An indoor heat exchanger (51) used in the indoor unit (3) of the air conditioner (1).
It has a flow path (55c) through which the refrigerant passes, and has a plurality of flat pipes (55) arranged one above the other.
A plurality of heat transfer fins (60) joined to the plurality of the flat tubes,
Equipped with
The heat transfer fins are connected to each portion (65) located between the flat tubes arranged one above the other, and are located on the leeward side of the flat tubes in the air flow direction and extend vertically (a communication portion). 64) and a cut-up portion (62, 63) whose longitudinal direction is the vertical direction .
When the height of the flat tubes is HT and the pitch of the flat tubes arranged vertically is DP.
4. 6 ≤ DP / HT ≤ 8 . Satisfy the relationship of 0,
Indoor heat exchanger.
前記扁平管は、空気流れ方向の上流側に配置された複数の上流側扁平管と、前記上流側扁平管よりも空気流れ方向の下流側に配置された複数の下流側扁平管と、を有している、
請求項に記載の室内熱交換器。
The flat tube has a plurality of upstream flat tubes arranged on the upstream side in the air flow direction and a plurality of downstream flat tubes arranged on the downstream side in the air flow direction from the upstream flat tube. is doing,
The indoor heat exchanger according to claim 1 .
空気流れ方向における前記伝熱フィンの長さをWFとし、空気流れ方向における前記連通部の長さをWLとした場合に、
0.2≦WL/WF≦0.5の関係を満たす、
請求項1または2に記載の室内熱交換器。
When the length of the heat transfer fin in the air flow direction is WF and the length of the communication portion in the air flow direction is WL.
Satisfying the relationship of 0.2 ≤ WL / WF ≤ 0.5,
The indoor heat exchanger according to claim 1 or 2 .
請求項1からのいずれか1項に記載の室内熱交換器(51)を有する室内機(3)と、
室外熱交換器(11)を有する室外機(2)と、
を備えた空気調和装置(1)。
The indoor unit (3) having the indoor heat exchanger (51) according to any one of claims 1 to 3 .
An outdoor unit (2) having an outdoor heat exchanger (11) and
An air conditioner (1).
JP2018008352A 2018-01-22 2018-01-22 Indoor heat exchanger and air conditioner Active JP7092987B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018008352A JP7092987B2 (en) 2018-01-22 2018-01-22 Indoor heat exchanger and air conditioner
ES18901558T ES2941545T3 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device
US16/964,027 US20210041115A1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning apparatus
PCT/JP2018/048147 WO2019142642A1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device
EP18901558.9A EP3745075B1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device
CN201880087296.1A CN111630336B (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018008352A JP7092987B2 (en) 2018-01-22 2018-01-22 Indoor heat exchanger and air conditioner

Publications (2)

Publication Number Publication Date
JP2019128060A JP2019128060A (en) 2019-08-01
JP7092987B2 true JP7092987B2 (en) 2022-06-29

Family

ID=67301294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018008352A Active JP7092987B2 (en) 2018-01-22 2018-01-22 Indoor heat exchanger and air conditioner

Country Status (6)

Country Link
US (1) US20210041115A1 (en)
EP (1) EP3745075B1 (en)
JP (1) JP7092987B2 (en)
CN (1) CN111630336B (en)
ES (1) ES2941545T3 (en)
WO (1) WO2019142642A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
KR20200078936A (en) * 2018-12-24 2020-07-02 삼성전자주식회사 Heat exchanger
WO2021234964A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner
JP7457587B2 (en) * 2020-06-18 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat exchangers, heat exchanger units, and refrigeration cycle equipment
US20230147346A1 (en) * 2021-11-10 2023-05-11 Climate Master, Inc. Low height heat pump system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240261A (en) 2002-02-15 2003-08-27 Sharp Corp Integrated type air conditioner
JP2009145010A (en) 2007-12-17 2009-07-02 Hitachi Appliances Inc Fin-less heat exchanger for air conditioner
JP2010085017A (en) 2008-09-30 2010-04-15 Daikin Ind Ltd Indoor unit for air conditioner and the air conditioner including the same
WO2015005352A1 (en) 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
WO2016194043A1 (en) 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger
JP2017166757A (en) 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
JP2017187243A (en) 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
JP2018004090A (en) 2016-06-27 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Indoor unit for air conditioner

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101333A (en) * 1988-10-07 1990-04-13 Matsushita Electric Ind Co Ltd Integral type air conditioner
JP3264525B2 (en) * 1992-10-12 2002-03-11 東芝キヤリア株式会社 Heat exchanger
ES2087702T3 (en) * 1993-07-06 1996-07-16 Magneti Marelli Climat Srl AIR CONDITIONING SYSTEMS CONDENSER, IN PARTICULAR FOR MOTOR VEHICLES.
JP2000193389A (en) * 1998-12-28 2000-07-14 Hitachi Ltd Outdoor unit of air-conditioner
JP2002139282A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
JP2009168317A (en) * 2008-01-15 2009-07-30 Toshiba Carrier Corp Heat exchanger and air conditioner
JP4845943B2 (en) * 2008-08-26 2011-12-28 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle air conditioner
CN101614492A (en) * 2009-06-15 2009-12-30 浙江康盛股份有限公司 Micro-channel condenser
CN101963418B (en) * 2009-07-21 2012-09-05 约克(无锡)空调冷冻设备有限公司 Micro channel heat exchanger for air-conditioner heat pump
KR101451056B1 (en) * 2011-01-21 2014-10-16 다이킨 고교 가부시키가이샤 Heat exchanger and air conditioner
JP5523495B2 (en) * 2011-04-22 2014-06-18 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle apparatus
KR101936224B1 (en) * 2012-04-26 2019-01-08 엘지전자 주식회사 A heat exchanger
JP6448948B2 (en) 2014-08-14 2019-01-09 三菱重工サーマルシステムズ株式会社 Heat exchanger and outdoor unit for air conditioner using the same
CN106662344A (en) * 2015-07-14 2017-05-10 生态工厂有限公司 Air conditioner and air conditioning system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003240261A (en) 2002-02-15 2003-08-27 Sharp Corp Integrated type air conditioner
JP2009145010A (en) 2007-12-17 2009-07-02 Hitachi Appliances Inc Fin-less heat exchanger for air conditioner
JP2010085017A (en) 2008-09-30 2010-04-15 Daikin Ind Ltd Indoor unit for air conditioner and the air conditioner including the same
WO2015005352A1 (en) 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
WO2016194043A1 (en) 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger
JP2017166757A (en) 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
JP2017187243A (en) 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
JP2018004090A (en) 2016-06-27 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Indoor unit for air conditioner

Also Published As

Publication number Publication date
CN111630336A (en) 2020-09-04
EP3745075A4 (en) 2021-01-06
EP3745075A1 (en) 2020-12-02
US20210041115A1 (en) 2021-02-11
CN111630336B (en) 2022-08-16
EP3745075B1 (en) 2023-03-08
JP2019128060A (en) 2019-08-01
ES2941545T3 (en) 2023-05-23
WO2019142642A1 (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP7092987B2 (en) Indoor heat exchanger and air conditioner
US8205470B2 (en) Indoor unit for air conditioner
WO2019239990A1 (en) Indoor heat exchanger and air conditioning device
CN110612425B (en) Heat exchanger
JP7078840B2 (en) Heat exchanger and air conditioner
JP6223596B2 (en) Air conditioner indoor unit
WO2016174802A1 (en) Heat exchanger and air conditioner
WO2018056209A1 (en) Heat exchanger
JP2019011923A (en) Heat exchanger
WO2018235215A1 (en) Heat exchanger, refrigeration cycle device, and air conditioner
JP6471345B2 (en) Heat exchanger
WO2019240055A1 (en) Heat exchanger and air conditioner
JP6877535B2 (en) Refrigeration cycle equipment and air conditioner
JP2015169358A (en) heat exchanger
JP7137092B2 (en) Heat exchanger
JP7089187B2 (en) Heat exchanger and air conditioner
WO2021095452A1 (en) Heat exchanger and air conditioner
CN113203223A (en) Heat exchanger and air conditioner provided with same
JPWO2019180764A1 (en) Indoor unit and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220401

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220418

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220530

R151 Written notification of patent or utility model registration

Ref document number: 7092987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151