JP2006336873A - Heat exchanging tube and heat exchanger - Google Patents

Heat exchanging tube and heat exchanger Download PDF

Info

Publication number
JP2006336873A
JP2006336873A JP2003327179A JP2003327179A JP2006336873A JP 2006336873 A JP2006336873 A JP 2006336873A JP 2003327179 A JP2003327179 A JP 2003327179A JP 2003327179 A JP2003327179 A JP 2003327179A JP 2006336873 A JP2006336873 A JP 2006336873A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
tube body
refrigerant
following relational
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003327179A
Other languages
Japanese (ja)
Inventor
Koichiro Take
幸一郎 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2003327179A priority Critical patent/JP2006336873A/en
Priority to US10/529,632 priority patent/US7165606B2/en
Priority to KR1020057005715A priority patent/KR20050067168A/en
Priority to AU2003272090A priority patent/AU2003272090B2/en
Priority to PCT/JP2003/012616 priority patent/WO2004031676A1/en
Priority to EP03753978A priority patent/EP1546630A4/en
Priority to US11/561,250 priority patent/US20070074862A1/en
Publication of JP2006336873A publication Critical patent/JP2006336873A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanging tube having sufficient pressure resistant strength and small passage resistance while keeping light weight, and improving heat exchanging performance. <P>SOLUTION: This heat exchanging tube is applied to a header type heat exchanger. This heat exchanging tube is constituted to satisfy relationships of W=6 to 18 mm, Ac/At×100=50 to 70%, and P/L×100=350 to 450%, where " W" is a width of a tube main body 61, "Ac" is a total cross-sectional area of a refrigerant passages 65, "At" is a total cross-sectional area of the tube main body 61 (including the refrigerant passages), "L" is an external perimeter of the tube main body 61, and "P" is a total inner perimeter of the refrigerant passages 65. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車用エアコン、家庭用エアコン、冷蔵庫、電子機器冷却器等の冷凍サイクルにおけるコンデンサやエバポレータ等の熱交換器、及びその熱交換器用のチューブに関する。   The present invention relates to a heat exchanger such as a condenser and an evaporator in a refrigeration cycle such as an automobile air conditioner, a home air conditioner, a refrigerator, and an electronic device cooler, and a tube for the heat exchanger.

従来、自動車用エアコンの冷凍サイクルにおけるコンデンサとして、下記特許文献1に示すように、マルチフロータイプと称される熱交換器が多く採用されている。   Conventionally, as a condenser in a refrigeration cycle of an automotive air conditioner, as shown in Patent Document 1 below, a heat exchanger called a multi-flow type is often employed.

この熱交換器は、一対の垂直方向に沿うヘッダー間に、両端を両ヘッダーに連通接続する複数本の熱交換器用チューブが上下に並列状に配置されるとともに、ヘッダー内に設けられた仕切部材によって、複数の熱交換器用チューブが区分けされて、複数のパスが形成される。そしてヘッダーの冷媒入口から流入されたガス冷媒が、各パスを順に流通して凝縮液化されて、ヘッダーの冷媒出口から流出されるものである。   In this heat exchanger, a plurality of heat exchanger tubes that are connected in communication with both headers at both ends are arranged in parallel in the vertical direction between a pair of vertical headers, and a partition member provided in the header Thus, a plurality of heat exchanger tubes are divided to form a plurality of paths. The gas refrigerant flowing in from the refrigerant inlet of the header is circulated through each path in order to be condensed and liquefied, and flows out from the refrigerant outlet of the header.

このような熱交換器のサイズは、要求される放熱性能や設置スペースの大きさ等によって決定されるものであり、例えばその熱交換器用チューブとしては、幅が20mm程度の扁平形状のものが一般に使用されている。
国際公開第WO02/42706号
The size of such a heat exchanger is determined by the required heat dissipation performance, the size of the installation space, and the like. For example, a flat tube having a width of about 20 mm is generally used as the heat exchanger tube. in use.
International Publication No. WO02 / 42706

上記熱交換器は、主として自動車やトラック等の車両に搭載されるものであるが、このような車両においては、近年、燃費の向上や有害な排出ガス(CO2、NOX)の削減を目的として、軽量化が強く求められている。このため、あらゆる自動車部品の軽量化が求められ、上記熱交換器も例外ではない。   The heat exchanger is mainly mounted on a vehicle such as an automobile or a truck. In such a vehicle, in recent years, for the purpose of improving fuel consumption and reducing harmful exhaust gases (CO2, NOX), There is a strong demand for weight reduction. For this reason, weight reduction of all automobile parts is calculated | required and the said heat exchanger is no exception.

このような状況下にあって、熱交換器の軽量化を図るには、チューブ高さを低く設定したり、チューブの外周壁の肉厚を薄く設定したり、チューブ間のフィンを薄く設定する方法等が考えられる。   Under these circumstances, to reduce the weight of the heat exchanger, set the tube height low, set the outer wall thickness of the tube thin, or set the fin between the tubes thin. A method etc. can be considered.

しかしながら、これらの軽量化方法は、限界に近づいており、これらの方法に基づいて軽量化を進めようとすると、熱交換器本来の性能を低下させることになる。例えばチューブ高さを低く設定すると、チューブ内の冷媒通路の通路断面積が小さくなり、通路抵抗が増大するとともに、冷媒通路の内周長が短くなり放熱性能が低下することになる。またチューブ外周壁の肉厚を薄く設定すると、耐圧性が低下することになる。更にフィンを薄く設定すると、フィンにおけるチューブと接触している部分と、フィン中央部の温度差が大きくなり、放熱性能が低下することになる。   However, these weight reduction methods are approaching the limit, and if the weight reduction is promoted based on these methods, the original performance of the heat exchanger is reduced. For example, when the tube height is set low, the cross-sectional area of the refrigerant passage in the tube is reduced, the passage resistance is increased, the inner peripheral length of the refrigerant passage is shortened, and the heat dissipation performance is lowered. Further, when the wall thickness of the tube outer peripheral wall is set to be thin, the pressure resistance is lowered. Further, if the fin is set thin, the temperature difference between the fin in contact with the tube and the fin central portion becomes large, and the heat dissipation performance is lowered.

この発明は、上記従来技術の問題を解消し、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができる熱交換器用チューブ及び熱交換器を提供することを目的とする。   This invention eliminates the above-mentioned problems of the prior art, can achieve sufficient pressure resistance while achieving weight reduction, and can further reduce passage resistance and improve heat exchange performance. An object is to provide a tube and a heat exchanger.

本発明者は、鋭意努力して、コンデンサ等の熱交換器用チューブの構成をあらゆる角度から詳細に分析し、更にその分析結果を基に、綿密な実験研究を繰り返し行ったところ、熱交換器用チューブ及び熱交換器として、上記目的を達成可能な最適条件を見出し、本発明を成すに至った。   The inventor diligently analyzed the configuration of a heat exchanger tube such as a condenser in detail from all angles, and further repeated detailed experimental research based on the analysis result. And as a heat exchanger, the optimum condition which can achieve the said objective was discovered, and it came to make this invention.

すなわち、本第1発明は、以下の構成を要旨とする。   That is, the gist of the first invention is as follows.

(1) 所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成される熱交換器用チューブにおいて、
前記チューブ本体の幅を「W」、前記冷媒通路の総断面積を「Ac」、前記チューブ本体の総断面積(冷媒通路部分を含む)を「At」、前記チューブ本体の外周囲長を「L」及び前記冷媒通路の総内周囲長を「P」としたとき、下記の関係式(イ)〜(ハ):
W=6〜18mm …(イ)
Ac/At×100=50〜70(%)…(ロ)
P/L×100=350〜450(%)…(ハ)
が成立するよう構成されてなることを特徴とする熱交換器用チューブ。
(1) In the heat exchanger tube in which a plurality of refrigerant passages extending in the tube length direction are formed in parallel in the tube width direction in a flat tube body having a predetermined length,
The tube body width is “W”, the refrigerant passage total cross-sectional area is “Ac”, the tube main body cross-sectional area (including the refrigerant passage portion) is “At”, and the tube main body outer perimeter is “ When “L” and the total inner perimeter of the refrigerant passage are “P”, the following relational expressions (A) to (C):
W = 6-18mm ... (I)
Ac / At × 100 = 50 to 70 (%) (B)
P / L × 100 = 350 to 450 (%) (C)
A tube for a heat exchanger, characterized in that

以下、同項1記載の発明(第1発明)の熱交換器用チューブは、図1及び図2に示すように、自動車用エアコンの冷凍サイクルにおけるコンデンサ等として用いられるマルチフロータイプの熱交換器に適用されるものである。   Hereinafter, the heat exchanger tube of the invention described in the same paragraph 1 (first invention) is a multiflow type heat exchanger used as a condenser or the like in a refrigeration cycle of an automotive air conditioner, as shown in FIGS. 1 and 2. Applicable.

この熱交換器は、一対の垂直方向に沿うヘッダー(50)(50)間に、それぞれ両端を両ヘッダー(50)(50)に連通接続する複数本の熱交換器用チューブ(60)が並列状に配置されるとともに、チューブ(60)の各間及び最外側のチューブ(60)の外側にフィン(51)がそれぞれ配置され、更に最外側のフィン(51)の外側にサイドプレート(52)が配置される。また、ヘッダー(50)(50)に設けられた仕切部材(53)によって、熱交換チューブ(60)が区分けされて、複数のパス(C1)〜(C3)が形成される。そしてヘッダー上部の冷媒入口(50a)から流入されたガス冷媒が、各パス(C1)〜(C3)を順に流通し、その流通時に外気との熱交換により凝縮液化されて、ヘッダー下部の冷媒出口(50b)から流出されるものである。   In this heat exchanger, a plurality of heat exchanger tubes (60) are connected in parallel between a pair of headers (50) and (50) extending in the vertical direction, with both ends communicating with both headers (50) and (50). The fins (51) are disposed between the tubes (60) and outside the outermost tube (60), and the side plates (52) are disposed outside the outermost fins (51). Be placed. Moreover, the heat exchange tube (60) is divided by the partition member (53) provided in the header (50) (50), and a plurality of paths (C1) to (C3) are formed. And the gas refrigerant which flowed in from the refrigerant inlet (50a) of the header upper part distribute | circulates each path | pass (C1)-(C3) in order, and is condensed and liquefied by the heat exchange with external air at the time of the distribution | circulation, (50b).

この熱交換器におけるチューブ(60)は、アルミニウム(又はその合金)の押出成形品からなる押出チューブにより構成されている。   The tube (60) in this heat exchanger is constituted by an extruded tube made of an extruded product of aluminum (or an alloy thereof).

図3及び図4に示すように、この熱交換器用チューブ(60)は、高さ(H)が幅(W)よりも小さい扁平なチューブ本体(61)を有している。   As shown in FIGS. 3 and 4, the heat exchanger tube (60) has a flat tube body (61) having a height (H) smaller than a width (W).

チューブ本体(61)は、外周壁(63)と、その外周壁(63)の内部に一体に形成され仕切壁(64)とを具備している。仕切壁(64)は、外周壁(63)の上壁及び下壁間に架け渡されるようにして、チューブ長さ方向に連続して形成されている。そして、チューブ本体(61)における外周壁(63)の内部に、各仕切壁(64)に仕切られることにより、チューブ長さ方向に沿って延びる断面矩形状の複数の冷媒通路(65)がチューブ幅方向に並列状に形成されている。   The tube body (61) includes an outer peripheral wall (63) and a partition wall (64) formed integrally with the outer peripheral wall (63). The partition wall (64) is continuously formed in the tube length direction so as to be bridged between the upper wall and the lower wall of the outer peripheral wall (63). A plurality of refrigerant passages (65) having a rectangular cross section extending along the tube length direction are partitioned by the partition walls (64) inside the outer peripheral wall (63) of the tube main body (61). They are formed in parallel in the width direction.

ここで、本発明の熱交換器用チューブ(60)においては、上記の関係式(イ)〜(ハ)を成立させる必要がある。   Here, in the heat exchanger tube (60) of the present invention, it is necessary to establish the above relational expressions (A) to (C).

関係式(イ)は、チューブ幅(W)を特定するものであり、このチューブ幅(W)を6〜18mmに設定する必要がある。すなわち、チューブ幅(W)が広過ぎる場合(18mm超の場合)には、高重量化を来し、初期の目的を達成するのが困難になる恐れがある。逆に幅(W)が狭過ぎる場合(6mm未満の場合)には、冷媒通路(65)を十分な大きさに確保できなくなり、冷媒通路抵抗が増加するとともに、冷媒通路(65)の内周囲長が小さくなって放熱性能が低下し、十分な熱交換性能を得ることが困難になる恐れがある。なおチューブ幅(W)は、6〜14mmに設定するのが良く、より好ましくは、7〜12mmに設定するのが良い。   Relational expression (A) specifies the tube width (W), and it is necessary to set the tube width (W) to 6 to 18 mm. That is, when the tube width (W) is too wide (over 18 mm), there is a risk that the weight will increase and it may be difficult to achieve the initial purpose. Conversely, when the width (W) is too narrow (less than 6 mm), the refrigerant passage (65) cannot be secured to a sufficient size, the refrigerant passage resistance increases, and the inner periphery of the refrigerant passage (65). If the length is reduced, the heat dissipation performance is lowered, and it may be difficult to obtain sufficient heat exchange performance. The tube width (W) is preferably set to 6 to 14 mm, and more preferably 7 to 12 mm.

関係式(ロ)は、冷媒通路(65)の総断面積(Ac)とチューブ本体(61)の冷媒通路部分を含む総断面積(At)との関係を特定するものであり、この「Ac/At」×100を50〜70(%)に設定する必要があり、好ましくは55〜65(%)に設定するのが良い。すなわち、「Ac/At」が小さ過ぎる場合(50%未満の場合)、冷媒の通路抵抗が大きくなり、圧力損失が大きくなるとともに、チューブ重量の高重量化を来す恐れがある。逆に「Ac/At」が大き過ぎる場合(70%を超える場合)、流路断面積が増大し、チューブ内における冷媒の流速が低下し、熱伝達率が減少する恐れがある。   The relational expression (b) specifies the relationship between the total cross-sectional area (Ac) of the refrigerant passage (65) and the total cross-sectional area (At) including the refrigerant passage portion of the tube body (61). / At "× 100 needs to be set to 50 to 70 (%), preferably 55 to 65 (%). That is, if “Ac / At” is too small (less than 50%), the passage resistance of the refrigerant increases, pressure loss increases, and the tube weight may increase. Conversely, when “Ac / At” is too large (when it exceeds 70%), the flow path cross-sectional area increases, the flow rate of the refrigerant in the tube decreases, and the heat transfer rate may decrease.

また関係式(ハ)は、チューブ本体(61)の外周囲長(L)と冷媒通路(65)の総内周囲長(P)との関係を特定するものであり、「P/L」×100を350〜450(%)に設定する必要があり、より好ましくは360〜420(%)に設定するのが良い。すなわち「P/L」が小さ過ぎる場合(350%未満の場合)、伝熱性が低下し、熱交換器として十分な熱性能が得られない。逆に「P/L」が大き過ぎると(450%を超えると)、例えばチューブをアルミニウム押出成形品により構成する場合等において、押出金型に緻密な形状が必要となりチューブ製造が困難になる恐れがある。更に3次元形状加工方法や連通孔(冷媒通路)をロールフォーミング等で形成する方法であっても、金型が緻密な形状となりチューブ製造が困難になる恐れがある。   The relational expression (c) specifies the relationship between the outer perimeter (L) of the tube main body (61) and the total inner perimeter (P) of the refrigerant passage (65), and “P / L” × 100 needs to be set to 350 to 450 (%), more preferably 360 to 420 (%). That is, when “P / L” is too small (less than 350%), the heat transfer property is lowered and sufficient heat performance as a heat exchanger cannot be obtained. On the other hand, if “P / L” is too large (over 450%), for example, when the tube is made of an aluminum extrusion molded product, a dense shape is required for the extrusion mold, which may make it difficult to manufacture the tube. There is. Furthermore, even if a three-dimensional shape processing method or a method of forming communication holes (refrigerant passages) by roll forming or the like, the mold may have a dense shape and it may be difficult to manufacture the tube.

本第1発明の熱交換器用チューブを有する熱交換器においては、同項(1)記載の構成を有するものであるため、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができる。   In the heat exchanger having the heat exchanger tube of the first invention, since it has the configuration described in the same paragraph (1), it is possible to obtain sufficient pressure resistance while achieving weight reduction, The passage resistance can be reduced, and the heat exchange performance can be improved.

一方、本第1発明においては、以下の(2)〜(7)項に記載の構成を採用するのが好ましい。   On the other hand, in this 1st invention, it is preferable to employ | adopt the structure as described in the following (2)-(7) items.

(2) 下記の関係式(ニ):
P/W×100=750〜850(%) …(ニ)
が成立するよう構成されてなる前項(1)記載の熱交換器用チューブ。
(2) The following relational expression (d):
P / W × 100 = 750-850 (%) (D)
The tube for a heat exchanger according to the preceding item (1), which is configured so that

同項(2)は、チューブ本体(61)の総内周囲長(P)とチューブ幅(W)との関係を特定するものであり、「P/W×100」を750〜850(%)に設定するのが好ましい。すなわちこの「P/W」が上記の規定値を逸脱する場合には、良好な通路形状を得ることができず、通路抵抗の増大や伝熱性の低下により、熱交換性能を低下させる恐れがある。   The same item (2) specifies the relationship between the total inner peripheral length (P) of the tube body (61) and the tube width (W), and “P / W × 100” is set to 750 to 850 (%). It is preferable to set to. That is, when this “P / W” deviates from the above specified value, it is not possible to obtain a good passage shape, and there is a risk that the heat exchange performance may be lowered due to an increase in passage resistance or a decrease in heat conductivity. .

(3) 前記冷媒通路の本数を「N」としたとき、下記の関係式(ホ):
N/W=3〜4(個/mm)…(ホ)
が成立するよう構成されてなる前項1又は2記載の熱交換器用チューブ。
(3) When the number of the refrigerant passages is “N”, the following relational expression (e):
N / W = 3-4 (pieces / mm) (e)
3. The heat exchanger tube according to the preceding item 1 or 2, wherein the tube is configured so that

同項(3)は、冷媒通路(65)の本数(N)とチューブ幅(W)との関係を特定するものであり、「N/W」を3〜4(個/mm)に設定するのが良い。すなわちこの「N/W」が小さ過ぎる場合(3個/mm未満の場合)には、仕切壁(64)の幅の数が減少して耐圧性が低下する恐れがある。逆に「N/W」が大き過ぎる場合(4個/mm超の場合)には、通路(65)の幅が小さくなって、通路抵抗の増大により、熱交換性能を低下させる恐れがある。   The item (3) specifies the relationship between the number (N) of the refrigerant passages (65) and the tube width (W), and sets “N / W” to 3 to 4 (pieces / mm). Is good. That is, when this “N / W” is too small (less than 3 / mm), the number of widths of the partition wall (64) may be reduced and the pressure resistance may be lowered. On the other hand, when “N / W” is too large (in the case of more than 4 / mm), the width of the passage (65) becomes small, and the heat exchange performance may be deteriorated due to an increase in passage resistance.

(4) 前記チューブ本体の高さを「H」としたとき、下記の関係式(ヘ):
H=0.5〜1.5mm …(ヘ)
が成立するよう構成されてなる前項1ないし3のいずれかに記載の熱交換器用チューブ。
(4) When the height of the tube body is “H”, the following relational expression (f):
H = 0.5-1.5mm (F)
4. The heat exchanger tube according to any one of the preceding items 1 to 3, wherein

同項(4)は、チューブ高さ(H)を特定するものであり、このチューブ高さ(H)を0.5〜1.5mmに設定するのが望ましい。すなわちチューブ高さ(H)が高過ぎる場合(1.5mm超の場合)には、チューブサイズの増大により高重量化を来たし、初期の目的を達成するのが困難になる恐れがある。逆にチューブ高さ(H)が低過ぎる場合(0.5mm未満の場合)には、冷媒通路(65)を十分な大きさに確保できなくなり、冷媒通路抵抗が増加するとともに、冷媒通路(65)の内周囲長が小さくなって放熱性能が低下し、十分な熱交換性能を得ることが困難になる恐れがある。   The item (4) specifies the tube height (H), and it is desirable to set the tube height (H) to 0.5 to 1.5 mm. In other words, if the tube height (H) is too high (over 1.5 mm), the tube size increases, resulting in an increase in weight, which may make it difficult to achieve the initial purpose. Conversely, when the tube height (H) is too low (less than 0.5 mm), the refrigerant passage (65) cannot be secured to a sufficient size, the refrigerant passage resistance increases, and the refrigerant passage (65 ), The heat dissipation performance decreases, and it may be difficult to obtain sufficient heat exchange performance.

なおチューブ高さ(H)を、0.5mm未満に設定するために、チューブ本体(61)の外周壁(63)の厚さを薄くして、冷媒通路(65)の大きさを確保しようとすると、外周壁(63)の耐圧性、ひいてはチューブ全体の耐圧性が低下する恐れがある。   In addition, in order to set the tube height (H) to less than 0.5 mm, the thickness of the outer peripheral wall (63) of the tube main body (61) is made thin so as to secure the size of the refrigerant passage (65). Then, the pressure resistance of the outer peripheral wall (63), and thus the pressure resistance of the entire tube may be reduced.

(5) 前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」としたとき、下記の関係式(ト):
Ta=50〜80μm …(ト)
が成立するよう構成されてなる前項1ないし4のいずれかに記載の熱交換器用チューブ。
(5) When the thickness of the partition wall between adjacent refrigerant passages in the tube body is “Ta”, the following relational expression (g):
Ta = 50-80 μm (G)
5. The heat exchanger tube according to any one of the preceding items 1 to 4, wherein the tube is configured so that

同項(5)は、チューブ本体(61)における隣合う冷媒通路間の仕切壁(64)の厚み(Ta)を特定するものであり、この仕切壁厚み(Ta)を50〜80μmに設定するのが、より好ましい。すなわちこの厚み(Ta)が薄過ぎる場合(50μm未満の場合)には、仕切壁(64)の強度が低下し、十分な耐圧性を得ることが困難になる恐れがある。逆に仕切壁厚み(Ta)が厚過ぎる場合(80μm超の場合)には、冷媒通路(65)を十分な大きさに確保できなくなり、冷媒通路抵抗が増加して熱交換性能が低下する恐れがある。   The same item (5) specifies the thickness (Ta) of the partition wall (64) between adjacent refrigerant passages in the tube body (61), and the partition wall thickness (Ta) is set to 50 to 80 μm. Is more preferable. That is, when the thickness (Ta) is too thin (less than 50 μm), the strength of the partition wall (64) is lowered, and it may be difficult to obtain sufficient pressure resistance. Conversely, if the partition wall thickness (Ta) is too thick (over 80 μm), the refrigerant passage (65) cannot be secured to a sufficient size, and the refrigerant passage resistance increases and the heat exchange performance may be reduced. There is.

(6) 前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(チ):
Tb=80〜250μm …(チ)
が成立するよう構成されてなる前項1ないし5のいずれかに記載の熱交換器用チューブ。
(6) When the thickness of the outer peripheral wall in the tube body is “Tb”, the following relational expression (h):
Tb = 80 to 250 μm (H)
6. The heat exchanger tube according to any one of the preceding items 1 to 5, wherein

同項(6)は、チューブ本体(61)の外周壁(63)の厚み(Tb)を特定するものであり、この外周壁厚み(Tb)を80〜250μmに設定するのが、より一層好ましい。すなわちこの厚み(Tb)が薄過ぎる場合(80μm未満の場合)には、外周壁(63)の強度が低下し、十分な耐圧性を得ることが困難になる恐れがある。逆に外周壁厚み(Tb)が厚過ぎる場合(250μm超の場合)には、冷媒通路(65)を十分な大きさに確保できなくなり、冷媒通路低下が増加して熱交換性能が低下する恐れがある。   The item (6) specifies the thickness (Tb) of the outer peripheral wall (63) of the tube body (61), and it is even more preferable to set the outer peripheral wall thickness (Tb) to 80 to 250 μm. . That is, when the thickness (Tb) is too thin (less than 80 μm), the strength of the outer peripheral wall (63) is lowered, and it may be difficult to obtain sufficient pressure resistance. On the other hand, if the outer peripheral wall thickness (Tb) is too thick (over 250 μm), the refrigerant passage (65) cannot be secured to a sufficient size, and the refrigerant passage lowers and the heat exchange performance may deteriorate. There is.

(7) 前記冷媒通路が略矩形状の断面を有する前項1ないし6のいずれかに記載の熱交換器用チューブ。   (7) The heat exchanger tube according to any one of the preceding items 1 to 6, wherein the refrigerant passage has a substantially rectangular cross section.

同項(7)においては、冷媒通路(65)を略矩形(四角形)断面に形成するものであるため、例えば円形断面等のものと比較して、冷媒通路(65)の内周囲長及び冷媒通路断面積を大きく確保することができる。このため、同項(7)記載の構成においては、放熱抵抗を増大させることができるとともに、通路抵抗を減少させることができ、熱交換性能を一段と向上させることができる。   In the item (7), since the refrigerant passage (65) is formed in a substantially rectangular (quadrangle) cross section, the inner peripheral length of the refrigerant passage (65) and the refrigerant are compared with, for example, a circular cross section. A large passage cross-sectional area can be secured. For this reason, in the configuration described in the paragraph (7), the heat radiation resistance can be increased, the passage resistance can be decreased, and the heat exchange performance can be further improved.

なお、前項(2)〜(7)の好適構成は、後述の第2ないし第4発明にもぞれぞれ適用可能であり、上記と同様の作用効果を奏するものである。   The preferred configurations of the preceding items (2) to (7) can be applied to the second to fourth inventions described later, respectively, and exhibit the same effects as described above.

上記目的を達成するため、本第2発明は、以下の構成を要旨とする。   In order to achieve the above object, the second invention has the following structure.

(8) 所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成される熱交換器用チューブにおいて、
前記チューブ本体の幅を「W」、前記チューブ本体の高さを「H」、前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」及び前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(イ)(ヘ)(ト)(チ):
W=6〜18mm …(イ)
H=0.5〜1.5mm …(ヘ)
Ta=50〜80μm …(ト)
Tb=80〜250μm …(チ)
が成立するよう構成されてなることを特徴とする熱交換器用チューブ。
(8) In a heat exchanger tube in which a plurality of refrigerant passages extending in the tube length direction are formed in parallel in the tube width direction in a flat tube body having a predetermined length,
The tube body width is “W”, the tube body height is “H”, the partition wall thickness between adjacent refrigerant passages in the tube body is “Ta”, and the outer peripheral wall thickness in the tube body is “ When “Tb” is assumed, the following relational expressions (A) (F) (G) (G):
W = 6-18mm ... (I)
H = 0.5-1.5mm (F)
Ta = 50-80 μm (G)
Tb = 80 to 250 μm (H)
A tube for a heat exchanger, characterized in that

同項(8)記載の発明(第2発明)の熱交換器用チューブは、熱交換器に適用した際に、上記第1発明と同様に、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができる。   When applied to a heat exchanger, the heat exchanger tube of the invention described in (8) of the same paragraph (8) obtains sufficient pressure resistance while reducing the weight as in the first invention. In addition, the passage resistance can be reduced and the heat exchange performance can be improved.

上記目的を達成するための、本第3発明は、以下の構成を要旨とする。   In order to achieve the above object, the third invention is summarized as follows.

(9) 一対のヘッダー間に、両端を両ヘッダーに連通接続する複数本の熱交換器用チューブがヘッダー長さ方向に並列に配置されるようにした熱交換器において、
前記熱交換器用チューブは、所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成されてなり、
前記チューブ本体の幅を「W」、前記冷媒通路の総断面積を「Ac」、前記チューブ本体の総断面積(冷媒通路部分を含む)を「At」、前記チューブ本体の外周囲長を「L」及び前記冷媒通路の総内周囲長を「P」としたとき、
及び前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」としたとき、下記の関係式(イ)〜(ハ):
W=6〜18mm …(イ)
Ac/At×100=50〜70(%)…(ロ)
P/L×100=350〜450(%)…(ハ)
が成立するよう構成されてなることを特徴とする熱交換器。
(9) In a heat exchanger in which a plurality of heat exchanger tubes that are connected to both headers in communication with each other between a pair of headers are arranged in parallel in the header length direction,
The tube for heat exchanger is formed in a flat tube body having a predetermined length, and a plurality of refrigerant passages extending in the tube length direction are arranged in parallel in the tube width direction.
The tube body width is “W”, the refrigerant passage total cross-sectional area is “Ac”, the tube main body cross-sectional area (including the refrigerant passage portion) is “At”, and the tube main body outer perimeter is “ L "and the total inner perimeter of the refrigerant passage is" P ",
When the thickness of the partition wall between adjacent refrigerant passages in the tube main body is “Ta”, the following relational expressions (A) to (C):
W = 6-18mm ... (I)
Ac / At × 100 = 50 to 70 (%) (B)
P / L × 100 = 350 to 450 (%) (C)
It is comprised so that may be materialized, The heat exchanger characterized by the above-mentioned.

同項(9)記載の発明(第3発明)は、上記第1発明の熱交換器用チューブを用いた熱交換器を特定するものであるため、上記と同様に、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができる。   Since the invention (third invention) described in the same item (9) specifies a heat exchanger using the heat exchanger tube of the first invention, it is sufficient to reduce the weight in the same manner as described above. In addition to achieving high pressure resistance, the passage resistance can be reduced and the heat exchange performance can be improved.

上記目的を達成するため、本第4発明は、以下の構成を要旨とする。   In order to achieve the above object, the fourth invention has the following structure.

(10) 一対のヘッダー間に、両端を両ヘッダーに連通接続する複数本の熱交換器用チューブがヘッダー長さ方向に並列に配置されるようにした熱交換器において、
前記熱交換器用チューブは、所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる断面矩形状の複数の冷媒通路が、チューブ幅方向に並列配置に形成されてなり、
前記チューブ本体の幅を「W」、前記チューブ本体の高さを「H」、前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」及び前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(イ)(ヘ)(ト)(チ):
W=6〜18mm …(イ)
H=0.5〜1.5mm …(ヘ)
Ta=50〜80μm …(ト)
Tb=80〜250μm …(チ)
が成立するよう構成されてなることを特徴とする熱交換器。
(10) In a heat exchanger in which a plurality of heat exchanger tubes that are connected to both headers in communication with each other between a pair of headers are arranged in parallel in the header length direction.
The tube for heat exchanger is formed in a flat tube body having a predetermined length, a plurality of refrigerant passages having a rectangular cross section extending in the tube length direction, arranged in parallel in the tube width direction,
The tube body width is “W”, the tube body height is “H”, the partition wall thickness between adjacent refrigerant passages in the tube body is “Ta”, and the outer peripheral wall thickness in the tube body is “ When “Tb” is assumed, the following relational expressions (A) (F) (G) (G):
W = 6-18mm ... (I)
H = 0.5-1.5mm (F)
Ta = 50-80 μm (G)
Tb = 80 to 250 μm (H)
It is comprised so that may be materialized, The heat exchanger characterized by the above-mentioned.

同項(10)記載の発明(第4発明)は、上記第2発明の熱交換器用チューブを用いた熱交換器を特定するものであるため、上記と同様に、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができる。   The invention (fourth invention) described in the same item (10) specifies a heat exchanger using the heat exchanger tube of the second invention, and thus, as in the above, it is sufficient to reduce the weight while sufficiently reducing the weight. In addition to achieving high pressure resistance, the passage resistance can be reduced and the heat exchange performance can be improved.

なお、上記第2ないし第4発明において、チューブ幅(W)の好適範囲は、上記第1発明と同様、6〜14mmである。   In the second to fourth inventions, the preferable range of the tube width (W) is 6 to 14 mm as in the first invention.

本発明によれば、軽量化を図りつつ、十分な耐圧性を得ることができる上更に、通路抵抗を小さくできて、熱交換性能を向上させることができるという効果がある。   According to the present invention, it is possible to obtain sufficient pressure resistance while achieving weight reduction, and further, it is possible to reduce the passage resistance and improve the heat exchange performance.

以下、発明の実施例について説明する。   Examples of the invention will be described below.

Figure 2006336873
Figure 2006336873

<実施例1>
上記実施形態(図3及び図4)に準じて熱交換器用チューブを作製した。このとき上表1に示すように、冷媒通路の総断面積(Ac)を5.29mm2 、チューブ本体の総断面積(At)を8.92mm2 、冷媒通路の総内周囲長(P)を64.1mm、チューブ本体の外周囲長(L)を17.3mm、チューブ本体の総断面積に対する冷媒通路の総断面積(Ac/At)を59%、チューブ本体の外周囲長に対する冷媒通路の総内周囲長(P/L)を371%、冷媒通路の本数(N)を28本、チューブ高さ(H)を1.15mm、チューブ幅(W)を8mm、チューブ幅に対する冷媒通路の総内周囲長(P/W)を801%、チューブ幅に対する通路数(N/W)を3.50個/mm、チューブ本体の仕切壁厚み(Ta)を0.06mm、外周壁厚み(Tb)を0.1mmに調整した。
<Example 1>
A heat exchanger tube was produced according to the above embodiment (FIGS. 3 and 4). At this time, as shown in Table 1 above, the total cross-sectional area (Ac) of the refrigerant passage is 5.29 mm 2 , the total cross-sectional area (At) of the tube body is 8.92 mm 2 , and the total inner peripheral length (P) of the refrigerant passage 64.1 mm, the outer perimeter (L) of the tube body is 17.3 mm, the total cross-sectional area (Ac / At) of the refrigerant passage relative to the total cross-sectional area of the tube main body is 59%, and the refrigerant passage relative to the outer perimeter of the tube main body The total inner perimeter (P / L) is 371%, the number of refrigerant passages (N) is 28, the tube height (H) is 1.15 mm, the tube width (W) is 8 mm, and the refrigerant passage relative to the tube width is The total inner perimeter (P / W) is 801%, the number of passages (N / W) relative to the tube width is 3.50 / mm, the partition wall thickness (Ta) of the tube body is 0.06 mm, and the outer wall thickness (Tb) ) Was adjusted to 0.1 mm.

更にこの熱交換器用チューブを用いて、図1に示すような熱交換器を作製した。   Furthermore, using the heat exchanger tube, a heat exchanger as shown in FIG. 1 was produced.

<実施例2>
上表1に示すように、「Ac」を8.36mm2 、「At」を13.5mm2 、「P」を101.2mm、「L」を25.3mm、「Ac/At」を62%、「P/L」を400%、「N」を44本、「H」を1.15mm、「W」を12mm、「P/W」を843%、「N/W」を3.67個/mm、「Ta」を0.06mm、「Tb」を0.1mmに調整するようにして、上記と同様に熱交換器用チューブを作製し、同様に熱交換器を作製した。
<Example 2>
As shown in the above table 1, the "Ac" 8.36Mm 2, the "At" 13.5 mm 2, the "P" 101.2Mm, the "L" 25.3 mm, the "Ac / At" 62% , "P / L" 400%, "N" 44, "H" 1.15mm, "W" 12mm, "P / W" 843%, "N / W" 3.67 / Mm, “Ta” was adjusted to 0.06 mm, and “Tb” was adjusted to 0.1 mm, a heat exchanger tube was prepared in the same manner as described above, and a heat exchanger was similarly prepared.

<実施例3>
上表1に示すように、「Ac」を11.3mm2 、「At」を18.1mm2 、「P」を131.8mm、「L」を33.3mm、「Ac/At」を63%、「P/L」を396%、「N」を57本、「H」を1.15mm、「W」を16mm、「P/W」を824%、「N/W」を3.56個/mm、「Ta」を0.06mm、「Tb」を0.1mmに調整するようにして、上記と同様に熱交換器用チューブを作製し、同様に熱交換器を作製した。
<Example 3>
As shown in Table 1 above, “Ac” is 11.3 mm 2 , “At” is 18.1 mm 2 , “P” is 131.8 mm, “L” is 33.3 mm, and “Ac / At” is 63%. , "P / L" 396%, "N" 57, "H" 1.15mm, "W" 16mm, "P / W" 824%, "N / W" 3.56 / Mm, “Ta” was adjusted to 0.06 mm, and “Tb” was adjusted to 0.1 mm, a heat exchanger tube was prepared in the same manner as described above, and a heat exchanger was similarly prepared.

<比較例1>
上表1に示すように、「Ac」を22mm2 、「At」を46.1mm2 、「P」を55mm、「L」を35.4mm、「Ac/At」を48%、「P/L」を155%、「N」を4本、「H」を3mm、「W」を16mm、「P/W」を344%、「N/W」を0.25個/mm、「Ta」を0.5mm、「Tb」を0.5mmに調整するようにして、上記と同様に熱交換器用チューブを作製した。
<Comparative Example 1>
As shown in Table 1 above, “Ac” is 22 mm 2 , “At” is 46.1 mm 2 , “P” is 55 mm, “L” is 35.4 mm, “Ac / At” is 48%, “P / “L” is 155%, “N” is 4 pieces, “H” is 3 mm, “W” is 16 mm, “P / W” is 344%, “N / W” is 0.25 piece / mm, “Ta” Was adjusted to 0.5 mm, and “Tb” was adjusted to 0.5 mm, and a heat exchanger tube was produced in the same manner as described above.

<比較例2>
上表1に示すように、「Ac」を7.15mm2 、「At」を18.1mm2 、「P」を74.7mm、「L」を32.1mm、「Ac/At」を40%、「P/L」を233%、「N」を28本、「H」を1.15mm、「W」を16mm、「P/W」を467%、「N/W」を1.75個/mm、「Ta」を0.14mm、「Tb」を0.2mmに調整するようにして、上記と同様に熱交換器用チューブを作製し、同様に熱交換器を作製した。
<Comparative Example 2>
As shown in Table 1 above, “Ac” is 7.15 mm 2 , “At” is 18.1 mm 2 , “P” is 74.7 mm, “L” is 32.1 mm, and “Ac / At” is 40%. , "P / L" 233%, "N" 28, "H" 1.15mm, "W" 16mm, "P / W" 467%, "N / W" 1.75 / Mm, “Ta” was adjusted to 0.14 mm, and “Tb” was adjusted to 0.2 mm, a heat exchanger tube was prepared in the same manner as described above, and a heat exchanger was similarly prepared.

<比較例3>
上表1に示すように、「Ac」を4.16mm2 、「At」を18.1mm2 、「P」を59.8mm、「L」を32.1mm、「Ac/At」を23%、「P/L」を186%、「N」を26本、「H」を1.15mm、「W」を8mm、「P/W」を748%、「N/W」を3.25個/mm、「Ta」を0.1mm、「Tb」を0.1mmに調整するようにして、上記と同様に熱交換器用チューブを作製し、同様に熱交換器を作製した。
<Comparative Example 3>
As shown in the above table 1, the "Ac" 4.16 mm 2, the "At" 18.1 mm 2, the "P" 59.8Mm, the "L" 32.1 mm, "Ac / At" 23% , 186% "P / L", 26 "N", 1.15mm "H", 8mm "W", 748% "P / W", 3.25 "N / W" / Mm, “Ta” was adjusted to 0.1 mm, and “Tb” was adjusted to 0.1 mm to produce a heat exchanger tube in the same manner as described above, and a heat exchanger was produced in the same manner.

<比較例4>
上表1に示すように、「Ac」を6.05mm2 、「At」を18.1mm2 、「P」を73.3mm、「L」を32.1mm、「Ac/At」を33%、「P/L」を228%、「N」を32本、「H」を1.15mm、「W」を8mm、「P/W」を916%、「N/W」を4.00個/mm、「Ta」を0.03mm、「Tb」を0.1mmに調整するようにして、上記と同様に熱交換器用チューブを作製し、同様に熱交換器を作製した。
<Comparative Example 4>
As shown in Table 1 above, “Ac” is 6.05 mm 2 , “At” is 18.1 mm 2 , “P” is 73.3 mm, “L” is 32.1 mm, and “Ac / At” is 33%. , "P / L" 228%, "N" 32, "H" 1.15mm, "W" 8mm, "P / W" 916%, "N / W" 4.00 / Mm, “Ta” was adjusted to 0.03 mm, and “Tb” was adjusted to 0.1 mm, a heat exchanger tube was prepared in the same manner as described above, and a heat exchanger was similarly prepared.

<重量に関する評価試験>
上記実施例及び比較例の各熱交換器の重量(kg)をそれぞれ測定した、そして図5のグラフに示すように、各重量と、目標とする理想の熱交換器の重量(同グラフの太線に示す値)とをそれぞれ比較した。
<Evaluation test on weight>
The weight (kg) of each heat exchanger of the above-mentioned examples and comparative examples was measured, and as shown in the graph of FIG. 5, each weight and the target ideal heat exchanger weight (thick line in the graph). The values shown in FIG.

同グラフから明らかなように、実施例及び比較例3、4の熱交換器は、目標重量以内に抑えることができ、軽量であることが判る。これに対し、チューブ幅の大きい比較例1、2の熱交換器は、目標重量を超えるものであった。   As is apparent from the graph, it can be seen that the heat exchangers of the example and the comparative examples 3 and 4 can be suppressed within the target weight and are lightweight. On the other hand, the heat exchangers of Comparative Examples 1 and 2 having a large tube width exceeded the target weight.

<耐圧性に関する評価試験>
上記実施例及び比較例の各熱交換器に対し、破壊試験を行って破壊圧力(MPa)をそれぞれ測定した。そして図6のグラフに示すように、各破壊圧力と、要求される理想の熱交換器の破壊圧力(同グラフの太線に示す値)とをそれぞれ比較した。
<Evaluation test for pressure resistance>
A destructive test was performed on each heat exchanger of the above Examples and Comparative Examples, and a destructive pressure (MPa) was measured. Then, as shown in the graph of FIG. 6, each burst pressure was compared with the required ideal heat exchanger burst pressure (value indicated by the bold line in the graph).

同グラフから明らかなように、仕切壁厚み(Ta)が厚い実施例及び比較例1〜3の熱交換器は、要求される破壊圧力よりも高く、十分な耐圧性を有していた。これに対し、仕切壁厚み(Ta)が薄い比較例4の熱交換器は、要求される破壊圧力に達するものではなかった。   As is clear from the graph, the heat exchangers of Examples and Comparative Examples 1 to 3 having a thick partition wall thickness (Ta) were higher than the required breaking pressure and had sufficient pressure resistance. On the other hand, the heat exchanger of Comparative Example 4 having a thin partition wall thickness (Ta) did not reach the required breaking pressure.

<放熱性に関する評価試験>
上記実施例及び比較例の各熱交換器における放熱量(kW)をそれぞれ測定した。そして図7のグラフに示すように、各放熱量と、目標とする理想の熱交換器の放熱量(同グラフの太線に示す値)とをそれぞれ比較した。
<Evaluation test for heat dissipation>
The amount of heat release (kW) in each heat exchanger of the above Examples and Comparative Examples was measured. Then, as shown in the graph of FIG. 7, each heat release amount was compared with the target ideal heat exchanger heat release amount (value indicated by a thick line in the graph).

同グラフから明らかなように、実施例及び比較例2の熱交換器は、目標とする放熱量よりも多く、十分な放熱性能を有していた。更に比較例3、4の熱交換器は、目標とする放熱量に少し満たない程度であった。これに対し、チューブ高さ(H)が過度に高い比較例1の熱交換器は、目標とする放熱量よりもかなり少なかった。   As is apparent from the graph, the heat exchangers of the example and the comparative example 2 had a sufficient heat dissipation performance, more than the target heat dissipation amount. Furthermore, the heat exchangers of Comparative Examples 3 and 4 were slightly less than the target heat release. On the other hand, the heat exchanger of Comparative Example 1 having an excessively high tube height (H) was considerably smaller than the target heat radiation amount.

<冷媒通路抵抗に関する評価試験>
上記実施例及び比較例の各熱交換器における冷媒通路抵抗をそれぞれ測定した。そして図8のグラフに示すように、各通路抵抗と、目標とする理想の熱交換器の通路抵抗(同グラフの太線に示す値)とをそれぞれ比較した。
<Evaluation test for refrigerant passage resistance>
Refrigerant passage resistance in each heat exchanger of the above-mentioned examples and comparative examples was measured. Then, as shown in the graph of FIG. 8, each passage resistance was compared with the passage resistance of the ideal ideal heat exchanger (value indicated by a thick line in the graph).

同グラフから明らかなように、実施例及び比較例1、2、4の熱交換器は、目標とする通路抵抗以内に抑えることができ、通路抵抗が低いものであった。これに対し、比較例3の熱交換器は、目標とする通路抵抗を超えるものであった。   As is clear from the graph, the heat exchangers of Examples and Comparative Examples 1, 2, and 4 were able to be suppressed within the target passage resistance, and the passage resistance was low. In contrast, the heat exchanger of Comparative Example 3 exceeded the target passage resistance.

<総合評価>   <Comprehensive evaluation>

Figure 2006336873
Figure 2006336873

上記実施例及び比較例の各熱交換器において、上記重量、耐圧性、放熱性及び通路抵抗の各評価試験の結果を、上表2にまとめて示す。同表において、各評価試験の目標を達成した熱交換器には「○」印、目標にはわずかに達しなかったものの実用化可能レベルの熱交換器には「△」印、目標を達成せず実用化困難な熱交換器には「×」印を付与している。   In each heat exchanger of the said Example and a comparative example, the result of each evaluation test of the said weight, pressure | voltage resistance, heat dissipation, and passage resistance is put together in the above Table 2, and is shown. In the table, heat exchangers that have achieved the targets of each evaluation test are marked with “○”, and those that did not reach the target slightly, but with a heat exchanger of a practical level, marked with “△”. The “×” mark is given to heat exchangers that are difficult to put into practical use.

上表2から明らかなように、本発明の要旨を満足する実施例1〜3の熱交換器は、全ての評価において良好な結果が得られた。これに対し、本発明の要旨を逸脱する比較例1〜4の熱交換器は、いずれかの評価において満足できない結果であった。   As is clear from Table 2 above, the heat exchangers of Examples 1 to 3 that satisfy the gist of the present invention obtained good results in all evaluations. On the other hand, the heat exchangers of Comparative Examples 1 to 4 that depart from the gist of the present invention were unsatisfactory in any evaluation.

この発明に関連した熱交換器を示す正面図である。It is a front view which shows the heat exchanger relevant to this invention. この発明に関連した熱交換器におけるヘッダーのチューブ接続部周辺を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the tube connection part periphery of the header in the heat exchanger relevant to this invention. この発明に関連した熱交換器用チューブを示す斜視図である。It is a perspective view which shows the tube for heat exchangers relevant to this invention. この発明に関連した熱交換器用チューブを示す断面図である。It is sectional drawing which shows the tube for heat exchangers relevant to this invention. 実施例及び比較例の熱交換器における目標重量との関係を示すグラフである。It is a graph which shows the relationship with the target weight in the heat exchanger of an Example and a comparative example. 実施例及び比較例の熱交換器における要求耐圧との関係を示すグラフである。It is a graph which shows the relationship with the request | requirement pressure | voltage resistance in the heat exchanger of an Example and a comparative example. 実施例及び比較例の熱交換器における目標放熱性能との関係を示すグラフである。It is a graph which shows the relationship with the target heat dissipation performance in the heat exchanger of an Example and a comparative example. 実施例及び比較例の熱交換器における目標通路抵抗との関係を示すグラフである。It is a graph which shows the relationship with the target channel | path resistance in the heat exchanger of an Example and a comparative example.

符号の説明Explanation of symbols

60…熱交換器用チューブ
61…チューブ本体
63…外周壁
64…仕切壁
65…冷媒通路
H…チューブ高さ
Ta…仕切壁厚み
Tb…外周壁厚み
W…チューブ幅
60 ... Tube for heat exchanger 61 ... Tube body 63 ... Outer wall 64 ... Partition wall 65 ... Refrigerant passage H ... Tube height Ta ... Partition wall thickness Tb ... Outer wall thickness W ... Tube width

Claims (10)

所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成される熱交換器用チューブにおいて、
前記チューブ本体の幅を「W」、前記冷媒通路の総断面積を「Ac」、前記チューブ本体の総断面積(冷媒通路部分を含む)を「At」、前記チューブ本体の外周囲長を「L」及び前記冷媒通路の総内周囲長を「P」としたとき、下記の関係式(イ)〜(ハ):
W=6〜18mm …(イ)
Ac/At×100=50〜70(%)…(ロ)
P/L×100=350〜450(%)…(ハ)
が成立するよう構成されてなることを特徴とする熱交換器用チューブ。
In a heat exchanger tube in which a plurality of refrigerant passages extending in the tube length direction are formed in parallel in the tube width direction in a flat tube body having a predetermined length,
The tube body width is “W”, the refrigerant passage total cross-sectional area is “Ac”, the tube main body cross-sectional area (including the refrigerant passage portion) is “At”, and the tube main body outer perimeter is “ When “L” and the total inner perimeter of the refrigerant passage are “P”, the following relational expressions (A) to (C):
W = 6-18mm ... (I)
Ac / At × 100 = 50 to 70 (%) (B)
P / L × 100 = 350 to 450 (%) (C)
A tube for a heat exchanger, characterized in that
下記の関係式(ニ):
P/W×100=750〜850(%)…(ニ)
が成立するよう構成されてなる請求項1記載の熱交換器用チューブ。
The following relational expression (d):
P / W × 100 = 750-850 (%) (D)
The heat exchanger tube according to claim 1, wherein the heat exchanger tube is configured so that
前記冷媒通路の本数を「N」としたとき、下記の関係式(ホ):
N/W=3〜4 …(ホ)
が成立するよう構成されてなる請求項1の熱交換器用チューブ。
When the number of the refrigerant passages is “N”, the following relational expression (e):
N / W = 3-4 (e)
The heat exchanger tube according to claim 1, wherein:
前記チューブ本体の高さを「H」としたとき、下記の関係式(ヘ):
H=0.5〜1.5mm …(ヘ)
が成立するよう構成されてなる請求項1記載の熱交換器用チューブ。
When the height of the tube body is “H”, the following relational expression (f):
H = 0.5-1.5mm (F)
The heat exchanger tube according to claim 1, wherein the heat exchanger tube is configured so that
前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」としたとき、下記の関係式(ト):
Ta=50〜80μm …(ト)
が成立するよう構成されてなる請求項1記載の熱交換器用チューブ。
When the thickness of the partition wall between adjacent refrigerant passages in the tube body is “Ta”, the following relational expression (g):
Ta = 50-80 μm (G)
The heat exchanger tube according to claim 1, wherein the heat exchanger tube is configured so that
前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(チ):
Tb=80〜250μm …(チ)
が成立するよう構成されてなる請求項1記載の熱交換器用チューブ。
When the thickness of the outer peripheral wall of the tube body is “Tb”, the following relational expression (h):
Tb = 80 to 250 μm (H)
The heat exchanger tube according to claim 1, wherein the heat exchanger tube is configured so that
前記冷媒通路が略矩形状の断面を有する請求項1記載の熱交換器用チューブ。   The heat exchanger tube according to claim 1, wherein the refrigerant passage has a substantially rectangular cross section. 所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成される熱交換器用チューブにおいて、
前記チューブ本体の幅を「W」、前記チューブ本体の高さを「H」、前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」及び前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(イ)(ヘ)(ト)(チ):
W=6〜18mm …(イ)
H=0.5〜1.5mm …(ヘ)
Ta=50〜80μm …(ト)
Tb=80〜250μm …(チ)
が成立するよう構成されてなることを特徴とする熱交換器用チューブ。
In a heat exchanger tube in which a plurality of refrigerant passages extending in the tube length direction are formed in parallel in the tube width direction in a flat tube body having a predetermined length,
The tube body width is “W”, the tube body height is “H”, the partition wall thickness between adjacent refrigerant passages in the tube body is “Ta”, and the outer peripheral wall thickness in the tube body is “ When “Tb” is assumed, the following relational expressions (A) (F) (G) (G):
W = 6-18mm ... (I)
H = 0.5-1.5mm (F)
Ta = 50-80 μm (G)
Tb = 80 to 250 μm (H)
A tube for a heat exchanger, characterized in that
一対のヘッダー間に、両端を両ヘッダーに連通接続する複数本の熱交換器用チューブがヘッダー長さ方向に並列に配置されるようにした熱交換器において、
前記熱交換器用チューブは、所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成されてなり、
前記チューブ本体の幅を「W」、前記冷媒通路の総断面積を「Ac」、前記チューブ本体の総断面積(冷媒通路部分を含む)を「At」、前記チューブ本体の外周囲長を「L」及び前記冷媒通路の総内周囲長を「P」としたとき、
及び前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」としたとき、下記の関係式(イ)〜(ハ):
W=6〜18mm …(イ)
Ac/At×100=50〜70(%)…(ロ)
P/L×100=350〜450(%)…(ハ)
が成立するよう構成されてなることを特徴とする熱交換器。
In a heat exchanger in which a plurality of heat exchanger tubes that are connected to both headers in communication between both headers are arranged in parallel in the header length direction between a pair of headers,
The tube for heat exchanger is formed in a flat tube body having a predetermined length, and a plurality of refrigerant passages extending in the tube length direction are arranged in parallel in the tube width direction.
The tube body width is “W”, the refrigerant passage total cross-sectional area is “Ac”, the tube main body cross-sectional area (including the refrigerant passage portion) is “At”, and the tube main body outer perimeter is “ L "and the total inner perimeter of the refrigerant passage is" P ",
When the thickness of the partition wall between adjacent refrigerant passages in the tube main body is “Ta”, the following relational expressions (A) to (C):
W = 6-18mm ... (I)
Ac / At × 100 = 50 to 70 (%) (B)
P / L × 100 = 350 to 450 (%) (C)
It is comprised so that may be materialized, The heat exchanger characterized by the above-mentioned.
一対のヘッダー間に、両端を両ヘッダーに連通接続する複数本の熱交換器用チューブがヘッダー長さ方向に並列に配置されるようにした熱交換器において、
前記熱交換器用チューブは、所定の長さを有する扁平なチューブ本体に、チューブ長さ方向に延びる複数の冷媒通路が、チューブ幅方向に並列配置に形成されてなり、
前記チューブ本体の幅を「W」、前記チューブ本体の高さを「H」、前記チューブ本体における隣り合う冷媒通路間の仕切壁の厚みを「Ta」及び前記チューブ本体における外周壁の厚みを「Tb」としたとき、下記の関係式(イ)(ヘ)(ト)(チ):
W=6〜18mm …(イ)
H=0.5〜1.5mm …(ヘ)
Ta=50〜80μm …(ト)
Tb=80〜250μm …(チ)
が成立するよう構成されてなることを特徴とする熱交換器。
In a heat exchanger in which a plurality of heat exchanger tubes that are connected to both headers in communication between both headers are arranged in parallel in the header length direction between a pair of headers,
The tube for heat exchanger is formed in a flat tube body having a predetermined length, and a plurality of refrigerant passages extending in the tube length direction are arranged in parallel in the tube width direction.
The tube body width is “W”, the tube body height is “H”, the partition wall thickness between adjacent refrigerant passages in the tube body is “Ta”, and the outer peripheral wall thickness in the tube body is “ When “Tb” is assumed, the following relational expressions (A) (F) (G) (G):
W = 6-18mm ... (I)
H = 0.5-1.5mm (F)
Ta = 50-80 μm (G)
Tb = 80 to 250 μm (H)
It is comprised so that may be materialized, The heat exchanger characterized by the above-mentioned.
JP2003327179A 2002-10-02 2003-09-19 Heat exchanging tube and heat exchanger Pending JP2006336873A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2003327179A JP2006336873A (en) 2002-10-02 2003-09-19 Heat exchanging tube and heat exchanger
US10/529,632 US7165606B2 (en) 2002-10-02 2003-10-01 Heat exchanging tube and heat exchanger
KR1020057005715A KR20050067168A (en) 2002-10-02 2003-10-01 Heat exchanging tube and heat exchanger
AU2003272090A AU2003272090B2 (en) 2002-10-02 2003-10-01 Heat exchanging tube and heat exchanger
PCT/JP2003/012616 WO2004031676A1 (en) 2002-10-02 2003-10-01 Heat exchanging tube and heat exchanger
EP03753978A EP1546630A4 (en) 2002-10-02 2003-10-01 Heat exchanging tube and heat exchanger
US11/561,250 US20070074862A1 (en) 2002-10-02 2006-11-17 Heat exchanging tube and heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002290180 2002-10-02
JP2003327179A JP2006336873A (en) 2002-10-02 2003-09-19 Heat exchanging tube and heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010124561A Division JP2010185660A (en) 2002-10-02 2010-05-31 Heat exchanging tube and condenser

Publications (1)

Publication Number Publication Date
JP2006336873A true JP2006336873A (en) 2006-12-14

Family

ID=37557581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327179A Pending JP2006336873A (en) 2002-10-02 2003-09-19 Heat exchanging tube and heat exchanger

Country Status (1)

Country Link
JP (1) JP2006336873A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065989A (en) * 2008-09-13 2010-03-25 Calsonic Kansei Corp Tube for heat exchanger and heat exchanger
JP2011153814A (en) * 2009-09-30 2011-08-11 Daikin Industries Ltd Heat exchanging flat tube
WO2012029542A1 (en) * 2010-09-01 2012-03-08 三菱重工業株式会社 Heat exchanger and vehicle air conditioner with same
JP2012102969A (en) * 2010-11-12 2012-05-31 Showa Denko Kk Evaporator with cool storage function
JP2013139915A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Heat exchanging flat pipe and heat exchanger
JP2014524560A (en) * 2011-08-15 2014-09-22 ジ アベル ファウンデーション, インコーポレイテッド Heat transfer between fluids
WO2016199790A1 (en) * 2015-06-08 2016-12-15 株式会社Ihi Reactor
WO2019239990A1 (en) * 2018-06-12 2019-12-19 ダイキン工業株式会社 Indoor heat exchanger and air conditioning device
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
US10844848B2 (en) 2010-01-21 2020-11-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142755A (en) * 1992-11-05 1994-05-24 Nippondenso Co Ltd Die for extruding multi-hole pipe and multi-hole pipe manufactured by using this die for extruding multi-hole pipe
JPH06300473A (en) * 1993-04-19 1994-10-28 Sanden Corp Flat refrigerant pipe
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
WO2002042706A1 (en) * 2000-11-24 2002-05-30 Showa Denko K. K. Heat exchanger tube and heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142755A (en) * 1992-11-05 1994-05-24 Nippondenso Co Ltd Die for extruding multi-hole pipe and multi-hole pipe manufactured by using this die for extruding multi-hole pipe
JPH06300473A (en) * 1993-04-19 1994-10-28 Sanden Corp Flat refrigerant pipe
JP2000356488A (en) * 1999-06-11 2000-12-26 Showa Alum Corp Tube for heat exchanger
WO2002042706A1 (en) * 2000-11-24 2002-05-30 Showa Denko K. K. Heat exchanger tube and heat exchanger

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065989A (en) * 2008-09-13 2010-03-25 Calsonic Kansei Corp Tube for heat exchanger and heat exchanger
JP2011153814A (en) * 2009-09-30 2011-08-11 Daikin Industries Ltd Heat exchanging flat tube
US11859597B2 (en) 2010-01-21 2024-01-02 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US11371490B2 (en) 2010-01-21 2022-06-28 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US10844848B2 (en) 2010-01-21 2020-11-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
WO2012029542A1 (en) * 2010-09-01 2012-03-08 三菱重工業株式会社 Heat exchanger and vehicle air conditioner with same
JP2012052732A (en) * 2010-09-01 2012-03-15 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioning device for vehicle including the same
CN103038596A (en) * 2010-09-01 2013-04-10 三菱重工业株式会社 Heat exchanger and vehicle air conditioner with same
JP2012102969A (en) * 2010-11-12 2012-05-31 Showa Denko Kk Evaporator with cool storage function
JP2014524560A (en) * 2011-08-15 2014-09-22 ジ アベル ファウンデーション, インコーポレイテッド Heat transfer between fluids
JP2013139915A (en) * 2011-12-28 2013-07-18 Daikin Industries Ltd Heat exchanging flat pipe and heat exchanger
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
WO2016199790A1 (en) * 2015-06-08 2016-12-15 株式会社Ihi Reactor
US10118148B2 (en) 2015-06-08 2018-11-06 Ihi Corporation Reactor
JPWO2016199790A1 (en) * 2015-06-08 2018-03-29 株式会社Ihi Reactor
TWI613007B (en) * 2015-06-08 2018-02-01 Ihi股份有限公司 reactor
WO2019239990A1 (en) * 2018-06-12 2019-12-19 ダイキン工業株式会社 Indoor heat exchanger and air conditioning device

Similar Documents

Publication Publication Date Title
US7140424B2 (en) Refrigerant condenser used for automotive air conditioner
JP5348668B2 (en) Evaporator
EP3370027B1 (en) Extruded aluminum flat multi-hole tube and heat exchanger
US20070074862A1 (en) Heat exchanging tube and heat exchanger
WO2002042706A1 (en) Heat exchanger tube and heat exchanger
JPH0384395A (en) Duplex heat exchanger
JP2007093144A (en) Heat exchanging tube and heat exchanger
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
WO2014038335A1 (en) Parallel-flow type heat exchanger and air conditioner equipped with same
JP2011006058A (en) Evaporator with cold storage function
JP2007232287A (en) Heat exchanger and integral type heat exchanger
JP2010261658A (en) Evaporator with cool storage function
WO2002052213A1 (en) Heat exchanger
JP2006336873A (en) Heat exchanging tube and heat exchanger
JP5636215B2 (en) Evaporator
JP2010203748A (en) Evaporator with cold storage function
JP6360791B2 (en) Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
JP2011257111A5 (en)
JP2010185660A (en) Heat exchanging tube and condenser
US20140124171A1 (en) Micro-port shell and tube heat exchanger
JP2011133178A (en) Evaporator including cold storage function
WO2013125625A1 (en) Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
JP2005106329A (en) Subcool type condenser
JP2015148392A (en) heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A02 Decision of refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100607

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20100625

Free format text: JAPANESE INTERMEDIATE CODE: A912