WO2013125625A1 - Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same - Google Patents

Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same Download PDF

Info

Publication number
WO2013125625A1
WO2013125625A1 PCT/JP2013/054295 JP2013054295W WO2013125625A1 WO 2013125625 A1 WO2013125625 A1 WO 2013125625A1 JP 2013054295 W JP2013054295 W JP 2013054295W WO 2013125625 A1 WO2013125625 A1 WO 2013125625A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
hole
fin
heat exchanger
heat transfer
Prior art date
Application number
PCT/JP2013/054295
Other languages
French (fr)
Japanese (ja)
Inventor
史郎 柿山
Original Assignee
住友軽金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友軽金属工業株式会社 filed Critical 住友軽金属工業株式会社
Priority to KR20147022237A priority Critical patent/KR20140136431A/en
Priority to JP2014500757A priority patent/JP6415976B2/en
Priority to CN201380010451.7A priority patent/CN104145169A/en
Publication of WO2013125625A1 publication Critical patent/WO2013125625A1/en
Priority to IN4862CHN2014 priority patent/IN2014CN04862A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present invention relates to a heat transfer tube for a fin-and-tube heat exchanger and a fin-and-tube heat exchanger using the same, and more particularly to a fin-and-tube in an air conditioner such as a home air conditioner or a packaged air conditioner.
  • the present invention relates to a heat transfer tube suitably used for a mold heat exchanger and a fin-and-tube heat exchanger using the same.
  • heat exchangers that operate as evaporators or condensers, among them.
  • heat exchangers that operate as evaporators or condensers, among them.
  • fin-and-tube heat exchangers having a structure in which fins are assembled to heat transfer tubes are most commonly used.
  • heat exchangers using natural refrigerants with low global warming potential have been developed in place of conventional chlorofluorocarbon refrigerants from the viewpoint of protecting the ozone layer and preventing global warming.
  • hot water heaters using refrigerants mainly composed of carbon dioxide gas have attracted attention and have been developed.
  • fin-and-tube heat exchangers similar to the above are also used in such heat exchangers. It is used.
  • fin-and-tube heat exchangers are generally assembled using fins (outer surface fins) and heat transfer tubes that have been subjected to predetermined processing, and these fins and heat transfer tubes are in close contact with each other.
  • fins outer surface fins
  • heat transfer tubes In the structure, it has been put into practical use.
  • the heat exchanger having such a structure while circulating the refrigerant in the heat transfer tube, by flowing air as a heat exchange fluid along the fins in a direction perpendicular to the heat transfer tube, Heat exchange is performed between the refrigerant and the air.
  • Hole tubes are known.
  • this flat multi-hole tube what is usually obtained by porthole extrusion of aluminum or aluminum alloy is used, but as a cross-sectional shape of such a flat multi-hole tube, for example, As disclosed in Japanese Patent Application Laid-Open No. 6-142755 (Patent Document 1), a tube having a rectangular flow path is generally used. Further, in such a flat multi-hole tube, in order to improve heat exchange efficiency, it is effective to increase the surface area of the flow path.
  • Patent Document 2 Japanese Patent Laid-Open No. 5-222480 (Patent Document 2), a square is used. A method for increasing the surface area by forming a large number of minute irregularities on the inner surface of a hole having a shape has been clarified. By increasing the surface area of the flow path in this way, the contact area between the coolant that can circulate inside the hole and the surface of the hole is increased, and the heat transfer coefficient on the coolant side, that is, the heat between the coolant and the heat transfer tube. By improving the transfer rate, the heat exchange efficiency is improved.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-142755
  • Patent Document 3 Japanese Patent Laid-Open No. 9-72680
  • the hole cross-sectional shape of the flat multi-hole tube is a triangular shape.
  • Patent Document 1 when performing extrusion molding of a multi-hole tube, the extension of the life of the die for multi-hole tube extrusion and the improvement of dimensions and accuracy as a product are merely intended for that purpose, There, only a triangular shape is mentioned as an example of the hole shape of the multi-hole tube manufactured using such a die for multi-hole tube extrusion.
  • the hole shape of the multi-hole pipe formed by extrusion is simply a triangular shape
  • the hole shape is merely an isosceles triangle shape. In other words, there has been no investigation of the specific shape of the triangle or the heat transfer coefficient of the heat transfer tube.
  • the present invention has been made in the background of such circumstances, and the problem to be solved is a fin-and-tube type that can effectively improve the heat transfer coefficient on the refrigerant side.
  • a heat exchanger tube for a heat exchanger is provided, and a fin and tube heat exchanger for an air conditioner or the like manufactured using such a heat exchanger tube for a fin and tube heat exchanger is provided. Providing it is also an issue to be solved.
  • a heat transfer tube for a fin-and-tube heat exchanger to which a fin made of aluminum or an alloy thereof is assembled is made of aluminum or an alloy thereof. It consists of a multi-hole tube having a flat cross-sectional shape as a whole, and a number of triangular cross-sectional holes extending in the tube axis direction are provided in the multi-hole tube so as to be spaced apart from each other in the width direction and arranged parallel to each other.
  • the ratio (D / h) of the hydraulic diameter: D defined by dividing four times the cross-sectional area of the hole by the sum of the lengths of the holes is 0 (D / h).
  • the gist of the present invention is a heat transfer tube for a fin-and-tube heat exchanger, characterized in that it is configured to fall within the range of .40 to 0.80.
  • the multiple holes provided in the multi-hole tube each have a cross section of a regular triangle or a right triangle. It has a shape.
  • the multi-hole tube is configured such that the triangular cross-section hole is rotated by 180 °. Are alternately arranged in the width direction.
  • a fin-and-tube heat exchanger is formed by assembling a fin made of aluminum or an alloy thereof and a multi-hole tube made of aluminum or an alloy thereof and having a generally flat cross-sectional shape.
  • the multi-hole tube is configured in a form in which a large number of triangular cross-sectional holes extending in the tube axis direction are arranged in parallel with each other in the width direction.
  • the ratio (D / h) of hydraulic diameter: D defined by dividing 4 times the sum of the side lengths of the holes and the height of the holes: h (D / h) is in the range of 0.40 to 0.80.
  • the gist of the present invention is also a fin-and-tube heat exchanger that is configured to be inside.
  • the fin is a corrugated fin
  • the corrugated fin is adjacent to the adjacent multi-hole tube.
  • the corrugated fins and the multi-hole tube are assembled so as to be in close contact with each other.
  • the fin is a flat plate-shaped fin, and is disposed at one end in the width direction of the plate-shaped fin.
  • the multi-hole tube is closely inserted into the slit-shaped assembly hole provided so as to be opened and assembled.
  • the multiple holes provided in the multi-hole tube each have a cross-sectional shape of a regular triangle or a right triangle.
  • the triangular cross-sectional shape of the hole having the triangular cross section is rotated by 180 °. It will be alternately arranged in the width direction.
  • a hole having a triangular cross-sectional shape has a length of the side of the hole that is four times the cross-sectional area. Since the ratio (D / h) of the hydraulic diameter defined by dividing by the sum: D and the height of the hole: h (D / h) is set to an appropriate range, When the refrigerant flows, the area of the inner surface of the multi-hole tube that contacts the unit volume of the refrigerant increases by circulating the refrigerant through the small angle part sandwiched between the two sides of the hole having a triangular cross-sectional shape.
  • the heat exchange efficiency of the heat transfer tube since the refrigerant can cause a local flow state by passing through the portion where the angle of such a triangular hole is small, in other words, the portion where the hole is narrow, the heat exchange efficiency is more effective. It becomes possible to raise.
  • the heat transfer coefficient on the refrigerant side in the heat-transfer tube is From the point of being advantageously improved, the high heat exchange performance is exhibited, and the effects such as downsizing and weight reduction of the heat exchanger and reduction of the manufacturing cost are advantageously exhibited.
  • FIG. 1 It is a perspective explanatory view showing an example of a fin and tube type heat exchanger according to the present invention. It is a perspective explanatory view which shows the fin which comprises the fin and tube type heat exchanger shown by FIG. It is a cross-sectional explanatory drawing which expands and shows a part of cross section of the flat multi-hole pipe which comprises the fin and tube type heat exchanger shown by FIG. It is front explanatory drawing which shows schematically the fin and tube type heat exchanger for heat exchange performance evaluation used in the Example.
  • FIG. 1 is a perspective view schematically showing one embodiment of a fin-and-tube heat exchanger using a heat-transfer tube for a fin-and-tube heat exchanger according to the present invention.
  • two flat multi-hole tubes 14 and 14 are slits provided in the fins 12 with respect to the plurality of fins 12 arranged in parallel to each other and at a predetermined distance. It is configured by being inserted into the assembly hole 16 and fixed in a form in close contact with the inner surface of the hole.
  • the fins 12 are formed of a metal plate made of aluminum or an aluminum alloy, as in the prior art, and as shown in FIG. It is a plate-like fin.
  • an assembly hole 16 into which the flat multi-hole tube 14 is assembled extends from one end of the rectangular fin 12 by a predetermined length in the width direction of the fin 12 (left and right direction in FIG. 2). It is formed as a slit having a predetermined width.
  • a collar portion 18 having a predetermined height is formed integrally with the fin 12 around the assembly hole 16 and has a U shape.
  • the flat multi-hole tube 14 is formed of a metal material made of aluminum or aluminum alloy, and here, ten holes 20 extending in the tube axis direction are independently formed.
  • This is a multi-hole tube having a flat shape.
  • the hole 20 has a triangular cross-sectional shape as shown in FIG. 3 in which a part of the cross section in the direction perpendicular to the tube axis is enlarged. It is the same equilateral triangle shape.
  • the adjacent holes 20 of the holes 20 having such a shape are arranged in an inverted manner, in other words, rotated 180 ° alternately.
  • the flat multi-hole tubes 14 are arranged in parallel to each other at a predetermined interval in the width direction.
  • the hydraulic diameter: D defined by dividing four times the cross-sectional area by the sum of the lengths of the sides of the hole, and the height of the hole (the thickness of the multi-hole tube) (Height in the vertical direction):
  • the flat multi-hole tube 14 and fins 12 are assembled by various known methods such as assembly by press-fitting or close fitting, joining by brazing, or fixing by an adhesive. Is completed as an integral fin and tube heat exchanger.
  • both end portions of the flat multi-hole tube 14 which is a heat transfer tube constituting such a fin-and-tube heat exchanger are respectively connected to a header (not shown), and the flat multi-hole tube 14 10
  • the ten holes 20, that is, the ten flow paths through which the refrigerant extending in the tube axis direction is circulated are combined on the refrigerant inlet side and the outlet side to form the fin-and-tube heat exchanger 10. It is.
  • the shape of the hole 20 formed in the flat multi-hole tube 14 is simply the contact between the refrigerant and the inner surface of the hole.
  • the flat multi-hole tube 14 has a triangular shape that not only increases the area but also increases the contact area per unit volume of the refrigerant to advantageously improve the heat transfer coefficient on the refrigerant side.
  • the heat exchange efficiency between the refrigerant circulating in the pipe and the heat transfer pipe is effectively improved, and as a result, the heat exchange performance of the heat exchanger 10 can be advantageously enhanced.
  • the heat exchanger 10 can be reduced in size and weight, and the effect of reducing the manufacturing cost can be advantageously exhibited. .
  • the fin-and-tube heat exchanger 10 is illustrated in which the flat multi-hole tube 14 is assembled in the assembly hole 16 provided in the plate-like fin 12.
  • a corrugated fin type fin-and-tube heat exchanger 30 constructed by assembling corrugated (corrugated) fins 24 between flat multi-hole tubes 22, 22. It is also possible.
  • the shape of the hole 20 formed in the flat multi-hole tube 14 is an equilateral triangle shape in the above embodiment, but the ratio of hydraulic diameter: D and hole height: h (D / If h) is a triangular shape within a predetermined range, various triangular shapes such as a right triangle and an isosceles triangle are appropriately selected. Further, even in the side connecting the three vertices of the triangular shape, as long as D / h satisfies the above-described relationship, in addition to those connecting the vertices in a straight line like the regular equilateral triangle shape, a predetermined value is obtained. It is also possible to use arcuate sides with a radius of curvature.
  • the inner surface of the hole 20 is a flat surface here, but may be a surface on which minute irregularities (grooves and ridges) are formed. By forming such irregularities, the contact area between the refrigerant per unit volume and the surface of the hole 20 can be further increased, and the heat transfer coefficient between the refrigerant and the heat transfer tube can be improved more effectively. Become.
  • an aluminum alloy JIS A3003
  • JIS A3003 is extruded to exhibit a cross-sectional shape as shown in FIG. :
  • Extruded flat multi-hole tube 40 having a thickness of 16 mm, a thickness (H) of 1 mm, and a number of holes of 16 was prepared. It was set to 1.
  • Such heat transfer tube No. The shape of the 16 holes (42) provided in 1 was an equilateral triangle having a side length of 0.7 mm. Other specifications such as hole height and hydraulic diameter were as shown in Table 1 below.
  • the hole height (h) is the hole height in the thickness direction of the flat multi-hole tube (40), and the channel area is the cross-sectional area of the hole portion in the cross section perpendicular to the axial direction.
  • the wet edge length indicates the sum of the lengths of the sides of the holes in the cross section.
  • heat transfer tube no. 1 were prepared in the same manner as in No. 1, respectively. 2.
  • heat transfer tube no. No. 2 is a flat multi-hole tube having 16 holes formed in a right triangle having a base of 0.40 mm and a height of 0.50 mm.
  • 3 was a flat multi-hole tube in which 16 holes each having a right triangle with a base of 0.800 mm and a height of 0.500 mm were formed.
  • the hole shapes in each of 2 and 3 are configured such that the holes are alternately rotated by 180 °.
  • the heat transfer tube No. The width and thickness of 2 and 3 are the same as the heat transfer tube no. No. 1 and heat transfer tube No. 1 was produced by extruding an aluminum alloy (JIS A3003). Further, these heat transfer tubes No. The specifications such as the channel area and hydraulic diameter in 2 and 3 are as shown in Table 1 below.
  • FIG. 6A As a heat transfer tube for comparison, as shown in FIG. 6A, a flat multi-hole tube 50 having a square hole shape (a length of one side: a square of 0.46 mm), and FIG. 6B. And a flat multi-hole tube 52 having a circular hole shape (a circle having a diameter of 0.52 mm) as shown in FIG. 4. Heat transfer tube no. It was set to 5. Furthermore, although the hole shape is a triangle shape, the D / h value is out of the scope of the present invention, and the hole shape is a right triangle as shown in FIGS. 7 (a) and 7 (b). Flat multi-hole tubes 54 and 56 were prepared. 6. Heat transfer tube no. It was set to 7. Here, heat transfer tube no. The hole shape of No.
  • a plurality of flat multi-hole tubes (22) are arranged in parallel to each other as shown in FIG.
  • the heat exchanger (30) in which the corrugated fins (24) are intimately joined between the adjacent flat multi-hole tubes (22, 22) is referred to as a heat exchanger no. 1 to 7 were produced.
  • both ends of the arranged flat multi-hole tubes (22) are respectively connected to the header (26), and the respective holes (in the axial direction of the flat multi-hole tubes (22) ( Are formed on the refrigerant inlet side and the outlet side to form a refrigerant flow path.
  • the fins (24) are all corrugated with a double-sided brazing sheet using JIS A3703 series as the core material and JIS A4045 series as the skin material. Using the processed material, it was configured to be formed at the same time as joining with the flat multi-hole tube, and 75 flat multi-hole tubes (24) were used in producing one heat exchanger. Such a fin (24) and flat multi-hole tube (22) are joined between a corrugated brazing sheet assembled in the shape of the target heat exchanger (30) and the flat multi-hole tube (22). The assembly is heated and held in a brazing furnace at a maximum temperature of 600 ° C.
  • the length of the flat multi-hole tube (22) between the headers (26, 26) is 610 mm, and the overall size of the heat exchanger (30) is width: 650 mm and height: 610 mm. I did it.
  • test results for each heat exchanger are shown in Table 2 below.
  • the test result shown in this Table 2 shows heat exchanger No.2 whose hole shape of a flat multi-hole pipe is a square. It is shown using a relative ratio with respect to the case where the heat exchange amount of 4 is 100.
  • heat exchangers No. 1 having the same flow path area but different hole shapes formed in each flat multi-hole tube. 1, 4, and 5, the heat exchanger No. 1 having a triangular hole shape according to the present invention.
  • No. 1 is a heat exchanger No. 1 having a square hole shape. 4 or circular heat exchanger No. 4 It was confirmed that the condensation performance was greatly improved than 5.
  • the hole shape is a triangle shape, and the ratio of hydraulic diameter: D and hole height: h: D / h is configured using flat multi-hole tubes 40, 44, 46 within the scope of the present invention.
  • Each heat exchanger No. 1, heat exchanger no. 2 and heat exchanger no. 3 is a heat exchanger No.

Abstract

To provide a heat transfer pipe for a fin and tube-type heat exchanger with which the heat transfer rate on the coolant side can be effectively improved, and a fin and tube-type heat exchanger using the same. Triangular holes (20) are formed in flat multiple hole pipes (14) made of aluminium or an alloy thereof so as to give a ratio (D/h) in the region of 0.40 to 0.80 where (D) is the hydraulic diameter defined by dividing four times the cross-sectional area of the hole by the sum of the length of the sides of the hole and (h) is the height of the hole; and said flat multiple hole pipes (14) and fins (12) made of aluminium or an alloy thereof are assembled to form a fin and tube-type heat exchanger (10).

Description

フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
 本発明は、フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器に係り、特に、家庭用エアコンやパッケージエアコン等の空調機におけるフィン・アンド・チューブ型熱交換器に好適に用いられる伝熱管と、それを用いたフィン・アンド・チューブ型熱交換器に関するものである。 The present invention relates to a heat transfer tube for a fin-and-tube heat exchanger and a fin-and-tube heat exchanger using the same, and more particularly to a fin-and-tube in an air conditioner such as a home air conditioner or a packaged air conditioner. The present invention relates to a heat transfer tube suitably used for a mold heat exchanger and a fin-and-tube heat exchanger using the same.
 従来より、家庭用エアコンや自動車用エアコン、パッケージエアコン等の空調用機器の他、冷蔵庫、ヒートポンプ式給湯器等には、蒸発器又は凝縮器として作動する熱交換器が用いられており、その中でも、家庭用室内エアコンや業務用パッケージエアコンにおいては、伝熱管にフィンを組み付けてなる構造のフィン・アンド・チューブ型熱交換器が、最も一般的に用いられている。 Conventionally, in addition to air conditioning equipment such as home air conditioners, automotive air conditioners, and packaged air conditioners, refrigerators, heat pump water heaters, and the like have used heat exchangers that operate as evaporators or condensers, among them. In home indoor air conditioners and commercial packaged air conditioners, fin-and-tube heat exchangers having a structure in which fins are assembled to heat transfer tubes are most commonly used.
 また、近年、オゾン層保護や地球温暖化防止等の観点から、従来のフロン系冷媒に代えて、温暖化係数の低い自然冷媒を利用した熱交換器の開発も行われてきており、その中でも、炭酸ガスを主体とする冷媒を用いた給湯器が注目され、その開発が為されてきているが、そのような熱交換器にも、上記と同様なフィン・アンド・チューブ型熱交換器が用いられている。 In recent years, heat exchangers using natural refrigerants with low global warming potential have been developed in place of conventional chlorofluorocarbon refrigerants from the viewpoint of protecting the ozone layer and preventing global warming. However, hot water heaters using refrigerants mainly composed of carbon dioxide gas have attracted attention and have been developed. However, fin-and-tube heat exchangers similar to the above are also used in such heat exchangers. It is used.
 ところで、かかるフィン・アンド・チューブ型熱交換器は、一般に、所定の加工が施されたフィン(外面フィン)と伝熱管とを用い、それらフィンと伝熱管とを密接するようにして組み付けてなる構造のものにおいて、実用化されてきている。そして、そのような構造とされた熱交換器においては、伝熱管内に冷媒を流通せしめる一方、伝熱管に対して直角な方向に、フィンに沿って熱交換流体としての空気を流すことによって、冷媒と空気との間で熱交換が行われるようになっているのである。 By the way, such fin-and-tube heat exchangers are generally assembled using fins (outer surface fins) and heat transfer tubes that have been subjected to predetermined processing, and these fins and heat transfer tubes are in close contact with each other. In the structure, it has been put into practical use. And in the heat exchanger having such a structure, while circulating the refrigerant in the heat transfer tube, by flowing air as a heat exchange fluid along the fins in a direction perpendicular to the heat transfer tube, Heat exchange is performed between the refrigerant and the air.
 そして、そのようなフィン・アンド・チューブ型熱交換器において用いられる伝熱管の一つとして、扁平な形状の管内部を複数の隔壁にて複数の流路に分割してなる構造を有する扁平多穴管が、知られている。また、この扁平多穴管にあっては、通常、アルミニウム若しくはアルミニウム合金をポートホール押出して得られるものが、用いられているのであるが、そのような扁平多穴管の断面形状としては、例えば、特開平6-142755号公報(特許文献1)にて明らかにされているように、管内部の流路を四角形状としているものが、一般的によく用いられている。また、そのような扁平多穴管において、熱交換効率を向上させるためには、流路の表面積を増やすことが有効であるため、特開平5-222480号公報(特許文献2)においては、四角形状とされた穴の内面に、微少な凹凸を多数形成して、表面積を増加させる方法が明らかにされている。このように流路の表面積を増大させることによって、穴の内部を流通せしめられる冷媒と穴表面との接触面積を増大させ、冷媒側の熱伝達率、即ち、冷媒と伝熱管との間の熱伝達率を向上させることによって、熱交換効率の向上を図るのである。 As one of the heat transfer tubes used in such a fin-and-tube heat exchanger, a flat tube having a structure in which a flat tube interior is divided into a plurality of flow paths by a plurality of partition walls. Hole tubes are known. Moreover, in this flat multi-hole tube, what is usually obtained by porthole extrusion of aluminum or aluminum alloy is used, but as a cross-sectional shape of such a flat multi-hole tube, for example, As disclosed in Japanese Patent Application Laid-Open No. 6-142755 (Patent Document 1), a tube having a rectangular flow path is generally used. Further, in such a flat multi-hole tube, in order to improve heat exchange efficiency, it is effective to increase the surface area of the flow path. Therefore, in Japanese Patent Laid-Open No. 5-222480 (Patent Document 2), a square is used. A method for increasing the surface area by forming a large number of minute irregularities on the inner surface of a hole having a shape has been clarified. By increasing the surface area of the flow path in this way, the contact area between the coolant that can circulate inside the hole and the surface of the hole is increased, and the heat transfer coefficient on the coolant side, that is, the heat between the coolant and the heat transfer tube. By improving the transfer rate, the heat exchange efficiency is improved.
 しかしながら、アルミニウム若しくはアルミニウム合金をポートホール押出し等の押出成形にて扁平多穴管を形成する場合には、穴の内面に形成される凹凸の大きさを、あまり小さくすることが出来ないため、表面積を充分に増大させることが出来ないのである。特に、熱交換器を小型化する等の目的のために扁平多穴管を小さくした場合には、形成される穴も小さくなるため、そのような凹凸の形成による表面積の増加による熱伝達率の向上効果は、充分とは言えないものであった。 However, when forming a flat multi-hole tube by extrusion molding such as porthole extrusion of aluminum or aluminum alloy, the size of the irregularities formed on the inner surface of the hole cannot be reduced so much, the surface area Cannot be increased sufficiently. In particular, when the flat multi-hole tube is made small for the purpose of downsizing the heat exchanger, the holes formed are also small. The improvement effect was not sufficient.
 また、前述の特許文献1(特開平6-142755号公報)の図9(c)や、特開平9-72680号公報(特許文献3)には、扁平多穴管の穴断面形状を三角形形状にしたものが明らかにされている。しかし、特許文献1においては、多穴管の押出成形を行うに際して、多穴管押出用ダイスの寿命の延長や、製品としての寸法や精度の向上が、その目的とされているに過ぎず、そこでは、そのような多穴管押出用のダイスを用いて作製される多穴管の穴形状の一例として、単に、三角形形状が挙げられているのみである。また、特許文献3においては、冷間圧延又は冷間圧縮により所定の厚さと平坦な表面を得ると共に、加工硬化によって引っ張り強度を改善して、適正な硬度と弾力性を与えることが出来るようにした多孔扁平管に関するものであり、そのような特性を得られる多孔扁平管の構造として、穴形状が二等辺三角形とされたものが、明らかにされている。 Further, in FIG. 9 (c) of the above-mentioned Patent Document 1 (Japanese Patent Laid-Open No. 6-142755) and Japanese Patent Laid-Open No. 9-72680 (Patent Document 3), the hole cross-sectional shape of the flat multi-hole tube is a triangular shape. What has been made clear. However, in Patent Document 1, when performing extrusion molding of a multi-hole tube, the extension of the life of the die for multi-hole tube extrusion and the improvement of dimensions and accuracy as a product are merely intended for that purpose, There, only a triangular shape is mentioned as an example of the hole shape of the multi-hole tube manufactured using such a die for multi-hole tube extrusion. Moreover, in patent document 3, while obtaining a predetermined | prescribed thickness and a flat surface by cold rolling or cold compression, tensile strength is improved by work hardening so that appropriate hardness and elasticity can be given. As a structure of a porous flat tube that can obtain such characteristics, it has been clarified that the hole shape is an isosceles triangle.
 しかしながら、それら特許文献1,3で明らかにされている扁平多穴管にあっては、単に、押出加工によって形成される多穴管の穴形状を三角形形状としただけのものであったり、多穴管の硬度や弾力性を改善するために、その穴形状を二等辺三角形形状としているに過ぎないものであった。即ち、そこでは、三角形の具体的な形状についてや、伝熱管の熱伝達率について、何等検討されているものではなかったのである。 However, in the flat multi-hole pipes disclosed in Patent Documents 1 and 3, the hole shape of the multi-hole pipe formed by extrusion is simply a triangular shape, In order to improve the hardness and elasticity of the hole tube, the hole shape is merely an isosceles triangle shape. In other words, there has been no investigation of the specific shape of the triangle or the heat transfer coefficient of the heat transfer tube.
特開平6-142755号公報JP-A-6-142755 特開平5-222480号公報JP-A-5-222480 特開平9-72680号公報Japanese Patent Laid-Open No. 9-72680
 ここにおいて、本発明は、かかる事情を背景にして為されたものであって、その解決課題とするところは、冷媒側の熱伝達率を効果的に向上させることの出来るフィン・アンド・チューブ型熱交換器用伝熱管を提供することにあり、また、そのようなフィン・アンド・チューブ型熱交換器用伝熱管を用いて作製された空気調和機用等のフィン・アンド・チューブ型熱交換器を提供することも、その解決課題としている。 Here, the present invention has been made in the background of such circumstances, and the problem to be solved is a fin-and-tube type that can effectively improve the heat transfer coefficient on the refrigerant side. A heat exchanger tube for a heat exchanger is provided, and a fin and tube heat exchanger for an air conditioner or the like manufactured using such a heat exchanger tube for a fin and tube heat exchanger is provided. Providing it is also an issue to be solved.
 そして、本発明にあっては、かくの如き課題の解決のために、アルミニウム若しくはその合金からなるフィンが組み付けられるフィン・アンド・チューブ型熱交換器用伝熱管にして、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管からなり、且つかかる多穴管内に、管軸方向に延びる三角断面形状の多数の穴が、幅方向に離間して互いに平行に配列されて設けられてなると共に、かかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が0.40~0.80の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器用伝熱管を、その要旨とするものである。 And in the present invention, in order to solve such problems, a heat transfer tube for a fin-and-tube heat exchanger to which a fin made of aluminum or an alloy thereof is assembled is made of aluminum or an alloy thereof. It consists of a multi-hole tube having a flat cross-sectional shape as a whole, and a number of triangular cross-sectional holes extending in the tube axis direction are provided in the multi-hole tube so as to be spaced apart from each other in the width direction and arranged parallel to each other. In addition, the ratio (D / h) of the hydraulic diameter: D defined by dividing four times the cross-sectional area of the hole by the sum of the lengths of the holes is 0 (D / h). The gist of the present invention is a heat transfer tube for a fin-and-tube heat exchanger, characterized in that it is configured to fall within the range of .40 to 0.80.
 なお、かかる本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の望ましい態様の一つにあっては、前記多穴管に設けられた多数の穴は、それぞれ、正三角形又は直角三角形の断面形状を有している。さらに、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の他の望ましい態様の一つによれば、前記三角断面形状の穴は、180°回動されてなる形態において、前記多穴管の幅方向に交互に配設されることとなる。 In addition, in one of desirable aspects of the heat transfer tube for a fin-and-tube heat exchanger according to the present invention, the multiple holes provided in the multi-hole tube each have a cross section of a regular triangle or a right triangle. It has a shape. Furthermore, according to one of the other desirable modes of the heat transfer tube for a fin-and-tube heat exchanger according to the present invention, the multi-hole tube is configured such that the triangular cross-section hole is rotated by 180 °. Are alternately arranged in the width direction.
 また、本発明にあっては、アルミニウム若しくはその合金からなるフィンと、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管とを組み付けてなるフィン・アンド・チューブ型熱交換器にして、前記多穴管が、管軸方向に延びる三角断面形状の多数の穴を、幅方向に離間して互いに平行に配列してなる形態において、構成されていると共に、かかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が0.40~0.80の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器をも、その要旨としている。 Also, in the present invention, a fin-and-tube heat exchanger is formed by assembling a fin made of aluminum or an alloy thereof and a multi-hole tube made of aluminum or an alloy thereof and having a generally flat cross-sectional shape. The multi-hole tube is configured in a form in which a large number of triangular cross-sectional holes extending in the tube axis direction are arranged in parallel with each other in the width direction. The ratio (D / h) of hydraulic diameter: D defined by dividing 4 times the sum of the side lengths of the holes and the height of the holes: h (D / h) is in the range of 0.40 to 0.80. The gist of the present invention is also a fin-and-tube heat exchanger that is configured to be inside.
 なお、そのような本発明に従うフィン・アンド・チューブ型熱交換器の望ましい態様の一つによれば、前記フィンがコルゲート状フィンであって、該コルゲート状フィンが隣接する前記多穴管の間に配置されて、それらコルゲート状フィンと多穴管とが相互に密接するように組み付けられている。 According to one of the desirable embodiments of the fin-and-tube heat exchanger according to the present invention, the fin is a corrugated fin, and the corrugated fin is adjacent to the adjacent multi-hole tube. The corrugated fins and the multi-hole tube are assembled so as to be in close contact with each other.
 さらに、かかる本発明に従うフィン・アンド・チューブ型熱交換器の別の望ましい態様の一つにあっては、前記フィンが平坦な板状フィンであって、該板状フィンの幅方向の一端に開口するように設けられたスリット状の組付け孔に対して、前記多穴管が密接して挿入されて組み付けられることとなる。 Furthermore, in another desirable aspect of the fin-and-tube heat exchanger according to the present invention, the fin is a flat plate-shaped fin, and is disposed at one end in the width direction of the plate-shaped fin. The multi-hole tube is closely inserted into the slit-shaped assembly hole provided so as to be opened and assembled.
 更にまた、本発明に従うフィン・アンド・チューブ型熱交換器の好ましい態様の一つにあっては、前記多穴管に設けられた多数の穴は、それぞれ、正三角形又は直角三角形の断面形状を有している。加えて、本発明に従うフィン・アンド・チューブ型熱交換器の別の好ましい態様の一つによれば、前記三角断面形状の穴は、180°回動されてなる形態において、前記多穴管の幅方向に交互に配設されることとなる。 Furthermore, in one of the preferred embodiments of the fin-and-tube heat exchanger according to the present invention, the multiple holes provided in the multi-hole tube each have a cross-sectional shape of a regular triangle or a right triangle. Have. In addition, according to one of the other preferable embodiments of the fin-and-tube heat exchanger according to the present invention, the triangular cross-sectional shape of the hole having the triangular cross section is rotated by 180 °. It will be alternately arranged in the width direction.
 従って、このような本発明に従う構成とされたフィン・アンド・チューブ型熱交換器用伝熱管においては、三角断面形状とされた穴が、その断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)を、適切な範囲に設定して、多穴管内に形成されているところから、冷媒が流れる際に、三角断面形状とされた穴の、2つの辺に挟まれた角度の小さい部分を冷媒が流通することにより、冷媒の単位体積あたりに接触する多穴管内面の面積が増加して、冷媒と伝熱管との間の熱伝達率、即ち伝熱管の熱交換効率を効果的に向上させることが可能となるのである。しかも、そのような三角形状の穴の角度の小さい部分、換言すれば、穴の狭い部分を冷媒が通過することによって、局所的な流動状態を起こすことが出来るため、より効果的に熱交換効率を上げることが可能となるのである。 Therefore, in such a heat exchanger tube for a fin-and-tube heat exchanger configured according to the present invention, a hole having a triangular cross-sectional shape has a length of the side of the hole that is four times the cross-sectional area. Since the ratio (D / h) of the hydraulic diameter defined by dividing by the sum: D and the height of the hole: h (D / h) is set to an appropriate range, When the refrigerant flows, the area of the inner surface of the multi-hole tube that contacts the unit volume of the refrigerant increases by circulating the refrigerant through the small angle part sandwiched between the two sides of the hole having a triangular cross-sectional shape. Thus, it is possible to effectively improve the heat transfer coefficient between the refrigerant and the heat transfer tube, that is, the heat exchange efficiency of the heat transfer tube. Moreover, since the refrigerant can cause a local flow state by passing through the portion where the angle of such a triangular hole is small, in other words, the portion where the hole is narrow, the heat exchange efficiency is more effective. It becomes possible to raise.
 そして、このような構成とされたフィン・アンド・チューブ型熱交換器用伝熱管を用いて作製されたフィン・アンド・チューブ型熱交換器にあっては、伝熱管において冷媒側の熱伝達率が有利に向上せしめられているところから、高い熱交換性能を発揮すると共に、熱交換器の小型化や軽量化、更には製造コストの低減といった効果が、有利に発揮されることとなる。 In the fin-and-tube heat exchanger manufactured using the heat transfer tube for the fin-and-tube heat exchanger configured as described above, the heat transfer coefficient on the refrigerant side in the heat-transfer tube is From the point of being advantageously improved, the high heat exchange performance is exhibited, and the effects such as downsizing and weight reduction of the heat exchanger and reduction of the manufacturing cost are advantageously exhibited.
本発明に従うフィン・アンド・チューブ型熱交換器の一例を示す斜視説明図である。It is a perspective explanatory view showing an example of a fin and tube type heat exchanger according to the present invention. 図1に示されるフィン・アンド・チューブ型熱交換器を構成するフィンを示す斜視説明図である。It is a perspective explanatory view which shows the fin which comprises the fin and tube type heat exchanger shown by FIG. 図1に示されるフィン・アンド・チューブ型熱交換器を構成する扁平多穴管の一部の断面を拡大して示す断面説明図である。It is a cross-sectional explanatory drawing which expands and shows a part of cross section of the flat multi-hole pipe which comprises the fin and tube type heat exchanger shown by FIG. 実施例において用いられた熱交換性能評価用フィン・アンド・チューブ型熱交換器を概略的に示す正面説明図である。It is front explanatory drawing which shows schematically the fin and tube type heat exchanger for heat exchange performance evaluation used in the Example. 実施例において用いられた熱交換器を構成するために準備された、本発明に従う扁平多穴管の断面を示す説明図であって、(a)は、穴形状が正三角形形状のものを、(b)は、穴形状が直角三角形形状のものを、(c)は、(b)とは寸法の違う直角三角形形状のものを、それぞれ示している。It is explanatory drawing which shows the cross section of the flat multi-hole tube according to this invention prepared in order to comprise the heat exchanger used in the Example, Comprising: (a) is a thing whose hole shape is an equilateral triangle shape, (B) shows a hole having a right triangle shape, and (c) shows a right triangle shape having a dimension different from that of (b). 実施例において比較のために用いられた熱交換器を構成するために準備された扁平多穴管の断面を示す説明図であって、(a)は、四角形形状のものを、(b)は、円形形状のものを、それぞれ示している。It is explanatory drawing which shows the cross section of the flat multi-hole tube prepared in order to comprise the heat exchanger used for the comparison in the Example, (a) is a rectangular shape, (b) is Each of the circular shapes is shown. 実施例において比較のために用いられた熱交換器を構成するために更に準備された扁平多穴管の断面の一部を拡大して示す説明図であって、(a)及び(b)は、それぞれ異なる三角断面形状の穴を示している。It is explanatory drawing which expands and shows a part of cross section of the flat multi-hole tube further prepared in order to comprise the heat exchanger used for the comparison in the Example, (a) And (b) , Holes having different triangular cross-sectional shapes are shown.
 以下、本発明を更に具体的に明らかにするために、本発明の実施の形態について、図面を参照しつつ、詳細に説明することとする。 Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.
 先ず、図1には、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管を用いたフィン・アンド・チューブ型熱交換器の実施形態の一つが、斜視図の形態において、概略的に示されている。そこにおいて、熱交換器10は、互いに平行に且つ一定距離を隔てて配置された複数枚のフィン12に対して、2本の扁平多穴管14,14が、かかるフィン12に設けられたスリット状の組付け孔16に挿入されて、孔内面に密接した形態において固定せしめられることによって、構成されている。 FIG. 1 is a perspective view schematically showing one embodiment of a fin-and-tube heat exchanger using a heat-transfer tube for a fin-and-tube heat exchanger according to the present invention. Has been. In the heat exchanger 10, two flat multi-hole tubes 14 and 14 are slits provided in the fins 12 with respect to the plurality of fins 12 arranged in parallel to each other and at a predetermined distance. It is configured by being inserted into the assembly hole 16 and fixed in a form in close contact with the inner surface of the hole.
 より詳細には、フィン12は、従来と同様に、アルミニウム若しくはアルミニウム合金からなる金属板材にて形成されて、図2にも示されているように、平坦な矩形の平面形状を呈した薄肉の板状フィンとされている。また、かかるフィン12には、扁平多穴管14が組み付けられる組付け孔16が、矩形形状のフィン12の一端からフィン12の幅方向(図2においては、左右方向)に所定長さで延びる所定幅のスリットとして、形成されている。更に、かかる組付け孔16の周りには、所定高さのカラー部18が、フィン12と一体的に形成されて、U字形状を呈している。 More specifically, the fins 12 are formed of a metal plate made of aluminum or an aluminum alloy, as in the prior art, and as shown in FIG. It is a plate-like fin. Further, in the fin 12, an assembly hole 16 into which the flat multi-hole tube 14 is assembled extends from one end of the rectangular fin 12 by a predetermined length in the width direction of the fin 12 (left and right direction in FIG. 2). It is formed as a slit having a predetermined width. Further, a collar portion 18 having a predetermined height is formed integrally with the fin 12 around the assembly hole 16 and has a U shape.
 一方、扁平多穴管14は、よく知られている如く、アルミニウム若しくはアルミニウム合金等からなる金属材料にて形成された、ここでは、管軸方向に延びる10個の穴20が独立して形成されてなる、扁平形状を呈する多穴管とされている。そこにおいて、穴20は、管軸に垂直な方向における断面の一部を拡大した図3にも示されるように、三角断面形状を呈していると共に、ここでは、その3辺の長さが全て同一の、正三角形形状とされている。そして、そのような形状とされた穴20の、隣り合う穴20同士は、図示の如く、それぞれ、上下方向が反転した形態において、換言すれば180°回動させられて交互に配置された形態において、扁平多穴管14の幅方向に所定間隔を隔てて、互いに平行に配列されている。 On the other hand, as is well known, the flat multi-hole tube 14 is formed of a metal material made of aluminum or aluminum alloy, and here, ten holes 20 extending in the tube axis direction are independently formed. This is a multi-hole tube having a flat shape. Here, the hole 20 has a triangular cross-sectional shape as shown in FIG. 3 in which a part of the cross section in the direction perpendicular to the tube axis is enlarged. It is the same equilateral triangle shape. And as shown in the figure, the adjacent holes 20 of the holes 20 having such a shape are arranged in an inverted manner, in other words, rotated 180 ° alternately. The flat multi-hole tubes 14 are arranged in parallel to each other at a predetermined interval in the width direction.
 また、そのような穴20においては、その断面積の4倍を、穴の辺の長さの和で除することによって定義される水力直径:Dと、穴の高さ(多穴管の厚さ方向における高さ):hとの比(D/h)が、0.40~0.80の範囲内となるように、構成されている。即ち、ここでは、穴20が正三角形形状であるため、D/h=0.666・・・≒0.67となり、上記の範囲内となるように構成されているのである。 Further, in such a hole 20, the hydraulic diameter: D defined by dividing four times the cross-sectional area by the sum of the lengths of the sides of the hole, and the height of the hole (the thickness of the multi-hole tube) (Height in the vertical direction): The ratio (D / h) to h is configured to be in the range of 0.40 to 0.80. That is, here, since the hole 20 has a regular triangular shape, D / h = 0.666... ≈0.67, which is configured to be within the above range.
 このように、水力直径:Dと穴の高さ:hとの比が、上記範囲内の値となるように、穴20の形状を設定することによって、かかる穴20の角度の小さい部分を、冷媒が効果的に通過するようになり、冷媒の単位体積あたりに接触する穴内面の面積が増加して、冷媒と伝熱管との間の熱伝達率が有利に向上されることとなる。また、そのような角度の小さい部分を冷媒が通過することによって、局所的な流動状態が発生するため、より効果的に熱伝達率を上げることも可能となるのである。なお、かかるD/hの値が0.40よりも小さくなる場合にあっては、穴20が小さくなり過ぎてしまい、製造が困難となってしまうため、実用的でなくなってしまうのである。一方、D/hの値が0.80よりも大きくなる場合には、冷媒の単位体積あたりの接触面積の増加が充分でなくなり、熱伝達率の向上効果が発揮され難くなる。 Thus, by setting the shape of the hole 20 so that the ratio of the hydraulic diameter: D and the height of the hole: h is a value within the above range, a portion having a small angle of the hole 20 is obtained. The refrigerant effectively passes, the area of the hole inner surface that contacts per unit volume of the refrigerant is increased, and the heat transfer coefficient between the refrigerant and the heat transfer tube is advantageously improved. Moreover, since a local fluid state generate | occur | produces when a refrigerant | coolant passes through such a small angle part, it also becomes possible to raise a heat transfer rate more effectively. When the value of D / h is smaller than 0.40, the hole 20 becomes too small and it becomes difficult to manufacture, so it becomes impractical. On the other hand, when the value of D / h is larger than 0.80, the contact area per unit volume of the refrigerant is not increased sufficiently, and the effect of improving the heat transfer coefficient is hardly exhibited.
 そして、そのような扁平多穴管14とフィン12を用いて、かかるフィン12の複数枚を、それぞれに形成された組付け孔16を一致させた状態下において、互いに平行に且つ一定距離を隔てるように配置せしめ、その一致させた組付け孔16内に、扁平多穴管14を嵌め込んで、組付け孔16内面に扁平多穴管14が直接的に又は間接的に密接するように組み付けることにより、目的とするフィン・アンド・チューブ型熱交換器10が構成されるのである。なお、この扁平多穴管14とフィン12との組み付けは、よく知られているように、圧入又は密接嵌合による組付けやろう付けによる接合、或いは接着剤による固着等、公知の各種の手法によって行われて、一体的なフィン・アンド・チューブ型熱交換器として完成されることとなる。また、そのようなフィン・アンド・チューブ型熱交換器を構成する伝熱管たる扁平多穴管14のそれぞれの両端部は、ここでは図示しないヘッダにそれぞれ接続されて、扁平多穴管14の10個の穴20、即ち、管軸方向に延びる冷媒が流通せしめられる10本の流路が、冷媒の入口側と出口側においてそれぞれまとめられて、フィン・アンド・チューブ型熱交換器10とされているのである。 Then, using such flat multi-hole tube 14 and fins 12, a plurality of such fins 12 are separated from each other in parallel and at a constant distance in a state where the assembly holes 16 formed in each of them are aligned. The flat multi-hole tube 14 is fitted into the aligned assembly hole 16 and assembled so that the flat multi-hole tube 14 is in close contact with the inner surface of the assembly hole 16 directly or indirectly. Thus, the target fin-and-tube heat exchanger 10 is configured. As is well known, the flat multi-hole tube 14 and the fins 12 are assembled by various known methods such as assembly by press-fitting or close fitting, joining by brazing, or fixing by an adhesive. Is completed as an integral fin and tube heat exchanger. Further, both end portions of the flat multi-hole tube 14 which is a heat transfer tube constituting such a fin-and-tube heat exchanger are respectively connected to a header (not shown), and the flat multi-hole tube 14 10 The ten holes 20, that is, the ten flow paths through which the refrigerant extending in the tube axis direction is circulated are combined on the refrigerant inlet side and the outlet side to form the fin-and-tube heat exchanger 10. It is.
 従って、このような本発明に従う構成とされたフィン・アンド・チューブ型熱交換器10においては、扁平多穴管14に形成された穴20の形状が、単純に、冷媒と穴内面との接触面積を増大させるだけでなく、冷媒の単位体積当たりの接触面積を増大させて、冷媒側の熱伝達率を有利に向上せしめることが可能な三角形形状とされているところから、扁平多穴管14において、管内を流通する冷媒と伝熱管との間の熱交換効率が、効果的に向上せしめられ、その結果、熱交換器10の熱交換性能を、有利に高めることが出来るのである。また、そのように高い熱伝達率を発揮する扁平多穴管14を用いることによって、熱交換器10を小型、軽量化し得ると共に、製造コストの低減といった効果も、有利に発揮されることとなる。 Accordingly, in the fin-and-tube heat exchanger 10 configured according to the present invention, the shape of the hole 20 formed in the flat multi-hole tube 14 is simply the contact between the refrigerant and the inner surface of the hole. The flat multi-hole tube 14 has a triangular shape that not only increases the area but also increases the contact area per unit volume of the refrigerant to advantageously improve the heat transfer coefficient on the refrigerant side. In this case, the heat exchange efficiency between the refrigerant circulating in the pipe and the heat transfer pipe is effectively improved, and as a result, the heat exchange performance of the heat exchanger 10 can be advantageously enhanced. In addition, by using the flat multi-hole tube 14 that exhibits such a high heat transfer rate, the heat exchanger 10 can be reduced in size and weight, and the effect of reducing the manufacturing cost can be advantageously exhibited. .
 以上、本発明の代表的な実施形態の一つについて詳述してきたが、それは、あくまでも例示に過ぎないものであって、本発明は、そのような実施形態に係る具体的な記述によって、何等限定的に解釈されるものではないことが、理解されるべきである。 As described above, one of the representative embodiments of the present invention has been described in detail. However, this is merely an example, and the present invention is not limited by the specific description according to such an embodiment. It should be understood that this is not to be construed as limiting.
 例えば、前述の実施形態においては、板状のフィン12に設けられた組付け孔16に扁平多穴管14が組み付けられて構成されるフィン・アンド・チューブ型の熱交換器10を例示したが、例えば、図4に示されるような、扁平多穴管22,22の間にコルゲート状(波状)のフィン24を組み付けて構成された、コルゲートフィン式のフィン・アンド・チューブ型熱交換器30とすることも可能である。 For example, in the above-described embodiment, the fin-and-tube heat exchanger 10 is illustrated in which the flat multi-hole tube 14 is assembled in the assembly hole 16 provided in the plate-like fin 12. For example, as shown in FIG. 4, a corrugated fin type fin-and-tube heat exchanger 30 constructed by assembling corrugated (corrugated) fins 24 between flat multi-hole tubes 22, 22. It is also possible.
 また、扁平多穴管14に形成される穴20の形状は、上記の実施形態においては、正三角形形状とされているが、水力直径:Dと穴の高さ:hとの比(D/h)が所定の範囲内とされる三角形形状であれば、直角三角形や二等辺三角形等、各種の三角形形状が、適宜に選択されることとなる。更に、三角形形状の3つの頂点を結ぶ辺にあっても、例示の正三角形形状のように、直線状に頂点を結ぶものの他、D/hが前述した関係を満たすものであれば、所定の曲率半径をもった円弧状の辺とすることも可能である。 In addition, the shape of the hole 20 formed in the flat multi-hole tube 14 is an equilateral triangle shape in the above embodiment, but the ratio of hydraulic diameter: D and hole height: h (D / If h) is a triangular shape within a predetermined range, various triangular shapes such as a right triangle and an isosceles triangle are appropriately selected. Further, even in the side connecting the three vertices of the triangular shape, as long as D / h satisfies the above-described relationship, in addition to those connecting the vertices in a straight line like the regular equilateral triangle shape, a predetermined value is obtained. It is also possible to use arcuate sides with a radius of curvature.
 加えて、かかる穴20の内表面は、ここでは、平坦な面としていたが、微少な凹凸(溝や突条)を形成した面であってもよい。そのような凹凸を形成することによって、単位体積当たりの冷媒と穴20の表面との接触面積を更に増大させ、冷媒と伝熱管との熱伝達率を、より効果的に向上させることが可能となる。 In addition, the inner surface of the hole 20 is a flat surface here, but may be a surface on which minute irregularities (grooves and ridges) are formed. By forming such irregularities, the contact area between the refrigerant per unit volume and the surface of the hole 20 can be further increased, and the heat transfer coefficient between the refrigerant and the heat transfer tube can be improved more effectively. Become.
 その他、一々列挙はしないが、本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において実施されるものであり、またそのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることは、言うまでもないところである。 In addition, although not listed one by one, the present invention is implemented in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that any one of them falls within the scope of the present invention without departing from the spirit of the invention.
 以下に、本発明の代表的な実施例の一つを示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。 Hereinafter, one representative embodiment of the present invention will be shown to clarify the present invention more specifically. However, the present invention is not limited by the description of such embodiment. It goes without saying that it is not something to receive.
 先ず、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管として、アルミニウム合金(JIS A3003)を押出加工することによって、図5(a)に示されるような断面形状を呈する、幅(W):16mm、厚さ(H):1mm、穴数:16の押出扁平多穴管40を準備し、これを伝熱管No.1とした。かかる伝熱管No.1に設けられた16個の穴(42)の形状は、一辺の長さが0.7mmの正三角形となるようにした。その他、穴の高さや水力直径等の各諸元は、下記表1に示す通りとした。なお、下記表1において、穴高さ(h)は、扁平多穴管(40)の厚さ方向における穴の高さを、流路面積は、軸方向に垂直な断面における穴部分の断面積の総和を、濡縁長さは、断面における穴の辺の長さの総和を、それぞれ示している。 First, as a heat transfer tube for a fin-and-tube heat exchanger according to the present invention, an aluminum alloy (JIS A3003) is extruded to exhibit a cross-sectional shape as shown in FIG. : Extruded flat multi-hole tube 40 having a thickness of 16 mm, a thickness (H) of 1 mm, and a number of holes of 16 was prepared. It was set to 1. Such heat transfer tube No. The shape of the 16 holes (42) provided in 1 was an equilateral triangle having a side length of 0.7 mm. Other specifications such as hole height and hydraulic diameter were as shown in Table 1 below. In Table 1 below, the hole height (h) is the hole height in the thickness direction of the flat multi-hole tube (40), and the channel area is the cross-sectional area of the hole portion in the cross section perpendicular to the axial direction. The wet edge length indicates the sum of the lengths of the sides of the holes in the cross section.
 また、本発明に従うフィン・アンド・チューブ型熱交換器用伝熱管の別の例として、図5(b)及び図5(c)に示される如き断面形状の、扁平多穴管44,46を、上記伝熱管No.1と同様に準備し、それぞれ、伝熱管No.2、伝熱管No.3とした。ここで、伝熱管No.2は、底辺:0.40mm、高さ:0.50mmの直角三角形とされた穴が16個形成された扁平多穴管であり、また伝熱管No.3は、底辺:0.800mm、高さ:0.500mmの直角三角形とされた穴が16個形成された扁平多穴管であった。なお、伝熱管No.2,3のそれぞれにおける穴形状は、図より明らかな如く、交互に各穴が180°回動せしめられてなる形態とされている。また、かかる伝熱管No.2,3の幅や厚さは、伝熱管No.1と同じ寸法とし、伝熱管No.1と同様に、アルミニウム合金(JIS A3003)を押出加工することによって作製した。更に、それら伝熱管No.2,3における流路面積や水力直径等の各諸元に関しては、下記表1に示す通りである。 Further, as another example of the heat transfer tube for the fin-and-tube heat exchanger according to the present invention, flat multi-hole tubes 44 and 46 having a cross-sectional shape as shown in FIGS. 5 (b) and 5 (c), Heat transfer tube no. 1 were prepared in the same manner as in No. 1, respectively. 2. Heat transfer tube no. It was set to 3. Here, heat transfer tube no. No. 2 is a flat multi-hole tube having 16 holes formed in a right triangle having a base of 0.40 mm and a height of 0.50 mm. 3 was a flat multi-hole tube in which 16 holes each having a right triangle with a base of 0.800 mm and a height of 0.500 mm were formed. The heat transfer tube No. As is apparent from the figure, the hole shapes in each of 2 and 3 are configured such that the holes are alternately rotated by 180 °. Also, the heat transfer tube No. The width and thickness of 2 and 3 are the same as the heat transfer tube no. No. 1 and heat transfer tube No. 1 was produced by extruding an aluminum alloy (JIS A3003). Further, these heat transfer tubes No. The specifications such as the channel area and hydraulic diameter in 2 and 3 are as shown in Table 1 below.
 そして、比較のための伝熱管として、図6(a)に示されるような、穴形状が四角形(一辺の長さ:0.46mmの正方形)の扁平多穴管50と、図6(b)に示される如き、穴形状が円形(直径:0.52mmの円)の扁平多穴管52とを準備し、それぞれ、伝熱管No.4、伝熱管No.5とした。更に、穴形状が三角形形状であるものの、D/hの値が本発明の範囲外のものとして、図7(a)や図7(b)に示されるような直角三角形の穴形状とされた扁平多穴管54,56を準備し、それぞれ、伝熱管No.6、伝熱管No.7とした。ここで、伝熱管No.6の穴形状は、底辺:4.01mm、高さ:0.5mmの直角三角形(頂角:82.9°)であり、伝熱管No.7の穴形状は、底辺:2.49mm、高さ:0.8mmの直角三角形(頂角:72.2°)であった。なお、それら伝熱管No.4~7に関しても、伝熱管No.1~3と同様に、アルミニウム合金(JIS A3003)を押出加工することによって作製し、その幅(W)や厚さ(H)は、全て伝熱管No.1と同じ値とした。ただし、穴数において、伝熱管No.4及び伝熱管No.5は16個、伝熱管No.6は4個、伝熱管No.7は8個とした。なお、それら伝熱管No.4~7における、穴の高さ(h)等の各諸元は、下記表1に示す通りである。 As a heat transfer tube for comparison, as shown in FIG. 6A, a flat multi-hole tube 50 having a square hole shape (a length of one side: a square of 0.46 mm), and FIG. 6B. And a flat multi-hole tube 52 having a circular hole shape (a circle having a diameter of 0.52 mm) as shown in FIG. 4. Heat transfer tube no. It was set to 5. Furthermore, although the hole shape is a triangle shape, the D / h value is out of the scope of the present invention, and the hole shape is a right triangle as shown in FIGS. 7 (a) and 7 (b). Flat multi-hole tubes 54 and 56 were prepared. 6. Heat transfer tube no. It was set to 7. Here, heat transfer tube no. The hole shape of No. 6 is a right triangle (apex angle: 82.9 °) having a base of 4.01 mm and a height of 0.5 mm. The hole shape of No. 7 was a right triangle (apex angle: 72.2 °) having a base of 2.49 mm and a height of 0.8 mm. In addition, those heat exchanger tubes No. As for 4 to 7, heat transfer tube no. As in 1-3, the aluminum alloy (JIS A3003) was produced by extrusion, and the width (W) and thickness (H) were all the same for the heat transfer tube no. The same value as 1. However, in the number of holes, heat transfer tube No. 4 and heat transfer tube no. 5 is 16, heat transfer tube no. 6 is 4, heat transfer tube No. Seven was eight. In addition, those heat exchanger tubes No. The various specifications such as the hole height (h) in 4 to 7 are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次いで、このようにして準備されたそれぞれの扁平多穴管(伝熱管No.1~7)を用いて、図4に示される如く、扁平多穴管(22)が互いに平行に複数配列され、そして隣り合う扁平多穴管(22,22)の間に、コルゲート状に加工されたフィン(24)が密接して接合されてなる熱交換器(30)を、それぞれ、熱交換器No.1~7として作製した。なお、それら熱交換器(30)において、配列された扁平多穴管(22)の両端は、それぞれヘッダ(26)に接続され、扁平多穴管(22)の軸方向に延びるそれぞれの穴(流路)が、冷媒の入口側と出口側においてそれぞれまとめられて、冷媒の流路が形成されている。また、ここで製作したそれぞれの熱交換器(30)において、フィン(24)は、全て、心材にJIS A3703系、皮材にJIS A4045系のアルミニウム合金を用いた両面ブレージングシートを、コルゲート状に加工したものを使用して、扁平多穴管との接合と同時に形成されるように構成し、更に一つの熱交換器を作製するにあたり、75本の扁平多穴管(24)を用いた。なお、そのようなフィン(24)と扁平多穴管(22)の接合は、目的とする熱交換器(30)の形状に組み立てたコルゲート状のブレージングシートと扁平多穴管(22)との組付け体を、ろう付け炉内にて、最高到達温度:600℃で、3分間加熱保持した後、冷却することによって、フィン(24)と扁平多穴管(22)とが、ろう付け接合されるようにした。そして、ヘッダ(26,26)間の扁平多穴管(22)の長さは610mmとなるようにし、熱交換器(30)の全体の大きさは、幅:650mm、高さ:610mmとなるようにした。 Next, using each of the flat multi-hole tubes (heat transfer tubes No. 1 to 7) prepared in this way, a plurality of flat multi-hole tubes (22) are arranged in parallel to each other as shown in FIG. The heat exchanger (30) in which the corrugated fins (24) are intimately joined between the adjacent flat multi-hole tubes (22, 22) is referred to as a heat exchanger no. 1 to 7 were produced. In these heat exchangers (30), both ends of the arranged flat multi-hole tubes (22) are respectively connected to the header (26), and the respective holes (in the axial direction of the flat multi-hole tubes (22) ( Are formed on the refrigerant inlet side and the outlet side to form a refrigerant flow path. Moreover, in each heat exchanger (30) manufactured here, the fins (24) are all corrugated with a double-sided brazing sheet using JIS A3703 series as the core material and JIS A4045 series as the skin material. Using the processed material, it was configured to be formed at the same time as joining with the flat multi-hole tube, and 75 flat multi-hole tubes (24) were used in producing one heat exchanger. Such a fin (24) and flat multi-hole tube (22) are joined between a corrugated brazing sheet assembled in the shape of the target heat exchanger (30) and the flat multi-hole tube (22). The assembly is heated and held in a brazing furnace at a maximum temperature of 600 ° C. for 3 minutes, and then cooled, whereby the fin (24) and the flat multi-hole tube (22) are brazed and joined. It was made to be. The length of the flat multi-hole tube (22) between the headers (26, 26) is 610 mm, and the overall size of the heat exchanger (30) is width: 650 mm and height: 610 mm. I did it.
 その後、このように準備された熱交換器No.1~7を用いて、それぞれの熱交換器の単体性能評価試験を行った。試験方法は、各熱交換器を、恒温恒湿試験室内に設けられた風洞装置に設置し、試験室内の空気温度(乾球:35℃、湿球:24℃)、風速(1.5m/s)に対して、冷媒(R-410A)を、熱交換器入口温度:64℃(SH=20K)、凝縮温度:44℃、熱交換器出口温度:39℃(SC=5K)の条件に設定し、空気と冷媒の熱バランスがとれた状態の熱交換量をそれぞれ測定した。各熱交換器における試験結果を、下記表2に示す。なお、かかる表2に示した試験結果は、扁平多穴管の穴形状が四角形である熱交換器No.4の熱交換量を100とした場合に対する相対的な比率を用いて、示されている。 After that, heat exchanger no. A single unit performance evaluation test of each heat exchanger was performed using 1-7. In the test method, each heat exchanger is installed in a wind tunnel device provided in a constant temperature and humidity test chamber, and the air temperature in the test chamber (dry bulb: 35 ° C., wet bulb: 24 ° C.), wind speed (1.5 m / s), the refrigerant (R-410A) is subjected to the following conditions: heat exchanger inlet temperature: 64 ° C. (SH = 20K), condensing temperature: 44 ° C., heat exchanger outlet temperature: 39 ° C. (SC = 5K) The amount of heat exchange in a state where the heat balance between air and refrigerant was set was measured. The test results for each heat exchanger are shown in Table 2 below. In addition, the test result shown in this Table 2 shows heat exchanger No.2 whose hole shape of a flat multi-hole pipe is a square. It is shown using a relative ratio with respect to the case where the heat exchange amount of 4 is 100.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果より、流路面積が略同一であるものの、各々の扁平多穴管に形成される穴形状が異なっている熱交換器No.1,4,5において、本発明に従う三角形形状の穴形状とされた熱交換器No.1は、穴形状が四角形形状とされた熱交換器No.4や円形状とされた熱交換器No.5よりも、大きく凝縮性能を向上させることが確認された。また、穴形状が三角形形状とされ、水力直径:Dと穴の高さ:hとの比:D/hが本発明の範囲内である扁平多穴管40,44,46を用いて構成されたそれぞれの熱交換器No.1、熱交換器No.2及び熱交換器No.3は、扁平多穴管の穴形状が一般的な四角形とされた熱交換器No.4よりも、1.5%以上の熱交換性能の向上が確認された。一方、穴形状が三角形形状であるものの、D/hが本発明の範囲外である熱交換器No.6,7に関しては、熱交換器No.4よりも性能は向上しているものの、0.5%未満の性能向上に止められ、穴形状を三角形とすることによる扁平多穴管における冷媒側の熱伝達率の向上効果が、十分に発揮されないことが確認された。 Based on the above results, heat exchangers No. 1 having the same flow path area but different hole shapes formed in each flat multi-hole tube. 1, 4, and 5, the heat exchanger No. 1 having a triangular hole shape according to the present invention. No. 1 is a heat exchanger No. 1 having a square hole shape. 4 or circular heat exchanger No. 4 It was confirmed that the condensation performance was greatly improved than 5. Moreover, the hole shape is a triangle shape, and the ratio of hydraulic diameter: D and hole height: h: D / h is configured using flat multi-hole tubes 40, 44, 46 within the scope of the present invention. Each heat exchanger No. 1, heat exchanger no. 2 and heat exchanger no. 3 is a heat exchanger No. 3 in which the hole shape of the flat multi-hole tube is a general square. It was confirmed that the heat exchange performance was improved by 1.5% or more than 4. On the other hand, although the hole shape is triangular, the heat exchanger No. D / h is outside the scope of the present invention. 6 and 7, heat exchanger no. Although the performance is better than 4, the performance improvement is less than 0.5%, and the effect of improving the heat transfer coefficient on the refrigerant side in the flat multi-hole tube by making the hole shape triangular is fully demonstrated It was confirmed that it was not.
 10 熱交換器
 12 フィン
 14 扁平多穴管
 16 組付け孔
 18 カラー部
 20 穴
                                                                                
DESCRIPTION OF SYMBOLS 10 Heat exchanger 12 Fin 14 Flat multi-hole pipe 16 Assembly hole 18 Collar part 20 Hole

Claims (8)

  1.  アルミニウム若しくはその合金からなるフィンが組み付けられるフィン・アンド・チューブ型熱交換器用伝熱管にして、
     アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管からなり、且つかかる多穴管内に、管軸方向に延びる三角断面形状の多数の穴が、幅方向に離間して互いに平行に配列されて設けられてなると共に、かかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が0.40~0.80の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器用伝熱管。
    A heat transfer tube for a fin-and-tube heat exchanger to which fins made of aluminum or its alloy are assembled,
    A multi-hole tube made of aluminum or an alloy thereof having a flat cross-sectional shape as a whole, and a plurality of triangular cross-sectional holes extending in the tube axis direction are parallel to each other in the width direction. The ratio of hydraulic diameter: D and the height of the hole: h defined by dividing four times the cross-sectional area of the hole by the sum of the lengths of the sides of the hole. A heat transfer tube for a fin-and-tube heat exchanger, characterized in that (D / h) is in the range of 0.40 to 0.80.
  2.  前記多穴管に設けられた多数の穴が、それぞれ、正三角形又は直角三角形の断面形状を有している請求項1に記載のフィン・アンド・チューブ型熱交換器用伝熱管。 The heat transfer tube for a fin-and-tube heat exchanger according to claim 1, wherein a plurality of holes provided in the multi-hole tube each have a cross-sectional shape of a regular triangle or a right triangle.
  3.  前記三角断面形状の穴が、180°回動されてなる形態において、前記多穴管の幅方向に交互に配設されている請求項1又は請求項2に記載のフィン・アンド・チューブ型熱交換器用伝熱管。 The fin-and-tube heat according to claim 1 or 2, wherein the holes having a triangular cross-sectional shape are alternately arranged in a width direction of the multi-hole tube in a form in which the holes are rotated by 180 °. Heat exchanger tube for exchanger.
  4.  アルミニウム若しくはその合金からなるフィンと、アルミニウム若しくはその合金からなる、全体として扁平な断面形状の多穴管とを組み付けてなるフィン・アンド・チューブ型熱交換器にして、
     前記多穴管が、管軸方向に延びる三角断面形状の多数の穴を、幅方向に離間して互いに平行に配列してなる形態において、構成されていると共に、かかる穴の断面積の4倍を該穴の辺の長さの和で除することによって定義される水力直径:Dと該穴の高さ:hとの比(D/h)が0.40~0.80の範囲内となるように構成されていることを特徴とするフィン・アンド・チューブ型熱交換器。
    A fin-and-tube heat exchanger in which fins made of aluminum or an alloy thereof and a multi-hole tube made of aluminum or an alloy thereof and having a flat cross-sectional shape as a whole are assembled,
    The multi-hole tube is configured in a form in which a large number of triangular cross-sectional holes extending in the tube axis direction are arranged in parallel with each other in the width direction, and four times the cross-sectional area of the holes. Is divided by the sum of the lengths of the sides of the hole, the ratio of hydraulic diameter: D to the height of the hole: h (D / h) is in the range of 0.40 to 0.80. It is comprised so that it may become. The fin and tube type heat exchanger characterized by the above-mentioned.
  5.  前記フィンがコルゲート状フィンであって、該コルゲート状フィンが隣接する前記多穴管の間に配置されて、それらコルゲート状フィンと多穴管とが相互に密接するように組み付けられている請求項4に記載のフィン・アンド・チューブ型熱交換器。 The corrugated fin is a corrugated fin, the corrugated fin is disposed between the adjacent multi-hole tubes, and the corrugated fin and the multi-hole tube are assembled so as to be in close contact with each other. 4. A fin-and-tube heat exchanger according to 4.
  6.  前記フィンが平坦な板状フィンであって、該板状フィンの幅方向の一端に開口するように設けられたスリット状の組付け孔に対して、前記多穴管が密接して挿入されて組み付けられている請求項4に記載のフィン・アンド・チューブ型熱交換器。 The fin is a flat plate-like fin, and the multi-hole tube is closely inserted into a slit-like assembly hole provided so as to open at one end in the width direction of the plate-like fin. The fin-and-tube heat exchanger according to claim 4, which is assembled.
  7.  前記多穴管に設けられた多数の穴が、それぞれ、正三角形又は直角三角形の断面形状を有している請求項4乃至請求項6の何れか1項に記載のフィン・アンド・チューブ型熱交換器。 The fin-and-tube type heat according to any one of claims 4 to 6, wherein a plurality of holes provided in the multi-hole tube each have a cross-sectional shape of an equilateral triangle or a right triangle. Exchanger.
  8.  前記三角断面形状の穴が、180°回動されてなる形態において、前記多穴管の幅方向に交互に配設されている請求項4乃至請求項7の何れか1項に記載のフィン・アンド・チューブ型熱交換器。
                                                                                    
    The fin according to any one of claims 4 to 7, wherein the holes having a triangular cross-sectional shape are alternately arranged in a width direction of the multi-hole tube in a form in which the holes are rotated by 180 °. And tube type heat exchanger.
PCT/JP2013/054295 2012-02-24 2013-02-21 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same WO2013125625A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20147022237A KR20140136431A (en) 2012-02-24 2013-02-21 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
JP2014500757A JP6415976B2 (en) 2012-02-24 2013-02-21 Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
CN201380010451.7A CN104145169A (en) 2012-02-24 2013-02-21 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same
IN4862CHN2014 IN2014CN04862A (en) 2012-02-24 2014-06-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012039066 2012-02-24
JP2012-039066 2012-02-24

Publications (1)

Publication Number Publication Date
WO2013125625A1 true WO2013125625A1 (en) 2013-08-29

Family

ID=49005803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054295 WO2013125625A1 (en) 2012-02-24 2013-02-21 Heat transfer pipe for fin and tube-type heat exchanger and fin and tube-type heat exchanger using same

Country Status (5)

Country Link
JP (2) JP6415976B2 (en)
KR (1) KR20140136431A (en)
CN (1) CN104145169A (en)
IN (1) IN2014CN04862A (en)
WO (1) WO2013125625A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016003655T5 (en) 2015-08-11 2018-05-09 Denso Corporation EXTRACTED FLAT PERFORATED ALUMINUM TUBE WITH EXCELLENT INTERIOR PROTECTION AND ALUMINUM HEAT EXCHANGE USING THIS
DE112018000799T5 (en) 2017-02-13 2019-12-05 Uacj Corporation Extruded flat perforated aluminum tube with excellent inside / outside surface corrosion resistance, and using aluminum heat exchanger obtained therefrom
DE112018000797T5 (en) 2017-02-13 2019-12-05 Uacj Corporation Extruded flat perforated aluminum tube with excellent brazing properties and external surface corrosion resistance, and using aluminum heat exchanger obtained therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486827B1 (en) * 2015-11-20 2023-01-10 삼성전자주식회사 Apparatus and method for manufacturing heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284253A (en) * 1988-06-10 1990-03-26 Matsushita Refrig Co Ltd Heat exchanger tube and its manufacture
JPH06142755A (en) * 1992-11-05 1994-05-24 Nippondenso Co Ltd Die for extruding multi-hole pipe and multi-hole pipe manufactured by using this die for extruding multi-hole pipe
JP2005351600A (en) * 2004-06-14 2005-12-22 Nikkei Nekko Kk Aluminum heat exchanger and its scale deposition preventing method
JP2007155181A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011145023A (en) * 2010-01-15 2011-07-28 Mitsubishi Electric Corp Heat exchanger and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972680A (en) * 1995-09-05 1997-03-18 Akutoronikusu Kk Structure of porous flat tube and manufacture thereof
JPH1144498A (en) * 1997-05-30 1999-02-16 Showa Alum Corp Flat porous tube for heat exchanger and heat exchanger using the tube
JP2000154987A (en) * 1998-11-19 2000-06-06 Daikin Ind Ltd Air heat exchanger
KR100518856B1 (en) * 2003-09-04 2005-09-30 엘지전자 주식회사 Heat exchanger of flat tube
US7080683B2 (en) * 2004-06-14 2006-07-25 Delphi Technologies, Inc. Flat tube evaporator with enhanced refrigerant flow passages
JP2011033290A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Heat exchanger, air conditioner and heat pump system
CN201527139U (en) * 2009-11-13 2010-07-14 安徽江淮松芝空调有限公司 Vehicle aluminum evaporator core
JP2011220554A (en) * 2010-04-05 2011-11-04 Sumitomo Light Metal Ind Ltd Heat-transfer tube for fin-and-tube type heat exchanger, fin-and-tube type heat exchanger using the heat-transfer tube, and manufacturing method for the fin-and-tube type heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284253A (en) * 1988-06-10 1990-03-26 Matsushita Refrig Co Ltd Heat exchanger tube and its manufacture
JPH06142755A (en) * 1992-11-05 1994-05-24 Nippondenso Co Ltd Die for extruding multi-hole pipe and multi-hole pipe manufactured by using this die for extruding multi-hole pipe
JP2005351600A (en) * 2004-06-14 2005-12-22 Nikkei Nekko Kk Aluminum heat exchanger and its scale deposition preventing method
JP2007155181A (en) * 2005-12-02 2007-06-21 Matsushita Electric Ind Co Ltd Heat exchanger
JP2011145023A (en) * 2010-01-15 2011-07-28 Mitsubishi Electric Corp Heat exchanger and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016003655T5 (en) 2015-08-11 2018-05-09 Denso Corporation EXTRACTED FLAT PERFORATED ALUMINUM TUBE WITH EXCELLENT INTERIOR PROTECTION AND ALUMINUM HEAT EXCHANGE USING THIS
US11255618B2 (en) 2015-08-11 2022-02-22 Uacj Corporation Flat extruded aluminum multi-port tube whose inner surface is highly corrosion-resistant and an aluminum heat exchanger using the tube
DE112018000799T5 (en) 2017-02-13 2019-12-05 Uacj Corporation Extruded flat perforated aluminum tube with excellent inside / outside surface corrosion resistance, and using aluminum heat exchanger obtained therefrom
DE112018000797T5 (en) 2017-02-13 2019-12-05 Uacj Corporation Extruded flat perforated aluminum tube with excellent brazing properties and external surface corrosion resistance, and using aluminum heat exchanger obtained therefrom

Also Published As

Publication number Publication date
JP6415976B2 (en) 2018-10-31
JPWO2013125625A1 (en) 2015-07-30
JP2018021756A (en) 2018-02-08
KR20140136431A (en) 2014-11-28
IN2014CN04862A (en) 2015-09-18
CN104145169A (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4096226B2 (en) FIN TUBE HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND REFRIGERATION AIR CONDITIONER
US20090084129A1 (en) Heat exchanger and refrigeration cycle apparatus having the same
WO2009154047A1 (en) Heat exchanger and air conditioner having the heat exchanger
JP2005326136A (en) Heat transfer fin for air heat exchanger
RU2557812C2 (en) Heat exchanger, refrigerator provided with heat exchanger, and air conditioning device provided with heat exchanger
JP2018021756A (en) Heat transfer tube for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP2010054060A (en) Fin tube type heat exchanger, method of manufacturing the same, and refrigerating cycle air conditioner
KR20150029728A (en) Serpentine heat exchanger for an air conditioner
US10422588B2 (en) Heat exchanger coil with offset fins
JP6360791B2 (en) Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
JP2015017738A (en) Heat exchanger
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP5020886B2 (en) Heat exchanger
JP6575895B2 (en) Heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP5138408B2 (en) Fin and tube heat exchanger
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP5591285B2 (en) Heat exchanger and air conditioner
JP2013092306A (en) Fin tube heat exchanger
CN115307477A (en) Tube fin single body and heat exchanger and air conditioner with same
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP2003222436A (en) Heat exchanger for heat pump type air conditioner
JP5476080B2 (en) Aluminum inner surface grooved heat transfer tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13752496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500757

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147022237

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201404988

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13752496

Country of ref document: EP

Kind code of ref document: A1