WO2019142642A1 - Indoor heat exchanger and air conditioning device - Google Patents

Indoor heat exchanger and air conditioning device Download PDF

Info

Publication number
WO2019142642A1
WO2019142642A1 PCT/JP2018/048147 JP2018048147W WO2019142642A1 WO 2019142642 A1 WO2019142642 A1 WO 2019142642A1 JP 2018048147 W JP2018048147 W JP 2018048147W WO 2019142642 A1 WO2019142642 A1 WO 2019142642A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
heat exchanger
outdoor
indoor heat
flat
Prior art date
Application number
PCT/JP2018/048147
Other languages
French (fr)
Japanese (ja)
Inventor
俊 吉岡
祥志 松本
智歩 藤井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP18901558.9A priority Critical patent/EP3745075B1/en
Priority to ES18901558T priority patent/ES2941545T3/en
Priority to CN201880087296.1A priority patent/CN111630336B/en
Priority to US16/964,027 priority patent/US20210041115A1/en
Publication of WO2019142642A1 publication Critical patent/WO2019142642A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0068Indoor units, e.g. fan coil units characterised by the arrangement of refrigerant piping outside the heat exchanger within the unit casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0273Cores having special shape, e.g. curved, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • the present disclosure relates to an indoor heat exchanger and an air conditioner.
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-0419866
  • This indication is made in view of the point mentioned above, and a subject in this indication provides an indoor heat exchanger and an air harmony device which have a plurality of flat tubes which can control scattering of condensation water. It is.
  • the indoor heat exchanger which concerns on a 1st viewpoint is an indoor heat exchanger used for the indoor unit of an air conditioning apparatus.
  • the indoor heat exchanger comprises a plurality of flat tubes and a plurality of heat transfer fins.
  • the flat tube has a flow passage through which the refrigerant passes.
  • a plurality of flat tubes are lined up and down.
  • the plurality of heat transfer fins are joined to the plurality of flat tubes.
  • the heat transfer fin has a communicating portion.
  • the communication portion extends vertically.
  • the communication part of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged vertically.
  • the indoor heat exchanger satisfies the relationship of 4.0 ⁇ DP / HT ⁇ 10.0.
  • HT is the height of the flat tube.
  • DP is the pitch of flat tubes arranged vertically.
  • the indoor heat exchanger which concerns on a 2nd viewpoint is an indoor heat exchanger used for an indoor unit.
  • the said indoor unit comprises an air conditioning apparatus with the outdoor unit which has an outdoor heat exchanger.
  • the outdoor heat exchanger includes a plurality of flat tubes and a plurality of heat transfer fins.
  • the indoor heat exchanger also includes a plurality of flat tubes and a plurality of heat transfer fins. These flat tubes have flow paths through which the refrigerant passes.
  • a plurality of flat tubes are lined up and down.
  • the plurality of fins are joined to the plurality of flat tubes.
  • the heat transfer fin has a communicating portion, and the communicating portion extends up and down.
  • the communication part of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged vertically.
  • the value of DP / HT of the indoor heat exchanger is smaller than the value of DP / HT of the outdoor heat exchanger.
  • HT is the height of the flat tube.
  • An indoor heat exchanger is the indoor heat exchanger according to the first aspect or the second aspect, wherein the flat tube is a plurality of upstream flat tubes disposed upstream in the air flow direction, And a plurality of downstream flat tubes disposed downstream of the upstream flat tube in the air flow direction.
  • the indoor heat exchanger which concerns on a 4th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 3rd viewpoint, Comprising:
  • the communication part is located on the leeward side of the flat tube in an air flow direction.
  • the condensed water generated in the flat tube is introduced downward while being transmitted to the communicating portion of the heat transfer fin positioned on the downstream side in the air flow direction, so that the air flow direction of the heat transfer fin It is possible to suppress the scattering of condensed water from the downstream end of the
  • the indoor heat exchanger which concerns on a 5th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 4th viewpoint, Comprising:
  • WF is the length of the heat transfer fin in the air flow direction.
  • WL is the length of the communicating portion in the air flow direction.
  • the indoor heat exchanger which concerns on a 6th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 5th viewpoint, Comprising:
  • the heat-transfer fin has a cut-and-raised part.
  • the longitudinal direction of the cut and raised portion is the vertical direction.
  • the indoor heat exchanger pertaining to the seventh aspect is an indoor heat exchanger pertaining to any of the first aspect to the sixth aspect, and satisfies the relationship of 4.6 ⁇ DP / HT ⁇ 8.0.
  • An air conditioner according to an eighth aspect includes an indoor unit having an indoor heat exchanger according to any one of the first to seventh aspects, and an outdoor unit having an outdoor heat exchanger.
  • FIG. 14 is an explanatory view of a downstream side vicinity portion in the air flow direction of the B-B cross section in FIG. 13 of the water guiding rib of the indoor fin according to the modified example A.
  • FIG. 1 shows a schematic configuration diagram of the air conditioning device 1.
  • the air conditioning apparatus 1 is an apparatus capable of performing cooling and heating in a room such as a building by performing a vapor compression refrigeration cycle.
  • the air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, and a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5, which are refrigerant paths connecting the outdoor unit 2 and the indoor unit 3. There is.
  • the vapor compression type refrigerant circuit 6 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via the refrigerant communication pipes 4 and 5.
  • the refrigerant communication pipes 4 and 5 are refrigerant pipes that are constructed on site when the air conditioning apparatus 1 is installed at an installation place such as a building.
  • the refrigerant circuit 6 is filled with R32 as a working refrigerant.
  • Outdoor Unit (2-1) Schematic Configuration of Outdoor Unit
  • the outdoor unit 2 is installed outdoors (on the roof of a building or near a wall of a building, etc.) and constitutes a part of the refrigerant circuit 6.
  • the outdoor unit 2 mainly includes an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12 as an expansion mechanism, a liquid side closing valve 13, and a gas side closing valve. 14, an outdoor fan 15, and a casing 40.
  • the accumulator 7 is a container for supplying a gas refrigerant to the compressor, and is provided on the suction side of the compressor 8.
  • the compressor 8 sucks in a low pressure gas refrigerant, compresses it, and discharges a high pressure gas refrigerant.
  • the outdoor heat exchanger 11 functions as a radiator of the refrigerant discharged from the compressor 8 during the cooling operation, and functions as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the heating operation. .
  • the liquid side of the outdoor heat exchanger 11 is connected to the outdoor expansion valve 12, and the gas side is connected to the four-way switching valve 10.
  • the outdoor expansion valve 12 decompresses the refrigerant released in the outdoor heat exchanger 11 during the cooling operation before sending it to the indoor heat exchanger 51, and the outdoor heat exchanger removes the refrigerant released in the indoor heat exchanger 51 during the heating operation. It is a motor-operated expansion valve that can be depressurized before being sent to 11.
  • One end of a liquid refrigerant communication pipe 4 is connected to the liquid side closing valve 13 of the outdoor unit 2.
  • One end of a gas refrigerant communication pipe 5 is connected to the gas side shut-off valve 14 of the outdoor unit 2.
  • the devices and valves of the outdoor unit 2 are connected by refrigerant pipes 16 to 22.
  • the outdoor fan 15 is disposed inside the outdoor unit 2, sucks the outdoor air, supplies the outdoor air to the outdoor heat exchanger 11, and then discharges the air out of the unit (indicated by arrows in FIG. 3).
  • the outdoor air supplied by the outdoor fan 15 is used as a cooling source or a heating source in heat exchange with the refrigerant of the outdoor heat exchanger 11.
  • the casing 40 mainly includes a bottom frame 40a, a top plate 40b, and a left front plate 40c, as shown in the schematic external perspective view of the outdoor unit 2 of FIG. 2 and the schematic plan view of the outdoor unit 2 of FIG.
  • the right front plate 40d and the right side plate 40e are provided.
  • the bottom frame 40a is a horizontally long substantially rectangular plate-like member which constitutes the bottom portion of the casing 40, and is installed on the field installation surface by means of fixing legs 41 fixed to the lower surface.
  • the top plate 40 b is a horizontally long substantially rectangular plate-like member that constitutes the top surface portion of the casing 40.
  • the left front plate 40c is a plate-like member that mainly constitutes the left front portion and the left side portion of the casing 40, and blows out the air taken into the casing 40 from the rear side and the left side by the outdoor fan 15 to the front side. Two blowouts for the upper and lower are formed side by side. Each air outlet is provided with a fan grille 42 respectively.
  • the right front plate 40d is a plate-like member that mainly constitutes the front portion of the right front portion and the right side surface of the casing 40.
  • the right side plate 40 e is a plate-like member that mainly constitutes a rear portion and a right rear portion of the right side surface of the casing 40.
  • a partition plate 43 is provided which partitions the fan chamber in which the outdoor fan 15 and the like are disposed and the machine chamber in which the compressor 8 and the like are disposed.
  • FIG. 4 shows a schematic external perspective view of the outdoor heat exchanger 11.
  • the outdoor heat exchanger 11 mainly includes a gas-side distributor 23, a liquid-side distributor 24, a plurality of inflow-side return members 25, a plurality of non-inflow-side return members 26, and a plurality of outdoor flat tubes 90; A plurality of outdoor fins 91 are provided.
  • all of the components constituting the outdoor heat exchanger 11 are formed of aluminum or an aluminum alloy, and are mutually joined by brazing or the like.
  • the plurality of outdoor flat tubes 90 are arranged side by side vertically.
  • the plurality of outdoor fins 91 are arranged in the plate thickness direction along the outdoor flat tube 90 and fixed to the plurality of outdoor flat tubes 90.
  • the gas side flow divider 23 is connected to the refrigerant pipe 19 and one of the plurality of outdoor flat pipes 90 which is disposed above.
  • the outdoor heat exchanger 11 functions as a radiator of the refrigerant
  • the refrigerant flowing from the refrigerant pipe 19 into the outdoor heat exchanger 11 is diverted to a plurality of height positions, and the plurality of outdoor flat tubes 90 Send to what is located above.
  • the liquid side flow divider 24 is connected to the refrigerant pipe 20 and one of the plurality of outdoor flat pipes 90 disposed below.
  • the outdoor heat exchanger 11 functions as a radiator of the refrigerant
  • the refrigerant flowing from the lower one of the plurality of outdoor flat tubes 90 is merged, and the outdoor heat exchange is performed via the refrigerant pipe 20. Flow out of the vessel 11.
  • the plurality of inflow side return members 25 are disposed between the gas side flow distributor 23 and the liquid side flow distributor 24 and connect the ends of the outdoor flat tubes 90 provided at different height positions to each other.
  • the end on the opposite side to the end on the side on which the gas-side diverter 23, the liquid-side diverter 24, and the plurality of inflow-side fold-back members 25 are provided in the non-inflow-side fold-back member 26 and the outdoor heat exchanger 11.
  • the ends of the outdoor flat tubes 90 which are provided in the parts and are provided at different height positions are connected to each other.
  • the flow of the refrigerant while turning back the refrigerant at both ends of the outdoor heat exchanger 11 by providing the plurality of inflow side turning back members 25 and the non-inflow side turning back members 26. It is possible.
  • the outdoor flat tube 90 has an upper flat surface 90a forming an upper surface facing vertically upward, a lower flat surface 90b forming a lower surface facing vertically downward, and a large number of small flow paths 90c in which the refrigerant flows.
  • the plurality of flow paths 90c of the outdoor flat pipe 90 are provided side by side in the air flow direction (indicated by an arrow in FIG. 5; the longitudinal direction of the outdoor flat pipe 90 in the flow path sectional view of the flow path 90c).
  • the plurality of outdoor flat tubes 90 the same one is used at the height HT in the vertical direction.
  • the height HT refers to the width in the height direction of the upper flat surface 90 a and the lower flat surface 90 b of the outdoor flat tube 90.
  • the plurality of outdoor flat tubes 90 are arranged in the vertical direction at a predetermined pitch (step pitch DP).
  • the step pitch DP is the distance between the upper flat surface 90 a of the outdoor flat tube 90.
  • the downstream end of the plurality of outdoor flat tubes 90 in the air flow direction is positioned further downstream than the downstream end of the outdoor fin 91 in the air flow direction. Is configured. Thereby, damage or breakage of the downwind side end of the outdoor fin 91 at the time of production or transportation of the outdoor heat exchanger 11 is suppressed.
  • the outdoor fin 91 is a plate-like member extending in the air flow direction and the vertical direction, and a plurality of the outdoor fins 91 are arranged at predetermined intervals in the thickness direction and fixed to the outdoor flat tube 90.
  • the outdoor fins 91 include a plurality of insertion portions 92, an outdoor communication portion 97a, a plurality of leeward portions 97b, a waffle portion 93, a leeward side fin tab 94a, a leeward side fin tab 94b, an outdoor slit 95, a leeward side rib 96a, a leeward side rib 96b, etc. have.
  • the thickness in the thickness direction of the flat portion of the outdoor fin 91 is, for example, 0.05 mm or more and 0.15 mm or less.
  • the insertion portion 92 is formed to be horizontally cut from the edge on the windward side of the outdoor fin 91 toward the windward side to the front of the windward edge.
  • the plurality of insertion portions 92 are provided to line up in the vertical direction.
  • the insertion portion 92 constitutes a fin collar formed by burring or the like.
  • the shape of the insertion portion 92 substantially matches the outer shape of the cross section of the outdoor flat tube 90, and the insertion portion 92 is brazed to each other in a state where the outdoor flat tube 90 is inserted.
  • the outdoor communication portion 97 a is a portion of the outdoor fin 91 that is continuous in the vertical direction further on the windward side than the windward end of the outdoor flat tube 90. From the viewpoint of securing the frost resistance, the distance in the air flow direction from the wind upper end of the outdoor flat tube 90 to the wind upper end of the outdoor communication portion 97a of the outdoor fin 91 is preferably 4 mm or more.
  • the plurality of upwind portions 97 b extend from the different height positions of the outdoor communication portion 97 a toward the downstream side in the air flow direction.
  • the respective wind lower portions 97 b are vertically surrounded by the adjacent insertion portions 92.
  • the waffle portion 93 is formed near the center of the outdoor fin 91 in the air flow direction, and includes a raised portion and a non-raised portion in the thickness direction.
  • the upwind fin tab 94a and the downwind fin tab 94b are provided in the vicinity of the upwind end and in the vicinity of the downwind end in order to regulate the distance between the outdoor fins 91, respectively.
  • the outdoor slit 95 is a portion formed by cutting and raising from the flat portion in the plate thickness direction in order to improve the heat transfer performance of the outdoor fin 91, and is formed downstream of the waffle portion 93 in the air flow direction.
  • the outdoor slit 95 is formed such that its longitudinal direction is in the vertical direction (the direction in which the outdoor flat tubes 90 are arranged), and a plurality (two in the present embodiment) is formed in the air flow direction. .
  • These outdoor slits 95 have openings on the upstream side and the downstream side in the air flow direction by being cut and raised from the flat portion to the same side in the plate thickness direction.
  • the windward rib 96a is formed to extend in the air flow direction between the outdoor flat tubes 90 adjacent to each other at the upper and lower sides of the windward fin tab 94a.
  • the downwind side rib 96b is provided so as to extend continuously from the downwind side end of the upwind side rib 96a to the downwind side.
  • FIG. 6 shows an external perspective view of the indoor unit 3.
  • the schematic plan view which shows the state which removed the top plate of the indoor unit 3 in FIG. 7 is shown.
  • FIG. 8 shows a schematic side cross-sectional view of the indoor unit 3 in the cut plane shown by AA in FIG.
  • the indoor unit 3 is an indoor unit of a type installed by being embedded in an opening of a ceiling in a ceiling such as a room which is an air conditioning target space, and constitutes a part of the refrigerant circuit 6.
  • the indoor unit 3 mainly includes an indoor heat exchanger 51, an indoor fan 52, a casing 30, a flap 39, a bell mouth 33, and a drain pan 32.
  • the indoor heat exchanger 51 is a heat exchanger that functions as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the cooling operation, and functions as a radiator of the refrigerant discharged from the compressor 8 during the heating operation. .
  • the liquid side of the indoor heat exchanger 51 is connected to the indoor side end of the liquid refrigerant communication pipe 4, and the gas side is connected to the indoor side end of the gas refrigerant communication pipe 5.
  • the indoor fan 52 is a centrifugal fan disposed inside the casing main body 31 of the indoor unit 3.
  • the indoor fan 52 sucks indoor air into the casing 30 through the suction port 36 of the decorative panel 35, passes through the indoor heat exchanger 51, and then flows out of the casing 30 through the outlet 37 of the decorative panel 35. (Shown by arrows in FIG. 8).
  • the temperature of the room air supplied by the indoor fan 52 is adjusted by exchanging heat with the refrigerant of the indoor heat exchanger 51.
  • the casing 30 mainly has a casing main body 31 and a decorative panel 35.
  • the casing main body 31 is disposed so as to be inserted into the opening formed in the ceiling U of the air conditioning chamber, and in a plan view, the substantially octagonal box in which long sides and short sides are alternately formed.
  • the lower surface is open.
  • the casing main body 31 has a top plate and a plurality of side plates extending downward from the periphery of the top plate.
  • the decorative panel 35 is disposed so as to be fitted into the opening of the ceiling U, extends outward in plan view than the top plate and the side plate of the casing main body 31, and is attached below the casing main body 31 from the indoor side. .
  • the decorative panel 35 has an inner frame 35a and an outer frame 35b.
  • a substantially rectangular suction port 36 opened downward is formed inside the inner frame 35a.
  • a filter 34 for removing dust in the air sucked from the suction port 36 is provided at the inside of the outer frame 35b and at the outside of the inner frame 35a.
  • an air outlet 37 and a corner air outlet 38 which are opened obliquely downward from below are formed.
  • the blower outlet 37 is provided at a position corresponding to each side of the substantially rectangular shape in plan view of the decorative panel 35, the first blower outlet 37a, the second blower outlet 37b, the third blower outlet 37c, and the fourth blower outlet 37d.
  • the corner air outlet 38 is located at a position corresponding to the substantially square four corners in a plan view of the decorative panel 35, the first corner air outlet 38a, the second corner air outlet 38b, and the third corner air outlet. It has 38c and the 4th corner outlet 38d.
  • the flap 39 is a member capable of changing the direction of the air flow passing through the air outlet 37.
  • the flap 39 includes a first flap 39a disposed at the first outlet 37a, a second flap 39b disposed at the second outlet 37b, a third flap 39c disposed at the third outlet 37c, and a third flap 39c And a fourth flap 39d disposed in the fourth outlet 37d.
  • Each of the flaps 39a to 39d is pivotally supported at a predetermined position of the casing 30.
  • the drain pan 32 is disposed below the indoor heat exchanger 51 and receives drain water generated by condensation of moisture in the air in the indoor heat exchanger 51.
  • the drain pan 32 is attached to the lower portion of the casing main body 31.
  • a cylindrical space extending in the vertical direction is formed inside the indoor heat exchanger 51 in a plan view, and the bell mouth 33 is disposed below the inside of the space.
  • the bell mouth 33 guides the air drawn from the suction port 36 to the indoor fan 52.
  • a plurality of blowout flow paths 47a to 47d and corner blowout flow paths 48a to 48c extending in the vertical direction are formed outside the indoor heat exchanger 51 in plan view.
  • the blowout flow paths 47a to 47d are a first blowout flow path 47a communicating with the first blowout port 37a at the lower end, a second blowout flow path 47b communicating with the second blowout port 37b at the lower end, and a third blowout port at the lower end It has a third blowoff passage 47c in communication with 37c, and a fourth blowout passage 47d in communication with the fourth outlet 37d at the lower end.
  • the corner air outlet flow paths 48a to 48c have a first corner air outlet flow path 48a communicating with the first corner air outlet 38a at the lower end, and a second corner air outlet flow communicating with the second corner air outlet 38b at the lower end.
  • a passage 48b and a third corner outlet channel 48c communicating with the third corner outlet 38c at the lower end are provided.
  • FIG. 9 shows a schematic external perspective view of the indoor heat exchanger 51.
  • FIG. 10 shows a partially enlarged external perspective view of the windward side of the plurality of indoor fins 60 of the indoor heat exchanger 51. As shown in FIG.
  • the indoor heat exchanger 51 is disposed inside the casing main body 31 in a state of being bent so as to surround the periphery at the same height position as the indoor fan 52.
  • the indoor heat exchanger 51 mainly includes a liquid side header 81, a gas side header 71, a return header 59, a plurality of indoor flat tubes 55, and a plurality of indoor fins 60.
  • all of the components constituting the indoor heat exchanger 51 are formed of aluminum or an aluminum alloy, and are joined together by brazing or the like.
  • the indoor heat exchanger 51 includes an upwind heat exchange unit 70 (inside portion in plan view) forming the upwind side in the air flow direction and a downwind heat exchange unit 80 (plan view in the air flow direction). And an outer portion of
  • the liquid side header 81 constitutes one end of the indoor heat exchanger 51 in a plan view of the leeward heat exchange unit 80, and is a cylindrical member extending in the vertical direction.
  • the indoor side end of the liquid refrigerant communication pipe 4 is connected to the liquid side header 81.
  • a plurality of indoor flat tubes 55 constituting the leeward heat exchange section 80 of the indoor heat exchanger 51 are connected to the liquid side header 81 in a row at the top and bottom.
  • the gas side header 71 constitutes one end of the indoor heat exchanger 51 in a plan view of the upwind heat exchange unit 70, and is a cylindrical member extending in the vertical direction.
  • the indoor end of the gas refrigerant communication pipe 5 is connected to the gas side header 71.
  • a plurality of indoor flat tubes 55 which constitute the upwind heat exchange section 70 of the indoor heat exchanger 51 are connected to the gas side header 71 in a line in the vertical direction.
  • the folded header 59 constitutes an end of the indoor heat exchanger 51 opposite to the liquid side header 81 and the gas side header 71 in plan view, and has a plurality of folded spaces arranged in the vertical direction inside. doing. In each of the folded spaces, the indoor flat tube 55 constituting the upwind heat exchange unit 70 provided at the same height position and the indoor flat tube 55 forming the downwind heat exchange unit 80 are connected to each other. ing.
  • the refrigerant flowing through the indoor flat tubes 55 at each height is adjusted to the wind at the same height It becomes possible to return to the indoor flat tube 55 on the upper side (when the indoor heat exchanger 51 functions as an evaporator of the refrigerant) or downwind (when the indoor heat exchanger 51 functions as a radiator of the refrigerant) ing.
  • the plurality of indoor flat tubes 55 one constituting the upwind heat exchange section 70 and one constituting the downwind heat exchange section 80 are provided. That is, in the upwind heat exchange section 70 of the indoor heat exchangers 51, the plurality of indoor flat tubes 55 are arranged side by side in the vertical direction, and the leeward heat exchange section 80 of the indoor heat exchanger 51. , And those arranged side by side in the vertical direction.
  • One end of each of the plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70 is connected to the gas side header 71, and the other end is connected to the upwind side portion of the folded header 59.
  • One end of each of the plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80 is connected to the liquid side header 81, and the other end is connected to the leeward side of the folded header 59.
  • the plurality of indoor fins 60 are provided so as to constitute the upwind heat exchange section 70 and to constitute the downwind heat exchange section 80. That is, the plurality of indoor fins 60 are fixed to the indoor flat tube 55 constituting the upwind heat exchange section 70 of the indoor heat exchanger 51, and the downwind of the indoor heat exchanger 51. And the one fixed to the indoor flat tube 55 which constitutes the heat exchange section 80. Each indoor fin 60 is arranged in the thickness direction of the indoor fin 60 so as to be along the indoor flat tube 55.
  • FIG. 11 shows the indoor fin 60 viewed from the direction in which the flow passage 55c extends, with the cross section perpendicular to the direction in which the flow passage 55c in the indoor flat tube 55 extends. The positional relationship with the flat tube 55 is shown.
  • the indoor flat tube 55 includes an upper flat surface 55a which is vertically upward and constitutes an upper surface, a lower flat surface 55b which is vertically downward and constitutes a lower surface, and a large number of small flow paths 55c through which the refrigerant flows. Have.
  • the plurality of flow paths 55c included in the indoor flat tube 55 are provided side by side in the air flow direction (indicated by an arrow in FIG. 11.
  • the longitudinal direction of the indoor flat tube 55 in the flow path cross-sectional view of the flow path 55c).
  • the plurality of indoor flat tubes 55 the same one is used at the height HT in the vertical direction.
  • the height HT refers to the width in the height direction of the upper flat surface 55a and the lower flat surface 55b of the indoor flat tube 55, and is preferably 1.2 mm or more and 2.5 mm or less.
  • the plurality of indoor flat tubes 55 are arranged at a predetermined pitch (step pitch DP) in the vertical direction in the upwind heat exchange unit 70 and the downwind heat exchange unit 80 as well.
  • the step pitch DP is the distance between the upper flat surface 55a of the indoor flat tube 55, and is preferably 8.0 mm or more and 15.0 mm or less.
  • the indoor heat exchanger 51 satisfies the relationship of 4.0 ⁇ DP / HT ⁇ 10.0.
  • the lower limit of DP / HT of the indoor heat exchanger 51 is preferably 4.6 or more, and the upper limit of DP / HT of the indoor heat exchanger 51 is preferably 8.0 or less, It is preferable that the indoor heat exchanger 51 satisfy the relationship of 4.6 ⁇ DP / HT ⁇ 8.0.
  • the value of DP / HT of the indoor heat exchanger 51 satisfies the relationship smaller than the value of DP / HT of the outdoor heat exchanger 11 described above.
  • the indoor flat tube 55 forming the upwind heat exchange unit 70 and the indoor flat tube 55 forming the downwind heat exchange unit 80 overlap each other at each height position in the air flow direction view. It is arranged as.
  • the upstream end portions of the indoor flat tubes 55 in the air flow direction and the upstream end portions of the indoor fins 60 in the air flow direction are substantially the same in the air flow direction. It is provided in the position.
  • the indoor fins 60 are plate-like members that extend in the air flow direction and in the vertical direction, and a plurality of the indoor fins 60 are arranged at predetermined intervals in the plate thickness direction, and are fixed to the indoor flat tube 55.
  • the indoor fins 60 forming the upwind heat exchange unit 70 and the indoor fins 60 forming the downwind heat exchange unit 80 are disposed so as to substantially overlap with each other in the air flow direction view in the present embodiment.
  • the downwind side end of the indoor fin 60 constituting the upwind heat exchange portion 70 and the upwind end portion of the indoor fin 60 constituting the downwind heat exchange portion 80 are arranged to be in contact with each other at least in part. There is.
  • the indoor fins 60 constituting the upwind heat exchange section 70 and the downwind heat exchange section 80, the main surface 61, the plurality of fin collar sections 65a, the indoor communication section 64, the plurality of upwind sections 65 , The main slit 62, the communication position slit 63, and the like.
  • the thickness in the thickness direction of the flat main surface 61 of the indoor fin 60 is, for example, 0.05 mm or more and 0.15 mm or less.
  • the pitch in the thickness direction of the plurality of indoor fins 60 (the distance between the surfaces on the same side of the indoor fins 60 adjacent to each other) is preferably 1.0 mm or more and 1.6 mm or less.
  • the main surface 61 constitutes a flat portion of the indoor fin 60 in which the fin collar portion 65 a, the main slit 62 and the communication position slit 63 are not provided.
  • the fin collar portion 65 a is formed to extend horizontally from the windward edge of the indoor fin 60 toward the windward side to the front of the windward side edge.
  • the plurality of fin collars 65 a are provided to be aligned in the vertical direction.
  • the fin collar portion 65a is formed by burring or the like.
  • the contour shape of the fin collar portion 65a substantially matches the outer shape of the cross section of the indoor flat tube 55, and the fin flat portion 55a is brazed to each other in a state where the indoor flat tube 55 is inserted.
  • FIG. 12 shows a joined state of the indoor fins 60 and the indoor flat tube 55 in a cross section obtained by cutting the flow path 55c of the indoor flat tube 55 along the refrigerant passing direction along a plane including the vertical direction.
  • the fin collar portion 65 a is configured to be raised on the main surface 61 on the opposite side to the cut and raised side of the main slit 62 in the thickness direction of the main surface 61. Further, on the side opposite to the main surface 61 of the fin collar portion 65a, a positioning portion 65x bent so as to extend away from the upper flat surface 55a (or lower flat surface 55b) of the corresponding indoor flat tube 55 It is provided. The positioning portions 65x are in surface contact with the main surfaces 61 of the adjacent indoor fins 60, thereby defining the distance between the indoor fins 60 in the thickness direction.
  • Such a fin collar portion 65a is joined by brazing in a state where the brazing material 58 is interposed between it and the upper flat surface 55a (or lower flat surface 55b) of the indoor flat tube 55, as shown in FIG. There is.
  • a portion where rising of the fin collar portion 65 a with respect to the main surface 61 has started and cut and raised of the main slit 62
  • the distance DS between the point at which is started and 1 mm or less.
  • the dew condensation water on the lower flat surface 55b of the indoor flat tube 55 is led downward through the portion where the cutting and raising of the main slit 62 starts and is drained, so the distance DS is set to a short distance of 1 mm or less Thus, the condensation water can be prevented from being continuously held on the lower flat surface 55b of the indoor flat tube 55.
  • the indoor communication portion 64 is a portion of the indoor fin 60 that is continuous in the vertical direction further on the leeward side than the leeward end of the indoor flat tube 55.
  • the relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fins 60 and the width WF in the air flow direction of the indoor fins 60 is 0.2 ⁇ WL / WF ⁇ 0.5. It is preferable to satisfy
  • the plurality of upwind portions 65 extend from the different height positions of the indoor communication portion 64 toward the upstream side in the air flow direction.
  • Each wind upper portion 65 is vertically surrounded by the adjacent fin collar portions 65a.
  • the vertical length of each wind upper portion 65 is defined by DP-HT.
  • the main slits 62 are portions formed by cutting and raising the flat main surface 61 in the plate thickness direction in order to improve the heat transfer performance of the indoor fins 60, and are formed in the respective wind upper portions 65 of the indoor fins 60. It is done.
  • the main slits 62 are formed such that a plurality (four in the present embodiment) are arranged in the air flow direction.
  • the communication position slit 63 is also a portion cut and raised in the thickness direction from the flat main surface 61 in order to improve the heat transfer performance of the indoor fin 60, and in the indoor communication portion 64 of the indoor fin 60. , Are formed at multiple height positions.
  • the communication position slits 63 are respectively provided on the downstream side of the air flow direction of the main slits 62 provided at each height position.
  • the communication position slit 63 is formed such that its longitudinal direction is vertical, and the upper end is higher than the upper end of the corresponding main slit 62 and the lower end is lower than the lower end of the corresponding main slit 62 It is formed long in the vertical direction.
  • the main slit 62 and the communication position slit 63 are cut and raised from the flat main surface 61 to the same side in the plate thickness direction, and have openings on the upstream side and the downstream side in the air flow direction, respectively.
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 11 exchanges heat with the outdoor air supplied as a cooling source by the outdoor fan 15 in the outdoor heat exchanger 11 functioning as a refrigerant radiator, and dissipates heat Become a high pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is decompressed to a low pressure in the refrigeration cycle, becomes a gas-liquid two-phase refrigerant, and passes through the liquid side shut-off valve 13 and the liquid refrigerant communication pipe 4 It is sent to the indoor unit 3.
  • the low-pressure gas-liquid two-phase refrigerant exchanges heat with the indoor air supplied as a heating source by the indoor fan 52 in the indoor heat exchanger 51 during the cooling operation to evaporate.
  • the air passing through the indoor heat exchanger 51 is cooled, and the room is cooled.
  • condensation contained in the air passing through the indoor heat exchanger 51 causes condensation water to form on the surface of the indoor heat exchanger 51.
  • the low pressure gas refrigerant evaporated in the indoor heat exchanger 51 is sent to the outdoor unit 2 through the gas refrigerant communication pipe 5.
  • the low-pressure gas refrigerant sent to the outdoor unit 2 is again sucked into the compressor 8 through the gas-side shutoff valve 14, the four-way switching valve 10 and the accumulator 7.
  • the refrigerant circulates through the refrigerant circuit 6 as described above.
  • the connection state of the four-way switching valve 10 is switched so that the outdoor heat exchanger 11 becomes the refrigerant evaporator and the indoor heat exchanger 51 becomes the refrigerant radiator (see FIG. See the dashed line in 1).
  • the low-pressure gas refrigerant in the refrigeration cycle is drawn into the compressor 8 and compressed to a high pressure in the refrigeration cycle and then discharged.
  • the high-pressure gas refrigerant discharged from the compressor 8 is sent to the indoor unit 3 through the four-way switching valve 10, the gas side shut-off valve 14 and the gas refrigerant communication pipe 5.
  • the high-pressure gas refrigerant exchanges heat with the indoor air supplied as a cooling source by the indoor fan 52 in the indoor heat exchanger 51, radiates heat, and becomes a high-pressure liquid refrigerant.
  • the air passing through the indoor heat exchanger 51 is heated, and the room is heated.
  • the high-pressure liquid refrigerant that has dissipated heat by the indoor heat exchanger 51 is sent to the outdoor unit 2 through the liquid refrigerant communication pipe 4.
  • the high-pressure liquid refrigerant sent to the outdoor unit 2 is decompressed to the low pressure of the refrigeration cycle in the outdoor expansion valve 12 through the liquid side shut-off valve 13, and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant reduced in pressure by the outdoor expansion valve 12 exchanges heat with outdoor air supplied as a heat source by the outdoor fan 15 in the outdoor heat exchanger 11 functioning as an evaporator of the refrigerant. And evaporate to form a low pressure gas refrigerant.
  • the low pressure gas refrigerant is again sucked into the compressor 8 through the four-way switching valve 10 and the accumulator 7. In the heating operation, the refrigerant circulates through the refrigerant circuit 6 as described above.
  • the heat transfer coefficient of the indoor fins in the indoor heat exchanger can be increased as the interval between the indoor flat tubes is reduced. However, if the interval at which the indoor flat tubes are provided is narrowed, the flow velocity of the air flow passing between the indoor flat tubes is increased, and the condensed water is likely to scatter. Further, also in the case where the height of the indoor flat tube in the vertical direction is large, the flow velocity of the air flow passing between the indoor flat tubes is increased, and the condensed water is likely to scatter.
  • HT is the height of the indoor flat tube 55 in the vertical direction
  • DP is the vertical direction of the indoor flat tubes 55.
  • pitch one satisfying the relationship of 4.0 ⁇ DP / HT ⁇ 10.0 is employed.
  • the heat transfer coefficient of the indoor fins 60 can be reduced by suppressing the region far from the indoor flat tube 55 in the region of the indoor fins 60.
  • the heat transfer coefficient of the indoor fins 60 can be reduced by suppressing the region far from the indoor flat tube 55 in the region of the indoor fins 60.
  • HT is the height of the flat tubes 90 and 55 in the vertical direction
  • DP is the height of the flat tubes 90 and 55.
  • the indoor heat exchanger 51 of the present embodiment includes the upwind heat exchange unit 70 and the downwind heat exchange unit 80, and employs a structure in which at least the indoor flat tubes 55 are arranged in two or more rows.
  • the condensation water generated in the upwind heat exchange unit 70 among the condensation water generated in the indoor heat exchanger 51 is a portion between the upwind heat exchange unit 70 and the downwind heat exchange unit 80 or the downwind heat exchange unit 80 It is easy to guide it down and drain it. Further, the downwind heat exchange unit 80 is supplied with air whose dryness is increased by generating condensation water in the upwind heat exchange unit 70 when passing through the upwind heat exchange unit 70, so that the downwind heat exchange is performed. It is possible to suppress the dew condensation water generated in the portion 80, and to suppress the scattering of the condensation water from the downwind side end portion of the downwind heat exchange unit 80.
  • the indoor fin 60 is provided with the indoor communication portion 64 on the downwind side of the indoor flat tube 55. Therefore, dew condensation water generated in the indoor flat tube 55 can be easily led downward and drained while being transmitted to the indoor communication portion 64 of the indoor fin 60 positioned on the downstream side in the air flow direction. Therefore, it is possible to suppress the scattering of the condensed water from the downstream end of the indoor fin 60 in the air flow direction.
  • the indoor communication portion 64 is provided on the downstream side of the indoor fins 60 of the leeward heat exchange portion 80. It is possible to enhance the drainage property of the generated condensed water while suppressing the generation of the condensed water at the downstream end of the indoor fin 60.
  • the value of WL / WF is 0.5 or less in the indoor fin 60, the area of the indoor fin 60 far from the indoor flat tube 55 and hard to contribute to the improvement of the heat transfer performance is suppressed small. Thus, the material cost can be reduced while maintaining the performance of the indoor fins 60.
  • the value of WL / WF of the indoor fin 60 is 0.2 or more while positioning the indoor communication portion 64 in the indoor fin 60 on the downstream side of the indoor flat tube 55 in the air flow direction. It becomes possible to improve the drainage property via the indoor communication part 64 of the condensation water which arose in the flat pipe 55.
  • the indoor fins 60 are provided with the main slits 62 and the communication position slits 63 which are cut and raised so as to have an opening in the air flow direction. Therefore, the air supplied to the indoor heat exchanger 51 can be in sufficient contact with the indoor fins 60, and the air heat source can be sufficiently used.
  • the upper ends of the main slit 62 and the communication position slit 63 are provided near the lower portion of the indoor flat tube 55 located immediately above, so condensation water generated in the indoor flat tube 55 immediately above It is easy to catch and guide downward, and it is possible to enhance drainage.
  • the portion where the rising of the fin collar portion 65 a with respect to the main surface 61 of the indoor fin 60 starts and the main slit 62 of the indoor fin 60 The retention time of condensation water on the lower flat surface 55b side of the indoor flat tube 55 is suppressed and the drainage performance is enhanced by designing the distance DS between the portion where the cutting and raising has started and the distance DS to be 1 mm or less. Is ready.
  • the shape of the downstream end of the indoor fin 60 is not limited to this, and for example, as described below, a room having a water conducting rib 99 extending along the downstream end in the air flow direction. Fins 60a may be used.
  • FIG. 13 shows the positional relationship between the indoor fin 60a and the indoor flat tube 55
  • FIG. 14 shows the downstream side near the air flow direction in the B-B cross section of the water guide rib 99 in FIG.
  • the upwind heat exchange unit 70 and the downwind heat exchange unit 80 are configured similarly to the above embodiment, and the upwind heat exchange unit 70 and the downwind In each of the indoor fins 60a of the heat exchange unit 80, water guiding ribs 99 extending vertically are provided along the downstream end of the indoor communication portion 64 provided downstream in the air flow direction. .
  • the said water conveyance rib 99 is comprised so that it may be dented in the plate
  • the water conveyance rib 99 is not particularly limited, it is preferable that the water conveyance rib 99 be configured to be recessed by at least the thickness of the indoor fin 60 a.
  • the dew condensation water generated in the indoor heat exchanger 51 is captured by the water guiding rib 99, and the dew condensation water can be easily led downward along the water guiding rib 99. . For this reason, it is possible to suppress the condensation water from reaching the downwind side end of the indoor fin 60a, and to sufficiently suppress the scattering of the condensation water.
  • the water guiding rib 99 is provided on the downstream side of the half of the width in the air flow direction in the indoor communication portion 64 of the indoor fin 60a, and the air flow in the air flow direction of the indoor communication portion 64 More preferably, it is provided within 20% of the downstream end in the direction.
  • the relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fins 60 and the width WF in the air flow direction of the indoor fin 60 is It is preferable to satisfy the relationship of 0.2 ⁇ WL / WF.
  • the indoor heat exchanger 51 includes the upwind heat exchange unit 70 and the downwind heat exchange unit 80, and the indoor flat tubes 55 are provided in two rows as an example.
  • the number of rows aligned in the air flow direction of the indoor flat tubes 55 provided in the indoor heat exchanger 51 is not limited to two, and three or more rows may be provided. By thus increasing the number of rows of the indoor flat tubes 55, it is possible to more effectively suppress the scattering of condensation water from the downstream end of the indoor heat exchanger 51 in the air flow direction.
  • the indoor heat exchanger 51 is not limited to this, and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the windward side and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the windward side And may be disposed so as not to overlap each other in the air flow direction view. As a result, air flow can be sufficiently applied to both the indoor flat tube 55 located on the windward side and the indoor flat tube 55 located on the windward side.
  • the main slit is formed by cutting and raising the entire slit piece on one side in the thickness direction with respect to the main surface 61 of the indoor fin 60
  • the case where the communication position slit 62 and the communication position slit 63 are provided has been described as an example.
  • the cut-and-raised portions formed in the indoor fins 60 are not limited to this, and instead of the main slits 62 and the communication position slit 63, for example, for the slit pieces to be cut and raised, the windward end of the slit pieces in the air flow direction Section on one side of the main surface 61 of the indoor fin 60 in the plate thickness direction, and the leeward end of the slit piece in the air flow direction is on the other side of the main surface 61 of the indoor fin 60 in the plate thickness direction It is also possible to adopt a structure called a louver.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2016-041986

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

Provided are: an indoor heat exchanger having a plurality of flat pipes configured so that the scattering of condensate water can be suppressed; and an air conditioning device. An indoor heat exchanger (51) is used for an indoor unit (3) for an air conditioning device (1), and is provided with a plurality of indoor flat pipes (55) having refrigerant flow passages (55c) and arranged one above each other; and a plurality of indoor fins (60) joined to the plurality of indoor flat pipes (55). The indoor fins (60) have a vertically extending indoor communication section (64) connected to portions located between the indoor flat pipes (55) arranged one above each other, and satisfy the relationship of 4.0 ≤ DP/HT ≤ 10.0 (where HT is the height of an indoor flat pipe (55), and DP is the pitch of the indoor flat pipes (55) arranged one above each other).

Description

室内熱交換器および空気調和装置Indoor heat exchanger and air conditioner
 本開示は、室内熱交換器および空気調和装置に関する。 The present disclosure relates to an indoor heat exchanger and an air conditioner.
 従来より、空気調和装置の室外機が有する室外熱交換器として、例えば、特許文献1(特開2016-041986号)に記載されているように、複数の扁平管に対して伝熱フィンが接合されたものがある。 Conventionally, as an outdoor heat exchanger included in an outdoor unit of an air conditioner, heat transfer fins are joined to a plurality of flat tubes as described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2016-041986) There is one that has been done.
 このような、複数の扁平管に対して伝熱フィンが接合されて構成される熱交換器を、空気調和装置の室内機において用いる場合には、冷媒の蒸発器として機能させる際に生じる結露水の室内空間への飛散が問題となる。 When the heat exchanger configured by joining heat transfer fins to a plurality of flat tubes is used in an indoor unit of an air conditioner, dew condensation water generated when functioning as a refrigerant evaporator Scattering into indoor space is a problem.
 本開示は、上述した点に鑑みてなされたものであり、本開示における課題は、結露水の飛散を抑制することが可能な複数の扁平管を有する室内熱交換器および空気調和装置を提供することにある。 This indication is made in view of the point mentioned above, and a subject in this indication provides an indoor heat exchanger and an air harmony device which have a plurality of flat tubes which can control scattering of condensation water. It is.
 第1観点に係る室内熱交換器は、空気調和装置の室内機に用いられる室内熱交換器である。室内熱交換器は、複数の扁平管と複数の伝熱フィンを備えている。扁平管は、内部に冷媒を通過させる流路を有している。複数の扁平管は、上下に並んでいる。複数の伝熱フィンは、複数の扁平管に接合されている。伝熱フィンは、連通部を有している。連通部は、上下に延びている。伝熱フィンの連通部は、伝熱フィンの一部であって、上下に並んだ扁平管同士の間に位置する各部分と繋がっている。室内熱交換器は、4.0≦DP/HT≦10.0の関係を満たす。ここで、HTは、扁平管の高さである。DPは、上下に並んだ扁平管のピッチである。 The indoor heat exchanger which concerns on a 1st viewpoint is an indoor heat exchanger used for the indoor unit of an air conditioning apparatus. The indoor heat exchanger comprises a plurality of flat tubes and a plurality of heat transfer fins. The flat tube has a flow passage through which the refrigerant passes. A plurality of flat tubes are lined up and down. The plurality of heat transfer fins are joined to the plurality of flat tubes. The heat transfer fin has a communicating portion. The communication portion extends vertically. The communication part of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged vertically. The indoor heat exchanger satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. Here, HT is the height of the flat tube. DP is the pitch of flat tubes arranged vertically.
 この室内熱交換器では、室内熱交換器に対して供給される空気流れの流速を大きくする場合であっても、冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, even when the flow velocity of the air flow supplied to the indoor heat exchanger is increased, it is possible to suppress the scattering of condensation water generated when used as an evaporator of the refrigerant. It will be possible.
 第2観点に係る室内熱交換器は、室内機に用いられる室内熱交換器である。当該室内機は、室外熱交換器を有する室外機と共に空気調和装置を構成するものである。室外熱交換器は、複数の扁平管と複数の伝熱フィンを備えている。室内熱交換器も、複数の扁平管と複数の伝熱フィンを備えている。これらの扁平管は、内部に冷媒を通過させる流路を有している。複数の扁平管は、上下に並んでいる。複数のフィンは、複数の扁平管に接合されている。伝熱フィンは、連通部を有している、連通部は、上下に延びている。伝熱フィンの連通部は、伝熱フィンの一部であって、上下に並んだ扁平管同士の間に位置する各部分と繋がっている。室内熱交換器のDP/HTの値は室外熱交換器のDP/HTの値よりも小さい。ここで、HTは、扁平管の高さである。DPは、上下に並んだ扁平管のピッチである。 The indoor heat exchanger which concerns on a 2nd viewpoint is an indoor heat exchanger used for an indoor unit. The said indoor unit comprises an air conditioning apparatus with the outdoor unit which has an outdoor heat exchanger. The outdoor heat exchanger includes a plurality of flat tubes and a plurality of heat transfer fins. The indoor heat exchanger also includes a plurality of flat tubes and a plurality of heat transfer fins. These flat tubes have flow paths through which the refrigerant passes. A plurality of flat tubes are lined up and down. The plurality of fins are joined to the plurality of flat tubes. The heat transfer fin has a communicating portion, and the communicating portion extends up and down. The communication part of the heat transfer fin is a part of the heat transfer fin and is connected to each part located between the flat tubes arranged vertically. The value of DP / HT of the indoor heat exchanger is smaller than the value of DP / HT of the outdoor heat exchanger. Here, HT is the height of the flat tube. DP is the pitch of flat tubes arranged vertically.
 この室内熱交換器では、室外熱交換器が冷媒の蒸発器として用いられた場合における着霜を抑制させつつ、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させることが可能になる。 In this indoor heat exchanger, scattering of condensation water generated when the indoor heat exchanger is used as a refrigerant evaporator is suppressed while suppressing frost formation when the outdoor heat exchanger is used as a refrigerant evaporator. It becomes possible to make it be suppressed.
 第3観点に係る室内熱交換器は、第1観点または第2観点に係る室内熱交換器であって、扁平管は、空気流れ方向の上流側に配置された複数の上流側扁平管と、上流側扁平管よりも空気流れ方向の下流側に配置された複数の下流側扁平管と、を有している。 An indoor heat exchanger according to a third aspect is the indoor heat exchanger according to the first aspect or the second aspect, wherein the flat tube is a plurality of upstream flat tubes disposed upstream in the air flow direction, And a plurality of downstream flat tubes disposed downstream of the upstream flat tube in the air flow direction.
 この室内熱交換器では、下流側扁平管の空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。 In this indoor heat exchanger, it is possible to suppress the scattering of condensed water from the downstream end of the downstream flat tube in the air flow direction.
 第4観点に係る室内熱交換器は、第1観点から第3観点のいずれかに係る室内熱交換器であって、連通部は、空気流れ方向における扁平管の風下側に位置している。 The indoor heat exchanger which concerns on a 4th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 3rd viewpoint, Comprising: The communication part is located on the leeward side of the flat tube in an air flow direction.
 この室内熱交換器では、扁平管で生じた結露水を、空気流れ方向における下流側に位置している伝熱フィンの連通部に伝わせながら下方に導くことで、伝熱フィンの空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。 In this indoor heat exchanger, the condensed water generated in the flat tube is introduced downward while being transmitted to the communicating portion of the heat transfer fin positioned on the downstream side in the air flow direction, so that the air flow direction of the heat transfer fin It is possible to suppress the scattering of condensed water from the downstream end of the
 第5観点に係る室内熱交換器は、第1観点から第4観点のいずれかに係る室内熱交換器であって、0.2≦WL/WF≦0.5の関係を満たす。ここで、WFは、空気流れ方向における伝熱フィンの長さである。WLは、空気流れ方向における連通部の長さである。 The indoor heat exchanger which concerns on a 5th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 4th viewpoint, Comprising: The relationship of 0.2 <= WL / WF <= 0.5 is satisfy | filled. Here, WF is the length of the heat transfer fin in the air flow direction. WL is the length of the communicating portion in the air flow direction.
 この室内熱交換器では、伝熱フィンの材料費を抑制しつつ連通部を十分に確保することで結露水の飛散を抑制できる。 In this indoor heat exchanger, scattering of dew condensation water can be suppressed by sufficiently securing the communicating portion while suppressing the material cost of the heat transfer fins.
 第6観点に係る室内熱交換器は、第1観点から第5観点のいずれかに係る室内熱交換器であって、伝熱フィンは、切り起こし部を有している。切り起こし部の長手方向は、上下方向である。 The indoor heat exchanger which concerns on a 6th viewpoint is an indoor heat exchanger which concerns on either of a 1st viewpoint to a 5th viewpoint, Comprising: The heat-transfer fin has a cut-and-raised part. The longitudinal direction of the cut and raised portion is the vertical direction.
 この室内熱交換器では、伝熱フィンが切り起こし部を有しているため、伝熱性能を向上させることが可能になっている。 In this indoor heat exchanger, since the heat transfer fins have cut and raised portions, it is possible to improve the heat transfer performance.
 第7観点に係る室内熱交換器は、第1観点から第6観点のいずれかに係る室内熱交換器であって、4.6≦DP/HT≦8.0の関係を満たす。 The indoor heat exchanger pertaining to the seventh aspect is an indoor heat exchanger pertaining to any of the first aspect to the sixth aspect, and satisfies the relationship of 4.6 ≦ DP / HT ≦ 8.0.
 この室内熱交換器では、冷媒の蒸発器として用いられた場合に生じる結露水の飛散をより抑制させやすい。 In this indoor heat exchanger, it is easier to suppress the scattering of condensed water that occurs when it is used as a refrigerant evaporator.
 第8観点に係る空気調和装置は、第1観点から第7観点のいずれかに係る室内熱交換器を有する室内機と、室外熱交換器を有する室外機と、を備えている。 An air conditioner according to an eighth aspect includes an indoor unit having an indoor heat exchanger according to any one of the first to seventh aspects, and an outdoor unit having an outdoor heat exchanger.
 この空気調和装置では、室内熱交換器が冷媒の蒸発器として用いられた場合に生じる結露水の飛散を抑制させやすい。 In this air conditioning apparatus, it is easy to suppress the scattering of condensation water generated when the indoor heat exchanger is used as an evaporator of the refrigerant.
空気調和装置の概略構成図である。It is a schematic block diagram of an air conditioning apparatus. 室外ユニットの概略外観斜視図である。It is a schematic external appearance perspective view of an outdoor unit. 室外ユニットの平面視概略構成図である。It is the plane view schematic block diagram of an outdoor unit. 室外熱交換器の概略外観斜視図である。It is a schematic external appearance perspective view of an outdoor heat exchanger. 室外フィンと室外扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of an outdoor fin and an outdoor flat tube. 室内ユニットの概略外観斜視図である。It is a schematic external appearance perspective view of an indoor unit. 室内ユニットの平面視概略構成図である。It is the plane view schematic block diagram of an indoor unit. 室内ユニットの図7のA-A断面における側面視概略構成図である。It is a side view schematic block diagram in the AA cross section of FIG. 7 of an indoor unit. 室内熱交換器の概略外観斜視図である。It is a schematic external appearance perspective view of an indoor heat exchanger. 室内熱交換器の部分拡大概略外観斜視図である。It is a partially expanded schematic external appearance perspective view of an indoor heat exchanger. 室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of an indoor fin and an indoor flat pipe. 室内フィンと室内扁平管との接合状態を示す説明図である。It is explanatory drawing which shows the joining state of an indoor fin and an indoor flat pipe. 変形例Aに係る室内フィンと室内扁平管との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the indoor fin and indoor flat tube which concern on the modification A. FIG. 変形例Aに係る室内フィンが有する導水リブの、図13におけるB-B断面のうちの空気流れ方向の下流側近傍部分の説明図である。FIG. 14 is an explanatory view of a downstream side vicinity portion in the air flow direction of the B-B cross section in FIG. 13 of the water guiding rib of the indoor fin according to the modified example A.
 (1)空気調和装置の構成
 図1に、空気調和装置1の概略構成図を示す。
(1) Configuration of Air Conditioning Device FIG. 1 shows a schematic configuration diagram of the air conditioning device 1.
 空気調和装置1は、蒸気圧縮式の冷凍サイクルを行うことによって、建物等の室内の冷房および暖房を行うことが可能な装置である。 The air conditioning apparatus 1 is an apparatus capable of performing cooling and heating in a room such as a building by performing a vapor compression refrigeration cycle.
 空気調和装置1は、主として、室外ユニット2と、室内ユニット3と、室外ユニット2と室内ユニット3とを接続する冷媒経路である液冷媒連絡管4およびガス冷媒連絡管5と、を有している。そして、空気調和装置1の蒸気圧縮式の冷媒回路6は、室外ユニット2と、室内ユニット3とが冷媒連絡管4、5を介して接続されることによって構成されている。冷媒連絡管4、5は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管である。特に限定されないが、本実施形態では、当該冷媒回路6に作動冷媒としてR32が充填されている。 The air conditioner 1 mainly includes an outdoor unit 2, an indoor unit 3, and a liquid refrigerant communication pipe 4 and a gas refrigerant communication pipe 5, which are refrigerant paths connecting the outdoor unit 2 and the indoor unit 3. There is. The vapor compression type refrigerant circuit 6 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 3 via the refrigerant communication pipes 4 and 5. The refrigerant communication pipes 4 and 5 are refrigerant pipes that are constructed on site when the air conditioning apparatus 1 is installed at an installation place such as a building. Although not particularly limited, in the present embodiment, the refrigerant circuit 6 is filled with R32 as a working refrigerant.
 (2)室外ユニット
 (2-1)室外ユニットの概略構成
 室外ユニット2は、室外(建物の屋上や建物の壁面近傍等)に設置されており、冷媒回路6の一部を構成している。室外ユニット2は、主として、アキュムレータ7、圧縮機8と、四路切換弁10と、室外熱交換器11と、膨張機構としての室外膨張弁12と、液側閉鎖弁13と、ガス側閉鎖弁14と、室外ファン15と、ケーシング40と、を有している。
(2) Outdoor Unit (2-1) Schematic Configuration of Outdoor Unit The outdoor unit 2 is installed outdoors (on the roof of a building or near a wall of a building, etc.) and constitutes a part of the refrigerant circuit 6. The outdoor unit 2 mainly includes an accumulator 7, a compressor 8, a four-way switching valve 10, an outdoor heat exchanger 11, an outdoor expansion valve 12 as an expansion mechanism, a liquid side closing valve 13, and a gas side closing valve. 14, an outdoor fan 15, and a casing 40.
 アキュムレータ7は、ガス冷媒を圧縮機に供給するための容器であり、圧縮機8の吸入側に設けられている。 The accumulator 7 is a container for supplying a gas refrigerant to the compressor, and is provided on the suction side of the compressor 8.
 圧縮機8は、低圧のガス冷媒を吸入し、圧縮して高圧のガス冷媒を吐出する。 The compressor 8 sucks in a low pressure gas refrigerant, compresses it, and discharges a high pressure gas refrigerant.
 室外熱交換器11は、冷房運転時には圧縮機8から吐出された冷媒の放熱器として機能し、暖房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能する熱交換器である。室外熱交換器11は、その液側が室外膨張弁12に接続されており、ガス側が四路切換弁10に接続されている。 The outdoor heat exchanger 11 functions as a radiator of the refrigerant discharged from the compressor 8 during the cooling operation, and functions as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the heating operation. . The liquid side of the outdoor heat exchanger 11 is connected to the outdoor expansion valve 12, and the gas side is connected to the four-way switching valve 10.
 室外膨張弁12は、冷房運転時には室外熱交換器11において放熱された冷媒を室内熱交換器51に送る前に減圧し、暖房運転時には室内熱交換器51において放熱された冷媒を室外熱交換器11に送る前に減圧することが可能な電動膨張弁である。 The outdoor expansion valve 12 decompresses the refrigerant released in the outdoor heat exchanger 11 during the cooling operation before sending it to the indoor heat exchanger 51, and the outdoor heat exchanger removes the refrigerant released in the indoor heat exchanger 51 during the heating operation. It is a motor-operated expansion valve that can be depressurized before being sent to 11.
 室外ユニット2の液側閉鎖弁13には、液冷媒連絡管4の一端が接続されている。室外ユニット2のガス側閉鎖弁14には、ガス冷媒連絡管5の一端が接続されている。 One end of a liquid refrigerant communication pipe 4 is connected to the liquid side closing valve 13 of the outdoor unit 2. One end of a gas refrigerant communication pipe 5 is connected to the gas side shut-off valve 14 of the outdoor unit 2.
 室外ユニット2の各機器および弁間は、冷媒管16~22によって接続されている。 The devices and valves of the outdoor unit 2 are connected by refrigerant pipes 16 to 22.
 四路切換弁10は、圧縮機8の吐出側が室外熱交換器11側に接続されるとともに圧縮機8の吸入側がガス側閉鎖弁14側に接続される状態(図1における四路切換弁10の実線を参照)と、圧縮機8の吐出側がガス側閉鎖弁14側に接続されるとともに圧縮機8の吸入側が室外熱交換器11側に接続される状態(図1における四路切換弁10の破線を参照)と、を切り換えることにより、後述する冷房運転の接続状態と暖房運転の接続状態とを切り換える。 A state in which the discharge side of the compressor 8 is connected to the outdoor heat exchanger 11 side and the suction side of the compressor 8 is connected to the gas side shut-off valve 14 (four-way switch valve 10 in FIG. And the discharge side of the compressor 8 is connected to the gas side closing valve 14 side and the suction side of the compressor 8 is connected to the outdoor heat exchanger 11 side (the four-way switching valve 10 in FIG. By switching between the connection state of the cooling operation described later and the connection state of the heating operation.
 室外ファン15は、室外ユニット2の内部に配置され、室外空気を吸入して、室外熱交換器11に室外空気を供給した後に、ユニット外に排出する空気流れ(図3において矢印で示す。)を形成する。このように、室外ファン15によって供給される室外空気は、室外熱交換器11の冷媒との熱交換における冷却源又は加熱源として用いられる。 The outdoor fan 15 is disposed inside the outdoor unit 2, sucks the outdoor air, supplies the outdoor air to the outdoor heat exchanger 11, and then discharges the air out of the unit (indicated by arrows in FIG. 3). Form Thus, the outdoor air supplied by the outdoor fan 15 is used as a cooling source or a heating source in heat exchange with the refrigerant of the outdoor heat exchanger 11.
 ケーシング40は、図2の室外ユニット2の概略外観斜視図および図3の室外ユニット2の平面視概略構成図に示すように、主として、底フレーム40aと、天板40bと、左前板40cと、右前板40dと、右側板40eとを有している。底フレーム40aは、ケーシング40の底面部分を構成する横長の略長方形状の板状部材であり、下面に固定された固定脚41によって現地設置面に設置される。天板40bは、ケーシング40の天面部分を構成する横長の略長方形状の板状部材である。左前板40cは、主として、ケーシング40の左正面部分及び左側面部分を構成する板状部材であり、室外ファン15によって背面側及び左側面側からケーシング40内に取り込まれた空気を前面側に吹き出すための吹出口が、上下に2つ並んで形成されている。各吹出口には、それぞれにファングリル42が設けられている。右前板40dは、主として、ケーシング40の右正面部分及び右側面の前部を構成する板状部材である。右側板40eは、主として、ケーシング40の右側面の後部及び右背面部分を構成する板状部材である。 The casing 40 mainly includes a bottom frame 40a, a top plate 40b, and a left front plate 40c, as shown in the schematic external perspective view of the outdoor unit 2 of FIG. 2 and the schematic plan view of the outdoor unit 2 of FIG. The right front plate 40d and the right side plate 40e are provided. The bottom frame 40a is a horizontally long substantially rectangular plate-like member which constitutes the bottom portion of the casing 40, and is installed on the field installation surface by means of fixing legs 41 fixed to the lower surface. The top plate 40 b is a horizontally long substantially rectangular plate-like member that constitutes the top surface portion of the casing 40. The left front plate 40c is a plate-like member that mainly constitutes the left front portion and the left side portion of the casing 40, and blows out the air taken into the casing 40 from the rear side and the left side by the outdoor fan 15 to the front side. Two blowouts for the upper and lower are formed side by side. Each air outlet is provided with a fan grille 42 respectively. The right front plate 40d is a plate-like member that mainly constitutes the front portion of the right front portion and the right side surface of the casing 40. The right side plate 40 e is a plate-like member that mainly constitutes a rear portion and a right rear portion of the right side surface of the casing 40.
 なお、ケーシング40内には、室外ファン15等が配置される送風機室と、圧縮機8等が配置される機械室と、を仕切る仕切板43が設けられている。 In the casing 40, a partition plate 43 is provided which partitions the fan chamber in which the outdoor fan 15 and the like are disposed and the machine chamber in which the compressor 8 and the like are disposed.
 (2-2)室外熱交換器の概略構造
 図4に、室外熱交換器11の概略外観斜視図を示す。
(2-2) Schematic Structure of Outdoor Heat Exchanger FIG. 4 shows a schematic external perspective view of the outdoor heat exchanger 11.
 室外熱交換器11は、主として、ガス側分流器23と、液側分流器24と、複数の流入側折返し部材25と、複数の反流入側折返し部材26と、複数の室外扁平管90と、複数の室外フィン91と、を有している。ここでは、室外熱交換器11を構成するこれらのすべてが、アルミニウムまたはアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。 The outdoor heat exchanger 11 mainly includes a gas-side distributor 23, a liquid-side distributor 24, a plurality of inflow-side return members 25, a plurality of non-inflow-side return members 26, and a plurality of outdoor flat tubes 90; A plurality of outdoor fins 91 are provided. Here, all of the components constituting the outdoor heat exchanger 11 are formed of aluminum or an aluminum alloy, and are mutually joined by brazing or the like.
 複数の室外扁平管90は、上下に並んで配置されている。 The plurality of outdoor flat tubes 90 are arranged side by side vertically.
 複数の室外フィン91は、室外扁平管90に沿うようにして、板厚方向に並べられており、複数の室外扁平管90に対して固定されている。 The plurality of outdoor fins 91 are arranged in the plate thickness direction along the outdoor flat tube 90 and fixed to the plurality of outdoor flat tubes 90.
 ガス側分流器23は、冷媒管19と、複数の室外扁平管90のうちの上方に配置されているものと、に接続されている。室外熱交換器11が冷媒の放熱器として機能する際には、冷媒管19から室外熱交換器11に流入した冷媒を、複数の高さ位置に分流して、複数の室外扁平管90のうちの上方に配置されているものに送る。 The gas side flow divider 23 is connected to the refrigerant pipe 19 and one of the plurality of outdoor flat pipes 90 which is disposed above. When the outdoor heat exchanger 11 functions as a radiator of the refrigerant, the refrigerant flowing from the refrigerant pipe 19 into the outdoor heat exchanger 11 is diverted to a plurality of height positions, and the plurality of outdoor flat tubes 90 Send to what is located above.
 液側分流器24は、冷媒管20と、複数の室外扁平管90のうちの下方に配置されているものと、に接続されている。室外熱交換器11が冷媒の放熱器として機能する際には、複数の室外扁平管90のうちの下方に配置されているものから流れ込んだ冷媒を合流させ、冷媒管20を介して室外熱交換器11の外部に流出させる。 The liquid side flow divider 24 is connected to the refrigerant pipe 20 and one of the plurality of outdoor flat pipes 90 disposed below. When the outdoor heat exchanger 11 functions as a radiator of the refrigerant, the refrigerant flowing from the lower one of the plurality of outdoor flat tubes 90 is merged, and the outdoor heat exchange is performed via the refrigerant pipe 20. Flow out of the vessel 11.
 複数の流入側折返し部材25は、ガス側分流器23と液側分流器24の間に配置されており、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する。 The plurality of inflow side return members 25 are disposed between the gas side flow distributor 23 and the liquid side flow distributor 24 and connect the ends of the outdoor flat tubes 90 provided at different height positions to each other.
 反流入側折返し部材26と、室外熱交換器11のうち、ガス側分流器23と液側分流器24と複数の流入側折返し部材25が設けられている側の端部とは反対側の端部に設けられており、互いに異なる高さ位置に設けられた室外扁平管90の端部同士を接続する。 The end on the opposite side to the end on the side on which the gas-side diverter 23, the liquid-side diverter 24, and the plurality of inflow-side fold-back members 25 are provided in the non-inflow-side fold-back member 26 and the outdoor heat exchanger 11. The ends of the outdoor flat tubes 90 which are provided in the parts and are provided at different height positions are connected to each other.
 このように、室外熱交換器11では、複数の流入側折返し部材25や反流入側折返し部材26が設けられていることで、室外熱交換器11の両端で冷媒を折返しながら冷媒を流すことが可能になっている。 As described above, in the outdoor heat exchanger 11, the flow of the refrigerant while turning back the refrigerant at both ends of the outdoor heat exchanger 11 by providing the plurality of inflow side turning back members 25 and the non-inflow side turning back members 26. It is possible.
 (2-3)室外扁平管
 図5に、室外扁平管90の内部の流路90cが延びる方向に垂直な断面で切断した状態で、当該流路90cが延びる方向から見た室外フィン91と室外扁平管90との位置関係を示す。
(2-3) Outdoor Flat Tube In FIG. 5, with the cross section perpendicular to the extending direction of the flow passage 90c inside the outdoor flat tube 90, the outdoor fin 91 and the outdoor viewed from the extending direction of the flow passage 90c. The positional relationship with the flat tube 90 is shown.
 室外扁平管90は、鉛直上方を向いて上面を構成している上側扁平面90aと、鉛直下方を向いて下面を構成している下側扁平面90bと、冷媒が流れる多数の小さな流路90cを有している。室外扁平管90が有する複数の流路90cは、空気流れ方向(図5において矢印で示す。流路90cの流路断面視における室外扁平管90の長手方向)に並んで設けられている。複数の室外扁平管90は、いずれも、上下方向の高さHTで同じものが用いられている。ここで、高さHTは、室外扁平管90の上側扁平面90aと下側扁平面90bとの高さ方向における幅をいう。これらの複数の室外扁平管90は、上下方向に所定のピッチ(段ピッチDP)で配列されている。ここで、段ピッチDPは、室外扁平管90の上側扁平面90aの間隔である。 The outdoor flat tube 90 has an upper flat surface 90a forming an upper surface facing vertically upward, a lower flat surface 90b forming a lower surface facing vertically downward, and a large number of small flow paths 90c in which the refrigerant flows. Have. The plurality of flow paths 90c of the outdoor flat pipe 90 are provided side by side in the air flow direction (indicated by an arrow in FIG. 5; the longitudinal direction of the outdoor flat pipe 90 in the flow path sectional view of the flow path 90c). As the plurality of outdoor flat tubes 90, the same one is used at the height HT in the vertical direction. Here, the height HT refers to the width in the height direction of the upper flat surface 90 a and the lower flat surface 90 b of the outdoor flat tube 90. The plurality of outdoor flat tubes 90 are arranged in the vertical direction at a predetermined pitch (step pitch DP). Here, the step pitch DP is the distance between the upper flat surface 90 a of the outdoor flat tube 90.
 なお、本実施形態の室外熱交換器11は、複数の室外扁平管90の空気流れ方向下流側端部は、室外フィン91の空気流れ方向の下流側端部よりもさらに下流側に位置するように構成されている。これにより、室外熱交換器11の製造時または運搬時における室外フィン91の風下側端部の損傷や破損が抑制される。 In the outdoor heat exchanger 11 of the present embodiment, the downstream end of the plurality of outdoor flat tubes 90 in the air flow direction is positioned further downstream than the downstream end of the outdoor fin 91 in the air flow direction. Is configured. Thereby, damage or breakage of the downwind side end of the outdoor fin 91 at the time of production or transportation of the outdoor heat exchanger 11 is suppressed.
 (2-4)室外フィン
 室外フィン91は、空気流れ方向および上下方向に広がる板状部材であり、板厚方向に所定の間隔で複数配置されており、室外扁平管90に固定されている。
(2-4) Outdoor Fin The outdoor fin 91 is a plate-like member extending in the air flow direction and the vertical direction, and a plurality of the outdoor fins 91 are arranged at predetermined intervals in the thickness direction and fixed to the outdoor flat tube 90.
 室外フィン91は、複数の差し込み部92、室外連通部97a、複数の風下部97b、ワッフル部93、風上側フィンタブ94a、風下側フィンタブ94b、室外スリット95、風上側リブ96a、風下側リブ96b等を有している。なお、室外フィン91の平坦な箇所における板厚方向の厚みは、例えば、0.05mm以上0.15mm以下である。 The outdoor fins 91 include a plurality of insertion portions 92, an outdoor communication portion 97a, a plurality of leeward portions 97b, a waffle portion 93, a leeward side fin tab 94a, a leeward side fin tab 94b, an outdoor slit 95, a leeward side rib 96a, a leeward side rib 96b, etc. have. Note that the thickness in the thickness direction of the flat portion of the outdoor fin 91 is, for example, 0.05 mm or more and 0.15 mm or less.
 差し込み部92は、室外フィン91風下側の縁部から風上側に向けて風上側縁部の手前まで水平方向に切り込まれるようにして形成されている。複数の差し込み部92は、上下方向に並ぶように設けられている。なお、差し込み部92は、バーリング等によって形成されるフィンカラーを構成している。この差し込み部92の形状は、室外扁平管90の断面の外形にほぼ一致しており、当該差し込み部92には、室外扁平管90が挿入された状態で互いにロウ付け固定されている。 The insertion portion 92 is formed to be horizontally cut from the edge on the windward side of the outdoor fin 91 toward the windward side to the front of the windward edge. The plurality of insertion portions 92 are provided to line up in the vertical direction. The insertion portion 92 constitutes a fin collar formed by burring or the like. The shape of the insertion portion 92 substantially matches the outer shape of the cross section of the outdoor flat tube 90, and the insertion portion 92 is brazed to each other in a state where the outdoor flat tube 90 is inserted.
 室外連通部97aは、室外フィン91のうち、室外扁平管90の風上側端部よりも更に風上側において、上下方向に連続した部分である。なお、着霜耐力を確保する観点から、室外扁平管90の風上端から室外フィン91の室外連通部97aにおける風上端までの空気流れ方向の距離は4mm以上であることが好ましい。 The outdoor communication portion 97 a is a portion of the outdoor fin 91 that is continuous in the vertical direction further on the windward side than the windward end of the outdoor flat tube 90. From the viewpoint of securing the frost resistance, the distance in the air flow direction from the wind upper end of the outdoor flat tube 90 to the wind upper end of the outdoor communication portion 97a of the outdoor fin 91 is preferably 4 mm or more.
 複数の風下部97bは、室外連通部97aにおける異なる高さ位置から、空気流れ方向下流側に向けて伸び出している。なお、各風下部97bは、隣り合う差し込み部92によって上下方向に囲まれている。 The plurality of upwind portions 97 b extend from the different height positions of the outdoor communication portion 97 a toward the downstream side in the air flow direction. The respective wind lower portions 97 b are vertically surrounded by the adjacent insertion portions 92.
 ワッフル部93は、室外フィン91のうち空気流れ方向の中央近傍に形成されており、板厚方向における隆起部分と非隆起部分を含んで構成されている。 The waffle portion 93 is formed near the center of the outdoor fin 91 in the air flow direction, and includes a raised portion and a non-raised portion in the thickness direction.
 風上側フィンタブ94aおよび風下側フィンタブ94bは、室外フィン91同士の間隔を規制するために、それぞれ風上側端部近傍と風下側端部近傍に設けられている。 The upwind fin tab 94a and the downwind fin tab 94b are provided in the vicinity of the upwind end and in the vicinity of the downwind end in order to regulate the distance between the outdoor fins 91, respectively.
 室外スリット95は、室外フィン91における伝熱性能を向上させるために平坦部分から板厚方向に切り起こされて構成された部分であり、ワッフル部93の空気流れ方向下流側に形成されている。室外スリット95は、その長手方向が上下方向(室外扁平管90の配列方向)となるように形成されており、空気流れ方向に複数(本実施形態では2つ)が並ぶように形成されている。これらの室外スリット95では、平坦な部分から板厚方向の同じ側に切り起こされることで、空気流れ方向上流側と下流側にそれぞれ開口を有するものである。 The outdoor slit 95 is a portion formed by cutting and raising from the flat portion in the plate thickness direction in order to improve the heat transfer performance of the outdoor fin 91, and is formed downstream of the waffle portion 93 in the air flow direction. The outdoor slit 95 is formed such that its longitudinal direction is in the vertical direction (the direction in which the outdoor flat tubes 90 are arranged), and a plurality (two in the present embodiment) is formed in the air flow direction. . These outdoor slits 95 have openings on the upstream side and the downstream side in the air flow direction by being cut and raised from the flat portion to the same side in the plate thickness direction.
 風上側リブ96aは、風上側フィンタブ94aの上下において、互いに上下に隣り合う室外扁平管90同士の間で、空気流れ方向に延びるように形成されている。風下側リブ96bは、風上側リブ96aの風下側端部から連続してさらに風下側に延びるように設けられている。 The windward rib 96a is formed to extend in the air flow direction between the outdoor flat tubes 90 adjacent to each other at the upper and lower sides of the windward fin tab 94a. The downwind side rib 96b is provided so as to extend continuously from the downwind side end of the upwind side rib 96a to the downwind side.
 (3)室内ユニット
 (3-1)室内ユニットの概略構成
 図6に、室内ユニット3の外観斜視図を示す。図7に、室内ユニット3の天板を取り除いた状態を示す概略平面図を示す。図8に、図7中にA-Aで示す切断面における室内ユニット3の概略側面断面図を示す。
(3) Indoor Unit (3-1) Schematic Configuration of Indoor Unit FIG. 6 shows an external perspective view of the indoor unit 3. The schematic plan view which shows the state which removed the top plate of the indoor unit 3 in FIG. 7 is shown. FIG. 8 shows a schematic side cross-sectional view of the indoor unit 3 in the cut plane shown by AA in FIG.
 室内ユニット3は、本実施形態では、空調対象空間である室内等の天井に天井の開口に埋め込まれることで設置されるタイプの室内機であり、冷媒回路6の一部を構成している。室内ユニット3は、主として、室内熱交換器51と、室内ファン52と、ケーシング30と、フラップ39と、ベルマウス33と、ドレンパン32と、を有している。 In the present embodiment, the indoor unit 3 is an indoor unit of a type installed by being embedded in an opening of a ceiling in a ceiling such as a room which is an air conditioning target space, and constitutes a part of the refrigerant circuit 6. The indoor unit 3 mainly includes an indoor heat exchanger 51, an indoor fan 52, a casing 30, a flap 39, a bell mouth 33, and a drain pan 32.
 室内熱交換器51は、冷房運転時には室内熱交換器51から送られてくる冷媒の蒸発器として機能し、暖房運転時には圧縮機8から吐出された冷媒の放熱器として機能する熱交換器である。室内熱交換器51は、その液側が液冷媒連絡管4の室内側端部に接続されており、ガス側がガス冷媒連絡管5の室内側端部に接続されている。 The indoor heat exchanger 51 is a heat exchanger that functions as an evaporator of the refrigerant sent from the indoor heat exchanger 51 during the cooling operation, and functions as a radiator of the refrigerant discharged from the compressor 8 during the heating operation. . The liquid side of the indoor heat exchanger 51 is connected to the indoor side end of the liquid refrigerant communication pipe 4, and the gas side is connected to the indoor side end of the gas refrigerant communication pipe 5.
 室内ファン52は、室内ユニット3のケーシング本体31の内部に配置された遠心送風機である。室内ファン52は、室内の空気を化粧パネル35の吸込口36を通じてケーシング30内に吸入し、室内熱交換器51を通過させた後、化粧パネル35の吹出口37を通じてケーシング30外へ吹き出す空気流れ(図8において矢印で示す。)を形成する。このように、室内ファン52によって供給される室内空気は、室内熱交換器51の冷媒と熱交換することにより温度が調節される。 The indoor fan 52 is a centrifugal fan disposed inside the casing main body 31 of the indoor unit 3. The indoor fan 52 sucks indoor air into the casing 30 through the suction port 36 of the decorative panel 35, passes through the indoor heat exchanger 51, and then flows out of the casing 30 through the outlet 37 of the decorative panel 35. (Shown by arrows in FIG. 8). Thus, the temperature of the room air supplied by the indoor fan 52 is adjusted by exchanging heat with the refrigerant of the indoor heat exchanger 51.
 ケーシング30は、ケーシング本体31と、化粧パネル35と、を主として有している。 The casing 30 mainly has a casing main body 31 and a decorative panel 35.
 ケーシング本体31は、空調室の天井Uに形成された開口に挿入されるようにして配置されており、その平面視において、長辺と短辺とが交互に形成された略8角形状の箱状体であり、下面が開口している。このケーシング本体31は、天板および天板の周縁部から下方に延びる複数の側板を有している。 The casing main body 31 is disposed so as to be inserted into the opening formed in the ceiling U of the air conditioning chamber, and in a plan view, the substantially octagonal box in which long sides and short sides are alternately formed. The lower surface is open. The casing main body 31 has a top plate and a plurality of side plates extending downward from the periphery of the top plate.
 化粧パネル35は、天井Uの開口に嵌め込まれるようにして配置されており、ケーシング本体31の天板および側板よりも平面視における外側に広がっており、ケーシング本体31の下方に室内側から取り付けられる。化粧パネル35は、内枠35aと外枠35bを有している。内枠35aの内側には、下方に向けて開口した略四角形状の吸込口36が形成されている。吸込口36の上方には、吸込口36から吸入された空気中の塵埃を除去するためのフィルタ34が設けられている。外枠35bの内側であって内枠35aの外側には、下方から斜め下方に向けて開口した吹出口37と角部吹出口38が形成されている。吹出口37は、化粧パネル35の平面視における略四角形状の各辺に対応する位置に、第1吹出口37aと、第2吹出口37bと、第3吹出口37cと、第4吹出口37dと、を有している。角部吹出口38は、化粧パネル35の平面視における略四角形状の4角に対応する位置に、第1角部吹出口38aと、第2角部吹出口38bと、第3角部吹出口38cと、第4角部吹出口38dと、を有している。 The decorative panel 35 is disposed so as to be fitted into the opening of the ceiling U, extends outward in plan view than the top plate and the side plate of the casing main body 31, and is attached below the casing main body 31 from the indoor side. . The decorative panel 35 has an inner frame 35a and an outer frame 35b. A substantially rectangular suction port 36 opened downward is formed inside the inner frame 35a. Above the suction port 36, a filter 34 for removing dust in the air sucked from the suction port 36 is provided. At the inside of the outer frame 35b and at the outside of the inner frame 35a, an air outlet 37 and a corner air outlet 38 which are opened obliquely downward from below are formed. The blower outlet 37 is provided at a position corresponding to each side of the substantially rectangular shape in plan view of the decorative panel 35, the first blower outlet 37a, the second blower outlet 37b, the third blower outlet 37c, and the fourth blower outlet 37d. And. The corner air outlet 38 is located at a position corresponding to the substantially square four corners in a plan view of the decorative panel 35, the first corner air outlet 38a, the second corner air outlet 38b, and the third corner air outlet. It has 38c and the 4th corner outlet 38d.
 フラップ39は、吹出口37を通過する空気流れの方向を変更可能な部材である。フラップ39は、第1吹出口37aに配置される第1フラップ39aと、第2吹出口37bに配置される第2フラップ39bと、第3吹出口37cに配置される第3フラップ39cと、第4吹出口37dに配置される第4フラップ39dと、を有している。各フラップ39a~dは、ケーシング30の所定の位置において回動可能に軸支されている。 The flap 39 is a member capable of changing the direction of the air flow passing through the air outlet 37. The flap 39 includes a first flap 39a disposed at the first outlet 37a, a second flap 39b disposed at the second outlet 37b, a third flap 39c disposed at the third outlet 37c, and a third flap 39c And a fourth flap 39d disposed in the fourth outlet 37d. Each of the flaps 39a to 39d is pivotally supported at a predetermined position of the casing 30.
 ドレンパン32は、室内熱交換器51の下側に配置され、室内熱交換器51において空気中の水分が凝縮して生じるドレン水を受けとる。このドレンパン32は、ケーシング本体31の下部に装着されている。ドレンパン32には、平面視において、室内熱交換器51の内側において上下方向に伸びた円筒形状の空間が形成されており、当該空間の内側下方にベルマウス33が配置されている。ベルマウス33は、吸込口36から吸入される空気を室内ファン52に案内する。また、ドレンパン32には、平面視において、室内熱交換器51の外側において上下方向に伸びた複数の吹出流路47a~d、角部吹出流路48a~cが形成されている。吹出流路47a~dは、下端において第1吹出口37aと連通する第1吹出流路47aと、下端において第2吹出口37bと連通する第2吹出流路47bと、下端において第3吹出口37cと連通する第3吹出流路47cと、下端において第4吹出口37dと連通する第4吹出流路47dと、を有している。角部吹出流路48a~cは、下端において第1角部吹出口38aと連通する第1角部吹出流路48aと、下端において第2角部吹出口38bと連通する第2角部吹出流路48bと、下端において第3角部吹出口38cと連通する第3角部吹出流路48cと、を有している。 The drain pan 32 is disposed below the indoor heat exchanger 51 and receives drain water generated by condensation of moisture in the air in the indoor heat exchanger 51. The drain pan 32 is attached to the lower portion of the casing main body 31. In the drain pan 32, a cylindrical space extending in the vertical direction is formed inside the indoor heat exchanger 51 in a plan view, and the bell mouth 33 is disposed below the inside of the space. The bell mouth 33 guides the air drawn from the suction port 36 to the indoor fan 52. Further, in the drain pan 32, a plurality of blowout flow paths 47a to 47d and corner blowout flow paths 48a to 48c extending in the vertical direction are formed outside the indoor heat exchanger 51 in plan view. The blowout flow paths 47a to 47d are a first blowout flow path 47a communicating with the first blowout port 37a at the lower end, a second blowout flow path 47b communicating with the second blowout port 37b at the lower end, and a third blowout port at the lower end It has a third blowoff passage 47c in communication with 37c, and a fourth blowout passage 47d in communication with the fourth outlet 37d at the lower end. The corner air outlet flow paths 48a to 48c have a first corner air outlet flow path 48a communicating with the first corner air outlet 38a at the lower end, and a second corner air outlet flow communicating with the second corner air outlet 38b at the lower end. A passage 48b and a third corner outlet channel 48c communicating with the third corner outlet 38c at the lower end are provided.
 (3-2)室内熱交換器の概略構造
 図9に、室内熱交換器51の概略外観斜視図を示す。図10に、室内熱交換器51の複数の室内フィン60の風上側の部分拡大外観斜視図を示す。
(3-2) Schematic Structure of Indoor Heat Exchanger FIG. 9 shows a schematic external perspective view of the indoor heat exchanger 51. FIG. 10 shows a partially enlarged external perspective view of the windward side of the plurality of indoor fins 60 of the indoor heat exchanger 51. As shown in FIG.
 室内熱交換器51は、室内ファン52と同一高さ位置においてその周囲を囲むように曲げられた状態で、ケーシング本体31の内部に配置されている。この室内熱交換器51は、主として、液側ヘッダ81と、ガス側ヘッダ71と、折返しヘッダ59と、複数の室内扁平管55と、複数の室内フィン60と、を有している。ここでは、室内熱交換器51を構成するこれらのすべてが、アルミニウムまたはアルミニウム合金で形成されており、互いにロウ付け等によって接合されている。 The indoor heat exchanger 51 is disposed inside the casing main body 31 in a state of being bent so as to surround the periphery at the same height position as the indoor fan 52. The indoor heat exchanger 51 mainly includes a liquid side header 81, a gas side header 71, a return header 59, a plurality of indoor flat tubes 55, and a plurality of indoor fins 60. Here, all of the components constituting the indoor heat exchanger 51 are formed of aluminum or an aluminum alloy, and are joined together by brazing or the like.
 なお、室内熱交換器51は、空気流れ方向における風上側を構成する風上熱交換部70(平面視における内側部分)と、空気流れ方向における風下側を構成する風下熱交換部80(平面視における外側部分)と、を有している。 The indoor heat exchanger 51 includes an upwind heat exchange unit 70 (inside portion in plan view) forming the upwind side in the air flow direction and a downwind heat exchange unit 80 (plan view in the air flow direction). And an outer portion of
 液側ヘッダ81は、室内熱交換器51のうち風下熱交換部80の平面視における一端を構成しており、上下方向に延びた円筒形状部材である。液側ヘッダ81には、液冷媒連絡管4の室内側の端部が接続されている。さらに、液側ヘッダ81には、室内熱交換器51のうち風下熱交換部80を構成している室内扁平管55が上下に並んで複数接続されている。 The liquid side header 81 constitutes one end of the indoor heat exchanger 51 in a plan view of the leeward heat exchange unit 80, and is a cylindrical member extending in the vertical direction. The indoor side end of the liquid refrigerant communication pipe 4 is connected to the liquid side header 81. Further, a plurality of indoor flat tubes 55 constituting the leeward heat exchange section 80 of the indoor heat exchanger 51 are connected to the liquid side header 81 in a row at the top and bottom.
 ガス側ヘッダ71は、室内熱交換器51のうち風上熱交換部70の平面視における一端を構成しており、上下方向に延びた円筒形状部材である。ガス側ヘッダ71には、ガス冷媒連絡管5の室内側の端部が接続されている。さらに、ガス側ヘッダ71には、室内熱交換器51のうち風上熱交換部70を構成している室内扁平管55が上下に並んで複数接続されている。 The gas side header 71 constitutes one end of the indoor heat exchanger 51 in a plan view of the upwind heat exchange unit 70, and is a cylindrical member extending in the vertical direction. The indoor end of the gas refrigerant communication pipe 5 is connected to the gas side header 71. Furthermore, a plurality of indoor flat tubes 55 which constitute the upwind heat exchange section 70 of the indoor heat exchanger 51 are connected to the gas side header 71 in a line in the vertical direction.
 折返しヘッダ59は、室内熱交換器51のうち平面視における液側ヘッダ81やガス側ヘッダ71とは反対側の端部を構成しており、内部において上下方向に並んだ複数の折返し空間を有している。各折返し空間には、互いに同一高さ位置に設けられた風上熱交換部70を構成している室内扁平管55と風下熱交換部80を構成している室内扁平管55とがそれぞれ接続されている。これにより、折返しヘッダ59では、異なる高さ位置の室内扁平管55を流れた冷媒同士の混ざり合いを抑制しつつ、各高さ位置の室内扁平管55を流れた冷媒を同一高さ位置の風上側(室内熱交換器51が冷媒の蒸発器として機能する場合)もしくは風下側(室内熱交換器51が冷媒の放熱器として機能する場合)の室内扁平管55に折り返して送ることが可能になっている。 The folded header 59 constitutes an end of the indoor heat exchanger 51 opposite to the liquid side header 81 and the gas side header 71 in plan view, and has a plurality of folded spaces arranged in the vertical direction inside. doing. In each of the folded spaces, the indoor flat tube 55 constituting the upwind heat exchange unit 70 provided at the same height position and the indoor flat tube 55 forming the downwind heat exchange unit 80 are connected to each other. ing. As a result, in the return header 59, while the mixing of the refrigerants flowing through the indoor flat tubes 55 at different heights is suppressed, the refrigerant flowing through the indoor flat tubes 55 at each height is adjusted to the wind at the same height It becomes possible to return to the indoor flat tube 55 on the upper side (when the indoor heat exchanger 51 functions as an evaporator of the refrigerant) or downwind (when the indoor heat exchanger 51 functions as a radiator of the refrigerant) ing.
 複数の室内扁平管55は、風上熱交換部70を構成しているものと、風下熱交換部80を構成しているものが設けられている。すなわち、複数の室内扁平管55は、室内熱交換器51のうちの風上熱交換部70において、上下方向に並んで配置されたものと、室内熱交換器51のうちの風下熱交換部80において、上下方向に並んで配置されたものと、を含んでいる。風上熱交換部70を構成する複数の室内扁平管55は、それぞれ、一端がガス側ヘッダ71に接続されており、他端が折返しヘッダ59の風上側部分に接続されている。風下熱交換部80を構成する複数の室内扁平管55は、それぞれ、一端が液側ヘッダ81に接続されており、他端が折返しヘッダ59の風下側部分に接続されている。 As the plurality of indoor flat tubes 55, one constituting the upwind heat exchange section 70 and one constituting the downwind heat exchange section 80 are provided. That is, in the upwind heat exchange section 70 of the indoor heat exchangers 51, the plurality of indoor flat tubes 55 are arranged side by side in the vertical direction, and the leeward heat exchange section 80 of the indoor heat exchanger 51. , And those arranged side by side in the vertical direction. One end of each of the plurality of indoor flat tubes 55 constituting the upwind heat exchange unit 70 is connected to the gas side header 71, and the other end is connected to the upwind side portion of the folded header 59. One end of each of the plurality of indoor flat tubes 55 constituting the leeward heat exchange unit 80 is connected to the liquid side header 81, and the other end is connected to the leeward side of the folded header 59.
 複数の室内フィン60も、同様に、風上熱交換部70を構成しているものと、風下熱交換部80を構成しているものが設けられている。すなわち、複数の室内フィン60は、室内熱交換器51のうちの風上熱交換部70を構成している室内扁平管55に対して固定されたものと、室内熱交換器51のうちの風下熱交換部80を構成している室内扁平管55に対して固定されたものと、を含んでいる。各室内フィン60は、いずれも、室内扁平管55に沿うようにして、室内フィン60の板厚方向に並べられている。 Similarly, the plurality of indoor fins 60 are provided so as to constitute the upwind heat exchange section 70 and to constitute the downwind heat exchange section 80. That is, the plurality of indoor fins 60 are fixed to the indoor flat tube 55 constituting the upwind heat exchange section 70 of the indoor heat exchanger 51, and the downwind of the indoor heat exchanger 51. And the one fixed to the indoor flat tube 55 which constitutes the heat exchange section 80. Each indoor fin 60 is arranged in the thickness direction of the indoor fin 60 so as to be along the indoor flat tube 55.
 (3-3)室内扁平管
 図11に、室内扁平管55の内部の流路55cが延びる方向に垂直な断面で切断した状態で、当該流路55cが延びる方向から見た室内フィン60と室内扁平管55との位置関係を示す。
(3-3) Indoor Flat Tube FIG. 11 shows the indoor fin 60 viewed from the direction in which the flow passage 55c extends, with the cross section perpendicular to the direction in which the flow passage 55c in the indoor flat tube 55 extends. The positional relationship with the flat tube 55 is shown.
 室内扁平管55は、鉛直上方を向いて上面を構成している上側扁平面55aと、鉛直下方を向いて下面を構成している下側扁平面55bと、冷媒が流れる多数の小さな流路55cを有している。室内扁平管55が有する複数の流路55cは、空気流れ方向(図11において矢印で示す。流路55cの流路断面視における室内扁平管55の長手方向)に並んで設けられている。複数の室内扁平管55は、いずれも、上下方向の高さHTで同じものが用いられている。ここで、高さHTは、室内扁平管55の上側扁平面55aと下側扁平面55bとの高さ方向における幅をいい、1.2mm以上2.5mm以下であることが好ましい。これらの複数の室内扁平管55は、風上熱交換部70においても風下熱交換部80においても同様に、上下方向に所定のピッチ(段ピッチDP)で配列されている。ここで、段ピッチDPは、室内扁平管55の上側扁平面55aの間隔であり、8.0mm以上15.0mm以下であることが好ましい。ここで、室内熱交換器51は、4.0≦DP/HT≦10.0の関係を満たしている。なお、室内熱交換器51のDP/HTの下限としては、4.6以上であることが好ましく、室内熱交換器51のDP/HTの上限としては、8.0以下であることが好ましく、室内熱交換器51が4.6≦DP/HT≦8.0の関係を満たしていることが好ましい。 The indoor flat tube 55 includes an upper flat surface 55a which is vertically upward and constitutes an upper surface, a lower flat surface 55b which is vertically downward and constitutes a lower surface, and a large number of small flow paths 55c through which the refrigerant flows. Have. The plurality of flow paths 55c included in the indoor flat tube 55 are provided side by side in the air flow direction (indicated by an arrow in FIG. 11. The longitudinal direction of the indoor flat tube 55 in the flow path cross-sectional view of the flow path 55c). As the plurality of indoor flat tubes 55, the same one is used at the height HT in the vertical direction. Here, the height HT refers to the width in the height direction of the upper flat surface 55a and the lower flat surface 55b of the indoor flat tube 55, and is preferably 1.2 mm or more and 2.5 mm or less. The plurality of indoor flat tubes 55 are arranged at a predetermined pitch (step pitch DP) in the vertical direction in the upwind heat exchange unit 70 and the downwind heat exchange unit 80 as well. Here, the step pitch DP is the distance between the upper flat surface 55a of the indoor flat tube 55, and is preferably 8.0 mm or more and 15.0 mm or less. Here, the indoor heat exchanger 51 satisfies the relationship of 4.0 ≦ DP / HT ≦ 10.0. The lower limit of DP / HT of the indoor heat exchanger 51 is preferably 4.6 or more, and the upper limit of DP / HT of the indoor heat exchanger 51 is preferably 8.0 or less, It is preferable that the indoor heat exchanger 51 satisfy the relationship of 4.6 ≦ DP / HT ≦ 8.0.
 また、本実施形態の空気調和装置1では、室内熱交換器51のDP/HTの値が、上述した室外熱交換器11のDP/HTの値よりも小さい関係を満たすようにしている。 Further, in the air conditioner 1 of the present embodiment, the value of DP / HT of the indoor heat exchanger 51 satisfies the relationship smaller than the value of DP / HT of the outdoor heat exchanger 11 described above.
 なお、風上熱交換部70を構成する室内扁平管55と、風下熱交換部80を構成する室内扁平管55とは、本実施形態では、空気流れ方向視において、各高さ位置で互いに重なるように配置されている。 In the present embodiment, the indoor flat tube 55 forming the upwind heat exchange unit 70 and the indoor flat tube 55 forming the downwind heat exchange unit 80 overlap each other at each height position in the air flow direction view. It is arranged as.
 また、本実施形態の室内熱交換器51では、複数の室内扁平管55の空気流れ方向上流側端部と、室内フィン60の空気流れ方向の上流側端部とは、空気流れ方向において概ね同じ位置に設けられている。 Further, in the indoor heat exchanger 51 of the present embodiment, the upstream end portions of the indoor flat tubes 55 in the air flow direction and the upstream end portions of the indoor fins 60 in the air flow direction are substantially the same in the air flow direction. It is provided in the position.
 (3-4)室内フィン
 室内フィン60は、空気流れ方向および上下方向に広がる板状部材であり、板厚方向に所定の間隔で複数配置されており、室内扁平管55に固定されている。なお、風上熱交換部70を構成する室内フィン60と、風下熱交換部80を構成する室内フィン60とは、本実施形態では、空気流れ方向視において、それぞれ概ね互いに重なるように配置されている。また、風上熱交換部70を構成する室内フィン60の風下側端部と、風下熱交換部80を構成する室内フィン60の風上側端部は、少なくとも一部分において互いに接触するように配置されている。
(3-4) Indoor Fins The indoor fins 60 are plate-like members that extend in the air flow direction and in the vertical direction, and a plurality of the indoor fins 60 are arranged at predetermined intervals in the plate thickness direction, and are fixed to the indoor flat tube 55. In the present embodiment, the indoor fins 60 forming the upwind heat exchange unit 70 and the indoor fins 60 forming the downwind heat exchange unit 80 are disposed so as to substantially overlap with each other in the air flow direction view in the present embodiment. There is. Further, the downwind side end of the indoor fin 60 constituting the upwind heat exchange portion 70 and the upwind end portion of the indoor fin 60 constituting the downwind heat exchange portion 80 are arranged to be in contact with each other at least in part. There is.
 室内フィン60は、風上熱交換部70を構成するものも風下熱交換部80を構成するものも同様に、主面61、複数のフィンカラー部65a、室内連通部64、複数の風上部65、メインスリット62、連通位置スリット63、等を有している。なお、室内フィン60の平坦な主面61における板厚方向の厚みは、例えば、0.05mm以上0.15mm以下である。また、複数の室内フィン60の板厚方向におけるピッチ(互いに隣り合う室内フィン60における同じ側の面同士の間隔)は、1.0mm以上1.6mm以下であることが好ましい。 Similarly to the indoor fins 60 constituting the upwind heat exchange section 70 and the downwind heat exchange section 80, the main surface 61, the plurality of fin collar sections 65a, the indoor communication section 64, the plurality of upwind sections 65 , The main slit 62, the communication position slit 63, and the like. The thickness in the thickness direction of the flat main surface 61 of the indoor fin 60 is, for example, 0.05 mm or more and 0.15 mm or less. The pitch in the thickness direction of the plurality of indoor fins 60 (the distance between the surfaces on the same side of the indoor fins 60 adjacent to each other) is preferably 1.0 mm or more and 1.6 mm or less.
 主面61は、室内フィン60のうち、フィンカラー部65aやメインスリット62や連通位置スリット63が設けられていない平坦部分を構成している。 The main surface 61 constitutes a flat portion of the indoor fin 60 in which the fin collar portion 65 a, the main slit 62 and the communication position slit 63 are not provided.
 フィンカラー部65aは、室内フィン60の風上側の縁部から風下側に向けて風下側縁部の手前まで水平方向に延びるように形成されている。複数のフィンカラー部65aは、上下方向に並ぶように設けられている。なお、フィンカラー部65aは、バーリング等によって形成されている。このフィンカラー部65aの輪郭形状は、室内扁平管55の断面の外形にほぼ一致しており、当該フィンカラー部65aには、室内扁平管55が挿入された状態で互いにロウ付け固定されている。ここで、図12に、室内扁平管55の流路55cを冷媒通過方向に沿って鉛直方向を含む面で切断した断面における、室内フィン60と室内扁平管55との接合状態を示す。フィンカラー部65aは、図12に示すように、主面61に対して、主面61の板厚方向のうちメインスリット62の切り起こし側とは反対側に立ち上げられて構成されている。また、フィンカラー部65aの主面61側とは反対側には、対応する室内扁平管55の上側扁平面55a(または下側扁平面55b)から遠ざかる方向に延びるように曲げられた位置決め部65xが設けられている。この位置決め部65xは、隣接する室内フィン60の主面61に面接触することで、各室内フィン60の板厚方向の間隔を規定している。このようなフィンカラー部65aは、図12に示すように、室内扁平管55の上側扁平面55a(または下側扁平面55b)との間にロウ材58が介在した状態でロウ付けにより接合されている。なお、特に限定されないが、図12に示すように、室内扁平管55の下側扁平面55b側において、主面61に対するフィンカラー部65aの立ち上げが始まっている箇所と、メインスリット62の切り起こしが始まっている箇所と、の間の距離DSは、1mm以下であることが好ましい。室内扁平管55の下側扁平面55bにおける結露水は、メインスリット62の切り起こしが始まっている箇所を介して下方に導かれて排水されることから、当該距離DSを1mm以下の短い距離とすることで、室内扁平管55の下側扁平面55bにおいて結露水が保持され続けることを抑制することができる。 The fin collar portion 65 a is formed to extend horizontally from the windward edge of the indoor fin 60 toward the windward side to the front of the windward side edge. The plurality of fin collars 65 a are provided to be aligned in the vertical direction. The fin collar portion 65a is formed by burring or the like. The contour shape of the fin collar portion 65a substantially matches the outer shape of the cross section of the indoor flat tube 55, and the fin flat portion 55a is brazed to each other in a state where the indoor flat tube 55 is inserted. . Here, FIG. 12 shows a joined state of the indoor fins 60 and the indoor flat tube 55 in a cross section obtained by cutting the flow path 55c of the indoor flat tube 55 along the refrigerant passing direction along a plane including the vertical direction. As shown in FIG. 12, the fin collar portion 65 a is configured to be raised on the main surface 61 on the opposite side to the cut and raised side of the main slit 62 in the thickness direction of the main surface 61. Further, on the side opposite to the main surface 61 of the fin collar portion 65a, a positioning portion 65x bent so as to extend away from the upper flat surface 55a (or lower flat surface 55b) of the corresponding indoor flat tube 55 It is provided. The positioning portions 65x are in surface contact with the main surfaces 61 of the adjacent indoor fins 60, thereby defining the distance between the indoor fins 60 in the thickness direction. Such a fin collar portion 65a is joined by brazing in a state where the brazing material 58 is interposed between it and the upper flat surface 55a (or lower flat surface 55b) of the indoor flat tube 55, as shown in FIG. There is. Although not particularly limited, as shown in FIG. 12, on the lower flat surface 55 b side of the indoor flat tube 55, a portion where rising of the fin collar portion 65 a with respect to the main surface 61 has started and cut and raised of the main slit 62 It is preferable that the distance DS between the point at which is started and 1 mm or less. The dew condensation water on the lower flat surface 55b of the indoor flat tube 55 is led downward through the portion where the cutting and raising of the main slit 62 starts and is drained, so the distance DS is set to a short distance of 1 mm or less Thus, the condensation water can be prevented from being continuously held on the lower flat surface 55b of the indoor flat tube 55.
 室内連通部64は、室内フィン60のうち、室内扁平管55の風下側端部よりも更に風下側において、上下方向に連続した部分である。なお、室内フィン60のうちの室内連通部64の空気流れ方向における幅WLと、室内フィン60の空気流れ方向における幅WFと、の関係は、0.2≦WL/WF≦0.5の関係を満たすことが好ましい。 The indoor communication portion 64 is a portion of the indoor fin 60 that is continuous in the vertical direction further on the leeward side than the leeward end of the indoor flat tube 55. The relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fins 60 and the width WF in the air flow direction of the indoor fins 60 is 0.2 ≦ WL / WF ≦ 0.5. It is preferable to satisfy
 複数の風上部65は、室内連通部64における異なる高さ位置から、空気流れ方向上流側に向けて伸び出している。なお、各風上部65は、隣り合うフィンカラー部65aによって上下方向に囲まれている。この各風上部65の上下方向の長さは、DP-HTで定義される。 The plurality of upwind portions 65 extend from the different height positions of the indoor communication portion 64 toward the upstream side in the air flow direction. Each wind upper portion 65 is vertically surrounded by the adjacent fin collar portions 65a. The vertical length of each wind upper portion 65 is defined by DP-HT.
 メインスリット62は、室内フィン60における伝熱性能を向上させるために平坦な主面61から板厚方向に切り起こされて構成された部分であり、室内フィン60のうちの各風上部65に形成されている。メインスリット62は、空気流れ方向に複数(本実施形態では4つ)が並ぶように形成されている。 The main slits 62 are portions formed by cutting and raising the flat main surface 61 in the plate thickness direction in order to improve the heat transfer performance of the indoor fins 60, and are formed in the respective wind upper portions 65 of the indoor fins 60. It is done. The main slits 62 are formed such that a plurality (four in the present embodiment) are arranged in the air flow direction.
 連通位置スリット63も、室内フィン60における伝熱性能を向上させるために平坦な主面61から板厚方向に切り起こされて構成された部分であり、室内フィン60のうちの室内連通部64において、複数の高さ位置に形成されている。連通位置スリット63は、各高さ位置に設けられたメインスリット62の空気流れ方の下流側に、それぞれ対応するように設けられている。連通位置スリット63は、その長手方向が上下方向となるように形成されており、上端が対応するメインスリット62の上端よりもさらに高く、下端が対応するメインスリット62の下端よりもさらに低い位置まで上下方向に長く形成されている。 The communication position slit 63 is also a portion cut and raised in the thickness direction from the flat main surface 61 in order to improve the heat transfer performance of the indoor fin 60, and in the indoor communication portion 64 of the indoor fin 60. , Are formed at multiple height positions. The communication position slits 63 are respectively provided on the downstream side of the air flow direction of the main slits 62 provided at each height position. The communication position slit 63 is formed such that its longitudinal direction is vertical, and the upper end is higher than the upper end of the corresponding main slit 62 and the lower end is lower than the lower end of the corresponding main slit 62 It is formed long in the vertical direction.
 これらのメインスリット62および連通位置スリット63は、平坦な主面61から板厚方向の同じ側に切り起こされることで、空気流れ方向上流側と下流側にそれぞれ開口を有するものである。 The main slit 62 and the communication position slit 63 are cut and raised from the flat main surface 61 to the same side in the plate thickness direction, and have openings on the upstream side and the downstream side in the air flow direction, respectively.
 (4)空気調和装置の動作
 次に、図1を用いて、空気調和装置1の動作について説明する。空気調和装置1では、圧縮機8、室外熱交換器11、室外膨張弁12、室内熱交換器51の順に冷媒を流す冷房運転と、圧縮機8、室内熱交換器51、室外膨張弁12、室外熱交換器11の順に冷媒を流す暖房運転と、が行われる。
(4) Operation of Air Conditioning Device Next, the operation of the air conditioning device 1 will be described with reference to FIG. In the air conditioner 1, the compressor 8, the outdoor heat exchanger 11, the outdoor expansion valve 12, and the indoor heat exchanger 51 perform a cooling operation to flow the refrigerant in this order, the compressor 8, the indoor heat exchanger 51, the outdoor expansion valve 12, A heating operation in which the refrigerant flows in the order of the outdoor heat exchanger 11 is performed.
 (4-1)冷房運転
 冷房運転時には、室外熱交換器11が冷媒の放熱器となり室内熱交換器51が冷媒の蒸発器となるように、四路切換弁10の接続状態が切り換えられる(図1の実線参照)。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10を通じて、室外熱交換器11に送られる。室外熱交換器11に送られた高圧のガス冷媒は、冷媒の放熱器として機能する室外熱交換器11において、室外ファン15によって冷却源として供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。この高圧の液冷媒は、室外膨張弁12を通過する際に冷凍サイクルにおける低圧になるまで減圧され、気液二相状態の冷媒となって、液側閉鎖弁13および液冷媒連絡管4を通じて、室内ユニット3に送られる。
(4-1) Cooling Operation During the cooling operation, the connection state of the four-way switching valve 10 is switched so that the outdoor heat exchanger 11 becomes the refrigerant radiator and the indoor heat exchanger 51 becomes the refrigerant evaporator (see FIG. See solid line in 1). In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is drawn into the compressor 8 and compressed to a high pressure in the refrigeration cycle and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 is sent to the outdoor heat exchanger 11 through the four-way switching valve 10. The high-pressure gas refrigerant sent to the outdoor heat exchanger 11 exchanges heat with the outdoor air supplied as a cooling source by the outdoor fan 15 in the outdoor heat exchanger 11 functioning as a refrigerant radiator, and dissipates heat Become a high pressure liquid refrigerant. When passing through the outdoor expansion valve 12, the high-pressure liquid refrigerant is decompressed to a low pressure in the refrigeration cycle, becomes a gas-liquid two-phase refrigerant, and passes through the liquid side shut-off valve 13 and the liquid refrigerant communication pipe 4 It is sent to the indoor unit 3.
 低圧の気液二相状態の冷媒は、室内熱交換器51において、冷房運転時は室内ファン52によって加熱源として供給される室内空気と熱交換を行って蒸発する。これにより、室内熱交換器51を通過する空気は冷却され、室内の冷房が行われる。なお、この際に、室内熱交換器51を通過する空気に含まれる水分が凝縮することで、室内熱交換器51の表面に結露水が生じる。室内熱交換器51において蒸発した低圧のガス冷媒は、ガス冷媒連絡管5を通じて、室外ユニット2に送られる。 The low-pressure gas-liquid two-phase refrigerant exchanges heat with the indoor air supplied as a heating source by the indoor fan 52 in the indoor heat exchanger 51 during the cooling operation to evaporate. Thus, the air passing through the indoor heat exchanger 51 is cooled, and the room is cooled. At this time, condensation contained in the air passing through the indoor heat exchanger 51 causes condensation water to form on the surface of the indoor heat exchanger 51. The low pressure gas refrigerant evaporated in the indoor heat exchanger 51 is sent to the outdoor unit 2 through the gas refrigerant communication pipe 5.
 室外ユニット2に送られた低圧のガス冷媒は、ガス側閉鎖弁14、四路切換弁10およびアキュムレータ7を通じて、再び、圧縮機8に吸入される。冷房運転では、以上のようにして、冷媒が冷媒回路6を循環する。 The low-pressure gas refrigerant sent to the outdoor unit 2 is again sucked into the compressor 8 through the gas-side shutoff valve 14, the four-way switching valve 10 and the accumulator 7. In the cooling operation, the refrigerant circulates through the refrigerant circuit 6 as described above.
 (4-2)暖房運転
 暖房運転時には、室外熱交換器11が冷媒の蒸発器となり室内熱交換器51が冷媒の放熱器となるように、四路切換弁10の接続状態が切り換えられる(図1の破線参照)。冷媒回路6において、冷凍サイクルの低圧のガス冷媒は、圧縮機8に吸入され、冷凍サイクルの高圧になるまで圧縮された後に吐出される。圧縮機8から吐出された高圧のガス冷媒は、四路切換弁10、ガス側閉鎖弁14およびガス冷媒連絡管5を通じて、室内ユニット3に送られる。
(4-2) Heating Operation During the heating operation, the connection state of the four-way switching valve 10 is switched so that the outdoor heat exchanger 11 becomes the refrigerant evaporator and the indoor heat exchanger 51 becomes the refrigerant radiator (see FIG. See the dashed line in 1). In the refrigerant circuit 6, the low-pressure gas refrigerant in the refrigeration cycle is drawn into the compressor 8 and compressed to a high pressure in the refrigeration cycle and then discharged. The high-pressure gas refrigerant discharged from the compressor 8 is sent to the indoor unit 3 through the four-way switching valve 10, the gas side shut-off valve 14 and the gas refrigerant communication pipe 5.
 高圧のガス冷媒は、室内熱交換器51において、室内ファン52によって冷却源として供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内熱交換器51を通過する空気は加熱され、室内の暖房が行われる。室内熱交換器51で放熱した高圧の液冷媒は、液冷媒連絡管4を通じて、室外ユニット2に送られる。 The high-pressure gas refrigerant exchanges heat with the indoor air supplied as a cooling source by the indoor fan 52 in the indoor heat exchanger 51, radiates heat, and becomes a high-pressure liquid refrigerant. Thus, the air passing through the indoor heat exchanger 51 is heated, and the room is heated. The high-pressure liquid refrigerant that has dissipated heat by the indoor heat exchanger 51 is sent to the outdoor unit 2 through the liquid refrigerant communication pipe 4.
 室外ユニット2に送られた高圧の液冷媒は、液側閉鎖弁13を通じて、室外膨張弁12において冷凍サイクルの低圧まで減圧され、低圧の気液二相状態の冷媒になる。室外膨張弁12で減圧された低圧の気液二相状態の冷媒は、冷媒の蒸発器として機能する室外熱交換器11において、室外ファン15によって加熱源として供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。この低圧のガス冷媒は、四路切換弁10およびアキュムレータ7を通じて、再び、圧縮機8に吸入される。暖房運転では、以上のようにして、冷媒が冷媒回路6を循環する。 The high-pressure liquid refrigerant sent to the outdoor unit 2 is decompressed to the low pressure of the refrigeration cycle in the outdoor expansion valve 12 through the liquid side shut-off valve 13, and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant reduced in pressure by the outdoor expansion valve 12 exchanges heat with outdoor air supplied as a heat source by the outdoor fan 15 in the outdoor heat exchanger 11 functioning as an evaporator of the refrigerant. And evaporate to form a low pressure gas refrigerant. The low pressure gas refrigerant is again sucked into the compressor 8 through the four-way switching valve 10 and the accumulator 7. In the heating operation, the refrigerant circulates through the refrigerant circuit 6 as described above.
 (5)特徴
 (5-1)
 一般に、室内熱交換器における室内フィンの熱伝達率は、室内扁平管を設ける間隔を狭めるほど高くすることができる。しかし、室内扁平管を設ける間隔を狭めてしまうと、室内扁平管の間を通過する空気流れの流速が増大してしまい、結露水が飛散してしまいやすい。また、室内扁平管の上下方向の高さが大きい場合についても、同様に、室内扁平管の間を通過する空気流れの流速が増大してしまい、結露水が飛散してしまいやすい。他方で、室内扁平管を設ける間隔を広くすると、室内フィンの熱伝達率が低下することから、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすい環境になってしまう。
(5) Characteristics (5-1)
In general, the heat transfer coefficient of the indoor fins in the indoor heat exchanger can be increased as the interval between the indoor flat tubes is reduced. However, if the interval at which the indoor flat tubes are provided is narrowed, the flow velocity of the air flow passing between the indoor flat tubes is increased, and the condensed water is likely to scatter. Further, also in the case where the height of the indoor flat tube in the vertical direction is large, the flow velocity of the air flow passing between the indoor flat tubes is increased, and the condensed water is likely to scatter. On the other hand, if the space between the indoor flat tubes is increased, the heat transfer coefficient of the indoor fins decreases, so the evaporation temperature of the refrigerant in the indoor heat exchanger has to be lowered, resulting in an environment in which condensation water tends to occur. I will.
 これに対して、本実施形態の室内熱交換器51およびこれを備えた空気調和装置1では、HTを室内扁平管55の上下方向の高さとし、DPを複数の室内扁平管55の上下方向のピッチとした場合に、4.0≦DP/HT≦10.0の関係を満たすものを採用している。このように、室内熱交換器51のDP/HTの値を当該数値範囲とすることが結露水抑制のために良好であることは、DPおよびHTの各値を変化させた解析データにより明らかとなった。 On the other hand, in the indoor heat exchanger 51 of the present embodiment and the air conditioner 1 including the same, HT is the height of the indoor flat tube 55 in the vertical direction, and DP is the vertical direction of the indoor flat tubes 55. In the case of pitch, one satisfying the relationship of 4.0 ≦ DP / HT ≦ 10.0 is employed. As described above, it is better to set the value of DP / HT of the indoor heat exchanger 51 to the numerical value range for suppression of dew condensation water by analysis data in which each value of DP and HT is changed. became.
 すなわち、このように、室内熱交換器51のDP/HTの値を4.0以上とすることにより、室内フィン60を横切るように流れる空気流れの流速が大きくなりすぎることを抑制し、室内ファン52の風量を増大させて用いる場合であっても、空気流れが大きいことによって生じる風下側端部からの結露水の飛散を抑制することが可能になる。 That is, by setting the value of DP / HT of the indoor heat exchanger 51 to 4.0 or more in this way, it is possible to prevent the flow velocity of the air flow flowing across the indoor fins 60 from becoming too large. Even when the air flow rate 52 is increased and used, it is possible to suppress the scattering of the condensation water from the downwind side end caused by the large air flow.
 さらに、室内熱交換器51のDP/HTの値を10.0以下とすることにより、室内フィン60の領域のうち室内扁平管55から遠く離れた領域を小さく抑えて室内フィン60の熱伝達率を向上させることができるため、能力を確保するために室内熱交換器51の冷媒の蒸発温度を低下させる必要性を抑制し、結露水が生じにくくすることにより、室内ファン52の風量を増大させて用いる場合であっても、室内フィン60からの結露水の飛散を抑制することが可能になる。 Furthermore, by setting the DP / HT value of the indoor heat exchanger 51 to 10.0 or less, the heat transfer coefficient of the indoor fins 60 can be reduced by suppressing the region far from the indoor flat tube 55 in the region of the indoor fins 60. To reduce the evaporation temperature of the refrigerant in the indoor heat exchanger 51 in order to secure the capacity, and to make condensation water less likely to occur, thereby increasing the air volume of the indoor fan 52. Even in the case of using it, scattering of condensed water from the indoor fins 60 can be suppressed.
 なお、室内熱交換器51を4.6≦DP/HT≦8.0の関係を満たすように構成した場合には、結露水の飛散を抑制する効果をより顕著なものとすることが可能になる。 When the indoor heat exchanger 51 is configured to satisfy the relationship of 4.6 ≦ DP / HT ≦ 8.0, the effect of suppressing the scattering of condensed water can be made more remarkable. Become.
 (5-2)
 一般に、空気調和装置の室外ユニットにおいて用いられる室外熱交換器では、冷媒の蒸発器として機能させる際の室外フィンでの着霜により、通風抵抗が増大しがちになることから、室外扁平管のピッチを広くとることが求められる。このような扁平管のピッチが広い構造の室外熱交換器と同じ構造の熱交換器を、室内熱交換器にも流用しようとすると、扁平管のピッチが広いために室内フィンの熱伝達率が低下し、室内熱交換器における冷媒の蒸発温度を下げざるを得ず、結露水が生じやすくなってしまう。
(5-2)
In general, in outdoor heat exchangers used in outdoor units of air conditioners, since the ventilation resistance tends to increase due to frost formation on the outdoor fins when functioning as an evaporator of the refrigerant, the pitch of the outdoor flat tubes is It is required to take a wide range of If a heat exchanger with the same structure as an outdoor heat exchanger with a wide flat pipe structure is used for the indoor heat exchanger, the heat transfer coefficient of the indoor fins is large because the flat pipe pitch is wide. The temperature of the refrigerant decreases and the evaporation temperature of the refrigerant in the indoor heat exchanger can not but be lowered, which tends to cause condensation water.
 これに対して、本実施形態の室内熱交換器51およびこれを備えた空気調和装置1ではでは、HTを扁平管90、55の上下方向の高さとし、DPを複数の扁平管90、55の上下方向のピッチとした場合に、室内熱交換器51のDP/HTの値が室外熱交換器11のDP/HTの値よりも小さい関係を満たすようにしている。 On the other hand, in the indoor heat exchanger 51 of the present embodiment and the air conditioner 1 including the same, HT is the height of the flat tubes 90 and 55 in the vertical direction, and DP is the height of the flat tubes 90 and 55. When the pitch is in the vertical direction, the value of DP / HT of the indoor heat exchanger 51 is made to satisfy the relationship smaller than the value of DP / HT of the outdoor heat exchanger 11.
 このため、結露水の飛散が問題とならない室外熱交換器11においては、蒸発器として用いられる場合の着霜を抑制させつつ、結露水の飛散が問題となりがちな室内熱交換器51においては、室内フィン60の熱伝達率を向上させて、蒸発器として用いられる場合について、室内熱交換器51の冷媒の蒸発温度を低下させる必要性を抑制し、結露水が生じにくくすることにより、結露水の飛散を抑制させることが可能になる。 For this reason, in the outdoor heat exchanger 11 in which the scattering of condensation water is not a problem, while suppressing the formation of frost when used as an evaporator, in the indoor heat exchanger 51 in which the scattering of condensation water tends to be a problem, In the case where the heat transfer coefficient of the indoor fin 60 is improved to be used as an evaporator, the necessity of lowering the evaporation temperature of the refrigerant of the indoor heat exchanger 51 is suppressed to make condensation water less likely to occur. It is possible to suppress the scattering of
 (5-3)
 本実施形態の室内熱交換器51では、風上熱交換部70と風下熱交換部80を有しており、少なくとも室内扁平管55が2列以上配置された構造が採用されている。
(5-3)
The indoor heat exchanger 51 of the present embodiment includes the upwind heat exchange unit 70 and the downwind heat exchange unit 80, and employs a structure in which at least the indoor flat tubes 55 are arranged in two or more rows.
 このため、室内熱交換器51において生じる結露水のうち風上熱交換部70において生じた結露水は、風上熱交換部70と風下熱交換部80との間の部分または風下熱交換部80において下方に導いて排水させることが容易となる。また、風下熱交換部80には、風上熱交換部70を通過する際に風上熱交換部70において結露水を生じさせることで乾き度が増した空気が供給されるため、風下熱交換部80で生じる結露水を少なく抑えることが可能になり、風下熱交換部80の風下側端部からの結露水の飛散を抑制することが可能になる。 For this reason, the condensation water generated in the upwind heat exchange unit 70 among the condensation water generated in the indoor heat exchanger 51 is a portion between the upwind heat exchange unit 70 and the downwind heat exchange unit 80 or the downwind heat exchange unit 80 It is easy to guide it down and drain it. Further, the downwind heat exchange unit 80 is supplied with air whose dryness is increased by generating condensation water in the upwind heat exchange unit 70 when passing through the upwind heat exchange unit 70, so that the downwind heat exchange is performed. It is possible to suppress the dew condensation water generated in the portion 80, and to suppress the scattering of the condensation water from the downwind side end portion of the downwind heat exchange unit 80.
 (5-4)
 本実施形態の室内熱交換器51では、室内フィン60は、室内扁平管55の風下側に室内連通部64が設けられている。このため、室内扁平管55で生じた結露水を、空気流れ方向における下流側に位置している室内フィン60の室内連通部64に伝わせながら下方に導いて排水させやすい。したがって、室内フィン60の空気流れ方向の下流側端部からの結露水の飛散を抑制することが可能になる。
(5-4)
In the indoor heat exchanger 51 of the present embodiment, the indoor fin 60 is provided with the indoor communication portion 64 on the downwind side of the indoor flat tube 55. Therefore, dew condensation water generated in the indoor flat tube 55 can be easily led downward and drained while being transmitted to the indoor communication portion 64 of the indoor fin 60 positioned on the downstream side in the air flow direction. Therefore, it is possible to suppress the scattering of the condensed water from the downstream end of the indoor fin 60 in the air flow direction.
 特に、本実施形態の室内熱交換器51では、室内扁平管55が2列以上配置された構造において、風下熱交換部80の室内フィン60の下流側に室内連通部64が設けられているため、室内フィン60の下流側端部における結露水の発生を抑制させつつ、発生した結露水の排水性を高めることが可能になっている。 In particular, in the indoor heat exchanger 51 of the present embodiment, in the structure in which the indoor flat tubes 55 are arranged in two or more rows, the indoor communication portion 64 is provided on the downstream side of the indoor fins 60 of the leeward heat exchange portion 80. It is possible to enhance the drainage property of the generated condensed water while suppressing the generation of the condensed water at the downstream end of the indoor fin 60.
 (5-5)
 本実施形態の室内熱交換器51では、WFを空気流れ方向における室内フィン60の長さとし、WLを空気流れ方向における室内連通部64の長さとした場合に、0.2≦WL/WF≦0.5の関係を満たすようにしている。このように、室内フィン60においてWL/WFの値を0.2以上とすることで、室内連通部64の空気流れ方向の幅を十分に確保し、室内熱交換器51において生じた結露水を室内連通部64を介して下方に排水させやすくしている。また、室内フィン60においてWL/WFの値を0.5以下とすることで、室内フィン60の領域のうち室内扁平管55から遠く離れて伝熱性能の向上に寄与しにくい領域を小さく抑えることで、室内フィン60の性能を維持しつつ材料費を抑制させることが可能になる。
(5-5)
In the indoor heat exchanger 51 of the present embodiment, when WF is the length of the indoor fins 60 in the air flow direction and WL is the length of the indoor communication portion 64 in the air flow direction, 0.2 ≦ WL / WF ≦ 0. I try to satisfy the relationship of .5. Thus, by setting the value of WL / WF to 0.2 or more in the indoor fin 60, the width in the air flow direction of the indoor communication portion 64 is sufficiently secured, and dew condensation water generated in the indoor heat exchanger 51 can be obtained. It is made easy to drain downward through the indoor communication part 64. Further, by setting the value of WL / WF to 0.5 or less in the indoor fin 60, the area of the indoor fin 60 far from the indoor flat tube 55 and hard to contribute to the improvement of the heat transfer performance is suppressed small. Thus, the material cost can be reduced while maintaining the performance of the indoor fins 60.
 特に、室内フィン60に室内連通部64を、室内扁平管55の空気流れ方向の下流側に位置させつつ、室内フィン60のWL/WFの値を0.2以上のものとすることで、室内扁平管55で生じた結露水の室内連通部64を介した排水性を高めることが可能になる。 In particular, by setting the value of WL / WF of the indoor fin 60 to be 0.2 or more while positioning the indoor communication portion 64 in the indoor fin 60 on the downstream side of the indoor flat tube 55 in the air flow direction. It becomes possible to improve the drainage property via the indoor communication part 64 of the condensation water which arose in the flat pipe 55.
 (5-6)
 本実施形態の室内熱交換器51では、室内フィン60において、空気流れ方向に開口が生じるように切り起こされて構成されたメインスリット62および連通位置スリット63が設けられている。このため、室内熱交換器51に供給される空気を、室内フィン60に十分に接するようにすることが可能となり、空気熱源を十分に利用することが可能となる。
(5-6)
In the indoor heat exchanger 51 of the present embodiment, the indoor fins 60 are provided with the main slits 62 and the communication position slits 63 which are cut and raised so as to have an opening in the air flow direction. Therefore, the air supplied to the indoor heat exchanger 51 can be in sufficient contact with the indoor fins 60, and the air heat source can be sufficiently used.
 なお、メインスリット62および連通位置スリット63の上端は、直上に位置する室内扁平管55の下方部分の近くに位置するように設けられているため、当該直上の室内扁平管55において生じた結露水を捕らえて下方に導きやすく、排水性を高めることが可能になっている。特に、図12に示すように、室内扁平管55の下側扁平面55b側において、室内フィン60の主面61に対するフィンカラー部65aの立ち上げが始まっている箇所と、室内フィン60のメインスリット62の切り起こしが始まっている箇所と、の間の距離DSが1mm以下に設計されることで、室内扁平管55の下側扁平面55b側での結露水の滞留を抑制し、排水性能を高めることができている。 The upper ends of the main slit 62 and the communication position slit 63 are provided near the lower portion of the indoor flat tube 55 located immediately above, so condensation water generated in the indoor flat tube 55 immediately above It is easy to catch and guide downward, and it is possible to enhance drainage. In particular, as shown in FIG. 12, on the lower flat surface 55 b side of the indoor flat tube 55, the portion where the rising of the fin collar portion 65 a with respect to the main surface 61 of the indoor fin 60 starts and the main slit 62 of the indoor fin 60 The retention time of condensation water on the lower flat surface 55b side of the indoor flat tube 55 is suppressed and the drainage performance is enhanced by designing the distance DS between the portion where the cutting and raising has started and the distance DS to be 1 mm or less. Is ready.
 (6)変形例
 (6-1)変形例A
 上記実施形態では、室内フィン60の下流側端部が平坦な形状である場合を例に挙げて説明した。
(6) Modifications (6-1) Modification A
In the said embodiment, the case where the downstream end part of the indoor fin 60 was a flat shape was mentioned as the example, and was demonstrated.
 しかし、室内フィン60の下流側端部の形状は、これに限られるものではなく、例えば、以下に述べるように、空気流れ方向の下流側端部に沿うように延びた導水リブ99を有する室内フィン60aを用いてもよい。 However, the shape of the downstream end of the indoor fin 60 is not limited to this, and for example, as described below, a room having a water conducting rib 99 extending along the downstream end in the air flow direction. Fins 60a may be used.
 図13に、室内フィン60aと室内扁平管55との位置関係を、図14に、導水リブ99の図13におけるB-B断面のうちの空気流れ方向の下流側近傍部分を、それぞれ示す。 FIG. 13 shows the positional relationship between the indoor fin 60a and the indoor flat tube 55, and FIG. 14 shows the downstream side near the air flow direction in the B-B cross section of the water guide rib 99 in FIG.
 本変形例Aに係る室内熱交換器51においても、上記実施形態と同様に、風上熱交換部70と風下熱交換部80を有して構成されており、風上熱交換部70と風下熱交換部80のそれぞれの室内フィン60aにおいて、空気流れ方向の下流側に設けられた室内連通部64の空気流れ方向下流側端部に沿うように上下に延びた導水リブ99が設けられている。当該導水リブ99は、図14に示すように、周囲の主面61に対して、室内フィン60aの板厚方向に凹むようにして構成されている。導水リブ99は、特に限定されないが、室内フィン60aの板厚以上凹んで構成されていることが好ましい。 Also in the indoor heat exchanger 51 according to the present modification A, the upwind heat exchange unit 70 and the downwind heat exchange unit 80 are configured similarly to the above embodiment, and the upwind heat exchange unit 70 and the downwind In each of the indoor fins 60a of the heat exchange unit 80, water guiding ribs 99 extending vertically are provided along the downstream end of the indoor communication portion 64 provided downstream in the air flow direction. . The said water conveyance rib 99 is comprised so that it may be dented in the plate | board thickness direction of the indoor fin 60a with respect to the surrounding main surface 61, as shown in FIG. Although the water conveyance rib 99 is not particularly limited, it is preferable that the water conveyance rib 99 be configured to be recessed by at least the thickness of the indoor fin 60 a.
 このように室内フィン60aに導水リブ99を設けることで、室内熱交換器51において生じた結露水を、当該導水リブ99において捕らえさせ、当該導水リブ99を伝って下方に結露水を導きやすくなる。このため、結露水が室内フィン60aの風下側端部に到達することを抑制し、結露水の飛散を十分に抑制することが可能になる。 By providing the water guiding rib 99 on the indoor fin 60 a in this manner, the dew condensation water generated in the indoor heat exchanger 51 is captured by the water guiding rib 99, and the dew condensation water can be easily led downward along the water guiding rib 99. . For this reason, it is possible to suppress the condensation water from reaching the downwind side end of the indoor fin 60a, and to sufficiently suppress the scattering of the condensation water.
 なお、導水リブ99は、室内フィン60aの室内連通部64における空気流れ方向の幅の半分よりも下流側に設けられていることが好ましく、室内連通部64の空気流れ方向の幅のうち空気流れ方向の下流側端部から20%以内の位置に設けられていることがより好ましい。 Preferably, the water guiding rib 99 is provided on the downstream side of the half of the width in the air flow direction in the indoor communication portion 64 of the indoor fin 60a, and the air flow in the air flow direction of the indoor communication portion 64 More preferably, it is provided within 20% of the downstream end in the direction.
 なお、導水リブ99を設ける室内フィン60aにおいては、特に、室内フィン60のうちの室内連通部64の空気流れ方向における幅WLと、室内フィン60の空気流れ方向における幅WFと、の関係が、0.2≦WL/WFの関係を満たしていることが好ましい。 In the indoor fin 60a on which the water guiding rib 99 is provided, in particular, the relationship between the width WL in the air flow direction of the indoor communication portion 64 of the indoor fins 60 and the width WF in the air flow direction of the indoor fin 60 is It is preferable to satisfy the relationship of 0.2 ≦ WL / WF.
 (6-2)変形例B
 上記実施形態では、室内熱交換器51が風上熱交換部70と風下熱交換部80を有し、室内扁平管55が2列に並んで設けられている場合を例に挙げて説明した。
(6-2) Modification B
In the above embodiment, the indoor heat exchanger 51 includes the upwind heat exchange unit 70 and the downwind heat exchange unit 80, and the indoor flat tubes 55 are provided in two rows as an example.
 しかし、室内熱交換器51が備える室内扁平管55の空気流れ方向に並ぶ列の数は2つに限られるものではなく、3列以上の複数列としてもよい。このように室内扁平管55の列数を増大させることで、室内熱交換器51の空気流れ方向の下流側端部からの結露水の飛散をより効果的に抑制することが可能となる。 However, the number of rows aligned in the air flow direction of the indoor flat tubes 55 provided in the indoor heat exchanger 51 is not limited to two, and three or more rows may be provided. By thus increasing the number of rows of the indoor flat tubes 55, it is possible to more effectively suppress the scattering of condensation water from the downstream end of the indoor heat exchanger 51 in the air flow direction.
 (6-3)変形例C
 上記実施形態では、室内熱交換器51において、風上熱交換部70に属する複数の室内扁平管55と、風下熱交換部80に属する複数の室内扁平管55とが、空気流れ方向視において互いに重なるように配置される場合を例に挙げて説明した。
(6-3) Modification C
In the above embodiment, in the indoor heat exchanger 51, the plurality of indoor flat tubes 55 belonging to the upwind heat exchange unit 70 and the plurality of indoor flat tubes 55 belonging to the downwind heat exchange unit 80 mutually differ in the air flow direction view. The case where they are arranged to overlap is described as an example.
 しかし、室内熱交換器51としては、これに限られるものではなく、より風上側の熱交換部に属する複数の室内扁平管55と、より風下側の熱交換部に属する複数の室内扁平管55とが、空気流れ方向視において互いに重ならないように配置されていてもよい。これにより、風上側に位置する室内扁平管55にも風下側に位置する室内扁平管55にも、十分に空気流れを当てることが可能になる。 However, the indoor heat exchanger 51 is not limited to this, and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the windward side and the plurality of indoor flat tubes 55 belonging to the heat exchange section on the windward side And may be disposed so as not to overlap each other in the air flow direction view. As a result, air flow can be sufficiently applied to both the indoor flat tube 55 located on the windward side and the indoor flat tube 55 located on the windward side.
 (6-4)変形例D
 上記実施形態では、室内熱交換器51の室内フィン60において、室内フィン60の主面61に対して板厚方向の一方側にスリット片全体が位置するように切り起こされて構成されるメインスリット62や連通位置スリット63が設けられている場合を例に挙げて説明した。
(6-4) Modification D
In the above embodiment, in the indoor fin 60 of the indoor heat exchanger 51, the main slit is formed by cutting and raising the entire slit piece on one side in the thickness direction with respect to the main surface 61 of the indoor fin 60 The case where the communication position slit 62 and the communication position slit 63 are provided has been described as an example.
 しかし、室内フィン60に形成される切り起こしとしては、これに限られず、メインスリット62や連通位置スリット63の変わりに、例えば、切り起こされるスリット片について、スリット片の空気流れ方向の風上側端部が室内フィン60の主面61の板厚方向の一方側に位置し、スリット片の空気流れ方向の風下側端部が室内フィン60の主面61の板厚方向の他方側に位置するようなルーバーと称される構造を採用するようにしてもよい。 However, the cut-and-raised portions formed in the indoor fins 60 are not limited to this, and instead of the main slits 62 and the communication position slit 63, for example, for the slit pieces to be cut and raised, the windward end of the slit pieces in the air flow direction Section on one side of the main surface 61 of the indoor fin 60 in the plate thickness direction, and the leeward end of the slit piece in the air flow direction is on the other side of the main surface 61 of the indoor fin 60 in the plate thickness direction It is also possible to adopt a structure called a louver.
 以上、本開示の実施形態及び変形例を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments and modifications of the present disclosure have been described above, it is understood that various changes in form and detail can be made without departing from the spirit and scope of the present disclosure as set forth in the claims. Will.
  1 空気調和装置
  2 室外ユニット(室外機)
  3 室内ユニット(室内機)
 11 室外熱交換器
 51 室内熱交換器
 55 室内扁平管(扁平管)
 55c 流路
 60 室内フィン(伝熱フィン)
 62 メインスリット(切り起こし部)
 63 連通位置スリット(切り起こし部)
 64 室内連通部(連通部)
 65 風上部(上下に並んだ前記扁平管同士の間に位置する各部分)
 90 室外扁平管(扁平管)
 90c 流路
 91 室外フィン(伝熱フィン)
 97a 連通部
 97b 風下部
1 Air conditioner 2 Outdoor unit (outdoor unit)
3 Indoor unit (Indoor unit)
11 outdoor heat exchanger 51 indoor heat exchanger 55 indoor flat tube (flat tube)
55c flow path 60 indoor fins (heat transfer fins)
62 Main slit (cut and raised part)
63 Communication position slit (cut and raised part)
64 Indoor communication part (communication part)
65 Wind upper part (each part located between the flat tubes lined up and down)
90 Outdoor flat tube (flat tube)
90c flow path 91 outdoor fin (heat transfer fin)
97a communication part 97b wind lower part
  特許文献1:特開2016-041986号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2016-041986

Claims (8)

  1.  空気調和装置(1)の室内機(3)に用いられる室内熱交換器(51)であって、
     内部に冷媒を通過させる流路(55c)を有しており、上下に並んだ複数の扁平管(55)と、
     複数の前記扁平管に接合された複数の伝熱フィン(60)と、
    を備え、
     前記伝熱フィンは、上下に並んだ前記扁平管同士の間に位置する各部分(65)と繋がっており、上下に延びた連通部(64)を有しており、
     前記扁平管の高さをHTとし、上下に並んだ前記扁平管のピッチをDPとした場合に、
     4.0≦DP/HT≦10.0の関係を満たす、
    室内熱交換器。
    An indoor heat exchanger (51) used for the indoor unit (3) of the air conditioner (1), comprising
    A plurality of flat tubes (55) arranged in the vertical direction and having a flow passage (55c) for passing the refrigerant inside;
    A plurality of heat transfer fins (60) joined to the plurality of flat tubes;
    Equipped with
    The heat transfer fin is connected to each portion (65) located between the flat tubes lined up and down, and has a communicating part (64) extending up and down,
    Assuming that the height of the flat tube is HT, and the pitch of the flat tubes arranged vertically is DP,
    Satisfy the relationship of 4.0 ≦ DP / HT ≦ 10.0,
    Indoor heat exchanger.
  2.  室外熱交換器(11)を有する室外機(2)と共に空気調和装置(1)を構成する室内機(3)に用いられる室内熱交換器(51)であって、
     前記室外熱交換器及び前記室内熱交換器は、それぞれ
      内部に冷媒を通過させる流路(90c、55c)を有しており、上下に並んだ複数の扁平管(90、55)と、
      複数の前記扁平管に接合された複数の伝熱フィン(91、60)と、
    を備え、
      前記伝熱フィンは、上下に並んだ前記扁平管同士の間に位置する各部分(97b、65)と繋がっており、上下に延びた連通部(97a、64)を有しており、
     前記扁平管の高さをHTとし、上下に並んだ前記扁平管のピッチをDPとした場合において、前記室内熱交換器のDP/HTの値は前記室外熱交換器のDP/HTの値よりも小さい、
    室内熱交換器。
    An indoor heat exchanger (51) for use in an indoor unit (3) constituting an air conditioner (1) together with an outdoor unit (2) having an outdoor heat exchanger (11),
    Each of the outdoor heat exchanger and the indoor heat exchanger has a flow passage (90c, 55c) for allowing the refrigerant to pass therethrough, and a plurality of flat tubes (90, 55) lined up and down;
    A plurality of heat transfer fins (91, 60) joined to the plurality of flat tubes;
    Equipped with
    The heat transfer fins are connected to respective portions (97b, 65) located between the flat tubes arranged in the vertical direction, and have communication portions (97a, 64) extending in the vertical direction.
    When the height of the flat tube is HT and the pitch of the flat tubes arranged vertically is DP, the value of DP / HT of the indoor heat exchanger is from the value of DP / HT of the outdoor heat exchanger Too small,
    Indoor heat exchanger.
  3.  前記扁平管は、空気流れ方向の上流側に配置された複数の上流側扁平管と、前記上流側扁平管よりも空気流れ方向の下流側に配置された複数の下流側扁平管と、を有している、
    請求項1または2に記載の室内熱交換器。
    The flat tube has a plurality of upstream flat tubes disposed on the upstream side in the air flow direction, and a plurality of downstream flat tubes disposed on the downstream side in the air flow direction with respect to the upstream flat tube. doing,
    The indoor heat exchanger according to claim 1 or 2.
  4.  前記連通部(64)は、空気流れ方向における前記扁平管の風下側に位置している、
    請求項1から3のいずれか1項に記載の室内熱交換器。
    The communication portion (64) is located on the leeward side of the flat tube in the air flow direction.
    The indoor heat exchanger according to any one of claims 1 to 3.
  5.  空気流れ方向における前記伝熱フィンの長さをWFとし、空気流れ方向における前記連通部の長さをWLとした場合に、
     0.2≦WL/WF≦0.5の関係を満たす、
    請求項1から4のいずれか1項に記載の室内熱交換器。
    When the length of the heat transfer fin in the air flow direction is WF, and the length of the communication portion in the air flow direction is WL,
    Satisfy the relationship of 0.2 ≦ WL / WF ≦ 0.5,
    The indoor heat exchanger according to any one of claims 1 to 4.
  6.  前記伝熱フィンは、長手方向が上下方向である切り起こし部(62、63)を有している、
    請求項1から5のいずれか1項に記載の室内熱交換器。
    The heat transfer fin has a cut and raised portion (62, 63) whose longitudinal direction is the vertical direction.
    The indoor heat exchanger according to any one of claims 1 to 5.
  7.  4.6≦DP/HT≦8.0の関係を満たす、
    請求項1から6のいずれか1項に記載の室内熱交換器。
    Satisfy the relationship of 4.6 ≦ DP / HT ≦ 8.0,
    The indoor heat exchanger according to any one of claims 1 to 6.
  8.  請求項1から7のいずれか1項に記載の室内熱交換器(51)を有する室内機(3)と、
     室外熱交換器(11)を有する室外機(2)と、
    を備えた空気調和装置(1)。
     
    An indoor unit (3) having the indoor heat exchanger (51) according to any one of claims 1 to 7.
    An outdoor unit (2) having an outdoor heat exchanger (11);
    An air conditioner equipped with (1).
PCT/JP2018/048147 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device WO2019142642A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18901558.9A EP3745075B1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device
ES18901558T ES2941545T3 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device
CN201880087296.1A CN111630336B (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioner
US16/964,027 US20210041115A1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008352 2018-01-22
JP2018008352A JP7092987B2 (en) 2018-01-22 2018-01-22 Indoor heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2019142642A1 true WO2019142642A1 (en) 2019-07-25

Family

ID=67301294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048147 WO2019142642A1 (en) 2018-01-22 2018-12-27 Indoor heat exchanger and air conditioning device

Country Status (6)

Country Link
US (1) US20210041115A1 (en)
EP (1) EP3745075B1 (en)
JP (1) JP7092987B2 (en)
CN (1) CN111630336B (en)
ES (1) ES2941545T3 (en)
WO (1) WO2019142642A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10119738B2 (en) 2014-09-26 2018-11-06 Waterfurnace International Inc. Air conditioning system with vapor injection compressor
US11592215B2 (en) 2018-08-29 2023-02-28 Waterfurnace International, Inc. Integrated demand water heating using a capacity modulated heat pump with desuperheater
KR20200078936A (en) * 2018-12-24 2020-07-02 삼성전자주식회사 Heat exchanger
WO2021234964A1 (en) * 2020-05-22 2021-11-25 三菱電機株式会社 Heat exchanger and air conditioner
JP7457587B2 (en) * 2020-06-18 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat exchangers, heat exchanger units, and refrigeration cycle equipment
US20230147346A1 (en) * 2021-11-10 2023-05-11 Climate Master, Inc. Low height heat pump system and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123587A (en) * 1992-10-12 1994-05-06 Toshiba Corp Heat exchanger
JP2002318087A (en) * 2001-02-07 2002-10-31 Modine Mfg Co Heat exchanger
JP2003240261A (en) * 2002-02-15 2003-08-27 Sharp Corp Integrated type air conditioner
JP2009145010A (en) * 2007-12-17 2009-07-02 Hitachi Appliances Inc Fin-less heat exchanger for air conditioner
JP2010085017A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Indoor unit for air conditioner and the air conditioner including the same
US20130284414A1 (en) * 2012-04-26 2013-10-31 Lg Electronics Inc. Heat exchanger
WO2015005352A1 (en) * 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
JP2016041986A (en) 2014-08-14 2016-03-31 三菱重工業株式会社 Heat exchanger and outdoor equipment for air conditioner using the same
WO2016194043A1 (en) * 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger
JP2018004090A (en) * 2016-06-27 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Indoor unit for air conditioner

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101333A (en) * 1988-10-07 1990-04-13 Matsushita Electric Ind Co Ltd Integral type air conditioner
ES2087702T3 (en) * 1993-07-06 1996-07-16 Magneti Marelli Climat Srl AIR CONDITIONING SYSTEMS CONDENSER, IN PARTICULAR FOR MOTOR VEHICLES.
JP2000193389A (en) * 1998-12-28 2000-07-14 Hitachi Ltd Outdoor unit of air-conditioner
JP2002139282A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP2009168317A (en) * 2008-01-15 2009-07-30 Toshiba Carrier Corp Heat exchanger and air conditioner
JP4845943B2 (en) * 2008-08-26 2011-12-28 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle air conditioner
CN101614492A (en) * 2009-06-15 2009-12-30 浙江康盛股份有限公司 Micro-channel condenser
CN101963418B (en) * 2009-07-21 2012-09-05 约克(无锡)空调冷冻设备有限公司 Micro channel heat exchanger for air-conditioner heat pump
AU2012208125A1 (en) * 2011-01-21 2013-08-08 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP5523495B2 (en) * 2011-04-22 2014-06-18 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle apparatus
CN106662344A (en) * 2015-07-14 2017-05-10 生态工厂有限公司 Air conditioner and air conditioning system
JP2017166757A (en) * 2016-03-16 2017-09-21 三星電子株式会社Samsung Electronics Co.,Ltd. Heat exchanger and air conditioner
JP6380449B2 (en) * 2016-04-07 2018-08-29 ダイキン工業株式会社 Indoor heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06123587A (en) * 1992-10-12 1994-05-06 Toshiba Corp Heat exchanger
JP2002318087A (en) * 2001-02-07 2002-10-31 Modine Mfg Co Heat exchanger
JP2003240261A (en) * 2002-02-15 2003-08-27 Sharp Corp Integrated type air conditioner
JP2009145010A (en) * 2007-12-17 2009-07-02 Hitachi Appliances Inc Fin-less heat exchanger for air conditioner
JP2010085017A (en) * 2008-09-30 2010-04-15 Daikin Ind Ltd Indoor unit for air conditioner and the air conditioner including the same
US20130284414A1 (en) * 2012-04-26 2013-10-31 Lg Electronics Inc. Heat exchanger
WO2015005352A1 (en) * 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and heat pump device
JP2016041986A (en) 2014-08-14 2016-03-31 三菱重工業株式会社 Heat exchanger and outdoor equipment for air conditioner using the same
WO2016194043A1 (en) * 2015-05-29 2016-12-08 三菱電機株式会社 Heat exchanger
JP2018004090A (en) * 2016-06-27 2018-01-11 日立ジョンソンコントロールズ空調株式会社 Indoor unit for air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3745075A4

Also Published As

Publication number Publication date
JP2019128060A (en) 2019-08-01
EP3745075B1 (en) 2023-03-08
US20210041115A1 (en) 2021-02-11
JP7092987B2 (en) 2022-06-29
EP3745075A4 (en) 2021-01-06
CN111630336A (en) 2020-09-04
ES2941545T3 (en) 2023-05-23
CN111630336B (en) 2022-08-16
EP3745075A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
WO2019142642A1 (en) Indoor heat exchanger and air conditioning device
WO2019239990A1 (en) Indoor heat exchanger and air conditioning device
WO2019142617A1 (en) Heat exchanger and air conditioning device
WO2019009158A1 (en) Heat exchanger
JP6223596B2 (en) Air conditioner indoor unit
WO2019004139A1 (en) Heat exchanger
WO2018056209A1 (en) Heat exchanger
JPWO2018235215A1 (en) Heat exchangers, refrigeration cycle devices and air conditioners
US20200200477A1 (en) Heat exchanger and heat exchange unit including the same
WO2019240055A1 (en) Heat exchanger and air conditioner
US11692748B2 (en) Heat exchanger and air conditioning apparatus including the same
US20200200476A1 (en) Heat exchanger
JP2015169358A (en) heat exchanger
JP7137092B2 (en) Heat exchanger
JP7089187B2 (en) Heat exchanger and air conditioner
WO2021095452A1 (en) Heat exchanger and air conditioner
JP7011187B2 (en) Refrigerant shunt and air conditioner
CN109219723A (en) The outdoor unit of air-conditioning device
JPWO2019180764A1 (en) Indoor unit and air conditioner
JP2020003209A (en) Heat exchanger and air conditioner including the same
JP2019132512A (en) Refrigeration device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18901558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018901558

Country of ref document: EP

Effective date: 20200824