WO2021234964A1 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
WO2021234964A1
WO2021234964A1 PCT/JP2020/020357 JP2020020357W WO2021234964A1 WO 2021234964 A1 WO2021234964 A1 WO 2021234964A1 JP 2020020357 W JP2020020357 W JP 2020020357W WO 2021234964 A1 WO2021234964 A1 WO 2021234964A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
upstream end
heat exchanger
flat tube
fins
Prior art date
Application number
PCT/JP2020/020357
Other languages
French (fr)
Japanese (ja)
Inventor
理人 足立
洋次 尾中
哲二 七種
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022524852A priority Critical patent/JP7292510B2/en
Priority to EP20937082.4A priority patent/EP4155652A4/en
Priority to US17/911,036 priority patent/US20230101157A1/en
Priority to CN202080100232.8A priority patent/CN115516269A/en
Priority to PCT/JP2020/020357 priority patent/WO2021234964A1/en
Publication of WO2021234964A1 publication Critical patent/WO2021234964A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/02Safety or protection arrangements; Arrangements for preventing malfunction in the form of screens or covers

Definitions

  • the heating operation In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower. It exchanges heat with the indoor air sent by No. 12, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room.
  • the upstream end of the fin 30 in addition to the upstream end of the flat tube 20 being at the same position as the upstream end of the fin 30, the upstream end of the fin 30 has an opening 50. A hole 34 is formed. As a result, the strength of the fin 30 can be ensured while balancing the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 30.
  • a plurality of reinforcing portions 434 for reinforcing the fin 430 are formed at the upstream end portion of the inclined surface 30a of the fin 430.
  • the reinforcing portion 434 is obtained by bending the fin 430 into a rectangular shape and an uneven shape. Further, the upstream end of the fin 430 protrudes from the upstream end of the flat tube 20.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

A heat exchanger is provided with a plurality of flat tubes within which a refrigerant flows, and a plurality of fins that are provided between the flat tubes and that transfer the heat of the refrigerant flowing through the flat tubes. The airflow-direction upstream-side end part of the flat tubes is at the same position as the upstream-side end part of the fins or projects beyond the upstream-side end part of the fins. An opening is formed at the upstream-side end part of the flat tubes or the upstream-side end part of the fins.

Description

熱交換器及び空気調和機Heat exchanger and air conditioner
 本開示は、扁平管とフィンとを備える熱交換器及び空気調和機に関する。 The present disclosure relates to a heat exchanger and an air conditioner provided with a flat tube and fins.
 従来、扁平管とフィンとを備える熱交換器が知られている。特許文献1には、複数の扁平管と、複数のルーバが設けられたコルゲートフィンとを備える熱交換器が開示されている。特許文献1は、フィンの空気の流れの上流側端部が、扁平管の上流側端部よりも突き出した延長部となっている。概して、フィンの上流側で熱交換された空気は、熱交換された分だけ温熱又は冷熱が奪われるため、下流側における熱交換量が減る。特許文献1は、フィンの上流側端部が扁平管の上流側端部よりも突き出しているため、上流側においてフィンと扁平管とが接触する面積が小さい。これにより、特許文献1は、上流側における熱交換量を減らし、下流側の熱交換量の低下を抑制して、上流側の熱交換量と下流側の熱交換量との均衡を図ろうとするものである。 Conventionally, a heat exchanger equipped with a flat tube and fins is known. Patent Document 1 discloses a heat exchanger including a plurality of flat tubes and corrugated fins provided with a plurality of louvers. In Patent Document 1, the upstream end of the air flow of the fin is an extension portion protruding from the upstream end of the flat tube. In general, the air exchanged heat on the upstream side of the fin is deprived of heat or cold heat by the amount of heat exchanged, so that the amount of heat exchange on the downstream side is reduced. In Patent Document 1, since the upstream end of the fin protrudes from the upstream end of the flat tube, the area of contact between the fin and the flat tube on the upstream side is small. As a result, Patent Document 1 attempts to reduce the amount of heat exchange on the upstream side, suppress the decrease in the amount of heat exchange on the downstream side, and balance the amount of heat exchange on the upstream side with the amount of heat exchange on the downstream side. It is a thing.
特許第5563162号公報Japanese Patent No. 5563162
 しかしながら、特許文献1に開示された熱交換器は、フィンの上流側端部が扁平管の上流側端部よりも突き出しているため、フィンの強度が低下する。 However, in the heat exchanger disclosed in Patent Document 1, the strength of the fin is lowered because the upstream end of the fin protrudes from the upstream end of the flat tube.
 本開示は、上記のような課題を解決するためになされたもので、上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィンの強度を確保する熱交換器及び空気調和機を提供するものである。 The present disclosure has been made to solve the above-mentioned problems, and is a heat exchanger and air that secures the strength of fins while balancing the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side. It provides a harmonizer.
 本開示に係る熱交換器は、内部に冷媒が流れる複数の扁平管と、扁平管同士の間に設けられ、扁平管に流れる冷媒の熱を伝達する複数のフィンと、を備え、扁平管の空気の流れの上流側端部は、フィンの上流側端部と同じ位置にあるか、又はフィンの上流側端部よりも突き出しており、扁平管の上流側端部又はフィンの上流側端部には、開口が形成されている。 The heat exchanger according to the present disclosure includes a plurality of flat pipes through which a refrigerant flows, and a plurality of fins provided between the flat pipes to transfer the heat of the refrigerant flowing through the flat pipes. The upstream end of the air flow is co-located with the upstream end of the fin or protrudes from the upstream end of the fin and is the upstream end of the flat tube or the upstream end of the fin. An opening is formed in.
 本開示によれば、扁平管の空気の流れの上流側端部は、フィンの上流側端部と同じ位置にあるか、又はフィンの上流側端部よりも突き出している。このため、フィンの強度を確保することができる。そして、扁平管の上流側端部又はフィンの上流側端部には、開口が形成されている。これにより、フィンの上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。即ち、上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィンの強度を確保することができる。 According to the present disclosure, the upstream end of the air flow in the flat tube is at the same position as the upstream end of the fin or protrudes from the upstream end of the fin. Therefore, the strength of the fins can be ensured. An opening is formed at the upstream end of the flat tube or the upstream end of the fin. As a result, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin. That is, the strength of the fins can be ensured while balancing the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side.
実施の形態1に係る空気調和機を示す回路図である。It is a circuit diagram which shows the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 1. FIG. 実施の形態2に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 2. FIG. 実施の形態3に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 3. FIG. 実施の形態3に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 3. FIG. 実施の形態3の変形例に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on the modification of Embodiment 3. 実施の形態4に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 4. FIG. 実施の形態5に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 5. 実施の形態5に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 5. FIG. 実施の形態5の変形例に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on the modification of Embodiment 5. 実施の形態6に係る扁平管及びフィンを示す断面図である。It is sectional drawing which shows the flat tube and fin which concerns on Embodiment 6.
 以下、本開示の熱交換器及び空気調和機の実施の形態について、図面を参照しながら説明する。なお、本開示は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、本開示の理解を容易にするために方向を表す用語を適宜用いるが、これは本開示を説明するためのものであって、これらの用語は本開示を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。なお、一部の図面において、断面図のハッチングを一部省略している。 Hereinafter, embodiments of the heat exchanger and air conditioner of the present disclosure will be described with reference to the drawings. The present disclosure is not limited to the embodiments described below. Further, in the following drawings including FIG. 1, the relationship between the sizes of the constituent members may differ from the actual one. In addition, in the following description, terms indicating directions are appropriately used to facilitate understanding of the present disclosure, but these terms are for the purpose of explaining the present disclosure, and these terms are intended to limit the present disclosure. is not it. Examples of the term indicating the direction include "top", "bottom", "right", "left", "front", "rear", and the like. In some drawings, the hatching of the cross-sectional view is partially omitted.
実施の形態1.
 図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室内空間の空気を調整する装置であり、室外機2と、室外機2に接続された室内機3とを備えている。室外機2には、圧縮機6、流路切替装置7、熱交換器8、室外送風機9及び膨張部10が設けられている。室内機3には、室内熱交換器11及び室内送風機12が設けられている。
Embodiment 1.
FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment. As shown in FIG. 1, the air conditioner 1 is a device for adjusting the air in the indoor space, and includes an outdoor unit 2 and an indoor unit 3 connected to the outdoor unit 2. The outdoor unit 2 is provided with a compressor 6, a flow path switching device 7, a heat exchanger 8, an outdoor blower 9, and an expansion unit 10. The indoor unit 3 is provided with an indoor heat exchanger 11 and an indoor blower 12.
 圧縮機6、流路切替装置7、熱交換器8、膨張部10及び室内熱交換器11が冷媒配管5により接続されて、作動ガスである冷媒が流れる冷媒回路4が構成されている。圧縮機6は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置7は、冷媒回路4において冷媒が流れる方向を切り替えるものであり、例えば四方弁である。熱交換器8は、例えば室外空気と冷媒との間で熱交換するものである。熱交換器8は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。 A compressor 6, a flow path switching device 7, a heat exchanger 8, an expansion unit 10, and an indoor heat exchanger 11 are connected by a refrigerant pipe 5, and a refrigerant circuit 4 through which a refrigerant as a working gas flows is configured. The compressor 6 sucks in a refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the sucked refrigerant. The flow path switching device 7 switches the direction in which the refrigerant flows in the refrigerant circuit 4, and is, for example, a four-way valve. The heat exchanger 8 exchanges heat between, for example, outdoor air and a refrigerant. The heat exchanger 8 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
 室外送風機9は、熱交換器8に室外空気を送る機器である。膨張部10は、冷媒を減圧して膨張する減圧弁又は膨張弁である。膨張部10は、例えば開度が調整される電子式膨張弁である。室内熱交換器11は、例えば室内空気と冷媒との間で熱交換するものである。室内熱交換器11は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機12は、室内熱交換器11に室内空気を送る機器である。 The outdoor blower 9 is a device that sends outdoor air to the heat exchanger 8. The expansion unit 10 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant. The expansion unit 10 is, for example, an electronic expansion valve whose opening degree is adjusted. The indoor heat exchanger 11 exchanges heat between, for example, indoor air and a refrigerant. The indoor heat exchanger 11 acts as an evaporator during the cooling operation and as a condenser during the heating operation. The indoor blower 12 is a device that sends indoor air to the indoor heat exchanger 11.
 (運転モード、冷房運転)
 次に、空気調和機1の運転モードについて説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する熱交換器8に流入し、熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて凝縮して液化する。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて蒸発してガス化する。このとき、室内空気が冷やされ、室内において冷房が実施される。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, cooling operation)
Next, the operation mode of the air conditioner 1 will be described. First, the cooling operation will be described. In the cooling operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the heat exchanger 8 acting as a condenser, and in the heat exchanger 8, the outdoor blower 9 causes the refrigerant to flow into the heat exchanger 8. It exchanges heat with the sent outdoor air, condenses and liquefies. The condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the indoor heat exchanger 11 that acts as an evaporator, and in the indoor heat exchanger 11, heat is exchanged with the indoor air sent by the indoor blower 12, and is evaporated and gasified. do. At this time, the indoor air is cooled, and cooling is performed indoors. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 (運転モード、暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機6に吸入された冷媒は、圧縮機6によって圧縮されて高温且つ高圧のガス状態で吐出する。圧縮機6から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置7を通過して、凝縮器として作用する室内熱交換器11に流入し、室内熱交換器11において、室内送風機12によって送られる室内空気と熱交換されて凝縮して液化する。このとき、室内空気が暖められ、室内において暖房が実施される。凝縮された液状態の冷媒は、膨張部10に流入し、膨張部10において膨張及び減圧されて低温且つ低圧の気液二相状態の冷媒となる。そして、気液二相状態の冷媒は、蒸発器として作用する熱交換器8に流入し、熱交換器8において、室外送風機9によって送られる室外空気と熱交換されて蒸発してガス化する。蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置7を通過して、圧縮機6に吸入される。
(Operation mode, heating operation)
Next, the heating operation will be described. In the heating operation, the refrigerant sucked into the compressor 6 is compressed by the compressor 6 and discharged in a high temperature and high pressure gas state. The high-temperature and high-pressure gas-state refrigerant discharged from the compressor 6 passes through the flow path switching device 7 and flows into the indoor heat exchanger 11 acting as a condenser, and in the indoor heat exchanger 11, the indoor blower. It exchanges heat with the indoor air sent by No. 12, condenses and liquefies. At this time, the indoor air is warmed and heating is performed in the room. The condensed liquid-state refrigerant flows into the expansion unit 10 and is expanded and depressurized in the expansion unit 10 to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant. Then, the refrigerant in the gas-liquid two-phase state flows into the heat exchanger 8 that acts as an evaporator, and in the heat exchanger 8, heat is exchanged with the outdoor air sent by the outdoor blower 9 to evaporate and gasify. The evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 7 and is sucked into the compressor 6.
 図2は、実施の形態1に係る熱交換器8を示す正面図である。次に、熱交換器8について詳細に説明する。図2に示すように、熱交換器8は、例えばパラレルフロー型の熱交換器8である。なお、熱交換器8は、フィンチューブ型の熱交換器であってもよい。熱交換器8は、扁平管20と、フィン30と、ヘッダ40とを備えている。扁平管20は、内部に冷媒が流れるチューブであり、複数並べられており、アルミニウム製又はアルミニウム合金製である。また、扁平管20は、アルミニウムを芯材とするクラッド材を用いたものでもよい。扁平管20は、例えば冷媒が流れる流路21(図3参照)が一列に複数形成されたものである。 FIG. 2 is a front view showing the heat exchanger 8 according to the first embodiment. Next, the heat exchanger 8 will be described in detail. As shown in FIG. 2, the heat exchanger 8 is, for example, a parallel flow type heat exchanger 8. The heat exchanger 8 may be a fin tube type heat exchanger. The heat exchanger 8 includes a flat tube 20, fins 30, and a header 40. The flat tube 20 is a tube through which a refrigerant flows, and a plurality of the flat tubes 20 are arranged and made of aluminum or an aluminum alloy. Further, the flat tube 20 may use a clad material having aluminum as a core material. The flat tube 20 is formed, for example, in which a plurality of flow paths 21 (see FIG. 3) through which a refrigerant flows are formed in a row.
 フィン30は、扁平管20に流れる冷媒の熱を伝達する部材であり、例えば扁平管20と扁平管20との間に折り曲げて配置されたコルゲートフィンである。フィン30は、水平方向に対し傾斜する傾斜面30aを有し(図3参照)、交互に折り返されている。フィン30と扁平管20との間は、空気が流れる通風路31となっている。フィン30は、例えばアルミニウム製である。なお、フィン30は、プレートフィンでもよい。ヘッダ40は、内部に冷媒が流れ、接続された複数の扁平管20に冷媒を分流するものであり、例えばアルミニウム製である。このように、フィン30は、扁平管20と同じ材料が用いられてもよいし、異なる材料が用いられてもよい。 The fin 30 is a member that transfers the heat of the refrigerant flowing through the flat pipe 20, and is, for example, a corrugated fin that is bent and arranged between the flat pipe 20 and the flat pipe 20. The fins 30 have an inclined surface 30a that is inclined with respect to the horizontal direction (see FIG. 3), and are alternately folded back. Between the fin 30 and the flat tube 20, there is a ventilation passage 31 through which air flows. The fin 30 is made of, for example, aluminum. The fin 30 may be a plate fin. The header 40 is made of, for example, aluminum, in which a refrigerant flows inside and the refrigerant is divided into a plurality of connected flat pipes 20. As described above, the fin 30 may be made of the same material as the flat tube 20, or may be made of a different material.
 ヘッダ40は、複数の扁平管20の一端部を接続するヘッダ40と複数の扁平管20の他端部を接続するヘッダ40とを有している。なお、ヘッダ40の内部は、1つ又は複数の仕切りによって、冷媒が流れる流路21が仕切られるように構成されてもよい。一方のヘッダ40には、冷媒配管5が接続されており、ヘッダ40は冷媒配管5によって流路切替装置7と接続されている。他方のヘッダ40には、冷媒配管5が接続されており、ヘッダ40は冷媒配管5によって膨張部10と接続されている。ヘッダ40は、扁平管20と同じ材料が用いてられてもよい。 The header 40 has a header 40 that connects one end of the plurality of flat tubes 20 and a header 40 that connects the other ends of the plurality of flat tubes 20. The inside of the header 40 may be configured such that the flow path 21 through which the refrigerant flows is partitioned by one or a plurality of partitions. A refrigerant pipe 5 is connected to one of the headers 40, and the header 40 is connected to the flow path switching device 7 by the refrigerant pipe 5. A refrigerant pipe 5 is connected to the other header 40, and the header 40 is connected to the expansion portion 10 by the refrigerant pipe 5. The header 40 may be made of the same material as the flat tube 20.
 図3は、実施の形態1に係る扁平管20及びフィン30を示す断面図であり、図2のA-A断面の一部を示す図である。図3において、空気は上方から下方に流れる。図3に示すように、フィン30は、扁平管20同士の間に設けられており、傾斜面30aに設けられた複数のルーバ32を有している。ここで、フィン30において、空気の流れの上流側の方が下流側よりもルーバ32がない平面部が広い。複数のルーバ32の中間には、矩形状のスリット33が形成されている。 FIG. 3 is a cross-sectional view showing a flat tube 20 and fins 30 according to the first embodiment, and is a diagram showing a part of the AA cross section of FIG. In FIG. 3, air flows from above to below. As shown in FIG. 3, the fins 30 are provided between the flat tubes 20 and have a plurality of louvers 32 provided on the inclined surface 30a. Here, in the fin 30, the flat surface portion without the louver 32 is wider on the upstream side of the air flow than on the downstream side. A rectangular slit 33 is formed in the middle of the plurality of louvers 32.
 そして、フィン30の上流側端部には、フィン30の長手方向に延びる長方形状の開口50である穴34が2個形成されている。具体的には、穴34は、フィン30の長手方向の全体長さLに対して、下流側端部から3/4Lよりも上流側に形成されている。これにより、フィン30において、空気の流れの上流側端部は下流側端部よりも伝熱面積が小さい。また、フィン30の下流側端部は、扁平管20の下流側端部と同一面に位置している。なお、フィン30の下流側端部は、扁平管20の下流側端部よりも上流側に位置してもよい。扁平管20の上流側端部は、フィン30の上流側端部と同じ位置にある。 At the upstream end of the fin 30, two holes 34, which are rectangular openings 50 extending in the longitudinal direction of the fin 30, are formed. Specifically, the hole 34 is formed on the upstream side of 3/4 L from the downstream end portion with respect to the total length L in the longitudinal direction of the fin 30. As a result, in the fin 30, the upstream end of the air flow has a smaller heat transfer area than the downstream end. Further, the downstream end of the fin 30 is located on the same surface as the downstream end of the flat tube 20. The downstream end of the fin 30 may be located upstream of the downstream end of the flat tube 20. The upstream end of the flat tube 20 is at the same position as the upstream end of the fin 30.
 本実施の形態1によれば、扁平管20の空気の流れの上流側端部は、フィン30の上流側端部と同じ位置にある。フィン30が扁平管20よりも突き出していないため、製造時又は輸送時にフィン30が倒れることを抑制することができる。このため、フィン30の強度を確保することができる。そして、フィン30の上流側端部には、開口50が形成されている。これにより、フィン30の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。即ち、上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン30の強度を確保することができる。 According to the first embodiment, the upstream end of the air flow of the flat tube 20 is at the same position as the upstream end of the fin 30. Since the fin 30 does not protrude from the flat tube 20, it is possible to prevent the fin 30 from tipping over during manufacturing or transportation. Therefore, the strength of the fin 30 can be ensured. An opening 50 is formed at the upstream end of the fin 30. As a result, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 30. That is, the strength of the fin 30 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side.
 また、フィン30の上流側端部には、開口50である穴34が形成されている。概して、フィン30の上流側で熱交換された空気は、熱交換された分だけ温熱又は冷熱が奪われるため、下流側における熱交換量が減る。本実施の形態1は、フィン30の上流側端部に開口50である穴34が形成されているため、フィン30において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン30の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態1は、フィン30の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン30の強度を確保することができる。 Further, a hole 34, which is an opening 50, is formed at the upstream end of the fin 30. In general, the air exchanged for heat on the upstream side of the fin 30 is deprived of heat or cold heat by the amount of heat exchanged, so that the amount of heat exchange on the downstream side is reduced. In the first embodiment, since the hole 34 having an opening 50 is formed at the upstream end of the fin 30, the upstream end of the air flow in the fin 30 has a heat transfer area larger than that of the downstream end. Is small. Therefore, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 30. As described above, in the first embodiment, the strength of the fin 30 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 30.
 従来、フィンの空気の流れの上流側端部が、扁平管の上流側端部よりも突き出した延長部となっている技術が知られている。この場合、突き出している部分のフィンが製造時又は輸送時に倒れ、伝熱性能が低下するおそれがある。フィンに排水用のスリットが形成されている場合、更にフィンの強度が低下し、フィンが倒れる蓋然性が高くなる。また、フィンの延長部を排除しようとすると、フィンの上流側の伝熱面積が大きくなるため、フィンの上流側に着霜し易くなる。このため、着霜耐力が低下する。 Conventionally, there is known a technique in which the upstream end of the fin air flow is an extension protruding from the upstream end of the flat tube. In this case, the protruding fins may collapse during manufacturing or transportation, and the heat transfer performance may deteriorate. If the fin is formed with a drainage slit, the strength of the fin is further reduced, and the possibility that the fin will fall is increased. Further, if the extension portion of the fin is to be eliminated, the heat transfer area on the upstream side of the fin becomes large, so that frost is likely to be formed on the upstream side of the fin. Therefore, the frost bearing capacity is reduced.
 これに対し、本実施の形態1は、扁平管20の上流側端部は、フィン30の上流側端部と同じ位置にあることに加え、フィン30の上流側端部には、開口50である穴34が形成されている。これにより、フィン30の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン30の強度を確保することができる。 On the other hand, in the first embodiment, in addition to the upstream end of the flat tube 20 being at the same position as the upstream end of the fin 30, the upstream end of the fin 30 has an opening 50. A hole 34 is formed. As a result, the strength of the fin 30 can be ensured while balancing the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 30.
 また、フィン30の上流側端部に開口50である穴34が形成されているため、フィン30の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン30に付着した凝縮水が穴34を通過することにより、排水性を向上させることができる。 Further, since the hole 34 which is the opening 50 is formed at the upstream end of the fin 30, heat transfer on the upstream side of the fin 30 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the drainage property can be improved by allowing the condensed water adhering to the fin 30 to pass through the hole 34.
実施の形態2.
 図4は、実施の形態2に係る扁平管20及びフィン130を示す断面図である。本実施の形態2の熱交換器108は、開口50がフィン130の上流側端部において扁平管20との間に形成された隙間134である点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と共通する部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 4 is a cross-sectional view showing a flat tube 20 and fins 130 according to the second embodiment. The heat exchanger 108 of the second embodiment is different from the first embodiment in that the opening 50 is a gap 134 formed between the fin 130 and the flat tube 20 at the upstream end portion. In the second embodiment, the parts common to the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
 図4に示すように、フィン130の上流側端部は、下流側端部よりも幅が狭い。これにより、フィン130の上流側端部において扁平管20との間に隙間134が形成されている。扁平管20の上流側端部は、実施の形態1と同様に、フィン130の上流側端部と同じ位置にある。 As shown in FIG. 4, the upstream end of the fin 130 is narrower than the downstream end. As a result, a gap 134 is formed between the fin 130 and the flat tube 20 at the upstream end. The upstream end of the flat tube 20 is at the same position as the upstream end of the fin 130, as in the first embodiment.
 本実施の形態2によれば、扁平管20の上流側端部は、フィン130の上流側端部と同じ位置にある。フィン130が扁平管20よりも突き出していないため、製造時又は輸送時にフィン130が倒れることを抑制することができる。即ち、フィン130の強度を確保することができる。また、フィン130の上流側端部において扁平管20との間に隙間134が形成されているため、フィン130において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン130の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態2は、フィン130の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン130の強度を確保することができる。 According to the second embodiment, the upstream end of the flat tube 20 is at the same position as the upstream end of the fin 130. Since the fin 130 does not protrude more than the flat tube 20, it is possible to prevent the fin 130 from tipping over during manufacturing or transportation. That is, the strength of the fin 130 can be ensured. Further, since the gap 134 is formed between the fin 130 and the flat tube 20 at the upstream end, the heat transfer area of the fin 130 is smaller at the upstream end of the air flow than at the downstream end. .. Therefore, it is possible to balance the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 130. As described above, in the second embodiment, the strength of the fin 130 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 130.
 また、フィン130の上流側端部において扁平管20との間に隙間134が形成されているため、フィン130の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン130に付着した凝縮水が隙間134を通過することにより、排水性を向上させることができる。 Further, since the gap 134 is formed between the flat tube 20 and the upstream end of the fin 130, heat transfer on the upstream side of the fin 130 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the drainage property can be improved by allowing the condensed water adhering to the fin 130 to pass through the gap 134.
実施の形態3.
 図5は、実施の形態3に係る扁平管220及びフィン230を示す断面図である。本実施の形態3の熱交換器208は、開口50がフィン230の上流側端部において扁平管220との間に形成された隙間234である点で、実施の形態1と相違する。本実施の形態3では、実施の形態1及び2と共通する部分は同一の符号を付して説明を省略し、実施の形態1及び2との相違点を中心に説明する。
Embodiment 3.
FIG. 5 is a cross-sectional view showing a flat tube 220 and fins 230 according to the third embodiment. The heat exchanger 208 of the third embodiment is different from the first embodiment in that the opening 50 is a gap 234 formed between the fin 230 and the flat tube 220 at the upstream end portion. In the third embodiment, the parts common to the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
 図5に示すように、扁平管220の上流側端部は、下流側端部よりも幅が狭い。扁平管220は、上流側の先端が細く曲面形状をなしている。これにより、フィン230の上流側端部において扁平管220との間に隙間234が形成されている。扁平管220の上流側端部は、フィン230の上流側端部よりも突き出している。 As shown in FIG. 5, the upstream end of the flat tube 220 is narrower than the downstream end. The flat tube 220 has a curved surface shape with a thin tip on the upstream side. As a result, a gap 234 is formed between the fin 230 and the flat tube 220 at the upstream end. The upstream end of the flat tube 220 protrudes from the upstream end of the fin 230.
 本実施の形態3によれば、扁平管220の上流側端部は、フィン230の上流側端部よりも突き出している。フィン230が扁平管220よりも突き出していないため、製造時又は輸送時にフィン230が倒れることを抑制することができる。即ち、フィン230の強度を確保することができる。また、フィン230の上流側端部において扁平管220との間に隙間234が形成されているため、フィン230において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン230の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態3は、フィン230の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン230の強度を確保することができる。 According to the third embodiment, the upstream end of the flat tube 220 protrudes from the upstream end of the fin 230. Since the fin 230 does not protrude from the flat tube 220, it is possible to prevent the fin 230 from tipping over during manufacturing or transportation. That is, the strength of the fin 230 can be ensured. Further, since the gap 234 is formed between the fin 230 and the flat tube 220 at the upstream end, the upstream end of the air flow in the fin 230 has a smaller heat transfer area than the downstream end. .. Therefore, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 230. As described above, in the third embodiment, the strength of the fin 230 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 230.
 また、フィン230の上流側端部において扁平管220との間に隙間234が形成されているため、フィン230の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン230に付着した凝縮水が隙間234を通過することにより、排水性を向上させることができる。更に、扁平管220の先端が曲面形状をなしているため、通風抵抗を低減することができる。 Further, since a gap 234 is formed between the fin 230 and the flat tube 220 at the upstream end, heat transfer on the upstream side of the fin 230 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the drainage property can be improved by allowing the condensed water adhering to the fin 230 to pass through the gap 234. Further, since the tip of the flat tube 220 has a curved surface shape, the ventilation resistance can be reduced.
 図6は、実施の形態3に係る扁平管220及びフィン230を示す断面図である。実施の形態3では、空気が流れる方向に平行の列方向に扁平管220が2列並べられている場合について例示する。この場合、図6に示すように、上流側の扁平管220は先端が細くなり、下流側の扁平管220は先端が細くなっていない。これは、上流側の扁平管220の下流側端部において既にフィン230への伝熱が十分に行われているため、下流側の扁平管220の先端を細くする必要がないことによる。 FIG. 6 is a cross-sectional view showing a flat tube 220 and fins 230 according to the third embodiment. In the third embodiment, a case where two rows of flat tubes 220 are arranged in a row direction parallel to the direction in which air flows is illustrated. In this case, as shown in FIG. 6, the tip of the flat tube 220 on the upstream side is tapered, and the tip of the flat tube 220 on the downstream side is not tapered. This is because heat transfer to the fins 230 has already been sufficiently performed at the downstream end of the flat tube 220 on the upstream side, so that it is not necessary to thin the tip of the flat tube 220 on the downstream side.
 (変形例)
 図7は、実施の形態3の変形例に係る扁平管220a及びフィン230aを示す断面図である。図7に示すように、変形例の熱交換器208aは、扁平管220aの上流側端部の片側において、フィン230aに隣接する部分が切り欠かれた隙間234aとなっている。変形例においても、フィン230aの上流側端部において扁平管220aとの間に隙間234aが形成されているため、フィン230aにおいて、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、変形例は、フィン230aの上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。
(Modification example)
FIG. 7 is a cross-sectional view showing a flat tube 220a and fins 230a according to a modified example of the third embodiment. As shown in FIG. 7, the heat exchanger 208a of the modified example has a gap 234a in which a portion adjacent to the fin 230a is cut off on one side of the upstream end portion of the flat tube 220a. Also in the modified example, since the gap 234a is formed between the fin 230a and the flat tube 220a at the upstream end, the upstream end of the air flow in the fin 230a transfers heat more than the downstream end. The area is small. Therefore, in the modified example, the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 230a can be balanced.
実施の形態4.
 図8は、実施の形態4に係る扁平管20及びフィン330を示す断面図である。本実施の形態4の熱交換器308は、フィン330を補強する補強部360を備えている点で、実施の形態1~3と相違する。本実施の形態4では、実施の形態1~3と共通する部分は同一の符号を付して説明を省略し、実施の形態1~3との相違点を中心に説明する。
Embodiment 4.
FIG. 8 is a cross-sectional view showing a flat tube 20 and fins 330 according to the fourth embodiment. The heat exchanger 308 of the fourth embodiment is different from the first to third embodiments in that it includes a reinforcing portion 360 for reinforcing the fins 330. In the fourth embodiment, the parts common to the first to third embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first to third embodiments will be mainly described.
 図8に示すように、フィン330の上流側端部が扁平管20の上流側端部よりも突き出している。そして、補強部360は、フィン330のうち扁平管20よりも突き出した部分同士の間に設けられている。補強部360は、例えば熱抵抗が大きい樹脂からなる。 As shown in FIG. 8, the upstream end of the fin 330 protrudes from the upstream end of the flat tube 20. The reinforcing portion 360 is provided between the portions of the fins 330 that protrude from the flat tube 20. The reinforcing portion 360 is made of, for example, a resin having a large thermal resistance.
 本実施の形態4によれば、フィン330が扁平管20よりも突き出しているものの、フィン330のうち扁平管20よりも突き出した部分同士の間に補強部360が設けられているため、製造時又は輸送時にフィン330が倒れることを抑制することができる。即ち、フィン330の強度を確保することができる。また、フィン330の上流側端部が扁平管20と接触していないため、フィン330において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン330の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態4は、フィン330の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン330の強度を確保することができる。 According to the fourth embodiment, although the fin 330 protrudes from the flat tube 20, the reinforcing portion 360 is provided between the portions of the fin 330 protruding from the flat tube 20, so that the reinforcing portion 360 is provided at the time of manufacture. Alternatively, it is possible to prevent the fin 330 from falling during transportation. That is, the strength of the fin 330 can be ensured. Further, since the upstream end of the fin 330 is not in contact with the flat tube 20, the upstream end of the air flow in the fin 330 has a smaller heat transfer area than the downstream end. Therefore, it is possible to balance the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 330. As described above, in the fourth embodiment, the strength of the fin 330 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 330.
 また、フィン330の上流側端部が扁平管20と接触していないため、フィン330の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン330に付着した凝縮水が樹脂である補強部360を伝っていくことにより、排水性を向上させることができる。 Further, since the upstream end of the fin 330 is not in contact with the flat tube 20, heat transfer on the upstream side of the fin 330 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the condensed water adhering to the fin 330 is transmitted through the reinforcing portion 360 which is a resin, so that the drainage property can be improved.
実施の形態5.
 図9は、実施の形態5に係る熱交換器408を示す正面図であり、図10は、実施の形態5に係る扁平管20及びフィン430を示す断面図である。本実施の形態5は、フィン430に補強部434が形成されている点で、実施の形態1~4と相違する。本実施の形態5では、実施の形態1~4と共通する部分は同一の符号を付して説明を省略し、実施の形態1~4との相違点を中心に説明する。
Embodiment 5.
9 is a front view showing the heat exchanger 408 according to the fifth embodiment, and FIG. 10 is a cross-sectional view showing the flat tube 20 and the fins 430 according to the fifth embodiment. The fifth embodiment is different from the first to fourth embodiments in that the reinforcing portion 434 is formed on the fin 430. In the fifth embodiment, the parts common to the first to fourth embodiments are designated by the same reference numerals, and the description thereof will be omitted, and the differences from the first to fourth embodiments will be mainly described.
 図9及び図10に示すように、フィン430の傾斜面30aのうち上流側端部には、フィン430を補強する複数の補強部434が形成されている。補強部434は、フィン430を矩形状且つ凹凸状に折り曲げたものである。また、フィン430の上流側端部が扁平管20の上流側端部よりも突き出している。 As shown in FIGS. 9 and 10, a plurality of reinforcing portions 434 for reinforcing the fin 430 are formed at the upstream end portion of the inclined surface 30a of the fin 430. The reinforcing portion 434 is obtained by bending the fin 430 into a rectangular shape and an uneven shape. Further, the upstream end of the fin 430 protrudes from the upstream end of the flat tube 20.
 本実施の形態5によれば、フィン430が扁平管20よりも突き出しているものの、フィン430の上流側端部に補強部434が形成されているため、製造時又は輸送時にフィン430が倒れることを抑制することができる。即ち、フィン430の強度を確保することができる。また、フィン430の上流側端部が扁平管20と接触していないため、フィン430において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン430の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態5は、フィン430の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン430の強度を確保することができる。 According to the fifth embodiment, although the fin 430 protrudes from the flat tube 20, the fin 430 collapses during manufacturing or transportation because the reinforcing portion 434 is formed at the upstream end of the fin 430. Can be suppressed. That is, the strength of the fin 430 can be ensured. Further, since the upstream end of the fin 430 is not in contact with the flat tube 20, the upstream end of the air flow in the fin 430 has a smaller heat transfer area than the downstream end. Therefore, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 430. As described above, in the fifth embodiment, the strength of the fin 430 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 430.
 また、フィン430の上流側端部が扁平管20と接触していないため、フィン430の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン430に付着した凝縮水が樹脂である補強部434を伝っていくことにより、排水性を向上させることができる。 Further, since the upstream end of the fin 430 is not in contact with the flat tube 20, heat transfer on the upstream side of the fin 430 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the condensed water adhering to the fin 430 travels through the reinforcing portion 434 which is a resin, so that the drainage property can be improved.
 (変形例)
 図11は、実施の形態5の変形例に係る扁平管20及びフィン430aを示す断面図である。図11に示すように、変形例の熱交換器408aは、実施の形態5よりも更に、フィン430aが扁平管20よりも突き出している。そして、補強部434aは、実施の形態5よりも大きい。これにより、フィン430aが扁平管20よりも大きく突き出しているものの、フィン430aの上流側端部に補強部434aが大きく形成されているため、製造時又は輸送時にフィン430aが倒れることを抑制することができる。また、フィン430aの上流側端部の広い領域が扁平管20と接触していないため、フィン430aにおいて、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン430aの上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、変形例は、フィン430aの上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン430aの強度を確保することができる。
(Modification example)
FIG. 11 is a cross-sectional view showing a flat tube 20 and fins 430a according to a modified example of the fifth embodiment. As shown in FIG. 11, in the heat exchanger 408a of the modified example, the fin 430a protrudes from the flat tube 20 more than in the fifth embodiment. The reinforcing portion 434a is larger than that of the fifth embodiment. As a result, although the fin 430a protrudes larger than the flat tube 20, the reinforcing portion 434a is formed large at the upstream end of the fin 430a, so that the fin 430a can be prevented from falling during manufacturing or transportation. Can be done. Further, since the wide region of the upstream end of the fin 430a is not in contact with the flat tube 20, the upstream end of the air flow in the fin 430a has a smaller heat transfer area than the downstream end. Therefore, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 430a. As described above, in the modified example, the strength of the fin 430a can be secured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 430a.
実施の形態6.
 図12は、実施の形態6に係る扁平管20及びフィン530を示す断面図である。本実施の形態6の熱交換器508は、開口50に開閉ルーバ535が設けられている点で、実施の形態1~5と相違する。本実施の形態6では、実施の形態1~5と共通する部分は同一の符号を付して説明を省略し、実施の形態1~5との相違点を中心に説明する。
Embodiment 6.
FIG. 12 is a cross-sectional view showing a flat tube 20 and fins 530 according to the sixth embodiment. The heat exchanger 508 of the sixth embodiment is different from the first to fifth embodiments in that the opening / closing louver 535 is provided in the opening 50. In the sixth embodiment, the parts common to the first to fifth embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first to fifth embodiments will be mainly described.
 図12に示すように、フィン530は、開口50に設けられ開口50を開閉する開閉ルーバ535を有する。扁平管20の上流側端部は、実施の形態1と同様に、フィン530の上流側端部と同じ位置にある。 As shown in FIG. 12, the fin 530 has an opening / closing louver 535 provided in the opening 50 to open / close the opening 50. The upstream end of the flat tube 20 is at the same position as the upstream end of the fin 530, as in the first embodiment.
 本実施の形態6によれば、扁平管20の上流側端部は、フィン530の上流側端部と同じ位置にある。フィン530が扁平管20よりも突き出していないため、製造時又は輸送時にフィン530が倒れることを抑制することができる。即ち、フィン530の強度を確保することができる。また、フィン530の上流側端部に、開閉ルーバ535が開閉する開口50が形成されているため、フィン530において、空気の流れの上流側端部が下流側端部よりも伝熱面積が小さい。従って、フィン530の上流側の熱交換量と下流側の熱交換量との均衡を図ることができる。このように、本実施の形態6は、フィン530の上流側の熱交換量と下流側の熱交換量との均衡を図りつつ、フィン530の強度を確保することができる。 According to the sixth embodiment, the upstream end of the flat tube 20 is at the same position as the upstream end of the fin 530. Since the fin 530 does not protrude from the flat tube 20, it is possible to prevent the fin 530 from collapsing during manufacturing or transportation. That is, the strength of the fin 530 can be ensured. Further, since an opening 50 for opening and closing the opening / closing louver 535 is formed at the upstream end of the fin 530, the upstream end of the air flow in the fin 530 has a smaller heat transfer area than the downstream end. .. Therefore, it is possible to balance the amount of heat exchange on the upstream side and the amount of heat exchange on the downstream side of the fin 530. As described above, in the sixth embodiment, the strength of the fin 530 can be ensured while balancing the heat exchange amount on the upstream side and the heat exchange amount on the downstream side of the fin 530.
 また、フィン530の上流側端部に、開閉ルーバ535が開閉する開口50が形成されているため、フィン530の上流側における伝熱を抑制し、偏着霜を抑制することができる。これにより、空気が流れる通風路31が霜によって閉塞されることを抑制することができる。また、フィン530に付着した凝縮水が開口50を通過することにより、排水性を向上させることができる。 Further, since the opening 50 for opening and closing the opening / closing louver 535 is formed at the upstream end of the fin 530, heat transfer on the upstream side of the fin 530 can be suppressed and uneven frost can be suppressed. As a result, it is possible to prevent the ventilation passage 31 through which air flows from being blocked by frost. Further, the drainage property can be improved by allowing the condensed water adhering to the fin 530 to pass through the opening 50.
 1 空気調和機、2 室外機、3 室内機、4 冷媒回路、5 冷媒配管、6 圧縮機、7 流路切替装置、8 熱交換器、9 室外送風機、10 膨張部、11 室内熱交換器、12 室内送風機、20 扁平管、21 流路、30 フィン、30a 傾斜面、31 通風路、32 ルーバ、33 スリット、34 穴、40 ヘッダ、50 開口、108 熱交換器、130 フィン、134 隙間、208,208a 熱交換器、220,220a 扁平管、230 フィン、234,234a 隙間、308 熱交換器、330 フィン、360 補強部、408,408a 熱交換器、430,430a フィン、434,434a 補強部、508 熱交換器、530 フィン、535 開閉ルーバ。 1 air conditioner, 2 outdoor unit, 3 indoor unit, 4 refrigerant circuit, 5 refrigerant pipe, 6 compressor, 7 flow path switching device, 8 heat exchanger, 9 outdoor blower, 10 expansion part, 11 indoor heat exchanger, 12 indoor blower, 20 flat tube, 21 flow path, 30 fins, 30a inclined surface, 31 ventilation passage, 32 louver, 33 slit, 34 hole, 40 header, 50 opening, 108 heat exchanger, 130 fin, 134 gap, 208 , 208a heat exchanger, 220, 220a flat tube, 230 fins, 234,234a gap, 308 heat exchanger, 330 fins, 360 reinforcements, 408,408a heat exchangers, 430, 430a fins, 434,434a reinforcements, 508 heat exchanger, 530 fins, 535 open / close louver.

Claims (9)

  1.  内部に冷媒が流れる複数の扁平管と、
     前記扁平管同士の間に設けられ、前記扁平管に流れる冷媒の熱を伝達する複数のフィンと、を備え、
     前記扁平管の空気の流れの上流側端部は、前記フィンの前記上流側端部と同じ位置にあるか、又は前記フィンの前記上流側端部よりも突き出しており、
     前記扁平管の前記上流側端部又は前記フィンの前記上流側端部には、開口が形成されている
     熱交換器。
    Multiple flat pipes through which the refrigerant flows inside,
    A plurality of fins provided between the flat tubes and transmitting the heat of the refrigerant flowing through the flat tubes are provided.
    The upstream end of the air flow in the flat tube is at the same position as the upstream end of the fin or protrudes from the upstream end of the fin.
    A heat exchanger having an opening formed in the upstream end of the flat tube or the upstream end of the fin.
  2.  前記開口は、
     前記フィンの前記上流側端部に形成された穴である
     請求項1記載の熱交換器。
    The opening is
    The heat exchanger according to claim 1, which is a hole formed in the upstream end of the fin.
  3.  前記開口は、
     前記フィンの前記上流側端部において前記扁平管との間に形成された隙間である
     請求項1又は2記載の熱交換器。
    The opening is
    The heat exchanger according to claim 1 or 2, which is a gap formed between the fin and the flat tube at the upstream end.
  4.  前記フィンの前記上流側端部は、下流側端部よりも幅が狭い
     請求項3記載の熱交換器。
    The heat exchanger according to claim 3, wherein the upstream end of the fin is narrower than the downstream end.
  5.  前記扁平管の前記上流側端部は、下流側端部よりも幅が狭い
     請求項3又は4記載の熱交換器。
    The heat exchanger according to claim 3 or 4, wherein the upstream end of the flat tube is narrower than the downstream end.
  6.  前記フィンは、
     前記開口に設けられ、前記開口を開閉する開閉ルーバを有する
     請求項1~5のいずれか1項に記載の熱交換器。
    The fins
    The heat exchanger according to any one of claims 1 to 5, which is provided in the opening and has an opening / closing louver for opening / closing the opening.
  7.  内部に冷媒が流れる複数の扁平管と、
     前記扁平管同士の間に設けられ、前記扁平管に流れる冷媒の熱を伝達し、空気の流れの上流側端部が前記扁平管の前記上流側端部よりも突き出している複数のフィンと、
     前記フィンのうち前記扁平管よりも突き出した部分同士の間に設けられ、前記フィンを補強する補強部と、
     を備える熱交換器。
    Multiple flat pipes through which the refrigerant flows inside,
    A plurality of fins provided between the flat pipes to transfer the heat of the refrigerant flowing through the flat pipes, and the upstream end of the air flow protruding from the upstream end of the flat pipes.
    A reinforcing portion provided between the portions of the fins protruding from the flat tube to reinforce the fins, and
    A heat exchanger equipped with.
  8.  内部に冷媒が流れる複数の扁平管と、
     前記扁平管同士の間に設けられ、前記扁平管に流れる冷媒の熱を伝達し、空気の流れの上流側端部が前記扁平管の前記上流側端部よりも突き出している複数のフィンと、を備え、
     前記フィンの前記上流側端部には、前記フィンを補強する凹凸状の補強部が形成されている
     熱交換器。
    Multiple flat pipes through which the refrigerant flows inside,
    A plurality of fins provided between the flat pipes to transfer the heat of the refrigerant flowing through the flat pipes, and the upstream end of the air flow protruding from the upstream end of the flat pipes. Equipped with
    A heat exchanger in which an uneven reinforcing portion for reinforcing the fin is formed at the upstream end portion of the fin.
  9.  請求項1~8のいずれか1項に記載の熱交換器
     を備える空気調和機。
    An air conditioner comprising the heat exchanger according to any one of claims 1 to 8.
PCT/JP2020/020357 2020-05-22 2020-05-22 Heat exchanger and air conditioner WO2021234964A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022524852A JP7292510B2 (en) 2020-05-22 2020-05-22 heat exchangers and air conditioners
EP20937082.4A EP4155652A4 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner
US17/911,036 US20230101157A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air-conditioning apparatus
CN202080100232.8A CN115516269A (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner
PCT/JP2020/020357 WO2021234964A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020357 WO2021234964A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner

Publications (1)

Publication Number Publication Date
WO2021234964A1 true WO2021234964A1 (en) 2021-11-25

Family

ID=78708314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020357 WO2021234964A1 (en) 2020-05-22 2020-05-22 Heat exchanger and air conditioner

Country Status (5)

Country Link
US (1) US20230101157A1 (en)
EP (1) EP4155652A4 (en)
JP (1) JP7292510B2 (en)
CN (1) CN115516269A (en)
WO (1) WO2021234964A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353518B1 (en) 2022-04-19 2023-09-29 三菱電機株式会社 Heat exchangers and air conditioners

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3106000B1 (en) * 2020-01-03 2022-01-14 Valeo Systemes Thermiques Tube heat exchanger with spacers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002402A (en) * 2010-06-15 2012-01-05 Mitsubishi Electric Corp Heat exchanger
JP2012067971A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Heat exchanger and apparatus
WO2013160950A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
JP5563162B2 (en) 2011-07-14 2014-07-30 パナソニック株式会社 Outdoor heat exchanger and vehicle air conditioner
WO2017221303A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Heat exchanger, and heat pump device equipped with heat exchanger
JP2018009743A (en) * 2016-07-14 2018-01-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger
WO2018100738A1 (en) * 2016-12-02 2018-06-07 三菱電機株式会社 Heat exchanger and air conditioner
WO2018235215A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2478318A4 (en) * 2009-09-16 2014-05-28 Carrier Corp Free-draining finned surface architecture for a heat exchanger
JP7092987B2 (en) * 2018-01-22 2022-06-29 ダイキン工業株式会社 Indoor heat exchanger and air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012002402A (en) * 2010-06-15 2012-01-05 Mitsubishi Electric Corp Heat exchanger
JP2012067971A (en) * 2010-09-24 2012-04-05 Mitsubishi Electric Corp Heat exchanger and apparatus
JP5563162B2 (en) 2011-07-14 2014-07-30 パナソニック株式会社 Outdoor heat exchanger and vehicle air conditioner
WO2013160950A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
WO2017221303A1 (en) * 2016-06-20 2017-12-28 三菱電機株式会社 Heat exchanger, and heat pump device equipped with heat exchanger
JP2018009743A (en) * 2016-07-14 2018-01-18 日立ジョンソンコントロールズ空調株式会社 Heat exchanger
WO2018100738A1 (en) * 2016-12-02 2018-06-07 三菱電機株式会社 Heat exchanger and air conditioner
WO2018235215A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioner

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155652A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353518B1 (en) 2022-04-19 2023-09-29 三菱電機株式会社 Heat exchangers and air conditioners
WO2023203640A1 (en) * 2022-04-19 2023-10-26 三菱電機株式会社 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JPWO2021234964A1 (en) 2021-11-25
US20230101157A1 (en) 2023-03-30
CN115516269A (en) 2022-12-23
EP4155652A1 (en) 2023-03-29
JP7292510B2 (en) 2023-06-16
EP4155652A4 (en) 2023-06-21

Similar Documents

Publication Publication Date Title
JP5617935B2 (en) Heat exchanger and air conditioner
JP6790077B2 (en) Heat exchanger
JP6734002B1 (en) Heat exchanger and refrigeration cycle device
JP6878511B2 (en) Heat exchanger, air conditioner, indoor unit and outdoor unit
WO2021234964A1 (en) Heat exchanger and air conditioner
JP2011127831A (en) Heat exchanger and refrigerating cycle device including the same
JP2012163310A (en) Heat exchanger and air conditioner
WO2019004139A1 (en) Heat exchanger
JP6980117B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP3068761B2 (en) Heat exchanger
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
WO2018207321A1 (en) Heat exchanger and refrigeration cycle device
WO2016038865A1 (en) Outdoor unit and refrigeration cycle device using same
US20200256626A1 (en) Heat Exchanger and Refrigeration Cycle Apparatus
JP7414845B2 (en) Refrigeration cycle equipment
JP7130116B2 (en) air conditioner
JP2021191996A (en) Heat transfer pipe and heat exchanger
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
US11578930B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
WO2020178966A1 (en) Gas header, heat exchanger, and refrigeration cycle device
JP5664272B2 (en) Heat exchanger and air conditioner
JP6621928B2 (en) Heat exchanger and air conditioner
JP7305085B1 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524852

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020937082

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE