JP2002139282A - Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger - Google Patents

Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger

Info

Publication number
JP2002139282A
JP2002139282A JP2000332590A JP2000332590A JP2002139282A JP 2002139282 A JP2002139282 A JP 2002139282A JP 2000332590 A JP2000332590 A JP 2000332590A JP 2000332590 A JP2000332590 A JP 2000332590A JP 2002139282 A JP2002139282 A JP 2002139282A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
heat exchanger
plate
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000332590A
Other languages
Japanese (ja)
Inventor
Akira Ishibashi
晃 石橋
Masahiro Nakayama
雅弘 中山
Kunihiko Kaga
邦彦 加賀
Kenichi Yamada
賢一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000332590A priority Critical patent/JP2002139282A/en
Publication of JP2002139282A publication Critical patent/JP2002139282A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D2001/0253Particular components
    • F28D2001/026Cores
    • F28D2001/0266Particular core assemblies, e.g. having different orientations or having different geometric features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/02Streamline-shaped elements

Abstract

PROBLEM TO BE SOLVED: To resolve a problem that a conventional heat exchanger employing a circular tube or a flat tube does not permit to improve remarkably a ventilating resistance or a heat transfer performance and contrive energy saving due to the restriction in manufacturing or structure. SOLUTION: A multitude of sheet type fins are arranged in parallel and flat type heat transfer tubes are inserted from the upstream side of air flow into groove holes to braze the tube to the fin whereby the heat exchanger, miniaturized in size, reduced in a ventilating resistance and excellent in heat transfer performance can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、冷媒と気体等の
流体間での熱交換を行うフィンと伝熱管を用いた熱交換
器の構造及び製造方法に関するもので、またこの熱交換
器を用いた空調冷凍装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure and a manufacturing method of a heat exchanger using a fin and a heat transfer tube for exchanging heat between a refrigerant and a fluid such as a gas. Related to an air-conditioning and refrigeration system.

【0002】[0002]

【従来の技術】従来の熱交換器について図22乃至25
を用いて説明する。図22は特開平2−33595号公
報に開示された空調冷凍装置に用いられるフィンチュー
ブ型熱交換器を示す部分側面図である。この熱交換器
は、プレートフィンチューブ型と一般に呼ばれるもの
で、一定間隔で配置されその間を気体(空気)が流れる
(図中で気体通過方向を40で示した)板状フィン1
と、この各板状フィンへ直角に挿入され、内部に冷媒が
流れる伝熱管2からなり、伝熱管の段方向(気体の通過
する方向に対し直角方向)に隣接するもの同士の間の板
状フィン面には、スリット群50が設けられている。ス
リット群はスリット50の側端部が風向に対向するよう
に位置しており、この側端部において空気流の速度境界
層および温度境界層を更新する効果を期待出来、伝熱促
進が行われ熱交換能力が増大するとされている。また、
スリット50の両端に形成され、板状フィン面が切り起
こされた脚部が気体通過方向40に対して角度をなして
設置されている。このようにすることにより、伝熱管2
に沿った流れを形成し、スリットのない場合の、伝熱管
2の下流で発生する死水域(伝熱管後流部に生じる速度
欠損領域)による伝熱低下を防ぐ効果があると考えられ
ている。
2. Description of the Related Art FIGS.
This will be described with reference to FIG. FIG. 22 is a partial side view showing a fin tube type heat exchanger used in the air-conditioning refrigeration apparatus disclosed in Japanese Patent Laid-Open No. 33595/1990. This heat exchanger is generally called a plate fin tube type, and is disposed at regular intervals and through which gas (air) flows (the gas passing direction is indicated by 40 in the figure).
And a heat transfer tube 2 inserted at a right angle into each of the plate-like fins and through which a refrigerant flows, and a plate-like shape between adjacent heat transfer tubes in a stepwise direction (a direction perpendicular to the gas passing direction). A slit group 50 is provided on the fin surface. The slit group is located such that the side end of the slit 50 faces the wind direction, and at this side end, an effect of updating the velocity boundary layer and the temperature boundary layer of the air flow can be expected, and heat transfer is promoted. It is said that the heat exchange capacity is increased. Also,
Legs formed at both ends of the slit 50 and having cut and raised plate-like fin surfaces are installed at an angle to the gas passing direction 40. By doing so, the heat transfer tube 2
It is considered that there is an effect of preventing a decrease in heat transfer due to a dead water region (a velocity loss region generated in a downstream portion of the heat transfer tube) generated downstream of the heat transfer tube 2 when a flow is formed along the heat transfer tube 2 and there is no slit. .

【0003】また、図23に示すように、図22のフレ
ートフィン熱交換器に断面が偏平形状の伝熱管2を用い
た熱交換器も存在する。伝熱管に偏平管を用いることに
より、円形状の伝熱管と比較し、通風抵抗が大幅に小さ
くできるという利点がある。
Further, as shown in FIG. 23, there is a heat exchanger using a heat transfer tube 2 having a flat cross section in the flat fin heat exchanger of FIG. By using a flat tube as the heat transfer tube, there is an advantage that ventilation resistance can be significantly reduced as compared with a circular heat transfer tube.

【0004】このような偏平状の伝熱管を用いた熱交換
器を製造するためには、図24に示すように、適宜間隔
をおいて多数重ねられた板状フィン1を治具で固定し、
各板状フィン1の挿通穴6に挿入して板状フィン1と偏
平熱交換器を密着させ、その後、ロウ材や、接着剤によ
って密着させている。
In order to manufacture a heat exchanger using such a flat heat transfer tube, as shown in FIG. 24, a large number of plate fins 1 stacked at appropriate intervals are fixed with a jig. ,
The plate-shaped fins 1 are inserted into the insertion holes 6 of the plate-shaped fins 1 so that the plate-shaped fins 1 are brought into close contact with the flat heat exchanger, and then are brought into close contact with a brazing material or an adhesive.

【発明が解決しようとする課題】上に述べた従来の方法
では、図22の熱交換器は、伝熱管を円管としており、
スリットを設置した部分での通風抵抗が増大するため、
空気はスリットが存在しない伝熱管近傍の通風抵抗が比
較的小さい領域を選択的に流れるため、スリット50群
間を流れる空気の流速が減少し、期待した伝熱促進効果
が十分に得られなかった。これはスリットの幅や設置個
数に対し、フィン間を流れる空気流れに対するスリット
上での境界層の形成を最適に制御するための検討が十分
になされていないためであり、熱交換器の熱交換性能が
十分に引き出されていないという問題があった。また、
フィン1面上においてスリットを上流と下流と同数切り
起こしているために、空気温度と冷媒温度が近い下流部
においては熱交換量が少ないにもかかわらず、通風抵抗
のみが増大してしまうという問題点があった。また、伝
熱管2に円管を用いているために、伝熱管部における通
風抵抗や、伝熱管後流に生じる死水域を抑えることが難
しいという問題点があった。また、拡管方式でフィン−
管を接合しているのでプレートフィン−管の間に生じる
接触熱抵抗が大きく、空気−冷媒管の熱通過率を低下さ
せるという問題点があった。
In the conventional method described above, the heat exchanger of FIG. 22 has a circular heat transfer tube,
Because the ventilation resistance in the part where the slit is installed increases,
Since the air selectively flows in a region where the ventilation resistance near the heat transfer tube where the slit does not exist is relatively small, the flow velocity of the air flowing between the slits 50 decreases, and the expected heat transfer promoting effect cannot be obtained sufficiently. . This is because there has not been enough research to optimally control the formation of the boundary layer on the slit with respect to the air flow flowing between the fins with respect to the slit width and the number of installed slits. There was a problem that the performance was not sufficiently extracted. Also,
Since the same number of slits are cut and raised on the fin 1 surface as the upstream and downstream, only the ventilation resistance increases in the downstream portion where the air temperature and the refrigerant temperature are close, despite the small heat exchange amount. There was a point. In addition, since a circular tube is used for the heat transfer tube 2, there is a problem that it is difficult to suppress the ventilation resistance in the heat transfer tube portion and the dead water area generated downstream of the heat transfer tube. In addition, the fin-
Since the pipes are joined, the contact heat resistance generated between the plate fins and the pipes is large, and there is a problem that the heat transfer rate of the air-refrigerant pipes is reduced.

【0005】図23の熱交換器においては、図24のよ
うに偏平管2を板状フィン1の挿通穴6内に挿入する
際、図25に示すように、摩擦によって板状フィン1が
屈曲する虞れがあり、その結果、板状フィン1の間隔が
不均一となり、熱交換器の外観の体裁を悪くするばかり
でなく、通風抵抗の増大を招くという問題がある。した
がって、板状フィン1の挿通穴6内に偏平状伝熱管2を
挿入するには、高い精度と熟練を要し、組み立て製造に
手数と時間を要するとともに、製造コストが嵩むという
問題があった。扁平形状の伝熱管を用いた技術として特
開平10‐89870号記載の伝熱管をテーパー形状と
して組立性を良好にしたものが提案されているが製造の
しやすさを追求しているだけで熱交換器としての伝熱や
通風の性能に関して無視されており,このような技術で
は小型化や省エネルギー効果を得ることが出来ないとい
う問題が合った。
In the heat exchanger of FIG. 23, when the flat tube 2 is inserted into the insertion hole 6 of the plate-like fin 1 as shown in FIG. 24, the plate-like fin 1 is bent by friction as shown in FIG. As a result, the interval between the plate-like fins 1 becomes uneven, which not only deteriorates the appearance of the heat exchanger but also increases the ventilation resistance. Therefore, in order to insert the flat heat transfer tube 2 into the insertion hole 6 of the plate-like fin 1, there is a problem that high accuracy and skill are required, assembling and manufacturing are troublesome and time consuming, and the manufacturing cost is increased. . As a technology using a flat heat transfer tube, a heat transfer tube described in Japanese Patent Application Laid-Open No. H10-89870 with a tapered shape to improve the assemblability has been proposed. The performance of heat transfer and ventilation as a heat exchanger is neglected, and such a technique has a problem that it is not possible to obtain a size reduction and energy saving effect.

【0006】本発明は、上で述べたような問題点を解決
するためになされたものであり、熱交換器の伝熱管部
で、管部後流の死水域を減少させ、通風抵抗の減少およ
び熱交換量の向上を図るものである。又本発明は熱伝達
効率の良い熱交換器や冷凍空調装置を得るものである。
又本発明は、伝熱管と板状フィンの密着性に優れ、伝熱
性能が良好で、組み立て性にも優れる熱交換器や熱交換
器の組立方法を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and reduces the dead water area downstream of a pipe in a heat transfer pipe section of a heat exchanger, thereby reducing ventilation resistance. And the amount of heat exchange is improved. Further, the present invention is to obtain a heat exchanger and a refrigerating air conditioner having good heat transfer efficiency.
Another object of the present invention is to provide a heat exchanger and a method of assembling the heat exchanger, which have excellent adhesion between the heat transfer tubes and the plate-like fins, good heat transfer performance, and excellent assemblability.

【0007】[0007]

【課題を解決するための手段】この発明の請求項1に係
る熱交換器は、多数平行に配置され、その間を一次冷媒
が流れる板状フィンと、この各板状フィンへ挿入され、
内部に二次冷媒を流す複数の室を設け扁平状に形成され
ると共に板状フィンに流れる一次冷媒を扁平の長軸方向
に沿って流すように複数配置された伝熱管と,を備え,
伝熱管の扁平形状は一次冷媒の流れが風下方向に行くに
つれて扁平の短軸方向の長さを小さくするものである。
The heat exchanger according to claim 1 of the present invention is arranged in parallel with a plurality of plate fins through which a primary refrigerant flows, and inserted into each of the plate fins,
And a plurality of heat transfer tubes arranged in a flat shape and provided with a plurality of chambers through which the secondary refrigerant flows, and a plurality of heat transfer tubes arranged to flow the primary refrigerant flowing through the plate-like fins along the long axis direction of the flat shape.
The flat shape of the heat transfer tube reduces the length of the flat refrigerant in the short axis direction as the flow of the primary refrigerant proceeds in the leeward direction.

【0008】この発明の請求項2に係る熱交換器は、多
数平行に配置され、その間を一次冷媒が流れる板状フィ
ンと、この各板状フィンへ挿入され、内部に二次冷媒を
流すと共に扁平状に形成された伝熱管と,伝熱管を板状
フィンの一次冷媒を流す風上側の端部から挿入可能なよ
うに板状フィンの端部から一次冷媒の風下側に形成され
たフィン抜き穴と,を備え、伝熱管は板状フィンから常
に風上側が開放されているものである。
A heat exchanger according to a second aspect of the present invention is arranged in parallel with a plurality of plate-like fins through which a primary refrigerant flows, and inserted into each of the plate-like fins to flow a secondary refrigerant therein. Flat-shaped heat transfer tube and fin fin formed on the leeward side of the primary refrigerant from the end of the plate-like fin so that the heat transfer tube can be inserted from the end on the windward side where the primary refrigerant through which the plate-like fin flows , And the heat transfer tube is always open on the windward side from the plate-like fin.

【0009】この発明の請求項3に係る熱交換器は、伝
熱管の前縁は板状フィンの風上側の端部付近まで板状フ
ィンと接触すると共にこの端部にて板状フィンから突出
して開放されるものである。
According to a third aspect of the present invention, in the heat exchanger, the front edge of the heat transfer tube comes into contact with the plate-like fin up to near the windward end of the plate-like fin and projects from the plate-like fin at this end. It is open to the public.

【0010】この発明の請求項4に係る熱交換器は、伝
熱管は板状フィンの一次冷媒の最下流部端部に対し間隔
を持って板状フィンに覆われるように挿入されている。
In the heat exchanger according to a fourth aspect of the present invention, the heat transfer tube is inserted so as to be covered with the plate-like fin at an interval with respect to the most downstream end of the primary refrigerant of the plate-like fin.

【0011】この発明の請求項5に係る熱交換器は、伝
熱管の外形形状は、全体を曲面とすると共に風下方向に
行くにつれて曲率を大きくする。
[0011] In the heat exchanger according to claim 5 of the present invention, the outer shape of the heat transfer tube has a curved surface as a whole, and the curvature increases toward the leeward direction.

【0012】この発明の請求項6に係る熱交換器は、外
管形状にストレート部を設ける。
In a heat exchanger according to a sixth aspect of the present invention, a straight portion is provided in an outer tube shape.

【0013】この発明の請求項7に係る熱交換器は、伝
熱管内の複数の室の個々の断面積をほぼ同一とする。
In a heat exchanger according to a seventh aspect of the present invention, the plurality of chambers in the heat transfer tube have substantially the same sectional area.

【0014】この発明の請求項8に係る熱交換器は、伝
熱管の扁平の短軸をda、長軸をdbとすると、偏平率
H(=db/da)が、8≦Hである。
In the heat exchanger according to claim 8 of the present invention, the flattened short axis of the heat transfer tube is da and the long axis is db, and the flatness is
H (= db / da) is 8 ≦ H.

【0015】この発明の請求項9に係る熱交換器は、板
状フィンの一次冷媒が流れる方向の幅をL、伝熱管の長
軸をdbとすると、1≦L/db≦1.5である。
According to a ninth aspect of the present invention, when the width of the plate-shaped fin in the direction in which the primary refrigerant flows is L and the long axis of the heat transfer tube is db, 1 ≦ L / db ≦ 1.5. is there.

【0016】この発明の請求項10に係る熱交換器は、
伝熱管を複数配置し、この配置方向である一次冷媒の流
れとは直角方向の段方向ピッチをDp、伝熱管の扁平の
短軸をdaとすると、0.6≦(Dp−da)/Dp≦
0.95である。
A heat exchanger according to a tenth aspect of the present invention comprises:
Assuming that a plurality of heat transfer tubes are arranged, and a stepwise pitch perpendicular to the flow of the primary refrigerant in this arrangement direction is Dp, and a flat short axis of the heat transfer tubes is da, 0.6 ≦ (Dp−da) / Dp ≤
0.95.

【0017】この発明の請求項11に係る熱交換器は、
板状フィンの風上側の端部と伝熱管の前縁部の距離をL
1とすると、L1<da/8である。
[0017] The heat exchanger according to claim 11 of the present invention comprises:
The distance between the windward end of the plate fin and the front edge of the heat transfer tube is L
Assuming that 1, L1 <da / 8.

【0018】この発明の請求項12に係る熱交換器は、
板状フィンの面上に設けられ、気体の流れに対向して開
口部を有するスリットと、を備え、フィン幅Lの半分L
/2の中心線に対して下流部に設けたスリットの数より
も、上流部に設けたスリットの数が多いものである。
A heat exchanger according to a twelfth aspect of the present invention comprises:
A slit provided on the surface of the plate-like fin and having an opening facing the flow of gas, and having a half length L of the fin width L.
The number of slits provided in the upstream portion is larger than the number of slits provided in the downstream portion with respect to the center line of / 2.

【0019】この発明の請求項13に係る熱交換器は、
板状フィンの面上に設けられたスリットの脚部と板状フ
ィン面の交線が、フィン面を通過する近傍の局所的な気
体流れの方向とほぼ平行である。
A heat exchanger according to a thirteenth aspect of the present invention comprises:
The intersection of the leg of the slit provided on the surface of the plate-shaped fin and the plate-shaped fin surface is substantially parallel to the direction of the local gas flow near the fin surface.

【0020】この発明の請求項14に係る熱交換器は、
板状フィンと伝熱管は加熱して固着するものである。
A heat exchanger according to a fourteenth aspect of the present invention includes:
The plate-like fin and the heat transfer tube are heated and fixed.

【0021】この発明の請求項15に係る熱交換器は、
伝熱管と板状フィンに同じ材料を用いるものである。
A heat exchanger according to a fifteenth aspect of the present invention comprises:
The same material is used for the heat transfer tube and the plate-like fin.

【0022】この発明の請求項16に係る冷凍空調装置
は、二次冷媒を圧縮機、凝縮器熱交換器、絞り装置、蒸
発器熱交換器を循環させる冷凍サイクルと,を備え,凝
縮器熱交換器及び蒸発器熱交換器の少なくとも一方に本
発明の熱交換器を用いたものである。
A refrigeration air conditioner according to a sixteenth aspect of the present invention includes a refrigeration cycle for circulating a secondary refrigerant through a compressor, a condenser heat exchanger, a throttle device, and an evaporator heat exchanger. The heat exchanger of the present invention is used for at least one of an exchanger and an evaporator heat exchanger.

【0023】この発明の請求項17に係る冷凍空調装置
は、一次冷媒を、凝縮器熱交換器、又は、蒸発器熱交換
器のフィンの間を流す送風機と,を備え,扁平形状の伝
熱管を有する熱交換器へ送風する送風機にプロペラファ
ンを用いたものである。
A refrigeration / air-conditioning apparatus according to a seventeenth aspect of the present invention includes a blower for flowing a primary refrigerant between fins of a condenser heat exchanger or an evaporator heat exchanger. In this case, a propeller fan is used as a blower that blows air to a heat exchanger having the following.

【0024】この発明の請求項18に係る熱交換器の製
造方法は、多数平行に配置され、その間を一次冷媒が流
れる板状フィンと、この各板状フィンへ固定され、内部
に二次冷媒を流す扁平状に形成されると共に板状フィン
に流れる一次冷媒を扁平の長軸方向に沿って流すように
複数配置された伝熱管と,を備えた熱交換器において,
板状フィンに一次冷媒の流れる方向の一端を開放し他端
側を閉鎖する抜き穴を形成するステップと,板状フィン
の抜き穴に伝熱管を開放側である常に一方の端部から挿
入して組み立てるステップと,板状フィンと伝熱管を組
み立てた後でフィンと伝熱管を加熱して固着させるステ
ップと,を備えたものである。
According to a method for manufacturing a heat exchanger according to the eighteenth aspect of the present invention, a large number of plate-shaped fins are arranged in parallel and a primary refrigerant flows between the plate-shaped fins, and the secondary refrigerant is fixed to each of the plate-shaped fins. A plurality of heat transfer tubes that are formed in a flat shape and through which the primary refrigerant flowing through the plate-shaped fins flows along the flat long axis direction.
Forming a hole in the plate-shaped fin to open one end in the direction in which the primary refrigerant flows and closing the other end; and inserting a heat transfer tube into the hole in the plate-shaped fin from one end, which is always the open side. And assembling the plate-shaped fins and the heat transfer tubes, and then heating and fixing the fins and the heat transfer tubes.

【0025】この発明の請求項19に係る熱交換器の製
造方法は、板状フィンと伝熱管を加熱して固着させた後
で、板状フィンに親水材を塗付するものである。
In the method for manufacturing a heat exchanger according to the nineteenth aspect of the present invention, the plate-like fin and the heat transfer tube are heated and fixed, and then the plate-like fin is coated with a hydrophilic material.

【0026】[0026]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1による熱交換器のフィンおよび伝熱管を示す
図で、図2はその平面図である。図3は図2のA−A断
面から実施の形態1による熱交換器のフィンおよび伝熱
管を見た側面図である。板状フィン1と前記板状フィン
1に対して垂直に挿入された伝熱管2より構成されてお
り、空気流に対し並列に配置され、段方向に隣接する伝
熱管の間の板状フィン面に設けられたスリット11ない
し15を有している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a diagram showing fins and heat transfer tubes of a heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a plan view thereof. FIG. 3 is a side view of the fins and the heat transfer tubes of the heat exchanger according to the first embodiment viewed from the AA cross section in FIG. A plate-like fin 1 and a heat transfer tube 2 inserted perpendicular to the plate-like fin 1 are arranged in parallel to the air flow, and the plate-like fin surface between the heat transfer tubes adjacent in a stepwise direction. Have slits 11 to 15 provided therein.

【0027】この構造においてフィン1の積層方向のピ
ッチFpはFp=0.0012mであり、フィン厚みF
t=0.0001m、また空気のながれ方向のフィン幅
はL=0.0254m、熱交換器の前面風速UfはUf
=1.0m/s、熱交換器の段方向に隣接する伝熱管の
中心の距離である段ピッチDpはDp=0.0133
m、伝熱管は風下にいくにつれて、短軸長さxが小さく
なり、管側面の曲率が大きく,すなわち半径が小さくな
る概翼形状とし、フィン前縁部まで、フィンカラー4と
伝熱管2がロウ付けにより、完全接合されており、伝熱
管がフィンカラーと接していないのは、伝熱管前縁部の
みである。また、伝熱管内には耐圧を保持するため、管
内に9本の隔壁が設けられており、管内は10室に分割
されている。また、各室の冷媒流路の冷媒流れ方向に対
して垂直方向の断面積は同一である。フィンから伝熱管
が突出している部分のフィン前縁からの長さはL1=
0.0003mである。また、空気のながれ方向に平行
な長軸径をdb=0.022m、空気の流れ方向に対し
前縁部の短軸径をda=0.0025mとし、偏平率は
H=db/da=8.8とする。伝熱管の空気の流れる
方向に対する直列の数である列数は1列の例である。ま
た、段方向の伝熱管と伝熱管の間にはスリットを5つ備
えている。
In this structure, the pitch Fp of the fins 1 in the stacking direction is Fp = 0.012 m, and the fin thickness Fp
t = 0.0001 m, the fin width in the air flow direction is L = 0.0254 m, and the front wind speed Uf of the heat exchanger is Uf
= 1.0 m / s, and the stage pitch Dp, which is the distance between the centers of the heat transfer tubes adjacent in the stage direction of the heat exchanger, is Dp = 0.133.
m, as the heat transfer tube goes downwind, the short-axis length x becomes smaller, the curvature of the tube side becomes larger, that is, the radius becomes smaller, and the fin collar 4 and the heat transfer tube 2 extend to the fin leading edge. The heat transfer tube is completely joined by brazing, and the heat transfer tube is not in contact with the fin collar only at the front end portion of the heat transfer tube. Further, in order to maintain the pressure resistance, the heat transfer tube is provided with nine partitions in the tube, and the inside of the tube is divided into ten chambers. Further, the cross-sectional area of the refrigerant flow path of each chamber in the direction perpendicular to the refrigerant flow direction is the same. The length of the portion where the heat transfer tube protrudes from the fin from the leading edge of the fin is L1 =
0.0003 m. In addition, the major axis diameter parallel to the air flow direction is db = 0.022 m, the minor axis diameter of the leading edge in the air flow direction is da = 0.0025 m, and the flatness is H = db / da = 8. .8. The number of rows, which is the number of series in the direction in which the air flows through the heat transfer tubes, is an example of one row. In addition, five slits are provided between the heat transfer tubes in the step direction.

【0028】上記のように構成される熱交換器におい
て、伝熱管2はアルミニウム合金製押し出し形材にて形
成され、板状フィン1はアルミニウム合金製板材にて形
成されている。一次冷媒である空気流はフィンの間を抜
けてフィンや伝熱管と熱交換することになる。
In the heat exchanger configured as described above, the heat transfer tube 2 is formed by an extruded member made of an aluminum alloy, and the plate-like fin 1 is formed by a plate made of an aluminum alloy. The air flow as the primary refrigerant passes between the fins and exchanges heat with the fins and the heat transfer tubes.

【0029】図4は板状フィン1上に設けられたフィン
カラー4とフィンの抜き穴であるフィン拡開部5であ
る。フィンカラーはフィン拡開部全体にわたって立てら
れる。また、フィン拡開部は伝熱管2の外形形状と同様
に翼形状すなわち卯形状となっている。このように伝熱
管の観側面と同様に風下に行くにつれ曲率,すなわち1
/半径が大きくなっている。
FIG. 4 shows a fin collar 4 provided on the plate-like fin 1 and a fin expanding portion 5 which is a hole for removing the fin. The fin collar stands up over the entire fin extension. Further, the fin expanding portion has a wing shape, that is, a rattan shape, like the outer shape of the heat transfer tube 2. Thus, the curvature, that is, 1
/ The radius is large.

【0030】上記のように構成される熱交換器を組み立
てる方法を図5,図6で説明する。先ずS1としてプレ
スによりフィンに伝熱管挿入用に扁平な抜き穴を設け
る。この際フィン拡開部を同時に形成させる。所定の多
数板状フィン1を図示しない治具間固定し、一定間隔で
セットし抜き穴を合わせてフィン組立構造を形成させ
る。
A method of assembling the heat exchanger configured as described above will be described with reference to FIGS. First, as S1, a flat hole is formed in a fin for inserting a heat transfer tube by a press. At this time, the fin expanding portion is formed at the same time. A predetermined number of plate-like fins 1 are fixed between jigs (not shown), set at regular intervals, and the holes are aligned to form a fin assembly structure.

【0031】次に伝熱管にロウ材を塗布(S2)し、図
5(a)に示すように、伝熱管2をフィンの端部から拡
開部に挿入(S3)していき、(b)に示すように、図
3におけるフィンカラー4と伝熱管が密着するまで伝熱
管2を移動させる。さらに熱交換器の端部位置で伝熱管
とヘッダー部品を仮組立(S4)し,真空連続炉に投入
してロー付け部の加熱接合(S5)を行う。炉から取り
出した後でフィン表面に親水性コーティング材を塗布
(S6)する。最後に温度を上げずに乾燥(S7)させ
る。
Next, a brazing material is applied to the heat transfer tube (S2), and as shown in FIG. 5A, the heat transfer tube 2 is inserted into the expanded portion from the end of the fin (S3). ), As shown in the figure
The heat transfer tube 2 is moved until the fin collar 4 and the heat transfer tube in 3 come into close contact. Further, the heat transfer tube and the header part are temporarily assembled at the end position of the heat exchanger (S4), and are put into a vacuum continuous furnace to perform the heat joining of the brazing part (S5). After taking out from the furnace, a hydrophilic coating material is applied to the fin surface (S6). Finally, drying is performed without raising the temperature (S7).

【0032】このように、フィンカラーと伝熱管を密着
させる方法として、ロウ付けを行う場合、従来(図23
−25)のように伝熱管をフィンに貫通させる方式のよ
うに、ロウ材を伝熱管に付着した場合、クリアランスの
確保が困難であるため、挿入しにくい。本実施の形態の
場合、伝熱管をフィン前縁から、はめ込むため、伝熱管
にロウ材を塗布すれば、フィンと蝋材を完全に密着させ
ることができる。また、本実施の形態の場合、伝熱管は
風下に対して、短軸長さxが小さくなる概卯形状となっ
ているため、従来の偏平管と比較し、ロウ材が伝熱管-
フィンの密着部全体に滑らかに行き渡り易く、接触熱伝
達率αcがほぼ無限大まで大きくなることが予想され
る。このように翼形状や卯形状にせずストレート主体の
形状でもフィン組立の側部からフィン全体に挿入する組
立により製造が簡単になる。又本発明ではフィンを多数
枚組み立てた状態から常に熱交換器では風上側となる一
方方向から伝熱管を挿入するので製造装置が簡単になり
量産が容易である。更にロー付け方法を使用しなくと
も,フィン組立へ伝熱管を挿入した後で拡開部を狭める
方向にフィン全体に荷重を加えることで密着性を良く
し、高周波加熱により接合させることも可能である。
As described above, when the brazing is performed as a method of bringing the fin collar and the heat transfer tube into close contact with each other, a conventional method (FIG. 23) is used.
When a brazing material is attached to the heat transfer tube as in the method of penetrating the heat transfer tube through the fins as in the case of -25), it is difficult to secure the clearance, and thus it is difficult to insert the heat transfer tube. In the case of the present embodiment, since the heat transfer tube is fitted from the front edge of the fin, if the brazing material is applied to the heat transfer tube, the fin and the brazing material can be completely adhered. Further, in the case of the present embodiment, since the heat transfer tube has a general shape in which the short-axis length x is reduced with respect to the leeward side, the brazing material is smaller than that of the conventional flat tube.
It is easy to smoothly spread over the entire contact portion of the fin, and it is expected that the contact heat transfer coefficient αc will increase to almost infinity. As described above, even when the fin is not formed into a wing shape or a rabbit shape but is mainly a straight shape, the manufacturing is simplified by assembling the fin from the side of the fin assembly into the entire fin. In the present invention, since the heat transfer tubes are always inserted from one side, which is on the windward side of the heat exchanger, from the state in which many fins are assembled, the manufacturing apparatus is simple and mass production is easy. Furthermore, even if the brazing method is not used, after the heat transfer tube is inserted into the fin assembly, a load is applied to the entire fin in the direction to narrow the expanded portion, thereby improving the adhesion and joining by high frequency heating. is there.

【0033】以上の構造の熱交換器で、熱交換器の伝熱
性能(フィン-伝熱管間の接触熱伝達率を除く)と通風
抵抗について、以上に述べた形状パラメータの定性的傾
向について以下に説明する。偏平伝熱管を有する熱交換
器において、偏平率(=長軸da/短軸db)が大きく
なるほど通風抵抗は小さくなる。また、スリットを設け
た場合、偏平率が大きいほどフィン効率は増大する。
In the heat exchanger having the above structure, the heat transfer performance (excluding the contact heat transfer coefficient between the fin and the heat transfer tube) and the ventilation resistance of the heat exchanger, and the qualitative tendency of the shape parameters described above are as follows. Will be described. In a heat exchanger having a flat heat transfer tube, the ventilation resistance decreases as the flatness ratio (= long axis da / short axis db) increases. In the case where a slit is provided, the fin efficiency increases as the flattening rate increases.

【0034】円管熱交換器の場合、伝熱管から、フィン
端部までの熱の伝わる距離が大きく、伝熱管温度とフィ
ン端部の温度の差が大きい。一方、本実施の形態の熱交
換器は伝熱管の長軸径がフィン幅に対して87%を占め、
伝熱管からフィン端部まで熱が伝わる距離が小さい。そ
のため、伝熱管温度とフィン端部温度の差は小さい。し
たがって、円管熱交換器と比べ、本実施の形態の熱交換
器はフィン効率が良い。また、伝熱管2の周長が増大
し、伝熱管2外周部の伝熱面積が大きくなる分、空気側
の熱交換量が増大する。また、フィンと管の接触部の面
積が増大する分、熱交換量は向上する。また、管内では
伝熱面積が大きくなるため、冷媒側の伝熱性能が向上す
る。
In the case of a tube heat exchanger, the distance from the heat transfer tube to the fin ends is long, and the difference between the heat transfer tube temperature and the fin end temperature is large. On the other hand, in the heat exchanger of the present embodiment, the major axis diameter of the heat transfer tube occupies 87% of the fin width,
The distance that heat is transferred from the heat transfer tube to the end of the fin is small. Therefore, the difference between the heat transfer tube temperature and the fin end temperature is small. Therefore, the fin efficiency of the heat exchanger of the present embodiment is higher than that of the tube heat exchanger. In addition, the circumferential length of the heat transfer tube 2 increases, and the heat transfer area on the outer peripheral portion of the heat transfer tube 2 increases, so that the amount of heat exchange on the air side increases. In addition, the amount of heat exchange increases as the area of the contact portion between the fin and the tube increases. In addition, since the heat transfer area increases in the pipe, the heat transfer performance on the refrigerant side is improved.

【0035】図7(a)は、冷凍サイクルに本実施の形態
の熱交換器を使用した場合の室内熱交換器と送風機を示
している。また、送風機は貫流送風機の例である。図7
(b)は、側面がストレートとなっている偏平管および本
実施の形態における伝熱管を風洞内においた場合の死水
域の大きさを示している。死水域は偏平率を上げるにし
たがって、小さくなるため、熱伝達率は向上し、送風機
で生じる騒音を抑えることが出来る。円管の場合、風向
に対して、投影断面積が大きいため、管の後流部の死水
域10(伝熱管後流部に生じる速度欠損領域)は大き
い。通常の偏平管は管の側面が風向に対し水平となった
いるため、管の後流は剥離しやすい。一方本実施の形態
の熱交換器は偏平率が高く、管の風向に対する投影断面
積が大きい。また、本時実施の形態の熱交換器は管の側
面が流線形となっているため、管側面部での主流の剥離
が生じにくく、死水域10は非常に小さくなっている。
この死水域がフィンから離れ送風機にかかるようになる
と一様でない風を切ることにより著しく騒音が大きくな
る。従って、死水域がフィンからあまり外部に伸びない
ようにする必要がある。このため風下側に行くにつれ伝
熱管の外形形状の曲率を大きくしたり扁平率を変えた
り,ストレートに狭くしていき死水域を小さくするほう
が有利である。
FIG. 7A shows an indoor heat exchanger and a blower when the heat exchanger of the present embodiment is used in a refrigeration cycle. The blower is an example of a once-through blower. FIG.
(b) shows the size of the dead water area when the flat tube having a straight side surface and the heat transfer tube in the present embodiment are placed in the wind tunnel. Since the dead water area becomes smaller as the flattening rate increases, the heat transfer coefficient improves, and the noise generated by the blower can be suppressed. In the case of a circular pipe, since the projected cross-sectional area is large with respect to the wind direction, the dead water area 10 (velocity loss area generated in the downstream part of the heat transfer pipe) in the downstream part of the pipe is large. In a normal flat tube, the side of the tube is desired to be horizontal to the wind direction, so that the wake of the tube is easily separated. On the other hand, the heat exchanger of the present embodiment has a high flatness and a large projected sectional area with respect to the wind direction of the tube. Further, in the heat exchanger of the present embodiment, since the side surface of the tube is streamlined, separation of the main flow at the side surface of the tube hardly occurs, and the dead water area 10 is extremely small.
When this dead water area separates from the fins and hits the blower, it cuts off the uneven wind, thereby significantly increasing the noise. Therefore, it is necessary to prevent the dead water area from extending from the fins to the outside. For this reason, it is more advantageous to increase the curvature of the outer shape of the heat transfer tube, change the flatness, or make it narrower straight to make the dead water area smaller toward the leeward side.

【0036】伝熱管内は図3などに示すように10室に
分割されているが、分割数は増えるほど、冷媒の圧力に
よる伝熱管の変形が押さえられる。また、分割数が増え
るほど、管内の伝熱面積が大きくなるため、熱交換能力
は向上する。また、個別の各室の流路断面積はなるべく
一定としたほうがよい。これは各室の流量、冷媒圧力損
失、熱交換量を揃えることができるためである。
Although the inside of the heat transfer tube is divided into ten chambers as shown in FIG. 3 and the like, as the number of divisions increases, the deformation of the heat transfer tube due to the pressure of the refrigerant is suppressed. Also, as the number of divisions increases, the heat transfer area in the tube increases, so that the heat exchange capacity improves. Further, it is preferable that the cross-sectional area of the flow passage of each individual chamber is as constant as possible. This is because the flow rate, refrigerant pressure loss, and heat exchange amount in each chamber can be made uniform.

【0037】図8(a)は、側面がストレートとなってい
る伝熱管と本実施の形態の伝熱管における冷房時の露の
付着状態を示している。露16は伝熱管の風下にて重力
方向gの影響で図の下方に垂れ下がる。本実施の形態の
場合、側面がストレートとなっている伝熱管と比較し、
伝熱管側面の曲率が風下にいくにつれて大きくなるた
め、表面張力が風上方向に働き、側面がストレートの伝
熱管と比べると露16が伝熱管側面に均等に付き易く、
伝熱管における露16のホールドがおきにくい。また、
熱交換器のフィン配置方向が上下方向であるため、図8
(b)のように管側面において、本実施の形態の伝熱管
の方が側面がストレートとなっている伝熱管よりも剥離
しにくいため、管側面での風速が大きく、露が管側後流
部からフィンを伝わって流され易い。したがって、本実
施の形態の伝熱管を熱交換器に用いた場合、通風抵抗の
増加が側面がストレートの伝熱管を用いた熱交換器に比
べると露だれの影響を受けにくく小さくなる。
FIG. 8A shows the state of dew adhering during cooling in the heat transfer tube having a straight side surface and the heat transfer tube of the present embodiment. The dew 16 hangs down in the drawing under the influence of the direction of gravity g downwind of the heat transfer tube. In the case of the present embodiment, compared with a heat transfer tube having a straight side surface,
Since the curvature of the side surface of the heat transfer tube increases as it goes downwind, the surface tension acts in the windward direction, and the dew 16 is more easily attached to the side surface of the heat transfer tube as compared with a heat transfer tube having a straight side surface.
It is difficult to hold the dew 16 in the heat transfer tube. Also,
Since the fin arrangement direction of the heat exchanger is the vertical direction, FIG.
As shown in (b), on the side of the tube, the heat transfer tube of the present embodiment is less likely to peel off than the heat transfer tube having a straight side, so that the wind speed on the side of the tube is large and dew flows downstream of the tube. It is easy to flow down the fins from the part. Therefore, when the heat transfer tube of the present embodiment is used for a heat exchanger, the increase in ventilation resistance is less susceptible to the effects of dew as compared with a heat exchanger using a heat transfer tube having a straight side surface.

【0038】図8(b)は、本実施の形態の熱交換器を冷
却器として用いた場合を示している。本実施の形態の熱
交換器の場合、伝熱管後縁部とフィン後縁の間に間隔が
あいているため、露16がこの間隔を流路としてフィン
後縁付近を流れ、熱交換器の外に飛び出していかない。
よって、必ず伝熱管後縁部とフィン後縁の間に間隔をあ
ける必要がある。また、フィン幅Lを小さくすると伝熱
面積が小さくなり、熱交換量が小さくなるが、熱伝達率
は向上、通風抵抗が減少し風量増加を図ることができ
る。楕円熱交換器の場合、円管熱交換器と比べ、伝熱管
部の通風抵抗が小さいため、フィン幅を小さくすること
による通風抵抗低下が大きくなる。すなわち小型で通風
性能の良い装置が得られる。
FIG. 8B shows a case where the heat exchanger of the present embodiment is used as a cooler. In the case of the heat exchanger of the present embodiment, since there is an interval between the rear edge of the heat transfer tube and the rear edge of the fin, the dew 16 flows near the rear edge of the fin using this interval as a flow path, and Don't jump out.
Therefore, it is necessary to provide a space between the rear edge of the heat transfer tube and the rear edge of the fin. Further, when the fin width L is reduced, the heat transfer area is reduced and the heat exchange amount is reduced, but the heat transfer coefficient is improved, the ventilation resistance is reduced, and the air volume can be increased. In the case of the elliptical heat exchanger, the ventilation resistance of the heat transfer tube portion is smaller than that of the circular tube heat exchanger, so that the reduction of the ventilation resistance by reducing the fin width increases. That is, a small-sized apparatus having good ventilation performance can be obtained.

【0039】風向に対してフィン前縁から突出している
伝熱管の前縁までの距離L1は小さくすると、熱交換量
が大きくなる(ただし伝熱管形状は一定)。これは、フ
ィン−伝熱管部の接触部面積Ac[m2]が大きくなるこ
と、伝熱管がフィン幅内に入っている面積が大きく、フ
ィンの温度が全体に、伝熱管の温度に近くなるため、フ
ィン効率が大きくなるためである。次に、上述した形状
パラメータを定量的に評価するため、以下に述べる手法
にて熱交換器の伝熱性能と通風抵抗を算出する。
When the distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube protruding from the wind direction is reduced, the amount of heat exchange increases (however, the shape of the heat transfer tube is constant). This is because the area Ac [m 2 ] of the contact portion between the fin and the heat transfer tube becomes large, the area where the heat transfer tube is within the fin width is large, and the temperature of the fin becomes close to the temperature of the heat transfer tube as a whole. Therefore, the fin efficiency is increased. Next, in order to quantitatively evaluate the shape parameters described above, the heat transfer performance and ventilation resistance of the heat exchanger are calculated by the method described below.

【0040】空気と板状フィンの間の熱伝達率α[W/
(m2K)]は一般に次式で定義される。 α=Nu×λ/De Nu=C1×(Re×Pr×De/L/Ln/2)C 2 Re=U×De/ν ここで、Nuはヌセルト数、Reはレイノルズ数であ
る。Prはプランドル数、λは空気の熱伝導率、νは空
気の動粘性係数、Lnは列数で、それぞれが常温常圧の
場合にPr=0.72、λ=0.0261[W/(m
K)]、ν=0.000016[m2/s]である。ま
た、C1、C2は係数である。ここで、代表長さDe[m]
を次式にて定義する。 De=4×(L×Dp/2−π×da×db/4)×(F
p−Ft)/{2×(L×Dp/2−π×da×db/
4)+π×((da2+db2)/2)1/2×(Fp−F
t)) 板状フィン間の自由通過体積基準の風速U[m/s]と、熱交
換器の前面風速Uf[m/s]とは、以下の式で定義さ
れる。 U=Uf×L×Dp×Fp/((L×Dp/2−π/4×
da×db)×(Fp−Ft))/2
The heat transfer coefficient α [W /
(M 2 K)] is generally defined by the following equation. α = Nu × λ / De Nu = C 1 × (Re × Pr × De / L / Ln / 2) C 2 Re = U × De / ν where Nu is the Nusselt number and Re is the Reynolds number. Pr is the number of prandles, λ is the thermal conductivity of air, ν is the kinematic viscosity of air, Ln is the number of rows, and Pr = 0.72 and λ = 0.0261 [W / (M
K)], and ν = 0.000016 [m 2 / s]. C 1 and C 2 are coefficients. Here, the representative length De [m]
Is defined by the following equation. De = 4 × (L × Dp / 2−π × da × db / 4) × (F
p-Ft) / {2 × (L × Dp / 2−π × da × db /
4) + π × ((da 2 + db 2 ) / 2) 1/2 × (Fp-F
t)) The wind speed U [m / s] based on the free passage volume between the plate fins and the front wind speed Uf [m / s] of the heat exchanger are defined by the following equations. U = Uf × L × Dp × Fp / ((L × Dp / 2−π / 4 ×
da × db) × (Fp−Ft)) / 2

【0041】また、フィン効率ηは次式で定義される。 η=1/(1+ψ×α) ψ={(2× L×Dp/π)0.5−((da2+db2)/2)
1/2}2×(2×L×Dp/π)0.5/((da2+db2)/2)
1/4/6/Ft/λf×(1/2)0.5×(L/L1/6)0.2 λf[W/(mK)]は板状フィンの熱伝導率である。
The fin efficiency η is defined by the following equation. η = 1 / (1 + ψ × α) ψ = {(2 × L × Dp / π) 0.5 − ((da 2 + db 2 ) / 2)
1/2 } 2 × (2 × L × Dp / π) 0.5 / ((da 2 + db 2 ) / 2)
1/4 / 6 / Ft / λf × (1/2) 0.5 × (L / L 1/6) 0.2 λf [W / (mK)] is the thermal conductivity of the plate fin.

【0042】一方、空気と板状フィンの間の圧力損失
(通風抵抗)ΔP[Pa]は次式にて定義される。 ΔP=F×L×Ln×ρ×U2/De F=C3×De/L/Ln/2+C4×ReC 5×(De/L/
Ln/2)1+C 5 ここで、Fは摩擦損失係数で、C3、C4、C5は係数であ
る。また、ρは空気の密度で、常温常圧の場合に1.2
[kg/m3]程度となる。
On the other hand, the pressure loss (ventilation resistance) ΔP [Pa] between the air and the plate-like fin is defined by the following equation. ΔP = F × L × Ln × ρ × U 2 / De F = C 3 × De / L / Ln / 2 + C 4 × Re C 5 × (De / L /
Ln / 2) 1 + C 5 where F is a friction loss coefficient, and C 3 , C 4 and C 5 are coefficients. Ρ is the density of air, which is 1.2 at normal temperature and normal pressure.
[kg / m 3 ].

【0043】また、本実施の形態における熱交換器を空
調冷凍装置に使用した場合の送風機駆動力低減を図るた
め、送風機駆動力を熱交換器の性能評価項目に追加す
る。送風駆動力Pf[W]は次式にて定義される。但しΔP
1は風路全体の圧力差であって,圧損である。 Pf=ΔP1×Q ここで、Qは熱交換器を通過する空気流量[kg/s]
であり、伝熱管長手方向の長さをW[m]、段数をDn
とすると、熱交換器の前面風速Uf[m/s]とは以下
の関係がある。 Uf= Q/ρ/(W×Dp×Dn)
Further, in order to reduce the blower driving force when the heat exchanger in the present embodiment is used for an air conditioning refrigeration apparatus, the blower driving force is added to the performance evaluation items of the heat exchanger. The blowing drive force Pf [W] is defined by the following equation. Where ΔP
1 is a pressure difference across the air passage, which is a pressure loss. Pf = ΔP1 × Q where Q is the air flow rate passing through the heat exchanger [kg / s]
The length of the heat transfer tube in the longitudinal direction is W [m], and the number of stages is Dn.
Then, there is the following relationship with the front wind speed Uf [m / s] of the heat exchanger. Uf = Q / ρ / (W × Dp × Dn)

【0044】以下、フィン幅L、フィン前縁から伝熱管
2の前縁までの距離L1、伝熱管の長軸da、短軸d
b、フィン幅LをそれぞれパラメータとしてΔPを計算
し、送風機駆動力Pf一定の条件で空気流量Qを決定し
て、この時の熱交換器の熱交換能力Eを計算した。な
お、スリット形状、配置は一定とする。また、熱交換能
力は単位温度差当たりの熱交換量E[W/K]で評価
し、次式による。 E=Q×H×ε ε=1−exp(−T) T=Ao×K/(Q×H) K=1/(1/αo+Ao/Ai/αi+Ac/Ai/αc) αo=1/(Ao/(Ap+η×Af) ここで、H[W/(kg・K)]は空気比熱、εは温度効率、K[W
/(m2K)]は熱通過率、αc[W/(m2K)]はフィン-
伝熱管部の接触部熱伝達率、Ao[m2]は熱交換器の空気
側全伝熱面積、Ap[m2]は熱交換器の空気側パイプ伝熱
面積、Af[m2]は熱交換器の空気側フィン伝熱面積、Ai
[m2]は熱交換器の冷媒側伝熱面積、Acはフィン-伝熱管
部の接触部面積であり、熱交換器の形状に依存するパラ
メータ、段ピッチDp、フィン幅L、フィン前縁から伝
熱管2の前縁までの距離L1、フィンピッチFp、フィン
厚さFt、伝熱管の短軸da、長軸db、フィン-伝熱
管部接触熱伝達率αcが決まれば算出できる値である。
Hereinafter, the fin width L, the distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube 2, the long axis da and the short axis d of the heat transfer tube
ΔP was calculated using b and the fin width L as parameters, and the air flow rate Q was determined under the condition that the blower driving force Pf was constant, and the heat exchange capacity E of the heat exchanger at this time was calculated. Note that the slit shape and arrangement are fixed. The heat exchange capacity is evaluated by the heat exchange amount E [W / K] per unit temperature difference, and is calculated by the following equation. E = Q × H × ε ε = 1-exp (-T) T = A o × K / (Q × H) K = 1 / (1 / αo + Ao / Ai / αi + Ac / Ai / αc) αo = 1 / ( Ao / (Ap + η × Af) Here, H [W / (kg · K)] is the specific heat of air, ε is the temperature efficiency, and K [W
/ (M 2 K)] is the heat transfer coefficient, αc [W / (m 2 K)] is the fin-
Ao [m 2 ] is the total heat transfer area on the air side of the heat exchanger, Ap [m 2 ] is the heat transfer area on the air side pipe of the heat exchanger, and Af [m 2 ] is the heat transfer coefficient at the contact portion of the heat transfer tube. Air-side fin heat transfer area of heat exchanger, Ai
[m 2 ] is the heat transfer area on the refrigerant side of the heat exchanger, Ac is the contact area between the fin and the heat transfer tube, a parameter depending on the shape of the heat exchanger, step pitch Dp, fin width L, fin leading edge. And the distance L 1 from the heat transfer tube 2 to the front edge of the heat transfer tube 2, the fin pitch Fp, the fin thickness Ft, the short axis da, the long axis db of the heat transfer tube, and the fin-heat transfer tube contact heat transfer coefficient αc are calculated. is there.

【0045】以下、形状パラメーターと熱交換能力Eと
の関係を図9ないし図13に示す。なお、これらの図に
おいて熱交換能力E[W/K]は、段数が1段で、伝熱管長
手方向の長さWが単位長さのときの値である。図9は段
ピッチDp、フィンピッチFp、フィン厚さFt、フィン幅
L、フィン前縁から伝熱管2の前縁までの距離L1 フィン
-伝熱管部接触熱伝達率αcを最適値の範囲内で一定と
し、伝熱管の断面積一定で伝熱管2の偏平率H(=db
/da)をパラメーターとして熱交換能力Eを計算した結
果である。図9より、偏平率は大きいほどすなわち伝熱
管の形状が細長いほど熱交換性能は大きくなることが分
かる。これは、偏平率が大きくなるほど通風面積が比率
として大きくなり通風抵抗が小さくなるため、送風機駆
動力Pf一定の条件から、風量Qが増え、その結果、熱
交換性能Eが大きくなるためである。また、8≦Hの範
囲であれば最大値に対して5%以内であり、熱交換性能
Eは十分に大きい。
Hereinafter, the relationship between the shape parameter and the heat exchange capacity E is shown in FIGS. In these figures, the heat exchange capacity E [W / K] is a value when the number of stages is one and the length W in the longitudinal direction of the heat transfer tube is a unit length. FIG. 9 shows the step pitch Dp, fin pitch Fp, fin thickness Ft, and fin width.
L, distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube 2 ,
-The heat transfer tube contact heat transfer coefficient αc is constant within the range of the optimum value, the cross-sectional area of the heat transfer tube is constant, and the flatness H of the heat transfer tube 2 (= db)
It is the result of calculating the heat exchange capacity E using / da) as a parameter. FIG. 9 shows that the heat exchange performance increases as the flattening rate increases, that is, as the shape of the heat transfer tube increases. This is because, as the flattening rate increases, the ventilation area increases as a ratio and the ventilation resistance decreases, so that the air volume Q increases under the condition that the blower driving force Pf is constant, and as a result, the heat exchange performance E increases. If the range is 8 ≦ H, it is within 5% of the maximum value, and the heat exchange performance E is sufficiently large.

【0046】図10は段ピッチDp、フィンピッチF
p、フィン厚さFt、フィン幅L、フィン前縁から伝熱
管2の前縁までの距離L1 伝熱管2の短軸da、長軸d
b、フィン−伝熱管部接触熱伝達率αcを最適値の範囲
内で一定とし、段ピッチDpおよび短軸daをパラメー
ターとして熱交換能力Eを計算した結果である。図10
より、パラメータ(Dp−da)/Dpは0.8付近で
最大となり、0.6≦(Dp−da)/Dp≦0.95
の範囲であれば最大値に対して5%以内であり、熱交換
性能Eは十分に大きい。なお,5%は目標値を確実に得
られるような範囲として選択している。これは、パラメ
ータ(Dp−da)/Dpは大きくしたとき、(Dp−
da)/Dp<0.8の範囲であれば、通風抵抗は比例
して小さくなり、送風機駆動力Pf一定の条件から、風
量Qが増え、その結果、熱交換性能Eが大きくなる。ま
た、0.8≦(Dp−da)/Dpの範囲では(Dp−
da)/Dpは大きくしたとき、フィン効率が小さくな
り、管外熱伝達率αoは小さくなり、その結果、熱交換
性能Eが小さくなる。ここで説明したパラメータ(Dp
−da)/Dpは風路としての熱交換器部分の圧力損失
を示しており,上記説明を言いかえるとパラメータが
0.6から0.95の範囲とは風路損失が少ないという
開放領域のP−Q特性が望ましい,すなわちプロペラフ
ァンのようなファンとの組み合わせが良いということを
示している。
FIG. 10 shows the step pitch Dp and the fin pitch F
p, fin thickness Ft, the distance L 1 of the fin width L, from the fin leading edge to the front edge of the heat transfer tube 2, the minor axis da of the heat transfer tube 2, the long axis d
b, Results of calculation of heat exchange capacity E using the step pitch Dp and the short axis da as parameters, with the fin-heat transfer tube contact heat transfer coefficient αc being constant within an optimum value range. FIG.
Therefore, the parameter (Dp-da) / Dp becomes maximum near 0.8, and 0.6 ≦ (Dp-da) /Dp≦0.95
Is within 5% of the maximum value, and the heat exchange performance E is sufficiently large. Note that 5% is selected as a range in which the target value can be reliably obtained. This is because when the parameter (Dp-da) / Dp is increased, (Dp-da)
In the range of da) / Dp <0.8, the ventilation resistance decreases proportionately, and the air volume Q increases under the condition that the blower driving force Pf is constant, so that the heat exchange performance E increases. In the range of 0.8 ≦ (Dp−da) / Dp, (Dp−
When da) / Dp is increased, the fin efficiency is reduced, and the extra-tube heat transfer coefficient αo is reduced, and as a result, the heat exchange performance E is reduced. The parameters described here (Dp
−da) / Dp indicates the pressure loss of the heat exchanger portion as an air passage. In other words, the parameter is in the range of 0.6 to 0.95 in the open region where the air passage loss is small. This indicates that the PQ characteristic is desirable, that is, the combination with a fan such as a propeller fan is good.

【0047】図11は段ピッチDp、フィンピッチF
p、フィン厚さFt、フィン前縁から伝熱管の前縁まで
の距離L1、偏平管の短軸da、長軸db、フィン-伝熱
管部接触熱伝達率αcを最適値の範囲内で一定とし、フ
ィン幅Lをパラメーターとして熱交換能力Eを計算した結
果である。図11よりフィン幅Lが長軸径dbに対し、L
=1.2db付近で最大となり、db≦L≦1.5db
の範囲であれば最大値に対して5%以内、すなわち確実
に目標値が得られる値であり、熱交換性能Eは十分に大
きい。これは、Lを大きくしたとき、db≦L≦1.5d
bの範囲であれば、伝熱面積の増加に伴い、熱交換能力
Eが向上するが、1.5db≦Lでは、通風抵抗増大によ
る風量低下が熱交換能力Eに対して支配的となりため、
熱交換能力Eは急激に低下する。
FIG. 11 shows a step pitch Dp and a fin pitch F.
p, the fin thickness Ft, the distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube, the short axis da, the long axis db of the flat tube, and the contact heat transfer coefficient αc of the fin-heat transfer tube portion within the optimum values. This is a result of calculating the heat exchange capacity E using the fin width L as a parameter, while keeping the fin width constant. According to FIG. 11, the fin width L is larger than the long axis diameter db by L
= Maximum around 1.2db, db ≦ L ≦ 1.5db
Is within 5% of the maximum value, that is, a value at which the target value is reliably obtained, and the heat exchange performance E is sufficiently large. This is because when L is increased, db ≦ L ≦ 1.5d
In the range of b, the heat exchange capacity increases as the heat transfer area increases.
Although E is improved, when 1.5 db ≤ L, the decrease in air volume due to the increase in ventilation resistance becomes dominant to the heat exchange capacity E,
The heat exchange capacity E drops sharply.

【0048】図12は段ピッチDp、フィンピッチF
p、フィン厚さFt、伝熱管の短軸da、長軸db、フ
ィン−伝熱管部接触熱伝達率αcを最適値の範囲内で一
定とし、フィン前縁から伝熱管2の前縁までの距離L1
をパラメーターとして熱交換能力Eを計算した結果であ
る。図10より、フィン前縁から伝熱管2の前縁までの
距離L1は小さいほど熱交換性能Eは大きくなることが
分かる。これは、L1が大きいほど伝熱管とフィンカラ
ーの接触面積Acが小さくなること、伝熱管がフィン幅
の中に入り込んでいる距離が小さくなるため、フィン効
率εが小さくなるためである。しかし、0<L1<L/8で
あればの範囲であれば最大値に対して5%以内であり、
熱交換性能Eは十分に大きい。
FIG. 12 shows the step pitch Dp and the fin pitch F
p, the fin thickness Ft, the short axis da, the long axis db of the heat transfer tube, and the fin-heat transfer tube contact heat transfer coefficient αc within a range of the optimum value, and are constant from the fin front edge to the heat transfer tube 2 front edge. Distance L 1
Is a result of calculating the heat exchange capacity E using as a parameter. From FIG. 10, it is understood that the smaller the distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube 2, the greater the heat exchange performance E. This is because the larger the value of L1, the smaller the contact area Ac between the heat transfer tube and the fin collar, and the smaller the distance that the heat transfer tube enters the fin width, so that the fin efficiency ε decreases. However, within the range of 0 <L1 <L / 8, the maximum value is within 5%,
The heat exchange performance E is sufficiently large.

【0049】図13は段ピッチDp、フィンピッチF
p、フィン厚さFt、フィン幅L、フィン前縁から伝熱
管2の前縁までの距離L1、伝熱管の長軸da、短軸d
bを最適値の範囲内で一定とし、フィン−伝熱管部接触
熱伝達率αcをパラメーターとして熱交換能力Eを計算し
た結果である。図13より、フィン−伝熱管部接触熱伝
達率αcは大きいほど熱交換性能Eは大きくなることが
分かる。フィン−伝熱管の密着方法として、拡管方式で
は、αc=10000[W/m2K]であるが、炉中ロウ付
けによる加熱接合を行うことによって、αcは無限大と
なる。この場合、熱交換能力Eは約8%向上する。
FIG. 13 shows a step pitch Dp and a fin pitch F.
p, fin thickness Ft, fin width L, distance L 1 from the leading edge of the fin to the leading edge of the heat transfer tube 2, major axis da and short axis d of the heat transfer tube
This is a result of calculating the heat exchange capacity E using the fin-heat transfer tube contact heat transfer coefficient αc as a parameter, with b being constant within an optimum value range. FIG. 13 shows that the heat exchange performance E increases as the fin-heat transfer tube contact heat transfer coefficient αc increases. As the fin-heat transfer tube adhesion method, αc = 10000 [W / m 2 K] in the expanded tube method, but αc becomes infinite by performing heat joining by brazing in a furnace. In this case, the heat exchange capacity E is improved by about 8%.

【0050】次にスリットについて述べる。図14は気
体通過方向40対するスリットの幅、位置を示したもの
である。スリット幅は5本とも同じで、スリット11−
15はスリット幅e1=e2=e3=e4=e5=0.002m。
また、スリット長さは、f1=f2=0.0059m、f3=
0.0064m、f4=0.0069m、f5=0.0074
m。また、スリットの位置はフィン前縁部からの距離で
示すと、風上側から、フィン前縁とスリット11の間が
w1=0.002m、スリット11と12の間がw2=0.
002m、スリット12と13の間がw3=0.002m、
13と14の間がw4=0.002m、14と15の間がw
5=0.002mである。なお、ここでは、段ピッチD
p、フィン幅L、フィン前縁から伝熱管2の前縁までの
距離L1 伝熱管の短軸da、長軸dbをほぼ最適値の範
囲内で一定にする。
Next, the slit will be described. FIG. 14 shows the width and position of the slit with respect to the gas passage direction 40. The slit width is the same for all five slits.
Reference numeral 15 denotes a slit width e 1 = e 2 = e 3 = e 4 = e 5 = 0.002 m.
The slit length is f1 = f2 = 0.0059m, f3 =
0.0064m, f4 = 0.0069m, f5 = 0.0074
m. When the position of the slit is indicated by the distance from the front edge of the fin, the distance between the front edge of the fin and the slit 11 is seen from the windward side.
w 1 = 0.002 m, w 2 = 0.
002 m, w 3 = 0.002 m between the slits 12 and 13,
W 4 = 0.002 m between 13 and 14, w between 14 and 15
5 = 0.002 m. Here, the step pitch D
p, fin width L, the distance L 1 from the fin leading edge to leading edge of the heat transfer tube 2, the minor axis da of the heat transfer tube is constant in the range of approximately optimum long axis db.

【0051】熱交換器のフィン1間を流れる空気は、フ
ィンとの間で熱交換されることにより加熱または冷却さ
れる。図15は、スリット上で発達する温度境界層の様
子を示している。フィンの表面では図15(a)で示すよ
うに温度境界層が発達し、伝熱はこの境界層30を介し
て行われる。一般に境界層30が薄いほど空気とフィン
との単位温度差あたりの伝熱量は大きく、図15(b)に
示すように、スリット33、34、35の風上側先端で
は温度境界層が更新され、スリット33、34、35の
空気流れ方向上流端での温度境界層厚みが非常に薄くな
る。フィンは積み方向にピッチFpで積層されており、
たとえば、スリット33の空気流れ方向上流端から発達
する境界層30は下流の位置で積み方向に隣り合うスリ
ット34から発達した境界層30と干渉する。干渉が発
生した位置より下流では、境界層の厚みは一定であり、
ながれ方向の単位長さあたりの伝熱量は一定値となる。
一方、温度境界層の厚みをdtとすると、スリットの空
気流れ方向上流端から流れ方向の距離y[m]における温
度境界層の厚みdt[m]は、以下の式で表される。 dt=5.0×(ν×y/U)0.5/Pr0.3 ここで、νは動粘性係数であり常温常圧の空気の場合ν
=0.000016[m2/s]である。また、Uは前述の自
由通過基準の風速でU=1.31[m/s]である。また、
Prはプラントル数で常温常圧の空気の場合、Pr=
0.72である。いまフィン間隔HfをHf=Fp−F
tと定義し、スリットの、フィンの積層方向の位置がH
f/2のとき、スリット表面と空気の間の伝熱が促進さ
れるのは、スリットの下流、すなわちx=eでの上記温
度境界層の厚みdtがフィン間幅Hfの1/2よりも小
さいことが必要である。ただし、e[m]はスリット幅を示
す。したがってスリット幅eは、 e≦U/ν×Pr0.6×(Hf/10)2=510×U×F
2 の条件を満たすように設定する。空調用熱交換器の標準
的な使用範囲では、自由通過体積基準の風速はU=0.
5〜2m/sであるので、 e≦255×Hf2〜1020×Hf2 である。ただし、計算に際して、e、Hfの単位はとも
に[m]であることに注意を要する。たとえば、Fp=
0.0012m、Ft=0.0001mとすれば、Hf
=0.0011mであり、e≦0.00031〜0.0
0123m、の範囲となる。なお、スリットの、フィン
の積層方向の位置がHf/2以外の場合においても、上
記の考え方でスリット幅eを設定すれば、概ね同様の効
果を奏する。さて、このとき、スリット面の単位面積当
たり、単位温度当たりの伝熱量を表す熱伝達率αs[W/
2K]は以下のように与えられる。 すなわち、αs=K/e×0.664×Re0.5×Pr0.3 ただし、Kは空気の熱伝導率、Prはプラントル数であ
り、それぞれ常温常圧の場合に、K=0.0261[W
/mK]、Pr=0.72[−]である。また、Reはレ
イノルズ数で、以下のように定義される。 Re=U×e/ν したがって、 αs=3.914×{U/e}0.5 e≦510×U×Hf2を代入すれば、 αs≧0.173/Hf 一方、スリットが無い場合の平面フィンの熱伝達率αb
[W/m2K]はおよそ以下のように計算できる。 αb=k/(Hf×2)×4.3 したがって、 αb=0.056/Hf いま空気の流れ方向に沿ったフィン幅Lのフィン平面状
のスリット数をNとすると、有効熱伝達率αeffは上
述の2つの熱伝達率の面積加重平均となる。すなわち、 αeff=αb+(N×e/L)×(αs−αb)=0.05
6/Hf×{1+N×(1274×U×Hf2/L)} したがってαeffはNが大きくなると増加する。
The air flowing between the fins 1 of the heat exchanger is heated or cooled by exchanging heat with the fins. FIG. 15 shows a state of the temperature boundary layer developed on the slit. On the surface of the fin, a temperature boundary layer develops as shown in FIG. 15A, and heat transfer is performed through the boundary layer 30. Generally, as the boundary layer 30 is thinner, the amount of heat transfer per unit temperature difference between the air and the fin is larger, and as shown in FIG. 15 (b), the temperature boundary layer is updated at the windward ends of the slits 33, 34, 35, The thickness of the temperature boundary layer at the upstream end of the slits 33, 34, 35 in the air flow direction becomes extremely thin. The fins are stacked at a pitch Fp in the stacking direction,
For example, the boundary layer 30 developed from the upstream end in the air flow direction of the slit 33 interferes with the boundary layer 30 developed from the slit 34 adjacent in the stacking direction at a downstream position. Downstream from the position where the interference occurs, the thickness of the boundary layer is constant,
The heat transfer amount per unit length in the flow direction is a constant value.
On the other hand, if the thickness of the thermal boundary layer and d t, the thickness of the temperature boundary layer at a distance y [m] in the flow direction from the air flow direction upstream end of the slit d t [m] is represented by the following formula. dt = 5.0 × (ν × y / U) 0.5 / Pr 0.3 where ν is the kinematic viscosity coefficient and ν in the case of air at normal temperature and normal pressure.
= 0.000016 [m 2 / s]. U is the wind speed based on the above-mentioned free passage, and U = 1.31 [m / s]. Also,
Pr is the Prandtl number and in the case of air at normal temperature and normal pressure, Pr =
0.72. Now, let fin interval Hf be Hf = Fp-F
t, and the position of the slit in the fin stacking direction is H
When f / 2, the heat transfer between the slit surface and the air is promoted because the thickness dt of the temperature boundary layer at the downstream of the slit, that is, at x = e, is smaller than の of the inter-fin width Hf. Also need to be small. Here, e [m] indicates the slit width. Therefore, the slit width e is e ≦ U / ν × Pr 0.6 × (Hf / 10) 2 = 510 × U × F
It is established to satisfy the condition of p 2. In the standard use range of the air conditioning heat exchanger, the wind speed based on the free passage volume is U = 0.
Since it is 5-2 m / s, e ≦ 255 × Hf 2 -1020 × Hf 2 . However, it should be noted that the unit of e and Hf is [m] in the calculation. For example, Fp =
If 0.0012 m and Ft = 0.0001 m, Hf
= 0.0011 m and e ≤ 0.00031 to 0.0
0123 m. Even when the position of the slit in the stacking direction of the fins is other than Hf / 2, if the slit width e is set based on the above concept, substantially the same effect can be obtained. By the way, at this time, the heat transfer coefficient αs [W /
m 2 K] is given as follows. That is, αs = K / e × 0.664 × Re 0.5 × Pr 0.3 where K is the thermal conductivity of air and Pr is the Prandtl number. In the case of normal temperature and normal pressure, respectively, K = 0.0261 [W
/ MK] and Pr = 0.72 [-]. Re is a Reynolds number and is defined as follows. Re = U × e / ν Therefore, by substituting αs = 3.914 × {U / e } 0.5 e ≦ 510 × U × Hf 2, whereas αs ≧ 0.173 / Hf, flat fins when the slit is not Heat transfer coefficient αb
[W / m 2 K] can be calculated approximately as follows. αb = k / (Hf × 2) × 4.3 Therefore, αb = 0.056 / Hf Assuming that the number of fin-shaped slits having a fin width L along the air flow direction is N, the effective heat transfer coefficient αeff Is the area-weighted average of the two heat transfer coefficients described above. That is, αeff = αb + (N × e / L) × (αs−αb) = 0.05
6 / Hf × {1 + N × (1274 × U × Hf 2 / L)} Therefore, αeff increases as N increases.

【0052】一方、スリット個数Nの最適値を与えるた
め通風抵抗とNの関係について述べる。流れ方向に沿っ
たスリットの個数Nが多いと上に述べた境界層の更新の
効果で、伝熱量は増加するものの、熱交換器の通風抵抗
が増加し、送風駆動力Pfが大きくなるため、個数Nを
限定する必要がある。いま、スリットのないフィン間の
単位長さあたりの圧力損失(通風抵抗)ΔPbは以下の
ように与えられる。 ΔPb=32/Refp×(1/Hf)×1/2×(γ
/g)×U2 ここでRefpは以下のように定義される。 Refp=U×(2×Hf)/ν また、γは常温常圧の空気の比重量[N/m3]、gは重
力加速度[m/s2]である。 一方、スリット部分の単位
長さあたりの圧力損失(通風抵抗)ΔPsは一般に、 ΔPs=2×1.328/Rea0.5×(1/Hf)×1/
2×(γ/g)×U2 したがって、圧力損失(通風抵抗)の和ΔP*は ΔP*={(L−N×e)×32/Refp×(1/H
f)+N×e×2.656/Rea0.5×(1/Hf)}×
1/2×(γ/g)×U2=L×ΔPb+N×e×(ΔP
s−ΔPb) したがって、スリットの個数Nに比例して通風抵抗ΔP
*が増大することを意味する。そこで送風機駆動力Pf
を一定にして、単位長さ当たりの熱交換能力E*を計算
する。
On the other hand, the relationship between the ventilation resistance and N for giving the optimum value of the number of slits N will be described. When the number N of slits along the flow direction is large, the amount of heat transfer increases due to the effect of updating the boundary layer described above, but the ventilation resistance of the heat exchanger increases, and the blowing driving force Pf increases. It is necessary to limit the number N. Now, the pressure loss (ventilation resistance) ΔPb per unit length between fins without slits is given as follows. ΔPb = 32 / Refp × (1 / Hf) × 1/2 × (γ
/ G) × U 2 where Refp is defined as follows: Refp = U × (2 × Hf) / ν Further, γ is a specific weight [N / m 3 ] of air at normal temperature and normal pressure, and g is a gravitational acceleration [m / s 2 ]. On the other hand, the pressure loss (ventilation resistance) ΔPs per unit length of the slit portion is generally ΔPs = 2 × 1.328 / Rea 0.5 × (1 / Hf) × 1 /
2 × (γ / g) × U 2 Therefore, the sum ΔP * of pressure loss (ventilation resistance) is ΔP * = {(L−N × e) × 32 / Refp × (1 / H
f) + N × e × 2.656 / Rea 0.5 × (1 / Hf)} ×
1/2 × (γ / g) × U 2 = L × ΔPb + N × e × (ΔP
s−ΔPb) Therefore, the ventilation resistance ΔP is proportional to the number N of the slits.
* Means to increase. Then, the blower driving force Pf
, And the heat exchange capacity E * per unit length is calculated.

【0053】図16はスリットの個数Nをパラメーター
にして、送風機駆動力Pfを一定にして、伝熱管長手方
向の単位長さ当たりの熱交換能力E*を計算したもので
ある。図16より熱交換能力E*はN=5付近で最大値
をとる。これは、通風抵抗は線形的に増加するが、伝熱
量qは一定値に漸近するため、N=5以上のスリットを切
り起こすと圧力損失(通風抵抗)ΔP*の増分が、伝熱量
qの増分よりも大きく、風量Qが低下するためである。
したがって、スリットは本実施の形態では5本とするこ
とが望ましいが3本から8本の範囲であれば、熱交換能
力E*は十分に大きく、効果を発揮する。また、スリッ
トは、気流上流のスリットの影響を避けるため、スリッ
トの前後の間隔を開けるよう概等間隔に並べることが望
ましい。
FIG. 16 shows the results of calculation of the heat exchange capacity E * per unit length in the longitudinal direction of the heat transfer tube, with the blower driving force Pf being kept constant, using the number N of slits as a parameter. According to FIG. 16, the heat exchange capacity E * has a maximum value near N = 5. This is because the ventilation resistance increases linearly, but the amount of heat transfer q asymptotically approaches a constant value. Therefore, when a slit of N = 5 or more is cut and raised, the increase in pressure loss (ventilation resistance) ΔP * increases the amount of heat transfer q This is because the air volume Q is lower than the increment.
Therefore, in this embodiment, it is desirable that the number of slits is five, but if the number of slits is in the range of three to eight, the heat exchange capacity E * is sufficiently large, and the effect is exhibited. Further, in order to avoid the influence of the slit upstream of the airflow, the slits are desirably arranged at substantially equal intervals so as to provide an interval before and after the slit.

【0054】風上部では空気とフィンの温度差が大きい
ため、スリットの前縁効果による熱交換量も大きいた
め、下流よりも多くスリットを切り起こす必要がある。
特に本実施の形態の熱交換器では、フィン内での風速分
布が円管熱交換器と比べて小さいため、局所的に高い風
速部がスリット前縁に衝突せず、スリットに付けたとき
の通風抵抗の増分が円管熱交換器より小さい。また、伝
熱管2の後流部の死水域が円管熱交換器と比べて小さい
ため、下流部でスリットを多数付け、整流を行わなくて
よい。したがって、フィン幅Lの半分L/2の中心線に
対して上流部に多くスリットを設ける。また、本実施の
形態の熱交換器はフィン内で速度分布が小さいため、上
流部では整流のために下流側に対してスリットを幅広く
しなくてよい。
Since the temperature difference between the air and the fins is large at the windward side, the amount of heat exchange due to the leading edge effect of the slits is large. Therefore, the slits need to be cut more than at the downstream side.
In particular, in the heat exchanger of the present embodiment, since the wind speed distribution in the fin is smaller than that of the tube heat exchanger, the locally high wind speed portion does not collide with the slit leading edge, and is not attached to the slit. The increment of ventilation resistance is smaller than the tube heat exchanger. Further, since the dead water area in the downstream part of the heat transfer tube 2 is smaller than that of the circular tube heat exchanger, it is not necessary to form many slits in the downstream part and perform rectification. Therefore, many slits are provided in the upstream part with respect to the center line of the half L / 2 of the fin width L. Further, in the heat exchanger of the present embodiment, since the speed distribution is small in the fin, the slit does not have to be wider than the downstream side for rectification in the upstream portion.

【0055】実施の形態2.図17は実施形態2を示す図
で、冷凍空調装置の冷媒回路図である。図に示す冷媒回
路は、圧縮機21、凝縮熱交換器22、絞り装置23、
蒸発熱交換器24、送風機25、送風機用モータ26に
より構成されている。この構成で塩素を含まない冷媒は
圧縮機21から高温高圧の状態で吐出され,凝縮熱交換
器22で凝縮され放熱し,絞り装置23で膨張して低圧
となり,蒸発熱交換器24にて蒸発して吸熱して圧縮機
に吸入される。上述の実施に形態1による熱交換性能の
良い熱交換器を凝縮熱交換器22または蒸発熱交換器2
4、もしくは両方に用いた冷媒を使用した冷凍サイクル
により、エネルギ効率の高いエアコンのような空調装置
や冷蔵庫や冷凍倉庫のような冷蔵冷凍装置を実現するこ
とが出来る。ここで、エネルギ効率は、例えばエアコン
では次式で構成されるものである。 暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入
力 冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入
Embodiment 2 FIG. 17 shows Embodiment 2 and is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus. The refrigerant circuit shown in the figure includes a compressor 21, a condensing heat exchanger 22, a throttling device 23,
It comprises an evaporating heat exchanger 24, a blower 25, and a blower motor 26. In this configuration, the chlorine-free refrigerant is discharged from the compressor 21 at a high temperature and a high pressure, condensed and radiated by the condensing heat exchanger 22, expanded by the expansion device 23 to a low pressure, and evaporated by the evaporating heat exchanger 24. The heat is absorbed and sucked into the compressor. The heat exchanger having good heat exchange performance according to the first embodiment is replaced by the condensing heat exchanger 22 or the evaporating heat exchanger 2.
By using a refrigeration cycle using a refrigerant used for 4 or both, an air conditioner such as an air conditioner with high energy efficiency and a refrigeration system such as a refrigerator or a freezing warehouse can be realized. Here, the energy efficiency is, for example, configured by the following equation in an air conditioner. Heating energy efficiency = indoor heat exchanger (condenser) capacity / all inputs Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / all inputs

【0056】各熱交換器にはインバータにより効率良く
駆動される送風機用モーター26にて送風機が駆動さ
れ,各熱交換器のフィン1間に通風が行われる。実施の
形態1に記載した扁平状の伝熱管を図9ないし図13の
ように適切な配置と形状に選択することにより,更にこ
の扁平状の伝熱管の間のフィンに設けたスリットを温度
境界層が干渉せず、かつ、通風抵抗の少ないように配置
することにより伝熱性能のみならず通風性能をも向上さ
せて所定の能力を十分発揮させる装置であって,小型で
あるばかりでなく,より省エネルギー効果の高い冷凍空
調装置を得ることが出来る。
Each of the heat exchangers is driven by a blower motor 26 which is efficiently driven by an inverter, and air is blown between the fins 1 of each heat exchanger. By selecting the flat heat transfer tube described in the first embodiment in an appropriate arrangement and shape as shown in FIGS. 9 to 13, the slits provided in the fins between the flat heat transfer tubes are further reduced to the temperature boundary. This device improves the heat transfer performance as well as the ventilation performance by arranging the layers so that they do not interfere with each other and has low ventilation resistance. It is possible to obtain a refrigeration / air-conditioning device having a higher energy saving effect.

【0057】図18,図19にてエアコンで冷房を行う
場合の空調装置の蒸発熱交換器24と送風機25の室内
機の構成を説明する。27は室内機ユニット,28は空
気吹出口、29はガイドベーン,36は結露した水をた
めるドレン皿である。図19のごとく室内の空気を周囲
から吸い込む熱交換器はフィン1に扁平状の伝熱管2を
通風方向から挿入した形状で構成されている。扁平間の
内部には冷媒が流れる多数の溝である室が設けられてお
り扁平の形状はストレートの外形をしている。このよう
な熱交換器を中央の空間を取り巻く形で5つに分けて配
置し,周囲から空気を吸い込んで伝熱管,フィンを介し
て図17の冷媒回路を循環する冷媒で吸熱し空気を冷却
している。
Referring to FIGS. 18 and 19, the configuration of the indoor unit of the evaporating heat exchanger 24 and the blower 25 of the air conditioner when the air conditioner performs cooling will be described. 27 is an indoor unit, 28 is an air outlet, 29 is a guide vane, and 36 is a drain plate for collecting dew condensation water. As shown in FIG. 19, the heat exchanger that sucks indoor air from the surroundings is configured to have a shape in which a flat heat transfer tube 2 is inserted into a fin 1 from the ventilation direction. A chamber, which is a large number of grooves through which the refrigerant flows, is provided inside the flat space, and the flat shape has a straight outer shape. Such a heat exchanger is divided into five parts so as to surround the central space, and the air is sucked from the surroundings, heat is absorbed by the refrigerant circulating in the refrigerant circuit of FIG. 17 through the heat transfer tubes and the fins, and the air is cooled. are doing.

【0058】図18のように熱交換器の外周から軸方向
に設けられた送風機25が回転して空気を中央に吸い込
み、冷却された熱交換器24の中央の空間の空気はガイ
ドベーン29により方向を変えられ下方に設けられた吹
出口から吹出される。図では片側に送風機を設けた説明
をしているが,この送風機は両側に設けても,あるいは
片側゛1つだけでなく2つ以上の複数をも行けても良い
ことは当然である。更に送風機としてプロペラファンを
使用し,かつ風を流す方向に傾けて設けられており,ユ
ニットの通風路全体として大きな通風抵抗となる仕切り
や曲がりを設けておらず、送風機のPQ特性として低い
通風抵抗の領域で使用できるので一層エネルギー低減の
効果が得られる。更に熱交換器と送風機の間を離し伝熱
管の下流に発生する死水域が送風機の回転するファンに
かからないようにすることで騒音を押さえることが出来
る。扁平形状の伝熱管を有する熱交換器に送風するファ
ンをプロペラファンを使用することによりファンの圧力
が低く風量が大きい範囲で使用することが出来,すなわ
ち開放側を使用するので使用するエネルギーを大幅に減
らすことが出来る。
As shown in FIG. 18, the blower 25 provided in the axial direction from the outer periphery of the heat exchanger rotates to draw air into the center, and the air in the center space of the cooled heat exchanger 24 is cooled by the guide vanes 29. The direction is changed and the air is blown out from an air outlet provided below. In the figure, a description is given in which a blower is provided on one side. However, it goes without saying that this blower may be provided on both sides, or not only one on one side but also two or more. Furthermore, a propeller fan is used as a blower, and it is installed at a slant in the direction of air flow. There are no partitions or bends that provide a large ventilation resistance for the entire ventilation path of the unit, and the ventilation resistance is low as a PQ characteristic of the blower. In this case, the effect of further reducing energy can be obtained. Further, noise can be suppressed by separating the heat exchanger and the blower so that dead water generated downstream of the heat transfer tube does not reach the rotating fan of the blower. By using a propeller fan to blow a fan to a heat exchanger with a flat heat transfer tube, it can be used in a range where the pressure of the fan is low and the air volume is large, that is, the energy used is greatly increased because the open side is used. Can be reduced to

【0059】図20はエアコンの室外機のように凝縮熱
交換器22と送風機25の配置の構成を示す図で,熱交
換器22の伝熱管2の中を流れる冷媒からの熱をフィン
1を介してフィン間を通風する空気に伝えこの加熱され
た空気を送風機25のファンの回転により屋外に吹出す
構成である。なお本発明の実施の形態1のごとく伝熱管
2はフィン1の空気を吸いこむ流入側で図のように開放
されている。なお熱交換器22からの空気を吸いこんで
外部に吹出させる送風機25は並列に2台設けられた配
置を示している。なおこの図では熱交換器と送風機の配
置構成の例を示すだけでエアコンの室外機に設けられて
いるその他の部品や室外機の構造を示す箱体や通風回路
などは記載していない。このような配置構成により熱交
換器や送風機の数を増減するだけで能力変化に対応で
き,かつ,簡単な構成で省エネルギー効果の大きな装置
を得ることが出来る。
FIG. 20 is a diagram showing the arrangement of the condensing heat exchanger 22 and the blower 25 as in an outdoor unit of an air conditioner. The fin 1 transfers heat from the refrigerant flowing through the heat transfer tube 2 of the heat exchanger 22 to the fin 1. The heated air is blown out to the outside by the rotation of the fan of the blower 25. Note that, as in the first embodiment of the present invention, the heat transfer tube 2 is opened as shown in the figure on the inflow side of the fin 1 where the air is sucked. It is to be noted that two air blowers 25 for sucking air from the heat exchanger 22 and blowing the air to the outside are provided in parallel. In this drawing, only an example of the arrangement of the heat exchanger and the blower is shown, and other components provided in the outdoor unit of the air conditioner, and a box and a ventilation circuit showing the structure of the outdoor unit are not shown. With such an arrangement, it is possible to cope with a change in capacity only by increasing or decreasing the number of heat exchangers or blowers, and to obtain a device having a large energy saving effect with a simple configuration.

【0060】図19のように熱交換器で中央の空間を取
り巻く形で配置し各熱交換器には扁平形状の伝熱管8本
が設けられ,各伝熱管には冷媒通路となる溝が14室配
置されている。このような複数の熱交換器へ冷媒をどの
ように循環させるかを図21の構成図で示す。37はヘ
ッダーであり,冷媒回路を循環する冷媒は先ず1つの熱
交換器のヘッダー37にはいり,このヘッダーから扁平
形状の伝熱管8本に並列に冷媒が流れフィンを介して空
気へ温熱もしくは冷熱を伝える。他の熱交換器にはヘッ
ダーを介して流れ循環させる。ヘッダーは伝熱間の両端
に設けられており,ヘッダー内部に仕切りを設けずに各
伝熱管内の溝はすべて並列に接続させても良いし,ヘッ
ダー内部に仕切りを設け各伝熱管内の溝を複数のブロッ
クに分けてこのブロックを直列につなぎ冷媒を流すこと
も可能である。扁平伝熱管は多数の溝の中を冷媒を通す
し,ヘッダーは円筒状に形成できるので冷媒の圧力が高
くなっても信頼性の高い構造であり,圧力の高い冷媒,
例えば炭酸ガスのような自然冷媒やR410Aのように
圧力が高く塩素を含まない代替フロンに対しても信頼性
の高い装置が得られる。
As shown in FIG. 19, the heat exchanger is arranged so as to surround the central space, and each heat exchanger is provided with eight flat heat transfer tubes, and each heat transfer tube has a groove serving as a refrigerant passage. The rooms are arranged. How the refrigerant is circulated to the plurality of heat exchangers is shown in the configuration diagram of FIG. Reference numeral 37 denotes a header. Refrigerant circulating in the refrigerant circuit first enters the header 37 of one heat exchanger, from which the refrigerant flows in parallel to eight flat heat transfer tubes and flows into the air through fins to warm or cool. Tell Other heat exchangers flow through the header and circulate. Headers are provided at both ends between heat exchangers. All grooves in each heat transfer tube may be connected in parallel without providing a partition inside the header, or a partition is provided inside the header and a groove in each heat transfer tube. May be divided into a plurality of blocks, and the blocks may be connected in series to flow the refrigerant. The flat heat transfer tube allows the refrigerant to pass through a number of grooves, and the header can be formed in a cylindrical shape. Therefore, even if the pressure of the refrigerant is high, the structure is highly reliable.
For example, a highly reliable apparatus can be obtained even for a natural refrigerant such as carbon dioxide or an alternative chlorofluorocarbon-free substitute such as R410A.

【0061】なお、上述の実施の形態1および実施の形
態2で述べた熱交換器およびそれを用いた空調冷凍装置
については、HCFC(R22)やHFC(R116、
R125、R134a、R14、R143a、R152
a、R227ea、R23、R236ea、R236f
a、R245ca、R245fa、R32、R41,R
C318などや、これら冷媒の数種の混合冷媒R407
A、R407B、R407C、R407D、R407
E、R410A、R410B、R404A、R507
A、R508A、R508Bなど)、HC(ブタン、イ
ソブタン、エタン、プロパン、プロピレンなどや、これ
ら冷媒の数種混合冷媒)、自然冷媒(空気、炭酸ガス、
アンモニアなどや、これら冷媒の数種の混合冷媒)、ま
たこれら冷媒の数種の混合冷媒など、どんな種類の冷媒
を用いても、その効果を達成することが出来る。
The heat exchangers described in the first and second embodiments and the air-conditioning and refrigeration systems using the same have the HCFC (R22) and the HFC (R116, HFC).
R125, R134a, R14, R143a, R152
a, R227ea, R23, R236ea, R236f
a, R245ca, R245fa, R32, R41, R
C318 and several kinds of mixed refrigerants R407 of these refrigerants.
A, R407B, R407C, R407D, R407
E, R410A, R410B, R404A, R507
A, R508A, R508B, etc.), HC (butane, isobutane, ethane, propane, propylene, etc., or a mixture of several of these refrigerants), natural refrigerants (air, carbon dioxide,
The effect can be achieved by using any kind of refrigerant, such as ammonia or a mixed refrigerant of several kinds of these refrigerants) or a mixed refrigerant of several kinds of these refrigerants.

【0062】また、一次冷媒,二次冷媒の作動流体とし
て、空気と冷媒の例を示したが、他の気体、液体、気液
混合流体を用いても、同様の効果を奏する。
Although the working fluids of the primary and secondary refrigerants are air and refrigerant, the same effect can be obtained by using other gas, liquid, or gas-liquid mixed fluid.

【0063】また、伝熱管とフィンは異なった材料を用
いていることが多いが、伝熱管とフィンに銅、伝熱管と
フィンにアルミなど、同じ材料を用いることで、フィン
と伝熱管のロウ付けが可能となり、フィン部と伝熱管の
接触熱伝達率が飛躍的に向上し、熱交換能力が大幅に向
上する。また、異種金属を使わないことにより,電流が
流れたりするトラブルを防止でき、又,装置廃却時のリ
サイクル性も向上させ環境保護に益することが多い。
Although the heat transfer tube and the fin are often made of different materials, the same material such as copper is used for the heat transfer tube and the fin, and aluminum is used for the heat transfer tube and the fin. Can be attached, the contact heat transfer coefficient between the fin portion and the heat transfer tube is dramatically improved, and the heat exchange capacity is greatly improved. In addition, since no dissimilar metal is used, troubles such as current flow can be prevented, and the recyclability at the time of disposing of the device is improved, which often contributes to environmental protection.

【0064】また、伝熱管とフィンを密着させる方法と
して、炉中ロウ付けを行う場合、フィンに親水材を塗布
するのに後処理で行うことで、前処理の場合のロウ付け
中の親水材の焼け落ちを防ぐことができる。
As a method of bringing the heat transfer tube and the fins into close contact with each other, when brazing in a furnace is performed, post-processing is performed to apply the hydrophilic material to the fins. It can prevent burn-off.

【0065】なお、耐圧強度を挙げようとする場合、肉
厚を大きくしたり、伝熱管内部の隔壁3を増やす等の対
策を講じればよいが、管内流路断面積を同一としたま
ま、肉厚を大きくすると、楕円伝熱管の外径寸法も増加
し、伝熱管のコストも上昇するが、段ピッチ、列ピッ
チ、偏平率、切り起こしフィンの数や形状などの調整に
より、通風抵抗と伝熱促進のバランスを加味して、これ
らの値を適切に設定してやれば本実施の形態の効果を十
分に発揮することができる。
In order to increase the pressure resistance, measures such as increasing the wall thickness or increasing the number of partitions 3 inside the heat transfer tube may be taken. Increasing the thickness also increases the outer diameter of the elliptical heat transfer tube and increases the cost of the heat transfer tube.However, by adjusting the step pitch, row pitch, flattening ratio, number and shape of cut-and-raised fins, ventilation resistance and transfer If these values are appropriately set in consideration of the balance of heat promotion, the effect of the present embodiment can be sufficiently exerted.

【0066】なお、上述の実施の形態1および実施の形
態2で述べた熱交換器およびそれを用いた空調冷凍装置
については、鉱油系、アルキルベンゼン油系、エステル
油系、エーテル油系、フッ素油系など、冷媒と油が溶け
る溶けないにかかわらず、どんな冷凍機油についても、
その効果を達成することができる。
The heat exchangers described in the first and second embodiments and the air-conditioning and refrigeration systems using the heat exchangers include mineral oils, alkylbenzene oils, ester oils, ether oils, and fluorine oils. Regardless of the refrigeration oil, regardless of whether the refrigerant and oil are soluble,
That effect can be achieved.

【0067】[0067]

【発明の効果】この発明の請求項1に係る熱交換器は、
多数平行に配置され、その間を一次冷媒が流れる板状フ
ィンと、この各板状フィンへ挿入され、内部に二次冷媒
を流す複数の室を設け扁平状に形成されると共に板状フ
ィンに流れる一次冷媒を扁平の長軸方向に沿って流すよ
うに複数配置された伝熱管と,を備え,伝熱管の扁平形
状は一次冷媒の流れが風下方向に行くにつれて扁平の短
軸方向の長さを小さくするので、熱交換能力が高く,通
風抵抗が小さい熱交換器が得られる。
The heat exchanger according to claim 1 of the present invention has the following features.
A large number of parallel arranged, plate-like fins through which the primary refrigerant flows, and a plurality of chambers inserted into each of the plate-like fins, through which the secondary refrigerant flows, are formed in a flat shape and flow into the plate-like fins A plurality of heat transfer tubes arranged so that the primary refrigerant flows along the long axis direction of the flat plate, and the flat shape of the heat transfer tube is such that the length of the flat short-axis direction decreases as the flow of the primary refrigerant goes downwind. Since the size is reduced, a heat exchanger having a high heat exchange capacity and a small ventilation resistance can be obtained.

【0068】この発明の請求項2に係る熱交換器は、多
数平行に配置され、その間を一次冷媒が流れる板状フィ
ンと、この各板状フィンへ挿入され、内部に二次冷媒を
流すと共に扁平状に形成された伝熱管と,伝熱管を板状
フィンの一次冷媒を流す風上側の端部から挿入可能なよ
うに板状フィンの端部から一次冷媒の風下側に形成され
たフィン抜き穴と,を備え、伝熱管は板状フィンから常
に風上側が開放されているので、性能が良く,量産が簡
単な熱交換器が得られる。
The heat exchanger according to the second aspect of the present invention is arranged in parallel with a plurality of plate-like fins through which the primary refrigerant flows, and inserted into each of the plate-like fins to flow the secondary refrigerant therein. Flat-shaped heat transfer tube and fin fin formed on the leeward side of the primary refrigerant from the end of the plate-like fin so that the heat transfer tube can be inserted from the end on the windward side where the primary refrigerant through which the plate-like fin flows Since the heat transfer tube is always open on the windward side from the plate-like fin, a heat exchanger having good performance and easy mass production can be obtained.

【0069】この発明の請求項3に係る熱交換器は、伝
熱管の前縁は板状フィンの風上側の端部付近まで板状フ
ィンと接触すると共にこの端部にて板状フィンから突出
して開放されるので、熱交換能力が高い熱交換器が得ら
れる。
According to a third aspect of the present invention, in the heat exchanger, the front edge of the heat transfer tube comes into contact with the plate fin up to the vicinity of the windward end of the plate fin and projects from the plate fin at this end. The heat exchanger having a high heat exchange capacity can be obtained.

【0070】この発明の請求項4に係る熱交換器は、伝
熱管は板状フィンの一次冷媒の最下流部端部に対し間隔
を持って板状フィンに覆われるように挿入されているの
で,結露に対し信頼性の高い熱交換器が得られる。
In the heat exchanger according to a fourth aspect of the present invention, the heat transfer tube is inserted so as to be covered by the plate fin with an interval with respect to the most downstream end of the primary refrigerant of the plate fin. As a result, a highly reliable heat exchanger against condensation can be obtained.

【0071】この発明の請求項5に係る熱交換器は、伝
熱管の外形形状は、全体を曲面とすると共に風下方向に
行くにつれて曲率を大きくするので,通風や熱交換の性
能が良い熱交換器が得られる。
In the heat exchanger according to a fifth aspect of the present invention, since the outer shape of the heat transfer tube has a curved surface as a whole and the curvature increases as going in the leeward direction, the heat exchange tube has good heat exchange and heat exchange performance. A vessel is obtained.

【0072】この発明の請求項6に係る熱交換器は、外
管形状にストレート部を設けるので、伝熱管とフィンの
接触が良好な製品が得られる。。
In the heat exchanger according to the sixth aspect of the present invention, since the outer tube is provided with the straight portion, a product having good contact between the heat transfer tube and the fin can be obtained. .

【0073】この発明の請求項7に係る熱交換器は、伝
熱管内の複数の室の個々の断面積をほぼ同一とするの
で、管内の冷媒の流れがほぼ同一となり熱交換性能が高
くなる。。
In the heat exchanger according to the seventh aspect of the present invention, since the respective cross-sectional areas of the plurality of chambers in the heat transfer tube are substantially the same, the flow of the refrigerant in the tube is substantially the same, and the heat exchange performance is improved. . .

【0074】この発明の請求項8に係る熱交換器は、伝
熱管の扁平の短軸をda、長軸をdbとすると、偏平率
H(=db/da)が、8≦Hであるので,性能の良い
熱交換器が得られる。
In the heat exchanger according to claim 8 of the present invention, the flattened short axis of the heat transfer tube is da and the long axis is db,
Since H (= db / da) is 8 ≦ H, a high-performance heat exchanger can be obtained.

【0075】この発明の請求項9に係る熱交換器は、板
状フィンの一次冷媒が流れる方向の幅をL、伝熱管の長
軸をdbとすると、1≦L/db≦1.5であるので,
小型で性能の良い熱交換器が得られる。
According to a ninth aspect of the present invention, when the width of the plate-like fin in the direction in which the primary refrigerant flows is L and the long axis of the heat transfer tube is db, 1 ≦ L / db ≦ 1.5. Because there is
A small and high-performance heat exchanger can be obtained.

【0076】この発明の請求項10に係る熱交換器は、
伝熱管を複数配置し、この配置方向である一次冷媒の流
れとは直角方向の段方向ピッチをDp、伝熱管の扁平の
短軸をdaとすると、0.6≦(Dp−da)/Dp≦
0.95であるので,ファン駆動力を一定とした場合、
熱交換量の大きな性能の良い熱交換器が得られる。
A heat exchanger according to a tenth aspect of the present invention comprises:
Assuming that a plurality of heat transfer tubes are arranged, and a stepwise pitch perpendicular to the flow of the primary refrigerant in this arrangement direction is Dp, and a flat short axis of the heat transfer tubes is da, 0.6 ≦ (Dp−da) / Dp ≤
Since it is 0.95, when the fan driving force is constant,
A high-performance heat exchanger having a large heat exchange amount can be obtained.

【0077】この発明の請求項11に係る熱交換器は、
板状フィンの風上側の端部と伝熱管の前縁部の距離をL
1とすると、L1<da/8であるので、熱交換性能が
高い熱交換器が得られる。
[0077] The heat exchanger according to claim 11 of the present invention comprises:
The distance between the windward end of the plate fin and the front edge of the heat transfer tube is L
Assuming that 1, L1 <da / 8, a heat exchanger having high heat exchange performance can be obtained.

【0078】この発明の請求項12に係る熱交換器は、
板状フィンの面上に設けられ、気体の流れに対向して開
口部を有するスリットと、を備え、フィン幅Lの半分L
/2の中心線に対して下流部に設けたスリットの数より
も、上流部に設けたスリットの数が多いので、熱交換能
力が高く、通風抵抗が小さい熱交換器が得られる。
A heat exchanger according to a twelfth aspect of the present invention comprises:
A slit provided on the surface of the plate-like fin and having an opening facing the flow of gas, and having a half length L of the fin width L.
Since the number of slits provided in the upstream part is larger than the number of slits provided in the downstream part with respect to the center line of / 2, a heat exchanger having high heat exchange capacity and small ventilation resistance can be obtained.

【0079】この発明の請求項13に係る熱交換器は、
板状フィンの面上に設けられたスリットの脚部と板状フ
ィン面の交線が、フィン面を通過する近傍の局所的な気
体流れの方向とほぼ平行であるので、熱交換能力が高
く,通風抵抗が小さい熱交換器が得られる。
A heat exchanger according to a thirteenth aspect of the present invention comprises:
Since the intersection of the leg of the slit provided on the plate-like fin surface and the plate-like fin surface is almost parallel to the local gas flow direction near the fin surface, the heat exchange capacity is high. Thus, a heat exchanger having a low ventilation resistance can be obtained.

【0080】この発明の請求項14に係る熱交換器は、
板状フィンと伝熱管は加熱して固着するものであるの
で、熱交換能力が高い熱交換器が得られる。
A heat exchanger according to a fourteenth aspect of the present invention comprises:
Since the plate-shaped fins and the heat transfer tubes are heated and fixed, a heat exchanger having a high heat exchange capacity can be obtained.

【0081】この発明の請求項15に係る熱交換器は、
伝熱管と板状フィンに同じ材料を用いるので、信頼性が
高く環境対策にも優れた装置が得られる。
A heat exchanger according to a fifteenth aspect of the present invention comprises:
Since the same material is used for the heat transfer tube and the plate-like fins, an apparatus having high reliability and excellent environmental measures can be obtained.

【0082】この発明の請求項16に係る冷凍空調装置
は、二次冷媒を圧縮機、凝縮器熱交換器、絞り装置、蒸
発器熱交換器を循環させる冷凍サイクルと,を備え,凝
縮器熱交換器及び蒸発器熱交換器の少なくとも一方に熱
交換性能の良い熱交換器を用いたので、エネルギー効率
の高い冷凍空調装置が得られる。
A refrigeration / air-conditioning apparatus according to a sixteenth aspect of the present invention includes a refrigeration cycle for circulating a secondary refrigerant through a compressor, a condenser heat exchanger, a throttle device, and an evaporator heat exchanger. Since a heat exchanger having good heat exchange performance is used for at least one of the exchanger and the evaporator heat exchanger, a refrigeration / air-conditioning apparatus with high energy efficiency can be obtained.

【0083】この発明の請求項17に係る冷凍空調装置
は、一次冷媒を、凝縮器熱交換器、又は、蒸発器熱交換
器のフィンの間を流す送風機と,を備え,扁平形状の伝
熱管を有する熱交換器へ送風する送風機にプロペラファ
ンを用いたので、性能が良く省エネルギー性の高い装置
が得られる。
A refrigeration / air-conditioning apparatus according to a seventeenth aspect of the present invention includes a blower for flowing a primary refrigerant between fins of a condenser heat exchanger or an evaporator heat exchanger. Since the propeller fan is used for the blower that blows air to the heat exchanger having the above, an apparatus having good performance and high energy saving can be obtained.

【0084】この発明の請求項18に係る熱交換器の製
造方法は、多数平行に配置され、その間を一次冷媒が流
れる板状フィンと、この各板状フィンへ固定され、内部
に二次冷媒を流す扁平状に形成されると共に板状フィン
に流れる一次冷媒を扁平の長軸方向に沿って流すように
複数配置された伝熱管と,を備えた熱交換器において,
板状フィンに一次冷媒の流れる方向の一端を開放し他端
側を閉鎖する抜き穴を形成するステップと,板状フィン
の抜き穴に伝熱管を開放側である常に一方の端部から挿
入して組み立てるステップと,板状フィンと伝熱管を組
み立てた後でフィンと伝熱管を加熱して固着させるステ
ップと,を備えたので、信頼性が高く性能の良い熱交換
器を簡単に量産できる。
The method for manufacturing a heat exchanger according to the eighteenth aspect of the present invention is directed to a method of manufacturing a heat exchanger, comprising a plurality of plate-shaped fins which are arranged in parallel and through which a primary refrigerant flows, and which are fixed to the respective plate-shaped fins and have a secondary refrigerant therein. A plurality of heat transfer tubes that are formed in a flat shape and through which the primary refrigerant flowing through the plate-shaped fins flows along the flat long axis direction.
Forming a hole in the plate-shaped fin to open one end in the direction in which the primary refrigerant flows and closing the other end; and inserting a heat transfer tube into the hole in the plate-shaped fin from one end, which is always the open side. And a step of heating and fixing the fins and the heat transfer tubes after assembling the plate-shaped fins and the heat transfer tubes, so that a highly reliable and high-performance heat exchanger can be easily mass-produced.

【0085】この発明の請求項19に係る熱交換器の製
造方法は、板状フィンと伝熱管を加熱して固着させた後
で、板状フィンに親水材を塗付するので、信頼性の高い
熱交換器を製造できる。
In the method for manufacturing a heat exchanger according to the nineteenth aspect of the present invention, the plate-like fin and the heat transfer tube are heated and fixed, and then the plate-like fin is coated with a hydrophilic material. High heat exchanger can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1の熱交換器構成を表
す外観図。
FIG. 1 is an external view illustrating a configuration of a heat exchanger according to a first embodiment of the present invention.

【図2】 この発明の実施の形態1の熱交換器構成を表
す平面断面図。
FIG. 2 is a cross-sectional plan view illustrating the configuration of the heat exchanger according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1の熱交換器構成を表
す部分正面図。
FIG. 3 is a partial front view showing the configuration of the heat exchanger according to the first embodiment of the present invention.

【図4】 この発明の実施の形態1のフィンカラーおよ
びフィン拡開部を示す部分外観図。
FIG. 4 is a partial external view showing a fin collar and a fin expanding portion according to the first embodiment of the present invention.

【図5】 この発明の実施の形態1の熱交換器の組み立
て方法を示す説明図。
FIG. 5 is an explanatory view showing a method of assembling the heat exchanger according to the first embodiment of the present invention.

【図6】 この発明の実施の形態1の熱交換器の組み立
て手順を示すフローチャート。
FIG. 6 is a flowchart showing a procedure for assembling the heat exchanger according to the first embodiment of the present invention.

【図7】 円管、偏平管および実施の形態1の伝熱管の
死水域10の発生状況を表す比較図。
FIG. 7 is a comparative diagram showing the occurrence of dead water areas 10 of the circular tube, the flat tube, and the heat transfer tube according to the first embodiment.

【図8】 偏平管および実施の形態1の伝熱管の冷房時
の露の流れかたを示す比較図。
FIG. 8 is a comparison diagram showing how dew flows during cooling of the flat tube and the heat transfer tube of the first embodiment.

【図9】 この発明の実施の形態1の伝熱管の偏平率と
熱交換能力との関係を示す特性図。
FIG. 9 is a characteristic diagram showing a relationship between a flattening rate and a heat exchange capacity of the heat transfer tube according to the first embodiment of the present invention.

【図10】 この発明の実施の形態1の段ピッチおよび
伝熱管の短軸径と熱交換能力との関係を示す特性図。
FIG. 10 is a characteristic diagram showing the relationship between the step pitch, the short axis diameter of the heat transfer tube, and the heat exchange capacity according to the first embodiment of the present invention.

【図11】 この発明の実施の形態1のフィン幅と熱交
換能力との関係を示す特性図。
FIG. 11 is a characteristic diagram showing a relationship between a fin width and heat exchange capacity according to the first embodiment of the present invention.

【図12】 この発明の実施の形態1のフィン前縁と伝
熱管前縁の距離と熱交換能力との関係を示す特性図。
FIG. 12 is a characteristic diagram showing the relationship between the distance between the leading edge of the fin and the leading edge of the heat transfer tube and the heat exchange capacity according to the first embodiment of the present invention.

【図13】 この発明の実施の形態1のフィン−伝熱管
間の接触熱伝達率と熱交換能力との関係を示す特性図。
FIG. 13 is a characteristic diagram showing a relationship between the contact heat transfer coefficient between the fins and the heat transfer tubes and the heat exchange capacity according to the first embodiment of the present invention.

【図14】 この発明の実施の形態1のスリット形状お
よび形状の詳細を表す平面断面図。
FIG. 14 is a plan sectional view showing details of a slit shape and a shape according to the first embodiment of the present invention.

【図15】 板状フィンとスリット上の温度境界層の発
達状況との関係を示す説明図。
FIG. 15 is an explanatory diagram showing a relationship between a plate-like fin and a development state of a temperature boundary layer on a slit.

【図16】 この発明の実施の形態1のスリット数と熱
交換能力との関係を示す特性図。
FIG. 16 is a characteristic diagram showing a relationship between the number of slits and heat exchange capacity according to the first embodiment of the present invention.

【図17】 この発明の実施の形態2の冷凍空調装置の
構成を表す冷媒回路図。
FIG. 17 is a refrigerant circuit diagram illustrating a configuration of a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図18】 この発明の実施の形態2の冷凍空調装置の
熱交換器と送風機を示す説明図。
FIG. 18 is an explanatory view showing a heat exchanger and a blower of a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図19】 この発明の実施の形態2の冷凍空調装置の
熱交換器の構成を示す説明図。
FIG. 19 is an explanatory diagram showing a configuration of a heat exchanger of a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図20】 この発明の実施の形態2の冷凍空調装置の
熱交換器と送風機を示す説明図。
FIG. 20 is an explanatory diagram showing a heat exchanger and a blower of the refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図21】 この発明の実施の形態2の冷凍空調装置の
熱交換器の構成を示す説明図。
FIG. 21 is an explanatory diagram showing a configuration of a heat exchanger of a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.

【図22】 従来の円管熱交換器の構成を表す平面断面
図および部分側面図。
FIG. 22 is a plan sectional view and a partial side view showing the configuration of a conventional circular tube heat exchanger.

【図23】 従来の偏平管熱交換器の構成を表す外観
図。
FIG. 23 is an external view showing a configuration of a conventional flat tube heat exchanger.

【図24】 従来の偏平管熱交換器の組み立て方法を示
す説明図。
FIG. 24 is an explanatory view showing a method of assembling a conventional flat tube heat exchanger.

【図25】 従来の偏平管熱交換器の組み立てにおける
現象を示した説明図。
FIG. 25 is an explanatory view showing a phenomenon in assembling a conventional flat tube heat exchanger.

【符号の説明】[Explanation of symbols]

1 板状フィン、 2 伝熱管、 3 管内隔壁、 4
フィンカラー、 5フィン拡開部、 6 挿通穴、
10 死水域、 11〜15 スリット、16 露、
21 圧縮機、 22 凝縮器熱交換器、 23 絞
り装置、24 蒸発器熱交換器、 25 送風機、 2
6 送風機用モータ、 30 温度境界層、 31〜3
3 スリット、 da 伝熱管の短軸径, db 伝熱
管の長軸径, Dp 段ピッチ, e1~e5 スリット
幅, f1〜f5 スリット長さ, L 板状フィン1のフ
ィン幅, L1 板状フィン1の前縁と伝熱管2の前縁の
距離, w1〜w5 スリット間距離。
1 plate-like fin, 2 heat transfer tube, 3 inner wall, 4
Fin collar, 5 fin expansion section, 6 insertion hole,
10 dead water area, 11-15 slits, 16 dew,
Reference Signs List 21 compressor, 22 condenser heat exchanger, 23 expansion device, 24 evaporator heat exchanger, 25 blower, 2
6 motor for blower, 30 temperature boundary layer, 31 to 3
3 slits, da short axis diameter of heat transfer tube, db long axis diameter of heat transfer tube, Dp step pitch, e1 to e5 slit width, f1 to f5 slit length, L plate fin 1 fin width, L1 plate fin 1 Distance between the front edge of the heat transfer tube 2 and the front edge of the heat transfer tube 2, w1 to w5 distance between slits.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加賀 邦彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 山田 賢一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 3L103 AA01 AA37 BB38 BB42 CC22 CC28 DD08 DD33  ──────────────────────────────────────────────────の Continued on the front page (72) Kunihiko Kaga, 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Kenichi Yamada 2-3-2, Marunouchi 3-chome, Chiyoda-ku, Tokyo F term (reference) 3L103 AA01 AA37 BB38 BB42 CC22 CC28 DD08 DD33

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】 多数平行に配置され、その間を一次冷媒
が流れる板状フィンと、この各板状フィンへ挿入され、
内部に二次冷媒を流す複数の室を設け扁平状に形成され
ると共に前記板状フィンに流れる一次冷媒を扁平の長軸
方向に沿って流すように複数配置された伝熱管と,を備
え,前記伝熱管の扁平形状は前記一次冷媒の流れが風下
方向に行くにつれて扁平の短軸方向の長さを小さくする
ことを特徴とする熱交換器。
1. A plurality of plate-like fins arranged in parallel, between which a primary refrigerant flows, and inserted into each of the plate-like fins,
A plurality of chambers in which the secondary refrigerant flows, and a plurality of heat transfer tubes which are formed in a flat shape and are arranged so as to flow the primary refrigerant flowing in the plate-like fins along the long axis direction of the flat. The heat exchanger according to claim 1, wherein the flat shape of the heat transfer tube reduces the length of the flat refrigerant in the short axis direction as the flow of the primary refrigerant goes downwind.
【請求項2】 多数平行に配置され、その間を一次冷媒
が流れる板状フィンと、この各板状フィンへ挿入され、
内部に二次冷媒を流すと共に扁平状に形成された伝熱管
と,前記伝熱管を前記板状フィンの一次冷媒を流す風上
側の端部から挿入可能なように前記板状フィンの端部か
ら一次冷媒の風下側に形成されたフィン抜き穴と,を備
え、前記伝熱管は前記板状フィンから常に風上側が開放
されていることを特徴とする熱交換器。
2. A plurality of plate-like fins arranged in parallel, through which a primary refrigerant flows, and inserted into each of the plate-like fins,
A heat transfer tube formed into a flat shape with a secondary refrigerant flowing therein, and the heat transfer tube is inserted from the end of the plate-like fin so as to be inserted from the windward end of the plate-like fin through which the primary refrigerant flows. A fin hole formed on the lee side of the primary refrigerant, wherein the heat transfer tube is always open on the windward side from the plate-like fin.
【請求項3】 伝熱管の前縁は板状フィンの風上側の端
部付近まで前記板状フィンと接触すると共にこの端部に
て前記板状フィンから突出して開放されることを特徴と
する請求項1又は2記載の熱交換器。
3. The heat transfer tube according to claim 1, wherein a front edge of the heat transfer tube contacts the plate-shaped fin up to an end near the windward side of the plate-shaped fin, and projects from the plate-shaped fin at this end to be opened. The heat exchanger according to claim 1.
【請求項4】 伝熱管は板状フィンの一次冷媒の最下流
部端部に対し間隔を持って前記板状フィンに覆われるよ
うに挿入されていることを特徴とする請求項1乃至3の
いずれかに記載の熱交換器。
4. The heat transfer tube according to claim 1, wherein the heat transfer tube is inserted so as to be covered with the plate-like fin at an interval with respect to the most downstream end of the primary refrigerant of the plate-like fin. The heat exchanger according to any one of the above.
【請求項5】 伝熱管の外形形状は、全体を曲面とする
と共に風下方向に行くにつれて曲率を大きくすることを
特徴とする請求項1乃至4のいずれかに記載の熱交換
器。
5. The heat exchanger according to claim 1, wherein the outer shape of the heat transfer tube has a curved surface as a whole and a curvature increases toward the leeward direction.
【請求項6】 外管形状にストレート部を設けることを
特徴とする請求項1乃至4のいずれかに記載の熱交換
器。
6. The heat exchanger according to claim 1, wherein a straight portion is provided in an outer tube shape.
【請求項7】 伝熱管内の複数の室の個々の断面積をほ
ぼ同一とすることを特徴とする請求項1乃至7のいずれ
かに記載の熱交換器。
7. The heat exchanger according to claim 1, wherein each of the plurality of chambers in the heat transfer tube has substantially the same sectional area.
【請求項8】 伝熱管の扁平の短軸をda、長軸をdb
とすると、偏平率H(=db/da)が、 8≦H であることを特徴とする請求項1乃至7のいずれかに記
載の熱交換器。
8. The flat short axis of the heat transfer tube is da and the long axis is db.
The heat exchanger according to any one of claims 1 to 7, wherein the flattening factor H (= db / da) satisfies 8 ≦ H.
【請求項9】 板状フィンの一次冷媒が流れる方向の幅
をL、伝熱管の長軸をdbとすると、 1≦L/db≦1.5 であることを特徴とする請求項1乃至8のいずれかに記
載の熱交換器。
9. The apparatus according to claim 1, wherein 1 ≦ L / db ≦ 1.5, where L is the width of the plate-like fin in the direction in which the primary refrigerant flows, and db is the long axis of the heat transfer tube. A heat exchanger as described in Crab.
【請求項10】 伝熱管を複数配置し、この配置方向で
ある一次冷媒の流れとは直角方向の段方向ピッチをD
p、伝熱管の扁平の短軸をdaとすると、 0.6≦(Dp−da)/Dp≦0.95 であることを特徴とする請求項1乃至9のいずれかに記
載の熱交換器。
10. A plurality of heat transfer tubes are arranged, and the stepwise pitch in a direction perpendicular to the direction of the primary refrigerant in the arrangement direction is D.
The heat exchanger according to any one of claims 1 to 9, wherein, where p is a flat short axis of the heat transfer tube and da is 0.6 ≦ (Dp−da) /Dp≦0.95.
【請求項11】 板状フィンの風上側の端部と伝熱管の
前縁部の距離をL1とすると、 L1<da/8 であることを特徴とする請求項1乃至10のいずれかに
記載の熱交換器。
11. The apparatus according to claim 1, wherein L1 <da / 8, where L1 is a distance between the windward end of the plate-like fin and the front edge of the heat transfer tube. Heat exchanger.
【請求項12】 板状フィンの面上に設けられ、気体の
流れに対向して開口部を有するスリットと、を備え、フ
ィン幅Lの半分L/2の中心線に対して下流部に設けた
スリットの数よりも、上流部に設けたスリットの数が多
いことを特徴とする請求項1乃至11のいずれかに記載
の熱交換器。
12. A slit provided on the surface of the plate-like fin and having an opening facing the flow of gas, provided at a downstream portion with respect to a center line of a half L / 2 of the fin width L. The heat exchanger according to any one of claims 1 to 11, wherein the number of slits provided in the upstream portion is larger than the number of slits provided.
【請求項13】 板状フィンの面上に設けられたスリッ
トの脚部と前記板状フィン面の交線が、フィン面を通過
する近傍の局所的な気体流れの方向とほぼ平行であるこ
とを特徴とする請求項1乃至12のいずれかに記載の熱
交換器。
13. An intersection line between a leg portion of a slit provided on a surface of the plate-like fin and the plate-like fin surface is substantially parallel to a local gas flow direction near the fin surface. The heat exchanger according to claim 1, wherein:
【請求項14】 板状フィンと伝熱管は加熱して固着す
ることを特徴とする請求項1乃至13のいずれかに記載
の熱交換器。
14. The heat exchanger according to claim 1, wherein the plate-like fin and the heat transfer tube are heated and fixed.
【請求項15】 伝熱管と板状フィンに同じ材料を用い
ることを特徴とする請求項1乃至14のいずれかに記載
の熱交換器。
15. The heat exchanger according to claim 1, wherein the same material is used for the heat transfer tube and the plate-like fin.
【請求項16】 二次冷媒を圧縮機、凝縮器熱交換器、
絞り装置、蒸発器熱交換器を循環させる冷凍サイクル
と,を備え,前記凝縮器熱交換器及び蒸発器熱交換器の
少なくとも一方に請求項1乃至15のいずれかに記載の
熱交換器を用いたことを特徴とする冷凍空調装置。
16. The secondary refrigerant is supplied to a compressor, a condenser heat exchanger,
And a refrigerating cycle for circulating an evaporator heat exchanger. The heat exchanger according to any one of claims 1 to 15, wherein at least one of the condenser heat exchanger and the evaporator heat exchanger is used. A refrigeration / air-conditioning system characterized by
【請求項17】 一次冷媒を、凝縮器熱交換器、又は、
蒸発器熱交換器のフィンの間を流す送風機と,を備え,
扁平形状の伝熱管を有する熱交換器へ送風する送風機に
プロペラファンを用いたことを特徴とする請求項16記
載の冷凍空調装置。
17. The method according to claim 17, wherein the primary refrigerant is a condenser heat exchanger or
A blower flowing between the fins of the evaporator heat exchanger,
17. The refrigeration / air-conditioning apparatus according to claim 16, wherein a propeller fan is used as a blower for blowing air to the heat exchanger having the flat heat transfer tubes.
【請求項18】 多数平行に配置され、その間を一次冷
媒が流れる板状フィンと、この各板状フィンへ固定さ
れ、内部に二次冷媒を流す扁平状に形成されると共に前
記板状フィンに流れる一次冷媒を扁平の長軸方向に沿っ
て流すように複数配置された伝熱管と,を備えた熱交換
器において,前記板状フィンに前記一次冷媒の流れる方
向の一端を開放し他端側を閉鎖する抜き穴を形成するス
テップと,前記板状フィンの抜き穴に前記伝熱管を開放
側である常に一方の端部から挿入して組み立てるステッ
プと,前記板状フィンと前記伝熱管を組み立てた後で前
記フィンと前記伝熱管を加熱して固着させるステップ
と,を備えたことを特徴とする熱交換器の製造方法。
18. A plurality of plate-shaped fins which are arranged in parallel and through which a primary refrigerant flows, and which are fixed to the respective plate-shaped fins, are formed in a flat shape in which a secondary refrigerant flows therein, and are formed on the plate-shaped fins. A plurality of heat transfer tubes arranged so that the flowing primary refrigerant flows along the flat major axis direction, wherein one end of the primary refrigerant in the direction in which the primary refrigerant flows is opened to the plate-like fins and the other end side is opened. Forming a hole to close the plate, assembling the heat transfer tube by inserting the heat transfer tube into the hole of the plate fin from one end which is always open, and assembling the plate fin and the heat transfer tube. Heating the fins and the heat transfer tube to secure the heat transfer tubes after the heat transfer.
【請求項19】 板状フィンと伝熱管を加熱して固着さ
せた後で、板状フィンに親水材を塗付することを特徴と
する特許請18記載の熱交換器の製造方法。
19. The method for manufacturing a heat exchanger according to claim 18, wherein the plate-like fin and the heat transfer tube are heated and fixed, and then the plate-like fin is coated with a hydrophilic material.
JP2000332590A 2000-10-31 2000-10-31 Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger Pending JP2002139282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000332590A JP2002139282A (en) 2000-10-31 2000-10-31 Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000332590A JP2002139282A (en) 2000-10-31 2000-10-31 Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger

Publications (1)

Publication Number Publication Date
JP2002139282A true JP2002139282A (en) 2002-05-17

Family

ID=18808778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000332590A Pending JP2002139282A (en) 2000-10-31 2000-10-31 Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger

Country Status (1)

Country Link
JP (1) JP2002139282A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044940A (en) * 2002-07-12 2004-02-12 Denso Corp Cooler
JP2004093103A (en) * 2002-07-12 2004-03-25 Denso Corp Cooler
JP2004144460A (en) * 2002-08-29 2004-05-20 Denso Corp Heat exchanger
FR2863349A1 (en) * 2003-12-05 2005-06-10 Valeo Climatisation Flat tube for use in motor vehicle, has parallel lower channels that are connected on both sides of transversal partitions, and bound by walls of tube and separated from each other by partitions
JP2005201622A (en) * 2003-12-15 2005-07-28 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger
US7032313B2 (en) * 2001-02-07 2006-04-25 Modine Manufacturing Company Method of fabricating a heat exchanger
GB2445575A (en) * 2007-01-12 2008-07-16 Kuan-Yin Chou Radiating structure
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
WO2008136916A1 (en) * 2007-05-07 2008-11-13 Aaf-Mcquay Inc. Heat exchanger assembly
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2010054060A (en) * 2008-08-26 2010-03-11 Mitsubishi Electric Corp Fin tube type heat exchanger, method of manufacturing the same, and refrigerating cycle air conditioner
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP2011117628A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Fin for heat exchanger, the heat exchanger and method of manufacturing the same
JP2011220554A (en) * 2010-04-05 2011-11-04 Sumitomo Light Metal Ind Ltd Heat-transfer tube for fin-and-tube type heat exchanger, fin-and-tube type heat exchanger using the heat-transfer tube, and manufacturing method for the fin-and-tube type heat exchanger
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP2012073014A (en) * 2010-05-31 2012-04-12 Sumitomo Light Metal Ind Ltd Exchanger tube and fin for fin-and-tube heat exchanger, fin-and-tube heat exchanger using the same, and manufacturing method thereof
JP2012154501A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
JP2012184907A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Heat exchanger, method of manufacturing the same, and air conditioner including the same
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
WO2014076757A1 (en) * 2012-11-13 2014-05-22 三菱電機株式会社 Flat heat transmission tube, method for manufacturing cross-fin-tube-type heat exchanger provided with same, cross-fin-tube-type heat exchanger manufactured using said method
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
JP2015090219A (en) * 2013-11-05 2015-05-11 日立アプライアンス株式会社 Heat-exchanger-tube expansion method and air conditioner
JP2015117874A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same
US20150192372A1 (en) * 2012-07-05 2015-07-09 Cheon Su Bak Tubular heat exchanger
CN105004210A (en) * 2015-07-20 2015-10-28 广东美的制冷设备有限公司 Fin, heat exchanger with fin and air conditioner
JPWO2013161792A1 (en) * 2012-04-27 2015-12-24 三菱電機株式会社 Heat exchanger, method for manufacturing the same, and refrigeration cycle apparatus
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner
US9546823B2 (en) 2012-04-27 2017-01-17 Mitsubishi Electric Corporation Heat exchanger, method of manufacturing same, and refrigeration cycle apparatus
US9702630B2 (en) 2014-03-13 2017-07-11 Bae Systems Plc Heat exchanger
WO2017175702A1 (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
WO2019017093A1 (en) * 2017-07-21 2019-01-24 日立ジョンソンコントロールズ空調株式会社 Heat-exchanger manufacturing method, heat-exchanger overlaying method, heat exchanger and multi-row heat exchanger
WO2019102915A1 (en) * 2017-11-24 2019-05-31 三菱アルミニウム株式会社 Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP2019095182A (en) * 2017-11-24 2019-06-20 三菱アルミニウム株式会社 Aluminum fin with superior hydrophilic property after brazing treatment, heat exchanger and their process of manufacture
WO2019167840A1 (en) * 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger
EP3745075A4 (en) * 2018-01-22 2021-01-06 Daikin Industries, Ltd. Indoor heat exchanger and air conditioning device
EP3480546B1 (en) * 2016-06-30 2021-03-24 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus provided with same
WO2022014516A1 (en) * 2020-07-17 2022-01-20 ダイキン工業株式会社 Heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144948U (en) * 1979-04-05 1980-10-17
JPS57178984U (en) * 1981-04-28 1982-11-12
JPS59124973U (en) * 1983-02-11 1984-08-22 株式会社デンソー Evaporator
JPH01170870U (en) * 1988-05-17 1989-12-04
JPH03217793A (en) * 1990-01-22 1991-09-25 Mitsubishi Materials Corp Heat exchanger provided with tube with flat groove
JPH04177091A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger
JPH04254197A (en) * 1991-02-05 1992-09-09 Showa Alum Corp Heat exchanger made of aluminum
JPH05196383A (en) * 1992-01-17 1993-08-06 Nippondenso Co Ltd Corrugated fin type heat-exchanger
JP2000028288A (en) * 1998-07-10 2000-01-28 Kimura Kohki Co Ltd Heat exchanging coil for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144948U (en) * 1979-04-05 1980-10-17
JPS57178984U (en) * 1981-04-28 1982-11-12
JPS59124973U (en) * 1983-02-11 1984-08-22 株式会社デンソー Evaporator
JPH01170870U (en) * 1988-05-17 1989-12-04
JPH03217793A (en) * 1990-01-22 1991-09-25 Mitsubishi Materials Corp Heat exchanger provided with tube with flat groove
JPH04177091A (en) * 1990-11-08 1992-06-24 Toshiba Corp Heat exchanger
JPH04254197A (en) * 1991-02-05 1992-09-09 Showa Alum Corp Heat exchanger made of aluminum
JPH05196383A (en) * 1992-01-17 1993-08-06 Nippondenso Co Ltd Corrugated fin type heat-exchanger
JP2000028288A (en) * 1998-07-10 2000-01-28 Kimura Kohki Co Ltd Heat exchanging coil for air conditioner

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7032313B2 (en) * 2001-02-07 2006-04-25 Modine Manufacturing Company Method of fabricating a heat exchanger
JP2004093103A (en) * 2002-07-12 2004-03-25 Denso Corp Cooler
JP2004044940A (en) * 2002-07-12 2004-02-12 Denso Corp Cooler
JP2004144460A (en) * 2002-08-29 2004-05-20 Denso Corp Heat exchanger
FR2863349A1 (en) * 2003-12-05 2005-06-10 Valeo Climatisation Flat tube for use in motor vehicle, has parallel lower channels that are connected on both sides of transversal partitions, and bound by walls of tube and separated from each other by partitions
WO2005057115A1 (en) * 2003-12-05 2005-06-23 Valeo Climatisation Flat tube for a heat exchanger cross-flown by a high-pressure fluid
JP2005201622A (en) * 2003-12-15 2005-07-28 Usui Kokusai Sangyo Kaisha Ltd Heat exchanger
US8584742B2 (en) 2003-12-15 2013-11-19 Usui Kokusai Sangyo Kaisha, Ltd. Heat exchanger
JP4520774B2 (en) * 2003-12-15 2010-08-11 臼井国際産業株式会社 Heat exchanger
GB2445575A (en) * 2007-01-12 2008-07-16 Kuan-Yin Chou Radiating structure
JP2008261517A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Fin tube-type heat exchanger and air conditioner using the same
WO2008136916A1 (en) * 2007-05-07 2008-11-13 Aaf-Mcquay Inc. Heat exchanger assembly
JP2009270781A (en) * 2008-05-08 2009-11-19 Mitsubishi Electric Corp Heat exchanger module, heat exchanger, indoor unit and air conditioning and refrigerating device
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP2010054060A (en) * 2008-08-26 2010-03-11 Mitsubishi Electric Corp Fin tube type heat exchanger, method of manufacturing the same, and refrigerating cycle air conditioner
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP2011117628A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Fin for heat exchanger, the heat exchanger and method of manufacturing the same
JP2011220554A (en) * 2010-04-05 2011-11-04 Sumitomo Light Metal Ind Ltd Heat-transfer tube for fin-and-tube type heat exchanger, fin-and-tube type heat exchanger using the heat-transfer tube, and manufacturing method for the fin-and-tube type heat exchanger
JP2012073014A (en) * 2010-05-31 2012-04-12 Sumitomo Light Metal Ind Ltd Exchanger tube and fin for fin-and-tube heat exchanger, fin-and-tube heat exchanger using the same, and manufacturing method thereof
JP2012026615A (en) * 2010-07-21 2012-02-09 Mitsubishi Electric Corp Outdoor unit, and refrigeration cycle apparatus with the same
JP2012154501A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
JP2012184907A (en) * 2011-03-08 2012-09-27 Mitsubishi Electric Corp Heat exchanger, method of manufacturing the same, and air conditioner including the same
JP2013011369A (en) * 2011-06-28 2013-01-17 Mitsubishi Electric Corp Fin tube heat exchanger, and refrigeration cycle apparatus using the same
US9546823B2 (en) 2012-04-27 2017-01-17 Mitsubishi Electric Corporation Heat exchanger, method of manufacturing same, and refrigeration cycle apparatus
JPWO2013161792A1 (en) * 2012-04-27 2015-12-24 三菱電機株式会社 Heat exchanger, method for manufacturing the same, and refrigeration cycle apparatus
US9803936B2 (en) 2012-07-05 2017-10-31 Cheon Su Bak Tubular heat exchanger
US20150192372A1 (en) * 2012-07-05 2015-07-09 Cheon Su Bak Tubular heat exchanger
JPWO2014076757A1 (en) * 2012-11-13 2016-09-08 三菱電機株式会社 Flat shape heat transfer tube, method of manufacturing cross fin tube type heat exchanger equipped with the same, cross fin tube type heat exchanger manufactured by the method
JP5911597B2 (en) * 2012-11-13 2016-04-27 三菱電機株式会社 Flat shape heat transfer tube, method of manufacturing cross fin tube type heat exchanger equipped with the same, cross fin tube type heat exchanger manufactured by the method
WO2014076757A1 (en) * 2012-11-13 2014-05-22 三菱電機株式会社 Flat heat transmission tube, method for manufacturing cross-fin-tube-type heat exchanger provided with same, cross-fin-tube-type heat exchanger manufactured using said method
US9733025B2 (en) 2012-11-13 2017-08-15 Mitsubishi Electric Corporation Flat heat transfer tube, manufacturing method of cross fin tube type heat exchanger having the same, and cross fin tube type heat exchanger manufactured by the same manufacturing method
WO2015040746A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner device using said heat exchanger, and method for producing said heat exchanger
EP3048406B1 (en) * 2013-09-20 2024-03-13 Mitsubishi Electric Corporation Heat exchanger, air conditioner using said heat exchanger, and manufacturing methods of said heat exchanger
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
JPWO2015041216A1 (en) * 2013-09-20 2017-03-02 三菱電機株式会社 Heat exchanger, air conditioner using the heat exchanger, and method for manufacturing the heat exchanger
US10215503B2 (en) 2013-09-20 2019-02-26 Mistubishi Electric Corporation Heat exchanger, air-conditioning apparatus using the same and method of manufacturing the same
JP2015090219A (en) * 2013-11-05 2015-05-11 日立アプライアンス株式会社 Heat-exchanger-tube expansion method and air conditioner
JP2015117874A (en) * 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same
US9702630B2 (en) 2014-03-13 2017-07-11 Bae Systems Plc Heat exchanger
JP2016176646A (en) * 2015-03-20 2016-10-06 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Outdoor unit of air conditioner
CN105004210A (en) * 2015-07-20 2015-10-28 广东美的制冷设备有限公司 Fin, heat exchanger with fin and air conditioner
WO2017175702A1 (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
AU2017247746B2 (en) * 2016-04-07 2018-12-06 Daikin Industries, Ltd. Indoor heat exchanger
CN108885015A (en) * 2016-04-07 2018-11-23 大金工业株式会社 indoor heat exchanger
JP2017187243A (en) * 2016-04-07 2017-10-12 ダイキン工業株式会社 Indoor heat exchanger
US20190170372A1 (en) * 2016-04-07 2019-06-06 Daikin Industries, Ltd. Indoor heat exchanger
EP3480546B1 (en) * 2016-06-30 2021-03-24 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus provided with same
EP3657117A4 (en) * 2017-07-21 2021-05-26 Hitachi-Johnson Controls Air Conditioning, Inc. Heat-exchanger manufacturing method, heat-exchanger overlaying method, heat exchanger and multi-row heat exchanger
CN110177990A (en) * 2017-07-21 2019-08-27 日立江森自控空调有限公司 The manufacturing method of heat exchanger, the method for superposition of heat exchanger, heat exchanger and multiple row heat exchanger
WO2019017093A1 (en) * 2017-07-21 2019-01-24 日立ジョンソンコントロールズ空調株式会社 Heat-exchanger manufacturing method, heat-exchanger overlaying method, heat exchanger and multi-row heat exchanger
CN110177990B (en) * 2017-07-21 2020-11-24 日立江森自控空调有限公司 Method for manufacturing heat exchanger, method for overlapping heat exchangers, heat exchanger, and multi-row heat exchanger
JP2019020091A (en) * 2017-07-21 2019-02-07 日立ジョンソンコントロールズ空調株式会社 Heat exchanger manufacturing method, heat exchanger overlapping method, heat exchanger, and multi-row heat exchanger
JP2019095182A (en) * 2017-11-24 2019-06-20 三菱アルミニウム株式会社 Aluminum fin with superior hydrophilic property after brazing treatment, heat exchanger and their process of manufacture
WO2019102915A1 (en) * 2017-11-24 2019-05-31 三菱アルミニウム株式会社 Aluminum fin having excellent hydrophilicity after brazing, and heat exchanger and method for producing same
JP7209487B2 (en) 2017-11-24 2023-01-20 Maアルミニウム株式会社 ALUMINUM FIN AND HEAT EXCHANGER EXCELLENT IN HYDROPHILIC AFTER BRAZING PROCESS AND METHOD FOR MANUFACTURING THE SAME
EP3745075A4 (en) * 2018-01-22 2021-01-06 Daikin Industries, Ltd. Indoor heat exchanger and air conditioning device
JP2019152361A (en) * 2018-03-01 2019-09-12 ダイキン工業株式会社 Heat exchanger
JP7044969B2 (en) 2018-03-01 2022-03-31 ダイキン工業株式会社 Heat exchanger
CN111788447B (en) * 2018-03-01 2022-05-31 大金工业株式会社 Heat exchanger
CN111788447A (en) * 2018-03-01 2020-10-16 大金工业株式会社 Heat exchanger
US11874034B2 (en) 2018-03-01 2024-01-16 Daikin Industries, Ltd. Heat exchanger
WO2019167840A1 (en) * 2018-03-01 2019-09-06 ダイキン工業株式会社 Heat exchanger
WO2022014516A1 (en) * 2020-07-17 2022-01-20 ダイキン工業株式会社 Heat exchanger
JP2022019459A (en) * 2020-07-17 2022-01-27 ダイキン工業株式会社 Heat exchanger
JP7037090B2 (en) 2020-07-17 2022-03-16 ダイキン工業株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4096226B2 (en) FIN TUBE HEAT EXCHANGER, ITS MANUFACTURING METHOD, AND REFRIGERATION AIR CONDITIONER
JP4749373B2 (en) Air conditioner
JP4845943B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner
CN102959353B (en) Multichannel tubes with deformable webs
EP1659344B1 (en) Indoor unit of air conditioner
JP3720208B2 (en) Heat exchanger and air-conditioning refrigeration apparatus using the same
CN101995115A (en) Multi-channel heat exchanger fins
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP4659779B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
WO2021065913A1 (en) Evaporator and refrigeration cycle device equipped with same
JP3945575B2 (en) Finned tube heat exchanger and refrigeration cycle air conditioner using the same
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP4186359B2 (en) HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP2003090691A (en) Fin tube heat exchanger and refrigerating cycle employing the same
JP2002243383A (en) Heat exchanger and air conditioner using the same
EP4184105A1 (en) Heat exchanger
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP6316458B2 (en) Air conditioner
JP6621928B2 (en) Heat exchanger and air conditioner
JP6548824B2 (en) Heat exchanger and refrigeration cycle device
WO2001067020A1 (en) Heat exchanger, air conditioner, outdoor device, and indoor device
AU2019460046B2 (en) Heat exchanger and refrigeration cycle apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311