JP2009168317A - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP2009168317A
JP2009168317A JP2008006127A JP2008006127A JP2009168317A JP 2009168317 A JP2009168317 A JP 2009168317A JP 2008006127 A JP2008006127 A JP 2008006127A JP 2008006127 A JP2008006127 A JP 2008006127A JP 2009168317 A JP2009168317 A JP 2009168317A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
heat
fins
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008006127A
Other languages
Japanese (ja)
Inventor
Tatsuji Kitano
竜児 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2008006127A priority Critical patent/JP2009168317A/en
Priority to CN200920002143U priority patent/CN201387182Y/en
Priority to ITPD2009A000007A priority patent/IT1393722B1/en
Publication of JP2009168317A publication Critical patent/JP2009168317A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat transferring performance without significantly increasing ventilation resistance. <P>SOLUTION: The air conditioner is equipped with a plurality of fins 30 provided in parallel with predetermined spaces for distributing heat exchanging air along the spaces, heat transfer tubes 40 disposed adjacent to each other penetrating through the fins 30 in the direction orthogonal to a distributing direction F of the heat exchanging air in the fins 30 and introducing cooling medium, and slits 33 provided between the adjacent heat transfer tubes 40. The slits 33 are provided at least in a range of a center line C connecting an windward side edge 31a of the fins 30 and centers of respective heat transfer tubes 40. The width of the distributing direction of the heat exchanging air is formed to be half or more of an outer diameter D of the heat transfer tube 40. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、熱交換器及びこの熱交換器を備えた空気調和機に関し、特に熱交換器を構成するフィンに形成される切起しの形状に関する。   The present invention relates to a heat exchanger and an air conditioner including the heat exchanger, and more particularly to a shape of a cut and raised formed in fins constituting the heat exchanger.

例えば空気調和機における冷凍サイクルの構成部品として、熱交換器が備えられている。空気調和機が室内機と室外機とから構成される場合は、そのいずれのユニットにも熱交換器が必要となる。これら熱交換器は、所定の間隙を存して並設され、上記間隙に沿って熱交換空気を流通させる複数枚のフィンと、これらフィンを貫通して設けられ、その内部に冷媒(熱交換媒体)を導通させる伝熱管とからなる、いわゆるフィンチューブタイプのものが多用される。   For example, a heat exchanger is provided as a component of a refrigeration cycle in an air conditioner. When the air conditioner is composed of an indoor unit and an outdoor unit, a heat exchanger is required for any of the units. These heat exchangers are arranged side by side with a predetermined gap, and are provided with a plurality of fins that circulate heat exchange air along the gap, and through these fins. A so-called fin tube type composed of a heat transfer tube for conducting a medium) is often used.

そして、熱交換器における熱交換効率の向上を図るため、上記フィンに切起しを設けるのが、近時の傾向となっている。フィンの板厚は極く薄いので、例えばプレス加工にてフィンを型抜きするとともに、上記切起しを同時加工するようになっている。この切起し部は、熱交換空気の流通方向とは直交する方向に隣設された伝熱管相互間に設けられる。   And in order to improve the heat exchange efficiency in a heat exchanger, it has become a recent tendency to cut and raise the fins. Since the plate thickness of the fin is extremely thin, for example, the die is die-cut by press working, and the above-described raising is simultaneously processed. This cut-and-raised part is provided between the heat transfer tubes provided adjacent to each other in a direction orthogonal to the flow direction of the heat exchange air.

このように、空気調和機等の熱交換器においては、フィンに多数の切起しを設けることによって熱交換効率の向上を図ってきた。そして、上記切起し部に対して様々な工夫がなされてきた。例えば、切起しの幅が気流下流側伝熱管ほど短く、かつ、下流側伝熱管ほど本数が多くなるよう切越しを設けたものが知られている(例えば、特許文献1参照)。   As described above, in a heat exchanger such as an air conditioner, heat exchange efficiency has been improved by providing a large number of cuts on the fins. Various ideas have been made for the cut and raised portion. For example, it is known that the cut-and-raised width is shorter for the airflow downstream side heat transfer tube and provided with a cut so that the downstream side heat transfer tube has a larger number (for example, see Patent Document 1).

また、風上側の切起しの幅を風下側の切起しの幅よりも広くしたものも知られている(例えば、特許文献2参照)。さらに、切起しの幅をフィンカラーの外径の1/4〜1/3に形成したものが知られている(例えば、特許文献3参照)。
特開昭63−003181号公報 特開2001−133179号公報 特開2003−035497号公報
Moreover, what made the width | variety of the cut and raised on the windward side wider than the width of the cut and raised side on the leeward side is also known (for example, refer patent document 2). Furthermore, what formed the width | variety of cutting and raising to 1 / 4-1 / 3 of the outer diameter of a fin collar is known (for example, refer patent document 3).
JP-A 63-003181 JP 2001-133179 A JP 2003-035497 A

上述した熱交換器では、必ずしも十分な伝熱性能が得られず、さらなる伝熱性能の向上が望まれている。   In the heat exchanger described above, sufficient heat transfer performance is not necessarily obtained, and further improvement in heat transfer performance is desired.

そこで本発明は、通風抵抗の増加を抑えつつ、さらに伝熱性能を向上できる熱交換器及びこの熱交換器を備えた空気調和機を提供することを目的としている。   Accordingly, an object of the present invention is to provide a heat exchanger that can further improve heat transfer performance while suppressing an increase in ventilation resistance, and an air conditioner including the heat exchanger.

前記課題を解決し目的を達成するために、本発明の熱交換器及び空気調和機は次のように構成されている。   In order to solve the above problems and achieve the object, the heat exchanger and the air conditioner of the present invention are configured as follows.

(1)所定の間隙を存して並設され、これらの間隙に沿って熱交換空気を流通させる複数枚のフィンと、それぞれのフィンにおける熱交換空気の流通方向とは直交する方向にフィンを貫通して隣接され、内部に熱交換媒体を導通させる伝熱管と、上記隣接する伝熱管相互間に設けられる切起しとを具備し、上記切起しは、少なくとも上記フィンの風上側端縁と上記各伝熱管の中心同士を結ぶ中心線間の範囲に設けられ、熱交換空気の流通方向の幅が上記伝熱管の外径の1/2以上に形成されていることを特徴とする。 (1) A plurality of fins that are arranged side by side with predetermined gaps and that allow heat exchange air to flow along these gaps, and fins in a direction perpendicular to the flow direction of heat exchange air in each fin. A heat transfer pipe which is adjacently penetrated and allows a heat exchange medium to pass through, and a notch provided between the adjacent heat transfer pipes, wherein the notch is at least the windward edge of the fin And in the range between the center lines connecting the centers of the heat transfer tubes, the width of the heat exchange air in the flow direction is formed to be 1/2 or more of the outer diameter of the heat transfer tubes.

(2)圧縮機、室外側熱交換器、膨張装置、室内側熱交換器を備えた空気調和機において、上記室外側熱交換器及び室内側熱交換器の少なくとも一方は、所定の間隙を存して並設され、これらの間隙に沿って熱交換空気を流通させる複数枚のフィンと、それぞれのフィンにおける熱交換空気の流通方向とは直交する方向にフィンを貫通して隣接され、内部に熱交換媒体を導通させる伝熱管と、上記隣接する伝熱管相互間に設けられる切起しとを具備し、上記切起しは、少なくとも上記フィンの風上側端縁と上記各伝熱管の中心同士を結ぶ中心線間の範囲に設けられ、熱交換空気の流通方向の幅が上記伝熱管の外径の1/2以上に形成されていることを特徴とする。 (2) In an air conditioner including a compressor, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, at least one of the outdoor heat exchanger and the indoor heat exchanger has a predetermined gap. The plurality of fins that are arranged side by side and circulate the heat exchange air along these gaps, and are adjacent to each other through the fins in a direction perpendicular to the direction of the heat exchange air flow in each fin. A heat transfer tube for conducting a heat exchange medium; and a cut-and-raised portion provided between the adjacent heat transfer tubes, wherein the cut-and-lift is at least between the windward edge of the fin and the centers of the heat transfer tubes. The width of the heat exchange air in the flow direction is formed to be 1/2 or more of the outer diameter of the heat transfer tube.

本発明によれば、通風抵抗の増加を抑えつつ、さらに伝熱性能を向上できる。   According to the present invention, heat transfer performance can be further improved while suppressing an increase in ventilation resistance.

図1は本発明の一実施の形態に係る熱交換器20及びこの熱交換器20が組み込まれた空気調和機10の構成を示す説明図、図2Aは熱交換器20を構成するフィン30の要部を示す正面図、図2Bは側面図、図2Cは熱交換器20の一部斜視図である。なお、図2Bにおいて説明の都合上フィン30は1枚のみ示している。   FIG. 1 is an explanatory view showing a configuration of a heat exchanger 20 and an air conditioner 10 incorporating the heat exchanger 20 according to an embodiment of the present invention, and FIG. 2A is a view of fins 30 constituting the heat exchanger 20. FIG. 2B is a side view, and FIG. 2C is a partial perspective view of the heat exchanger 20. In FIG. 2B, only one fin 30 is shown for convenience of explanation.

空気調和機10は、冷媒配管11によって圧縮機12、四方弁13、室外側熱交換器14、膨張弁15、第1の室内側熱交換器16、除湿絞り装置17、第2の室内側熱交換器18、四方弁13、圧縮機12の順で接続されている。なお、図1中14aは送風ファン、16aは横流ファンを示している。   The air conditioner 10 includes a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, a first indoor heat exchanger 16, a dehumidifying throttle device 17, and a second indoor heat through a refrigerant pipe 11. The exchanger 18, the four-way valve 13, and the compressor 12 are connected in this order. In FIG. 1, reference numeral 14a denotes a blower fan, and 16a denotes a cross-flow fan.

室外側熱交換器14、室内側熱交換器(第1の室内側熱交換器16及び第2の室内側熱交換器18)の少なくとも一方を構成する本発明の
熱交換器20は、図2A、図2B及び図2Cに示すように、狭小の間隙を存して多数枚並設されたフィン30に伝熱管40が貫通して設けられるフィンチュープタイプである。上記フィン30は上下方向に縦長の短冊状をなし、内部に冷媒(熱交換媒体)が流通する伝熱管40が上下方向に所定のピッチで貫通される。また、上記伝熱管40はフィン30における熱交換空気の流通方向Fに2列設けられている。なお、フィン30は伝熱管40の各列毎に分割されていても良く、伝熱管は1列又は3列以上設けられていても良い。
The heat exchanger 20 of the present invention constituting at least one of the outdoor heat exchanger 14 and the indoor heat exchanger (the first indoor heat exchanger 16 and the second indoor heat exchanger 18) is shown in FIG. 2A. 2B and 2C, it is a fin tube type in which a heat transfer tube 40 is provided through a large number of fins 30 arranged side by side with a narrow gap. The fin 30 has a vertically long strip shape, and the heat transfer tubes 40 in which the refrigerant (heat exchange medium) flows are penetrated at a predetermined pitch in the vertical direction. The heat transfer tubes 40 are provided in two rows in the flow direction F of the heat exchange air in the fins 30. In addition, the fin 30 may be divided | segmented for every row | line | column of the heat exchanger tube 40, and the heat exchanger tube may be provided in 1 row or 3 rows or more.

フィン30は、板状のベース31と、このベース31に所定のピッチで設けられた伝熱管挿入孔32と、これら伝熱管挿入孔32の間に設けられたスリット(切起し)33,34、33´及び34´とを備えている。伝熱管40は、フィン30における熱交換空気の流通方向Fとは直交する方向にフィン30を貫通して配置されている。伝熱管挿入孔32の内径寸法は当初は伝熱管40の外径寸法よりも僅かに大に形成されていて、伝熱管挿入孔32に伝熱管40を貫通し、伝熱管40を拡管加工することによりフィン30に対して伝熱管40が強固な状態で嵌め合う。   The fin 30 includes a plate-like base 31, heat transfer tube insertion holes 32 provided in the base 31 at a predetermined pitch, and slits (cuts) 33 and 34 provided between the heat transfer tube insertion holes 32. , 33 ′ and 34 ′. The heat transfer tubes 40 are disposed through the fins 30 in a direction orthogonal to the heat exchange air flow direction F in the fins 30. The inner diameter dimension of the heat transfer tube insertion hole 32 is initially slightly larger than the outer diameter dimension of the heat transfer tube 40, and the heat transfer tube 40 penetrates the heat transfer tube insertion hole 32 to expand the heat transfer tube 40. As a result, the heat transfer tubes 40 are fitted into the fins 30 in a firm state.

スリット33,34及び33´、34´は熱交換空気が流通する方向に沿って所定の間隙を存して並設されている。なお、各スリット33,34、33´及び34´は、いずれもその長手方向を熱交換空気が流通する方向に直交する向きに形成されるとともに、ベース31に対し同一の方向にのみ突出して形成されている。   The slits 33, 34 and 33 ′, 34 ′ are arranged side by side with a predetermined gap along the direction in which the heat exchange air flows. The slits 33, 34, 33 ′ and 34 ′ are all formed so that the longitudinal direction thereof is perpendicular to the direction in which the heat exchange air flows, and project only in the same direction with respect to the base 31. Has been.

風上側の1列目の伝熱管40間に設けられたスリットのうち、風上側のスリット33は、少なくともフィン30の風上側端縁31aと1列目の各伝熱管40の中心同士を結ぶ中心線C間の範囲(風上側)に設けられ、熱交換空気の流通方向Fの幅Lが伝熱管40の外径Dの1/2以上に形成されている。また、スリット33は、好ましくは風下側の端部33aが各伝熱管40の中心同士を結ぶ中心線Cに一致して設けられるとともに、風上側の端部33bが各伝熱管40の風上側に設けられ、さらに立ち上がり部33cが伝熱管40の外周面に沿って曲線状に形成されている。風上側の1列目の伝熱管40間に設けられたスリットのうち、風下側のスリット34も同様に立ち上がり部34cが形成されている。これにより、スリット33,34と伝熱管40との距離が一定に保たれている。スリット33は伝熱管40中心より風上側に設置するため立ち上がり部33cを直線で形成すると、スリット面積が小さくなる。立ち上り部33cを伝熱40管と同一距離を保つよう曲線より形成することにより、切起し面積の拡大および伝熱管40に気流を沿わせることができ伝熱性能がさらに向上する。   Of the slits provided between the windward first row heat transfer tubes 40, the windward side slit 33 is a center connecting at least the windward edge 31 a of the fin 30 and the centers of the heat transfer tubes 40 in the first row. It is provided in the range between the lines C (windward side), and the width L in the flow direction F of the heat exchange air is formed to be 1/2 or more of the outer diameter D of the heat transfer tube 40. In addition, the slit 33 is preferably provided so that the end portion 33a on the leeward side coincides with the center line C connecting the centers of the heat transfer tubes 40, and the end portion 33b on the windward side is on the windward side of each heat transfer tube 40. Further, the rising portion 33 c is formed in a curved shape along the outer peripheral surface of the heat transfer tube 40. Of the slits provided between the first row of heat transfer tubes 40 on the windward side, the slit 34 on the leeward side similarly has a rising portion 34c. Thereby, the distance between the slits 33 and 34 and the heat transfer tube 40 is kept constant. Since the slit 33 is installed on the windward side from the center of the heat transfer tube 40, if the rising portion 33c is formed in a straight line, the slit area is reduced. By forming the rising portion 33c from a curve so as to keep the same distance as the heat transfer 40 tube, the rising area can be increased and the air flow can be made to follow the heat transfer tube 40, and the heat transfer performance is further improved.

また、風下側の2列目の伝熱管40間に設けられたスリットのうち、風上側のスリット33´はフィン30の1列目と2列目の伝熱管40の中心Yと2列目の各伝熱管40の中心同士を結ぶ中心線間の範囲(風上側)に設けられ、熱交換空気の流通方向Fの幅Lが伝熱管40の外径Dの1/2以上に形成されている。さらに、スリット33´は、好ましくは風下側の端部33aが各伝熱管40の中心同士を結ぶ中心線に一致して設けられる。  Of the slits provided between the second row of heat transfer tubes 40 on the leeward side, the slit 33 'on the leeward side is the center Y of the first row of fins 30 and the center Y of the second row of heat transfer tubes 40 and the second row. It is provided in a range between the center lines connecting the centers of the heat transfer tubes 40 (windward side), and the width L in the flow direction F of the heat exchange air is formed to be 1/2 or more of the outer diameter D of the heat transfer tubes 40. . Further, the slit 33 ′ is preferably provided so that the leeward side end portion 33 a coincides with the center line connecting the centers of the heat transfer tubes 40.

ここで、このようなフィン30の形状とした理由について説明する。一般的にスリットは、熱交換空気の流れを攪拌することで伝熱性能を向上させるため、数が多いほど伝熱性能は向上する。しかし、数に比例し通風抵抗も増加するため、数が多いほど伝熱量が多くなるとは限らない。   Here, the reason for the shape of the fin 30 will be described. In general, the slit improves the heat transfer performance by stirring the flow of the heat exchange air, so the heat transfer performance improves as the number increases. However, since the ventilation resistance increases in proportion to the number, the heat transfer amount does not necessarily increase as the number increases.

図3にスリットの数と熱伝達率及び通風抵抗との関係を示す。スリットの数が増えるにしたがい熱伝達率および通風抵抗は増加するが、熱伝達率の増加は通風抵抗の増加より小さい。これより過度にスリットの数を増やしても通風抵抗の増加により性能が向上するとはいえないことがわかる。   FIG. 3 shows the relationship between the number of slits, the heat transfer coefficient, and the ventilation resistance. As the number of slits increases, the heat transfer coefficient and ventilation resistance increase, but the increase in heat transfer coefficient is smaller than the increase in ventilation resistance. It can be seen from this that even if the number of slits is excessively increased, the performance cannot be improved by increasing the ventilation resistance.

図4A,4B、図5A,5B、図6A,6Bは、各種のフィンにおいて、解析より算出した熱伝達の高い部分の等値面に圧力損失大小を表したものを示している。図中の色の濃淡は圧力損失の大小を示している。したがって、薄い色の部分が圧力損失が小さい部分である。   4A, 4B, FIGS. 5A, 5B, and 6A, 6B show the magnitude of pressure loss on the isosurfaces of the portions with high heat transfer calculated from the analysis in various fins. The shade of color in the figure indicates the magnitude of pressure loss. Therefore, the light colored part is the part where the pressure loss is small.

図4A,4Bのフラットフィン(スリットの無いフィン)50の場合、熱伝達はベース51の先端部51aから伝熱管挿入孔52間の中心線付近まで高い(二点鎖線Q)。これは伝熱管による縮流によるものと推測される。先端部51aは熱交換空気流を攪拌するため熱伝達も高いが通風抵抗も高い。また伝熱管挿入孔52の中心部付近より熱伝達の高い部分が剥離していることがわかる(二点鎖線S:色の濃い部分が伝熱管から遠ざかっている)。   4A and 4B, the heat transfer is high from the tip 51a of the base 51 to the vicinity of the center line between the heat transfer tube insertion holes 52 (two-dot chain line Q). This is presumed to be due to contraction of the heat transfer tube. The tip 51a stirs the heat exchange air flow and thus has high heat transfer but high ventilation resistance. It can also be seen that the portion with higher heat transfer is separated from the vicinity of the center of the heat transfer tube insertion hole 52 (two-dot chain line S: the darker portion is away from the heat transfer tube).

図5A,5Bのフィン60は、ベース61に2本のスリット63が設けられている。この場合、伝熱管周りの剥離は改善されているが、フラットフィン50に見られた縮流による熱伝達の高い部分がスリット53先端部の熱交換空気流の攪拌により無くなっていることがわかる。これは図6A,6Bに示すフィン70でも同様である。図6A,6B中71はベース、73は3本のスリットを示している。   5A and 5B, the base 61 is provided with two slits 63. In this case, although the peeling around the heat transfer tube is improved, it can be seen that the portion of the flat fin 50 where the heat transfer due to the contracted flow is high is eliminated by the stirring of the heat exchange air flow at the tip of the slit 53. The same applies to the fin 70 shown in FIGS. 6A and 6B. 6A and 6B, reference numeral 71 denotes a base, and 73 denotes three slits.

このような結果から、フラットフィン50に見られる縮流を伴う効率の良い部分(圧力損失が小さく熱伝達率の高い部分)を維持するためには、フィンの先端部による空気流の撹件を極力少なくする必要がある。同時に、フラットフィン50に見られる伝熱管周りの剥離を改善するためには伝熱管中心より風上側に切起しを設けることが必要である。   From these results, in order to maintain an efficient part with a contracted flow (a part with a small pressure loss and a high heat transfer coefficient) seen in the flat fin 50, the air flow is disturbed by the tip of the fin. It is necessary to reduce as much as possible. At the same time, in order to improve the peeling around the heat transfer tube seen in the flat fin 50, it is necessary to provide a cut and raised on the windward side from the center of the heat transfer tube.

したがって、縮流を伴う伝熱効率の良い部分の終わる部分である伝熱管40間中心(熱交換空気の流通方向Fと直交する方向に隣設する各伝熱管40の中心同士を結ぶ中心線C)に略一致させてスリット33の風下側の端部33aを設け、縮流が始まる前の部分(伝熱管40よりも風上側)に風上側の端部33bを設け、かつ、スリット33の幅をD/2以上にすることで、より効率の良い伝熱促進が可能となる。但し、スリット33の幅をD/2以上にし、フィン30の風上側端縁31aから各伝熱管40の中心同士を結ぶ中心線C間の範囲にスリット33を設けても同等の効果が得られる。   Therefore, the center between the heat transfer tubes 40 that is the end of the heat transfer efficiency good portion accompanied by the contracted flow (center line C connecting the centers of the heat transfer tubes 40 adjacent to each other in the direction orthogonal to the flow direction F of the heat exchange air) Is provided with an end portion 33a on the leeward side of the slit 33, an end portion 33b on the leeward side before the contraction starts (upward side of the heat transfer tube 40), and the width of the slit 33 is increased. By setting it to D / 2 or more, heat transfer can be more efficiently promoted. However, even if the width of the slit 33 is set to D / 2 or more and the slit 33 is provided in the range between the center line C connecting the centers of the heat transfer tubes 40 from the windward side edge 31a of the fin 30, the same effect can be obtained. .

また、伝熱管40間の中心線Cより風下側は熱伝達が小さいため、所定の間隔でスリットを設けることが好ましい。但し、通風抵抗低減させるためには1本のスリット34のみを設置することが望ましい。図7Bに、図7Aに示した本発明の実施態様の解析結果を示す。図7Bから明らかなように、本発明のものは熱伝達の高い部分が図5A,5B及び図6A,6Bに示したものに比較して大幅に拡大している。   Moreover, since heat transfer is small on the leeward side from the center line C between the heat transfer tubes 40, it is preferable to provide slits at predetermined intervals. However, it is desirable to install only one slit 34 in order to reduce the ventilation resistance. FIG. 7B shows the analysis result of the embodiment of the present invention shown in FIG. 7A. As is apparent from FIG. 7B, the high heat transfer portion of the present invention is greatly expanded as compared with those shown in FIGS. 5A and 5B and FIGS. 6A and 6B.

このように構成された空気調和機10は、次のように動作する。すなわち、冷房/除湿運転時においては、圧縮機12を作動させて、図1中実線矢印Kに沿って冷媒が流通する。圧縮機12を出た高温高圧の冷媒蒸気は、四方弁13を通って、室外側熱交換器14に流入し、外気によって熱を奪われ、凝縮、液化する。室外側熱交換器14を出た高圧液冷媒は、膨張弁15に流入し減圧され、低圧の気液二相冷媒となって第1の室内側熱交換器16に流入する。さらに、除湿絞り装置17を介して第2の室内側熱交換器18に流入し、横流ファン16aにて室内に冷気が吹き出される。第1の室内側熱交換器16及び第2の室内側熱交換器18の伝熱管40を流れる間に室内空気によって加熱され、低圧の液冷媒の大部分が蒸気となり、四方弁13を通って、再び圧縮機12に吸入される。   The air conditioner 10 configured as described above operates as follows. That is, during the cooling / dehumidifying operation, the compressor 12 is operated and the refrigerant flows along the solid line arrow K in FIG. The high-temperature and high-pressure refrigerant vapor exiting the compressor 12 passes through the four-way valve 13 and flows into the outdoor heat exchanger 14, where heat is taken away by the outside air, and condensed and liquefied. The high-pressure liquid refrigerant that has exited the outdoor heat exchanger 14 flows into the expansion valve 15, is depressurized, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the first indoor heat exchanger 16. Furthermore, it flows into the 2nd indoor side heat exchanger 18 through the dehumidification throttle apparatus 17, and cold air blows off indoors in the crossflow fan 16a. While flowing through the heat transfer tubes 40 of the first indoor heat exchanger 16 and the second indoor heat exchanger 18, it is heated by the indoor air, and most of the low-pressure liquid refrigerant becomes steam and passes through the four-way valve 13. Then, it is sucked into the compressor 12 again.

一方、暖房運転時においては、図1中破線矢印に沿って冷媒が流通する。圧縮機12を出た高温高圧の冷媒蒸気は、四方弁13を通って、第2の室内側熱交換器18に流入する。さらに、除湿絞り装置17を介して第1の室内側熱交換器16に流入する。第2の室内側熱交換器18及び第1の室内側熱交換器16の伝熱管40に流入した冷媒は、室内空気によって冷却され、凝縮、液化する。第1の室内側熱交換器16を出た高圧液冷媒は、膨張弁15に流入し減圧され、低圧の気液二相冷媒となり、蒸発器として動作する室外側熱交換器14へ流入する。この低圧の気液二相冷媒は室外側熱交換器14で外気から熱を奪って蒸発し、低圧蒸気冷媒となって室外側熱交換器14を流出する。この低圧の蒸気冷媒は、四方弁13を通って、再び圧縮機12に吸入される。   On the other hand, during the heating operation, the refrigerant flows along the broken line arrows in FIG. The high-temperature and high-pressure refrigerant vapor that exits the compressor 12 passes through the four-way valve 13 and flows into the second indoor heat exchanger 18. Further, the air flows into the first indoor heat exchanger 16 through the dehumidifying throttle device 17. The refrigerant that has flowed into the heat transfer tubes 40 of the second indoor heat exchanger 18 and the first indoor heat exchanger 16 is cooled by the indoor air, and is condensed and liquefied. The high-pressure liquid refrigerant that has exited the first indoor heat exchanger 16 flows into the expansion valve 15 and is depressurized, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 14 that operates as an evaporator. This low-pressure gas-liquid two-phase refrigerant takes heat from the outside air in the outdoor heat exchanger 14 and evaporates to become low-pressure vapor refrigerant and flows out of the outdoor heat exchanger 14. This low-pressure vapor refrigerant passes through the four-way valve 13 and is sucked into the compressor 12 again.

このような動作の中で、室外側熱交換器14、第1の室内側熱交換器16及び第2の室内側熱交換器18に組み込まれた熱交換器20では、次のように熱交換が行われる。   In such an operation, in the heat exchanger 20 incorporated in the outdoor heat exchanger 14, the first indoor heat exchanger 16, and the second indoor heat exchanger 18, heat exchange is performed as follows. Is done.

冷媒配管11から伝熱管40内に冷媒が流通するとともに、熱交換空気が熱交換器20を通過することで、熱交換空気とフィン30との間で熱交換が行われる。熱交換空気は前述したように、スリット33において効率の良い伝熱が行われる。さらに、スリット33の風下側には、1本のスリット34が設置されているだけなので、通風抵抗が極端に増大することがなくスリット34による伝熱がさらに行われる。通風抵抗を大幅に増大することなしに、伝熱性能を向上できる。   While the refrigerant flows from the refrigerant pipe 11 into the heat transfer tube 40, the heat exchange air passes through the heat exchanger 20, whereby heat exchange is performed between the heat exchange air and the fins 30. As described above, the heat exchange air is efficiently transferred in the slit 33. Furthermore, since only one slit 34 is installed on the leeward side of the slit 33, the air flow resistance is not increased extremely, and heat transfer by the slit 34 is further performed. Heat transfer performance can be improved without significantly increasing ventilation resistance.

上述したように、本実施の形態に係る熱交換器20及びこの熱交換器20が組み込まれた空気調和機10においては、通風抵抗を大幅に増大することなしに、伝熱性能を向上できる。なお、本発明の空気調和機は、室内側熱交換器及び室外側熱交換器の両方に上記本発明の熱交換器20を適用しても良いが、いずれか一方、例えば、室内側熱交換器にのみ適用しても良い。   As described above, in the heat exchanger 20 according to the present embodiment and the air conditioner 10 in which the heat exchanger 20 is incorporated, heat transfer performance can be improved without significantly increasing the ventilation resistance. In the air conditioner of the present invention, the heat exchanger 20 of the present invention may be applied to both the indoor side heat exchanger and the outdoor side heat exchanger, but either one, for example, the indoor side heat exchange It may be applied only to the vessel.

図8は、上述した実施の形態に係る熱交換器20を構成するフィン30の変形例に係るフィン30Aを示す平面図である。なお、図8において図2と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 8 is a plan view showing a fin 30A according to a modification of the fin 30 constituting the heat exchanger 20 according to the above-described embodiment. In FIG. 8, the same functional parts as those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof is omitted.

フィン30Aにおいては、スリット33,34の代わりに、スリット35,36を設けた。スリット35,36においては、立ち上り部35c,36cを直線状に形成している。このように形成した場合、伝熱性能は若干低下するが、加工を単純化することができる。   In the fin 30 </ b> A, slits 35 and 36 are provided instead of the slits 33 and 34. In the slits 35 and 36, rising portions 35c and 36c are formed in a straight line. When formed in this way, the heat transfer performance is slightly reduced, but the processing can be simplified.

なお、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

本発明の一実施の形態に係る熱交換器及びこの熱交換器が組み込まれた空気調和機の構成を示す説明図。Explanatory drawing which shows the structure of the heat exchanger which concerns on one embodiment of this invention, and the air conditioner incorporating this heat exchanger. 同熱交換器に組み込まれたフィンの要部を示す平面図。The top view which shows the principal part of the fin integrated in the same heat exchanger. 同フィン及び伝熱管を示す側面図。The side view which shows the same fin and a heat exchanger tube. 同熱交換器の一部斜視図。The partial perspective view of the heat exchanger. スリットの数と熱伝達率及び通風抵抗との関係を示すグラフ。The graph which shows the relationship between the number of slits, a heat transfer rate, and ventilation resistance. 比較例としてのフィンの要部を示す斜視図。The perspective view which shows the principal part of the fin as a comparative example. 同フィンの要部における熱伝達の高い部分の等値面に圧力損失大小を表した説明図。Explanatory drawing which represented the magnitude of pressure loss on the isosurface of the part with high heat transfer in the principal part of the fin. 比較例としてのフィンの要部を示す斜視図。The perspective view which shows the principal part of the fin as a comparative example. 同フィンの要部における熱伝達の高い部分の等値面に圧力損失大小を表した説明図。Explanatory drawing which represented the magnitude of pressure loss on the isosurface of the part with high heat transfer in the principal part of the fin. 比較例としてのフィンの要部を示す斜視図。The perspective view which shows the principal part of the fin as a comparative example. 同フィンの要部における熱伝達の高い部分の等値面に圧力損失大小を表した説明図。Explanatory drawing which represented the magnitude of pressure loss on the isosurface of the part with high heat transfer in the principal part of the fin. 本実施の形態に係る熱交換器に組み込まれたフィンの要部を示す斜視図。The perspective view which shows the principal part of the fin integrated in the heat exchanger which concerns on this Embodiment. 同フィンの要部における熱伝達の高い部分の等値面に圧力損失大小を表した説明図。Explanatory drawing which represented the magnitude of pressure loss on the isosurface of the part with high heat transfer in the principal part of the fin. 本実施の形態の変形例を示す平面図。The top view which shows the modification of this Embodiment.

符号の説明Explanation of symbols

10…空気調和機、20…熱交換器、30…フィン、31…ベース、32…伝熱管挿入孔、33〜36…スリット、40…伝熱管。   DESCRIPTION OF SYMBOLS 10 ... Air conditioner, 20 ... Heat exchanger, 30 ... Fin, 31 ... Base, 32 ... Heat transfer tube insertion hole, 33-36 ... Slit, 40 ... Heat transfer tube.

Claims (3)

所定の間隙を存して並設され、これらの間隙に沿って熱交換空気を流通させる複数枚のフィンと、それぞれのフィンにおける熱交換空気の流通方向とは直交する方向にフィンを貫通して隣接され、内部に熱交換媒体を導通させる伝熱管と、上記隣接する伝熱管相互間に設けられる切起しとを具備し、
上記切起しは、少なくとも上記フィンの風上側端縁と上記各伝熱管の中心同士を結ぶ中心線間の範囲に設けられ、熱交換空気の流通方向の幅が上記伝熱管の外径の1/2以上に形成されていることを特徴とする熱交換器。
A plurality of fins that are arranged side by side with a predetermined gap and that circulate heat exchange air along these gaps, and the fins pass through the fins in a direction perpendicular to the direction of flow of the heat exchange air in each fin. A heat transfer tube that is adjacent and conducts a heat exchange medium therein, and a cut and raised provided between the adjacent heat transfer tubes;
The cut-and-raised portion is provided at least in a range between the center lines connecting the windward side edge of the fin and the centers of the heat transfer tubes, and the width in the flow direction of the heat exchange air is 1 of the outer diameter of the heat transfer tubes. / A heat exchanger characterized by being formed to 2 or more.
上記切起しは、風下側縁部が上記各伝熱管の中心同士を結ぶ中心線に一致して設けられ、立ち上がり部が上記伝熱管の外周面に沿って曲線状に形成されていることを特徴とする請求項1に記載の熱交換器。   The cut-and-raised state is that the leeward side edge portion is provided so as to coincide with the center line connecting the centers of the heat transfer tubes, and the rising portion is formed in a curved shape along the outer peripheral surface of the heat transfer tube. The heat exchanger according to claim 1, wherein 圧縮機、室外側熱交換器、膨張装置、室内側熱交換器を備えた空気調和機において、
上記室外側熱交換器及び室内側熱交換器の少なくとも一方は、
所定の間隙を存して並設され、これらの間隙に沿って熱交換空気を流通させる複数枚のフィンと、それぞれのフィンにおける熱交換空気の流通方向とは直交する方向にフィンを貫通して隣接され、内部に熱交換媒体を導通させる伝熱管と、上記隣接する伝熱管相互間に設けられる切起しとを具備し、
上記切起しは、少なくとも上記フィンの風上側端縁と上記各伝熱管の中心同士を結ぶ中心線間の範囲に設けられ、熱交換空気の流通方向の幅が上記伝熱管の外径の1/2以上に形成されていることを特徴とする空気調和機。
In an air conditioner equipped with a compressor, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger,
At least one of the outdoor heat exchanger and the indoor heat exchanger is:
A plurality of fins that are arranged side by side with a predetermined gap and that circulate heat exchange air along these gaps, and the fins pass through the fins in a direction perpendicular to the direction of flow of the heat exchange air in each fin. A heat transfer tube that is adjacent and conducts a heat exchange medium therein, and a cut and raised provided between the adjacent heat transfer tubes;
The cut-and-raised portion is provided at least in a range between the center lines connecting the windward side edge of the fin and the centers of the heat transfer tubes, and the width in the flow direction of the heat exchange air is 1 of the outer diameter of the heat transfer tubes. / An air conditioner characterized by being formed to 2 or more.
JP2008006127A 2008-01-15 2008-01-15 Heat exchanger and air conditioner Pending JP2009168317A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008006127A JP2009168317A (en) 2008-01-15 2008-01-15 Heat exchanger and air conditioner
CN200920002143U CN201387182Y (en) 2008-01-15 2009-01-09 Heat exchanger and air conditioner
ITPD2009A000007A IT1393722B1 (en) 2008-01-15 2009-01-14 HEAT EXCHANGER AND AIR CONDITIONER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008006127A JP2009168317A (en) 2008-01-15 2008-01-15 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
JP2009168317A true JP2009168317A (en) 2009-07-30

Family

ID=40969706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008006127A Pending JP2009168317A (en) 2008-01-15 2008-01-15 Heat exchanger and air conditioner

Country Status (3)

Country Link
JP (1) JP2009168317A (en)
CN (1) CN201387182Y (en)
IT (1) IT1393722B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122778A (en) * 2009-12-11 2011-06-23 Toshiba Carrier Corp Heat exchanger, and refrigerating cycle device
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
CN111630336A (en) * 2018-01-22 2020-09-04 大金工业株式会社 Indoor heat exchanger and air conditioner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461350A (en) * 2014-05-15 2017-02-22 三菱电机株式会社 Heat exchanger, and refrigeration cycle device provided with heat exchanger
JP7357207B2 (en) * 2019-11-26 2023-10-06 株式会社ノーリツ Heat exchanger and water heating equipment equipped with the same
JP7357208B2 (en) * 2019-11-26 2023-10-06 株式会社ノーリツ Heat exchanger and water heating equipment equipped with the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172286U (en) * 1981-04-27 1982-10-29
JPS63116093A (en) * 1986-10-31 1988-05-20 Matsushita Refrig Co Heat exchanger with fins
JPH10253278A (en) * 1997-03-17 1998-09-25 Mitsubishi Electric Corp Finned heat exchanger
JP2001133179A (en) * 1999-11-05 2001-05-18 Fujitsu General Ltd Heat exchanger with fin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172286U (en) * 1981-04-27 1982-10-29
JPS63116093A (en) * 1986-10-31 1988-05-20 Matsushita Refrig Co Heat exchanger with fins
JPH10253278A (en) * 1997-03-17 1998-09-25 Mitsubishi Electric Corp Finned heat exchanger
JP2001133179A (en) * 1999-11-05 2001-05-18 Fujitsu General Ltd Heat exchanger with fin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011122778A (en) * 2009-12-11 2011-06-23 Toshiba Carrier Corp Heat exchanger, and refrigerating cycle device
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
CN111630336A (en) * 2018-01-22 2020-09-04 大金工业株式会社 Indoor heat exchanger and air conditioner

Also Published As

Publication number Publication date
ITPD20090007A1 (en) 2009-07-16
CN201387182Y (en) 2010-01-20
IT1393722B1 (en) 2012-05-08

Similar Documents

Publication Publication Date Title
US9671177B2 (en) Heat exchanger, method for fabricating heat exchanger, and air-conditioning apparatus
JP2009168317A (en) Heat exchanger and air conditioner
JP2010025477A (en) Heat exchanger
CN102192673A (en) Flat-tube heat exchanger structure and assembling method thereof
US20240085122A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2016071953A1 (en) Indoor unit for air conditioning device
JP2013245884A (en) Fin tube heat exchanger
JP2018025373A (en) Heat exchanger for refrigerator, and refrigerator
JP2005083606A (en) Heat exchanger with fin and its manufacturing method
JP2005106328A (en) Heat exchanging device
JP2007322060A (en) Heat exchanger
JP2008215670A (en) Heat transfer fin, fin tube-type heat exchanger and refrigerating cycle device
JP2009150621A (en) Heat exchanger and air-conditioner
JPH11337104A (en) Air conditioner
JP5935167B2 (en) Air conditioner
JP6706839B2 (en) Fin tube heat exchanger
WO2014125997A1 (en) Heat exchange device and refrigeration cycle device equipped with same
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP2010025481A (en) Heat exchanger
JP6379352B2 (en) Finned tube heat exchanger
JP4624146B2 (en) Air conditioner indoor unit
US20170074564A1 (en) Heat exchanger and refrigeration cycle apparatus including the heat exchanger
JP2008121920A (en) Finned heat exchanger
WO2016031032A1 (en) Heat exchanger and air conditioner
JP6640500B2 (en) Air conditioner outdoor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002