WO2019239990A1 - Indoor heat exchanger and air conditioning device - Google Patents

Indoor heat exchanger and air conditioning device Download PDF

Info

Publication number
WO2019239990A1
WO2019239990A1 PCT/JP2019/022415 JP2019022415W WO2019239990A1 WO 2019239990 A1 WO2019239990 A1 WO 2019239990A1 JP 2019022415 W JP2019022415 W JP 2019022415W WO 2019239990 A1 WO2019239990 A1 WO 2019239990A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
heat exchanger
flat tube
outdoor
indoor heat
Prior art date
Application number
PCT/JP2019/022415
Other languages
French (fr)
Japanese (ja)
Inventor
俊 吉岡
祥志 松本
智歩 藤井
好男 織谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019239990A1 publication Critical patent/WO2019239990A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/032Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers
    • F24F1/0325Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular

Definitions

  • the indoor heat exchanger is an indoor heat exchanger used for an indoor unit of an air conditioner.
  • the indoor heat exchanger includes a plurality of flat tubes and a plurality of heat transfer fins.
  • the flat tube has a flow path through which the refrigerant passes.
  • the heat transfer fin has a communication portion extending in the first direction.
  • the heat transfer fins are joined to a plurality of flat tubes arranged in the first direction.
  • the plurality of flat tubes are arranged side by side in the longitudinal direction of the flat tubes and the second direction intersecting the first direction.
  • the flat tube satisfies the relationship of WT ⁇ 12 mm.
  • WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
  • the indoor heat exchanger according to the third aspect is an indoor heat exchanger according to the second aspect, and the flat tube further satisfies the relationship of WT ⁇ 12 mm.
  • WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
  • This indoor heat exchanger can suppress the scattering of condensed water while ensuring heat transfer performance.
  • the indoor heat exchanger according to the sixth aspect is an indoor heat exchanger according to any of the second to fifth aspects, and the flat tube further satisfies a relationship of HT / WT ⁇ 0.2.
  • HT is a dimension in the short direction in a cross-sectional view of the flat tube.
  • WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
  • the indoor heat exchanger according to the seventh aspect is an indoor heat exchanger according to any one of the second to sixth aspects, and the flat tube further satisfies a relationship of HT / WT ⁇ 0.3.
  • HT is a dimension in the short direction in a cross-sectional view of the flat tube.
  • WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
  • This indoor heat exchanger can suppress the scattering of condensed water while ensuring heat transfer performance.
  • the air conditioner according to the ninth aspect is the air conditioner according to the eighth aspect, further comprising an outdoor heat exchanger.
  • the outdoor heat exchanger has a plurality of flat tubes and heat transfer fins.
  • the flat tube has a flow path through which the refrigerant passes.
  • the heat transfer fins are joined to a plurality of flat tubes arranged in the third direction.
  • the air conditioner according to the tenth aspect is the air conditioner according to the ninth aspect, and satisfies a relationship of HT / WT ⁇ HTo / WTo.
  • HT is a dimension in the short direction in a cross-sectional view of the flat tube of the indoor heat exchanger.
  • WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the indoor heat exchanger.
  • HTo is a dimension in the short direction in a cross-sectional view of the flat tube of the outdoor heat exchanger.
  • WTo is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the outdoor heat exchanger.
  • An air conditioner according to a thirteenth aspect is the air conditioner according to any of the ninth to twelfth aspects, wherein the heat transfer fin of the outdoor heat exchanger has a communication portion extending in the third direction. .
  • the communication portion is downstream of the flat tube in the flow direction of the gas passing through the indoor heat exchanger.
  • the communication portion is upstream of the flat tube in the flow direction of the gas passing through the outdoor heat exchanger.
  • FIG. 8 is a schematic side view of the indoor unit in the AA cross section of FIG. 7. It is a schematic external perspective view of an indoor heat exchanger. It is a partial expansion outline appearance perspective view of an indoor heat exchanger. It is explanatory drawing which shows the positional relationship of an indoor fin and an indoor flat tube.
  • FIG. 1 is a schematic configuration diagram of the air conditioner 1.
  • the air conditioner 1 is a device capable of cooling and heating a room such as a building by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, a liquid refrigerant communication tube 4, and a gas refrigerant communication tube 5.
  • the liquid refrigerant communication tube 4 and the gas refrigerant communication tube 5 are refrigerant paths that connect the outdoor unit 2 and the indoor unit 3.
  • the vapor compression refrigerant circuit 6 of the air conditioner 1 is configured by connecting an outdoor unit 2 and an indoor unit 3 via a liquid refrigerant communication tube 4 and a gas refrigerant communication tube 5.
  • the liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are refrigerant pipes that are constructed on site when the air conditioner 1 is installed in a predetermined place such as a building.
  • the refrigerant circuit 6 is filled with R32 as a working refrigerant.
  • FIG. 2 is a schematic external perspective view of the outdoor unit 2.
  • FIG. 3 is a schematic configuration diagram of the outdoor unit 2 in plan view.
  • the outdoor unit 2 constitutes a part of the refrigerant circuit 6 and is installed outdoors.
  • the outdoor refers to the rooftop of the building, the vicinity of the wall surface of the building, and the like.
  • the outdoor unit 2 mainly includes an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12, a liquid side closing valve 13, and a gas side closing valve 14.
  • the outdoor fan 15 and the casing 40 are provided.
  • the accumulator 7 is a container for supplying a gas refrigerant to the compressor 8.
  • the accumulator 7 is provided on the suction side of the compressor 8.
  • Compressor 8 sucks and compresses low-pressure gas refrigerant and discharges high-pressure gas refrigerant.
  • the outdoor heat exchanger 11 functions as a radiator for the refrigerant discharged from the compressor 8 during the cooling operation.
  • the outdoor heat exchanger 11 functions as an evaporator for the refrigerant sent from the indoor heat exchanger 51 during the heating operation.
  • An outdoor expansion valve 12 is connected to the liquid side of the outdoor heat exchanger 11.
  • a four-way switching valve 10 is connected to the gas side of the outdoor heat exchanger 11.
  • the outdoor expansion valve 12 is an electric expansion valve that functions as an expansion mechanism of the refrigerant circuit 6.
  • the outdoor expansion valve 12 decompresses the refrigerant radiated in the outdoor heat exchanger 11 during the cooling operation before sending it to the indoor heat exchanger 51.
  • the outdoor expansion valve 12 decompresses the refrigerant radiated in the indoor heat exchanger 51 during the heating operation before sending it to the outdoor heat exchanger 11.
  • the four-way switching valve 10 is a valve for switching between a cooling operation connection state and a heating operation connection state.
  • the discharge side of the compressor 8 is connected to the outdoor heat exchanger 11 side, and the suction side of the compressor 8 is connected to the gas side shut-off valve 14 side.
  • the discharge side of the compressor 8 is connected to the gas side shut-off valve 14 side, and the suction side of the compressor 8 is connected to the outdoor heat exchanger 11 side.
  • the connection state of the cooling operation is represented by a solid line of the four-way switching valve 10 in FIG.
  • the connection state of the heating operation is represented by a broken line of the four-way switching valve 10 in FIG.
  • the casing 40 mainly includes a bottom frame 40a, a top plate 40b, a left front plate 40c, a right front plate 40d, and a right side plate 40e.
  • the bottom frame 40 a is a horizontally long and substantially rectangular plate-like member that constitutes the bottom surface portion of the casing 40.
  • the bottom frame 40a is installed on the installation surface by a fixed leg 41 fixed to the lower surface thereof.
  • the top plate 40 b is a horizontally long and substantially rectangular plate-like member that constitutes the top surface portion of the casing 40.
  • the left front plate 40c is a plate-like member that mainly constitutes a left front portion and a left side portion of the casing 40.
  • the left front plate 40c is formed with two air outlets arranged vertically. These outlets are openings for blowing outdoor air taken into the casing 40 from the back side and the left side by the outdoor fan 15 to the front side.
  • a fan grill 42 is provided at each outlet.
  • the air outlet may be an opening that is formed in the top plate 40b and blows out outdoor air taken into the casing 40 upward.
  • the right front plate 40d is a plate-like member that mainly forms the right front portion of the casing 40 and the front portion of the right side surface.
  • the right side plate 40e is a plate-like member that mainly constitutes the right rear surface portion of the casing 40 and the rear portion of the right side surface.
  • a partition plate 43 is provided in the casing 40.
  • the partition plate 43 partitions the internal space of the casing 40 into a blower chamber in which the outdoor fan 15 and the like are disposed, and a machine chamber in which the compressor 8 and the like are disposed.
  • FIG. 4 is a schematic external perspective view of the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 mainly includes a gas-side flow divider 23, a liquid-side flow divider 24, a plurality of inflow-side folded members 25, a plurality of anti-inflow-side folded members 26, a plurality of outdoor flat tubes 90, It has a plurality of outdoor fins 91.
  • These components constituting the outdoor heat exchanger 11 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.
  • the plurality of outdoor flat tubes 90 are arranged side by side in the vertical direction (vertical direction).
  • the plurality of outdoor fins 91 are arranged side by side along the direction in which the outdoor flat tube 90 extends.
  • the plate thickness direction of the outdoor fins 91 is the same as the direction in which the outdoor fins 91 are arranged.
  • the liquid side flow divider 24 is connected to the plurality of outdoor flat tubes 90 disposed below the plurality of outdoor flat tubes 90 and is connected to the refrigerant tube 20.
  • the outdoor heat exchanger 11 functions as a refrigerant radiator
  • the refrigerant that has flowed through each of the plurality of outdoor flat tubes 90 connected to the liquid side flow divider 24 is merged by the liquid side flow divider 24, and the refrigerant It flows out of the outdoor heat exchanger 11 through the pipe 20.
  • the plurality of inflow side folding members 25 are disposed between the gas side flow divider 23 and the liquid side flow divider 24.
  • the inflow side folding member 25 is a tube that connects the ends of the outdoor flat tubes 90 provided at different height positions.
  • the plurality of anti-inflow side folding members 26 are ends of the outdoor heat exchanger 11, and the side on which the gas side flow divider 23, the liquid side flow divider 24, and the plurality of inflow side folding members 25 are provided. It is provided at the opposite end.
  • the anti-inflow side folding member 26 is a tube that connects the ends of the outdoor flat tubes 90 provided at different height positions.
  • the outdoor flat tube 90 has an upper flat surface 90a, a lower flat surface 90b, and a plurality of flow paths 90c.
  • the upper flat surface 90a is the surface of the outdoor flat tube 90 and is the upper surface facing upward in the vertical direction.
  • the lower flat surface 90b is a surface of the outdoor flat tube 90 and is a lower surface facing downward in the vertical direction.
  • the flow path 90c is a space through which the refrigerant flows.
  • the plurality of flow paths 90c are provided side by side in the outdoor air flow direction.
  • the outdoor air flow direction is a direction in which outdoor air passing through the outdoor heat exchanger 11 flows.
  • the outdoor air flow direction is a longitudinal direction in a cross-sectional view of the outdoor flat tube 90, and is a direction indicated by an arrow in FIG.
  • “windward” means the upstream side in the outdoor air flow direction
  • “leeward side” means the downstream side in the outdoor air flow direction.
  • the cross-sectional dimensions of the plurality of outdoor flat tubes 90 are all the same. Specifically, the cross-sectional dimensions are the width WTo of the outdoor flat tube 90 and the height HTo of the outdoor flat tube 90.
  • the width WTo of the outdoor flat tube 90 is a dimension in the longitudinal direction (the direction in which the plurality of flow paths 90c are arranged) in a cross-sectional view of the outdoor flat tube 90.
  • the height HTo of the outdoor flat tube 90 is a dimension in the short direction (vertical direction) in the cross-sectional view of the outdoor flat tube 90.
  • the height HTo of the outdoor flat tube 90 corresponds to the distance between the upper flat surface 90a and the lower flat surface 90b of the outdoor flat tube 90.
  • the plurality of outdoor flat tubes 90 are arranged at a predetermined step pitch DPo in the vertical direction.
  • the step pitch DPo corresponds to the distance between the upper flat surfaces 90a of the two outdoor flat tubes 90 adjacent in the vertical direction.
  • the leeward side end portion of the outdoor flat tube 90 is located further on the leeward side than the leeward side end portion of the outdoor fin 91. Thereby, damage and breakage of the leeward side end portion of the outdoor fin 91 at the time of manufacturing or transporting the outdoor heat exchanger 11 are suppressed.
  • the outdoor fins 91 are plate-like members that spread in the outdoor air flow direction and the vertical direction.
  • a plurality of the outdoor fins 91 are arranged at predetermined intervals along the thickness direction.
  • a plurality of outdoor flat tubes 90 are fixed to each outdoor fin 91.
  • the dimension of the flat portion of the outdoor fin 91 in the plate thickness direction is, for example, 0.05 mm or more and 0.15 mm or less.
  • the outdoor fin 91 mainly includes a plurality of insertion portions 92, an outdoor communication portion 97a, a plurality of leeward portions 97b, a waffle portion 93, an upwind fin tab 94a, a leeward fin tab 94b, an outdoor slit 95, It has the upper side rib 96a and the leeward side rib 96b.
  • the insertion portion 92 is formed so as to be cut along the outdoor air flow direction (horizontal direction) from the leeward edge of the outdoor fin 91 to the vicinity of the windward edge of the outdoor fin 91. Part.
  • the plurality of insertion portions 92 are provided so as to be arranged in the vertical direction.
  • the insertion portion 92 constitutes a fin collar formed by burring or the like.
  • the shape of the insertion portion 92 substantially matches the outer shape of the cross section of the outdoor flat tube 90.
  • the insertion portion 92 is fixed by brazing with the outdoor flat tube 90 inserted.
  • the windward portion 97b is a portion sandwiched between two insertion portions 92 adjacent in the vertical direction.
  • a plurality of leeward portions 97b extend further from the leeward end of the outdoor communication portion 97a toward the leeward side at different height positions.
  • the waffle portion 93 is formed near the center of the outdoor fin 91 in the outdoor air flow direction.
  • the waffle portion 93 is composed of a raised portion and a non-raised portion.
  • the raised portion is a portion raised in the plate thickness direction of the outdoor fin 91.
  • the non-protruding portion is a flat portion that does not protrude in the plate thickness direction of the outdoor fin 91.
  • the windward fin tab 94a and the leeward fin tab 94b are respectively provided in the vicinity of the windward end portion and the windward end portion of the outdoor fin 91 in order to regulate the interval between the outdoor fins 91 adjacent in the plate thickness direction. Is provided.
  • FIG. 6 is an external perspective view of the indoor unit 3.
  • FIG. 7 is a schematic plan view showing a state in which the top plate of the indoor unit 3 is removed.
  • FIG. 8 is a schematic side cross-sectional view of the indoor unit 3 taken along the line AA in FIG.
  • the indoor heat exchanger 51 functions as an evaporator for the refrigerant sent from the indoor heat exchanger 51 during the cooling operation.
  • the indoor heat exchanger 51 functions as a radiator for the refrigerant discharged from the compressor 8 during heating operation.
  • the indoor side end of the liquid refrigerant communication tube 4 is connected to the liquid side of the indoor heat exchanger 51.
  • the indoor side end of the gas refrigerant communication pipe 5 is connected to the gas side of the indoor heat exchanger 51.
  • the indoor fan 52 is a centrifugal blower disposed inside the casing body 31 of the indoor unit 3.
  • the indoor fan 52 sucks room air into the casing 30 through the suction port 36 of the decorative panel 35, passes the indoor heat exchanger 51, and then casing the indoor air through the outlet 37 of the decorative panel 35.
  • the air flow which blows out 30 is formed. This air flow is indicated by arrows in FIG.
  • the temperature of the indoor air supplied by the indoor fan 52 is adjusted by exchanging heat with the refrigerant passing through the indoor heat exchanger 51.
  • the casing 30 mainly has a casing body 31 and a decorative panel 35.
  • the casing body 31 is installed so as to be inserted into an opening formed in a ceiling U of a room that is a space to be air-conditioned.
  • the casing body 31 is a box-shaped member having a substantially octagonal shape in which long sides and short sides are alternately connected in a plan view.
  • the casing body 31 has a top plate and a plurality of side plates extending downward from the peripheral edge of the top plate. The lower surface of the casing body 31 is open.
  • the decorative panel 35 is installed so as to be fitted into an opening formed in the ceiling U.
  • the decorative panel 35 extends outward from the top and side plates of the casing body 31 in a plan view.
  • the decorative panel 35 is attached below the casing body 31.
  • the decorative panel 35 has an inner frame 35a and an outer frame 35b.
  • a substantially rectangular suction port 36 that opens downward is formed inside the inner frame 35a.
  • a filter 34 for removing dust in the air sucked from the suction port 36 is provided above the suction port 36.
  • An air outlet 37 and a corner air outlet 38 that are opened downward or obliquely downward are formed inside the outer frame 35b and outside the inner frame 35a.
  • the blower outlet 37 is arrange
  • the corner blower outlets 38 are arranged at positions corresponding to the substantially square corners in the plan view of the decorative panel 35, the first corner blower outlets 38 a, the second corner blower outlets 38 b, and the third corners. It is comprised from the blower outlet 38c and the 4th corner
  • the flap 39 is a member for changing the direction of air flow passing through the air outlet 37.
  • the flap 39 includes a first flap 39a disposed at the first outlet 37a, a second flap 39b disposed at the second outlet 37b, a third flap 39c disposed at the third outlet 37c, It is comprised from the 4th flap 39d arrange
  • Each flap 39 is pivotally supported at a predetermined position of the casing 30 so as to be rotatable.
  • the drain pan 32 is disposed below the indoor heat exchanger 51.
  • the drain pan 32 receives drain water generated by condensation of moisture in the air in the indoor heat exchanger 51.
  • the drain pan 32 is attached to the lower part of the casing body 31.
  • the drain pan 32 is formed with a cylindrical space extending in the vertical direction inside the indoor heat exchanger 51 at the center portion in plan view.
  • a bell mouth 33 is disposed below the inside of the cylindrical space. The bell mouth 33 guides the air sucked from the suction port 36 to the indoor fan 52.
  • the fourth outlet channel 47d communicates with the fourth outlet 37d at the lower end thereof.
  • the corner blowing channels 48a to 48c are composed of a first corner blowing channel 48a, a second corner blowing channel 48b, and a third corner blowing channel 48c.
  • the first corner portion outlet flow passage 48a communicates with the first corner portion outlet 38a at the lower end thereof.
  • the second corner blowout channel 48b communicates with the second corner blowout port 38b at the lower end thereof.
  • the third corner portion outlet passage 48c communicates with the third corner portion outlet 38c at the lower end thereof.
  • FIG. 9 is a schematic external perspective view of the indoor heat exchanger 51.
  • FIG. 10 is a partially enlarged external perspective view of the plurality of indoor fins 60 of the indoor heat exchanger 51 on the windward side.
  • the indoor heat exchanger 51 is disposed inside the casing body 31 in a state of being bent so as to surround the periphery of the indoor fan 52 at the same height as the indoor fan 52.
  • the indoor heat exchanger 51 mainly includes a liquid side header 81, a gas side header 71, a folded header 59, a plurality of indoor flat tubes 55, and a plurality of indoor fins 60. These parts constituting the indoor heat exchanger 51 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.
  • the liquid side header 81 constitutes one end of the leeward heat exchange unit 80 in plan view.
  • the liquid side header 81 is a cylindrical member extending in the vertical direction.
  • the liquid-side header 81 is connected to the indoor side end of the liquid refrigerant communication tube 4.
  • the liquid side header 81 is connected with a plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80.
  • the gas side header 71 constitutes one end of the upwind heat exchanging unit 70 in plan view.
  • the gas side header 71 is a cylindrical member extending in the vertical direction.
  • the gas side header 71 is connected to an end portion on the indoor side of the gas refrigerant communication pipe 5.
  • the gas side header 71 is connected to a plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70.
  • the return header 59 enables the refrigerant that has flowed through the indoor flat tube 55 at each height position to be sent back to the indoor flat tube 55 on the upwind or leeward side at the same height position.
  • the folding header 59 folds the refrigerant upwind.
  • the turn-up header 59 turns the refrigerant back to the leeward side.
  • the plurality of indoor fins 60 constitutes the indoor fin 60 fixed to the indoor flat tube 55 constituting the windward heat exchange part 70 of the indoor heat exchanger 51 and the leeward heat exchange part 80 of the indoor heat exchanger 51. And an indoor fin 60 fixed to the indoor flat tube 55.
  • the indoor fins 60 are arranged in the thickness direction of the indoor fins 60 along the longitudinal direction of the indoor flat tube 55.
  • FIG. 11 is a cross-sectional view of the indoor heat exchanger 51 and shows the positional relationship between the indoor fin 60 and the indoor flat tube 55.
  • FIG. 11 is a cross-sectional view taken along the direction in which the flow channel 55c extends in a state where the indoor flat tube 55 is cut perpendicular to the direction in which the flow channel 55c inside the indoor flat tube 55 extends. is there.
  • the indoor flat tube 55 has an upper flat surface 55a, a lower flat surface 55b, and a plurality of flow paths 55c.
  • the upper flat surface 55a is a surface of the indoor flat tube 55 and is an upper surface facing upward in the vertical direction.
  • the lower flat surface 55b is a surface of the indoor flat tube 55 and is a lower surface facing downward in the vertical direction.
  • the flow path 55c is a space through which the refrigerant flows.
  • the plurality of flow paths 55c are provided side by side in the indoor air flow direction.
  • the indoor air flow direction is a longitudinal direction in a cross-sectional view of the indoor flat tube 55, and is a direction indicated by an arrow in FIG.
  • the indoor flat tube 55 constituting the windward heat exchanging unit 70 and the indoor flat tube 55 constituting the leeward heat exchanging unit 80 are arranged at respective height positions when viewed along the indoor air flow direction. Are arranged so as to overlap each other.
  • the windward side end portions of the plurality of indoor flat tubes 55 and the windward side end portions of the indoor fins 60 are at substantially the same position in the indoor air flow direction. Is provided.
  • the cross-sectional dimensions of the plurality of indoor flat tubes 55 are all the same. Specifically, the cross-sectional dimensions are the width WT of the indoor flat tube 55 and the height HT of the indoor flat tube 55.
  • the width WT of the indoor flat tube 55 is a dimension in the longitudinal direction (the direction in which the plurality of flow paths 55c are arranged) in a cross-sectional view of the indoor flat tube 55.
  • the height HT of the indoor flat tube 55 is a dimension in the short side direction (vertical direction) in the cross-sectional view of the indoor flat tube 55.
  • the height HT of the indoor flat tube 55 corresponds to the distance between the upper flat surface 55a and the lower flat surface 55b of the indoor flat tube 55.
  • the plurality of indoor flat tubes 55 are arranged at a predetermined step pitch DP in the vertical direction.
  • the step pitch DP corresponds to the distance between the upper flat surfaces 55a of the two indoor flat tubes 55 adjacent in the vertical direction.
  • the width WT of the indoor flat tube 55 is 12 mm or less.
  • the width WT of the indoor flat tube 55 is preferably 10 mm or less.
  • the width WT of the indoor flat tube 55 is preferably 3 mm or more and 12 mm or less, and more preferably 3 mm or more and 10 mm or less.
  • the indoor flat tube 55 satisfies the relationship of HT / WT ⁇ 0.15.
  • the indoor flat tube 55 preferably further satisfies the relationship of HT / WT ⁇ 0.2.
  • the indoor flat tube 55 preferably satisfies the relationship of 0.15 ⁇ HT / WT ⁇ 0.3, and more preferably satisfies the relationship of 0.2 ⁇ HT / WT ⁇ 0.3. .
  • width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90.
  • the height HT of the indoor flat tube 55 is preferably 1.2 mm or more and 2.5 mm or less.
  • the pitch in the plate thickness direction of the plurality of indoor fins 60 of the indoor heat exchanger 51 is preferably smaller than the pitch in the plate thickness direction of the plurality of outdoor fins 91 of the outdoor heat exchanger 11.
  • the pitch in the plate thickness direction is the interval between the surfaces on the same side of the indoor fins 60 adjacent in the plate thickness direction or the interval between the surfaces on the same side of the outdoor fins 91 adjacent in the plate thickness direction.
  • the indoor heat exchanger 51 satisfies the relationship of 4.0 ⁇ DP / HT ⁇ 10.0. It is preferable that the indoor heat exchanger 51 further satisfies the relationship of 4.6 ⁇ DP / HT ⁇ 8.0.
  • the DP / HT value of the indoor heat exchanger 51 is smaller than the DPo / HTo value of the outdoor heat exchanger 11.
  • the indoor fin 60 is a plate-like member that spreads in the indoor air flow direction and the vertical direction.
  • a plurality of indoor fins 60 are arranged at predetermined intervals along the thickness direction.
  • a plurality of indoor flat tubes 55 are fixed to each indoor fin 60.
  • the indoor fins 60 constituting the windward heat exchange unit 70 and the indoor fins 60 constituting the leeward heat exchange unit 80 are arranged so as to substantially overlap each other when viewed along the indoor air flow direction. Has been.
  • the leeward side end of the indoor fin 60 constituting the windward heat exchange unit 70 and the windward side end of the indoor fin 60 constituting the leeward heat exchange unit 80 are in contact with each other at least partially. ing.
  • the indoor fin 60 mainly includes a main surface 61, a plurality of fin collar portions 65a, an indoor communication unit 64, a plurality of upwind portions 65, A slit 62 and a communication position slit 63 are provided.
  • board thickness direction in the main surface 61 of the indoor fin 60 is 0.05 mm or more and 0.15 mm or less, for example. It is preferable that the pitch in the plate thickness direction of the plurality of indoor fins 60 (the distance between the surfaces on the same side of the adjacent indoor fins 60) is 1.0 mm or more and 1.6 mm or less.
  • the main surface 61 is a surface of the indoor fin 60 and corresponds to a flat portion where the fin collar portion 65a, the main slit 62, and the communication position slit 63 are not provided.
  • the fin collar portion 65 a is formed so as to extend along the indoor air flow direction (horizontal direction) from the leeward edge of the indoor fin 60 to the vicinity of the leeward edge of the indoor fin 60.
  • the plurality of fin collar portions 65a are arranged in the vertical direction.
  • the fin collar portion 65a is formed by burring or the like.
  • the contour shape of the fin collar portion 65 a substantially matches the outer shape of the cross section of the indoor flat tube 55.
  • the fin collar portion 65a is brazed and fixed in a state where the indoor flat tube 55 is inserted.
  • FIG. 12 is a cross-sectional view showing a joined state between the indoor fin 60 and the indoor flat tube 55.
  • FIG. 12 is a cross-sectional view of the indoor heat exchanger 51 cut along a plane including the direction in which the refrigerant passes through the flow path 55c of the indoor flat tube 55 and the vertical direction.
  • the fin collar portion 65 a is configured to be raised with respect to the main surface 61 on the side opposite to the cut and raised side of the main slit 62 in the thickness direction of the main surface 61.
  • the fin collar portion 65a is bent on the side opposite to the main surface 61 side so as to extend away from the upper flat surface 55a (or the lower flat surface 55b) of the indoor flat tube 55 fixed to the fin collar portion 65a.
  • a positioning portion 65x is provided.
  • the positioning portion 65x defines the pitch in the plate thickness direction of the plurality of indoor fins 60 by making surface contact with the main surface 61 of the adjacent indoor fins 60.
  • the fin collar portion 65a is flattened by brazing in a state where the brazing material 58 is interposed between the upper flat surface 55a (or the lower flat surface 55b) of the indoor flat tube 55. It is joined to the tube 55.
  • a location where the fin collar portion 65 a starts to rise with respect to the main surface 61, and a location where the main slit 62 begins to be raised and raised Is preferably 1 mm or less. Condensed water on the lower flat surface 55b of the indoor flat tube 55 is guided downward and drained through a location where the main slit 62 starts to be cut and raised. Therefore, by setting the distance DS to a short distance of 1 mm or less, it is possible to suppress the dew condensation water from being retained on the lower flat surface 55b of the indoor flat tube 55.
  • the indoor communication portion 64 is a part of the indoor fin 60 and continuously extends in the vertical direction further on the leeward side than the end portion on the leeward side of the indoor flat tube 55.
  • WL is the length of the indoor communication portion 64 in the indoor air flow direction
  • WF is the length of the indoor fin 60 in the indoor air flow direction
  • the indoor fin 60 has a relationship of 0.2 ⁇ WL / WF ⁇ 0.5. It is preferable to satisfy.
  • the main slit 62 and the communication position slit 63 are cut and raised from the flat main surface 61 to the same side in the plate thickness direction, thereby forming openings on the windward side and the leeward side, respectively.
  • the outdoor heat exchanger 11 functions as a refrigerant radiator
  • the indoor heat exchanger 51 functions as a refrigerant evaporator.
  • the connection state of the four-way switching valve 10 is switched as shown by the solid line in FIG.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8 of the outdoor unit 2, compressed until reaching the high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 8 passes through the four-way switching valve 10 and is sent to the outdoor heat exchanger 11.
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor unit 3 evaporates in the indoor heat exchanger 51 by exchanging heat with indoor air supplied as a heating source by the indoor fan 52. Thereby, the air which passes the indoor heat exchanger 51 is cooled, and indoor cooling is performed. At this time, moisture contained in the air passing through the indoor heat exchanger 51 is condensed, and condensed water is generated on the surface of the indoor heat exchanger 51.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger 51 is sent to the outdoor unit 2 through the gas refrigerant communication pipe 5.
  • the low-pressure gas refrigerant sent to the outdoor unit 2 is again sucked into the compressor 8 through the gas-side closing valve 14, the four-way switching valve 10 and the accumulator 7.
  • the outdoor heat exchanger 11 functions as a refrigerant evaporator
  • the indoor heat exchanger 51 functions as a refrigerant radiator.
  • the connection state of the four-way selector valve 10 is switched as indicated by the broken line in FIG.
  • the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8 of the outdoor unit 2, compressed until reaching the high pressure in the refrigeration cycle, and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 8 is sent to the indoor unit 3 through the four-way switching valve 10, the gas side closing valve 14, and the gas refrigerant communication pipe 5.
  • the high-pressure gas refrigerant sent to the indoor unit 3 performs heat exchange with the indoor air supplied as a cooling source by the indoor fan 52 in the indoor heat exchanger 51, and dissipates heat to become high-pressure liquid refrigerant. Thereby, the air which passes the indoor heat exchanger 51 is heated, and indoor heating is performed.
  • the high-pressure liquid refrigerant radiated by the indoor heat exchanger 51 is sent to the outdoor unit 2 through the liquid refrigerant communication tube 4.
  • the high-pressure liquid refrigerant sent to the outdoor unit 2 passes through the liquid-side closing valve 13 and is reduced in pressure to the low pressure of the refrigeration cycle in the outdoor expansion valve 12 to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant evaporates by exchanging heat with outdoor air supplied as a heating source by the outdoor fan 15 in the outdoor heat exchanger 11 to become a low-pressure gas refrigerant.
  • the low-pressure gas refrigerant passes through the four-way switching valve 10 and the accumulator 7 and is sucked into the compressor 8 again.
  • the heat transfer coefficient of the indoor fins in the indoor heat exchanger can be increased as the width of the indoor flat tube is increased.
  • the width of the indoor flat tube is increased, it is difficult for condensed water that tends to stay on the surface (upper surface and lower surface) of the indoor flat tube to be discharged.
  • the discharge property of the dew condensation water of the indoor heat exchanger is lowered, and the dew condensation water is easily scattered in the room.
  • the dew condensation water is more likely to be scattered into the room if the wind speed of the indoor unit is increased.
  • FIG. 13 is a specific example of data obtained by changing the value of WT.
  • the horizontal axis represents the width WT of the indoor flat tube 55
  • the vertical axis represents the drainage time.
  • the drainage time means that the drainage of the indoor heat exchanger 51 is completed and the weight of the indoor heat exchanger 51 is constant from the time when the indoor heat exchanger 51 is pulled up from the water tank in which the indoor heat exchanger 51 is buried. This is the time until the point of time.
  • the height HT of the indoor flat tube 55 is 2 mm
  • the step pitch DP is 10 mm
  • the length WL of the indoor communication portion 64 in the indoor air flow direction is 3 mm.
  • the indoor heat exchanger 51 is provided with an upper limit on the width WT of the indoor flat tube 55, thereby making it easy to discharge condensed water that tends to stay on the surface of the indoor flat tube 55, and was used as a refrigerant evaporator. Suppresses the dew condensation that occurs in some cases. Further, by providing an upper limit on the width WT of the indoor flat tube 55, the size of the indoor fin 60 can be reduced, and the indoor unit 3 can be made compact.
  • the width WT of the indoor flat tube 55 is too small, the indoor air flow direction dimension of the indoor communication portion 64 of the indoor fin 60 increases. As a result, heat is less likely to be transferred to a region away from the indoor flat tube 55 in the region of the indoor fin 60, and the heat transfer performance of the indoor fin 60 may be reduced. Therefore, from the viewpoint of ensuring the heat transfer performance of the indoor fin 60, it is preferable to provide a lower limit for the width WT of the indoor flat tube 55. Specifically, the width WT of the indoor flat tube 55 may be 3 mm or more. preferable. Thereby, it becomes possible to suppress the fall of dew condensation water discharge
  • the heat transfer coefficient of the indoor fin in the indoor heat exchanger tends to increase the width of the indoor flat tube as the ratio of the height and width of the indoor flat tube is small. Will be easily scattered in the room.
  • the indoor heat exchanger 51 is configured when HT is the height of the indoor flat tube 55 and WT is the width of the indoor flat tube 55.
  • the indoor flat tube 55 preferably satisfies the relationship of HT / WT ⁇ 0.15.
  • an upper limit can be substantially provided for the width WT of the indoor flat tube 55.
  • the drainage time shown in FIG. 14 is the same as the drainage time shown in FIG. In FIG. 14, the step pitch DP is 10 mm, and the length WL of the indoor communication portion 64 in the indoor air flow direction is 3 mm.
  • the step pitch DP is 10 mm
  • the length WL of the indoor communication portion 64 in the indoor air flow direction is 3 mm.
  • the indoor heat exchanger 51 makes it easy to discharge the condensed water that tends to stay on the surface of the indoor flat tube 55, and suppresses the scattering of the condensed water that occurs when used as a refrigerant evaporator.
  • the width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90.
  • the size of the outdoor fins 91 in the outdoor air flow direction is larger.
  • the width WTo of the outdoor flat tube 90 tends to increase. Therefore, by setting the width WT of the indoor flat tube 55 to be smaller than the width WTo of the outdoor flat tube 90, an upper limit can be substantially set on the width WT of the indoor flat tube 55. Thereby, it becomes possible to suppress a decrease in the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55 while ensuring the frosting resistance of the outdoor fins 91.
  • HT is the height of the indoor flat tube 55
  • WT is the width of the indoor flat tube 55
  • HTo is the height of the outdoor flat tube 90
  • WTo is outdoor.
  • the width of the flat tube 90 it is preferable to satisfy the relationship of HT / WT ⁇ HTo / WTo.
  • the size of the outdoor fins 91 in the outdoor air flow direction is larger. As the dimension of the outdoor fin 91 in the outdoor air flow direction increases, the width WTo of the outdoor flat tube 90 tends to increase.
  • the HT / WT value of the indoor flat tube 55 is set to be larger than the HTo / WTo value of the outdoor flat tube 90, an upper limit can be substantially set on the width WT of the indoor flat tube 55. Thereby, it becomes possible to suppress a decrease in the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55 while ensuring the frosting resistance of the outdoor fins 91.
  • the indoor heat exchanger 51 of the present embodiment includes an upwind heat exchange unit 70 and a downwind heat exchange unit 80. That is, the indoor heat exchanger 51 has a structure in which the indoor flat tubes 55 are arranged in two rows in the indoor air flow direction.
  • the row of indoor flat tubes 55 is a collection of a plurality of indoor flat tubes 55 arranged in the vertical direction. That is, the indoor heat exchanger 51 includes two rows including a row of the plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70 and a row of the plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80.
  • the indoor flat tube 55 is provided.
  • the indoor heat exchanger 51 Since the indoor heat exchanger 51 has two rows of indoor flat tubes 55, the dew condensation water generated in the upwind heat exchanging unit 70 out of the dew condensation water generated in the indoor heat exchanger 51 is upwind heat exchange. The water is drained downward in a portion between the unit 70 and the leeward heat exchange unit 80 or in the leeward heat exchange unit 80. Thus, more drainage paths for condensed water can be secured when there are a plurality of rows of indoor flat tubes 55 than when there is only one row of indoor flat tubes 55. Therefore, the indoor heat exchanger 51 can improve the drainage of condensed water by having a plurality of rows of the indoor flat tubes 55.
  • the leeward heat exchanging unit 80 is supplied with air that has increased in dryness by generating condensed water in the upwind heat exchanging unit 70 when passing through the upwind heat exchanging unit 70, the downwind heat exchanging unit 80 Condensed water generated in the portion 80 is reduced. As a result, scattering of condensed water from the leeward side end of the leeward heat exchange unit 80 is suppressed. Therefore, the indoor heat exchanger 51 can suppress scattering of condensed water by having a plurality of rows of the indoor flat tubes 55.
  • the outdoor heat exchanger 11 has only one row of outdoor flat tubes 90. That is, in the air conditioner 1, the number of the indoor flat tubes 55 is greater than the number of the outdoor flat tubes 90.
  • the lower limit of the row of the indoor flat tubes 55 can be set by setting the number of the rows of the indoor flat tubes 55 to be equal to or greater than the number of the rows of the outdoor flat tubes 90.
  • the number of rows of the indoor flat tubes 55 is set to be equal to or greater than the number of the rows of the outdoor flat tubes 90, thereby improving the drainage of condensed water.
  • the indoor fin 60 has an indoor communication portion 64 on the leeward side of the indoor flat tube 55. For this reason, the dew condensation water generated in the indoor flat tube 55 is easily discharged downward while passing through the indoor communication portion 64 located on the leeward side of the indoor flat tube 55. Therefore, by providing the indoor communication portion 64 on the leeward side of the indoor flat tube 55, the scattering of condensed water from the leeward end of the indoor fin 60 is suppressed.
  • the outdoor fins 91 of the outdoor heat exchanger 11 have an outdoor communication part 97 a on the windward side of the outdoor flat tube 90.
  • moisture contained in the air passing through the outdoor heat exchanger 11 is condensed and discharged.
  • the amount of water discharged from the outdoor heat exchanger 11 during the heating operation is smaller than the amount of condensed water discharged from the indoor heat exchanger 51 during the cooling operation. Therefore, in the outdoor heat exchanger 11, the scattering of condensed water is less likely to be a problem than the indoor heat exchanger 51.
  • the outdoor communication portion 97 a is preferably provided on the leeward side of the outdoor flat tube 90 on the leeward side. Therefore, by providing the outdoor communication portion 97a on the windward side of the outdoor flat tube 90, the frosting resistance of the outdoor fin 91 can be ensured.
  • the width of the indoor fin 60 is set to the outdoor fin. In addition to making it smaller than the width of 91, it is necessary to make the pitch of the indoor fins 60 smaller than the pitch of the outdoor fins 91.
  • the heat transfer coefficient of the indoor fin in the indoor heat exchanger increases as the interval between the indoor flat tubes decreases.
  • the interval between the indoor flat tubes is reduced, the flow velocity of the air passing between the indoor flat tubes is increased, and the condensed water is likely to be scattered.
  • the height of the indoor flat tube is increased, similarly, the flow velocity of the air passing between the indoor flat tubes is increased and the condensed water is likely to be scattered.
  • the interval between the indoor flat tubes is widened, the heat transfer coefficient of the indoor fins is lowered, so that the evaporation temperature of the refrigerant in the indoor heat exchanger has to be lowered, resulting in an environment in which condensed water is likely to be generated.
  • the indoor heat exchanger 51 is configured such that HT is the height of the indoor flat tube 55 and DP is the height direction of the plurality of indoor flat tubes 55.
  • HT is the height of the indoor flat tube 55
  • DP is the height direction of the plurality of indoor flat tubes 55.
  • the pitch it is preferable that the relationship of 4.0 ⁇ DP / HT ⁇ 10.0 is satisfied.
  • the value of WL / WF of the indoor fin 60 By setting the value of WL / WF of the indoor fin 60 to 0.2 or more, the width of the indoor communication portion 64 in the indoor air flow direction is sufficiently secured, and the dew condensation water generated in the indoor heat exchanger 51 is It becomes possible to facilitate the discharge through the communication portion 64. Further, by setting the WL / WF value of the indoor fin 60 to 0.5 or less, the area of the indoor fin 60 that is far from the indoor flat tube 55 and hardly contributes to improvement of heat transfer performance is suppressed. Thus, the material cost of the indoor fin 60 can be suppressed while maintaining the heat transfer performance of the indoor fin 60.
  • the value of WL / WF of the indoor fin 60 is 0.2 or more while the indoor communication portion 64 is positioned on the leeward side of the indoor flat tube 55, the drainage of the condensed water generated in the indoor flat tube 55 is discharged. Can be increased.
  • the indoor fin 60 has a main slit 62 and a communication position slit 63 that are cut and raised so that an opening is generated in the indoor air flow direction. For this reason, since the air supplied to the indoor heat exchanger 51 can be sufficiently brought into contact with the indoor fins 60, the air heat source can be fully utilized.
  • the upper ends of the main slit 62 and the communication position slit 63 are located near the lower end of the indoor flat tube 55 positioned above them. Therefore, the dew condensation water generated in the indoor flat tube 55 is easily captured by the main slit 62 and the communication position slit 63, and therefore the dew condensation water is easily discharged.
  • the distance DS shown in FIG. 12 is designed to be 1 mm or less, the retention of condensed water on the lower flat surface 55b side of the indoor flat tube 55 is more effectively suppressed. improves.
  • the end portion of the indoor fin 60 on the leeward side (downstream side in the indoor air flow direction) has a flat shape.
  • the shape of the leeward side end portion of the indoor fin 60 is not limited to a flat shape.
  • the indoor fin 60 may have water guide ribs 99 extending along the leeward side end.
  • FIG. 15 is an explanatory diagram showing the positional relationship between the indoor fin 60a and the indoor flat tube 55.
  • FIG. 16 is a cross-sectional view of the water guide rib 99 included in the indoor fin 60a, and is an explanatory view of a portion near the leeward side in the BB cross section of FIG.
  • the indoor heat exchanger 51 includes an upwind heat exchanging unit 70 and an upwind heat exchanging unit 80 as in the above embodiment.
  • the indoor fins 60 a of the windward heat exchange unit 70 and the leeward heat exchange unit 80 each have a water guide rib 99.
  • the water guiding rib 99 extends in the vertical direction along the leeward side end portion of the indoor communication portion 64 provided on the leeward side of the indoor fin 60a. As shown in FIG. 16, the water guiding rib 99 is configured to be recessed toward the plate thickness direction of the indoor fin 60 a with respect to the surrounding main surface 61. It is preferable that the water guide rib 99 is configured to be recessed more than the plate thickness of the indoor fin 60a.
  • the condensed water generated in the indoor heat exchanger 51 is captured by the water guiding rib 99, so that the condensed water is easily guided downward through the water guiding rib 99. . For this reason, it is suppressed that condensed water reaches
  • the water guide rib 99 is provided on the leeward side with respect to half the width of the indoor communication portion 64 in the indoor air flow direction. More preferably, the water guide rib 99 is provided at a position within 20% of the width of the indoor communication portion 64 in the indoor air flow direction from the leeward side end portion.
  • the width WL of the indoor communication portion 64 in the indoor air flow direction and the width WF of the indoor fin 60 in the indoor air flow direction have a relationship of 0.2 ⁇ WL / WF. It is preferable to satisfy.
  • the indoor heat exchanger 51 has the windward heat exchange part 70 and the leeward heat exchange part 80, and the indoor flat tube 55 is provided along with 2 rows in the indoor air flow direction.
  • the indoor flat tubes 55 provided in the indoor heat exchanger 51 are not limited to two rows, and may be three or more rows. By increasing the number of rows of the indoor flat tubes 55, it is possible to secure more drainage paths for the condensed water, and thus more effectively suppress the scattering of the condensed water from the leeward side end of the indoor heat exchanger 51. It becomes possible to do.
  • the plurality of indoor flat tubes 55 belonging to the windward heat exchange unit 70 and the plurality of indoor flat tubes 55 belonging to the leeward heat exchange unit 80 are along the indoor air flow direction. When viewed from above, they are generally arranged so as to overlap each other.
  • the arrangement of the indoor flat tubes 55 of the indoor heat exchanger 51 is not limited to this.
  • the plurality of indoor flat tubes 55 belonging to the windward heat exchange unit 70 and the plurality of indoor flat tubes 55 belonging to the leeward heat exchange unit 80 do not overlap each other when viewed along the indoor air flow direction. May be arranged.
  • the indoor air flow can be sufficiently applied to the indoor flat tube 55 located on the leeward side and the indoor flat tube 55 located on the leeward side, so that the heat transfer performance of the indoor heat exchanger 51 is achieved. Will improve.
  • the indoor fin 60 of the indoor heat exchanger 51 has the main slit 62 and the communication position slit 63.
  • the main slit 62 and the communication position slit 63 are configured to be cut and raised so that the entire slit is located on one side in the plate thickness direction with respect to the main surface 61 of the indoor fin 60.
  • the way to cut and raise the main slit 62 and the communication position slit 63 formed in the indoor fin 60 is not limited to this.
  • a structure called a louver may be adopted instead of the main slit 62 and the communication position slit 63.
  • a louver is a type of slit that is cut and raised.
  • the leeward end of the louver is located on one side of the main surface 61 of the indoor fin 60 in the plate thickness direction, and the leeward end of the louver is the other of the main surface 61 of the indoor fin 60 in the plate thickness direction. Located on the side.
  • the indoor heat exchanger 51 has two rows of indoor flat tubes 55.
  • an indoor heat exchanger 51 having only one row of indoor flat tubes 55 is used. May be.
  • the indoor flat tube 55 only needs to satisfy the relationship of HT / WT ⁇ 0.15 even if the width WT of the indoor flat tube 55 is not 12 mm or less.
  • the indoor flat tube 55 preferably further satisfies the relationship of HT / WT ⁇ 0.2.
  • the indoor flat tube 55 preferably satisfies the relationship of 0.15 ⁇ HT / WT ⁇ 0.3, and more preferably satisfies the relationship of 0.2 ⁇ HT / WT ⁇ 0.3. .
  • the indoor heat exchanger 51 is generated when it is used as a refrigerant evaporator by facilitating discharge of condensed water that tends to stay on the surface of the indoor flat tube 55. Suppresses dew condensation.
  • the width WT of the indoor flat tube 55 is preferably 12 mm or less. In this case, the width WT of the indoor flat tube 55 is more preferably 10 mm or less. In particular, the width WT of the indoor flat tube 55 is preferably 3 mm or more and 12 mm or less, and more preferably 3 mm or more and 10 mm or less.
  • the HT / WT value of the indoor flat tube 55 is preferably larger than the HTo / WTo value of the outdoor flat tube 90.
  • width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90.
  • the height HT of the indoor flat tube 55 is preferably 1.2 mm or more and 2.5 mm or less.
  • the step pitch DP of the indoor heat exchanger 51 is preferably 8.0 mm or more and 15.0 mm or less.
  • the pitch in the plate thickness direction of the plurality of indoor fins 60 of the indoor heat exchanger 51 is preferably smaller than the pitch in the plate thickness direction of the plurality of outdoor fins 91 of the outdoor heat exchanger 11.
  • the indoor heat exchanger 51 satisfies the relationship of 4.0 ⁇ DP / HT ⁇ 10.0. It is preferable that the indoor heat exchanger 51 further satisfies the relationship of 4.6 ⁇ DP / HT ⁇ 8.0.
  • the indoor fin 60 satisfies 0.2 ⁇ WL / WF ⁇ 0.5. It is preferable to satisfy the relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided are an indoor heat exchanger and an air conditioning device capable of suppressing the scattering of condensed water. An indoor heat exchanger (51) is used in an indoor unit (3) of an air conditioning device (1). The indoor heat exchanger (51) comprises a plurality of indoor flat tubes (55) and a plurality of indoor fins (60). The indoor flat tubes (55) have inside thereof a flow path through which a refrigerant passes. The indoor fins (60) have an indoor interconnecting section (64) extending in a first direction. The indoor fins (60) are joined to the plurality of indoor flat tubes (55) arranged in the first direction. The plurality of indoor flat tubes (55) are arranged side by side in the longitudinal direction of the indoor flat tubes (55) and a second direction intersecting the first direction. The indoor flat tubes (55) satisfy the relationship of WT ≤ 12 mm. WT is a dimension in the longitudinal direction in a cross-sectional view of the indoor flat tube (55).

Description

室内熱交換器及び空気調和装置Indoor heat exchanger and air conditioner
 室内熱交換器及び空気調和装置 Indoor heat exchanger and air conditioner
 従来、空気調和装置の室外機に用いられる室外熱交換器として、特許文献1(特開2016-041986号)に記載されているように、複数の扁平管が接合された伝熱フィンを備える熱交換器が知られている。 Conventionally, as an outdoor heat exchanger used in an outdoor unit of an air conditioner, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2016-041986), a heat provided with a heat transfer fin to which a plurality of flat tubes are joined. An exchanger is known.
 このような、複数の扁平管が接合された伝熱フィンを備える熱交換器を、空気調和装置の室内機に用いる場合、冷媒の蒸発器として機能させる際に生じる結露水が室内に飛散することが問題となる。 When such a heat exchanger provided with heat transfer fins joined with a plurality of flat tubes is used in an indoor unit of an air conditioner, condensed water generated when functioning as a refrigerant evaporator is scattered indoors. Is a problem.
 第1観点に係る室内熱交換器は、空気調和装置の室内機に用いられる室内熱交換器である。室内熱交換器は、複数の扁平管と、複数の伝熱フィンとを備える。扁平管は、冷媒を通過させる流路を内部に有する。伝熱フィンは、第1方向に延びている連通部を有する。伝熱フィンは、第1方向に並んだ複数の扁平管に接合されている。複数の扁平管は、扁平管の長手方向及び第1方向と交差する第2方向に並んで配置されている。扁平管は、WT≦12mmの関係を満たす。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the first aspect is an indoor heat exchanger used for an indoor unit of an air conditioner. The indoor heat exchanger includes a plurality of flat tubes and a plurality of heat transfer fins. The flat tube has a flow path through which the refrigerant passes. The heat transfer fin has a communication portion extending in the first direction. The heat transfer fins are joined to a plurality of flat tubes arranged in the first direction. The plurality of flat tubes are arranged side by side in the longitudinal direction of the flat tubes and the second direction intersecting the first direction. The flat tube satisfies the relationship of WT ≦ 12 mm. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、扁平管の表面に滞留しようとする水を排出しやすくして、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, it is easy to discharge water that tends to stay on the surface of the flat tube, and it becomes possible to suppress the scattering of condensed water that occurs when used as a refrigerant evaporator.
 第2観点に係る室内熱交換器は、空気調和装置の室内機に用いられる室内熱交換器である。室内熱交換器は、複数の扁平管と、複数の伝熱フィンとを備える。扁平管は、冷媒を通過させる流路を内部に有する。伝熱フィンは、第1方向に延びている連通部を有する。伝熱フィンは、第1方向に並んだ複数の扁平管に接合されている。扁平管は、HT/WT≧0.15の関係を満たす。HTは、扁平管の断面視における短手方向の寸法である。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the second aspect is an indoor heat exchanger used for an indoor unit of an air conditioner. The indoor heat exchanger includes a plurality of flat tubes and a plurality of heat transfer fins. The flat tube has a flow path through which the refrigerant passes. The heat transfer fin has a communication portion extending in the first direction. The heat transfer fins are joined to a plurality of flat tubes arranged in the first direction. The flat tube satisfies the relationship of HT / WT ≧ 0.15. HT is a dimension in the short direction in a cross-sectional view of the flat tube. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、扁平管の表面に滞留しようとする水を排出しやすくして、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, it is easy to discharge water that tends to stay on the surface of the flat tube, and it becomes possible to suppress the scattering of condensed water that occurs when used as a refrigerant evaporator.
 第3観点に係る室内熱交換器は、第2観点に係る室内熱交換器であって、扁平管は、WT≦12mmの関係をさらに満たす。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the third aspect is an indoor heat exchanger according to the second aspect, and the flat tube further satisfies the relationship of WT ≦ 12 mm. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、冷媒の蒸発器として用いられた場合に生じる結露水の飛散をより抑制させやすい。 In this indoor heat exchanger, it is easier to suppress the scattering of condensed water that occurs when used as a refrigerant evaporator.
 第4観点に係る室内熱交換器は、第1観点又は第3観点に係る室内熱交換器であって、扁平管は、WT≦10mmの関係をさらに満たす。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger which concerns on a 4th viewpoint is an indoor heat exchanger which concerns on a 1st viewpoint or a 3rd viewpoint, Comprising: A flat tube further satisfy | fills the relationship of WT <= 10mm. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、冷媒の蒸発器として用いられた場合に生じる結露水の飛散をより抑制させやすい。 In this indoor heat exchanger, it is easier to suppress the scattering of condensed water that occurs when used as a refrigerant evaporator.
 第5観点に係る室内熱交換器は、第1観点、第3観点及び第4観点のいずれかに係る室内熱交換器であって、扁平管は、WT≧3mmの関係をさらに満たす。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the fifth aspect is an indoor heat exchanger according to any of the first aspect, the third aspect, and the fourth aspect, and the flat tube further satisfies the relationship of WT ≧ 3 mm. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、伝熱性能を確保しつつ、結露水の飛散を抑制させることが可能になる。 This indoor heat exchanger can suppress the scattering of condensed water while ensuring heat transfer performance.
 第6観点に係る室内熱交換器は、第2観点から第5観点のいずれかに係る室内熱交換器であって、扁平管は、HT/WT≧0.2の関係をさらに満たす。HTは、扁平管の断面視における短手方向の寸法である。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the sixth aspect is an indoor heat exchanger according to any of the second to fifth aspects, and the flat tube further satisfies a relationship of HT / WT ≧ 0.2. HT is a dimension in the short direction in a cross-sectional view of the flat tube. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、冷媒の蒸発器として用いられた場合に生じる結露水の飛散をより抑制させやすい。 In this indoor heat exchanger, it is easier to suppress the scattering of condensed water that occurs when used as a refrigerant evaporator.
 第7観点に係る室内熱交換器は、第2観点から第6観点のいずれかに係る室内熱交換器であって、扁平管は、HT/WT≦0.3の関係をさらに満たす。HTは、扁平管の断面視における短手方向の寸法である。WTは、扁平管の断面視における長手方向の寸法である。 The indoor heat exchanger according to the seventh aspect is an indoor heat exchanger according to any one of the second to sixth aspects, and the flat tube further satisfies a relationship of HT / WT ≦ 0.3. HT is a dimension in the short direction in a cross-sectional view of the flat tube. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube.
 この室内熱交換器では、伝熱性能を確保しつつ、結露水の飛散を抑制させることが可能になる。 This indoor heat exchanger can suppress the scattering of condensed water while ensuring heat transfer performance.
 第8観点に係る空気調和装置は、第1観点から第7観点のいずれかに係る室内熱交換器を備える。 The air conditioner according to an eighth aspect includes the indoor heat exchanger according to any one of the first to seventh aspects.
 この空気調和装置では、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させやすい。 In this air conditioner, it is easy to suppress the dew condensation that occurs when the indoor heat exchanger is used as a refrigerant evaporator.
 第9観点に係る空気調和装置は、第8観点に係る空気調和装置であって、室外熱交換器をさらに備える。室外熱交換器は、複数の扁平管と、伝熱フィンとを有する。扁平管は、冷媒を通過させる流路を内部に有する。伝熱フィンは、第3方向に並んだ複数の扁平管に接合されている。 The air conditioner according to the ninth aspect is the air conditioner according to the eighth aspect, further comprising an outdoor heat exchanger. The outdoor heat exchanger has a plurality of flat tubes and heat transfer fins. The flat tube has a flow path through which the refrigerant passes. The heat transfer fins are joined to a plurality of flat tubes arranged in the third direction.
 この空気調和装置では、室外熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させやすい。 In this air conditioner, it is easy to suppress the scattering of condensed water that occurs when the outdoor heat exchanger is used as a refrigerant evaporator.
 第10観点に係る空気調和装置は、第9観点に係る空気調和装置であって、HT/WT≧HTo/WToの関係を満たす。HTは、室内熱交換器の扁平管の断面視における短手方向の寸法である。WTは、室内熱交換器の扁平管の断面視における長手方向の寸法である。HToは、室外熱交換器の扁平管の断面視における短手方向の寸法である。WToは、室外熱交換器の扁平管の断面視における長手方向の寸法である。 The air conditioner according to the tenth aspect is the air conditioner according to the ninth aspect, and satisfies a relationship of HT / WT ≧ HTo / WTo. HT is a dimension in the short direction in a cross-sectional view of the flat tube of the indoor heat exchanger. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the indoor heat exchanger. HTo is a dimension in the short direction in a cross-sectional view of the flat tube of the outdoor heat exchanger. WTo is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the outdoor heat exchanger.
 この空気調和装置では、室外熱交換器の伝熱フィンの着霜耐力を確保しつつ、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this air conditioner, it is possible to suppress the scattering of condensed water that occurs when the indoor heat exchanger is used as a refrigerant evaporator while securing the frosting resistance of the heat transfer fins of the outdoor heat exchanger. Become.
 第11観点に係る空気調和装置は、第9観点又は第10観点に係る空気調和装置であって、WT≦WToの関係を満たす。WTは、室内熱交換器の扁平管の断面視における長手方向の寸法である。WToは、室外熱交換器の扁平管の断面視における長手方向の寸法である。 The air conditioner according to the eleventh aspect is the air conditioner according to the ninth aspect or the tenth aspect, and satisfies the relationship of WT ≦ WTo. WT is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the indoor heat exchanger. WTo is a dimension in the longitudinal direction in a cross-sectional view of the flat tube of the outdoor heat exchanger.
 この空気調和装置では、室外熱交換器の伝熱フィンの着霜耐力を確保しつつ、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this air conditioner, it is possible to suppress the scattering of condensed water that occurs when the indoor heat exchanger is used as a refrigerant evaporator while securing the frosting resistance of the heat transfer fins of the outdoor heat exchanger. Become.
 第12観点に係る空気調和装置は、第9観点から第11観点のいずれかに係る空気調和装置であって、室内熱交換器の列の数は、室外熱交換器の列の数以上である。室内熱交換器は、第1方向に並んだ複数の扁平管からなる列を有する。室外熱交換器は、第3方向に並んだ複数の扁平管からなる列を有する。 An air conditioner according to a twelfth aspect is the air conditioner according to any of the ninth aspect to the eleventh aspect, wherein the number of rows of indoor heat exchangers is equal to or greater than the number of rows of outdoor heat exchangers. . The indoor heat exchanger has a row of a plurality of flat tubes arranged in the first direction. The outdoor heat exchanger has a row composed of a plurality of flat tubes arranged in the third direction.
 この空気調和装置では、室外熱交換器の伝熱フィンの着霜耐力を確保しつつ、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this air conditioner, it is possible to suppress the scattering of condensed water that occurs when the indoor heat exchanger is used as a refrigerant evaporator while securing the frosting resistance of the heat transfer fins of the outdoor heat exchanger. Become.
 第13観点に係る空気調和装置は、第9観点から第12観点のいずれかに係る空気調和装置であって、室外熱交換器の伝熱フィンは、第3方向に延びている連通部を有する。室内熱交換器において、連通部は、扁平管に対して、室内熱交換器を通過する気体の流れ方向の下流側にある。室外熱交換器において、連通部は、扁平管に対して、室外熱交換器を通過する気体の流れ方向の上流側にある。 An air conditioner according to a thirteenth aspect is the air conditioner according to any of the ninth to twelfth aspects, wherein the heat transfer fin of the outdoor heat exchanger has a communication portion extending in the third direction. . In the indoor heat exchanger, the communication portion is downstream of the flat tube in the flow direction of the gas passing through the indoor heat exchanger. In the outdoor heat exchanger, the communication portion is upstream of the flat tube in the flow direction of the gas passing through the outdoor heat exchanger.
 この空気調和装置では、室内熱交換器の扁平管で生じた結露水を、室内熱交換器を通過する気体の流れ方向の下流側に位置している連通部に伝わせながら導くことで、結露水の飛散を抑制することが可能になる。 In this air conditioner, the dew condensation generated in the flat tube of the indoor heat exchanger is guided while being transmitted to the communicating part located downstream in the flow direction of the gas passing through the indoor heat exchanger, thereby causing dew condensation. It becomes possible to suppress scattering of water.
空気調和装置の概略構成図である。It is a schematic block diagram of an air conditioning apparatus. 室外ユニットの概略外観斜視図である。It is a general | schematic external appearance perspective view of an outdoor unit. 室外ユニットの平面視概略構成図である。It is a planar view schematic block diagram of an outdoor unit. 室外熱交換器の概略外観斜視図である。It is a general | schematic external appearance perspective view of an outdoor heat exchanger. 室外フィンと室外扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of an outdoor fin and an outdoor flat tube. 室内ユニットの概略外観斜視図である。It is a schematic external perspective view of an indoor unit. 室内ユニットの平面視概略構成図である。It is a planar view schematic block diagram of an indoor unit. 室内ユニットの図7のA-A断面における側面視概略構成図である。FIG. 8 is a schematic side view of the indoor unit in the AA cross section of FIG. 7. 室内熱交換器の概略外観斜視図である。It is a schematic external perspective view of an indoor heat exchanger. 室内熱交換器の部分拡大概略外観斜視図である。It is a partial expansion outline appearance perspective view of an indoor heat exchanger. 室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of an indoor fin and an indoor flat tube. 室内フィンと室内扁平管との接合状態を示す説明図である。It is explanatory drawing which shows the joining state of an indoor fin and an indoor flat tube. WTの値を変化させたデータの具体例である。It is a specific example of the data which changed the value of WT. HT/WTの値を変化させたデータの具体例である。It is a specific example of the data which changed the value of HT / WT. 変形例Aに係る室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the indoor fin which concerns on the modification A, and an indoor flat tube. 変形例Aに係る室内フィンが有する導水リブの断面図であって、図15のB-B断面の内の風下側近傍部分の説明図である。FIG. 16 is a cross-sectional view of a water guide rib included in an indoor fin according to Modification A, and is an explanatory view of a portion near the leeward side in the BB cross section of FIG. 15.
 (1)空気調和装置の概略構成
 図1は、空気調和装置1の概略構成図である。空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房及び暖房を行うことが可能な装置である。
(1) Schematic Configuration of Air Conditioner FIG. 1 is a schematic configuration diagram of the air conditioner 1. The air conditioner 1 is a device capable of cooling and heating a room such as a building by performing a vapor compression refrigeration cycle.
 空気調和装置1は、主として、室外ユニット2と、室内ユニット3と、液冷媒連絡管4と、ガス冷媒連絡管5とを有している。液冷媒連絡管4及びガス冷媒連絡管5は、室外ユニット2と室内ユニット3とを接続する冷媒経路である。空気調和装置1の蒸気圧縮式の冷媒回路6は、室外ユニット2と室内ユニット3とが、液冷媒連絡管4及びガス冷媒連絡管5を介して接続されることによって構成されている。液冷媒連絡管4及びガス冷媒連絡管5は、空気調和装置1を建物等の所定の場所に設置する際に、現地で施工される冷媒管である。冷媒回路6には、作動冷媒としてR32が充填されている。しかし、冷媒回路6に充填される冷媒は、R32に限定されない。例えば、冷媒回路6に充填される冷媒として、R452B、R410A、R454B、HFO系混合冷媒(例えば、HFO-1123とR32との混合冷媒)、CO、CFI(単体もしくはその混合冷媒)が用いられてもよい。 The air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, a liquid refrigerant communication tube 4, and a gas refrigerant communication tube 5. The liquid refrigerant communication tube 4 and the gas refrigerant communication tube 5 are refrigerant paths that connect the outdoor unit 2 and the indoor unit 3. The vapor compression refrigerant circuit 6 of the air conditioner 1 is configured by connecting an outdoor unit 2 and an indoor unit 3 via a liquid refrigerant communication tube 4 and a gas refrigerant communication tube 5. The liquid refrigerant communication pipe 4 and the gas refrigerant communication pipe 5 are refrigerant pipes that are constructed on site when the air conditioner 1 is installed in a predetermined place such as a building. The refrigerant circuit 6 is filled with R32 as a working refrigerant. However, the refrigerant filled in the refrigerant circuit 6 is not limited to R32. For example, R452B, R410A, R454B, an HFO mixed refrigerant (for example, a mixed refrigerant of HFO-1123 and R32), CO 2 , CF 3 I (single substance or a mixed refrigerant thereof) are used as the refrigerant charged in the refrigerant circuit 6. May be used.
 (2)室外ユニット
 (2-1)室外ユニットの概略構成
 図2は、室外ユニット2の概略外観斜視図である。図3は、室外ユニット2の平面視概略構成図である。室外ユニット2は、冷媒回路6の一部を構成し、室外に設置されている。室外とは、建物の屋上、及び、建物の壁面近傍等である。室外ユニット2は、主として、アキュムレータ7と、圧縮機8と、四路切換弁10と、室外熱交換器11と、室外膨張弁12と、液側閉鎖弁13と、ガス側閉鎖弁14と、室外ファン15と、ケーシング40とを有している。
(2) Outdoor Unit (2-1) Schematic Configuration of Outdoor Unit FIG. 2 is a schematic external perspective view of the outdoor unit 2. FIG. 3 is a schematic configuration diagram of the outdoor unit 2 in plan view. The outdoor unit 2 constitutes a part of the refrigerant circuit 6 and is installed outdoors. The outdoor refers to the rooftop of the building, the vicinity of the wall surface of the building, and the like. The outdoor unit 2 mainly includes an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12, a liquid side closing valve 13, and a gas side closing valve 14. The outdoor fan 15 and the casing 40 are provided.
 アキュムレータ7は、圧縮機8にガス冷媒を供給するための容器である。アキュムレータ7は、圧縮機8の吸入側に設けられている。 The accumulator 7 is a container for supplying a gas refrigerant to the compressor 8. The accumulator 7 is provided on the suction side of the compressor 8.
 圧縮機8は、低圧のガス冷媒を吸入し、圧縮し、高圧のガス冷媒を吐出する。 Compressor 8 sucks and compresses low-pressure gas refrigerant and discharges high-pressure gas refrigerant.
 室外熱交換器11は、冷房運転時には圧縮機8から吐出された冷媒の放熱器として機能する。室外熱交換器11は、暖房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能する。室外熱交換器11の液側には、室外膨張弁12が接続されている。室外熱交換器11のガス側には、四路切換弁10が接続されている。 The outdoor heat exchanger 11 functions as a radiator for the refrigerant discharged from the compressor 8 during the cooling operation. The outdoor heat exchanger 11 functions as an evaporator for the refrigerant sent from the indoor heat exchanger 51 during the heating operation. An outdoor expansion valve 12 is connected to the liquid side of the outdoor heat exchanger 11. A four-way switching valve 10 is connected to the gas side of the outdoor heat exchanger 11.
 室外膨張弁12は、冷媒回路6の膨張機構として機能する電動膨張弁である。室外膨張弁12は、冷房運転時には室外熱交換器11において放熱された冷媒を室内熱交換器51に送る前に減圧する。室外膨張弁12は、暖房運転時には室内熱交換器51において放熱された冷媒を室外熱交換器11に送る前に減圧する。 The outdoor expansion valve 12 is an electric expansion valve that functions as an expansion mechanism of the refrigerant circuit 6. The outdoor expansion valve 12 decompresses the refrigerant radiated in the outdoor heat exchanger 11 during the cooling operation before sending it to the indoor heat exchanger 51. The outdoor expansion valve 12 decompresses the refrigerant radiated in the indoor heat exchanger 51 during the heating operation before sending it to the outdoor heat exchanger 11.
 室外ユニット2の液側閉鎖弁13には、液冷媒連絡管4の一端が接続されている。室外ユニット2のガス側閉鎖弁14には、ガス冷媒連絡管5の一端が接続されている。また、室外ユニット2の機器及び弁の間は、冷媒管16~22によって接続されている。 One end of the liquid refrigerant communication tube 4 is connected to the liquid side closing valve 13 of the outdoor unit 2. One end of the gas refrigerant communication pipe 5 is connected to the gas side shut-off valve 14 of the outdoor unit 2. Further, the devices and valves of the outdoor unit 2 are connected by refrigerant pipes 16 to 22.
 四路切換弁10は、冷房運転の接続状態と、暖房運転の接続状態とを切り換えるための弁である。冷房運転の接続状態では、圧縮機8の吐出側が室外熱交換器11側に接続されると共に、圧縮機8の吸入側がガス側閉鎖弁14側に接続される。暖房運転の接続状態では、圧縮機8の吐出側がガス側閉鎖弁14側に接続されると共に、圧縮機8の吸入側が室外熱交換器11側に接続される。冷房運転の接続状態は、図1において、四路切換弁10の実線で表されている。暖房運転の接続状態は、図1において、四路切換弁10の破線で表されている。 The four-way switching valve 10 is a valve for switching between a cooling operation connection state and a heating operation connection state. In the connected state of the cooling operation, the discharge side of the compressor 8 is connected to the outdoor heat exchanger 11 side, and the suction side of the compressor 8 is connected to the gas side shut-off valve 14 side. In the connected state of the heating operation, the discharge side of the compressor 8 is connected to the gas side shut-off valve 14 side, and the suction side of the compressor 8 is connected to the outdoor heat exchanger 11 side. The connection state of the cooling operation is represented by a solid line of the four-way switching valve 10 in FIG. The connection state of the heating operation is represented by a broken line of the four-way switching valve 10 in FIG.
 室外ファン15は、室外ユニット2の内部に配置される。室外ファン15は、室外空気を吸入して、室外熱交換器11に室外空気を供給した後に、室外ユニット2外に室外空気を排出する空気流れを形成する。この空気流れは、図3において矢印で示されている。室外ファン15によって供給される室外空気は、室外熱交換器11を通過する冷媒との熱交換における冷却源又は加熱源として用いられる。 The outdoor fan 15 is disposed inside the outdoor unit 2. The outdoor fan 15 sucks outdoor air, supplies the outdoor air to the outdoor heat exchanger 11, and then forms an air flow for discharging the outdoor air to the outside of the outdoor unit 2. This air flow is indicated by arrows in FIG. The outdoor air supplied by the outdoor fan 15 is used as a cooling source or a heating source in heat exchange with the refrigerant passing through the outdoor heat exchanger 11.
 ケーシング40は、図2及び図3に示されるように、主として、底フレーム40aと、天板40bと、左前板40cと、右前板40dと、右側板40eとを有している。底フレーム40aは、ケーシング40の底面部分を構成する横長の略長方形状の板状部材である。底フレーム40aは、その下面に固定された固定脚41によって設置面に設置されている。天板40bは、ケーシング40の天面部分を構成する横長の略長方形状の板状部材である。左前板40cは、主として、ケーシング40の左正面部分及び左側面部分を構成する板状部材である。左前板40cには、吹出口が上下に2つ並んで形成されている。これらの吹出口は、室外ファン15によって背面側及び左側面側からケーシング40内に取り込まれた室外空気を、前面側に吹き出すための開口である。各吹出口には、ファングリル42が設けられている。なお、吹出口は、天板40bに形成され、ケーシング40内に取り込まれた室外空気を上方に吹き出すための開口であってもよい。右前板40dは、主として、ケーシング40の右正面部分及び右側面の前部を構成する板状部材である。右側板40eは、主として、ケーシング40の右背面部分及び右側面の後部を構成する板状部材である。 As shown in FIGS. 2 and 3, the casing 40 mainly includes a bottom frame 40a, a top plate 40b, a left front plate 40c, a right front plate 40d, and a right side plate 40e. The bottom frame 40 a is a horizontally long and substantially rectangular plate-like member that constitutes the bottom surface portion of the casing 40. The bottom frame 40a is installed on the installation surface by a fixed leg 41 fixed to the lower surface thereof. The top plate 40 b is a horizontally long and substantially rectangular plate-like member that constitutes the top surface portion of the casing 40. The left front plate 40c is a plate-like member that mainly constitutes a left front portion and a left side portion of the casing 40. The left front plate 40c is formed with two air outlets arranged vertically. These outlets are openings for blowing outdoor air taken into the casing 40 from the back side and the left side by the outdoor fan 15 to the front side. A fan grill 42 is provided at each outlet. The air outlet may be an opening that is formed in the top plate 40b and blows out outdoor air taken into the casing 40 upward. The right front plate 40d is a plate-like member that mainly forms the right front portion of the casing 40 and the front portion of the right side surface. The right side plate 40e is a plate-like member that mainly constitutes the right rear surface portion of the casing 40 and the rear portion of the right side surface.
 ケーシング40内には、仕切板43が設けられている。仕切板43は、ケーシング40の内部空間を、室外ファン15等が配置される送風機室と、圧縮機8等が配置される機械室とに仕切る。 A partition plate 43 is provided in the casing 40. The partition plate 43 partitions the internal space of the casing 40 into a blower chamber in which the outdoor fan 15 and the like are disposed, and a machine chamber in which the compressor 8 and the like are disposed.
 (2-2)室外熱交換器の概略構造
 図4は、室外熱交換器11の概略外観斜視図である。室外熱交換器11は、主として、ガス側分流器23と、液側分流器24と、複数の流入側折返し部材25と、複数の反流入側折返し部材26と、複数の室外扁平管90と、複数の室外フィン91とを有している。室外熱交換器11を構成するこれらの部品は、アルミニウム又はアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。
(2-2) Schematic Structure of Outdoor Heat Exchanger FIG. 4 is a schematic external perspective view of the outdoor heat exchanger 11. The outdoor heat exchanger 11 mainly includes a gas-side flow divider 23, a liquid-side flow divider 24, a plurality of inflow-side folded members 25, a plurality of anti-inflow-side folded members 26, a plurality of outdoor flat tubes 90, It has a plurality of outdoor fins 91. These components constituting the outdoor heat exchanger 11 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.
 複数の室外扁平管90は、上下方向(鉛直方向)に並んで配置されている。 The plurality of outdoor flat tubes 90 are arranged side by side in the vertical direction (vertical direction).
 複数の室外フィン91は、室外扁平管90が延びている方向に沿って並んで配置されている。室外フィン91の板厚方向は、室外フィン91が並んでいる方向と同じである。 The plurality of outdoor fins 91 are arranged side by side along the direction in which the outdoor flat tube 90 extends. The plate thickness direction of the outdoor fins 91 is the same as the direction in which the outdoor fins 91 are arranged.
 ガス側分流器23は、複数の室外扁平管90の内の上方に配置されている複数の室外扁平管90に接続され、かつ、冷媒管19に接続されている。室外熱交換器11が冷媒の放熱器として機能する場合、冷媒管19から室外熱交換器11に流入した冷媒は、ガス側分流器23で複数の高さ位置に分流して、ガス側分流器23に接続されている複数の室外扁平管90に送られる。 The gas-side flow divider 23 is connected to the plurality of outdoor flat tubes 90 disposed above the plurality of outdoor flat tubes 90 and is connected to the refrigerant tube 19. When the outdoor heat exchanger 11 functions as a refrigerant radiator, the refrigerant flowing into the outdoor heat exchanger 11 from the refrigerant pipe 19 is diverted to a plurality of height positions by the gas side diverter 23, and the gas side diverter Are sent to a plurality of outdoor flat tubes 90 connected to 23.
 液側分流器24は、複数の室外扁平管90の内の下方に配置されている複数の室外扁平管90に接続され、かつ、冷媒管20に接続されている。室外熱交換器11が冷媒の放熱器として機能する場合、液側分流器24に接続されている複数の室外扁平管90のそれぞれを流れてきた冷媒は、液側分流器24で合流し、冷媒管20を介して室外熱交換器11の外部に流出する。 The liquid side flow divider 24 is connected to the plurality of outdoor flat tubes 90 disposed below the plurality of outdoor flat tubes 90 and is connected to the refrigerant tube 20. When the outdoor heat exchanger 11 functions as a refrigerant radiator, the refrigerant that has flowed through each of the plurality of outdoor flat tubes 90 connected to the liquid side flow divider 24 is merged by the liquid side flow divider 24, and the refrigerant It flows out of the outdoor heat exchanger 11 through the pipe 20.
 複数の流入側折返し部材25は、ガス側分流器23と液側分流器24との間に配置されている。流入側折返し部材25は、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する管である。 The plurality of inflow side folding members 25 are disposed between the gas side flow divider 23 and the liquid side flow divider 24. The inflow side folding member 25 is a tube that connects the ends of the outdoor flat tubes 90 provided at different height positions.
 複数の反流入側折返し部材26は、室外熱交換器11の端部であって、ガス側分流器23と液側分流器24と複数の流入側折返し部材25とが設けられている側とは反対側の端部に設けられている。反流入側折返し部材26は、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する管である。 The plurality of anti-inflow side folding members 26 are ends of the outdoor heat exchanger 11, and the side on which the gas side flow divider 23, the liquid side flow divider 24, and the plurality of inflow side folding members 25 are provided. It is provided at the opposite end. The anti-inflow side folding member 26 is a tube that connects the ends of the outdoor flat tubes 90 provided at different height positions.
 室外熱交換器11では、複数の流入側折返し部材25及び複数の反流入側折返し部材26を設けることによって、室外熱交換器11の両端部で冷媒を折り返しながら冷媒を流すことが可能となっている。 In the outdoor heat exchanger 11, by providing a plurality of inflow side folding members 25 and a plurality of anti-inflow side folding members 26, it is possible to flow the refrigerant while folding the refrigerant at both ends of the outdoor heat exchanger 11. Yes.
 (2-3)室外扁平管
 図5は、室外熱交換器11の断面図であって、室外フィン91と室外扁平管90との位置関係を示す図である。図5は、室外扁平管90内部の流路90cが延びている方向に対して垂直に室外扁平管90を切断した状態で、当該流路90cが延びている方向に沿って見た断面図である。
(2-3) Outdoor Flat Tube FIG. 5 is a cross-sectional view of the outdoor heat exchanger 11 and shows the positional relationship between the outdoor fins 91 and the outdoor flat tube 90. FIG. 5 is a cross-sectional view taken along the direction in which the flow channel 90c extends in a state where the outdoor flat tube 90 is cut perpendicular to the direction in which the flow channel 90c in the outdoor flat tube 90 extends. is there.
 室外扁平管90は、上側扁平面90aと、下側扁平面90bと、複数の流路90cとを有している。上側扁平面90aは、室外扁平管90の表面であって、鉛直方向上方を向いている上面である。下側扁平面90bは、室外扁平管90の表面であって、鉛直方向下方を向いている下面である。流路90cは、冷媒が流れる空間である。複数の流路90cは、室外空気流れ方向に並んで設けられている。室外空気流れ方向とは、室外熱交換器11を通過する室外空気が流れる方向である。室外空気流れ方向は、室外扁平管90の断面視における長手方向であり、図5において矢印で示されている方向である。以下、室外熱交換器11に関する説明において、「風上側」は室外空気流れ方向の上流側を意味し、「風下側」は室外空気流れ方向の下流側を意味する。 The outdoor flat tube 90 has an upper flat surface 90a, a lower flat surface 90b, and a plurality of flow paths 90c. The upper flat surface 90a is the surface of the outdoor flat tube 90 and is the upper surface facing upward in the vertical direction. The lower flat surface 90b is a surface of the outdoor flat tube 90 and is a lower surface facing downward in the vertical direction. The flow path 90c is a space through which the refrigerant flows. The plurality of flow paths 90c are provided side by side in the outdoor air flow direction. The outdoor air flow direction is a direction in which outdoor air passing through the outdoor heat exchanger 11 flows. The outdoor air flow direction is a longitudinal direction in a cross-sectional view of the outdoor flat tube 90, and is a direction indicated by an arrow in FIG. Hereinafter, in the description of the outdoor heat exchanger 11, “windward” means the upstream side in the outdoor air flow direction, and “leeward side” means the downstream side in the outdoor air flow direction.
 複数の室外扁平管90の断面寸法は、全て同じである。断面寸法とは、具体的には、室外扁平管90の幅WTo、及び、室外扁平管90の高さHToである。室外扁平管90の幅WToは、室外扁平管90の断面視における長手方向(複数の流路90cが並んでいる方向)の寸法である。室外扁平管90の高さHToは、室外扁平管90の断面視における短手方向(上下方向)の寸法である。室外扁平管90の高さHToは、室外扁平管90の上側扁平面90aと下側扁平面90bとの間の距離に相当する。また、複数の室外扁平管90は、上下方向において所定の段ピッチDPoで配置されている。段ピッチDPoとは、上下方向において隣り合う2つの室外扁平管90の上側扁平面90aの間の距離に相当する。 The cross-sectional dimensions of the plurality of outdoor flat tubes 90 are all the same. Specifically, the cross-sectional dimensions are the width WTo of the outdoor flat tube 90 and the height HTo of the outdoor flat tube 90. The width WTo of the outdoor flat tube 90 is a dimension in the longitudinal direction (the direction in which the plurality of flow paths 90c are arranged) in a cross-sectional view of the outdoor flat tube 90. The height HTo of the outdoor flat tube 90 is a dimension in the short direction (vertical direction) in the cross-sectional view of the outdoor flat tube 90. The height HTo of the outdoor flat tube 90 corresponds to the distance between the upper flat surface 90a and the lower flat surface 90b of the outdoor flat tube 90. The plurality of outdoor flat tubes 90 are arranged at a predetermined step pitch DPo in the vertical direction. The step pitch DPo corresponds to the distance between the upper flat surfaces 90a of the two outdoor flat tubes 90 adjacent in the vertical direction.
 図5に示されるように、室外扁平管90の風下側端部は、室外フィン91の風下側端部よりも、さらに風下側に位置している。これにより、室外熱交換器11の製造時又は運搬時における室外フィン91の風下側端部の損傷及び破損が抑制される。 As shown in FIG. 5, the leeward side end portion of the outdoor flat tube 90 is located further on the leeward side than the leeward side end portion of the outdoor fin 91. Thereby, damage and breakage of the leeward side end portion of the outdoor fin 91 at the time of manufacturing or transporting the outdoor heat exchanger 11 are suppressed.
 (2-4)室外フィン
 室外フィン91は、室外空気流れ方向及び上下方向に広がる板状部材である。室外フィン91は、その板厚方向に沿って所定の間隔で複数配置されている。各室外フィン91には、複数の室外扁平管90が固定されている。室外フィン91の平坦部分における板厚方向の寸法は、例えば、0.05mm以上かつ0.15mm以下である。
(2-4) Outdoor Fins The outdoor fins 91 are plate-like members that spread in the outdoor air flow direction and the vertical direction. A plurality of the outdoor fins 91 are arranged at predetermined intervals along the thickness direction. A plurality of outdoor flat tubes 90 are fixed to each outdoor fin 91. The dimension of the flat portion of the outdoor fin 91 in the plate thickness direction is, for example, 0.05 mm or more and 0.15 mm or less.
 室外フィン91は、主として、複数の差し込み部92と、室外連通部97aと、複数の風下部97bと、ワッフル部93と、風上側フィンタブ94aと、風下側フィンタブ94bと、室外スリット95と、風上側リブ96aと、風下側リブ96bとを有している。 The outdoor fin 91 mainly includes a plurality of insertion portions 92, an outdoor communication portion 97a, a plurality of leeward portions 97b, a waffle portion 93, an upwind fin tab 94a, a leeward fin tab 94b, an outdoor slit 95, It has the upper side rib 96a and the leeward side rib 96b.
 差し込み部92は、室外フィン91の風下側の縁部から、室外フィン91の風上側の縁部の近傍まで、室外空気流れ方向(水平方向)に沿って切り込まれるようにして形成されている部分である。複数の差し込み部92は、上下方向に並ぶように設けられている。差し込み部92は、バーリング等によって形成されるフィンカラーを構成している。差し込み部92の形状は、室外扁平管90の断面の外形にほぼ一致している。差し込み部92には、室外扁平管90が挿入された状態でロウ付け固定されている。 The insertion portion 92 is formed so as to be cut along the outdoor air flow direction (horizontal direction) from the leeward edge of the outdoor fin 91 to the vicinity of the windward edge of the outdoor fin 91. Part. The plurality of insertion portions 92 are provided so as to be arranged in the vertical direction. The insertion portion 92 constitutes a fin collar formed by burring or the like. The shape of the insertion portion 92 substantially matches the outer shape of the cross section of the outdoor flat tube 90. The insertion portion 92 is fixed by brazing with the outdoor flat tube 90 inserted.
 室外連通部97aは、室外フィン91の一部であって、室外扁平管90の風上側の端部よりもさらに風上側において、上下方向に連続して延びている部分である。室外フィン91の着霜耐力を確保する観点から、室外扁平管90の風上端の端部から、室外連通部97aの風上端の端部までの室外空気流れ方向の距離は、4mm以上であることが好ましい。 The outdoor communication part 97a is a part of the outdoor fin 91, and is a part continuously extending in the vertical direction further on the windward side than the windward end of the outdoor flat tube 90. From the viewpoint of securing the frosting resistance of the outdoor fin 91, the distance in the outdoor air flow direction from the end of the wind upper end of the outdoor flat tube 90 to the end of the wind upper end of the outdoor communication portion 97a is 4 mm or more. Is preferred.
 風下部97bは、上下方向において隣り合う2つの差し込み部92に挟まれている部分である。各室外フィン91では、複数の風下部97bが、互いに異なる高さ位置において、室外連通部97aの風下側の端部からさらに風下側に向かって伸びている。 The windward portion 97b is a portion sandwiched between two insertion portions 92 adjacent in the vertical direction. In each outdoor fin 91, a plurality of leeward portions 97b extend further from the leeward end of the outdoor communication portion 97a toward the leeward side at different height positions.
 ワッフル部93は、室外フィン91の室外空気流れ方向の中央近傍に形成されている。ワッフル部93は、隆起部分と非隆起部分とから構成されている。隆起部分は、室外フィン91の板厚方向に隆起した部分である。非隆起部分は、室外フィン91の板厚方向に隆起していない平坦な部分である。 The waffle portion 93 is formed near the center of the outdoor fin 91 in the outdoor air flow direction. The waffle portion 93 is composed of a raised portion and a non-raised portion. The raised portion is a portion raised in the plate thickness direction of the outdoor fin 91. The non-protruding portion is a flat portion that does not protrude in the plate thickness direction of the outdoor fin 91.
 風上側フィンタブ94a及び風下側フィンタブ94bは、板厚方向に隣り合う室外フィン91同士の間隔を規制するために、それぞれ、室外フィン91の風上側の端部近傍と風下側の端部近傍とに設けられている。 The windward fin tab 94a and the leeward fin tab 94b are respectively provided in the vicinity of the windward end portion and the windward end portion of the outdoor fin 91 in order to regulate the interval between the outdoor fins 91 adjacent in the plate thickness direction. Is provided.
 室外スリット95は、室外フィン91における伝熱性能を向上させるために、室外フィン91の平坦部分から板厚方向に切り起こされた部分である。室外スリット95は、ワッフル部93の風下側に形成されている。室外スリット95は、その長手方向が上下方向に沿うように形成されている。室外スリット95は、室外空気流れ方向に複数並ぶように形成されている。複数の室外スリット95は、全て同じ側に切り起こされている。室外スリット95は、風上側及び風下側のそれぞれにおいて開口を形成する。 The outdoor slit 95 is a portion cut and raised in the plate thickness direction from the flat portion of the outdoor fin 91 in order to improve the heat transfer performance in the outdoor fin 91. The outdoor slit 95 is formed on the leeward side of the waffle portion 93. The outdoor slit 95 is formed such that its longitudinal direction is along the vertical direction. The outdoor slits 95 are formed so as to be aligned in the outdoor air flow direction. The plurality of outdoor slits 95 are all cut on the same side. The outdoor slit 95 forms an opening on each of the windward side and the leeward side.
 風上側リブ96aは、風上側フィンタブ94aの上方及び下方に設けられている。風上側リブ96aは、上下方向に隣り合う室外扁平管90同士の間において、室外空気流れ方向に沿って延びるように設けられている。風下側リブ96bは、風上側リブ96aの風下側端部からさらに風下側に延びるように設けられている。 The windward rib 96a is provided above and below the windward fin tab 94a. The windward rib 96a is provided between the outdoor flat tubes 90 adjacent in the vertical direction so as to extend along the outdoor air flow direction. The leeward side rib 96b is provided so as to extend further to the leeward side from the leeward side end portion of the leeward side rib 96a.
 (3)室内ユニット
 (3-1)室内ユニットの概略構成
 図6は、室内ユニット3の外観斜視図である。図7は、室内ユニット3の天板を取り除いた状態を示す概略平面図である。図8は、図7のA-Aで示される切断面における室内ユニット3の概略側面断面図である。
(3) Indoor Unit (3-1) Schematic Configuration of Indoor Unit FIG. 6 is an external perspective view of the indoor unit 3. FIG. 7 is a schematic plan view showing a state in which the top plate of the indoor unit 3 is removed. FIG. 8 is a schematic side cross-sectional view of the indoor unit 3 taken along the line AA in FIG.
 室内ユニット3は、空気調和装置1の空調対象空間である部屋の天井Uの開口に埋め込まれて設置されるタイプの室内機である。室内ユニット3は、冷媒回路6の一部を構成している。室内ユニット3は、主として、室内熱交換器51と、室内ファン52と、ケーシング30と、フラップ39と、ベルマウス33と、ドレンパン32とを有している。 The indoor unit 3 is a type of indoor unit that is embedded in an opening of a ceiling U of a room that is an air-conditioning target space of the air conditioner 1. The indoor unit 3 constitutes a part of the refrigerant circuit 6. The indoor unit 3 mainly includes an indoor heat exchanger 51, an indoor fan 52, a casing 30, a flap 39, a bell mouth 33, and a drain pan 32.
 室内熱交換器51は、冷房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能する。室内熱交換器51は、暖房運転時には圧縮機8から吐出された冷媒の放熱器として機能する。室内熱交換器51の液側には、液冷媒連絡管4の室内側端部が接続されている。室内熱交換器51のガス側には、ガス冷媒連絡管5の室内側端部が接続されている。 The indoor heat exchanger 51 functions as an evaporator for the refrigerant sent from the indoor heat exchanger 51 during the cooling operation. The indoor heat exchanger 51 functions as a radiator for the refrigerant discharged from the compressor 8 during heating operation. The indoor side end of the liquid refrigerant communication tube 4 is connected to the liquid side of the indoor heat exchanger 51. The indoor side end of the gas refrigerant communication pipe 5 is connected to the gas side of the indoor heat exchanger 51.
 室内ファン52は、室内ユニット3のケーシング本体31の内部に配置された遠心送風機である。室内ファン52は、化粧パネル35の吸込口36を介して室内空気をケーシング30内に吸入し、室内熱交換器51を通過させた後、化粧パネル35の吹出口37を介して室内空気をケーシング30外へ吹き出す空気流れを形成する。この空気流れは、図8において矢印で示されている。室内ファン52によって供給される室内空気は、室内熱交換器51を通過する冷媒と熱交換することにより温度が調節される。 The indoor fan 52 is a centrifugal blower disposed inside the casing body 31 of the indoor unit 3. The indoor fan 52 sucks room air into the casing 30 through the suction port 36 of the decorative panel 35, passes the indoor heat exchanger 51, and then casing the indoor air through the outlet 37 of the decorative panel 35. The air flow which blows out 30 is formed. This air flow is indicated by arrows in FIG. The temperature of the indoor air supplied by the indoor fan 52 is adjusted by exchanging heat with the refrigerant passing through the indoor heat exchanger 51.
 ケーシング30は、主として、ケーシング本体31と、化粧パネル35とを有している。 The casing 30 mainly has a casing body 31 and a decorative panel 35.
 ケーシング本体31は、空調対象空間である部屋の天井Uに形成された開口に挿入されるようにして設置されている。ケーシング本体31は、その平面視において長辺と短辺とが交互に接続された略八角形状を有している箱状の部材である。ケーシング本体31は、天板及び天板の周縁部から下方に延びる複数の側板を有している。ケーシング本体31の下面は、開口している。 The casing body 31 is installed so as to be inserted into an opening formed in a ceiling U of a room that is a space to be air-conditioned. The casing body 31 is a box-shaped member having a substantially octagonal shape in which long sides and short sides are alternately connected in a plan view. The casing body 31 has a top plate and a plurality of side plates extending downward from the peripheral edge of the top plate. The lower surface of the casing body 31 is open.
 化粧パネル35は、天井Uに形成された開口に嵌め込まれるようにして設置されている。化粧パネル35は、その平面視においてケーシング本体31の天板及び側板よりも外側に広がっている。化粧パネル35は、ケーシング本体31の下方に取り付けられる。化粧パネル35は、内枠35aと外枠35bとを有している。内枠35aの内側には、下方に開口した略四角形状の吸込口36が形成されている。吸込口36の上方には、吸込口36から吸入された空気中の塵埃を除去するためのフィルタ34が設けられている。外枠35bの内側、かつ、内枠35aの外側には、下方又は斜め下方に開口した吹出口37及び角部吹出口38が形成されている。吹出口37は、化粧パネル35の平面視における略四角形状の各辺に対応する位置に配置されている、第1吹出口37a、第2吹出口37b、第3吹出口37c及び第4吹出口37dから構成されている。角部吹出口38は、化粧パネル35の平面視における略四角形状の各角に対応する位置に配置されている、第1角部吹出口38a、第2角部吹出口38b、第3角部吹出口38c及び第4角部吹出口38dから構成されている。 The decorative panel 35 is installed so as to be fitted into an opening formed in the ceiling U. The decorative panel 35 extends outward from the top and side plates of the casing body 31 in a plan view. The decorative panel 35 is attached below the casing body 31. The decorative panel 35 has an inner frame 35a and an outer frame 35b. A substantially rectangular suction port 36 that opens downward is formed inside the inner frame 35a. A filter 34 for removing dust in the air sucked from the suction port 36 is provided above the suction port 36. An air outlet 37 and a corner air outlet 38 that are opened downward or obliquely downward are formed inside the outer frame 35b and outside the inner frame 35a. The blower outlet 37 is arrange | positioned in the position corresponding to each substantially square-shaped side in planar view of the decorative panel 35, the 1st blower outlet 37a, the 2nd blower outlet 37b, the 3rd blower outlet 37c, and the 4th blower outlet. 37d. The corner blower outlets 38 are arranged at positions corresponding to the substantially square corners in the plan view of the decorative panel 35, the first corner blower outlets 38 a, the second corner blower outlets 38 b, and the third corners. It is comprised from the blower outlet 38c and the 4th corner | angular part blower outlet 38d.
 フラップ39は、吹出口37を通過する空気流れの方向を変更するための部材である。フラップ39は、第1吹出口37aに配置される第1フラップ39aと、第2吹出口37bに配置される第2フラップ39bと、第3吹出口37cに配置される第3フラップ39cと、第4吹出口37dに配置される第4フラップ39dとから構成されている。各フラップ39は、ケーシング30の所定の位置において回動可能に軸支されている。 The flap 39 is a member for changing the direction of air flow passing through the air outlet 37. The flap 39 includes a first flap 39a disposed at the first outlet 37a, a second flap 39b disposed at the second outlet 37b, a third flap 39c disposed at the third outlet 37c, It is comprised from the 4th flap 39d arrange | positioned at the 4 blower outlet 37d. Each flap 39 is pivotally supported at a predetermined position of the casing 30 so as to be rotatable.
 ドレンパン32は、室内熱交換器51の下側に配置されている。ドレンパン32は、室内熱交換器51において空気中の水分が凝縮して生じるドレン水を受けとる。ドレンパン32は、ケーシング本体31の下部に装着されている。ドレンパン32には、平面視における中央部に、室内熱交換器51の内側において上下方向に伸びた円筒形状の空間が形成されている。この円筒形状の空間の内側下方には、ベルマウス33が配置されている。ベルマウス33は、吸込口36から吸入される空気を室内ファン52に案内する。 The drain pan 32 is disposed below the indoor heat exchanger 51. The drain pan 32 receives drain water generated by condensation of moisture in the air in the indoor heat exchanger 51. The drain pan 32 is attached to the lower part of the casing body 31. The drain pan 32 is formed with a cylindrical space extending in the vertical direction inside the indoor heat exchanger 51 at the center portion in plan view. A bell mouth 33 is disposed below the inside of the cylindrical space. The bell mouth 33 guides the air sucked from the suction port 36 to the indoor fan 52.
 また、ドレンパン32には、複数の吹出流路47a~47d、及び、複数の角部吹出流路48a~48cが形成されている。吹出流路47a~47d及び角部吹出流路48a~48cは、室内熱交換器51の外側において上下方向に伸びている。吹出流路47a~47dは、第1吹出流路47aと、第2吹出流路47bと、第3吹出流路47cと、第4吹出流路47dとから構成されている。第1吹出流路47aは、その下端において第1吹出口37aと連通している。第2吹出流路47bは、その下端において第2吹出口37bと連通している。第3吹出流路47cは、その下端において第3吹出口37cと連通している。第4吹出流路47dは、その下端において第4吹出口37dと連通している。角部吹出流路48a~48cは、第1角部吹出流路48aと、第2角部吹出流路48bと、第3角部吹出流路48cとから構成されている。第1角部吹出流路48aは、その下端において第1角部吹出口38aと連通している。第2角部吹出流路48bは、その下端において第2角部吹出口38bと連通している。第3角部吹出流路48cは、その下端において第3角部吹出口38cと連通している。 Also, the drain pan 32 is formed with a plurality of outlet channels 47a to 47d and a plurality of corner outlet channels 48a to 48c. The outlet channels 47 a to 47 d and the corner outlet channels 48 a to 48 c extend in the vertical direction outside the indoor heat exchanger 51. The blowing channels 47a to 47d are composed of a first blowing channel 47a, a second blowing channel 47b, a third blowing channel 47c, and a fourth blowing channel 47d. The 1st blower flow path 47a is connected to the 1st blower outlet 37a in the lower end. The second outlet channel 47b communicates with the second outlet 37b at the lower end thereof. The third outlet channel 47c communicates with the third outlet 37c at the lower end thereof. The fourth outlet channel 47d communicates with the fourth outlet 37d at the lower end thereof. The corner blowing channels 48a to 48c are composed of a first corner blowing channel 48a, a second corner blowing channel 48b, and a third corner blowing channel 48c. The first corner portion outlet flow passage 48a communicates with the first corner portion outlet 38a at the lower end thereof. The second corner blowout channel 48b communicates with the second corner blowout port 38b at the lower end thereof. The third corner portion outlet passage 48c communicates with the third corner portion outlet 38c at the lower end thereof.
 (3-2)室内熱交換器の概略構造
 図9は、室内熱交換器51の概略外観斜視図である。図10は、室内熱交換器51の複数の室内フィン60の風上側の部分拡大外観斜視図である。
(3-2) Schematic Structure of Indoor Heat Exchanger FIG. 9 is a schematic external perspective view of the indoor heat exchanger 51. FIG. 10 is a partially enlarged external perspective view of the plurality of indoor fins 60 of the indoor heat exchanger 51 on the windward side.
 室内熱交換器51は、室内ファン52と同一の高さ位置において、室内ファン52の周囲を囲むように曲げられた状態で、ケーシング本体31の内部に配置されている。室内熱交換器51は、主として、液側ヘッダ81と、ガス側ヘッダ71と、折返しヘッダ59と、複数の室内扁平管55と、複数の室内フィン60とを有している。室内熱交換器51を構成するこれらの部品は、アルミニウム又はアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。 The indoor heat exchanger 51 is disposed inside the casing body 31 in a state of being bent so as to surround the periphery of the indoor fan 52 at the same height as the indoor fan 52. The indoor heat exchanger 51 mainly includes a liquid side header 81, a gas side header 71, a folded header 59, a plurality of indoor flat tubes 55, and a plurality of indoor fins 60. These parts constituting the indoor heat exchanger 51 are made of aluminum or an aluminum alloy, and are joined to each other by brazing or the like.
 室内熱交換器51は、室内空気流れ方向の上流側を構成する風上熱交換部70と、室内空気流れ方向の下流側を構成する風下熱交換部80とを有している。室内空気流れ方向とは、室内熱交換器51を通過する室内空気が流れる方向である。室内空気流れ方向は、室内扁平管55の長手方向、及び、上下方向と交差している方向である。風上熱交換部70は、室内熱交換器51の平面視における内側部分である。風下熱交換部80は、室内熱交換器51の平面視における外側部分である。以下、室内熱交換器51に関する説明において、「風上側」は室内空気流れ方向の上流側を意味し、「風下側」は室内空気流れ方向の下流側を意味する。 The indoor heat exchanger 51 includes an upwind heat exchanging unit 70 that constitutes an upstream side in the indoor air flow direction, and an upwind heat exchange unit 80 that constitutes a downstream side in the indoor air flow direction. The indoor air flow direction is a direction in which indoor air passing through the indoor heat exchanger 51 flows. The indoor air flow direction is a direction intersecting the longitudinal direction of the indoor flat tube 55 and the vertical direction. The windward heat exchange unit 70 is an inner portion of the indoor heat exchanger 51 in a plan view. The leeward heat exchanger 80 is an outer portion of the indoor heat exchanger 51 in a plan view. Hereinafter, in the description of the indoor heat exchanger 51, “windward” means the upstream side in the indoor air flow direction, and “leeward side” means the downstream side in the indoor air flow direction.
 液側ヘッダ81は、風下熱交換部80の平面視における一端を構成している。液側ヘッダ81は、上下方向に延びた円筒形状の部材である。液側ヘッダ81には、液冷媒連絡管4の室内側の端部が接続されている。液側ヘッダ81には、風下熱交換部80を構成している複数の室内扁平管55が接続されている。 The liquid side header 81 constitutes one end of the leeward heat exchange unit 80 in plan view. The liquid side header 81 is a cylindrical member extending in the vertical direction. The liquid-side header 81 is connected to the indoor side end of the liquid refrigerant communication tube 4. The liquid side header 81 is connected with a plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80.
 ガス側ヘッダ71は、風上熱交換部70の平面視における一端を構成している。ガス側ヘッダ71は、上下方向に延びた円筒形状の部材である。ガス側ヘッダ71には、ガス冷媒連絡管5の室内側の端部が接続されている。ガス側ヘッダ71には、風上熱交換部70を構成している複数の室内扁平管55が接続されている。 The gas side header 71 constitutes one end of the upwind heat exchanging unit 70 in plan view. The gas side header 71 is a cylindrical member extending in the vertical direction. The gas side header 71 is connected to an end portion on the indoor side of the gas refrigerant communication pipe 5. The gas side header 71 is connected to a plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70.
 折返しヘッダ59は、室内熱交換器51の端部であって、平面視において液側ヘッダ81及びガス側ヘッダ71の反対側の端部を構成している。折返しヘッダ59は、内部において、上下方向に並んだ複数の折返し空間を有している。折返し空間は、同一の高さ位置に設けられた、風上熱交換部70の室内扁平管55と、風下熱交換部80の室内扁平管55とを接続している。これにより、折返しヘッダ59は、互いに異なる高さ位置に設けられた、風上熱交換部70の室内扁平管55、及び、風下熱交換部80の室内扁平管55を流れてきた冷媒同士が混ざり合うことを抑制する。また、折返しヘッダ59は、各高さ位置の室内扁平管55を流れた冷媒を、同一の高さ位置の風上側もしくは風下側の室内扁平管55に折り返して送ることを可能にする。室内熱交換器51が冷媒の放熱器として機能する場合、折返しヘッダ59は、冷媒を風上側に折り返す。室内熱交換器51が冷媒の蒸発器として機能する場合、折返しヘッダ59は、冷媒を風下側に折り返す。 The folded header 59 is an end portion of the indoor heat exchanger 51 and constitutes an end portion on the opposite side of the liquid side header 81 and the gas side header 71 in plan view. The folding header 59 has a plurality of folding spaces arranged in the vertical direction inside. The folded space connects the indoor flat tube 55 of the windward heat exchange unit 70 and the indoor flat tube 55 of the leeward heat exchange unit 80 provided at the same height position. As a result, the folding header 59 is mixed with the refrigerant flowing through the indoor flat tube 55 of the windward heat exchange unit 70 and the indoor flat tube 55 of the leeward heat exchange unit 80 provided at different height positions. Suppress fitting. The return header 59 enables the refrigerant that has flowed through the indoor flat tube 55 at each height position to be sent back to the indoor flat tube 55 on the upwind or leeward side at the same height position. When the indoor heat exchanger 51 functions as a refrigerant radiator, the folding header 59 folds the refrigerant upwind. When the indoor heat exchanger 51 functions as a refrigerant evaporator, the turn-up header 59 turns the refrigerant back to the leeward side.
 複数の室内扁平管55は、室内熱交換器51の風上熱交換部70において、上下方向に並んで配置された室内扁平管55と、室内熱交換器51の風下熱交換部80において、上下方向に並んで配置された室内扁平管55とを含んでいる。風上熱交換部70を構成する複数の室内扁平管55は、それぞれ、一端がガス側ヘッダ71に接続されており、他端が折返しヘッダ59の風上側部分に接続されている。風下熱交換部80を構成する複数の室内扁平管55は、それぞれ、一端が液側ヘッダ81に接続されており、他端が折返しヘッダ59の風下側部分に接続されている。 The plurality of indoor flat tubes 55 are arranged in the upside heat exchange unit 70 of the indoor heat exchanger 51, and in the upside heat exchange unit 80 of the indoor heat exchanger 51, And an indoor flat tube 55 arranged side by side in the direction. Each of the plurality of indoor flat tubes 55 constituting the windward heat exchange unit 70 has one end connected to the gas side header 71 and the other end connected to the windward side portion of the folded header 59. Each of the plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80 has one end connected to the liquid side header 81 and the other end connected to the leeward side portion of the folded header 59.
 複数の室内フィン60は、室内熱交換器51の風上熱交換部70を構成している室内扁平管55に固定された室内フィン60と、室内熱交換器51の風下熱交換部80を構成している室内扁平管55に固定された室内フィン60とを含んでいる。室内フィン60は、室内扁平管55の長手方向に沿って、室内フィン60の板厚方向に並べられている。 The plurality of indoor fins 60 constitutes the indoor fin 60 fixed to the indoor flat tube 55 constituting the windward heat exchange part 70 of the indoor heat exchanger 51 and the leeward heat exchange part 80 of the indoor heat exchanger 51. And an indoor fin 60 fixed to the indoor flat tube 55. The indoor fins 60 are arranged in the thickness direction of the indoor fins 60 along the longitudinal direction of the indoor flat tube 55.
 (3-3)室内扁平管
 図11は、室内熱交換器51の断面図であって、室内フィン60と室内扁平管55との位置関係を示す図である。図11は、室内扁平管55内部の流路55cが延びている方向に対して垂直に室内扁平管55を切断した状態で、当該流路55cが延びている方向に沿って見た断面図である。
(3-3) Indoor Flat Tube FIG. 11 is a cross-sectional view of the indoor heat exchanger 51 and shows the positional relationship between the indoor fin 60 and the indoor flat tube 55. FIG. 11 is a cross-sectional view taken along the direction in which the flow channel 55c extends in a state where the indoor flat tube 55 is cut perpendicular to the direction in which the flow channel 55c inside the indoor flat tube 55 extends. is there.
 室内扁平管55は、上側扁平面55aと、下側扁平面55bと、複数の流路55cとを有している。上側扁平面55aは、室内扁平管55の表面であって、鉛直方向上方を向いている上面である。下側扁平面55bは、室内扁平管55の表面であって、鉛直方向下方を向いている下面である。流路55cは、冷媒が流れる空間である。複数の流路55cは、室内空気流れ方向に並んで設けられている。室内空気流れ方向は、室内扁平管55の断面視における長手方向であり、図11において矢印で示されている方向である。 The indoor flat tube 55 has an upper flat surface 55a, a lower flat surface 55b, and a plurality of flow paths 55c. The upper flat surface 55a is a surface of the indoor flat tube 55 and is an upper surface facing upward in the vertical direction. The lower flat surface 55b is a surface of the indoor flat tube 55 and is a lower surface facing downward in the vertical direction. The flow path 55c is a space through which the refrigerant flows. The plurality of flow paths 55c are provided side by side in the indoor air flow direction. The indoor air flow direction is a longitudinal direction in a cross-sectional view of the indoor flat tube 55, and is a direction indicated by an arrow in FIG.
 風上熱交換部70を構成している室内扁平管55と、風下熱交換部80を構成している室内扁平管55とは、室内空気流れ方向に沿って視た場合に、各高さ位置において互いに重なるように配置されている。 The indoor flat tube 55 constituting the windward heat exchanging unit 70 and the indoor flat tube 55 constituting the leeward heat exchanging unit 80 are arranged at respective height positions when viewed along the indoor air flow direction. Are arranged so as to overlap each other.
 また、室内熱交換器51では、図11に示されるように、複数の室内扁平管55の風上側端部と、室内フィン60の風上側端部とは、室内空気流れ方向において概ね同じ位置に設けられている。 Further, in the indoor heat exchanger 51, as shown in FIG. 11, the windward side end portions of the plurality of indoor flat tubes 55 and the windward side end portions of the indoor fins 60 are at substantially the same position in the indoor air flow direction. Is provided.
 風上熱交換部70及び風下熱交換部80の両方において、複数の室内扁平管55の断面寸法は、全て同じである。断面寸法とは、具体的には、室内扁平管55の幅WT、及び、室内扁平管55の高さHTである。室内扁平管55の幅WTは、室内扁平管55の断面視における長手方向(複数の流路55cが並んでいる方向)の寸法である。室内扁平管55の高さHTは、室内扁平管55の断面視における短手方向(上下方向)の寸法である。室内扁平管55の高さHTは、室内扁平管55の上側扁平面55aと下側扁平面55bとの間の距離に相当する。また、複数の室内扁平管55は、上下方向において所定の段ピッチDPで配置されている。段ピッチDPとは、上下方向において隣り合う2つの室内扁平管55の上側扁平面55aの間の距離に相当する。 In both the upwind heat exchange unit 70 and the downwind heat exchange unit 80, the cross-sectional dimensions of the plurality of indoor flat tubes 55 are all the same. Specifically, the cross-sectional dimensions are the width WT of the indoor flat tube 55 and the height HT of the indoor flat tube 55. The width WT of the indoor flat tube 55 is a dimension in the longitudinal direction (the direction in which the plurality of flow paths 55c are arranged) in a cross-sectional view of the indoor flat tube 55. The height HT of the indoor flat tube 55 is a dimension in the short side direction (vertical direction) in the cross-sectional view of the indoor flat tube 55. The height HT of the indoor flat tube 55 corresponds to the distance between the upper flat surface 55a and the lower flat surface 55b of the indoor flat tube 55. The plurality of indoor flat tubes 55 are arranged at a predetermined step pitch DP in the vertical direction. The step pitch DP corresponds to the distance between the upper flat surfaces 55a of the two indoor flat tubes 55 adjacent in the vertical direction.
 室内扁平管55の幅WTは、12mm以下である。室内扁平管55の幅WTは、10mm以下であることが好ましい。特に、室内扁平管55の幅WTは、3mm以上かつ12mm以下であることが好ましく、3mm以上かつ10mm以下であることがより好ましい。 The width WT of the indoor flat tube 55 is 12 mm or less. The width WT of the indoor flat tube 55 is preferably 10 mm or less. In particular, the width WT of the indoor flat tube 55 is preferably 3 mm or more and 12 mm or less, and more preferably 3 mm or more and 10 mm or less.
 また、室内扁平管55は、HT/WT≧0.15の関係を満たしていることが好ましい。室内扁平管55は、HT/WT≧0.2の関係をさらに満たしていることが好ましい。特に、室内扁平管55は、0.15≦HT/WT≦0.3の関係を満たしていることが好ましく、0.2≦HT/WT≦0.3の関係を満たしていることがより好ましい。 Moreover, it is preferable that the indoor flat tube 55 satisfies the relationship of HT / WT ≧ 0.15. The indoor flat tube 55 preferably further satisfies the relationship of HT / WT ≧ 0.2. In particular, the indoor flat tube 55 preferably satisfies the relationship of 0.15 ≦ HT / WT ≦ 0.3, and more preferably satisfies the relationship of 0.2 ≦ HT / WT ≦ 0.3. .
 また、室内扁平管55のHT/WTの値は、室外扁平管90のHTo/WToの値よりも大きいことが好ましい。 Further, the HT / WT value of the indoor flat tube 55 is preferably larger than the HTo / WTo value of the outdoor flat tube 90.
 また、室内扁平管55の幅WTは、室外扁平管90の幅WToよりも小さいことが好ましい。 Further, the width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90.
 また、室内扁平管55の高さHTは、1.2mm以上かつ2.5mm以下であることが好ましい。 The height HT of the indoor flat tube 55 is preferably 1.2 mm or more and 2.5 mm or less.
 また、室内熱交換器51の段ピッチDPは、8.0mm以上かつ15.0mm以下であることが好ましい。 Further, the step pitch DP of the indoor heat exchanger 51 is preferably 8.0 mm or more and 15.0 mm or less.
 また、室内熱交換器51の複数の室内フィン60の板厚方向におけるピッチは、室外熱交換器11の複数の室外フィン91の板厚方向におけるピッチよりも小さいことが好ましい。板厚方向におけるピッチとは、板厚方向において隣り合う室内フィン60の同じ側の面同士の間隔、又は、板厚方向において隣り合う室外フィン91の同じ側の面同士の間隔である。 Also, the pitch in the plate thickness direction of the plurality of indoor fins 60 of the indoor heat exchanger 51 is preferably smaller than the pitch in the plate thickness direction of the plurality of outdoor fins 91 of the outdoor heat exchanger 11. The pitch in the plate thickness direction is the interval between the surfaces on the same side of the indoor fins 60 adjacent in the plate thickness direction or the interval between the surfaces on the same side of the outdoor fins 91 adjacent in the plate thickness direction.
 また、室内熱交換器51は、4.0≦DP/HT≦10.0の関係を満たしていることが好ましい。室内熱交換器51は、4.6≦DP/HT≦8.0の関係をさらに満たしていることが好ましい。 Moreover, it is preferable that the indoor heat exchanger 51 satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. It is preferable that the indoor heat exchanger 51 further satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0.
 また、室内熱交換器51のDP/HTの値は、室外熱交換器11のDPo/HToの値よりも小さいことが好ましい。 Moreover, it is preferable that the DP / HT value of the indoor heat exchanger 51 is smaller than the DPo / HTo value of the outdoor heat exchanger 11.
 (3-4)室内フィン
 室内フィン60は、室内空気流れ方向及び上下方向に広がる板状部材である。室内フィン60は、その板厚方向に沿って所定の間隔で複数配置されている。各室内フィン60には、複数の室内扁平管55が固定されている。風上熱交換部70を構成している室内フィン60と、風下熱交換部80を構成している室内フィン60とは、室内空気流れ方向に沿って視た場合に、概ね互いに重なるように配置されている。風上熱交換部70を構成している室内フィン60の風下側の端部と、風下熱交換部80を構成している室内フィン60の風上側の端部とは、少なくとも一部分において互いに接触している。
(3-4) Indoor Fin The indoor fin 60 is a plate-like member that spreads in the indoor air flow direction and the vertical direction. A plurality of indoor fins 60 are arranged at predetermined intervals along the thickness direction. A plurality of indoor flat tubes 55 are fixed to each indoor fin 60. The indoor fins 60 constituting the windward heat exchange unit 70 and the indoor fins 60 constituting the leeward heat exchange unit 80 are arranged so as to substantially overlap each other when viewed along the indoor air flow direction. Has been. The leeward side end of the indoor fin 60 constituting the windward heat exchange unit 70 and the windward side end of the indoor fin 60 constituting the leeward heat exchange unit 80 are in contact with each other at least partially. ing.
 風上熱交換部70及び風下熱交換部80の両方において、室内フィン60は、主として、主面61と、複数のフィンカラー部65aと、室内連通部64と、複数の風上部65と、メインスリット62と、連通位置スリット63とを有している。室内フィン60の主面61における板厚方向の寸法は、例えば、0.05mm以上かつ0.15mm以下である。複数の室内フィン60の板厚方向におけるピッチ(互いに隣り合う室内フィン60の同じ側の面同士の間隔)は、1.0mm以上かつ1.6mm以下であることが好ましい。 In both the upwind heat exchange unit 70 and the downwind heat exchange unit 80, the indoor fin 60 mainly includes a main surface 61, a plurality of fin collar portions 65a, an indoor communication unit 64, a plurality of upwind portions 65, A slit 62 and a communication position slit 63 are provided. The dimension in the plate | board thickness direction in the main surface 61 of the indoor fin 60 is 0.05 mm or more and 0.15 mm or less, for example. It is preferable that the pitch in the plate thickness direction of the plurality of indoor fins 60 (the distance between the surfaces on the same side of the adjacent indoor fins 60) is 1.0 mm or more and 1.6 mm or less.
 主面61は、室内フィン60の表面であって、フィンカラー部65a、メインスリット62及び連通位置スリット63が設けられていない平坦部分に相当する。 The main surface 61 is a surface of the indoor fin 60 and corresponds to a flat portion where the fin collar portion 65a, the main slit 62, and the communication position slit 63 are not provided.
 フィンカラー部65aは、室内フィン60の風上側の縁部から、室内フィン60の風下側の縁部の近傍まで、室内空気流れ方向(水平方向)に沿って延びるように形成されている。複数のフィンカラー部65aは、上下方向に並ぶように設けられている。フィンカラー部65aは、バーリング等によって形成されている。フィンカラー部65aの輪郭形状は、室内扁平管55の断面の外形にほぼ一致している。フィンカラー部65aには、室内扁平管55が挿入された状態でロウ付け固定されている。 The fin collar portion 65 a is formed so as to extend along the indoor air flow direction (horizontal direction) from the leeward edge of the indoor fin 60 to the vicinity of the leeward edge of the indoor fin 60. The plurality of fin collar portions 65a are arranged in the vertical direction. The fin collar portion 65a is formed by burring or the like. The contour shape of the fin collar portion 65 a substantially matches the outer shape of the cross section of the indoor flat tube 55. The fin collar portion 65a is brazed and fixed in a state where the indoor flat tube 55 is inserted.
 図12は、室内フィン60と室内扁平管55との接合状態を示す断面図である。図12は、室内扁平管55の流路55c内を冷媒が通過する方向、及び、鉛直方向を含む面で室内熱交換器51を切断した断面図である。図12に示されるように、フィンカラー部65aは、主面61に対して、主面61の板厚方向においてメインスリット62の切り起こし側とは反対側に立ち上げられて構成されている。フィンカラー部65aの主面61側の反対側には、当該フィンカラー部65aに固定されている室内扁平管55の上側扁平面55a(又は下側扁平面55b)から遠ざかる方向に延びるように曲げられた位置決め部65xが設けられている。位置決め部65xは、隣り合う室内フィン60の主面61に面接触することで、複数の室内フィン60の板厚方向におけるピッチを規定している。 FIG. 12 is a cross-sectional view showing a joined state between the indoor fin 60 and the indoor flat tube 55. FIG. 12 is a cross-sectional view of the indoor heat exchanger 51 cut along a plane including the direction in which the refrigerant passes through the flow path 55c of the indoor flat tube 55 and the vertical direction. As shown in FIG. 12, the fin collar portion 65 a is configured to be raised with respect to the main surface 61 on the side opposite to the cut and raised side of the main slit 62 in the thickness direction of the main surface 61. The fin collar portion 65a is bent on the side opposite to the main surface 61 side so as to extend away from the upper flat surface 55a (or the lower flat surface 55b) of the indoor flat tube 55 fixed to the fin collar portion 65a. A positioning portion 65x is provided. The positioning portion 65x defines the pitch in the plate thickness direction of the plurality of indoor fins 60 by making surface contact with the main surface 61 of the adjacent indoor fins 60.
 また、図12に示されるように、フィンカラー部65aは、室内扁平管55の上側扁平面55a(又は下側扁平面55b)との間にロウ材58が介在した状態で、ロウ付けにより室内扁平管55に接合されている。図12に示されるように、室内扁平管55の下側扁平面55b側において、主面61に対するフィンカラー部65aの立ち上げが始まっている箇所と、メインスリット62の切り起こしが始まっている箇所との間の距離DSは、1mm以下であることが好ましい。室内扁平管55の下側扁平面55bにおける結露水は、メインスリット62の切り起こしが始まっている箇所を介して下方に導かれて排水される。そのため、当該距離DSを1mm以下の短い距離とすることで、室内扁平管55の下側扁平面55bにおいて結露水が保持されることが抑制される。 Further, as shown in FIG. 12, the fin collar portion 65a is flattened by brazing in a state where the brazing material 58 is interposed between the upper flat surface 55a (or the lower flat surface 55b) of the indoor flat tube 55. It is joined to the tube 55. As shown in FIG. 12, on the lower flat surface 55 b side of the indoor flat tube 55, a location where the fin collar portion 65 a starts to rise with respect to the main surface 61, and a location where the main slit 62 begins to be raised and raised Is preferably 1 mm or less. Condensed water on the lower flat surface 55b of the indoor flat tube 55 is guided downward and drained through a location where the main slit 62 starts to be cut and raised. Therefore, by setting the distance DS to a short distance of 1 mm or less, it is possible to suppress the dew condensation water from being retained on the lower flat surface 55b of the indoor flat tube 55.
 室内連通部64は、室内フィン60の一部であって、室内扁平管55の風下側の端部よりもさらに風下側において、上下方向に連続して延びている部分である。WLを室内空気流れ方向における室内連通部64の長さとし、WFを室内空気流れ方向における室内フィン60の長さとした場合、室内フィン60は、0.2≦WL/WF≦0.5の関係を満たすことが好ましい。 The indoor communication portion 64 is a part of the indoor fin 60 and continuously extends in the vertical direction further on the leeward side than the end portion on the leeward side of the indoor flat tube 55. When WL is the length of the indoor communication portion 64 in the indoor air flow direction and WF is the length of the indoor fin 60 in the indoor air flow direction, the indoor fin 60 has a relationship of 0.2 ≦ WL / WF ≦ 0.5. It is preferable to satisfy.
 風上部65は、上下方向において隣り合う2つのフィンカラー部65aに挟まれている部分である。各室内フィン60では、複数の風上部65が、互いに異なる高さ位置において、室内連通部64の風上側の端部からさらに風上側に向かって伸びている。風上部65の上下方向の寸法は、DP-HTで表される。 The windward portion 65 is a portion sandwiched between two fin collar portions 65a adjacent in the vertical direction. In each indoor fin 60, a plurality of windward portions 65 extend further toward the windward side from the windward end of the indoor communication portion 64 at different height positions. The vertical dimension of the windward portion 65 is represented by DP-HT.
 メインスリット62は、室内フィン60の伝熱性能を向上させるために、平坦な主面61から板厚方向に切り起こされて構成された部分である。メインスリット62は、各風上部65に形成されている。メインスリット62は、室内空気流れ方向に沿って複数並ぶように形成されている。 The main slit 62 is a portion that is cut and raised in the thickness direction from the flat main surface 61 in order to improve the heat transfer performance of the indoor fin 60. The main slit 62 is formed in each windward portion 65. A plurality of main slits 62 are formed along the indoor air flow direction.
 連通位置スリット63は、室内フィン60の伝熱性能を向上させるために、平坦な主面61から板厚方向に切り起こされて構成された部分である。連通位置スリット63は、室内連通部64において、複数の高さ位置に形成されている。連通位置スリット63は、各高さ位置に設けられたメインスリット62の風下側に、それぞれ対応するように設けられている。連通位置スリット63は、その長手方向が上下方向に沿うように形成されている。連通位置スリット63の上端は、対応するメインスリット62の上端よりもさらに上方に位置する。連通位置スリット63の下端は、対応するメインスリット62の下端よりもさらに下方に位置する。 The communication position slit 63 is a portion that is cut and raised from the flat main surface 61 in the thickness direction in order to improve the heat transfer performance of the indoor fin 60. The communication position slit 63 is formed at a plurality of height positions in the indoor communication portion 64. The communication position slit 63 is provided so as to correspond to the leeward side of the main slit 62 provided at each height position. The communication position slit 63 is formed such that its longitudinal direction is along the vertical direction. The upper end of the communication position slit 63 is located further above the upper end of the corresponding main slit 62. The lower end of the communication position slit 63 is positioned further below the lower end of the corresponding main slit 62.
 メインスリット62及び連通位置スリット63は、平坦な主面61から板厚方向の同じ側に切り起こされることで、風上側及び風下側のそれぞれにおいて開口を形成する。 The main slit 62 and the communication position slit 63 are cut and raised from the flat main surface 61 to the same side in the plate thickness direction, thereby forming openings on the windward side and the leeward side, respectively.
 (4)空気調和装置の動作
 空気調和装置1は、冷房運転及び暖房運転を行う。冷房運転では、圧縮機8、室外熱交換器11、室外膨張弁12及び室内熱交換器51の順に冷媒が流れる。暖房運転では、圧縮機8、室内熱交換器51、室外膨張弁12及び室外熱交換器11の順に冷媒が流れる。
(4) Operation of the air conditioner The air conditioner 1 performs a cooling operation and a heating operation. In the cooling operation, the refrigerant flows in the order of the compressor 8, the outdoor heat exchanger 11, the outdoor expansion valve 12, and the indoor heat exchanger 51. In the heating operation, the refrigerant flows in the order of the compressor 8, the indoor heat exchanger 51, the outdoor expansion valve 12, and the outdoor heat exchanger 11.
 (4-1)冷房運転
 冷房運転時では、室外熱交換器11が冷媒の放熱器として機能し、室内熱交換器51が冷媒の蒸発器として機能する。冷房運転時には、図1の実線で示されるように四路切換弁10の接続状態が切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、室外ユニット2の圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10を通って、室外熱交換器11に送られる。高圧のガス冷媒は、室外熱交換器11において、室外ファン15によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。高圧の液冷媒は、室外膨張弁12を通過する際に、冷凍サイクルにおける低圧になるまで減圧され、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、液側閉鎖弁13及び液冷媒連絡管4を通って、室内ユニット3に送られる。
(4-1) Cooling Operation During the cooling operation, the outdoor heat exchanger 11 functions as a refrigerant radiator, and the indoor heat exchanger 51 functions as a refrigerant evaporator. During the cooling operation, the connection state of the four-way switching valve 10 is switched as shown by the solid line in FIG. In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8 of the outdoor unit 2, compressed until reaching the high pressure in the refrigeration cycle, and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 passes through the four-way switching valve 10 and is sent to the outdoor heat exchanger 11. In the outdoor heat exchanger 11, the high-pressure gas refrigerant exchanges heat with outdoor air supplied as a cooling source by the outdoor fan 15 and dissipates heat to become a high-pressure liquid refrigerant. When passing through the outdoor expansion valve 12, the high-pressure liquid refrigerant is depressurized to a low pressure in the refrigeration cycle, and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant is sent to the indoor unit 3 through the liquid-side closing valve 13 and the liquid refrigerant communication tube 4.
 室内ユニット3に送られた低圧の気液二相状態の冷媒は、室内熱交換器51において、室内ファン52によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内熱交換器51を通過する空気が冷却されて、室内の冷房が行われる。この際に、室内熱交換器51を通過する空気に含まれる水分が凝縮して、室内熱交換器51の表面に結露水が生じる。室内熱交換器51において蒸発した低圧のガス冷媒は、ガス冷媒連絡管5を通って、室外ユニット2に送られる。 The low-pressure gas-liquid two-phase refrigerant sent to the indoor unit 3 evaporates in the indoor heat exchanger 51 by exchanging heat with indoor air supplied as a heating source by the indoor fan 52. Thereby, the air which passes the indoor heat exchanger 51 is cooled, and indoor cooling is performed. At this time, moisture contained in the air passing through the indoor heat exchanger 51 is condensed, and condensed water is generated on the surface of the indoor heat exchanger 51. The low-pressure gas refrigerant evaporated in the indoor heat exchanger 51 is sent to the outdoor unit 2 through the gas refrigerant communication pipe 5.
 室外ユニット2に送られた低圧のガス冷媒は、ガス側閉鎖弁14、四路切換弁10及びアキュムレータ7を通って、圧縮機8に再び吸入される。 The low-pressure gas refrigerant sent to the outdoor unit 2 is again sucked into the compressor 8 through the gas-side closing valve 14, the four-way switching valve 10 and the accumulator 7.
 (4-2)暖房運転
 暖房運転時では、室外熱交換器11が冷媒の蒸発器として機能し、室内熱交換器51が冷媒の放熱器として機能する。暖房運転時には、図1の破線で示されるように四路切換弁10の接続状態が切り換えられる。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、室外ユニット2の圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10、ガス側閉鎖弁14及びガス冷媒連絡管5を通って、室内ユニット3に送られる。
(4-2) Heating Operation During the heating operation, the outdoor heat exchanger 11 functions as a refrigerant evaporator, and the indoor heat exchanger 51 functions as a refrigerant radiator. During the heating operation, the connection state of the four-way selector valve 10 is switched as indicated by the broken line in FIG. In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 8 of the outdoor unit 2, compressed until reaching the high pressure in the refrigeration cycle, and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 is sent to the indoor unit 3 through the four-way switching valve 10, the gas side closing valve 14, and the gas refrigerant communication pipe 5.
 室内ユニット3に送られた高圧のガス冷媒は、室内熱交換器51において、室内ファン52によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内熱交換器51を通過する空気が加熱されて、室内の暖房が行われる。室内熱交換器51で放熱した高圧の液冷媒は、液冷媒連絡管4を通って、室外ユニット2に送られる。 The high-pressure gas refrigerant sent to the indoor unit 3 performs heat exchange with the indoor air supplied as a cooling source by the indoor fan 52 in the indoor heat exchanger 51, and dissipates heat to become high-pressure liquid refrigerant. Thereby, the air which passes the indoor heat exchanger 51 is heated, and indoor heating is performed. The high-pressure liquid refrigerant radiated by the indoor heat exchanger 51 is sent to the outdoor unit 2 through the liquid refrigerant communication tube 4.
 室外ユニット2に送られた高圧の液冷媒は、液側閉鎖弁13を通り、室外膨張弁12において冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。低圧の気液二相状態の冷媒は、室外熱交換器11において、室外ファン15によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。低圧のガス冷媒は、四路切換弁10及びアキュムレータ7を通って、圧縮機8に再び吸入される。 The high-pressure liquid refrigerant sent to the outdoor unit 2 passes through the liquid-side closing valve 13 and is reduced in pressure to the low pressure of the refrigeration cycle in the outdoor expansion valve 12 to become a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant evaporates by exchanging heat with outdoor air supplied as a heating source by the outdoor fan 15 in the outdoor heat exchanger 11 to become a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the four-way switching valve 10 and the accumulator 7 and is sucked into the compressor 8 again.
 (5)特徴
 (5-1)
 一般的に、室内熱交換器における室内フィンの熱伝達率は、室内扁平管の幅を大きくするほど高くすることができる。しかし、室内扁平管の幅を大きくすると、室内扁平管の表面(上面及び下面)に滞留しようとする結露水が排出されにくくなる。その結果、室内熱交換器の結露水の排出性が低下して、結露水が室内に飛散しやすくなる。特に、高温かつ高湿度の室内では結露水が生じやすいので、室内機の風速を高くすると結露水がより室内に飛散しやすくなる。
(5) Features (5-1)
Generally, the heat transfer coefficient of the indoor fins in the indoor heat exchanger can be increased as the width of the indoor flat tube is increased. However, if the width of the indoor flat tube is increased, it is difficult for condensed water that tends to stay on the surface (upper surface and lower surface) of the indoor flat tube to be discharged. As a result, the discharge property of the dew condensation water of the indoor heat exchanger is lowered, and the dew condensation water is easily scattered in the room. In particular, since dew condensation water is likely to be generated in a room of high temperature and high humidity, the dew condensation water is more likely to be scattered into the room if the wind speed of the indoor unit is increased.
 本実施形態の室内熱交換器51及びこれを備える空気調和装置1では、室内熱交換器51を構成する室内扁平管55の幅WTは、12mm以下である。このように、室内扁平管55の幅WTに上限を設けることで、室内扁平管55の表面に滞留しようとする結露水を速やかに排出することができるので、結露水の排出性の低下が抑制される。また、室内扁平管55の幅WTが10mm以下となるように室内熱交換器51を構成した場合、結露水の排出性の低下がより効果的に抑制される。このように室内扁平管55の幅WTの上限を設定することが結露水の排出性低下の抑制のために良好であることは、WTの値を変化させた解析データにより明らかとなった。図13は、WTの値を変化させたデータの具体例である。図13において、横軸は、室内扁平管55の幅WTを表し、縦軸は、排水時間を表す。ここで、排水時間とは、室内熱交換器51を埋没させた水槽から室内熱交換器51を引き上げた時点から、室内熱交換器51の排水が完了して室内熱交換器51の重量が一定になった時点までの時間である。排水時間が短いほど、室内扁平管55の表面に滞留しようとする結露水の排出性が優れている。なお、図13において、室内扁平管55の高さHTは2mmであり、段ピッチDPは10mmであり、室内空気流れ方向における室内連通部64の長さWLは3mmである。図13に示されるように、WTを12mm以下に設定することで、室内扁平管55の表面に滞留しようとする結露水が速やかに排出される。特に、WTを10mm以下に設定することで、結露水がより速やかに排出される。 In the indoor heat exchanger 51 and the air conditioner 1 including the same according to the present embodiment, the width WT of the indoor flat tube 55 constituting the indoor heat exchanger 51 is 12 mm or less. In this way, by setting an upper limit on the width WT of the indoor flat tube 55, the dew condensation water that tends to stay on the surface of the indoor flat tube 55 can be quickly discharged. Is done. In addition, when the indoor heat exchanger 51 is configured so that the width WT of the indoor flat tube 55 is 10 mm or less, a decrease in the drainage of condensed water is more effectively suppressed. The fact that setting the upper limit of the width WT of the indoor flat tube 55 in this way is favorable for suppressing the decrease in the drainage of condensed water has been clarified by analysis data in which the value of WT is changed. FIG. 13 is a specific example of data obtained by changing the value of WT. In FIG. 13, the horizontal axis represents the width WT of the indoor flat tube 55, and the vertical axis represents the drainage time. Here, the drainage time means that the drainage of the indoor heat exchanger 51 is completed and the weight of the indoor heat exchanger 51 is constant from the time when the indoor heat exchanger 51 is pulled up from the water tank in which the indoor heat exchanger 51 is buried. This is the time until the point of time. The shorter the drainage time, the better the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55. In FIG. 13, the height HT of the indoor flat tube 55 is 2 mm, the step pitch DP is 10 mm, and the length WL of the indoor communication portion 64 in the indoor air flow direction is 3 mm. As shown in FIG. 13, by setting the WT to 12 mm or less, the condensed water that tends to stay on the surface of the indoor flat tube 55 is quickly discharged. In particular, by setting the WT to 10 mm or less, condensed water is discharged more quickly.
 従って、室内熱交換器51は、室内扁平管55の幅WTに上限を設けることで、室内扁平管55の表面に滞留しようとする結露水を排出しやすくし、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制する。また、室内扁平管55の幅WTに上限を設けることで、室内フィン60の寸法を小さくして、室内ユニット3のコンパクト化を達成することができる。 Therefore, the indoor heat exchanger 51 is provided with an upper limit on the width WT of the indoor flat tube 55, thereby making it easy to discharge condensed water that tends to stay on the surface of the indoor flat tube 55, and was used as a refrigerant evaporator. Suppresses the dew condensation that occurs in some cases. Further, by providing an upper limit on the width WT of the indoor flat tube 55, the size of the indoor fin 60 can be reduced, and the indoor unit 3 can be made compact.
 なお、室内扁平管55の幅WTが小さすぎると、室内フィン60の室内連通部64の室内空気流れ方向の寸法が大きくなる。その結果、室内フィン60の領域の内、室内扁平管55から離れた領域に熱が伝導しにくくなり、室内フィン60の伝熱性能が低下するおそれがある。そのため、室内フィン60の伝熱性能を確保する観点からは、室内扁平管55の幅WTに下限を設けることが好ましく、具体的には、室内扁平管55の幅WTを3mm以上とすることが好ましい。これにより、室内フィン60の伝熱性能を確保しつつ、結露水の排出性の低下を抑制することが可能となる。 If the width WT of the indoor flat tube 55 is too small, the indoor air flow direction dimension of the indoor communication portion 64 of the indoor fin 60 increases. As a result, heat is less likely to be transferred to a region away from the indoor flat tube 55 in the region of the indoor fin 60, and the heat transfer performance of the indoor fin 60 may be reduced. Therefore, from the viewpoint of ensuring the heat transfer performance of the indoor fin 60, it is preferable to provide a lower limit for the width WT of the indoor flat tube 55. Specifically, the width WT of the indoor flat tube 55 may be 3 mm or more. preferable. Thereby, it becomes possible to suppress the fall of dew condensation water discharge | emission property, ensuring the heat transfer performance of the indoor fin 60. FIG.
 (5-2)
 一般的に、室内熱交換器における室内フィンの熱伝達率は、室内扁平管の高さと幅との比が小さいほど、室内扁平管の幅が大きくなる傾向があるので、上記の理由により結露水が室内に飛散しやすくなる。
(5-2)
Generally, the heat transfer coefficient of the indoor fin in the indoor heat exchanger tends to increase the width of the indoor flat tube as the ratio of the height and width of the indoor flat tube is small. Will be easily scattered in the room.
 本実施形態の室内熱交換器51及びこれを備える空気調和装置1では、HTを室内扁平管55の高さとし、WTを室内扁平管55の幅とした場合に、室内熱交換器51を構成する室内扁平管55は、HT/WT≧0.15の関係を満していることが好ましい。このように、室内扁平管55のHT/WTに下限を設けることで、実質的に、室内扁平管55の幅WTに上限を設けることができる。その結果、室内扁平管55の表面に滞留しようとする結露水の排出性の低下が抑制される。また、室内扁平管55がHT/WT≧0.20を満たすように室内熱交換器51を構成した場合、結露水の排出性の低下がより効果的に抑制される。このように室内扁平管55のHT/WTの下限を設定することが結露水の排出性低下の抑制のために良好であることは、HT/WTの値を変化させた解析データにより明らかとなった。図14は、HT/WTの値を変化させたデータの具体例である。図14において、横軸は、室内扁平管55の高さHTと室内扁平管55の幅WTとの比HT/WTを表し、縦軸は、排水時間を表す。図14に示される排水時間は、図13に示される排水時間と同じである。なお、図14において、段ピッチDPは10mmであり、室内空気流れ方向における室内連通部64の長さWLは3mmである。図14に示されるように、HT/WTを0.15以上に設定することで、室内扁平管55の表面に滞留しようとする結露水が速やかに排出される。特に、HT/WTを0.20以上に設定することで、結露水がより速やかに排出される。 In the indoor heat exchanger 51 and the air conditioner 1 including the same according to the present embodiment, the indoor heat exchanger 51 is configured when HT is the height of the indoor flat tube 55 and WT is the width of the indoor flat tube 55. The indoor flat tube 55 preferably satisfies the relationship of HT / WT ≧ 0.15. Thus, by providing a lower limit for HT / WT of the indoor flat tube 55, an upper limit can be substantially provided for the width WT of the indoor flat tube 55. As a result, a decrease in the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55 is suppressed. Moreover, when the indoor heat exchanger 51 is configured so that the indoor flat tube 55 satisfies HT / WT ≧ 0.20, a decrease in the drainage of condensed water is more effectively suppressed. The fact that setting the lower limit of the HT / WT of the indoor flat tube 55 in this way is favorable for suppressing the decrease in the discharge of condensed water becomes clear from analysis data obtained by changing the value of HT / WT. It was. FIG. 14 is a specific example of data in which the value of HT / WT is changed. In FIG. 14, the horizontal axis represents the ratio HT / WT between the height HT of the indoor flat tube 55 and the width WT of the indoor flat tube 55, and the vertical axis represents the drainage time. The drainage time shown in FIG. 14 is the same as the drainage time shown in FIG. In FIG. 14, the step pitch DP is 10 mm, and the length WL of the indoor communication portion 64 in the indoor air flow direction is 3 mm. As shown in FIG. 14, by setting HT / WT to 0.15 or more, condensed water that tends to stay on the surface of the indoor flat tube 55 is quickly discharged. In particular, by setting HT / WT to 0.20 or more, condensed water is discharged more quickly.
 従って、室内熱交換器51は、室内扁平管55の表面に滞留しようとする結露水を排出しやすくして、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制する。 Therefore, the indoor heat exchanger 51 makes it easy to discharge the condensed water that tends to stay on the surface of the indoor flat tube 55, and suppresses the scattering of the condensed water that occurs when used as a refrigerant evaporator.
 なお、室内フィン60の伝熱性能を確保する観点からは、室内扁平管55の幅WTは、所定の値以上であることが好ましい。そのため、HT/WT≧0.15の関係、又は、HT/WT≧0.20の関係に加えて、室内扁平管55がHT/WT≦0.3の関係をさらに満たすように、室内熱交換器51が構成されていることが好ましい。これにより、実質的に、室内扁平管55の幅WTに下限を設けることができるので、上記の理由により室内フィン60の伝熱性能を十分に確保することができる。 In addition, from the viewpoint of ensuring the heat transfer performance of the indoor fin 60, the width WT of the indoor flat tube 55 is preferably equal to or greater than a predetermined value. Therefore, in addition to the relationship of HT / WT ≧ 0.15 or the relationship of HT / WT ≧ 0.20, the indoor heat exchange is performed so that the indoor flat tube 55 further satisfies the relationship of HT / WT ≦ 0.3. The vessel 51 is preferably configured. Thereby, since the lower limit can be substantially provided in the width WT of the indoor flat tube 55, the heat transfer performance of the indoor fin 60 can be sufficiently ensured for the above reason.
 (5-3)
 本実施形態の室内熱交換器51を備える空気調和装置1では、室内扁平管55の幅WTは、室外扁平管90の幅WToよりも小さいことが好ましい。室外熱交換器11では、室外フィン91の着霜耐力を確保する観点から、室外フィン91の室外空気流れ方向の寸法は大きいほど好ましい。室外フィン91の室外空気流れ方向の寸法が大きくなるほど、室外扁平管90の幅WToも大きくなる傾向がある。そのため、室内扁平管55の幅WTを、室外扁平管90の幅WToよりも小さくすることで、実質的に、室内扁平管55の幅WTに上限を設けることができる。これにより、室外フィン91の着霜耐力を確保しつつ、室内扁平管55の表面に滞留しようとする結露水の排出性の低下を抑制することが可能となる。
(5-3)
In the air conditioner 1 including the indoor heat exchanger 51 of the present embodiment, the width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90. In the outdoor heat exchanger 11, from the viewpoint of securing the frosting resistance of the outdoor fins 91, it is preferable that the size of the outdoor fins 91 in the outdoor air flow direction is larger. As the dimension of the outdoor fin 91 in the outdoor air flow direction increases, the width WTo of the outdoor flat tube 90 tends to increase. Therefore, by setting the width WT of the indoor flat tube 55 to be smaller than the width WTo of the outdoor flat tube 90, an upper limit can be substantially set on the width WT of the indoor flat tube 55. Thereby, it becomes possible to suppress a decrease in the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55 while ensuring the frosting resistance of the outdoor fins 91.
 (5-4)
 本実施形態の室内熱交換器51を備える空気調和装置1は、HTを室内扁平管55の高さとし、WTを室内扁平管55の幅とし、HToを室外扁平管90の高さとし、WToを室外扁平管90の幅とした場合に、HT/WT≧HTo/WToの関係を満たすことが好ましい。室外熱交換器11では、室外フィン91の着霜耐力を確保する観点から、室外フィン91の室外空気流れ方向の寸法は大きいほど好ましい。室外フィン91の室外空気流れ方向の寸法が大きくなるほど、室外扁平管90の幅WToも大きくなる傾向がある。そのため、室内扁平管55のHT/WTの値を、室外扁平管90のHTo/WToの値よりも大きくすることで、実質的に、室内扁平管55の幅WTに上限を設けることができる。これにより、室外フィン91の着霜耐力を確保しつつ、室内扁平管55の表面に滞留しようとする結露水の排出性の低下を抑制することが可能となる。
(5-4)
In the air conditioner 1 including the indoor heat exchanger 51 of the present embodiment, HT is the height of the indoor flat tube 55, WT is the width of the indoor flat tube 55, HTo is the height of the outdoor flat tube 90, and WTo is outdoor. In the case of the width of the flat tube 90, it is preferable to satisfy the relationship of HT / WT ≧ HTo / WTo. In the outdoor heat exchanger 11, from the viewpoint of securing the frosting resistance of the outdoor fins 91, it is preferable that the size of the outdoor fins 91 in the outdoor air flow direction is larger. As the dimension of the outdoor fin 91 in the outdoor air flow direction increases, the width WTo of the outdoor flat tube 90 tends to increase. Therefore, by setting the HT / WT value of the indoor flat tube 55 to be larger than the HTo / WTo value of the outdoor flat tube 90, an upper limit can be substantially set on the width WT of the indoor flat tube 55. Thereby, it becomes possible to suppress a decrease in the drainage of condensed water that tends to stay on the surface of the indoor flat tube 55 while ensuring the frosting resistance of the outdoor fins 91.
 (5-5)
 本実施形態の室内熱交換器51は、風上熱交換部70及び風下熱交換部80を有している。すなわち、室内熱交換器51は、室内空気流れ方向において、室内扁平管55が2列に配置された構造を有している。室内扁平管55の列とは、上下方向に並んで配置された複数の室内扁平管55の集まりである。すなわち、室内熱交換器51は、風上熱交換部70を構成する複数の室内扁平管55の列と、風下熱交換部80を構成する複数の室内扁平管55の列とからなる、2列の室内扁平管55を有している。
(5-5)
The indoor heat exchanger 51 of the present embodiment includes an upwind heat exchange unit 70 and a downwind heat exchange unit 80. That is, the indoor heat exchanger 51 has a structure in which the indoor flat tubes 55 are arranged in two rows in the indoor air flow direction. The row of indoor flat tubes 55 is a collection of a plurality of indoor flat tubes 55 arranged in the vertical direction. That is, the indoor heat exchanger 51 includes two rows including a row of the plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70 and a row of the plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80. The indoor flat tube 55 is provided.
 室内熱交換器51は、2列の室内扁平管55を有しているため、室内熱交換器51で生じる結露水の内、風上熱交換部70で生じた結露水は、風上熱交換部70と風下熱交換部80との間の部分、又は、風下熱交換部80において下方に排水される。このように、室内扁平管55の列が1つのみの場合よりも、室内扁平管55の列が複数ある場合の方が、結露水の排水経路をより多く確保することができる。そのため、室内熱交換器51は、室内扁平管55の列を複数有することで、結露水の排水性を向上させることが可能となる。 Since the indoor heat exchanger 51 has two rows of indoor flat tubes 55, the dew condensation water generated in the upwind heat exchanging unit 70 out of the dew condensation water generated in the indoor heat exchanger 51 is upwind heat exchange. The water is drained downward in a portion between the unit 70 and the leeward heat exchange unit 80 or in the leeward heat exchange unit 80. Thus, more drainage paths for condensed water can be secured when there are a plurality of rows of indoor flat tubes 55 than when there is only one row of indoor flat tubes 55. Therefore, the indoor heat exchanger 51 can improve the drainage of condensed water by having a plurality of rows of the indoor flat tubes 55.
 また、風下熱交換部80には、風上熱交換部70を通過する際に風上熱交換部70において結露水を生じさせることで乾き度が増した空気が供給されるため、風下熱交換部80で生じる結露水が少なく抑えられる。その結果、風下熱交換部80の風下側端部からの結露水の飛散が抑制される。そのため、室内熱交換器51は、室内扁平管55の列を複数有することで、結露水の飛散を抑制することが可能となる。 Further, since the leeward heat exchanging unit 80 is supplied with air that has increased in dryness by generating condensed water in the upwind heat exchanging unit 70 when passing through the upwind heat exchanging unit 70, the downwind heat exchanging unit 80 Condensed water generated in the portion 80 is reduced. As a result, scattering of condensed water from the leeward side end of the leeward heat exchange unit 80 is suppressed. Therefore, the indoor heat exchanger 51 can suppress scattering of condensed water by having a plurality of rows of the indoor flat tubes 55.
 一方、本実施形態の室内熱交換器51を備える空気調和装置1では、室外熱交換器11は、室外扁平管90を1列のみ有している。すなわち、空気調和装置1では、室内扁平管55の列の数は、室外扁平管90の列の数より多い。このように、室内扁平管55の列の数を、室外扁平管90の列の数以上に設定することで、室内扁平管55の列の下限を設定することができる。その結果、例えば、室内扁平管55の列が複数ある場合に、結露水の排水経路をより多く確保することができるので、結露水の排水性を向上させることが可能となる。従って、室内熱交換器51では、室内扁平管55の列を、室外扁平管90の列の数以上にすることで、結露水の排水性を向上させることが可能となる。 On the other hand, in the air conditioner 1 including the indoor heat exchanger 51 of the present embodiment, the outdoor heat exchanger 11 has only one row of outdoor flat tubes 90. That is, in the air conditioner 1, the number of the indoor flat tubes 55 is greater than the number of the outdoor flat tubes 90. Thus, the lower limit of the row of the indoor flat tubes 55 can be set by setting the number of the rows of the indoor flat tubes 55 to be equal to or greater than the number of the rows of the outdoor flat tubes 90. As a result, for example, when there are a plurality of rows of the indoor flat tubes 55, more drainage paths for the condensed water can be secured, so that the drainage of the condensed water can be improved. Therefore, in the indoor heat exchanger 51, the number of rows of the indoor flat tubes 55 is set to be equal to or greater than the number of the rows of the outdoor flat tubes 90, thereby improving the drainage of condensed water.
 (5-6)
 本実施形態の室内熱交換器51では、室内フィン60は、室内扁平管55の風下側に室内連通部64を有している。このため、室内扁平管55で生じた結露水は、室内扁平管55の風下側に位置している室内連通部64を伝いながら下方に排出されやすい。そのため、室内扁平管55の風下側に室内連通部64を設けることで、室内フィン60の風下側の端部からの結露水の飛散が抑制される。
(5-6)
In the indoor heat exchanger 51 of the present embodiment, the indoor fin 60 has an indoor communication portion 64 on the leeward side of the indoor flat tube 55. For this reason, the dew condensation water generated in the indoor flat tube 55 is easily discharged downward while passing through the indoor communication portion 64 located on the leeward side of the indoor flat tube 55. Therefore, by providing the indoor communication portion 64 on the leeward side of the indoor flat tube 55, the scattering of condensed water from the leeward end of the indoor fin 60 is suppressed.
 一方、本実施形態の室内熱交換器51を備える空気調和装置1では、室外熱交換器11の室外フィン91は、室外扁平管90の風上側に室外連通部97aを有している。暖房運転時では、室外熱交換器11を通過する空気に含まれる水分が凝縮して排出される。しかし、一般的に、暖房運転時に室外熱交換器11から排出される水の量は、冷房運転時に室内熱交換器51から排出される結露水の量よりも少ない。そのため、室外熱交換器11では、室内熱交換器51と比較して、結露水の飛散が問題となりにくい。さらに、室外フィン91の着霜耐力を確保する観点から、室外連通部97aは、室外扁平管90の風下側よりも風上側に設けられていることが好ましい。そのため、室外扁平管90の風上側に室外連通部97aを設けることで、室外フィン91の着霜耐力を確保することができる。 On the other hand, in the air conditioner 1 including the indoor heat exchanger 51 of the present embodiment, the outdoor fins 91 of the outdoor heat exchanger 11 have an outdoor communication part 97 a on the windward side of the outdoor flat tube 90. During the heating operation, moisture contained in the air passing through the outdoor heat exchanger 11 is condensed and discharged. However, in general, the amount of water discharged from the outdoor heat exchanger 11 during the heating operation is smaller than the amount of condensed water discharged from the indoor heat exchanger 51 during the cooling operation. Therefore, in the outdoor heat exchanger 11, the scattering of condensed water is less likely to be a problem than the indoor heat exchanger 51. Furthermore, from the viewpoint of securing the frosting resistance of the outdoor fins 91, the outdoor communication portion 97 a is preferably provided on the leeward side of the outdoor flat tube 90 on the leeward side. Therefore, by providing the outdoor communication portion 97a on the windward side of the outdoor flat tube 90, the frosting resistance of the outdoor fin 91 can be ensured.
 (5-7)
 本実施形態の室内熱交換器51を備える空気調和装置1では、室内熱交換器51の複数の室内フィン60の板厚方向におけるピッチは、室外熱交換器11の複数の室外フィン91の板厚方向におけるピッチよりも小さいことが好ましい。この場合、例えば、室内フィン60のピッチは1.0mm~1.8mmに設定され、室外フィン91のピッチは1.2mm~2.0mmに設定される。室内フィン60をコンパクトにして、スリット(メインスリット62及び連通位置スリット63)の伝熱を促進することで、室内フィン60の伝熱性能を向上させるためには、室内フィン60の幅を室外フィン91の幅より小さくすることに加えて、室内フィン60のピッチを室外フィン91のピッチより小さくする必要がある。
(5-7)
In the air conditioner 1 including the indoor heat exchanger 51 of the present embodiment, the pitch in the plate thickness direction of the plurality of indoor fins 60 of the indoor heat exchanger 51 is the plate thickness of the plurality of outdoor fins 91 of the outdoor heat exchanger 11. It is preferably smaller than the pitch in the direction. In this case, for example, the pitch of the indoor fins 60 is set to 1.0 mm to 1.8 mm, and the pitch of the outdoor fins 91 is set to 1.2 mm to 2.0 mm. In order to improve the heat transfer performance of the indoor fin 60 by reducing the size of the indoor fin 60 and promoting the heat transfer of the slits (the main slit 62 and the communication position slit 63), the width of the indoor fin 60 is set to the outdoor fin. In addition to making it smaller than the width of 91, it is necessary to make the pitch of the indoor fins 60 smaller than the pitch of the outdoor fins 91.
 (5-8)
 一般的に、室内熱交換器における室内フィンの熱伝達率は、室内扁平管の間隔が小さいほど高くなる。しかし、室内扁平管の間隔を小さくすると、室内扁平管の間を通過する空気の流速が増大して、結露水が飛散しやすくなる。また、室内扁平管の高さを大きくすると、同様に、室内扁平管の間を通過する空気の流速が増大して、結露水が飛散しやすくなる。一方、室内扁平管の間隔を広くすると、室内フィンの熱伝達率が低下するので、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすい環境になってしまう。
(5-8)
Generally, the heat transfer coefficient of the indoor fin in the indoor heat exchanger increases as the interval between the indoor flat tubes decreases. However, when the interval between the indoor flat tubes is reduced, the flow velocity of the air passing between the indoor flat tubes is increased, and the condensed water is likely to be scattered. Further, when the height of the indoor flat tube is increased, similarly, the flow velocity of the air passing between the indoor flat tubes is increased and the condensed water is likely to be scattered. On the other hand, if the interval between the indoor flat tubes is widened, the heat transfer coefficient of the indoor fins is lowered, so that the evaporation temperature of the refrigerant in the indoor heat exchanger has to be lowered, resulting in an environment in which condensed water is likely to be generated.
 本実施形態の室内熱交換器51及びこれを備えた空気調和装置1では、室内熱交換器51は、HTを室内扁平管55の高さとし、DPを複数の室内扁平管55の高さ方向のピッチとした場合に、4.0≦DP/HT≦10.0の関係を満たすことが好ましい。このように、室内熱交換器51のDP/HTの値を当該数値範囲とすることが結露水の抑制のために良好であることは、DP及びHTの各値を変化させた解析データにより明らかとなった。 In the indoor heat exchanger 51 of the present embodiment and the air conditioner 1 including the indoor heat exchanger 51, the indoor heat exchanger 51 is configured such that HT is the height of the indoor flat tube 55 and DP is the height direction of the plurality of indoor flat tubes 55. In the case of the pitch, it is preferable that the relationship of 4.0 ≦ DP / HT ≦ 10.0 is satisfied. Thus, it is clear from the analysis data in which each value of DP and HT is changed that the DP / HT value of the indoor heat exchanger 51 is in the numerical range is good for suppressing the condensed water. It became.
 室内熱交換器51のDP/HTの値を4.0以上とすることにより、室内フィン60を横切る空気の流速が大きくなりすぎることが抑制される。その結果、室内ファン52の風量を大きくしても、室内フィン60からの結露水の飛散が抑制される。 By setting the DP / HT value of the indoor heat exchanger 51 to 4.0 or more, it is possible to suppress the flow velocity of the air across the indoor fins 60 from becoming too large. As a result, even if the air volume of the indoor fan 52 is increased, the scattering of condensed water from the indoor fin 60 is suppressed.
 また、室内熱交換器51のDP/HTの値を10.0以下とすることにより、室内フィン60の領域の内、室内扁平管55から離れた領域を狭くして、室内フィン60の熱伝達率を向上させることができる。これにより、所定の冷房能力を確保するために室内熱交換器51の冷媒の蒸発温度を低下させる必要性が低下するので、結露水が生じにくくなる。そのため、室内ファン52の風量を大きくしても、室内フィン60からの結露水の飛散が抑制される。 Further, by setting the DP / HT value of the indoor heat exchanger 51 to 10.0 or less, the region away from the indoor flat tube 55 in the region of the indoor fin 60 is narrowed, and the heat transfer of the indoor fin 60 is performed. The rate can be improved. As a result, the necessity of lowering the evaporation temperature of the refrigerant in the indoor heat exchanger 51 in order to ensure a predetermined cooling capacity is reduced, so that condensed water is less likely to occur. Therefore, even if the air volume of the indoor fan 52 is increased, the scattering of condensed water from the indoor fin 60 is suppressed.
 なお、室内熱交換器51は、4.6≦DP/HT≦8.0の関係をさらに満たすことが好ましい。この場合、結露水の飛散を抑制する効果をより向上させることが可能になる。 In addition, it is preferable that the indoor heat exchanger 51 further satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0. In this case, it is possible to further improve the effect of suppressing the scattering of condensed water.
 (5-9)
 一般的に、空気調和装置の室外ユニットに用いられる室外熱交換器では、冷媒の蒸発器として機能させる際の室外フィンでの着霜により通風抵抗が増大しがちになることから、室外扁平管のピッチを広くとることが求められる。しかし、室内熱交換器において、室内扁平管のピッチが広い構造を採用すると、室内扁平管のピッチが広いために室内フィンの熱伝達率が低下し、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすくなってしまう。
(5-9)
Generally, in an outdoor heat exchanger used for an outdoor unit of an air conditioner, ventilation resistance tends to increase due to frost formation on an outdoor fin when functioning as an evaporator of a refrigerant. A wide pitch is required. However, if the indoor flat heat exchanger adopts a structure in which the pitch of the indoor flat tubes is wide, the heat transfer coefficient of the indoor fins decreases due to the wide pitch of the indoor flat tubes, and the evaporation temperature of the refrigerant in the indoor heat exchanger is lowered. Inevitably, condensed water tends to form.
 本実施形態の室内熱交換器51及びこれを備えた空気調和装置1は、HTを室内扁平管55の高さとし、DPを複数の室内扁平管55の高さ方向のピッチとし、HToを室外扁平管90の高さとし、DPoを複数の室外扁平管90の高さ方向のピッチとした場合に、室内熱交換器51のDP/HTの値が、室外熱交換器11のDPo/HToの値よりも小さい関係を満たすことが好ましい。 In the indoor heat exchanger 51 and the air conditioner 1 including the same according to the present embodiment, HT is the height of the indoor flat tube 55, DP is the pitch in the height direction of the plurality of indoor flat tubes 55, and HTo is the outdoor flat. When the height of the tube 90 is DPO and the pitch in the height direction of the plurality of outdoor flat tubes 90 is set, the DP / HT value of the indoor heat exchanger 51 is greater than the DPo / HTo value of the outdoor heat exchanger 11. It is preferable to satisfy a small relationship.
 これにより、結露水の飛散が問題となりにくい室外熱交換器11においては、蒸発器として用いられる場合の着霜を抑制しつつ、結露水の飛散が問題となりやすい室内熱交換器51においては、室内フィン60の熱伝達率を向上させて結露水を生じにくくさせ、結露水の飛散を抑制させることが可能になる。 Thereby, in the outdoor heat exchanger 11 in which dew condensation is less likely to be a problem, in the indoor heat exchanger 51 in which the dew condensation is likely to be a problem while suppressing frost formation when used as an evaporator, It is possible to improve the heat transfer coefficient of the fin 60 to make it difficult for condensed water to be generated, and to suppress the scattering of condensed water.
 (5-10)
 本実施形態の室内熱交換器51では、WFを室内空気流れ方向における室内フィン60の長さとし、WLを室内空気流れ方向における室内連通部64の長さとした場合に、室内フィン60は、0.2≦WL/WF≦0.5の関係を満たすことが好ましい。
(5-10)
In the indoor heat exchanger 51 of the present embodiment, when the WF is the length of the indoor fin 60 in the indoor air flow direction and the WL is the length of the indoor communication portion 64 in the indoor air flow direction, the indoor fin 60 is 0. It is preferable to satisfy the relationship of 2 ≦ WL / WF ≦ 0.5.
 室内フィン60のWL/WFの値を0.2以上とすることで、室内連通部64の室内空気流れ方向の幅を十分に確保して、室内熱交換器51で生じた結露水を、室内連通部64を介して排出させやすくすることが可能になる。また、室内フィン60のWL/WFの値を0.5以下とすることで、室内フィン60の領域の内、室内扁平管55から離れて伝熱性能の向上に寄与しにくい領域の面積を抑えて、室内フィン60の伝熱性能を維持しつつ室内フィン60の材料費を抑制することが可能になる。 By setting the value of WL / WF of the indoor fin 60 to 0.2 or more, the width of the indoor communication portion 64 in the indoor air flow direction is sufficiently secured, and the dew condensation water generated in the indoor heat exchanger 51 is It becomes possible to facilitate the discharge through the communication portion 64. Further, by setting the WL / WF value of the indoor fin 60 to 0.5 or less, the area of the indoor fin 60 that is far from the indoor flat tube 55 and hardly contributes to improvement of heat transfer performance is suppressed. Thus, the material cost of the indoor fin 60 can be suppressed while maintaining the heat transfer performance of the indoor fin 60.
 また、室内連通部64を室内扁平管55の風下側に位置させつつ、室内フィン60のWL/WFの値を0.2以上とすることで、室内扁平管55で生じた結露水の排水性を高めることが可能になる。 Further, by setting the value of WL / WF of the indoor fin 60 to 0.2 or more while the indoor communication portion 64 is positioned on the leeward side of the indoor flat tube 55, the drainage of the condensed water generated in the indoor flat tube 55 is discharged. Can be increased.
 (5-11)
 本実施形態の室内熱交換器51では、室内フィン60は、室内空気流れ方向に開口が生じるように切り起こされたメインスリット62及び連通位置スリット63を有している。このため、室内熱交換器51に供給される空気を、室内フィン60に十分に接触させることができるので、空気熱源を十分に利用することが可能となる。
(5-11)
In the indoor heat exchanger 51 of the present embodiment, the indoor fin 60 has a main slit 62 and a communication position slit 63 that are cut and raised so that an opening is generated in the indoor air flow direction. For this reason, since the air supplied to the indoor heat exchanger 51 can be sufficiently brought into contact with the indoor fins 60, the air heat source can be fully utilized.
 なお、メインスリット62及び連通位置スリット63の上端は、それらの上方に位置する室内扁平管55の下端近傍に位置している。そのため、当該室内扁平管55において生じた結露水が、メインスリット62及び連通位置スリット63に捕らえられやすいので、結露水が排出されやすい。特に、図12に示される距離DSが1mm以下に設計されることにより、室内扁平管55の下側扁平面55b側における結露水の滞留がより効果的に抑制されるので、結露水の排水性が向上する。 Note that the upper ends of the main slit 62 and the communication position slit 63 are located near the lower end of the indoor flat tube 55 positioned above them. Therefore, the dew condensation water generated in the indoor flat tube 55 is easily captured by the main slit 62 and the communication position slit 63, and therefore the dew condensation water is easily discharged. In particular, since the distance DS shown in FIG. 12 is designed to be 1 mm or less, the retention of condensed water on the lower flat surface 55b side of the indoor flat tube 55 is more effectively suppressed. improves.
 (6)変形例
 (6-1)変形例A
 上記実施形態では、室内フィン60の風下側(室内空気流れ方向の下流側)の端部は、平坦な形状である。しかし、室内フィン60の風下側端部の形状は、平坦な形状に限られない。例えば、以下に述べるように、室内フィン60は、風下側端部に沿うように延びた導水リブ99を有してもよい。
(6) Modification (6-1) Modification A
In the above embodiment, the end portion of the indoor fin 60 on the leeward side (downstream side in the indoor air flow direction) has a flat shape. However, the shape of the leeward side end portion of the indoor fin 60 is not limited to a flat shape. For example, as will be described below, the indoor fin 60 may have water guide ribs 99 extending along the leeward side end.
 図15は、室内フィン60aと室内扁平管55との位置関係を示す説明図である。図16は、室内フィン60aが有する導水リブ99の断面図であって、図15のB-B断面の内の風下側近傍部分の説明図である。 FIG. 15 is an explanatory diagram showing the positional relationship between the indoor fin 60a and the indoor flat tube 55. As shown in FIG. FIG. 16 is a cross-sectional view of the water guide rib 99 included in the indoor fin 60a, and is an explanatory view of a portion near the leeward side in the BB cross section of FIG.
 本変形例に係る室内熱交換器51は、上記実施形態と同様に、風上熱交換部70と風下熱交換部80とを有している。風上熱交換部70及び風下熱交換部80のそれぞれの室内フィン60aは、導水リブ99を有している。導水リブ99は、室内フィン60aの風下側に設けられた室内連通部64の風下側端部に沿うように、上下方向に延びている。導水リブ99は、図16に示されるように、周囲の主面61に対して、室内フィン60aの板厚方向に向かって凹むように構成されている。導水リブ99は、室内フィン60aの板厚以上に凹んで構成されていることが好ましい。 The indoor heat exchanger 51 according to this modification includes an upwind heat exchanging unit 70 and an upwind heat exchanging unit 80 as in the above embodiment. The indoor fins 60 a of the windward heat exchange unit 70 and the leeward heat exchange unit 80 each have a water guide rib 99. The water guiding rib 99 extends in the vertical direction along the leeward side end portion of the indoor communication portion 64 provided on the leeward side of the indoor fin 60a. As shown in FIG. 16, the water guiding rib 99 is configured to be recessed toward the plate thickness direction of the indoor fin 60 a with respect to the surrounding main surface 61. It is preferable that the water guide rib 99 is configured to be recessed more than the plate thickness of the indoor fin 60a.
 このように、室内フィン60aに導水リブ99を設けることで、室内熱交換器51において生じた結露水は導水リブ99に捕らえられるので、導水リブ99を伝って下方に結露水が導かれやすくなる。このため、室内フィン60aの風下側端部に結露水が到達することが抑制され、結露水の飛散が効果的に抑制される。 Thus, by providing the water guiding rib 99 on the indoor fin 60a, the condensed water generated in the indoor heat exchanger 51 is captured by the water guiding rib 99, so that the condensed water is easily guided downward through the water guiding rib 99. . For this reason, it is suppressed that condensed water reaches | attains the leeward side edge part of the indoor fin 60a, and scattering of condensed water is suppressed effectively.
 導水リブ99は、室内連通部64の室内空気流れ方向の幅の半分よりも風下側に設けられていることが好ましい。導水リブ99は、室内連通部64の室内空気流れ方向の幅の内、風下側端部から20%以内の位置に設けられていることがより好ましい。 It is preferable that the water guide rib 99 is provided on the leeward side with respect to half the width of the indoor communication portion 64 in the indoor air flow direction. More preferably, the water guide rib 99 is provided at a position within 20% of the width of the indoor communication portion 64 in the indoor air flow direction from the leeward side end portion.
 なお、導水リブ99を有する室内フィン60aにおいて、室内連通部64の室内空気流れ方向における幅WLと、室内フィン60の室内空気流れ方向における幅WFとは、0.2≦WL/WFの関係を満たしていることが好ましい。 In the indoor fin 60a having the water guide rib 99, the width WL of the indoor communication portion 64 in the indoor air flow direction and the width WF of the indoor fin 60 in the indoor air flow direction have a relationship of 0.2 ≦ WL / WF. It is preferable to satisfy.
 (6-2)変形例B
 上記実施形態では、室内熱交換器51は、風上熱交換部70と風下熱交換部80とを有しており、室内空気流れ方向において室内扁平管55が2列に並んで設けられている。しかし、室内熱交換器51が備える室内扁平管55は、2列に限られるものではなく、3列以上であってもよい。室内扁平管55の列の数を増やすことで、結露水の排水経路をより多く確保することができるので、室内熱交換器51の風下側端部からの結露水の飛散をより効果的に抑制することが可能となる。
(6-2) Modification B
In the said embodiment, the indoor heat exchanger 51 has the windward heat exchange part 70 and the leeward heat exchange part 80, and the indoor flat tube 55 is provided along with 2 rows in the indoor air flow direction. . However, the indoor flat tubes 55 provided in the indoor heat exchanger 51 are not limited to two rows, and may be three or more rows. By increasing the number of rows of the indoor flat tubes 55, it is possible to secure more drainage paths for the condensed water, and thus more effectively suppress the scattering of the condensed water from the leeward side end of the indoor heat exchanger 51. It becomes possible to do.
 (6-3)変形例C
 上記実施形態では、室内熱交換器51において、風上熱交換部70に属する複数の室内扁平管55と、風下熱交換部80に属する複数の室内扁平管55とは、室内空気流れ方向に沿って視た場合において、概ね互いに重なるように配置されている。
(6-3) Modification C
In the above embodiment, in the indoor heat exchanger 51, the plurality of indoor flat tubes 55 belonging to the windward heat exchange unit 70 and the plurality of indoor flat tubes 55 belonging to the leeward heat exchange unit 80 are along the indoor air flow direction. When viewed from above, they are generally arranged so as to overlap each other.
 しかし、室内熱交換器51の室内扁平管55の配置は、これに限られるものではない。例えば、風上熱交換部70に属する複数の室内扁平管55と、風下熱交換部80に属する複数の室内扁平管55とは、室内空気流れ方向に沿って視た場合において、互いに重ならないように配置されていてもよい。これにより、風上側に位置する室内扁平管55にも風下側に位置する室内扁平管55にも、室内空気の流れを十分に当てることが可能になるので、室内熱交換器51の伝熱性能が向上する。 However, the arrangement of the indoor flat tubes 55 of the indoor heat exchanger 51 is not limited to this. For example, the plurality of indoor flat tubes 55 belonging to the windward heat exchange unit 70 and the plurality of indoor flat tubes 55 belonging to the leeward heat exchange unit 80 do not overlap each other when viewed along the indoor air flow direction. May be arranged. Thus, the indoor air flow can be sufficiently applied to the indoor flat tube 55 located on the leeward side and the indoor flat tube 55 located on the leeward side, so that the heat transfer performance of the indoor heat exchanger 51 is achieved. Will improve.
 (6-4)変形例D
 上記実施形態では、室内熱交換器51の室内フィン60は、メインスリット62及び連通位置スリット63を有している。メインスリット62及び連通位置スリット63は、室内フィン60の主面61に対して板厚方向の一方側にスリット全体が位置するように切り起こされて構成されている。
(6-4) Modification D
In the above embodiment, the indoor fin 60 of the indoor heat exchanger 51 has the main slit 62 and the communication position slit 63. The main slit 62 and the communication position slit 63 are configured to be cut and raised so that the entire slit is located on one side in the plate thickness direction with respect to the main surface 61 of the indoor fin 60.
 しかし、室内フィン60に形成されるメインスリット62及び連通位置スリット63の切り起こし方は、これに限られない。例えば、メインスリット62及び連通位置スリット63の代わりに、例えば、ルーバーと称される構造が採用されてもよい。ルーバーとは、切り起こされて構成されるスリットの一種である。例えば、ルーバーの風上側端部は、室内フィン60の主面61の板厚方向の一方の側に位置し、ルーバーの風下側端部は、室内フィン60の主面61の板厚方向の他方の側に位置している。 However, the way to cut and raise the main slit 62 and the communication position slit 63 formed in the indoor fin 60 is not limited to this. For example, instead of the main slit 62 and the communication position slit 63, for example, a structure called a louver may be adopted. A louver is a type of slit that is cut and raised. For example, the leeward end of the louver is located on one side of the main surface 61 of the indoor fin 60 in the plate thickness direction, and the leeward end of the louver is the other of the main surface 61 of the indoor fin 60 in the plate thickness direction. Located on the side.
 (6-5)変形例E
 上記実施形態では、室内熱交換器51は、2列の室内扁平管55を有している。しかし、室内熱交換器51として、2列の室内扁平管55を有している室内熱交換器51の他に、1列のみの室内扁平管55を有している室内熱交換器51が用いられてもよい。この場合、室内熱交換器51は、室内扁平管55の幅WTが12mm以下でなくても、室内扁平管55が、HT/WT≧0.15の関係を満たしていればよい。また、室内扁平管55は、HT/WT≧0.2の関係をさらに満たしていることが好ましい。特に、室内扁平管55は、0.15≦HT/WT≦0.3の関係を満たしていることが好ましく、0.2≦HT/WT≦0.3の関係を満たしていることがより好ましい。
(6-5) Modification E
In the above embodiment, the indoor heat exchanger 51 has two rows of indoor flat tubes 55. However, as the indoor heat exchanger 51, in addition to the indoor heat exchanger 51 having two rows of indoor flat tubes 55, an indoor heat exchanger 51 having only one row of indoor flat tubes 55 is used. May be. In this case, in the indoor heat exchanger 51, the indoor flat tube 55 only needs to satisfy the relationship of HT / WT ≧ 0.15 even if the width WT of the indoor flat tube 55 is not 12 mm or less. The indoor flat tube 55 preferably further satisfies the relationship of HT / WT ≧ 0.2. In particular, the indoor flat tube 55 preferably satisfies the relationship of 0.15 ≦ HT / WT ≦ 0.3, and more preferably satisfies the relationship of 0.2 ≦ HT / WT ≦ 0.3. .
 本変形例においても、実施形態と同様に、室内熱交換器51は、室内扁平管55の表面に滞留しようとする結露水を排出しやすくして、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制する。 Also in the present modification, as in the embodiment, the indoor heat exchanger 51 is generated when it is used as a refrigerant evaporator by facilitating discharge of condensed water that tends to stay on the surface of the indoor flat tube 55. Suppresses dew condensation.
 また、本変形例では、室内扁平管55の幅WTは、12mm以下であることが好ましい。この場合、室内扁平管55の幅WTは、10mm以下であることがより好ましい。特に、室内扁平管55の幅WTは、3mm以上かつ12mm以下であることが好ましく、3mm以上かつ10mm以下であることがより好ましい。 In this modification, the width WT of the indoor flat tube 55 is preferably 12 mm or less. In this case, the width WT of the indoor flat tube 55 is more preferably 10 mm or less. In particular, the width WT of the indoor flat tube 55 is preferably 3 mm or more and 12 mm or less, and more preferably 3 mm or more and 10 mm or less.
 また、室内扁平管55のHT/WTの値は、室外扁平管90のHTo/WToの値よりも大きいことが好ましい。 Further, the HT / WT value of the indoor flat tube 55 is preferably larger than the HTo / WTo value of the outdoor flat tube 90.
 また、室内扁平管55の幅WTは、室外扁平管90の幅WToよりも小さいことが好ましい。 Further, the width WT of the indoor flat tube 55 is preferably smaller than the width WTo of the outdoor flat tube 90.
 また、室内扁平管55の高さHTは、1.2mm以上かつ2.5mm以下であることが好ましい。 The height HT of the indoor flat tube 55 is preferably 1.2 mm or more and 2.5 mm or less.
 また、室内熱交換器51の段ピッチDPは、8.0mm以上かつ15.0mm以下であることが好ましい。 Further, the step pitch DP of the indoor heat exchanger 51 is preferably 8.0 mm or more and 15.0 mm or less.
 また、室内熱交換器51の複数の室内フィン60の板厚方向におけるピッチは、室外熱交換器11の複数の室外フィン91の板厚方向におけるピッチよりも小さいことが好ましい。 Also, the pitch in the plate thickness direction of the plurality of indoor fins 60 of the indoor heat exchanger 51 is preferably smaller than the pitch in the plate thickness direction of the plurality of outdoor fins 91 of the outdoor heat exchanger 11.
 また、室内熱交換器51は、4.0≦DP/HT≦10.0の関係を満たしていることが好ましい。室内熱交換器51は、4.6≦DP/HT≦8.0の関係をさらに満たしていることが好ましい。 Moreover, it is preferable that the indoor heat exchanger 51 satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. It is preferable that the indoor heat exchanger 51 further satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0.
 また、室内熱交換器51のDP/HTの値は、室外熱交換器11のDPo/HToの値よりも小さいことが好ましい。 Moreover, it is preferable that the DP / HT value of the indoor heat exchanger 51 is smaller than the DPo / HTo value of the outdoor heat exchanger 11.
 また、WLを室内空気流れ方向における室内連通部64の長さとし、WFを室内空気流れ方向における室内フィン60の長さとした場合、室内フィン60は、0.2≦WL/WF≦0.5の関係を満たすことが好ましい。 Further, when WL is the length of the indoor communication portion 64 in the indoor air flow direction and WF is the length of the indoor fin 60 in the indoor air flow direction, the indoor fin 60 satisfies 0.2 ≦ WL / WF ≦ 0.5. It is preferable to satisfy the relationship.
 (7)むすび
 以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
(7) Conclusion While the embodiments and modifications of the present disclosure have been described above, various changes in form and details can be made without departing from the spirit and scope of the present disclosure described in the claims. Will be understood.
  1  空気調和装置
  2  室外ユニット(室外機)
  3  室内ユニット(室内機)
 11  室外熱交換器
 51  室内熱交換器
 55  室内扁平管(扁平管)
 55c 流路
 60  室内フィン(伝熱フィン)
 62  メインスリット(切り起こし部)
 63  連通位置スリット(切り起こし部)
 64  室内連通部(連通部)
 65  風上部(上下に並んだ扁平管同士の間に位置する各部分)
 90  室外扁平管(扁平管)
 90c 流路
 91  室外フィン(伝熱フィン)
 97a 連通部
 97b 風下部
1 Air conditioner 2 Outdoor unit (outdoor unit)
3 Indoor units (indoor units)
11 Outdoor heat exchanger 51 Indoor heat exchanger 55 Indoor flat tube (flat tube)
55c channel 60 indoor fin (heat transfer fin)
62 Main slit (cut and raised)
63 Communication position slit (cut and raised part)
64 Indoor communication part (communication part)
65 Windward (each part located between flat tubes lined up and down)
90 Outdoor flat tube (flat tube)
90c channel 91 outdoor fin (heat transfer fin)
97a Communication part 97b Windward
特開2016-041986号公報Japanese Unexamined Patent Publication No. 2016-041986

Claims (13)

  1.  空気調和装置(1)の室内機(3)に用いられる室内熱交換器(51)であって、
     冷媒を通過させる流路(55c)を内部に有する複数の扁平管(55)と、
     第1方向に延びている連通部(64)を有し、前記第1方向に並んだ複数の前記扁平管に接合された複数の伝熱フィン(60)と、
    を備え、
     複数の前記扁平管は、前記扁平管の長手方向及び前記第1方向と交差する第2方向に並んで配置され、
     前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、WT≦12mmの関係を満たす、
    室内熱交換器。
    An indoor heat exchanger (51) used for an indoor unit (3) of an air conditioner (1),
    A plurality of flat tubes (55) having therein a flow path (55c) for allowing the refrigerant to pass;
    A plurality of heat transfer fins (60) having communication portions (64) extending in the first direction and joined to the plurality of flat tubes arranged in the first direction;
    With
    The plurality of flat tubes are arranged side by side in a second direction intersecting the longitudinal direction of the flat tubes and the first direction,
    When the dimension in the longitudinal direction in the cross-sectional view of the flat tube is WT, the flat tube satisfies the relationship of WT ≦ 12 mm.
    Indoor heat exchanger.
  2.  空気調和装置(1)の室内機(3)に用いられる室内熱交換器(51)であって、
     冷媒を通過させる流路(55c)を内部に有する複数の扁平管(55)と、
     第1方向に延びている連通部(64)を有し、前記第1方向に並んだ複数の前記扁平管に接合された伝熱フィン(60)と、
    を備え、
     前記扁平管の断面視における短手方向の寸法をHTとし、前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、HT/WT≧0.15の関係を満たす、
    室内熱交換器。
    An indoor heat exchanger (51) used for an indoor unit (3) of an air conditioner (1),
    A plurality of flat tubes (55) having therein a flow path (55c) for allowing the refrigerant to pass;
    A heat transfer fin (60) having a communication portion (64) extending in the first direction and joined to the plurality of flat tubes arranged in the first direction;
    With
    The flat tube satisfies the relationship of HT / WT ≧ 0.15, where HT is the dimension in the short direction in the cross-sectional view of the flat tube and WT is the dimension in the long direction in the cross-sectional view of the flat tube. ,
    Indoor heat exchanger.
  3.  前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、WT≦12mmの関係をさらに満たす、
    請求項2に記載の室内熱交換器。
    When the dimension in the longitudinal direction in the cross-sectional view of the flat tube is WT, the flat tube further satisfies the relationship of WT ≦ 12 mm.
    The indoor heat exchanger according to claim 2.
  4.  前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、WT≦10mmの関係をさらに満たす、
    請求項1又は3に記載の室内熱交換器。
    When the dimension in the longitudinal direction in the sectional view of the flat tube is WT, the flat tube further satisfies the relationship of WT ≦ 10 mm.
    The indoor heat exchanger according to claim 1 or 3.
  5.  前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、WT≧3mmの関係をさらに満たす、
    請求項1、3及び4のいずれか1項に記載の室内熱交換器。
    When the longitudinal dimension in the cross-sectional view of the flat tube is WT, the flat tube further satisfies the relationship of WT ≧ 3 mm.
    The indoor heat exchanger according to any one of claims 1, 3, and 4.
  6.  前記扁平管の断面視における短手方向の寸法をHTとし、前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、HT/WT≧0.2の関係をさらに満たす、
    請求項2から5のいずれか1項に記載の室内熱交換器。
    When the dimension in the short direction in the cross-sectional view of the flat tube is HT and the dimension in the long direction in the cross-sectional view of the flat tube is WT, the flat tube further has a relationship of HT / WT ≧ 0.2. Fulfill,
    The indoor heat exchanger according to any one of claims 2 to 5.
  7.  前記扁平管の断面視における短手方向の寸法をHTとし、前記扁平管の断面視における長手方向の寸法をWTとした場合に、前記扁平管は、HT/WT≦0.3の関係をさらに満たす、
    請求項2から6のいずれか1項に記載の室内熱交換器。
    When the dimension in the short direction in the cross-sectional view of the flat tube is HT and the dimension in the long direction in the cross-sectional view of the flat tube is WT, the flat tube further satisfies the relationship of HT / WT ≦ 0.3. Fulfill,
    The indoor heat exchanger according to any one of claims 2 to 6.
  8.  請求項1から7のいずれか1項に記載の室内熱交換器(51)を備える空気調和装置(1)。 An air conditioner (1) comprising the indoor heat exchanger (51) according to any one of claims 1 to 7.
  9.  室外熱交換器(11)をさらに備え、
     前記室外熱交換器は、
      冷媒を通過させる流路(90c)を内部に有する複数の扁平管(90)と、
      第3方向に並んだ複数の前記扁平管に接合された伝熱フィン(91)と、
     を有する、
    請求項8に記載の空気調和装置。
    An outdoor heat exchanger (11),
    The outdoor heat exchanger is
    A plurality of flat tubes (90) having a flow path (90c) for allowing refrigerant to pass through;
    Heat transfer fins (91) joined to the plurality of flat tubes arranged in the third direction;
    Having
    The air conditioning apparatus according to claim 8.
  10.  前記室内熱交換器の前記扁平管の断面視における短手方向の寸法をHTとし、
     前記室内熱交換器の前記扁平管の断面視における長手方向の寸法をWTとし、
     前記室外熱交換器の前記扁平管の断面視における短手方向の寸法をHToとし、
     前記室外熱交換器の前記扁平管の断面視における長手方向の寸法をWToとした場合に、
    HT/WT≧HTo/WToの関係を満たす、
    請求項9に記載の空気調和装置。
    The dimension in the short direction in the cross-sectional view of the flat tube of the indoor heat exchanger is HT,
    The dimension in the longitudinal direction in the sectional view of the flat tube of the indoor heat exchanger is WT,
    The dimension in the short direction in the cross-sectional view of the flat tube of the outdoor heat exchanger is HTo,
    When the dimension in the longitudinal direction in the sectional view of the flat tube of the outdoor heat exchanger is WTo,
    Satisfying the relationship of HT / WT ≧ HTo / WTo,
    The air conditioning apparatus according to claim 9.
  11.  前記室内熱交換器の前記扁平管の断面視における長手方向の寸法をWTとし、
     前記室外熱交換器の前記扁平管の断面視における長手方向の寸法をWToとした場合に、
    WT≦WToの関係を満たす、
    請求項9又は10に記載の空気調和装置。
    The dimension in the longitudinal direction in the sectional view of the flat tube of the indoor heat exchanger is WT,
    When the dimension in the longitudinal direction in the sectional view of the flat tube of the outdoor heat exchanger is WTo,
    Satisfying the relationship of WT ≦ WTo,
    The air conditioning apparatus according to claim 9 or 10.
  12.  前記室内熱交換器は、前記第1方向に並んだ複数の前記扁平管からなる列を有し、
     前記室外熱交換器は、前記第3方向に並んだ複数の前記扁平管からなる列を有し、
     前記室内熱交換器の前記列の数は、前記室外熱交換器の前記列の数以上である、
    請求項9から11のいずれか1項に記載の空気調和装置。
    The indoor heat exchanger has a row composed of a plurality of the flat tubes arranged in the first direction,
    The outdoor heat exchanger has a row composed of a plurality of the flat tubes arranged in the third direction,
    The number of the rows of the indoor heat exchanger is equal to or greater than the number of the rows of the outdoor heat exchanger.
    The air conditioning apparatus according to any one of claims 9 to 11.
  13.  前記室外熱交換器の前記伝熱フィンは、前記第3方向に延びている連通部(97a)を有し、
     前記室内熱交換器において、前記連通部は、前記扁平管に対して、前記室内熱交換器を通過する気体の流れ方向の下流側にあり、
     前記室外熱交換器において、前記連通部は、前記扁平管に対して、前記室外熱交換器を通過する気体の流れ方向の上流側にある、
    請求項9から12のいずれか1項に記載の空気調和装置。
    The heat transfer fin of the outdoor heat exchanger has a communication portion (97a) extending in the third direction,
    In the indoor heat exchanger, the communication portion is on the downstream side in the flow direction of the gas passing through the indoor heat exchanger with respect to the flat tube,
    In the outdoor heat exchanger, the communication portion is upstream of the flat tube in the flow direction of the gas passing through the outdoor heat exchanger.
    The air conditioning apparatus according to any one of claims 9 to 12.
PCT/JP2019/022415 2018-06-12 2019-06-05 Indoor heat exchanger and air conditioning device WO2019239990A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111832A JP2019215117A (en) 2018-06-12 2018-06-12 Indoor heat exchanger, and air conditioner
JP2018-111832 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019239990A1 true WO2019239990A1 (en) 2019-12-19

Family

ID=68842255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022415 WO2019239990A1 (en) 2018-06-12 2019-06-05 Indoor heat exchanger and air conditioning device

Country Status (2)

Country Link
JP (1) JP2019215117A (en)
WO (1) WO2019239990A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190889A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
WO2023190890A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
JP2023152287A (en) * 2022-03-31 2023-10-16 ダイキン工業株式会社 air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11988462B2 (en) 2020-08-31 2024-05-21 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302183A (en) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd Heat exchanger for air-conditioner
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2014001882A (en) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp Heat exchanger and air conditioner
WO2016194088A1 (en) * 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP2017187243A (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
JP2018059704A (en) * 2016-09-29 2018-04-12 ダイキン工業株式会社 Heat exchanger and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302183A (en) * 2002-04-09 2003-10-24 Toyo Radiator Co Ltd Heat exchanger for air-conditioner
JP2006336873A (en) * 2002-10-02 2006-12-14 Showa Denko Kk Heat exchanging tube and heat exchanger
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2014001882A (en) * 2012-06-18 2014-01-09 Mitsubishi Electric Corp Heat exchanger and air conditioner
WO2016194088A1 (en) * 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP2017187243A (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
JP2018059704A (en) * 2016-09-29 2018-04-12 ダイキン工業株式会社 Heat exchanger and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190889A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
WO2023190890A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
JP2023151215A (en) * 2022-03-31 2023-10-16 ダイキン工業株式会社 air conditioner
JP2023152287A (en) * 2022-03-31 2023-10-16 ダイキン工業株式会社 air conditioner
JP7401803B2 (en) 2022-03-31 2023-12-20 ダイキン工業株式会社 air conditioner
JP7401812B2 (en) 2022-03-31 2023-12-20 ダイキン工業株式会社 air conditioner

Also Published As

Publication number Publication date
JP2019215117A (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP7092987B2 (en) Indoor heat exchanger and air conditioner
WO2019239990A1 (en) Indoor heat exchanger and air conditioning device
WO2015162689A1 (en) Air conditioner
CN110612425B (en) Heat exchanger
US20090314020A1 (en) Indoor unit for air conditioner
JPWO2010146852A1 (en) Ceiling-mounted air conditioner
JP7078840B2 (en) Heat exchanger and air conditioner
JP6520353B2 (en) Heat exchanger and air conditioner
WO2019004139A1 (en) Heat exchanger
JP6793831B2 (en) Heat exchanger and refrigeration cycle equipment
WO2019240055A1 (en) Heat exchanger and air conditioner
JP6631608B2 (en) Air conditioner
JP7137092B2 (en) Heat exchanger
JP7089187B2 (en) Heat exchanger and air conditioner
WO2021095452A1 (en) Heat exchanger and air conditioner
JP2019132511A (en) Refrigeration device
JPWO2019180764A1 (en) Indoor unit and air conditioner
JP2023148248A (en) Indoor unit for air conditioner
JP5849697B2 (en) Outdoor unit
JP2019132512A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819233

Country of ref document: EP

Kind code of ref document: A1