JP7037090B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP7037090B2
JP7037090B2 JP2020123314A JP2020123314A JP7037090B2 JP 7037090 B2 JP7037090 B2 JP 7037090B2 JP 2020123314 A JP2020123314 A JP 2020123314A JP 2020123314 A JP2020123314 A JP 2020123314A JP 7037090 B2 JP7037090 B2 JP 7037090B2
Authority
JP
Japan
Prior art keywords
flat tube
curved portion
heat exchanger
heat transfer
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020123314A
Other languages
Japanese (ja)
Other versions
JP2022019459A (en
Inventor
透 安東
宏和 藤野
祥志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2020123314A priority Critical patent/JP7037090B2/en
Priority to PCT/JP2021/026071 priority patent/WO2022014516A1/en
Publication of JP2022019459A publication Critical patent/JP2022019459A/en
Application granted granted Critical
Publication of JP7037090B2 publication Critical patent/JP7037090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Description

本開示は、熱交換器に関し、特には伝熱フィンを使用しない熱交換器に関する。 The present disclosure relates to heat exchangers, in particular to heat exchangers that do not use heat transfer fins.

従来、ヘッダと、ヘッダに接続される伝熱扁平管とを備え、伝熱フィンを使用しない熱交換器が知られている。例えば、特許文献1(国際公開第2005/073655号)には、直管状のヘッダを有する熱交換器が開示されている。 Conventionally, a heat exchanger having a header and a heat transfer flat tube connected to the header and not using heat transfer fins is known. For example, Patent Document 1 (International Publication No. 2005/073655) discloses a heat exchanger having a straight tubular header.

しかし、実際の適用の場面では、伝熱扁平管の延びる方向に沿って熱交換器を見た際に、例えばL字状やU字状に伝熱扁平管が配置された熱交換器、言い換えれば、ヘッダに湾曲部が設けられた熱交換器が求められる場合がある。このような構造の熱交換器を、例えば特許文献1(国際公開第2005/073655号)に開示されている熱交換器のヘッダを曲げることで実現しようとした場合、湾曲部でヘッダと伝熱扁平管とのロウ付け部の破損が起こる可能性がある。湾曲部に伝熱扁平管を設けない場合には、このような破損は避けることができるが、この場合には、ヘッダの湾曲部は熱交換に寄与しないため、熱交換器が大型化しやすい。 However, in the actual application situation, when the heat exchanger is viewed along the extending direction of the heat transfer flat tube, for example, the heat exchanger in which the heat transfer flat tube is arranged in an L-shape or a U-shape, in other words. For example, a heat exchanger having a curved portion in the header may be required. When an attempt is made to realize a heat exchanger having such a structure by bending the header of the heat exchanger disclosed in, for example, Patent Document 1 (International Publication No. 2005/073655), heat transfer with the header at the curved portion. Damage to the brazed part with the flat tube may occur. When the heat transfer flat tube is not provided in the curved portion, such damage can be avoided, but in this case, since the curved portion of the header does not contribute to heat exchange, the heat exchanger tends to be large.

本開示は、ヘッダに湾曲部が設けられ、コンパクトで高性能な熱交換器を提供することを課題とする。 It is an object of the present disclosure to provide a compact and high-performance heat exchanger in which a curved portion is provided in a header.

第1観点に係る熱交換器は、ヘッダと、複数の伝熱扁平管と、を備える。ヘッダは、第1直線部、第2直線部、及び、湾曲部、を少なくとも含む。第1直線部は、第1方向に延びる。第2直線部は、第1方向と交差する第2方向に延びる。湾曲部は、第1直線部と第2直線部との間を接続する。複数の伝熱扁平管のそれぞれは、ヘッダに形成されている開口に挿入され、ヘッダに接続される。伝熱扁平管は、湾曲部に設けられている開口に挿入されて固定されている湾曲部扁平管を含む。湾曲部扁平管の断面長手方向は、第1直線部に設けられている開口に挿入されて固定されている伝熱扁平管の断面長手方向及び第2直線部に設けられている開口に挿入されて固定されている伝熱扁平管の断面長手方向のそれぞれに対して傾斜している。 The heat exchanger according to the first aspect includes a header and a plurality of heat transfer flat tubes. The header includes at least a first straight line portion, a second straight line portion, and a curved portion. The first straight line portion extends in the first direction. The second straight line portion extends in the second direction intersecting the first direction. The curved portion connects between the first straight line portion and the second straight line portion. Each of the plurality of heat transfer flat tubes is inserted into an opening formed in the header and connected to the header. The heat transfer flat tube includes a curved flat tube inserted and fixed in an opening provided in the curved portion. The longitudinal direction of the cross section of the curved flat tube is inserted into the longitudinal direction of the cross section of the heat transfer flat tube inserted and fixed in the opening provided in the first straight section and the opening provided in the second straight section. The heat transfer flat tube fixed in place is inclined with respect to each of the longitudinal directions of the cross section.

第1観点に係る熱交換器では、湾曲部にも伝熱扁平管が配置されているため、ヘッダが湾曲部を有する形状であって、コンパクトで高性能な熱交換器を実現できる。 In the heat exchanger according to the first aspect, since the heat transfer flat tube is also arranged in the curved portion, the header has a shape having the curved portion, and a compact and high-performance heat exchanger can be realized.

第2観点に係る熱交換器は、第1観点に係る熱交換器であって、各伝熱扁平管の、接続部の外周の大きさは、接続部以外の外周の大きさに比べて大きい。接続部は、各伝熱扁平管の、ヘッダの開口に挿入されて固定されている部分である。 The heat exchanger according to the second aspect is the heat exchanger according to the first aspect, and the size of the outer periphery of the connection portion of each heat transfer flat tube is larger than the size of the outer periphery other than the connection portion. .. The connection portion is a portion of each heat transfer flat tube that is inserted and fixed in the opening of the header.

第2観点に係る熱交換器では、伝熱扁平管のヘッダとの接続部の外周を大きく形成したことで、ヘッダと伝熱扁平管とをロウ付け代を比較的大きく確保でき、ヘッダと伝熱扁平管との接続箇所の強度を確保することが容易である。 In the heat exchanger according to the second aspect, by forming a large outer periphery of the connection portion of the heat transfer flat tube with the header, a relatively large brazing allowance can be secured between the header and the heat transfer flat tube, and the header and the heat transfer can be secured. It is easy to secure the strength of the connection point with the heat flat tube.

また、伝熱扁平管のヘッダとの接続部の外周を大きく形成し、接続部をスペーサとして利用することで、伝熱扁平管を適切な間隔を空けて配置することが容易である。 Further, by forming a large outer circumference of the connection portion with the header of the heat transfer flat tube and using the connection portion as a spacer, it is easy to arrange the heat transfer flat tubes at appropriate intervals.

第3観点に係る熱交換器は、第2観点に係る熱交換器であって、第1直線部及び第2直線部に設けられている開口に挿入されて固定されている伝熱扁平管の接続部の断面長手方向に直交する方向の幅は、一様である。 The heat exchanger according to the third aspect is the heat exchanger according to the second aspect, and is a heat transfer flat tube inserted and fixed in the openings provided in the first straight line portion and the second straight line portion. The width of the connection portion in the direction orthogonal to the longitudinal direction of the cross section is uniform.

第3観点に係る熱交換器では、ヘッダの直線部に接続される伝熱扁平管の接続部の形状がシンプルであるため、ヘッダの直線部に接続される伝熱扁平管の製造が比較的容易である。 In the heat exchanger according to the third aspect, since the shape of the connection portion of the heat transfer flat tube connected to the straight portion of the header is simple, the heat transfer flat tube connected to the straight portion of the header is relatively manufactured. It's easy.

第4観点に係る熱交換器は、第2観点又は第3観点に係る熱交換器であって、湾曲部扁平管の接続部は、湾曲部の内縁側に配置される第1端部と湾曲部の外縁側に配置される第2端部との間を湾曲部扁平管の断面長手方向に沿って延びる。湾曲部扁平管の接続部の、第2端部における湾曲部扁平管の断面長手方向に直交する方向の幅は、第1端部における湾曲部扁平管の断面長手方向に直交する方向の幅よりも広い。 The heat exchanger according to the fourth aspect is the heat exchanger according to the second aspect or the third aspect, and the connection portion of the curved flat tube is curved with the first end portion arranged on the inner edge side of the curved portion. It extends along the longitudinal direction of the cross section of the curved flat tube between the second end portion arranged on the outer edge side of the portion. The width of the connecting portion of the curved flat pipe in the direction orthogonal to the longitudinal direction of the curved portion flat pipe at the second end is larger than the width in the direction orthogonal to the longitudinal direction of the curved portion flat pipe at the first end. Is also wide.

第4観点に係る熱交換器では、ヘッダの湾曲部に接続される湾曲部扁平管の接続部の幅が、湾曲部の外縁側の第2端部で広く、湾曲部の内縁側の第1端部で薄い。そのため、湾曲部扁平管の接続部の外形を、予め湾曲部において曲げられたヘッダの湾曲部の開口の形状に対応させることができる。そのため、湾曲部にも伝熱扁平管が配置されている熱交換器を、容易に製造することができる。 In the heat exchanger according to the fourth aspect, the width of the connecting portion of the curved portion flat tube connected to the curved portion of the header is wide at the second end portion on the outer edge side of the curved portion, and the first on the inner edge side of the curved portion. Thin at the edges. Therefore, the outer shape of the connecting portion of the curved portion flat tube can be made to correspond to the shape of the opening of the curved portion of the header bent in advance in the curved portion. Therefore, it is possible to easily manufacture a heat exchanger in which the heat transfer flat tube is also arranged in the curved portion.

第5観点に係る熱交換器は、第4観点に係る熱交換器であって、湾曲部扁平管の接続部の断面形状は、湾曲部扁平管の断面長手方向に直交する方向の幅が、第1端部から第2端部に向かって次第に広くなる楔形状である。 The heat exchanger according to the fifth aspect is the heat exchanger according to the fourth aspect, and the cross-sectional shape of the connecting portion of the curved flat tube has a width in a direction orthogonal to the longitudinal direction of the cross section of the curved flat tube. It is a wedge shape that gradually widens from the first end to the second end.

第5観点に係る熱交換器では、ヘッダの湾曲部に接続される湾曲部扁平管の接続部の断面形状が、第1端部から第2端部に向かって広くなる楔形状である。そのため、湾曲部扁平管の接続部の外形の形状を、予め湾曲部において曲げられたヘッダの湾曲部の開口の形状に対応させることが容易である。そのため、湾曲部にも伝熱扁平管が配置されている熱交換器を、容易に製造することができる。 In the heat exchanger according to the fifth aspect, the cross-sectional shape of the connecting portion of the curved portion flat tube connected to the curved portion of the header is a wedge shape that widens from the first end portion to the second end portion. Therefore, it is easy to make the shape of the outer shape of the connecting portion of the curved portion flat tube correspond to the shape of the opening of the curved portion of the header bent in advance in the curved portion. Therefore, it is possible to easily manufacture a heat exchanger in which the heat transfer flat tube is also arranged in the curved portion.

第6観点に係る熱交換器は、第4観点又は第5観点に係る熱交換器であって、湾曲部扁平管の接続部の断面形状は、湾曲部の内縁側及び湾曲部の外縁側に曲線部を含む。湾曲部の内縁側の曲線部の曲率は、湾曲部の外縁側の曲線部の曲率に比べて大きい。 The heat exchanger according to the sixth aspect is the heat exchanger according to the fourth aspect or the fifth aspect, and the cross-sectional shape of the connecting portion of the curved portion flat tube is on the inner edge side of the curved portion and the outer edge side of the curved portion. Includes curved parts. The curvature of the curved portion on the inner edge side of the curved portion is larger than the curvature of the curved portion on the outer edge side of the curved portion.

湾曲部扁平管の接続部の断面形状を、このような形状とすることで、湾曲部扁平管の接続部を、予め湾曲部において曲げられたヘッダの湾曲部の開口の形状に対応させることが容易である。そのため、湾曲部にも伝熱扁平管が配置されている熱源熱交換器を、容易に製造することができる。 By making the cross-sectional shape of the connecting portion of the curved flat tube such a shape, it is possible to make the connecting portion of the curved flat tube correspond to the shape of the opening of the curved portion of the header bent in advance in the curved portion. It's easy. Therefore, it is possible to easily manufacture a heat source heat exchanger in which a heat transfer flat tube is also arranged in the curved portion.

第7観点に係る熱交換器は、第4観点から第6観点のいずれかに係る熱交換器であって、湾曲部扁平管の接続部の断面を見た時に、湾曲部扁平管の接続部には、断面長手方向に沿って並べられている複数の穴が形成されている。湾曲部の内縁に最も近い穴の形状と、湾曲部の外縁に最も近い穴の形状とは異なる。 The heat exchanger according to the seventh aspect is the heat exchanger according to any one of the fourth aspect to the sixth aspect, and when the cross section of the connection portion of the curved portion flat tube is viewed, the connection portion of the curved portion flat tube is viewed. Is formed with a plurality of holes arranged along the longitudinal direction of the cross section. The shape of the hole closest to the inner edge of the bend is different from the shape of the hole closest to the outer edge of the bend.

一実施形態に係る熱交換器を熱源熱交換器として利用する冷凍装置の概略構成図である。It is a schematic block diagram of the refrigerating apparatus which uses the heat exchanger which concerns on one Embodiment as a heat source heat exchanger. 図1の熱源熱交換器の概略斜視図である。It is a schematic perspective view of the heat source heat exchanger of FIG. 熱源熱交換器の他の形状の例である。An example of another shape of a heat source heat exchanger. 図2の熱源熱交換器の伝熱扁平管の本体部の概略断面図である。2 is a schematic cross-sectional view of the main body of the heat transfer flat tube of the heat source heat exchanger of FIG. 2. 図2の熱源熱交換器の伝熱扁平管を断面長手方向に沿って見た概略側面図である。2 is a schematic side view of the heat transfer flat tube of the heat source heat exchanger of FIG. 2 as viewed along the longitudinal direction of the cross section. 図2の熱源熱交換器のV-V矢視の概略断面図である。FIG. 3 is a schematic cross-sectional view taken along the line VV of the heat source heat exchanger of FIG. 図2の熱源熱交換器の液ヘッダと伝熱扁平管の部分分解斜視図であり、伝熱扁平管上部の接続部の図示は省略している。FIG. 2 is a partially exploded perspective view of the liquid header of the heat source heat exchanger and the heat transfer flat tube, and the connection portion of the upper part of the heat transfer flat tube is not shown. 図2の熱源熱交換器の液ヘッダの湾曲部周辺の概略平面図である。It is a schematic plan view around the curved portion of the liquid header of the heat source heat exchanger of FIG. 図2の熱源熱交換器の液ヘッダの湾曲部周辺の開口に接続される伝熱扁平管の接続部の外形を示す図であり、伝熱扁平管の本体部の外形を合わせて破線で描画している。It is a figure which shows the outline of the connection part of the heat transfer flat tube connected to the opening around the curved part of the liquid header of the heat source heat exchanger of FIG. is doing. 図2の熱源熱交換器の液ヘッダの湾曲部の開口に接続される伝熱扁平管の接続部周辺の概略斜視図である。It is a schematic perspective view around the connection part of the heat transfer flat tube connected to the opening of the curved part of the liquid header of the heat source heat exchanger of FIG. 図2の熱源熱交換器の液ヘッダの湾曲部の開口に接続される伝熱扁平管の接続部の概略断面図である。FIG. 2 is a schematic cross-sectional view of a connection portion of a heat transfer flat tube connected to an opening of a curved portion of the liquid header of the heat source heat exchanger of FIG.

図面を参照しながら、本開示の熱交換器の実施形態について説明する。なお、図面では、同一の又は同様の部材には、複数の図面にわたって同一の参照符号を付している。 An embodiment of the heat exchanger of the present disclosure will be described with reference to the drawings. In the drawings, the same or similar members are designated by the same reference numerals across a plurality of drawings.

本開示の熱交換器の一実施形態に係る熱源熱交換器50と、熱源熱交換器50を備えた空調装置100について説明する。 The heat source heat exchanger 50 and the air conditioner 100 including the heat source heat exchanger 50 according to the embodiment of the heat exchanger of the present disclosure will be described.

なお、本明細書では、本開示の熱交換器が空調装置100の熱源熱交換器として利用される場合を例に、本開示の熱交換器を説明するが、本開示の熱交換器の用途は、空調装置の熱源熱交換器に限定されるものではない。例えば、本開示の熱交換器は、給湯装置、床暖房装置、及び冷蔵庫や冷凍庫等の低温機器等の、空調装置以外の冷凍サイクル装置の熱源熱交換器として用いられてもよい。また、本開示の熱交換器の用途は、熱源熱交換器に限定されず、冷凍サイクル装置の利用熱交換器(例えば、後述する空調装置100の利用熱交換器32)に利用されてもよい。 In this specification, the heat exchanger of the present disclosure will be described by exemplifying the case where the heat exchanger of the present disclosure is used as the heat source heat exchanger of the air conditioner 100, but the use of the heat exchanger of the present disclosure will be described. Is not limited to the heat source heat exchanger of the air conditioner. For example, the heat exchanger of the present disclosure may be used as a heat source heat exchanger for a refrigerating cycle device other than an air conditioner, such as a hot water supply device, a floor heating device, and a low temperature device such as a refrigerator or a freezer. Further, the use of the heat exchanger of the present disclosure is not limited to the heat source heat exchanger, and may be used for the heat exchanger used in the refrigeration cycle device (for example, the heat exchanger 32 used in the air conditioner 100 described later). ..

(1)空調装置
初めに、熱源熱交換器50を備えた空調装置100に関して、図1を参照しながら説明する。図1は、本開示の熱交換器を熱源熱交換器50として利用する空調装置100の概略構成図である。
(1) Air-conditioning device First, the air-conditioning device 100 provided with the heat source heat exchanger 50 will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of an air conditioner 100 that uses the heat exchanger of the present disclosure as a heat source heat exchanger 50.

空調装置100は、蒸気圧縮式の冷凍サイクル装置の一例である。空調装置100は、冷凍サイクルを利用して、空調対象空間の冷房や暖房を行う。 The air conditioner 100 is an example of a steam compression type refrigeration cycle device. The air conditioner 100 uses the refrigeration cycle to cool and heat the air-conditioned space.

空調装置100は、図1のように、主として、1台の熱源ユニット10と、1台の利用ユニット30と、を有する。なお、熱源ユニット10及び利用ユニット30の台数は、1台に限定されるものではなく、空調装置100は、熱源ユニット10及び/又は利用ユニット30を複数台有していてもよい。 As shown in FIG. 1, the air conditioner 100 mainly has one heat source unit 10 and one utilization unit 30. The number of the heat source unit 10 and the utilization unit 30 is not limited to one, and the air conditioner 100 may have a plurality of heat source units 10 and / or utilization units 30.

空調装置100では、空調装置100の設置現場において熱源ユニット10と利用ユニット30とがガス冷媒連絡管26及び液冷媒連絡管24によって接続されることで、冷媒が循環する冷媒回路20が構成される。なお、本実施形態の空調装置100は、熱源ユニット10と利用ユニット30とが別体のセパレート型の空調装置であるが、本開示の熱交換器が使用される空調装置は、熱源ユニットと利用ユニットとが1つのケーシングに収容された一体型の空調装置であってもよい。 In the air conditioner 100, the heat source unit 10 and the utilization unit 30 are connected by the gas refrigerant connecting pipe 26 and the liquid refrigerant connecting pipe 24 at the installation site of the air conditioning device 100 to form a refrigerant circuit 20 in which the refrigerant circulates. .. The air conditioner 100 of the present embodiment is a separate type air conditioner in which the heat source unit 10 and the utilization unit 30 are separate, but the air conditioner in which the heat exchanger of the present disclosure is used is used together with the heat source unit. The unit may be an integrated air conditioner housed in one casing.

本実施形態では、冷媒回路20に封入されている冷媒は、R32やR410AのようなHFC冷媒である。ただし、冷媒の種類は、HFC冷媒に限定されるものではなく、例えば、HFO1234yf、HFO1234ze(E)やこれらの混合冷媒等のHFO冷媒であってもよい。また、冷媒の種類は、COガスのような自然冷媒であってもよい。 In the present embodiment, the refrigerant enclosed in the refrigerant circuit 20 is an HFC refrigerant such as R32 or R410A. However, the type of the refrigerant is not limited to the HFC refrigerant, and may be, for example, an HFO refrigerant such as HFO1234yf, HFO1234ze (E), or a mixed refrigerant thereof. Further, the type of the refrigerant may be a natural refrigerant such as CO 2 gas.

以下に、熱源ユニット10及び利用ユニット30の詳細と、空調装置100の運転時の冷媒回路20における冷媒の流れについて説明する。 The details of the heat source unit 10 and the utilization unit 30 and the flow of the refrigerant in the refrigerant circuit 20 during the operation of the air conditioner 100 will be described below.

(1-1)熱源ユニット
熱源ユニット10は、主として、圧縮機12と、流向切換機構14と、熱源熱交換器50と、膨張機構16と、熱源ファン18と、を有する(図1参照)。
(1-1) Heat Source Unit The heat source unit 10 mainly includes a compressor 12, a flow direction switching mechanism 14, a heat source heat exchanger 50, an expansion mechanism 16, and a heat source fan 18 (see FIG. 1).

また、熱源ユニット10は、冷媒回路20の一部を構成する配管として、吸入管22a、吐出管22b、第1ガス冷媒管22c、液冷媒管22d、及び第2ガス冷媒管22eを有する(図1参照)。吸入管22aは、流向切換機構14と圧縮機12の吸入口とを接続している。吐出管22bは、圧縮機12の吐出口と流向切換機構14とを接続している。第1ガス冷媒管22cは、流向切換機構14と熱源熱交換器50の後述するガスヘッダ52とを接続している。液冷媒管22dは、熱源熱交換器50の後述する液ヘッダ54と液冷媒連絡管24とを接続している。膨張機構16は、液冷媒管22dに設けられている。第2ガス冷媒管22eは、流向切換機構14とガス冷媒連絡管26とを接続している。 Further, the heat source unit 10 has a suction pipe 22a, a discharge pipe 22b, a first gas refrigerant pipe 22c, a liquid refrigerant pipe 22d, and a second gas refrigerant pipe 22e as pipes constituting a part of the refrigerant circuit 20 (FIG. 1). The suction pipe 22a connects the flow direction switching mechanism 14 and the suction port of the compressor 12. The discharge pipe 22b connects the discharge port of the compressor 12 and the flow direction switching mechanism 14. The first gas refrigerant pipe 22c connects the flow direction switching mechanism 14 and the gas header 52 described later of the heat source heat exchanger 50. The liquid refrigerant pipe 22d connects the liquid header 54, which will be described later, of the heat source heat exchanger 50, and the liquid refrigerant connecting pipe 24. The expansion mechanism 16 is provided in the liquid refrigerant pipe 22d. The second gas refrigerant pipe 22e connects the flow direction switching mechanism 14 and the gas refrigerant connecting pipe 26.

圧縮機12は、冷凍サイクルにおける低圧のガス冷媒を、吸入管22aから吸入し、圧縮機構(図示省略)で圧縮して、吐出管22bに吐出する機器である。圧縮機12には、ロータリ圧縮機、スクロール圧縮機等の、様々なタイプの圧縮機を利用可能である。圧縮機構を駆動する圧縮機12のモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により、空調装置100の運転状態に応じて適宜制御される。ただし、圧縮機12のモータは、定速のモータであってもよい。 The compressor 12 is a device that sucks the low-pressure gas refrigerant in the refrigeration cycle from the suction pipe 22a, compresses it by a compression mechanism (not shown), and discharges it to the discharge pipe 22b. As the compressor 12, various types of compressors such as a rotary compressor and a scroll compressor can be used. The motor (not shown) of the compressor 12 that drives the compression mechanism is an inverter motor with a variable rotation speed. The rotation speed of the motor is appropriately controlled by a control unit of the air conditioner 100 (not shown) according to the operating state of the air conditioner 100. However, the motor of the compressor 12 may be a constant speed motor.

流向切換機構14は、冷媒回路20における冷媒の流れ方向を切り換える機構である。本実施形態では、流向切換機構14は四路切換弁である。なお、流向切換機構14は、四路切換弁に限られるものではなく、複数の電磁弁及び冷媒管により構成されて、以下に説明するような冷媒の流れ方向の切り換えを実現してもよい。 The flow direction switching mechanism 14 is a mechanism for switching the flow direction of the refrigerant in the refrigerant circuit 20. In the present embodiment, the flow direction switching mechanism 14 is a four-way switching valve. The flow direction switching mechanism 14 is not limited to the four-way switching valve, and may be composed of a plurality of solenoid valves and a refrigerant pipe to realize switching of the flow direction of the refrigerant as described below.

流向切換機構14は、空調装置100の冷房運転時には、圧縮機12が吐出する冷媒が熱源熱交換器50に送られるように、冷媒回路20における冷媒の流向を切り換える。具体的には、空調装置100の冷房運転時には、流向切換機構14は、吸入管22aと第2ガス冷媒管22eとを連通させ、吐出管22bと第1ガス冷媒管22cとを連通させる(図1中の実線参照)。 The flow direction switching mechanism 14 switches the flow direction of the refrigerant in the refrigerant circuit 20 so that the refrigerant discharged by the compressor 12 is sent to the heat source heat exchanger 50 during the cooling operation of the air conditioner 100. Specifically, during the cooling operation of the air conditioner 100, the flow direction switching mechanism 14 communicates the suction pipe 22a and the second gas refrigerant pipe 22e, and communicates the discharge pipe 22b and the first gas refrigerant pipe 22c (FIG. FIG. See the solid line in 1.).

一方、流向切換機構14は、空調装置100の暖房運転時には、圧縮機12が吐出する冷媒が利用熱交換器32に送られるように、冷媒回路20における冷媒の流向を切り換える。具体的には、空調装置100の暖房運転時には、流向切換機構14は、吸入管22aと第1ガス冷媒管22cとを連通させ、吐出管22bと第2ガス冷媒管22eとを連通させる(図1中の破線参照)。 On the other hand, the flow direction switching mechanism 14 switches the flow direction of the refrigerant in the refrigerant circuit 20 so that the refrigerant discharged by the compressor 12 is sent to the utilization heat exchanger 32 during the heating operation of the air conditioner 100. Specifically, during the heating operation of the air conditioner 100, the flow direction switching mechanism 14 communicates the suction pipe 22a and the first gas refrigerant pipe 22c, and communicates the discharge pipe 22b and the second gas refrigerant pipe 22e (FIG. FIG. See the broken line in 1.).

熱源熱交換器50は、本開示の熱交換器の一例である。熱源熱交換器50では、熱源熱交換器50の後述する伝熱扁平管60を流れる冷媒と、外部流体(本実施形態では空気)との間で熱交換が行われる。空調装置100の冷房運転時には、熱源熱交換器50は冷媒の放熱器(凝縮器)として機能し、伝熱扁平管60を流れる冷媒は、外部流体と熱交換を行って(外部流体に対して放熱して)冷却される。空調装置100の暖房運転時には、熱源熱交換器50は冷媒の蒸発器として機能し、伝熱扁平管60を流れる冷媒は、外部流体と熱交換を行って(外部流体から吸熱して)加熱される。熱源熱交換器50の構造等の詳細については後述する。 The heat source heat exchanger 50 is an example of the heat exchanger of the present disclosure. In the heat source heat exchanger 50, heat is exchanged between the refrigerant flowing through the heat transfer flat tube 60 described later of the heat source heat exchanger 50 and the external fluid (air in the present embodiment). During the cooling operation of the air conditioner 100, the heat source heat exchanger 50 functions as a radiator (condenser) for the refrigerant, and the refrigerant flowing through the heat transfer flat tube 60 exchanges heat with the external fluid (with respect to the external fluid). It is cooled (by dissipating heat). During the heating operation of the air conditioner 100, the heat source heat exchanger 50 functions as a refrigerant evaporator, and the refrigerant flowing through the heat transfer flat tube 60 exchanges heat with an external fluid (absorbs heat from the external fluid) and is heated. To. Details of the structure and the like of the heat source heat exchanger 50 will be described later.

膨張機構16は、冷媒を減圧する機構である。本実施形態の膨張機構16は、開度調節可能な電子膨張弁である。電子膨張弁の開度は、図示しない空調装置100の制御部により、空調装置100の運転状態に応じて適宜制御される。ただし、膨張機構16は、電子膨張弁に限定されるものではなく、感温筒を用いる温度自動膨張弁であってもよい。また、膨張機構16は、開度調節可能な膨張弁に限定されず、キャピラリチューブであってもよい。 The expansion mechanism 16 is a mechanism for reducing the pressure of the refrigerant. The expansion mechanism 16 of the present embodiment is an electronic expansion valve whose opening degree can be adjusted. The opening degree of the electronic expansion valve is appropriately controlled by a control unit of the air conditioner 100 (not shown) according to the operating state of the air conditioner 100. However, the expansion mechanism 16 is not limited to the electronic expansion valve, and may be a temperature automatic expansion valve using a temperature sensitive cylinder. Further, the expansion mechanism 16 is not limited to the expansion valve whose opening degree can be adjusted, and may be a capillary tube.

熱源ファン18は、熱源ユニット10の外部から取り込んだ空気を熱源熱交換器50へと供給することで、熱源熱交換器50における冷媒と空気(外部流体)との熱交換を促進する機器である。熱源ファン18は、熱源ユニット10のケーシング(図示省略)に形成された吸気口(図示省略)から流入し、熱源熱交換器50を通過し、熱源ユニット10のケーシングに形成された排気口(図示省略)から吹き出す、空気の流れを生成する。熱源ファン18のファンの種類は、適宜選択されればよい。熱源ファン18を駆動するモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により運転状態に応じて適宜制御される。ただし、熱源ファン18を駆動するモータは、定速のモータであってもよい。 The heat source fan 18 is a device that promotes heat exchange between the refrigerant and air (external fluid) in the heat source heat exchanger 50 by supplying air taken in from the outside of the heat source unit 10 to the heat source heat exchanger 50. .. The heat source fan 18 flows in from an intake port (not shown) formed in the casing of the heat source unit 10 (not shown), passes through the heat source heat exchanger 50, and is an exhaust port (not shown) formed in the casing of the heat source unit 10. Generates a flow of air that blows out from (omitted). The type of fan of the heat source fan 18 may be appropriately selected. The motor (not shown) that drives the heat source fan 18 is an inverter motor with a variable rotation speed. The rotation speed of the motor is appropriately controlled according to the operating state by a control unit of an air conditioner 100 (not shown). However, the motor that drives the heat source fan 18 may be a constant speed motor.

(1-2)利用ユニット
利用ユニット30は、冷媒と空調対象空間の空気との間で熱交換をさせることで、空調対象空間の空調を行うユニットである。利用ユニット30は、主として、利用熱交換器32と、利用ファン34と、を有している(図1参照)。
(1-2) Utilization unit The utilization unit 30 is a unit that air-conditions the air-conditioning target space by exchanging heat between the refrigerant and the air in the air-conditioning target space. The utilization unit 30 mainly has a utilization heat exchanger 32 and a utilization fan 34 (see FIG. 1).

利用熱交換器32では、利用熱交換器32の伝熱管(図示省略)を流れる冷媒と、空調対象空間の空気との間で熱交換が行われる。利用熱交換器32は、例えば、複数の伝熱管と、伝熱管に取り付けられる複数の伝熱フィンと、を有するフィンアンドチューブ式の熱交換器である。ただし、前述のように、本開示のフィンレスの(伝熱フィンを有さない)熱交換器を、利用熱交換器32に用いることもできる。 In the utilization heat exchanger 32, heat exchange is performed between the refrigerant flowing through the heat transfer tube (not shown) of the utilization heat exchanger 32 and the air in the air conditioning target space. The utilization heat exchanger 32 is a fin-and-tube type heat exchanger having, for example, a plurality of heat transfer tubes and a plurality of heat transfer fins attached to the heat transfer tubes. However, as described above, the finless heat exchanger (without heat transfer fins) of the present disclosure can also be used for the utilization heat exchanger 32.

利用熱交換器32は、空調装置100の冷房運転時には、冷媒の蒸発器として機能し、利用熱交換器32の伝熱管を流れる冷媒は、空調対象空間の空気と熱交換を行って(空調対象空間の空気から吸熱して)加熱される。言い換えれば、空調装置100の冷房運転時には、空調対象空間の空気は、利用熱交換器32の伝熱管を流れる冷媒によって冷却される。一方、利用熱交換器32は、空調装置100の暖房運転時には、冷媒の放熱器(凝縮器)として機能し、利用熱交換器32の伝熱管を流れる冷媒は、空調対象空間の空気と熱交換を行って(空調対象空間の空気に対して放熱して)冷却される。言い換えれば、空調装置100の暖房運転時には、空調対象空間の空気は、利用熱交換器32の伝熱管を流れる冷媒によって加熱される。 The utilization heat exchanger 32 functions as a refrigerant evaporator during the cooling operation of the air conditioner 100, and the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32 exchanges heat with the air in the air conditioning target space (air conditioning target). It is heated (by absorbing heat from the air in the space). In other words, during the cooling operation of the air conditioner 100, the air in the air-conditioned space is cooled by the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32. On the other hand, the utilization heat exchanger 32 functions as a radiator (condenser) of the refrigerant during the heating operation of the air conditioning device 100, and the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32 exchanges heat with the air in the air conditioning target space. (Dissipates heat to the air in the air-conditioned space) and cools. In other words, during the heating operation of the air conditioner 100, the air in the air-conditioned space is heated by the refrigerant flowing through the heat transfer tube of the utilization heat exchanger 32.

利用ファン34は、空調対象空間から取り込んだ空気を利用熱交換器32へと供給することで、利用熱交換器32における冷媒と空調対象空間の空気との熱交換を促進する機器である。利用ファン34は、空調対象空間から利用ユニット30のケーシング(図示省略)に形成された吸気口(図示省略)を通って流入し、利用熱交換器32を通過し、利用ユニット30のケーシングに形成された吹出口(図示省略)から空調対象空間へと吹き出す、空気の流れを生成する。利用ファン34のファンの種類は、適宜選択されればよい。利用ファン34を駆動するモータ(図示省略)は、回転速度可変のインバータモータである。モータの回転数は、図示しない空調装置100の制御部により運転状態に応じて適宜制御される。ただし、利用ファン34を駆動するモータは、定速のモータであってもよい。 The utilization fan 34 is a device that promotes heat exchange between the refrigerant in the utilization heat exchanger 32 and the air in the air conditioning target space by supplying the air taken in from the air conditioning target space to the utilization heat exchanger 32. The utilization fan 34 flows from the air-conditioned space through the intake port (not shown) formed in the casing (not shown) of the utilization unit 30, passes through the utilization heat exchanger 32, and is formed in the casing of the utilization unit 30. Generates an air flow that blows out from the air outlet (not shown) to the air-conditioned space. The type of fan of the fan 34 to be used may be appropriately selected. The motor (not shown) that drives the fan 34 is an inverter motor with a variable rotation speed. The rotation speed of the motor is appropriately controlled according to the operating state by a control unit of an air conditioner 100 (not shown). However, the motor that drives the utilization fan 34 may be a constant speed motor.

(1-3)空調装置における冷媒の流れ
空調装置100では、冷房運転時及び暖房運転時に、冷媒回路20において、それぞれ以下に示すように冷媒が循環する。
(1-3) Flow of Refrigerant in Air Conditioning Device In the air conditioning device 100, the refrigerant circulates in the refrigerant circuit 20 during the cooling operation and the heating operation, respectively, as shown below.

(1-3-1)冷房運転時
冷房運転時には、流向切換機構14が図1の実線で示される状態となり、圧縮機12の吐出側が熱源熱交換器50のガス側と連通し、かつ、圧縮機12の吸入側が利用熱交換器32のガス側と連通する。
(1-3-1) During cooling operation During cooling operation, the flow direction switching mechanism 14 is in the state shown by the solid line in FIG. 1, and the discharge side of the compressor 12 communicates with the gas side of the heat source heat exchanger 50 and is compressed. The suction side of the machine 12 communicates with the gas side of the heat exchanger 32 used.

この状態で圧縮機12が駆動されると、吸入管22aから流入する冷凍サイクルにおける低圧のガス冷媒は、圧縮機12の圧縮機構で圧縮されて高圧のガス冷媒となる。圧縮機12が吐出する高圧のガス冷媒は、吐出管22b、流向切換機構14及び第1ガス冷媒管22cを経て熱源熱交換器50に流入する。高圧のガス冷媒は、熱源熱交換器50において、熱源ファン18が供給する空気と熱交換を行うことで冷却されて凝縮し、気液二相の状態を経て、最終的に高圧の液冷媒となる。熱源熱交換器50から流出した高圧の液冷媒は、膨張機構16へと送られる。膨張機構16において減圧された低圧の気液二相の冷媒は、液冷媒管22d及び液冷媒連絡管24を流れて利用熱交換器32の液側に流入する。利用熱交換器32に流入した冷媒は、空調対象空間の空気と熱交換を行って蒸発し、低圧のガス冷媒となって利用熱交換器32から流出する。利用熱交換器32から流出した低圧のガス冷媒は、ガス冷媒連絡管26、第2ガス冷媒管22e、流向切換機構14及び吸入管22aを経て圧縮機12に再び吸入される。 When the compressor 12 is driven in this state, the low-pressure gas refrigerant in the refrigeration cycle flowing from the suction pipe 22a is compressed by the compression mechanism of the compressor 12 to become a high-pressure gas refrigerant. The high-pressure gas refrigerant discharged by the compressor 12 flows into the heat source heat exchanger 50 via the discharge pipe 22b, the flow direction switching mechanism 14, and the first gas refrigerant pipe 22c. The high-pressure gas refrigerant is cooled and condensed by exchanging heat with the air supplied by the heat source fan 18 in the heat source heat exchanger 50, undergoes a gas-liquid two-phase state, and finally becomes a high-pressure liquid refrigerant. Become. The high-pressure liquid refrigerant flowing out of the heat source heat exchanger 50 is sent to the expansion mechanism 16. The low-pressure gas-liquid two-phase refrigerant decompressed by the expansion mechanism 16 flows through the liquid refrigerant pipe 22d and the liquid refrigerant connecting pipe 24 and flows into the liquid side of the utilization heat exchanger 32. The refrigerant flowing into the used heat exchanger 32 exchanges heat with the air in the air-conditioned space to evaporate, becomes a low-pressure gas refrigerant, and flows out from the used heat exchanger 32. The low-pressure gas refrigerant flowing out of the utilization heat exchanger 32 is sucked into the compressor 12 again via the gas refrigerant connecting pipe 26, the second gas refrigerant pipe 22e, the flow direction switching mechanism 14, and the suction pipe 22a.

(1-3-2)暖房運転時
暖房運転時には、流向切換機構14が図1の破線で示される状態となり、圧縮機12の吐出側が利用熱交換器32のガス側と連通し、かつ、圧縮機12の吸入側が熱源熱交換器50のガス側と連通する。
(1-3-2) During heating operation During heating operation, the flow direction switching mechanism 14 is in the state shown by the broken line in FIG. 1, and the discharge side of the compressor 12 communicates with the gas side of the heat exchanger 32 and is compressed. The suction side of the machine 12 communicates with the gas side of the heat source heat exchanger 50.

この状態で圧縮機12が駆動されると、吸入管22aから流入する冷凍サイクルにおける低圧のガス冷媒は、圧縮機12の圧縮機構で圧縮されて高圧のガス冷媒となる。圧縮機12が吐出する高圧のガス冷媒は、吐出管22b、流向切換機構14、第2ガス冷媒管22e、及びガス冷媒連絡管26を経て利用熱交換器32に流入する。高圧のガス冷媒は、利用熱交換器32において、空調対象空間の空気と熱交換を行うことで冷却されて凝縮し、高圧の液冷媒となる。利用熱交換器32から流出した高圧の液冷媒は、液冷媒連絡管24及び液冷媒管22dを流れて膨張機構16に送られる。膨張機構16に送られた高圧の液冷媒は、膨張機構16を通過する際に減圧される。膨張機構16において減圧された低圧の液相又は気液二相の冷媒は、熱源熱交換器50に流入する。熱源熱交換器50に流入した冷媒は、熱源ファン18が供給する空気と熱交換を行うことで加熱されて蒸発し、低圧のガス冷媒となって熱源熱交換器50から流出する。熱源熱交換器50から流出した低圧のガス冷媒は、第1ガス冷媒管22c、流向切換機構14及び吸入管22aを経て圧縮機12に再び吸入される。 When the compressor 12 is driven in this state, the low-pressure gas refrigerant in the refrigeration cycle flowing from the suction pipe 22a is compressed by the compression mechanism of the compressor 12 to become a high-pressure gas refrigerant. The high-pressure gas refrigerant discharged by the compressor 12 flows into the utilization heat exchanger 32 via the discharge pipe 22b, the flow direction switching mechanism 14, the second gas refrigerant pipe 22e, and the gas refrigerant connecting pipe 26. The high-pressure gas refrigerant is cooled and condensed by exchanging heat with the air in the air-conditioned space in the utilization heat exchanger 32 to become a high-pressure liquid refrigerant. The high-pressure liquid refrigerant flowing out of the utilization heat exchanger 32 flows through the liquid refrigerant connecting pipe 24 and the liquid refrigerant pipe 22d and is sent to the expansion mechanism 16. The high-pressure liquid refrigerant sent to the expansion mechanism 16 is depressurized as it passes through the expansion mechanism 16. The low-pressure liquid phase or gas-liquid two-phase refrigerant decompressed by the expansion mechanism 16 flows into the heat source heat exchanger 50. The refrigerant flowing into the heat source heat exchanger 50 is heated and evaporated by exchanging heat with the air supplied by the heat source fan 18, becomes a low-pressure gas refrigerant, and flows out from the heat source heat exchanger 50. The low-pressure gas refrigerant flowing out of the heat source heat exchanger 50 is sucked into the compressor 12 again via the first gas refrigerant pipe 22c, the flow direction switching mechanism 14 and the suction pipe 22a.

(2)熱源熱交換器
熱源熱交換器50について、図2~図8を参照しながら説明する。
(2) Heat Source Heat Exchanger The heat source heat exchanger 50 will be described with reference to FIGS. 2 to 8.

図2は、熱源熱交換器50の概略斜視図である。図3は、熱源熱交換器50の他の形状の例である。図4aは、熱源熱交換器50の伝熱扁平管60の本体部62a,64a,66aの概略断面図である。図4bは、熱源熱交換器50の伝熱扁平管60を断面長手方向に沿って見た概略側面図である。図5は、図2の熱源熱交換器50のV-V矢視の概略断面図である。図6は、熱源熱交換器50の液ヘッダ54と伝熱扁平管60の部分分解斜視図であり、伝熱扁平管60の上部の接続部62b,64b,66bの図示は省略している。図7は、熱源熱交換器50の液ヘッダ54の湾曲部54c周辺の概略平面図である。図8は、熱源熱交換器50の液ヘッダ54の湾曲部54c周辺の開口55cに接続される伝熱扁平管62,64,66の接続部62b,64b,66bの外形を示す図であり、伝熱扁平管60の本体部62a,64a,66aの外形を合わせて破線で描画している。図9は、熱源熱交換器50の液ヘッダ54の湾曲部54cの開口55cに接続される湾曲部扁平管66の接続部66b周辺の概略斜視図である。図10は、熱源熱交換器50の液ヘッダ54の湾曲部54cの開口55cに接続される湾曲部扁平管66の接続部56の概略断面図である。 FIG. 2 is a schematic perspective view of the heat source heat exchanger 50. FIG. 3 is an example of another shape of the heat source heat exchanger 50. FIG. 4a is a schematic cross-sectional view of the main body portions 62a, 64a, 66a of the heat transfer flat tube 60 of the heat source heat exchanger 50. FIG. 4b is a schematic side view of the heat transfer flat tube 60 of the heat source heat exchanger 50 as viewed along the longitudinal direction of the cross section. FIG. 5 is a schematic cross-sectional view taken along the line VV of the heat source heat exchanger 50 of FIG. FIG. 6 is a partially exploded perspective view of the liquid header 54 of the heat source heat exchanger 50 and the heat transfer flat tube 60, and the illustration of the connection portions 62b, 64b, 66b at the upper part of the heat transfer flat tube 60 is omitted. FIG. 7 is a schematic plan view of the periphery of the curved portion 54c of the liquid header 54 of the heat source heat exchanger 50. FIG. 8 is a diagram showing the outer shape of the connection portions 62b, 64b, 66b of the heat transfer flat tubes 62, 64, 66 connected to the opening 55c around the curved portion 54c of the liquid header 54 of the heat source heat exchanger 50. The outer shapes of the main bodies 62a, 64a, 66a of the heat transfer flat tube 60 are drawn together with a broken line. FIG. 9 is a schematic perspective view of the periphery of the connecting portion 66b of the curved portion flat tube 66 connected to the opening 55c of the curved portion 54c of the liquid header 54 of the heat source heat exchanger 50. FIG. 10 is a schematic cross-sectional view of the connecting portion 56 of the curved portion flat tube 66 connected to the opening 55c of the curved portion 54c of the liquid header 54 of the heat source heat exchanger 50.

図2~図10は、熱源熱交換器50の特徴を説明のための概略図である。したがって、図2~図10は、熱源熱交換器50の全体及び部分の、形状、サイズ、数量等を限定するものではない。 2 to 10 are schematic views for explaining the features of the heat source heat exchanger 50. Therefore, FIGS. 2 to 10 do not limit the shape, size, quantity, etc. of the whole and part of the heat source heat exchanger 50.

以下の説明では、方向や位置等を説明するために、上、下、左、右、前(正面)、後(背面)といった表現を用いる場合がある。特記なき場合、これらの表現で示される方向や位置は図中の矢印に従う。 In the following description, expressions such as up, down, left, right, front (front), and back (back) may be used to explain the direction, position, and the like. Unless otherwise specified, the directions and positions indicated by these expressions follow the arrows in the figure.

以下の説明では、水平、鉛直、平行、垂直、同一等の表現を用いる場合があるが、これらの表現は、厳密な意味で水平、鉛直、平行、垂直、同一等の状態を表すだけではなく、実質的に水平、鉛直、平行、垂直、同一等の状態も表す。 In the following description, expressions such as horizontal, vertical, parallel, vertical, and identical may be used, but these expressions do not only represent the states such as horizontal, vertical, parallel, vertical, and identical in a strict sense. , Substantially horizontal, vertical, parallel, vertical, identical, etc.

熱源熱交換器50は、主に、ガスヘッダ52と、ガスヘッダ52の下方に配置される液ヘッダ54と、熱交換部51と、を備える(図2参照)。熱交換部51は、複数の伝熱扁平管60を含む。複数の伝熱扁平管60のそれぞれの一端は、ガスヘッダ52に接続される。本実施形態では、複数の伝熱扁平管60のそれぞれの上端が、ガスヘッダ52に接続される。また、複数の伝熱扁平管60のそれぞれの一端は、液ヘッダ54に接続される。本実施形態では、複数の伝熱扁平管60のそれぞれの下端が、液ヘッダ54に接続される。 The heat source heat exchanger 50 mainly includes a gas header 52, a liquid header 54 arranged below the gas header 52, and a heat exchange unit 51 (see FIG. 2). The heat exchange unit 51 includes a plurality of heat transfer flat tubes 60. One end of each of the plurality of heat transfer flat tubes 60 is connected to the gas header 52. In this embodiment, the upper end of each of the plurality of heat transfer flat tubes 60 is connected to the gas header 52. Further, one end of each of the plurality of heat transfer flat tubes 60 is connected to the liquid header 54. In the present embodiment, the lower ends of each of the plurality of heat transfer flat tubes 60 are connected to the liquid header 54.

熱源熱交換器50は、伝熱フィンを用いないフィンレスの熱交換器である。熱源熱交換器50では、主に伝熱扁平管60において、冷媒と、熱源ファン18の供給する外部流体(本実施形態では空気)との熱交換が行われる。 The heat source heat exchanger 50 is a finless heat exchanger that does not use heat transfer fins. In the heat source heat exchanger 50, heat exchange between the refrigerant and the external fluid (air in the present embodiment) supplied by the heat source fan 18 is performed mainly in the heat transfer flat tube 60.

熱源熱交換器50は、例えば、アルミニウム製又はアルミニウム合金製である。ただし、熱源熱交換器50の材質は、アルミニウム製又はアルミニウム合金製に限定されるものではなく、例えばマグネシウム合金製であってもよい。また、熱源熱交換器50の材料には、例示した以外の材料が選択されてもよい。 The heat source heat exchanger 50 is made of, for example, aluminum or an aluminum alloy. However, the material of the heat source heat exchanger 50 is not limited to aluminum or an aluminum alloy, and may be made of, for example, a magnesium alloy. Further, as the material of the heat source heat exchanger 50, a material other than those illustrated may be selected.

なお、ガスヘッダ52、液ヘッダ54、及び熱交換部51の伝熱扁平管60の材質は、互いに異なる材質であってもよい。ただし、電食防止の観点からは、ガスヘッダ52、液ヘッダ54、及び熱交換部51の伝熱扁平管60の材質は同じであることが好ましい。 The materials of the gas header 52, the liquid header 54, and the heat transfer flat tube 60 of the heat exchange section 51 may be different from each other. However, from the viewpoint of preventing electrolytic corrosion, it is preferable that the materials of the gas header 52, the liquid header 54, and the heat transfer flat tube 60 of the heat exchange section 51 are the same.

本実施形態では、熱源熱交換器50は、図2のように、ガスヘッダ52及び液ヘッダ54がそれぞれL字形状を呈している。ただし、本実施形態で説明する熱源熱交換器50のヘッダ52,54の形状は例示に過ぎない。例えば、熱源熱交換器50のヘッダの形状は、図3に示すように、2つの直線部が鈍角を成すように曲げられたV字形状であってもよい。また、熱源熱交換器50のヘッダの形状は、2カ所以上に湾曲部を有するU字形状や四角形状等であってもよい。 In the present embodiment, in the heat source heat exchanger 50, as shown in FIG. 2, the gas header 52 and the liquid header 54 each have an L-shape. However, the shapes of the headers 52 and 54 of the heat source heat exchanger 50 described in this embodiment are merely examples. For example, the shape of the header of the heat source heat exchanger 50 may be a V-shape in which two straight portions are bent so as to form an obtuse angle, as shown in FIG. Further, the shape of the header of the heat source heat exchanger 50 may be a U-shape or a quadrangular shape having two or more curved portions.

(2-1)液ヘッダ
液ヘッダ54は、内部に空間が形成された中空の部材である。熱源熱交換器50が設置された状態で、液ヘッダ54は熱源熱交換器50の下部(底部)に配置される。
(2-1) Liquid Header The liquid header 54 is a hollow member having a space formed inside. With the heat source heat exchanger 50 installed, the liquid header 54 is arranged at the bottom (bottom) of the heat source heat exchanger 50.

液ヘッダ54は、平面視においてL字形状の部材である。液ヘッダ54は、直線状の素材を湾曲部54cにおいて曲げて製造されている。 The liquid header 54 is an L-shaped member in a plan view. The liquid header 54 is manufactured by bending a linear material at the curved portion 54c.

熱源熱交換器50の液ヘッダ54は、図5に示すように、第1方向に延びる第1直線部54aと、第1方向と交差する第2方向に延びる第2直線部54bと、第1直線部54aと第2直線部54bとの間を接続する湾曲部54cと、を含む。本実施形態の熱源熱交換器50では、第2方向は、第1方向に直交している。以下では、説明の便宜上、図5のように、第1方向を左右方向、第2方向を前後方向として以下の説明を行う。 As shown in FIG. 5, the liquid header 54 of the heat source heat exchanger 50 has a first straight line portion 54a extending in the first direction, a second straight line portion 54b extending in the second direction intersecting the first direction, and a first straight line portion 54b. Includes a curved portion 54c connecting between the straight portion 54a and the second straight portion 54b. In the heat source heat exchanger 50 of the present embodiment, the second direction is orthogonal to the first direction. Hereinafter, for convenience of explanation, the following description will be given with the first direction as the left-right direction and the second direction as the front-back direction, as shown in FIG.

液ヘッダ54の上部には、その延伸方向に沿って複数の開口55が並べて配置されている(図6参照)。なお、ここで、液ヘッダ54の延伸方向とは、図5に破線で示した矢印Bのように、液ヘッダ54の一方の端部(第1直線部54a側の右端部)から、湾曲部54cにおいて延伸方向を変えながら、ヘッダ54の他方の端部(第2直線部54bの下端部)へと向かう方向である。なお、図5に示した矢印Bは、液ヘッダ54の幅方向の中心を通る中心線に沿う線である。 A plurality of openings 55 are arranged side by side along the stretching direction of the liquid header 54 (see FIG. 6). Here, the stretching direction of the liquid header 54 is a curved portion from one end of the liquid header 54 (the right end on the first straight line portion 54a side) as shown by the arrow B shown by the broken line in FIG. The direction is toward the other end of the header 54 (the lower end of the second straight line portion 54b) while changing the stretching direction in 54c. The arrow B shown in FIG. 5 is a line along the center line passing through the center in the width direction of the liquid header 54.

本実施形態では、開口55は、液ヘッダ54の延伸方向に概ね直交する向きを長手方向とする、扁平な略四角形形状の穴である(図7参照)。具体的には、左右方向に延びる第1直線部54aに形成されている開口55(開口55a)は、前後方向を長手方向とする扁平な略四角形形状の穴である(図7参照)。また、前後方向に延びる第2直線部54bに形成されている開口55(開口55b)は、左右方向を長手方向とする扁平な略四角形形状の穴である(図7参照)。湾曲部54cに形成されている開口55(開口55c)は、前後方向にも左右方向にも交差する方向を長手方向とする扁平な略四角形形状の穴である(図7参照)。 In the present embodiment, the opening 55 is a flat, substantially quadrangular hole whose longitudinal direction is substantially orthogonal to the stretching direction of the liquid header 54 (see FIG. 7). Specifically, the opening 55 (opening 55a) formed in the first straight line portion 54a extending in the left-right direction is a flat substantially quadrangular hole whose longitudinal direction is the front-back direction (see FIG. 7). Further, the opening 55 (opening 55b) formed in the second straight line portion 54b extending in the front-rear direction is a flat substantially quadrangular hole whose longitudinal direction is the left-right direction (see FIG. 7). The opening 55 (opening 55c) formed in the curved portion 54c is a flat, substantially quadrangular hole whose longitudinal direction intersects both the front-rear direction and the left-right direction (see FIG. 7).

なお、液ヘッダ54は、前述のように、開口55が予め形成されている直線状の部材を、湾曲部54cにおいて曲げて製造されている。そのため、第1直線部54aに形成されている開口55a及び第2直線部54bに形成されている開口55bの、開口55a,55bの長手方向に直交する方向の幅が幅A1で概ね一様であるのに対し、湾曲部54cの開口55cは、開口55cの長手方向に直交する方向の幅が一様ではない。具体的には、湾曲部54cの開口55cの長手方向に直交する方向の幅は、曲率の大きな湾曲部54cの内縁54c1側では幅A2と狭く、曲率の小さな湾曲部54cの外縁54c2側で幅A3と広い(図7参照)。つまり、湾曲部54cの開口55cは、湾曲部54cの内縁54c1側が狭い略楔状の形状を有する。 As described above, the liquid header 54 is manufactured by bending a linear member having an opening 55 formed in advance at the curved portion 54c. Therefore, the widths of the openings 55a formed in the first straight line portion 54a and the openings 55b formed in the second straight line portion 54b in the directions orthogonal to the longitudinal directions of the openings 55a and 55b are substantially uniform in the width A1. On the other hand, the opening 55c of the curved portion 54c has a non-uniform width in the direction orthogonal to the longitudinal direction of the opening 55c. Specifically, the width of the curved portion 54c in the direction orthogonal to the longitudinal direction is as narrow as the width A2 on the inner edge 54c1 side of the curved portion 54c having a large curvature, and the width on the outer edge 54c2 side of the curved portion 54c having a small curvature. Wide as A3 (see Fig. 7). That is, the opening 55c of the curved portion 54c has a substantially wedge-shaped shape in which the inner edge 54c1 side of the curved portion 54c is narrow.

液ヘッダ54の機能について説明する。 The function of the liquid header 54 will be described.

液ヘッダ54は、液冷媒管22dから流入する冷媒を複数の伝熱扁平管60に分流させたり、複数の伝熱扁平管60から流入する冷媒を合流させて液冷媒管22dに流入させたりする機能を有する部材である。具体的に説明する。 The liquid header 54 divides the refrigerant flowing from the liquid refrigerant pipe 22d into the plurality of heat transfer flat pipes 60, or merges the refrigerants flowing from the plurality of heat transfer flat pipes 60 and flows them into the liquid refrigerant pipe 22d. It is a member having a function. This will be described in detail.

液ヘッダ54の内部には、液冷媒管22dや複数の伝熱扁平管60から液冷媒が流入する内部空間が形成されている。 Inside the liquid header 54, an internal space is formed in which the liquid refrigerant flows from the liquid refrigerant pipe 22d and the plurality of heat transfer flat pipes 60.

液ヘッダ54には、熱交換部51の複数の伝熱扁平管60のそれぞれの一端が接続される。特に、本実施形態では、液ヘッダ54の開口55には、熱交換部51の複数の伝熱扁平管60のそれぞれの下端が接続される。液ヘッダ54には、液ヘッダ54の延伸方向Bに沿って伝熱扁平管60が並ぶように、複数の伝熱扁平管60が連結されている。複数の伝熱扁平管60は、液ヘッダ54に形成されている開口55に挿入され、例えばロウ付け固定されている。複数の伝熱扁平管60が液ヘッダ54に連結されることで、後述する複数の伝熱扁平管60の冷媒流路Pは、液ヘッダ54の内部空間と連通する。 One end of each of the plurality of heat transfer flat tubes 60 of the heat exchange section 51 is connected to the liquid header 54. In particular, in the present embodiment, the lower ends of the plurality of heat transfer flat tubes 60 of the heat exchange section 51 are connected to the opening 55 of the liquid header 54. A plurality of heat transfer flat tubes 60 are connected to the liquid header 54 so that the heat transfer flat tubes 60 are lined up along the extending direction B of the liquid header 54. The plurality of heat transfer flat tubes 60 are inserted into the openings 55 formed in the liquid header 54, and are fixed by brazing, for example. By connecting the plurality of heat transfer flat tubes 60 to the liquid header 54, the refrigerant flow paths P of the plurality of heat transfer flat tubes 60, which will be described later, communicate with the internal space of the liquid header 54.

液ヘッダ54は、液冷媒管22dが接続される接続部58を有する。液ヘッダ54の内部空間と液冷媒管22dとは、接続部58を介して連通する。 The liquid header 54 has a connecting portion 58 to which the liquid refrigerant pipe 22d is connected. The internal space of the liquid header 54 and the liquid refrigerant pipe 22d communicate with each other via the connecting portion 58.

このように構成される結果、熱源熱交換器50が凝縮器として機能するときには、液ヘッダ54は、複数の伝熱扁平管60から内部空間に流入する液冷媒を合流させ、液冷媒管22dに流入させる。また、熱源熱交換器50が蒸発器として機能するときには、液ヘッダ54は、液冷媒管22dから内部空間に流入する液冷媒又は気液二相の冷媒を、複数の伝熱扁平管60のそれぞれに設けられている冷媒流路Pに分流させる。 As a result of this configuration, when the heat source heat exchanger 50 functions as a condenser, the liquid header 54 merges the liquid refrigerant flowing into the internal space from the plurality of heat transfer flat tubes 60 and joins the liquid refrigerant pipe 22d. Inflow. Further, when the heat source heat exchanger 50 functions as an evaporator, the liquid header 54 uses the liquid refrigerant or the gas-liquid two-phase refrigerant flowing into the internal space from the liquid refrigerant pipe 22d, respectively, in the plurality of heat transfer flat pipes 60. It is diverted to the refrigerant flow path P provided in.

(2-2)ガスヘッダ
ガスヘッダ52は、内部に空間が形成された中空の部材である。熱源熱交換器50が設置された状態で、ガスヘッダ52は熱源熱交換器50の上部に配置される。
(2-2) Gas Header The gas header 52 is a hollow member having a space formed inside. With the heat source heat exchanger 50 installed, the gas header 52 is arranged above the heat source heat exchanger 50.

ガスヘッダ52は、液ヘッダ54に対応する形状を有する。具体的には、ガスヘッダ52は、液ヘッダ54と同様に、平面視においてL字形状の部材である。ガスヘッダ52も、直線状の素材を湾曲部において曲げて製造されている。 The gas header 52 has a shape corresponding to the liquid header 54. Specifically, the gas header 52 is an L-shaped member in a plan view, like the liquid header 54. The gas header 52 is also manufactured by bending a linear material at a curved portion.

熱源熱交換器50のガスヘッダ52も、図2に示すように、左右方向に延びる第1直線部52aと、前後方向に延びる第2直線部52bと、第1直線部52aと第2直線部52bとの間を接続する湾曲部52cと、を含む。 As shown in FIG. 2, the gas header 52 of the heat source heat exchanger 50 also has a first straight line portion 52a extending in the left-right direction, a second straight line portion 52b extending in the front-rear direction, a first straight line portion 52a, and a second straight line portion 52b. Includes a curved portion 52c that connects to and from.

なお、ガスヘッダ52の形状は、その上部ではなく下部に、伝熱扁平管60が挿入される開口(図示せず)が形成されている点を除き、液ヘッダ54の形状と概ね同様であるため、ここでは詳細な説明を省略する。 The shape of the gas header 52 is substantially the same as the shape of the liquid header 54, except that an opening (not shown) into which the heat transfer flat tube 60 is inserted is formed in the lower part of the gas header 52 instead of the upper part. , A detailed description is omitted here.

ガスヘッダ52の機能について説明する。 The function of the gas header 52 will be described.

ガスヘッダ52は、第1ガス冷媒管22cから流入する冷媒を複数の伝熱扁平管60に分流させたり、複数の伝熱扁平管60から流入する冷媒を合流させて第1ガス冷媒管22cに流入させたりする機能を有する部材である。具体的に説明する。 The gas header 52 divides the refrigerant flowing from the first gas refrigerant pipe 22c into the plurality of heat transfer flat pipes 60, or merges the refrigerants flowing in from the plurality of heat transfer flat pipes 60 and flows into the first gas refrigerant pipe 22c. It is a member having a function of making it. This will be described in detail.

ガスヘッダ52の内部には、第1ガス冷媒管22cや複数の伝熱扁平管60から冷媒が流入する内部空間が形成されている。 Inside the gas header 52, an internal space is formed in which the refrigerant flows from the first gas refrigerant pipe 22c and the plurality of heat transfer flat pipes 60.

ガスヘッダ52には、熱交換部51の複数の伝熱扁平管60のそれぞれの一端が接続される。特に、本実施形態では、ガスヘッダ52には、熱交換部51の複数の伝熱扁平管60のそれぞれの上端が接続される。ガスヘッダ52には、ガスヘッダ52の延伸方向に沿って伝熱扁平管60が並ぶように、複数の伝熱扁平管60が連結されている。複数の伝熱扁平管60は、ガスヘッダ52に形成されている開口(図示省略)に挿入され、例えばロウ付け固定されている。複数の伝熱扁平管60がガスヘッダ52に連結されることで、後述する複数の伝熱扁平管60の冷媒流路Pは、ガスヘッダ52の内部空間と連通する。 One end of each of the plurality of heat transfer flat tubes 60 of the heat exchange section 51 is connected to the gas header 52. In particular, in the present embodiment, the gas header 52 is connected to the upper ends of each of the plurality of heat transfer flat tubes 60 of the heat exchange section 51. A plurality of heat transfer flat tubes 60 are connected to the gas header 52 so that the heat transfer flat tubes 60 are lined up along the extending direction of the gas header 52. The plurality of heat transfer flat tubes 60 are inserted into openings (not shown) formed in the gas header 52, and are brazed and fixed, for example. By connecting the plurality of heat transfer flat pipes 60 to the gas header 52, the refrigerant flow paths P of the plurality of heat transfer flat pipes 60, which will be described later, communicate with the internal space of the gas header 52.

ガスヘッダ52は、第1ガス冷媒管22cが接続される接続部56を有する。ガスヘッダ52の内部空間と第1ガス冷媒管22cとは、接続部56を介して連通する。 The gas header 52 has a connecting portion 56 to which the first gas refrigerant pipe 22c is connected. The internal space of the gas header 52 and the first gas refrigerant pipe 22c communicate with each other via the connecting portion 56.

このように構成される結果、熱源熱交換器50が凝縮器として機能するときには、ガスヘッダ52は、第1ガス冷媒管22cから内部空間に流入する冷媒を、複数の伝熱扁平管60のそれぞれに設けられている冷媒流路Pに分流させる。また、熱源熱交換器50が蒸発器として機能するときには、ガスヘッダ52は、複数の伝熱扁平管60から内部空間に流入する冷媒を合流させ、第1ガス冷媒管22cに流入させる。 As a result of this configuration, when the heat source heat exchanger 50 functions as a condenser, the gas header 52 transfers the refrigerant flowing into the internal space from the first gas refrigerant pipe 22c to each of the plurality of heat transfer flat pipes 60. It is diverted to the provided refrigerant flow path P. Further, when the heat source heat exchanger 50 functions as an evaporator, the gas header 52 merges the refrigerants flowing into the internal space from the plurality of heat transfer flat pipes 60 and flows them into the first gas refrigerant pipe 22c.

(2-3)熱交換部
熱交換部51は、主に複数の伝熱扁平管60を含む。各伝熱扁平管60の上端はガスヘッダ52に、各伝熱扁平管60の下端は液ヘッダ54に、それぞれ接続されている(図2参照))。
(2-3) Heat Exchange Unit The heat exchange unit 51 mainly includes a plurality of heat transfer flat tubes 60. The upper end of each heat transfer flat tube 60 is connected to the gas header 52, and the lower end of each heat transfer flat tube 60 is connected to the liquid header 54 (see FIG. 2).

以下では、伝熱扁平管60の形状等に加え、各伝熱扁平管60とヘッダ52,54との接続に関する内容も説明する。なお、伝熱扁平管60と液ヘッダ54との接続と、伝熱扁平管60とガスヘッダ52との接続とは、伝熱扁平管60の上下どちらの端部が接続されるかを除き、概ね同様である。そこで、ここでは、伝熱扁平管60と液ヘッダ54との接続に関連する内容について主に説明し、伝熱扁平管60とガスヘッダ52との接続に関する内容については、説明の重複を避けるため、特に必要でない場合には省略する。 In the following, in addition to the shape of the heat transfer flat tube 60 and the like, the contents related to the connection between each heat transfer flat tube 60 and the headers 52 and 54 will be described. The connection between the heat transfer flat tube 60 and the liquid header 54 and the connection between the heat transfer flat tube 60 and the gas header 52 are generally the same except for which upper or lower end of the heat transfer flat tube 60 is connected. The same is true. Therefore, here, the contents related to the connection between the heat transfer flat tube 60 and the liquid header 54 will be mainly described, and the contents related to the connection between the heat transfer flat tube 60 and the gas header 52 will be described in order to avoid duplication of description. Omit if not particularly necessary.

以下の説明では、説明の都合上、伝熱扁平管60を、液ヘッダ54の第1直線部54aに接続される第1扁平管62、液ヘッダ54の第2直線部54bに接続される第2扁平管64、液ヘッダ54の湾曲部54cに接続される湾曲部扁平管66、と呼び分ける場合がある。また、第1扁平管62、第2扁平管64、湾曲部扁平管66を、集合的に伝熱扁平管62,64,66と呼ぶ場合もある。なお、本実施形態では、第1扁平管62及び第2扁平管64は、ヘッダ52,54への取付方向が異なるものの、形状やサイズは同一であるものとする。 In the following description, for convenience of explanation, the heat transfer flat tube 60 is connected to the first flat tube 62 connected to the first straight portion 54a of the liquid header 54 and to the second straight portion 54b of the liquid header 54. 2 The flat tube 64 and the curved flat tube 66 connected to the curved portion 54c of the liquid header 54 may be referred to separately. Further, the first flat tube 62, the second flat tube 64, and the curved portion flat tube 66 may be collectively referred to as heat transfer flat tubes 62, 64, 66. In the present embodiment, the first flat tube 62 and the second flat tube 64 have the same shape and size, although the attachment directions to the headers 52 and 54 are different.

熱交換部51の伝熱扁平管60は、熱源熱交換器50が設置された状態において、上下方向(鉛直方向)を長手方向として延びる。伝熱扁平管60には、長手方向に延びる冷媒流路Pが形成されている。伝熱扁平管60は、具体的には、図4aに示した断面図のように、冷媒流路Pが複数形成されている扁平多穴管である。熱源熱交換器50が設置された状態において、伝熱扁平管60の複数の冷媒流路Pは、鉛直方向に沿って延びる。なお、各伝熱扁平管60に形成されている冷媒流路Pの数は、図4aに描画された冷媒流路Pの数に限定されるものではない。 The heat transfer flat tube 60 of the heat exchange unit 51 extends with the vertical direction (vertical direction) as the longitudinal direction in a state where the heat source heat exchanger 50 is installed. The heat transfer flat tube 60 is formed with a refrigerant flow path P extending in the longitudinal direction. Specifically, the heat transfer flat pipe 60 is a flat multi-hole pipe in which a plurality of refrigerant flow paths P are formed, as shown in the cross-sectional view shown in FIG. 4a. With the heat source heat exchanger 50 installed, the plurality of refrigerant flow paths P of the heat transfer flat tube 60 extend along the vertical direction. The number of refrigerant flow paths P formed in each heat transfer flat tube 60 is not limited to the number of refrigerant flow paths P drawn in FIG. 4a.

各伝熱扁平管62,64,66は、図4bのように、接続部62b,64b,66bと、本体部62a,64a,66aと、含む。 Each heat transfer flat tube 62, 64, 66 includes a connection portion 62b, 64b, 66b and a main body portion 62a, 64a, 66a as shown in FIG. 4b.

接続部62b,64b,66bは、図4bのように、各伝熱扁平管60の両端部(上下の端部)に設けられている。接続部62b,64b,66bは、ガスヘッダ52の開口(図示せず)や、液ヘッダ54の開口55に挿入され、ヘッダ52,54に固定されている。固定方法を限定するものではないが、接続部62b,64b,66bは、ヘッダ52,54にロウ付けにより固定されている。 The connecting portions 62b, 64b, 66b are provided at both ends (upper and lower ends) of each heat transfer flat tube 60, as shown in FIG. 4b. The connecting portions 62b, 64b, 66b are inserted into the opening of the gas header 52 (not shown) or the opening 55 of the liquid header 54, and are fixed to the headers 52, 54. Although the fixing method is not limited, the connection portions 62b, 64b, 66b are fixed to the headers 52, 54 by brazing.

本体部62a,64a,66aは、図4bのように、伝熱扁平管60の長手方向において、両端に配置されている接続部62b,64b,66bの間に配置される。言い換えれば、本体部62a,64a,66aは、伝熱扁平管60の長手方向において中央部に配置される。本体部62a,64a,66aは、熱源熱交換器50の熱交換に主に寄与する部分である。 The main body portions 62a, 64a, 66a are arranged between the connecting portions 62b, 64b, 66b arranged at both ends in the longitudinal direction of the heat transfer flat tube 60, as shown in FIG. 4b. In other words, the main body portions 62a, 64a, 66a are arranged at the central portion in the longitudinal direction of the heat transfer flat tube 60. The main body portions 62a, 64a, 66a are portions that mainly contribute to heat exchange of the heat source heat exchanger 50.

接続部62b,64b,66bの外周の大きさは、本体部62a,64a,66aの外周の大きさに比べて大きく成形されている。第1扁平管62の接続部62b及び第2扁平管64の接続部64bの形状(外形)は、それぞれ、第1扁平管62の本体部62a及び第2扁平管64の本体部64aの形状と相似している。一方で、湾曲部扁平管66の接続部66bの形状は、湾曲部扁平管66の本体部66aの形状と相似ではない。詳しくは後述する。 The size of the outer periphery of the connecting portions 62b, 64b, 66b is formed to be larger than the size of the outer periphery of the main body portions 62a, 64a, 66a. The shapes (outer shapes) of the connection portion 62b of the first flat tube 62 and the connection portion 64b of the second flat tube 64 are the same as the shapes of the main body portion 62a of the first flat tube 62 and the main body portion 64a of the second flat tube 64, respectively. It is similar. On the other hand, the shape of the connecting portion 66b of the curved portion flat tube 66 is not similar to the shape of the main body portion 66a of the curved portion flat tube 66. Details will be described later.

(2-3-1)本体部
伝熱扁平管62,64,66の本体部62a,64a,66aは、伝熱扁平管62,64,66の長手方向(ここでは鉛直方向)に直交する平面で切断した時に、ある方向を長手方向(この方向を以下では断面長手方向L1と呼ぶ)とし、断面長手方向L1に直交する方向の幅は薄い、扁平形状の断面を有する(図4a参照)。なお、以下の説明では、特記しない場合、伝熱扁平管60の(伝熱扁平管62,64,66の本体部62a,64a,66aや、接続部62b,64b,66bの)断面という表現は、伝熱扁平管60を長手方向(熱源熱交換器50が設置された状態では上下方向)に直交する平面で切断した際の断面を意味する。
(2-3-1) The main bodies 62a, 64a, 66a of the main body heat transfer flat tubes 62, 64, 66 are planes orthogonal to the longitudinal direction (here, the vertical direction) of the heat transfer flat tubes 62, 64, 66. When cut in, a certain direction is defined as the longitudinal direction (hereinafter, this direction is referred to as the longitudinal direction L1 of the cross section), and the width in the direction orthogonal to the longitudinal direction L1 of the cross section is thin and has a flat cross section (see FIG. 4a). In the following description, unless otherwise specified, the expression of the cross section of the heat transfer flat tube 60 (the main bodies 62a, 64a, 66a of the heat transfer flat tubes 62, 64, 66 and the connection portions 62b, 64b, 66b) is used. It means a cross section when the heat transfer flat tube 60 is cut in a plane orthogonal to the longitudinal direction (vertical direction when the heat source heat exchanger 50 is installed).

各伝熱扁平管60の本体部62a,64a,66aの断面では、冷媒流路Pを形成する穴61が、図4aに示すように、断面長手方向L1に沿って複数並べて配置されている。なお、図面では穴61の形状は円形であるが、穴61の形状は円形以外(例えば四角形等)であってもよい。 In the cross section of the main body portions 62a, 64a, 66a of each heat transfer flat tube 60, a plurality of holes 61 forming the refrigerant flow path P are arranged side by side along the longitudinal direction L1 of the cross section as shown in FIG. 4a. Although the shape of the hole 61 is circular in the drawing, the shape of the hole 61 may be other than circular (for example, a quadrangle).

本実施形態では、各伝熱扁平管62,64,66の本体部62a,64a,66aの断面は、例えば図4aに示すように、扁平な略四角形形状を有する。なお、本体部62a,64a,66aの断面長手方向L1における両端部には、図4aのように曲線部C1,C2が設けられていてもよい。各伝熱扁平管60の本体部62a,64a,66aの断面の、断面長手方向L1に直交する方向の幅W0は(断面長手方向L1における両端部の曲線部C1,C2を除き)一様である。なお、図4aは、伝熱扁平管60の本体部62a,64a,66aの断面の形状を限定するものではない。 In the present embodiment, the cross sections of the main bodies 62a, 64a, 66a of the heat transfer flat tubes 62, 64, 66 have a flat substantially quadrangular shape, for example, as shown in FIG. 4a. Curved portions C1 and C2 may be provided at both ends of the main body portions 62a, 64a, 66a in the longitudinal direction L1 of the cross section as shown in FIG. 4a. The width W0 of the cross section of the main body portions 62a, 64a, 66a of each heat transfer flat tube 60 in the direction orthogonal to the cross-sectional longitudinal direction L1 is uniform (except for the curved portions C1 and C2 at both ends in the cross-sectional longitudinal direction L1). be. Note that FIG. 4a does not limit the shape of the cross section of the main body portions 62a, 64a, 66a of the heat transfer flat tube 60.

各伝熱扁平管60は、その断面長手方向L1が、液ヘッダ54に形成されている開口55の長手方向と一致するように液ヘッダ54及びガスヘッダ52に取り付けられている。言い換えれば、伝熱扁平管60は、伝熱扁平管60の断面長手方向L1が延びる方向が、液ヘッダ54の開口55の延伸方向Bに概ね直交するような姿勢で、ガスヘッダ52及び液ヘッダ54に取り付けられている(図5参照)。さらに言い換えれば、伝熱扁平管60は、伝熱扁平管60の断面長手方向L1に直交する方向が、液ヘッダ54の延伸方向Bに概ね一致するような姿勢で、ガスヘッダ52及び液ヘッダ54に取り付けられている。 Each heat transfer flat tube 60 is attached to the liquid header 54 and the gas header 52 so that its cross-sectional longitudinal direction L1 coincides with the longitudinal direction of the opening 55 formed in the liquid header 54. In other words, the heat transfer flat tube 60 has the gas header 52 and the liquid header 54 in such a posture that the direction in which the cross-sectional longitudinal direction L1 of the heat transfer flat tube 60 extends is substantially orthogonal to the extension direction B of the opening 55 of the liquid header 54. It is attached to (see FIG. 5). In other words, the heat transfer flat tube 60 is attached to the gas header 52 and the liquid header 54 in such a posture that the direction orthogonal to the longitudinal direction L1 of the heat transfer flat tube 60 substantially coincides with the extension direction B of the liquid header 54. It is attached.

このように構成される結果、液ヘッダ54の第1直線部54aに設けられている開口55aに挿入されて固定されている第1扁平管62の断面長手方向L1は前後方向に一致する。液ヘッダ54の第2直線部54bに設けられている開口55bに挿入されて固定されている第2扁平管64の断面長手方向L1は左右方向に一致する。さらに、液ヘッダ54の湾曲部54cに設けられている開口55bに挿入されて固定されている湾曲部扁平管66の断面長手方向L1は、前後方向に対しても、左右方向に対しても傾斜している。 As a result of this configuration, the cross-sectional longitudinal direction L1 of the first flat tube 62 inserted and fixed in the opening 55a provided in the first straight line portion 54a of the liquid header 54 coincides with the front-rear direction. The cross-sectional longitudinal direction L1 of the second flat tube 64 inserted and fixed in the opening 55b provided in the second straight line portion 54b of the liquid header 54 coincides with the left-right direction. Further, the longitudinal direction L1 of the curved portion flat tube 66 inserted and fixed in the opening 55b provided in the curved portion 54c of the liquid header 54 is inclined in both the front-rear direction and the left-right direction. is doing.

つまり、熱源熱交換器50では、伝熱扁平管60のうち液ヘッダ54の湾曲部54cに設けられている開口55cに挿入されて固定されている湾曲部扁平管66の断面長手方向L1は、液ヘッダ54の第1直線部54aに設けられている開口55aに挿入されて固定されている伝熱扁平管60(第1扁平管62)の断面長手方向L1及び液ヘッダ54の第2直線部54bに設けられている開口55bに挿入されて固定されている伝熱扁平管60(第2扁平管64)の断面長手方向L1のそれぞれに対して傾斜している。 That is, in the heat source heat exchanger 50, the section longitudinal direction L1 of the curved portion flat tube 66 inserted and fixed in the opening 55c provided in the curved portion 54c of the liquid header 54 in the heat transfer flat tube 60 is The heat transfer flat tube 60 (first flat tube 62) inserted and fixed in the opening 55a provided in the first straight portion 54a of the liquid header 54 in the longitudinal direction L1 of the cross section and the second straight portion of the liquid header 54. The heat transfer flat tube 60 (second flat tube 64) inserted and fixed in the opening 55b provided in 54b is inclined with respect to each of the cross-sectional longitudinal directions L1.

なお、伝熱扁平管60の断面長手方向L1は、熱源ファン18が生成する空気の流れ方向(図5に示した矢印F参照)に概ね一致する。なお、本実施形態では、熱源ファン18は、図5に示すように、熱源熱交換器50の前面及び右面に対向する位置に配置される。熱源ファン18が運転されると、空気(熱源空気)は、熱源ユニット10の図示しないケーシングの背面及び左面に形成された吸気口からケーシング内部に流入し、矢印Fのように、熱源熱交換器50を後方から前方に、左方から右方に、あるいは左後方から右前方に通過した後、熱源ユニット10のケーシングの正面に形成された排気口から前方に吹き出す。伝熱扁平管60の断面長手方向L1を熱源ファン18が発生する空気の流れ方向と概ね一致させることで、熱源熱交換器50の通風抵抗を抑制しつつ、断面長手方向L1に沿って延びる伝熱扁平管60の側面に熱源ファン18が送る空気を効率よく接触させて、高い熱交換効率を実現することができる。 The longitudinal direction L1 of the heat transfer flat tube 60 substantially coincides with the flow direction of the air generated by the heat source fan 18 (see the arrow F shown in FIG. 5). In the present embodiment, as shown in FIG. 5, the heat source fan 18 is arranged at a position facing the front surface and the right surface of the heat source heat exchanger 50. When the heat source fan 18 is operated, air (heat source air) flows into the inside of the casing from the intake ports formed on the back surface and the left surface of the casing (not shown) of the heat source unit 10, and as shown by the arrow F, the heat source heat exchanger After passing the 50 from the rear to the front, from the left to the right, or from the left rear to the right front, the heat is blown forward from the exhaust port formed on the front surface of the casing of the heat source unit 10. By making the cross-sectional longitudinal direction L1 of the heat transfer flat tube 60 substantially coincide with the air flow direction generated by the heat source fan 18, the heat transfer extends along the cross-sectional longitudinal direction L1 while suppressing the ventilation resistance of the heat source heat exchanger 50. High heat exchange efficiency can be realized by efficiently contacting the side surface of the heat flat tube 60 with the air sent by the heat source fan 18.

なお、ここでは、第1扁平管62の本体部62aの断面、第2扁平管64の本体部64aの断面、及び湾曲部扁平管66の本体部66aの断面は、断面長手方向L1の向きは互いに異なるが、断面の形状や大きさは同一である。 Here, the cross section of the main body portion 62a of the first flat tube 62, the cross section of the main body portion 64a of the second flat tube 64, and the cross section of the main body portion 66a of the curved portion flat tube 66 are oriented in the longitudinal direction L1 of the cross section. Although they are different from each other, the shape and size of the cross section are the same.

(2-3-2)接続部
伝熱扁平管62,64,66の接続部62b,64b,66bについて説明する。
(2-3-2) Connection portion The connection portions 62b, 64b, 66b of the heat transfer flat tubes 62, 64, 66 will be described.

伝熱扁平管62,64,66の接続部62b,64b,66bの断面も、本体部62a,64a,66aの断面と同様に、ある方向を断面長手方向とし、断面長手方向に直交する方向の幅は薄い、扁平形状の断面を有する(図8参照)。なお、各伝熱扁平管62,64,66の接続部62b,64b,66bの断面長手方向は、その伝熱扁平管60の本体部62a,64a,66aの断面長手方向と同一方向である。したがって、以下では、伝熱扁平管60の接続部62b,64b,66bの断面長手方向も、断面長手方向L1として表す。 Similar to the cross section of the main body portions 62a, 64a, 66a, the cross section of the connecting portions 62b, 64b, 66b of the heat transfer flat tubes 62, 64, 66 also has a certain direction as the cross section longitudinal direction and is orthogonal to the cross section longitudinal direction. It is thin and has a flat cross section (see FIG. 8). The longitudinal direction of the cross section of the connecting portions 62b, 64b, 66b of the heat transfer flat tubes 62, 64, 66 is the same as the longitudinal direction of the cross section of the main body portions 62a, 64a, 66a of the heat transfer flat tubes 60. Therefore, in the following, the longitudinal direction of the cross section of the connecting portions 62b, 64b, 66b of the heat transfer flat tube 60 is also represented as the longitudinal direction L1 of the cross section.

伝熱扁平管60の接続部62b,64b,66bは、例えば図6に示すように、伝熱扁平管60の本体部62a,64a,66aより大きく成形されている、言い換えれば、伝熱扁平管60の接続部62b,64b,66bは、伝熱扁平管60の本体部62a,64a,66aに対して拡管されている。 As shown in FIG. 6, for example, the connection portions 62b, 64b, 66b of the heat transfer flat tube 60 are formed larger than the main body portions 62a, 64a, 66a of the heat transfer flat tube 60, in other words, the heat transfer flat tube. The connection portions 62b, 64b, 66b of the 60 are expanded with respect to the main body portions 62a, 64a, 66a of the heat transfer flat tube 60.

このような伝熱扁平管60の本体部62a,64a,66aよりも外周の大きな接続部62b,64b,66bを設けることで、ロウ付け代を確保することができる。また、このような伝熱扁平管60の本体部62a,64a,66aよりも外周の大きな接続部62b,64b,66bを設け、隣接する伝熱扁平管60の接続部62b,64b,66b同士を積層した状態でヘッダ52,54にロウ接することで、隣接する伝熱扁平管60の本体部62a,64a,66aの間に所定の隙間を確保することができる。言い換えれば、伝熱扁平管60の本体部62a,64a,66aよりも外周の大きな接続部62b,64b,66bを設けることで、隣接する伝熱扁平管60の本体部62a,64a,66aの間の距離を所定の距離に管理できる。 By providing the connecting portions 62b, 64b, 66b having a larger outer circumference than the main body portions 62a, 64a, 66a of the heat transfer flat tube 60, the brazing allowance can be secured. Further, connecting portions 62b, 64b, 66b having a larger outer circumference than the main body portions 62a, 64a, 66a of the heat transfer flat tube 60 are provided, and the connecting portions 62b, 64b, 66b of the adjacent heat transfer flat tube 60 are connected to each other. By brazing to the headers 52 and 54 in a laminated state, a predetermined gap can be secured between the main bodies 62a, 64a and 66a of the adjacent heat transfer flat tubes 60. In other words, by providing connecting portions 62b, 64b, 66b having a larger outer circumference than the main bodies 62a, 64a, 66a of the heat transfer flat tube 60, between the main bodies 62a, 64a, 66a of the adjacent heat transfer flat tube 60. Distance can be managed to a predetermined distance.

伝熱扁平管60の接続部62b,64b,66bの形状について、第1扁平管62の接続部62b及び第2扁平管64の接続部64bと、湾曲部扁平管66の接続部66bと、に分けて説明する。 Regarding the shape of the connection portion 62b, 64b, 66b of the heat transfer flat tube 60, the connection portion 62b of the first flat tube 62, the connection portion 64b of the second flat tube 64, and the connection portion 66b of the curved flat tube 66. I will explain separately.

(2-3-2-1)第1扁平管及び第2扁平管の接続部の形状
第1扁平管62の接続部62bの断面は、上述のように、第1扁平管62の本体部62aの断面と相似する。また、第2扁平管64の接続部64bの断面は、上述のように、第2扁平管64の本体部64aの断面と相似する。
(2-3-2-1) Shape of the connecting portion of the first flat tube and the second flat tube The cross section of the connecting portion 62b of the first flat tube 62 is the main body portion 62a of the first flat tube 62 as described above. Similar to the cross section of. Further, the cross section of the connecting portion 64b of the second flat tube 64 is similar to the cross section of the main body portion 64a of the second flat tube 64, as described above.

要するに、第1扁平管62の接続部62bの断面の外周の大きさは、第1扁平管62の本体部62aの断面の外周の大きさと異なるが、第1扁平管62の接続部62bの断面の形状と、第1扁平管62の本体部62aの断面の形状とは概ね同一である。また、第2扁平管64の接続部64bの断面の外周の大きさは、第2扁平管64の本体部64aの断面の外周の大きさと異なるが、第2扁平管64の接続部64bの断面の形状と、第2扁平管64の本体部64aの断面の形状とは概ね同一である。 In short, the size of the outer circumference of the cross section of the connecting portion 62b of the first flat tube 62 is different from the size of the outer circumference of the cross section of the main body portion 62a of the first flat tube 62, but the cross section of the connecting portion 62b of the first flat tube 62. And the shape of the cross section of the main body portion 62a of the first flat tube 62 are substantially the same. Further, the size of the outer circumference of the cross section of the connecting portion 64b of the second flat tube 64 is different from the size of the outer circumference of the cross section of the main body portion 64a of the second flat tube 64, but the cross section of the connecting portion 64b of the second flat tube 64. And the shape of the cross section of the main body portion 64a of the second flat tube 64 are substantially the same.

上述したように、第1扁平管62の本体部62a及び第2扁平管64の本体部64aの断面長手方向L1と直交する方向の幅は、W0で一様である。そのため、第1扁平管62の本体部62a及び第2扁平管64の本体部64aと相似の関係にある、第1扁平管62の接続部62b及び第2扁平管64の接続部64bの断面長手方向L1と直交する方向の幅も、W1で一様である(図8参照)。ただし、幅W1は、幅W0より大きい。 As described above, the width of the main body portion 62a of the first flat tube 62 and the main body portion 64a of the second flat tube 64 in the direction orthogonal to the longitudinal direction L1 of the cross section is uniform at W0. Therefore, the cross-sectional length of the connecting portion 62b of the first flat tube 62 and the connecting portion 64b of the second flat tube 64, which are similar to the main body portion 62a of the first flat tube 62 and the main body portion 64a of the second flat tube 64. The width in the direction orthogonal to the direction L1 is also uniform in W1 (see FIG. 8). However, the width W1 is larger than the width W0.

なお、第1扁平管62の接続部62bの外形は、液ヘッダ54の第1直線部54aに設けられている開口55aの外形と概ね一致する。より具体的には、第1扁平管62の接続部62bの形状は、液ヘッダ54の第1直線部54aに設けられている開口55aの形状と概ね相似しており、第1扁平管62の接続部62bの大きさは、液ヘッダ54の第1直線部54aに設けられている開口55aの大きさよりもわずかに小さい。 The outer shape of the connecting portion 62b of the first flat tube 62 substantially matches the outer shape of the opening 55a provided in the first straight line portion 54a of the liquid header 54. More specifically, the shape of the connecting portion 62b of the first flat tube 62 is substantially similar to the shape of the opening 55a provided in the first straight line portion 54a of the liquid header 54, and the shape of the first flat tube 62 The size of the connecting portion 62b is slightly smaller than the size of the opening 55a provided in the first straight line portion 54a of the liquid header 54.

また、第2扁平管64の接続部64bの外形は、液ヘッダ54の第2直線部54bに設けられている開口55bの外形と概ね一致する。より具体的には、第2扁平管64の接続部64bの形状は、液ヘッダ54の第2直線部54bに設けられている開口55bの形状と概ね相似しており、第2扁平管64の接続部64bの大きさは、液ヘッダ54の第2直線部54bに設けられている開口55bの大きさよりもわずかに小さい。 Further, the outer shape of the connecting portion 64b of the second flat tube 64 substantially matches the outer shape of the opening 55b provided in the second straight line portion 54b of the liquid header 54. More specifically, the shape of the connecting portion 64b of the second flat tube 64 is substantially similar to the shape of the opening 55b provided in the second straight line portion 54b of the liquid header 54, and the shape of the second flat tube 64 is similar to that of the opening 55b. The size of the connecting portion 64b is slightly smaller than the size of the opening 55b provided in the second straight line portion 54b of the liquid header 54.

(2-3-2-2)湾曲部扁平管の接続部の形状
湾曲部扁平管66の接続部66bの断面は、上述のように、湾曲部扁平管66の本体部66aの断面と相似していない。具体的に説明する。
(2-3-2-2) Shape of connection portion of curved flat tube The cross section of the connecting portion 66b of the curved flat tube 66 is similar to the cross section of the main body portion 66a of the curved flat tube 66 as described above. Not. This will be described in detail.

上述したように、湾曲部扁平管66の本体部66aの断面長手方向L1と直交する方向の幅は、W0で一様である。 As described above, the width of the main body portion 66a of the curved portion flat tube 66 in the direction orthogonal to the longitudinal direction L1 of the cross section is uniform at W0.

一方で、湾曲部扁平管66の接続部66bの断面長手方向L1と直交する方向の幅は、一様ではない。具体的に説明する。 On the other hand, the width of the connecting portion 66b of the curved portion flat pipe 66 in the direction orthogonal to the longitudinal direction L1 of the cross section is not uniform. This will be described in detail.

湾曲部扁平管66の接続部66bは、図8に示すように、液ヘッダ54の湾曲部54cの内縁54c1側に配置される第1端部E1と、湾曲部54cの外縁54c2側に配置される第2端部E2との間を湾曲部扁平管66の断面長手方向L1に沿って延びる。なお、ここでの第1端部E1は、曲線部C1’は除外した、液ヘッダ54の湾曲部54cの内縁54c1側の湾曲部扁平管66の接続部66bの端部を意味する(図8参照)。また、ここでの第2端部E2は、曲線部C2’は除外した、液ヘッダ54の湾曲部54cの外縁54c2側の湾曲部扁平管66の接続部66bの端部を意味する(図8参照)。湾曲部扁平管66の接続部66bでは、第2端部E2における湾曲部扁平管66の断面長手方向L1に直交する方向の幅W3は、第1端部E1における湾曲部扁平管66の断面長手方向L1に直交する方向の幅W2よりも広い。 As shown in FIG. 8, the connecting portion 66b of the curved portion flat tube 66 is arranged on the first end portion E1 arranged on the inner edge 54c1 side of the curved portion 54c of the liquid header 54 and on the outer edge 54c2 side of the curved portion 54c. It extends between the second end portion E2 and the curved portion flat tube 66 along the longitudinal direction L1 of the cross section. The first end portion E1 here means the end portion of the connecting portion 66b of the curved portion flat tube 66 on the inner edge 54c1 side of the curved portion 54c of the liquid header 54, excluding the curved portion C1'(FIG. 8). reference). Further, the second end portion E2 here means the end portion of the connecting portion 66b of the curved portion flat tube 66 on the outer edge 54c2 side of the curved portion 54c of the liquid header 54, excluding the curved portion C2'(FIG. 8). reference). In the connecting portion 66b of the curved portion flat pipe 66, the width W3 in the direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat pipe 66 at the second end portion E2 is the cross-sectional length of the curved portion flat pipe 66 at the first end portion E1. It is wider than the width W2 in the direction orthogonal to the direction L1.

好ましくは、湾曲部扁平管66の接続部66bの断面形状は、湾曲部扁平管66の断面長手方向L1に直交する方向の幅が、第1端部E1から第2端部E2に向かって次第に広くなる楔形状である。言い換えれば、湾曲部扁平管66の接続部66bの断面形状は、液ヘッダ54の湾曲部54cの内縁54c1側から液ヘッダ54の湾曲部54cの外縁54c2側に向かって次第に広くなる楔形状(略台形形状)である。 Preferably, the cross-sectional shape of the connecting portion 66b of the curved portion flat pipe 66 has a width in a direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat pipe 66 gradually increasing from the first end portion E1 to the second end portion E2. It has a wide wedge shape. In other words, the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 is a wedge shape that gradually widens from the inner edge 54c1 side of the curved portion 54c of the liquid header 54 toward the outer edge 54c2 side of the curved portion 54c of the liquid header 54. Trapezoidal shape).

なお、湾曲部扁平管66の接続部66bの断面形状は、湾曲部扁平管66の断面長手方向L1に直交する方向の幅が、液ヘッダ54の湾曲部54cの内縁54c1側から液ヘッダ54の湾曲部54cの外縁54c2側に向かって一様に広くなる形状ではなくてもよい。例えば、液ヘッダ54の湾曲部54cの内縁54c1側から液ヘッダ54の湾曲部54cの外縁54c2側に向かう方向において、湾曲部扁平管66の接続部66bの断面形状の、湾曲部扁平管66の断面長手方向L1に直交する方向の幅の変化率は、一定ではなくてもよい。 The cross-sectional shape of the connecting portion 66b of the curved portion flat pipe 66 has a width in the direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat pipe 66 from the inner edge 54c1 side of the curved portion 54c of the liquid header 54 to the liquid header 54. It does not have to be a shape that uniformly widens toward the outer edge 54c2 side of the curved portion 54c. For example, in the direction from the inner edge 54c1 side of the curved portion 54c of the liquid header 54 toward the outer edge 54c2 side of the curved portion 54c of the liquid header 54, the curved portion flat tube 66 having the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66. The rate of change in the width in the direction orthogonal to the longitudinal direction L1 of the cross section does not have to be constant.

また、湾曲部扁平管66の接続部66bの断面形状は、液ヘッダ54の湾曲部54cの内縁54c1側から液ヘッダ54の湾曲部54cの外縁54c2側に向かって次第に広くなることが好ましい。しかし、湾曲部扁平管66の接続部66bの断面形状は、部分的には断面長手方向L1に直交する方向の幅が一様な部分(液ヘッダ54の湾曲部54cの内縁54c1側から液ヘッダ54の湾曲部54cの外縁54c2側に向かって幅が広くならない部分)が存在してもよい。 Further, it is preferable that the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 gradually widens from the inner edge 54c1 side of the curved portion 54c of the liquid header 54 toward the outer edge 54c2 side of the curved portion 54c of the liquid header 54. However, the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 is a portion having a uniform width in a direction orthogonal to the longitudinal direction L1 of the cross section (the liquid header from the inner edge 54c1 side of the curved portion 54c of the liquid header 54). There may be a portion of the curved portion 54c of the 54 that does not widen toward the outer edge 54c2 side).

また、湾曲部扁平管66の本体部66aの、断面長手方向L1における端部の曲線部C1,C2の曲率は、液ヘッダ54の湾曲部54cの内縁54c1側と、液ヘッダ54の湾曲部54cの外縁54c2側とで同一である(図8参照)。これに対し、図8及び図10に示すように、湾曲部扁平管66の接続部66bの、液ヘッダ54の湾曲部54cの内縁54c1側の曲線部C1’の曲率は、液ヘッダ54の湾曲部54cの外縁54c2側の曲線部C2‘の曲率に比べて大きい。 Further, the curvatures of the curved portions C1 and C2 at the ends of the main body portion 66a of the curved portion flat tube 66 in the longitudinal direction L1 of the cross section are the inner edge 54c1 side of the curved portion 54c of the liquid header 54 and the curved portion 54c of the liquid header 54. It is the same as the outer edge 54c2 side of (see FIG. 8). On the other hand, as shown in FIGS. 8 and 10, the curvature of the curved portion C1'on the inner edge 54c1 side of the curved portion 54c of the liquid header 54 of the connecting portion 66b of the curved portion flat tube 66 is the curvature of the liquid header 54. It is larger than the curvature of the curved portion C2'on the outer edge 54c2 side of the portion 54c.

また、湾曲部扁平管66の本体部66aの断面において、冷媒流路Pを形成する穴61の形状(大きさを含む)は同一である。これに対し、湾曲部扁平管66の接続部66bの断面を見た時に、断面長手方向L1に沿って並べられている複数の穴61の中で、液ヘッダ54の湾曲部54cの内縁54c1に最も近い穴61aの形状と、液ヘッダ54の湾曲部54cの外縁54c2に最も近い穴61bの形状とは異なる(図10参照)。具体的には、外縁54c2側の穴61bの外縁の大きさは、内縁54c1側の穴61aの外縁の大きさに比べて大きい。 Further, in the cross section of the main body portion 66a of the curved portion flat pipe 66, the shape (including the size) of the hole 61 forming the refrigerant flow path P is the same. On the other hand, when looking at the cross section of the connecting portion 66b of the curved portion flat tube 66, among the plurality of holes 61 arranged along the longitudinal direction L1 of the cross section, the inner edge 54c1 of the curved portion 54c of the liquid header 54 The shape of the closest hole 61a is different from the shape of the hole 61b closest to the outer edge 54c2 of the curved portion 54c of the liquid header 54 (see FIG. 10). Specifically, the size of the outer edge of the hole 61b on the outer edge 54c2 side is larger than the size of the outer edge of the hole 61a on the inner edge 54c1 side.

湾曲部扁平管66の接続部66bの外形は、液ヘッダ54の湾曲部54cに設けられている開口55cの外形と概ね一致する。より具体的には、湾曲部扁平管66の接続部66bの形状は、液ヘッダ54の湾曲部54cに設けられている開口55cの形状と概ね相似している。湾曲部扁平管66の接続部66bの大きさは、液ヘッダ54の湾曲部54cに設けられている開口55cの大きさよりもわずかに小さい。 The outer shape of the connecting portion 66b of the curved portion flat tube 66 substantially coincides with the outer shape of the opening 55c provided in the curved portion 54c of the liquid header 54. More specifically, the shape of the connecting portion 66b of the curved portion flat tube 66 is substantially similar to the shape of the opening 55c provided in the curved portion 54c of the liquid header 54. The size of the connecting portion 66b of the curved portion flat tube 66 is slightly smaller than the size of the opening 55c provided in the curved portion 54c of the liquid header 54.

(3)熱交換器の製造方法
熱源熱交換器50の製造方法について説明する。
(3) Manufacturing Method of Heat Exchanger A manufacturing method of the heat source heat exchanger 50 will be described.

熱源熱交換器50の製造の第1工程では、ガスヘッダ52となる素材(伝熱扁平管60を挿入するための開口が形成されている直線状の管)と、液ヘッダ54となる素材(伝熱扁平管60を挿入するための開口55が形成されている直線状の管)と、が、曲げ加工により、湾曲部52c,54cにおいて曲げられる。その結果、以上の実施形態で説明した形状のガスヘッダ52及び液ヘッダ54が製造される。 In the first step of manufacturing the heat source heat exchanger 50, the material to be the gas header 52 (a straight tube having an opening for inserting the heat transfer flat tube 60) and the material to be the liquid header 54 (transfer). A linear tube in which an opening 55 for inserting the heat flat tube 60 is formed) and is bent at the curved portions 52c and 54c by bending. As a result, the gas header 52 and the liquid header 54 having the shapes described in the above embodiments are manufactured.

なお、ガスヘッダ52となる素材及び液ヘッダ54となる素材に設けられている開口は、開口の長手方向に直交する方向の幅が一様であることが好ましい。このような形状の開口が素材に設けられていることで直線部52a,52b,54a,54bに挿入される伝熱扁平管60の接続部62b,64bの形状を上述のようにシンプル化できる。 It is preferable that the openings provided in the material serving as the gas header 52 and the material serving as the liquid header 54 have a uniform width in the direction orthogonal to the longitudinal direction of the openings. By providing the opening having such a shape in the material, the shape of the connecting portions 62b and 64b of the heat transfer flat tube 60 inserted into the straight portions 52a, 52b, 54a and 54b can be simplified as described above.

なお、このような開口がヘッダ52,54に設けられている場合、曲げ加工により湾曲部52c,54cで曲げると、湾曲部52c,54cに設けられている開口は変形し、上記のように、湾曲部52c,54cの内縁側の幅は狭く、湾曲部52c,54cの外縁側の幅は広い形状の開口となる。言い換えれば、湾曲部52c,54cに設けられている開口の形状は、湾曲部52c,54cの外縁側の幅が、湾曲部52c,54cの内縁側の幅より広い楔状となる。 When such openings are provided in the headers 52 and 54, when the bending portions 52c and 54c are bent by bending, the openings provided in the curved portions 52c and 54c are deformed and as described above. The width of the curved portions 52c and 54c on the inner edge side is narrow, and the width of the curved portions 52c and 54c on the outer edge side is a wide opening. In other words, the shape of the openings provided in the curved portions 52c and 54c is a wedge shape in which the width of the curved portions 52c and 54c on the outer edge side is wider than the width of the curved portions 52c and 54c on the inner edge side.

熱源熱交換器50の製造の第2工程では、第1扁平管62,第2扁平管64及び湾曲部扁平管66が製造される。なお、ここでは、便宜上、第1扁平管62,第2扁平管64及び湾曲部扁平管66の製造を熱源熱交換器50の製造の第2工程と呼んでいるが、第1扁平管62,第2扁平管64及び湾曲部扁平管66の製造は、ガスヘッダ52及び液ヘッダ54の製造とは別工程であるため、第1工程と第2工程とは同時に行われてもよい。 In the second step of manufacturing the heat source heat exchanger 50, the first flat tube 62, the second flat tube 64, and the curved flat tube 66 are manufactured. Here, for convenience, the production of the first flat tube 62, the second flat tube 64, and the curved flat tube 66 is referred to as the second step of manufacturing the heat source heat exchanger 50, but the first flat tube 62, Since the production of the second flat tube 64 and the curved flat tube 66 is a separate step from the production of the gas header 52 and the liquid header 54, the first step and the second step may be performed at the same time.

第1扁平管62,第2扁平管64及び湾曲部扁平管66の製造にあたっては、接続部62b,64b,64cが設けられていない(外周の大きさが一様な)伝熱扁平管が準備される。 In manufacturing the first flat tube 62, the second flat tube 64, and the curved flat tube 66, a heat transfer flat tube without connecting portions 62b, 64b, 64c (with a uniform outer peripheral size) is prepared. Will be done.

このような伝熱扁平管(素材)に対してダイレス引抜き加工を行うことにより、接続部62b,64b,64cを有する第1扁平管62,第2扁平管64及び湾曲部扁平管66が形成される。 By performing dieless drawing on such a heat transfer flat tube (material), a first flat tube 62, a second flat tube 64, and a curved flat tube 66 having connection portions 62b, 64b, 64c are formed. To.

なお、ダイレス引抜き加工とは、素材(ここでは加工前の伝熱扁平管)を、高周波誘導加熱装置やレーザ加熱装置等を利用した加熱部により局所的に加熱し、加熱部(加熱部による加熱箇所)を、素材に対して、素材の長手方向(伝熱扁平管の長手方向)に相対移動させ、同時に素材の加熱部により加熱されている部分に素材の長手方向に沿った力を加えて、素材を長手方向に交差する方向に膨出させたり、素材を長手方向に引き伸ばしたりする加工方法である。 In the dieless drawing process, the material (here, the heat transfer flat tube before processing) is locally heated by a heating section using a high-frequency induction heating device, a laser heating device, etc., and the heating section (heating by the heating section) is used. The location) is moved relative to the material in the longitudinal direction of the material (the longitudinal direction of the heat transfer flat tube), and at the same time, a force along the longitudinal direction of the material is applied to the portion heated by the heating part of the material. This is a processing method in which the material is bulged in a direction intersecting the longitudinal direction or the material is stretched in the longitudinal direction.

第1扁平管62及び第2扁平管64については、接続部62b,64bは本体部62a,64a(ダイレス引抜き加工がされない部分)と相似の断面を有するため、接続部62b,64bとなる部分を一様に加熱しながら、素材の長手方向に(素材を圧縮する方向に)力が加えられる。 Regarding the first flat tube 62 and the second flat tube 64, since the connecting portions 62b and 64b have a cross section similar to that of the main body portions 62a and 64a (parts that are not dieless drawn), the portions that become the connecting portions 62b and 64b are provided. While heating uniformly, a force is applied in the longitudinal direction of the material (in the direction of compressing the material).

一方、湾曲部扁平管66については、接続部66bは本体部66a(ダイレス引抜き加工がされない部分)と断面が相似していないため、接続部66bとなる部分の加熱の度合いを位置により変えながら、素材の長手方向に力が加えられる。接続部66bとなる部分の加熱の度合いを位置により変えるため、加熱部には、加熱の度合いを局所的に変更することが容易なレーザ加熱装置等が利用されることが好ましい。このようなダイレス引抜き加工により、上述したような、湾曲部扁平管66の接続部66bの断面長手方向L1に直交する方向の幅が、断面長手方向L1の一端側で狭く、他端側で広い湾曲部扁平管66を製造できる。 On the other hand, since the cross section of the curved flat tube 66 is not similar to that of the main body 66a (the part where the dieless drawing process is not performed), the connection part 66b is heated while changing the degree of heating of the part to be the connection part 66b. A force is applied in the longitudinal direction of the material. In order to change the degree of heating of the portion to be the connecting portion 66b depending on the position, it is preferable to use a laser heating device or the like that can easily change the degree of heating locally for the heating portion. Due to such dieless drawing, the width of the connecting portion 66b of the curved flat tube 66 in the direction orthogonal to the longitudinal direction L1 is narrow on one end side and wide on the other end side in the longitudinal direction L1. The curved flat tube 66 can be manufactured.

次に、熱源熱交換器50の製造の第3工程では、第1扁平管62、湾曲部扁平管66、及び第2扁平管64が、ヘッダ52,54に取り付けられる際の状態になるように積層される。具体的には、第1扁平管62、湾曲部扁平管66、及び第2扁平管64が、ヘッダ52,54に取り付けられる際の状態になるように、第1扁平管62、湾曲部扁平管66、及び第2扁平管64の接続部62b,66b,64bが積層される。 Next, in the third step of manufacturing the heat source heat exchanger 50, the first flat tube 62, the curved flat tube 66, and the second flat tube 64 are in a state when they are attached to the headers 52 and 54. It is laminated. Specifically, the first flat tube 62 and the curved portion flat tube so that the first flat tube 62, the curved portion flat tube 66, and the second flat tube 64 are in the state when they are attached to the headers 52 and 54. 66 and the connection portions 62b, 66b, 64b of the second flat tube 64 are laminated.

次に、熱源熱交換器50の製造の第4工程では、積層された一群の伝熱扁平管60(第1扁平管62、湾曲部扁平管66、及び第2扁平管64)の端部の接続部62b,66b,64bが、ガスヘッダ52や液ヘッダ54の開口に挿入されロウ付け固定される。 Next, in the fourth step of manufacturing the heat source heat exchanger 50, at the end of a group of laminated heat transfer flat tubes 60 (first flat tube 62, curved flat tube 66, and second flat tube 64). The connection portions 62b, 66b, 64b are inserted into the openings of the gas header 52 and the liquid header 54 and fixed by brazing.

(4)特徴
ここでは、伝熱扁平管60と液ヘッダ54との接続を例に熱源熱交換器50の特徴を説明しているが、伝熱扁平管60とガスヘッダ52との接続に関しても熱源熱交換器50は同様の特徴を有する。ここでは、説明の重複を避けるため、伝熱扁平管60とガスヘッダ52との接続に関する熱源熱交換器50の特徴の記載は省略する。
(4) Features Here, the features of the heat source heat exchanger 50 are described by taking the connection between the heat transfer flat tube 60 and the liquid header 54 as an example, but the connection between the heat transfer flat tube 60 and the gas header 52 is also a heat source. The heat exchanger 50 has similar characteristics. Here, in order to avoid duplication of description, the description of the characteristics of the heat source heat exchanger 50 regarding the connection between the heat transfer flat tube 60 and the gas header 52 is omitted.

(4-1)
本実施形態の熱源熱交換器50は、液ヘッダ54と、複数の伝熱扁平管60と、を備える。液ヘッダ54は、第1直線部54a、第2直線部54b、及び、湾曲部54c、を少なくとも含む。第1直線部54aは、左右方向に延びる。第2直線部54bは、左右方向と交差する方向に延びる。湾曲部54cは、第1直線部54aと第2直線部54bとの間を接続する。複数の伝熱扁平管60のそれぞれは、液ヘッダ54に形成されている開口55に挿入され、液ヘッダ54に接続される。伝熱扁平管60は、湾曲部54cに設けられている開口55cに挿入されて固定されている湾曲部扁平管66を含む。湾曲部扁平管66の断面長手方向は、第1直線部54aに設けられている開口55aに挿入されて固定されている伝熱扁平管60(第1扁平管62)の断面長手方向(前後方向)及び第2直線部54bに設けられている開口55bに挿入されて固定されている伝熱扁平管60(第2扁平管64)の断面長手方向(左右方向)のそれぞれに対して傾斜している。
(4-1)
The heat source heat exchanger 50 of the present embodiment includes a liquid header 54 and a plurality of heat transfer flat tubes 60. The liquid header 54 includes at least a first straight line portion 54a, a second straight line portion 54b, and a curved portion 54c. The first straight line portion 54a extends in the left-right direction. The second straight line portion 54b extends in a direction intersecting the left-right direction. The curved portion 54c connects between the first straight line portion 54a and the second straight line portion 54b. Each of the plurality of heat transfer flat tubes 60 is inserted into the opening 55 formed in the liquid header 54 and connected to the liquid header 54. The heat transfer flat tube 60 includes a curved flat tube 66 inserted and fixed in an opening 55c provided in the curved portion 54c. The longitudinal direction of the cross section of the curved flat tube 66 is the longitudinal direction of the cross section (front-back direction) of the heat transfer flat tube 60 (first flat tube 62) inserted and fixed in the opening 55a provided in the first straight line portion 54a. ) And the heat transfer flat tube 60 (second flat tube 64) inserted and fixed in the opening 55b provided in the second straight line portion 54b, and inclined with respect to each of the cross-sectional longitudinal direction (left-right direction). There is.

本実施形態の熱源熱交換器50では、湾曲部54cにも伝熱扁平管60が配置されているため、ヘッダ52,54が湾曲部52c,54cを有する形状であって、コンパクトで高性能な熱源熱交換器50を実現できる。 In the heat source heat exchanger 50 of the present embodiment, since the heat transfer flat tube 60 is also arranged in the curved portion 54c, the headers 52 and 54 have a shape having the curved portions 52c and 54c, and are compact and have high performance. The heat source heat exchanger 50 can be realized.

(4-2)
本実施形態の熱源熱交換器50は、各伝熱扁平管60の、接続部62b,64b,66bの外周の大きさは、接続部62b,64b,66b以外の外周の大きさに比べて大きい。具体的には、各伝熱扁平管60の、接続部62b,64b,66bの外周の大きさは、本体部62a,64a,66aの外周の大きさに比べて大きい。接続部62b,64b,66bは、各伝熱扁平管60の、液ヘッダ54の開口55に挿入されて固定されている部分である。
(4-2)
In the heat source heat exchanger 50 of the present embodiment, the size of the outer periphery of the connection portions 62b, 64b, 66b of each heat transfer flat tube 60 is larger than the size of the outer periphery other than the connection portions 62b, 64b, 66b. .. Specifically, the size of the outer periphery of the connecting portions 62b, 64b, 66b of each heat transfer flat tube 60 is larger than the size of the outer periphery of the main body portions 62a, 64a, 66a. The connecting portions 62b, 64b, and 66b are portions of each heat transfer flat tube 60 that are inserted and fixed in the opening 55 of the liquid header 54.

本実施形態の熱源熱交換器50では、伝熱扁平管60の液ヘッダ54との接続部62b,64b,66bの外周を大きく形成したことで、液ヘッダ54と伝熱扁平管60とをロウ付け代を比較的大きく確保でき、液ヘッダ54と伝熱扁平管60との接続箇所の強度を確保することが容易である。 In the heat source heat exchanger 50 of the present embodiment, the liquid header 54 and the heat transfer flat tube 60 are brazed by forming a large outer periphery of the connection portions 62b, 64b, 66b of the heat transfer flat tube 60 with the liquid header 54. A relatively large attachment allowance can be secured, and it is easy to secure the strength of the connection portion between the liquid header 54 and the heat transfer flat tube 60.

また、伝熱扁平管60の液ヘッダ54との接続部62b,64b,66bの外周を大きく形成し、接続部62b,64b,66bをスペーサとして利用することで、伝熱扁平管60を適切な間隔を空けて配置することが容易である。 Further, the heat transfer flat tube 60 can be appropriately used by forming a large outer circumference of the connection portions 62b, 64b, 66b with the liquid header 54 of the heat transfer flat tube 60 and using the connection portions 62b, 64b, 66b as spacers. It is easy to arrange them at intervals.

(4-3)
本実施形態の熱源熱交換器50では、第1直線部54a及び第2直線部54bに設けられている開口55a,55bに挿入されて固定されている伝熱扁平管60(第1扁平管62及び第2扁平管64)の接続部62b,64bの断面長手方向L1に直交する方向の幅は、一様である。
(4-3)
In the heat source heat exchanger 50 of the present embodiment, the heat transfer flat tube 60 (first flat tube 62) inserted and fixed in the openings 55a and 55b provided in the first straight line portion 54a and the second straight line portion 54b. And the width of the connecting portions 62b and 64b of the second flat tube 64) in the direction orthogonal to the longitudinal direction L1 of the cross section is uniform.

本実施形態の熱源熱交換器50では、液ヘッダ54の第1直線部54a及び第2直線部54bに接続される伝熱扁平管60の接続部62b,64bの形状がシンプルであるため、液ヘッダ54の第1直線部54a及び第2直線部54bに接続される伝熱扁平管60の製造が比較的容易である。 In the heat source heat exchanger 50 of the present embodiment, since the shapes of the connecting portions 62b and 64b of the heat transfer flat tube 60 connected to the first straight line portion 54a and the second straight line portion 54b of the liquid header 54 are simple, the liquid is liquid. It is relatively easy to manufacture the heat transfer flat tube 60 connected to the first straight line portion 54a and the second straight line portion 54b of the header 54.

(4-4)
本実施形態の熱源熱交換器50では、湾曲部扁平管66の接続部66bは、湾曲部54cの内縁54c1側に配置される第1端部E1と湾曲部54cの外縁54c2側に配置される第2端部E2との間を湾曲部扁平管66の断面長手方向L1に沿って延びる。湾曲部扁平管66の接続部66bの、第2端部E2における湾曲部扁平管66の断面長手方向L1に直交する方向の幅W3は、第1端部E1における湾曲部扁平管66の断面長手方向L1に直交する方向の幅W2よりも広い。
(4-4)
In the heat source heat exchanger 50 of the present embodiment, the connecting portion 66b of the curved portion flat tube 66 is arranged on the outer edge 54c2 side of the first end portion E1 arranged on the inner edge 54c1 side of the curved portion 54c and the outer edge 54c2 of the curved portion 54c. It extends between the second end portion E2 and the curved portion flat tube 66 along the longitudinal direction L1 of the cross section. The width W3 of the connecting portion 66b of the curved portion flat pipe 66 in the direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat pipe 66 at the second end portion E2 is the cross-sectional length of the curved portion flat pipe 66 at the first end portion E1. It is wider than the width W2 in the direction orthogonal to the direction L1.

本実施形態の熱源熱交換器50では、液ヘッダ54の湾曲部54cに接続される湾曲部扁平管66の接続部66bの幅が、湾曲部54cの外縁54c2側の第2端部E2で広く、湾曲部54cの内縁54c1側の第1端部E1で薄い。そのため、湾曲部扁平管66の接続部66bの外形を、予め湾曲部54cにおいて曲げられた液ヘッダ54の湾曲部54cの開口55cの形状に対応させることができる。そのため、湾曲部54cにも伝熱扁平管60が配置されている熱源熱交換器50を、容易に製造することができる。 In the heat source heat exchanger 50 of the present embodiment, the width of the connecting portion 66b of the curved portion flat tube 66 connected to the curved portion 54c of the liquid header 54 is wide at the second end portion E2 on the outer edge 54c2 side of the curved portion 54c. , The first end E1 on the inner edge 54c1 side of the curved portion 54c is thin. Therefore, the outer shape of the connecting portion 66b of the curved portion flat tube 66 can correspond to the shape of the opening 55c of the curved portion 54c of the liquid header 54 previously bent in the curved portion 54c. Therefore, the heat source heat exchanger 50 in which the heat transfer flat tube 60 is also arranged in the curved portion 54c can be easily manufactured.

(4-5)
本実施形態の熱源熱交換器50では、湾曲部扁平管66の接続部66bの断面形状は、湾曲部扁平管66の断面長手方向L1に直交する方向の幅が、第1端部E1から第2端部E2に向かって次第に広くなる楔形状である。
(4-5)
In the heat source heat exchanger 50 of the present embodiment, the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 has a width in a direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat tube 66 from the first end portion E1 to the first. It is a wedge shape that gradually widens toward the two ends E2.

本実施形態の熱源熱交換器50では、液ヘッダ54の湾曲部54cに接続される湾曲部扁平管66の接続部66bの断面形状が、第1端部E1から第2端部E2に向かって広くなる楔形状である。そのため、湾曲部扁平管66の接続部66bの外形の形状を、予め湾曲部54cにおいて曲げられた液ヘッダ54の湾曲部54cの開口55cの形状に対応させることが容易である。そのため、湾曲部54cにも伝熱扁平管60が配置されている熱源熱交換器50を、容易に製造することができる。 In the heat source heat exchanger 50 of the present embodiment, the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 connected to the curved portion 54c of the liquid header 54 is from the first end portion E1 to the second end portion E2. It has a wide wedge shape. Therefore, it is easy to make the outer shape of the connecting portion 66b of the curved portion flat tube 66 correspond to the shape of the opening 55c of the curved portion 54c of the liquid header 54 previously bent in the curved portion 54c. Therefore, the heat source heat exchanger 50 in which the heat transfer flat tube 60 is also arranged in the curved portion 54c can be easily manufactured.

ここで、湾曲部扁平管66の接続部66bの断面形状が第1端部E1から第2端部E2に向かって次第に広くなるとは、湾曲部扁平管66の断面長手方向L1に直交する方向の幅が、第1端部E1から第2端部E2に向かって比例的に広くなる場合だけを意味するものではない。湾曲部扁平管66の断面長手方向L1に沿う方向における、湾曲部扁平管66の断面長手方向L1に直交する方向の幅の変化率は、場所により異なってもよい。 Here, the fact that the cross-sectional shape of the connecting portion 66b of the curved portion flat pipe 66 gradually widens from the first end portion E1 to the second end portion E2 is a direction orthogonal to the cross-sectional longitudinal direction L1 of the curved portion flat pipe 66. It does not mean only when the width increases proportionally from the first end E1 to the second end E2. The rate of change in the width in the direction orthogonal to the longitudinal direction L1 of the curved portion flat tube 66 in the direction along the longitudinal direction L1 of the curved portion flat tube 66 may differ depending on the location.

なお、湾曲部扁平管66の接続部66bの断面形状は、第1端部E1から第2端部E2に向かって次第に広くなることが好ましいが、湾曲部扁平管66の接続部66bの断面形状は、部分的には断面長手方向L1に直交する方向の幅が一様な形状であってもよい。 It is preferable that the cross-sectional shape of the connecting portion 66b of the curved flat tube 66 gradually widens from the first end E1 to the second end E2, but the cross-sectional shape of the connecting portion 66b of the curved flat tube 66. May have a shape having a uniform width in a direction orthogonal to the longitudinal direction L1 of the cross section.

(4-6)
本実施形態の熱源熱交換器50では、湾曲部扁平管66の接続部66bの断面形状は、湾曲部54cの内縁54c1側に位置する曲線部C1’と、湾曲部54cの外縁54c2側に位置する曲線部C2’と、を含む。湾曲部54cの内縁54c1側の曲線部C1’の曲率は、湾曲部54cの外縁54c2側の曲線部C2’の曲率に比べて大きい。
(4-6)
In the heat source heat exchanger 50 of the present embodiment, the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 is located on the curved portion C1'located on the inner edge 54c1 side of the curved portion 54c and on the outer edge 54c2 side of the curved portion 54c. The curved portion C2'and the curved portion C2'is included. The curvature of the curved portion C1'on the inner edge 54c1 side of the curved portion 54c is larger than the curvature of the curved portion C2'on the outer edge 54c2 side of the curved portion 54c.

湾曲部扁平管66の接続部66bの断面形状を、このような形状とすることで、湾曲部扁平管66の接続部66bを、予め湾曲部54cにおいて曲げられた液ヘッダ54の湾曲部54cの開口55cの形状に対応させることが容易である。そのため、湾曲部54cにも伝熱扁平管60が配置されている熱源熱交換器50を容易に製造することができる。 By making the cross-sectional shape of the connecting portion 66b of the curved portion flat tube 66 such a shape, the connecting portion 66b of the curved portion flat tube 66 is previously bent in the curved portion 54c of the curved portion 54c of the liquid header 54. It is easy to correspond to the shape of the opening 55c. Therefore, the heat source heat exchanger 50 in which the heat transfer flat tube 60 is also arranged in the curved portion 54c can be easily manufactured.

(4-7)
本実施形態の熱源熱交換器50では、湾曲部扁平管66の接続部66bの断面を見た時に、湾曲部扁平管66の接続部66bには、断面長手方向L1に沿って並べられている複数の穴61が形成されている。湾曲部54cの内縁54c1に最も近い穴61aの形状と、湾曲部54cの外縁54c2に最も近い穴61bの形状とは異なる。本実施形態では、穴61bの縁部の長さは、穴61aの縁部の長さよりも大きい。
(4-7)
In the heat source heat exchanger 50 of the present embodiment, when the cross section of the connecting portion 66b of the curved flat tube 66 is viewed, the connecting portion 66b of the curved flat tube 66 is arranged along the longitudinal direction L1 of the cross section. A plurality of holes 61 are formed. The shape of the hole 61a closest to the inner edge 54c1 of the curved portion 54c is different from the shape of the hole 61b closest to the outer edge 54c2 of the curved portion 54c. In the present embodiment, the length of the edge portion of the hole 61b is larger than the length of the edge portion of the hole 61a.

<変形例>
以下に、上記実施形態の変形例を説明する。なお、各変形例は、矛盾の無い範囲で他の変形例の構成と組み合わされてもよい。
<Modification example>
A modified example of the above embodiment will be described below. It should be noted that each modification may be combined with the configuration of another modification as long as there is no contradiction.

(1)変形例A
本開示の熱交換器の有する伝熱管は、全てが同一形状や同一構造でなくてもよい。
(1) Modification A
The heat transfer tubes included in the heat exchangers of the present disclosure do not have to have the same shape or structure.

例えば、第1扁平管62、第2扁平管64、及び湾曲部扁平管66は、それぞれ伝熱扁平管の仕様(例えば穴61の形状や数、伝熱扁平管の本体部や接続部の外周の大きさ等)が異なっていてもよい。また、例えば、第1扁平管62の中でも、伝熱扁平管の仕様が互いに異なっていてもよい。第2扁平管64及び湾曲部扁平管66についても同様である。 For example, the first flat tube 62, the second flat tube 64, and the curved flat tube 66 have specifications of the heat transfer flat tube (for example, the shape and number of holes 61, the outer periphery of the main body and the connection portion of the heat transfer flat tube, respectively. The size, etc.) may be different. Further, for example, even in the first flat tube 62, the specifications of the heat transfer flat tube may be different from each other. The same applies to the second flat tube 64 and the curved flat tube 66.

また、例えば、熱交換器における伝熱扁平管の配列ピッチは一様ではなくてもよく、伝熱管の配列ピッチは場所により異なってもよい。 Further, for example, the arrangement pitch of the heat transfer flat tubes in the heat exchanger may not be uniform, and the arrangement pitch of the heat transfer tubes may differ depending on the location.

例えば、各伝熱扁平管の仕様や、伝熱扁平管の配列ピッチは、風速分布に応じて適宜設計される。 For example, the specifications of each heat transfer flat tube and the arrangement pitch of the heat transfer flat tubes are appropriately designed according to the wind speed distribution.

(2)変形例B
上記実施形態では、冷媒流路Pの延びる方向、言い換えれば伝熱扁平管60の長手方向は鉛直方向であるが、これに限定されるものではない。例えば、冷媒流路Pの延びる方向は、鉛直方向及び水平方向に対して傾いていてもよい。また、冷媒流路Pの延びる方向は、水平方向であってもよい。
(2) Modification B
In the above embodiment, the extending direction of the refrigerant flow path P, in other words, the longitudinal direction of the heat transfer flat tube 60 is the vertical direction, but the present invention is not limited to this. For example, the extending direction of the refrigerant flow path P may be inclined with respect to the vertical direction and the horizontal direction. Further, the extending direction of the refrigerant flow path P may be the horizontal direction.

(3)変形例C
上記実施形態では、ガスヘッダ52が上方に、液ヘッダ54が下方に配置される。一般的には、このように、ガスヘッダ52が上方に液ヘッダ54が下方に配置されることが好ましい。ただし、これに限定されるものではなく、ガスヘッダ52が液ヘッダ54の下方に配置されてもよい。
(3) Modification C
In the above embodiment, the gas header 52 is arranged above and the liquid header 54 is arranged below. In general, it is preferable that the gas header 52 is arranged above and the liquid header 54 is arranged below. However, the present invention is not limited to this, and the gas header 52 may be arranged below the liquid header 54.

<付記>
以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<Additional Notes>
Although the embodiments of the present disclosure have been described above, it will be understood that various modifications of the embodiments and details are possible without departing from the spirit and scope of the present disclosure described in the claims. ..

本開示は、伝熱フィンを使用しない熱交換器に広く利用可能である。 The present disclosure is widely applicable to heat exchangers that do not use heat transfer fins.

50 熱源熱交換器(熱交換器)
52 ガスヘッダ(ヘッダ)
52a 第1直線部
52b 第2直線部
52c 湾曲部
54 液ヘッダ(ヘッダ)
54a 第1直線部
54b 第2直線部
54c 湾曲部
55a 開口(第1直線部に設けられている開口)
55b 開口(第2直線部に設けられている開口)
55c 開口(湾曲部に設けられている開口)
61 穴
61a 穴(湾曲部の内縁に最も近い穴)
61b 穴(湾曲部の外縁に最も近い穴)
62 第1扁平管(伝熱扁平管)
64 第2扁平管(伝熱扁平管)
66 湾曲部扁平管(伝熱扁平管)
C1’ 曲線部(湾曲部の内縁側の曲線部)
C2’ 曲線部(湾曲部の外縁側の曲線部)
E1 第1端部
E2 第2端部
50 Heat source heat exchanger (heat exchanger)
52 Gas header (header)
52a 1st straight line part 52b 2nd straight line part 52c Curved part 54 Liquid header (header)
54a First straight section 54b Second straight section 54c Curved section 55a Opening (opening provided in the first straight section)
55b opening (opening provided in the second straight section)
55c opening (opening provided in the curved part)
61 hole 61a hole (hole closest to the inner edge of the curved part)
61b hole (the hole closest to the outer edge of the curved part)
62 First flat tube (heat transfer flat tube)
64 Second flat tube (heat transfer flat tube)
66 Curved flat tube (heat transfer flat tube)
C1'Curved part (curved part on the inner edge side of the curved part)
C2'Curved part (curved part on the outer edge side of the curved part)
E1 1st end E2 2nd end

国際公開第2005/073655号International Publication No. 2005/073655

Claims (4)

第1方向に延びる第1直線部(52a,54a)、前記第1方向と交差する第2方向に延びる第2直線部(52b,54b)、及び、前記第1直線部と前記第2直線部との間を接続する湾曲部(52c,54c)、を少なくとも含むヘッダ(52,54)と、
前記ヘッダに形成されている開口(55a,55b,55c)に挿入され、前記ヘッダに接続される複数の伝熱扁平管(62,64,66)と、
を備え、
前記伝熱扁平管のうち前記湾曲部に設けられている前記開口(55c)に挿入されて固定されている湾曲部扁平管(66)の断面長手方向は、前記第1直線部に設けられている前記開口(55a)に挿入されて固定されている前記伝熱扁平管(62)の断面長手方向及び前記第2直線部に設けられている前記開口(55b)に挿入されて固定されている前記伝熱扁平管(64)の断面長手方向のそれぞれに対して傾斜しており
各前記伝熱扁平管の、前記ヘッダの前記開口に挿入されて固定されている接続部(62b,64b,66b)の外周の大きさは、前記接続部以外の外周の大きさに比べて大きく、
前記第1直線部及び前記第2直線部に設けられている前記開口に挿入されて固定されている前記伝熱扁平管の前記接続部の断面長手方向に直交する方向の幅(W1)は、一様であり、
前記湾曲部扁平管の前記接続部は、前記湾曲部の内縁(54c1)側に配置される第1端部(E1)と前記湾曲部の外縁(54c2)側に配置される第2端部(E2)との間を前記湾曲部扁平管の断面長手方向に沿って延び、前記第2端部における前記湾曲部扁平管の断面長手方向に直交する方向の幅(W3)は、前記第1端部における前記湾曲部扁平管の断面長手方向に直交する方向の幅(W2)よりも広い、
熱交換器(50)。
The first straight line portion (52a, 54a) extending in the first direction, the second straight line portion (52b, 54b) extending in the second direction intersecting the first direction, and the first straight line portion and the second straight line portion. A header (52,54) including at least a curved portion (52c, 54c) connecting between and
A plurality of heat transfer flat tubes (62, 64, 66) inserted into the openings (55a, 55b, 55c) formed in the header and connected to the header.
Equipped with
The longitudinal direction of the curved portion flat tube (66) inserted and fixed in the opening (55c) provided in the curved portion of the heat transfer flat tube is provided in the first straight line portion. It is inserted and fixed in the opening (55b) provided in the longitudinal direction of the cross section of the heat transfer flat tube (62) and the second straight line portion which is inserted and fixed in the opening (55a). The heat transfer flat tube (64) is inclined with respect to each of the longitudinal directions of the cross section.
The size of the outer circumference of each connection portion (62b, 64b, 66b) inserted and fixed in the opening of the header of each of the heat transfer flat tubes is larger than the size of the outer circumference other than the connection portion. ,
The width (W1) in the direction orthogonal to the longitudinal direction of the cross section of the connection portion of the heat transfer flat tube inserted and fixed in the opening provided in the first straight line portion and the second straight line portion is Uniform and
The connection portion of the curved portion flat tube has a first end portion (E1) arranged on the inner edge (54c1) side of the curved portion and a second end portion (54c2) arranged on the outer edge (54c2) side of the curved portion. The width (W3) of the second end portion extending between E2) and the curved portion flat tube along the longitudinal direction of the cross section of the curved portion flat tube is the width (W3) in the direction orthogonal to the longitudinal direction of the cross section of the curved portion flat tube. It is wider than the width (W2) in the direction orthogonal to the longitudinal direction of the cross section of the curved portion flat tube in the portion.
Heat exchanger (50).
前記湾曲部扁平管の前記接続部の断面形状は、前記湾曲部扁平管の断面長手方向に直交する方向の幅が、前記第1端部から前記第2端部に向かって次第に広くなる楔形状である、
請求項に記載の熱交換器。
The cross-sectional shape of the connection portion of the curved portion flat tube is a wedge shape in which the width in the direction orthogonal to the cross-sectional longitudinal direction of the curved portion flat tube gradually widens from the first end portion toward the second end portion. Is,
The heat exchanger according to claim 1 .
前記湾曲部扁平管の前記接続部の断面形状は、前記湾曲部の内縁側及び前記湾曲部の外縁側に曲線部(C1’,C2’)を含み、
前記湾曲部の内縁側の前記曲線部(C1’)の曲率は、前記湾曲部の外縁側の前記曲線部(C2’)の曲率に比べて大きい、
請求項又はに記載の熱交換器。
The cross-sectional shape of the connection portion of the curved portion flat tube includes curved portions (C1', C2') on the inner edge side of the curved portion and the outer edge side of the curved portion.
The curvature of the curved portion (C1') on the inner edge side of the curved portion is larger than the curvature of the curved portion (C2') on the outer edge side of the curved portion.
The heat exchanger according to claim 1 or 2 .
前記湾曲部扁平管の前記接続部の断面を見た時に、前記湾曲部扁平管の前記接続部には、断面長手方向に沿って並べられている複数の穴(61)が形成されており、
前記湾曲部の内縁に最も近い前記穴(61a)の形状と、前記湾曲部の外縁に最も近い前記穴(61b)の形状とは異なる、
請求項からのいずれか1項に記載の熱交換器。
When the cross section of the connection portion of the curved portion flat tube is viewed, a plurality of holes (61) arranged along the longitudinal direction of the cross section are formed in the connection portion of the curved portion flat tube.
The shape of the hole (61a) closest to the inner edge of the curved portion is different from the shape of the hole (61b) closest to the outer edge of the curved portion.
The heat exchanger according to any one of claims 1 to 3 .
JP2020123314A 2020-07-17 2020-07-17 Heat exchanger Active JP7037090B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020123314A JP7037090B2 (en) 2020-07-17 2020-07-17 Heat exchanger
PCT/JP2021/026071 WO2022014516A1 (en) 2020-07-17 2021-07-12 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020123314A JP7037090B2 (en) 2020-07-17 2020-07-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2022019459A JP2022019459A (en) 2022-01-27
JP7037090B2 true JP7037090B2 (en) 2022-03-16

Family

ID=79554800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020123314A Active JP7037090B2 (en) 2020-07-17 2020-07-17 Heat exchanger

Country Status (2)

Country Link
JP (1) JP7037090B2 (en)
WO (1) WO2022014516A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139282A (en) 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP2005090806A (en) 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat exchanger
JP2013139971A (en) 2012-01-06 2013-07-18 Mitsubishi Electric Corp Heat exchanger, indoor machine, and outdoor machine
JP2015117874A (en) 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same
JP2019132518A (en) 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigerant flow divider and air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346757U (en) * 1989-08-29 1991-04-30
JP2513332Y2 (en) * 1990-02-22 1996-10-02 サンデン株式会社 Heat exchanger
JPH1038487A (en) * 1996-07-23 1998-02-13 Nippon Light Metal Co Ltd Heat exchanger and its manufacture
JP3214373B2 (en) * 1996-10-30 2001-10-02 ダイキン工業株式会社 Flat heat transfer tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002139282A (en) 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP2005090806A (en) 2003-09-16 2005-04-07 Matsushita Electric Ind Co Ltd Heat exchanger
JP2013139971A (en) 2012-01-06 2013-07-18 Mitsubishi Electric Corp Heat exchanger, indoor machine, and outdoor machine
JP2015117874A (en) 2013-12-18 2015-06-25 日本軽金属株式会社 Fin and tube type heat exchanger and method of manufacturing the same
JP2019132518A (en) 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigerant flow divider and air conditioner

Also Published As

Publication number Publication date
WO2022014516A1 (en) 2022-01-20
JP2022019459A (en) 2022-01-27

Similar Documents

Publication Publication Date Title
US8205470B2 (en) Indoor unit for air conditioner
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP6371046B2 (en) Air conditioner and heat exchanger for air conditioner
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
US10480869B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
JP6040633B2 (en) Air conditioner heat exchanger
JP2007139288A (en) Heat exchanger and air conditioner
JP7292510B2 (en) heat exchangers and air conditioners
JP7037090B2 (en) Heat exchanger
US11913729B2 (en) Heat exchanger
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP5786497B2 (en) Heat exchanger
JP5403029B2 (en) Refrigeration equipment
JP6563115B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
US11248856B2 (en) Refrigeration apparatus
WO2019150864A1 (en) Refrigeration device
JP5312512B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP7050538B2 (en) Heat exchanger and air conditioner
JP6386431B2 (en) Heat exchanger
JP6486718B2 (en) Heat exchanger
JP7190579B2 (en) Fin used in heat exchanger, heat exchanger having fins, and refrigeration cycle device having heat exchanger
JP6340583B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R151 Written notification of patent or utility model registration

Ref document number: 7037090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151