WO2019150864A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2019150864A1
WO2019150864A1 PCT/JP2018/047901 JP2018047901W WO2019150864A1 WO 2019150864 A1 WO2019150864 A1 WO 2019150864A1 JP 2018047901 W JP2018047901 W JP 2018047901W WO 2019150864 A1 WO2019150864 A1 WO 2019150864A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
gas collecting
collecting pipe
collecting member
flat tubes
Prior art date
Application number
PCT/JP2018/047901
Other languages
French (fr)
Japanese (ja)
Inventor
甲樹 山田
正憲 神藤
佐藤 健
浩彰 松田
智彦 坂巻
好男 織谷
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2019150864A1 publication Critical patent/WO2019150864A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements

Definitions

  • Refrigeration equipment with flat tubes through which refrigerant flows for heat exchange
  • Patent Document 1 International Publication No. 2013/161799
  • the heat exchanger of the refrigeration apparatus described in Patent Document 1 has a bent portion in which a flat tube is bent.
  • the flat tubes are arranged in two rows in the air flow direction, and the position of the collecting tube connected to the end of the flat tube when the bent portion is formed Shifts. In order to avoid the interference of members due to the displacement of the collecting pipe, the heat exchange performance of the refrigeration apparatus may deteriorate.
  • the problem of the present disclosure is to suppress a decrease in heat exchange performance in a refrigeration apparatus having a bent portion in flat tubes arranged in a plurality of rows.
  • the refrigeration apparatus includes a plurality of first flat tubes and a plurality of second flat tubes arranged in two rows in the direction of air flow, and a plurality of first flat tubes and a plurality of second flat tubes, respectively.
  • a plurality of first heat transfer fins and a plurality of second heat transfer fins attached, a first gas collecting member to which ends of the plurality of first flat tubes are connected, and at least extending from the first gas collecting member
  • One connecting pipe and a second gas collecting member communicated with the first gas collecting member by the connecting pipe, and the second gas collecting member is a first gas as viewed in the longitudinal direction of the first gas collecting member.
  • a centroid is located on the opposite side of the plurality of second flat tubes with respect to an imaginary straight line obtained by virtually extending the center line of the first flat tubes in the direction in which the plurality of first flat tubes extend from the assembly member.
  • the centroid of the second gas collecting member is located on the opposite side of the second flat tube with respect to the virtual straight line passing through the center of the first flat tube.
  • the refrigerating apparatus is the refrigerating apparatus according to the first aspect, wherein the second gas collecting member has a vertical cross-sectional area of the internal space with respect to the longitudinal direction larger than a vertical cross-sectional area of the internal space of the first gas collecting member. , That is.
  • the first gas since the pressure loss of the refrigerant can be reduced by increasing the vertical sectional area of the second gas collecting member, the first gas having a smaller vertical sectional area than the second gas collecting member.
  • the heat exchange performance can be improved as compared with the case of piping directly from the assembly member.
  • the refrigeration apparatus is the refrigeration apparatus according to the first aspect or the second aspect, further comprising a liquid collecting member to which ends of the plurality of second flat tubes are connected, and the plurality of first flat tubes and The plurality of second flat tubes have a bent portion that is bent in the same direction as viewed in the longitudinal direction, and the liquid collecting member is opposite to the second gas collecting member on the opposite side of the first gas collecting member before forming the bent portion.
  • the liquid collecting member is bent so as to be located on the same side as the first gas collecting member with respect to the second gas collecting member after the bent portion is formed.
  • a refrigeration apparatus is the refrigeration apparatus according to the third aspect, wherein the bending portion presses the bending member against the first heat transfer fin and / or the second heat transfer fin, and the plurality of first flat tubes and the plurality of first flat tubes.
  • the second flat tube is bent and formed.
  • the curvature at the bent portion can be increased, and a plurality of first flat members can be formed. Damage to the tube, the plurality of second flat tubes, the plurality of first heat transfer fins, and the plurality of second heat transfer fins can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to fourth aspects, wherein at least one connection pipe communicates the first gas collecting member and the second gas collecting member.
  • the first gas collecting member and the second gas collecting member are reduced in communication with the first gas collecting member and the second gas collecting member through a plurality of connecting pipes, thereby reducing the inner diameter of the connecting pipe. Since the flow passage area for communicating with the gas collecting member can be secured, the pressure loss in the connecting pipe can be suppressed and the deterioration of the heat exchange performance can be suppressed.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to fifth aspects, wherein the connection pipe is opposite to the plurality of second flat pipes with respect to the virtual straight line when viewed in the longitudinal direction. It's bent.
  • the centroid of the second gas collecting member can be easily placed on the side opposite to the plurality of second flat tubes by using a connecting pipe bent to the side opposite to the second flat tubes. Can be positioned.
  • the refrigeration apparatus according to the seventh aspect is the refrigeration apparatus according to the sixth aspect, wherein one end of the connecting pipe is elliptical.
  • the bending direction of the connecting pipe can be made uniform by inserting an elliptical end, so that the first gas collecting member and the second gas collecting member are communicated by the connecting pipe. Assembling becomes easy and the cost of the refrigeration apparatus can be reduced.
  • the refrigeration apparatus is the refrigeration apparatus according to any one of the fifth to seventh aspects, in which the connection pipe is tapered at least one of both end portions.
  • the connecting pipe can be easily introduced into the holes of the first gas collecting member and the second gas collecting member by a taper, and the assembly can be easily performed. The cost of the apparatus can be reduced.
  • a refrigeration apparatus is the refrigeration apparatus according to any one of the first to eighth aspects, wherein the connection pipe is directed to the opposite side of the plurality of second flat tubes with respect to the virtual straight line. It extends from the member.
  • the centroid of the second gas collecting member can be easily positioned on the side opposite to the plurality of second flat tubes.
  • the top view which shows a 1st header collecting pipe and a gas collecting pipe mutually overlapping.
  • the top view for demonstrating the process of bending a heat source side heat exchanger The side view which shows the gas collecting pipe and reverse U-shaped pipe before brazing. The side view which shows the gas collecting pipe and reverse U-shaped pipe after brazing.
  • the disassembled perspective view which shows a 1st header collecting pipe and a gas collecting pipe.
  • the enlarged side view which expanded a part of piping side member.
  • the enlarged plan view which expanded the upper part of the piping side member.
  • the perspective view which shows a connecting pipe The top view which shows a connecting pipe.
  • the disassembled perspective view which expands and shows a part of 2nd header collecting pipe The expansion perspective view which shows a partition member, a baffle plate, and a partition plate.
  • the top view of the 2nd header collecting pipe The partial expanded sectional view which expands and shows a part of 2nd header collecting pipe.
  • the perspective view which shows a connection header The expansion perspective view which expands and shows the upper part of a connection header.
  • the partially broken expanded sectional view which shows the 1st header collecting pipe which concerns on modification 1A, a connection pipe, and a gas collecting pipe.
  • FIG. 1 An air conditioner is shown in FIG. 1 as an example of a refrigeration apparatus according to an embodiment of the present disclosure.
  • the refrigeration apparatus consumes power in the compressor 8 as in the air conditioner shown in FIG. 1, and starts from one of the heat source side heat exchanger 10 and the use side heat exchangers 36 a and 36 b. It is a device that takes in heat and discharges heat from the other.
  • the refrigeration apparatus includes, for example, a heat pump water heater that supplies hot water and a refrigerator that cools the interior of the refrigerator.
  • An air conditioner 1 shown in FIG. 1 includes a heat source unit 2, two usage units 3a and 3b, a liquid refrigerant communication tube 4 and a gas refrigerant communication tube connecting the heat source unit 2 and the usage units 3a and 3b. 5.
  • the air conditioner 1 has a function of cooling and heating a room such as a building where the use units 3a and 3b are installed.
  • the refrigerant circuit 6 of the air conditioner 1 is configured by connecting the heat source unit 2 and the utilization units 3a and 3b via the liquid refrigerant communication tube 4 and the gas refrigerant communication tube 5.
  • the refrigerant As the refrigerant circulates in the refrigerant circuit 6, the refrigerant is compressed and heated up, radiated, radiated, decompressed and expanded, absorbed heat, and returned to the state before being compressed. . When the refrigeration cycle is repeated, the refrigerant alternately repeats a low pressure state and a high pressure state.
  • the heat source unit 2 is installed, for example, outside a building, for example, on the roof of a building or in the vicinity of a wall surface of the building.
  • the heat source unit 2 includes an accumulator 7, a compressor 8, a four-way switching valve 11, a heat source side heat exchanger 10, a heat source side expansion valve 12, a liquid side closing valve 13, a gas side closing valve 14, and a heat source side fan 15. ing.
  • the third port 11 c of the four-way switching valve 11 and the inlet pipe of the accumulator 7 are connected by a refrigerant pipe 16.
  • the outlet pipe of the accumulator 7 and the suction port of the compressor 8 are connected by a refrigerant pipe 17.
  • a discharge port of the compressor 8 and the first port 11 a of the four-way switching valve 11 are connected by a refrigerant pipe 18.
  • the second port 11 b of the four-way switching valve 11 and the gas side inlet / outlet port of the heat source side heat exchanger 10 are connected by a refrigerant pipe 19.
  • a liquid side inlet / outlet of the heat source side heat exchanger 10 and one inlet / outlet of the expansion valve 12 are connected by a refrigerant pipe 20.
  • the other inlet / outlet of the expansion valve 12 and the liquid side closing valve 13 are connected by a refrigerant pipe 21.
  • the gas side closing valve 14 and the fourth port 11 d of the four-way switching valve 11 are connected by a refrigerant pipe 22.
  • the use units 3a and 3b are installed in a room such as a living room or a ceiling space.
  • the usage unit 3a includes a usage-side expansion valve 31a, a usage-side heat exchanger 32a, and a usage-side fan 33a.
  • the usage unit 3b includes a usage-side expansion valve 31b, a usage-side heat exchanger 32b, and a usage-side fan. 33b.
  • the liquid refrigerant communication tube 4 is connected to one inlet / outlet of the two expansion valves 31a and 31b.
  • the other entrance / exit of the expansion valve 31a is connected to one entrance / exit of the use side heat exchanger 32a, and the other entrance / exit of the expansion valve 31b is connected to the one entrance / exit of the use side heat exchanger 32b.
  • the gas refrigerant communication pipe 5 and the other entrance / exit of two utilization side heat exchangers 32a and 32b are connected.
  • the refrigerant is a gas refrigerant made of a substantially gaseous refrigerant, a liquid refrigerant made of a substantially liquid refrigerant, and a gas state and a liquid state refrigerant.
  • the refrigerant changes to a mixed gas-liquid two-phase state will be described as an example.
  • low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8.
  • the high-pressure gas refrigerant is sent from the compressor 8 to the heat source side heat exchanger 10 through the refrigerant pipe 18, the four-way switching valve 11, and the refrigerant pipe 19.
  • the high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with the air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 in the heat source side heat exchanger 10 that functions as a refrigerant radiator. Becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant is sent from the heat source side heat exchanger 10 to the expansion valves 31 a and 31 b through the refrigerant pipe 20, the expansion valve 12, the refrigerant pipe 21, the liquid side closing valve 13, and the liquid refrigerant communication pipe 4.
  • the expansion valve 12 of the heat source unit 2 is in a fully open state, for example, and allows the refrigerant to pass therethrough without reducing the pressure.
  • the refrigerant sent to the use side expansion valves 31a and 31b is decompressed by the expansion valves 31a and 31b to become a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent from the expansion valves 31a and 31b to the use side heat exchangers 32a and 32b.
  • the refrigerant in the low-pressure gas-liquid two-phase state is between the indoor air that is passed through the use side heat exchangers 32a and 32b by the use side fans 33a and 33b in the use side heat exchangers 32a and 32b functioning as an evaporator.
  • the heat exchange is performed to absorb the heat and become a low-pressure gas refrigerant.
  • the room air is cooled by supplying the room air cooled in the use side heat exchangers 32a and 32b into the room.
  • the low-pressure gas refrigerant passes from the use side heat exchangers 32a and 32b through the gas refrigerant communication pipe 5, the gas side closing valve 14, the refrigerant pipe 22, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, and the refrigerant pipe 17. Then, it is sucked into the compressor 8 again.
  • the compressor 8 passes through the use side heat exchanger 32a, the expansion valve 31a, the expansion valve 12, and the heat source side heat exchanger 10 from the compressor 8 again.
  • a path is formed.
  • one of the expansion valves 31a and 31b can be closed and one of the two paths can be closed.
  • a path from the first port 11a to the fourth port 11d is formed inside the four-way switching valve 11, and a path from the second port 11b to the third port 11c.
  • the four-way switching valve 11 is switched so as to be in a state (state shown by a broken line in FIG. 1).
  • low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8.
  • the high-pressure gas refrigerant is sent from the compressor 8 to the use side heat exchangers 32a and 32b through the refrigerant pipe 18, the four-way switching valve 11, the refrigerant pipe 22, the gas side closing valve 14, and the gas refrigerant communication pipe 5. .
  • the high-temperature and high-pressure gas refrigerant is heated between the use-side heat exchangers 32a and 32b functioning as a refrigerant radiator and the room air passed through the use-side heat exchangers 32a and 32b by the use-side fans 33a and 33b. It exchanges and dissipates heat to become a high-pressure liquid refrigerant.
  • Indoor air is heated by supplying indoor air heated in the use side heat exchangers 32a and 32b into the room.
  • the high-pressure liquid refrigerant is sent from the use side heat exchangers 32a and 32b to the expansion valve 12 through the expansion valves 31a and 31b, the liquid refrigerant communication pipe 4, the liquid side closing valve 13 and the refrigerant pipe 21.
  • the expansion valves 31a and 31b of the utilization units 3a and 3b are in a fully open state, for example, and allow the refrigerant to pass through without being decompressed.
  • the refrigerant sent to the expansion valve 12 of the heat source unit 2 is decompressed by the expansion valve 12 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant is sent from the expansion valve 12 to the heat source side heat exchanger 10.
  • the low-pressure gas-liquid two-phase refrigerant exchanges heat with air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 to absorb heat.
  • the low-pressure gas refrigerant passes through the refrigerant pipe 19, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7 and the refrigerant pipe 17 from the heat source side heat exchanger 10 and is again sucked into the compressor 8.
  • FIG. 2 shows a state in which the heat source unit 2 is viewed obliquely from above.
  • the heat source unit 2 further includes a casing 40, and the accumulator 7, the compressor 8, the four-way switching valve 11, the heat source side heat exchanger 10, the expansion valve 12, and the heat source side fan 15 are accommodated in the casing 40.
  • “upper”, “lower”, “left”, “right”, “front”, and “rear” of the heat source unit 2 are the coordinates described in FIG. 2 unless otherwise specified. Means the direction shown.
  • the heat source unit 2 is a heat exchange unit that draws air into the inside from the side surface of the casing 40 and blows out the air heat-exchanged in the casing 40 upward from the top surface of the casing 40.
  • the casing 40 includes a bottom frame 42 that spans a pair of installation legs 41 that extend in the left-right direction, a column 43 that extends in a vertical direction from a corner of the bottom frame 42, and a blowout grill that is attached near the upper end of the column 43. 44 and a front panel 45.
  • Air inlets 40a, 40b, 40c, and 40d are provided on the side surface of the casing 40, and an air outlet 40e is provided on the top surface.
  • the air outlet 40 e is covered with an air outlet grill 44, and the heat source side fan 15 is disposed facing the air outlet grill 44.
  • the bottom frame 42 forms the bottom surface of the casing 40, and the heat source side heat exchanger 10, the accumulator 7 and the compressor 8 are attached on the bottom frame 42.
  • the heat source side heat exchanger 10 the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, the refrigerant pipe 17, the compressor 8, the refrigerant pipe 18, and the like disposed in the space below the heat source side fan 15. It is shown.
  • the heat source side heat exchanger 10 is arranged along the four side surfaces except for a part of the entire circumference surrounding the four side surfaces, and has a C-shape when viewed from above.
  • the airflow sucked from the suction ports 40a to 40d on the side surface of the casing 40 by the heat source side fan 15 and flowing toward the top surface outlet 40e passes through the heat source side heat exchanger 10.
  • the bottom frame 42 is in contact with the lower end portion of the heat source side heat exchanger 10 and functions as a drain pan that receives drain water generated in the heat source side heat exchanger 10 during cooling operation.
  • FIG. 4 shows a state in which the heat source side heat exchanger 10 is viewed obliquely from above.
  • the heat source side heat exchanger 10 includes a first header collecting pipe 110, a second header collecting pipe 120, a leeward row heat exchanging unit 130, an upwind row heat exchanging unit 140, a connection header 200, and a gas assembly. It has a tube 160 and a refrigerant flow divider 170.
  • the first header collecting pipe 110, the second header collecting pipe 120, the heat exchange units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant flow divider 170 are all made of an aluminum alloy. It is formed with.
  • the first header collecting pipe 110, the second header collecting pipe 120, the heat exchanging units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant distributor 170 are assembled in the heat source side heat exchanger 10, an aluminum alloy is used. It is brazed in a furnace with a brazing material made of steel and joined.
  • a thick arrow Ar1 directed from the outside to the inside indicates the flow of air.
  • the arrow Ar2 of a two-dot chain line has shown the flow of the refrigerant
  • the refrigerant returns from the first header collecting pipe 110 through the heat exchange unit 130 in the leeward row at the connection header 200 and passes from the connection header 200 through the heat exchange unit 140 in the upwind row to the second header collection tube. Reach 120.
  • the refrigerant turns back from the second header collecting pipe 120 through the heat exchange unit 140 in the upwind row at the connection header 200, and passes from the connection header 200 through the heat exchange unit 130 in the downwind row to the first header collection tube. 110 is reached.
  • the leeward row heat exchanging section 130 includes a plurality of leeward row flat tubes 63 shown in FIG. 5 and a plurality of leeward row heat transfer fins 65. Also in FIG. 5, the arrow Ar ⁇ b> 1 indicates the air flow.
  • the upwind row heat exchanging section 140 includes a plurality of upwind flat tubes 64 shown in FIG. 5 and a plurality of upwind row heat transfer fins 66.
  • the flat tubes 63 and 64 are flat multi-hole tubes having upper surface portions 63a and 64a and lower surface portions 63b and 64b facing in the vertical direction, and a large number of small passages 63c and 64c through which a refrigerant formed inside flows.
  • the flat tubes 63 are arranged in a plurality of stages in the up-down direction in the leeward row, and the flat tubes 64 are arranged in a plurality of steps in the up-down direction in the upwind row.
  • One end of the flat tube 63 in the leeward row is connected to the first header collecting pipe 110, and the other end is connected to the connection header 200.
  • One end of the flat tube 64 in the windward row is connected to the second header collecting tube 120, and the other end is connected to the connection header 200.
  • Each heat transfer fin 65, 66 extends in the direction along the air flowing between the flat tubes 63, 64 in the adjacent stage and in the vertical direction in order to increase the heat transfer area in the heat exchange of the refrigerant.
  • a plurality of notches 65a and 66a are formed corresponding to the respective stages of the flat tubes 63 and 64.
  • Each notch 65a, 66a is elongated in a direction perpendicular to the up-down direction.
  • the circumferences of the notches 65a and 66a are in close contact with and joined to the upper surface portions 63a and 64a and the lower surface portions 63b and 64b that serve as heat transfer surfaces.
  • FIG. 6 shows a state where the first header collecting pipe 110 and the gas collecting pipe 160 are disassembled.
  • the first header collecting pipe 110 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the first header collecting pipe 110 is erected on one end side of the heat exchange section 130 in the leeward row.
  • the first header collecting pipe 110 includes a multi-hole pipe side member 111, a partition member 112, a pipe side member 113, and a partition plate 114.
  • the elongated multi-hole pipe side member 111, the partition member 112, and the pipe side member 113 sandwich the partition member 112 between the multi-hole pipe side member 111 and the pipe side member 113 so that the respective longitudinal directions coincide with the vertical direction.
  • the first header collecting pipe 110 extending in the vertical direction in the heat source side heat exchanger 10 is formed.
  • Two partition plates 114 close the top and bottom of the first header collecting pipe 110.
  • the multi-hole pipe side member 111, the partition member 112, the pipe side member 113, and the partition plate 114 are joined together and integrated in the furnace by, for example, a brazing material.
  • the cross-section of the multi-hole tube side member 111 cut along a plane perpendicular to the vertical direction is arcuate, and the multi-hole tube side member 111 has flat openings in which a plurality of flat tubes 63 arranged in a step direction are inserted.
  • the number of stages of the pipes 63 is formed.
  • a bar-shaped stopper for positioning one end of the plurality of flat tubes 63 extends vertically.
  • openings for allowing the coolant to flow from the multi-hole tube side member 111 toward the pipe side member 113 are formed.
  • a cross section obtained by cutting the pipe side member 113 along a plane perpendicular to the vertical direction is an arc shape, and a plurality of openings 115 into which a plurality of connection pipes 161 arranged in the vertical direction are inserted are formed in the pipe side member 113. Yes.
  • the gas collecting pipe 160 is a bottomed cylindrical straight pipe, and a plurality of openings 167 (see FIG. 10A) to which the plurality of connecting pipes 161 are connected are formed on the side surface.
  • the gas collecting pipe 160 and the first header collecting pipe 110 are bound by a binding band 162 made of an aluminum alloy.
  • An inverted U-shaped pipe 180 made of an aluminum alloy is connected to the upper part of the gas collecting pipe 160.
  • the inverted U-shaped pipe 180 is a part of the refrigerant pipe 19.
  • the heat source side heat exchanger 10 communicates from the plurality of flat tubes 63 in the leeward row to the inverted U-shaped pipe 180 through the first header collecting pipe 110, the plurality of connecting pipes 161, and the gas collecting pipe 160.
  • the first header collecting pipe 110 and the gas collecting pipe 160 are shown so that their centroids 119 and 169 overlap with each other when viewed from above.
  • the centroid refers to the center of a planar figure.
  • a uniform plate material having the same thickness as the shape surrounded by the outer periphery of the first header collecting pipe 110 is considered, and the center of gravity of the uniform plate material coincides with the centroid.
  • the gas collecting pipe 160 is a circular pipe, the centroid 169 of the circular gas collecting pipe 160 as viewed from above coincides with the center point of the outer circumferential circle of the gas collecting pipe 160.
  • the centroid 119 of the first header collecting pipe 110 is flat in the direction in which the plurality of leeward flat tubes 63 extend from the first header collecting pipe 110 when viewed in the longitudinal direction of the first header collecting pipe 110 (in plan view). It is located on a virtual straight line L1 obtained by virtually extending the center line of the pipe 63.
  • the longitudinal direction of the first header collecting pipe 110 coincides with the vertical direction.
  • the outer diameter D1 of the gas collecting pipe 160 is larger than the width W1 of the first header collecting pipe 110. Further, the inner diameter D2 of the gas collecting pipe 160 is larger than the width W1.
  • the width W 1 of the first header collecting pipe 110 is a width in a direction perpendicular to the direction in which the flat pipe 63 extends from the first header collecting pipe 110. As shown in FIG. 7, since the first header collecting pipe 110 is accommodated in the inner periphery of the gas collecting pipe 160, it is apparent that the vertical sectional area of the internal space of the first header collecting pipe 110 with respect to the vertical direction. The vertical sectional area ( ⁇ ⁇ (D2 / 2) 2 ) of the internal space of the gas collecting pipe 160 is larger than that.
  • the vertical cross-sectional area of the internal space of the first header collecting pipe 110 is the area of the portion indicated by hatching in FIG. Since the vertical cross-sectional area of the gas collecting pipe 160 is larger than the vertical cross-sectional area of the first header collecting pipe 110, the pressure of the gas refrigerant can be reduced as compared with the case where the gas collecting pipe 160 is not provided. By providing the gas collecting pipe 160 in this way, the air conditioner 1 can easily satisfy the condition of the pressure of the gas refrigerant required for the air conditioner 1.
  • the first header collecting pipe 110 is accommodated in the inner periphery of the gas collecting pipe 160 has been described as an example, but the first header collecting pipe 110 is used as the gas collecting pipe 160.
  • the gas collecting pipe 160 is not included. The effect of facilitating the setting of the pressure of the gas refrigerant is provided.
  • FIG. 8 shows the positional relationship of the flat tubes 63 and 64, the heat transfer fins 65 and 66, the first header collecting pipe 110, the connecting pipe 161, the gas collecting pipe 160, the second header collecting pipe 120, and the like (first view). 1 shows the positional relationship of the header collecting pipe 110 in the longitudinal direction).
  • the centroid 169 of the gas collecting pipe 160 is located on the opposite side of the imaginary straight line L1 from the plurality of flat tubes 64 in the windward row.
  • the connecting pipe 161 that connects the first header collecting pipe 110 and the gas collecting pipe 160 is bent.
  • connection pipe 161 is bent to the opposite side of the plurality of flat tubes 64 with respect to the virtual straight line L1 when viewed in the longitudinal direction of the first header collecting pipe 110.
  • Each of the plurality of connecting pipes 161 extends from the first header collecting pipe 110 along the direction in which the flat pipe 63 extends from the first header collecting pipe 110 (along the virtual straight line L1), and bends in the middle to form a gas collecting pipe. 160 is reached.
  • the gas collecting pipe 160 is positioned so as to be shifted to the side opposite to the side where the flat pipe 64 exists, the extension line L2 passing through the portion closest to the flat pipe 64 in the first header collecting pipe 110 and parallel to the virtual straight line L1 is flattened. It is preferable to arrange the gas collecting pipe 160 so as not to exceed the pipe 64 side.
  • the heat source side heat exchanger 10 has bending portions B1, B2, and B3 formed at three locations. Yes.
  • the flat tubes 63 and 64 have bent portions B1 to B3 that are bent in the same direction when viewed in the vertical direction. Since the size of the furnace for brazing is determined, in order to braze as many of the heat source side heat exchanger 10 as possible in the furnace, the heat exchanging parts 130 and 140 are flat, in other words, the bent parts B1 and B2. , B3 is brazed before forming B3.
  • FIG. 9A and 9B show a state where the bent portion B3 is formed in the heat source side heat exchanger 10 before the bent portions B1 to B3 are formed as viewed from above.
  • the connection header 200 In the state where brazing in the furnace is finished, as shown in FIG. 9A, the other ends of the flat tubes 63 and 64 of the heat exchange units 130 and 140 in a flat state are fixed together by the connection header 200.
  • the second header collecting pipe 120 protrudes to the outside (the farther from the connecting header 200) than the first header collecting pipe 110 and the gas collecting pipe 160.
  • the flat pipes 63 and 64 of the flat pipes 63 and 64 are formed when the bending process is completed.
  • the ends can be arranged so as not to be too far away from each other.
  • a roll jig 410 and a pressing jig 420 shown in FIGS. 9A and 9B are used.
  • the roll jig 410 is fixed to the side close to the connection header 200 of the heat source side heat exchanger 10 by hitting the place where the bent portion B3 is to be formed.
  • the pressing jig 420 is pressed against the heat exchanging unit 140 from the side opposite to the roll part 411 of the roll jig 410.
  • the pressing jig 420 presses to the side farther from the connection header 200 than the roll portion 411.
  • a force is applied from the pressing jig 420 to the heat exchange units 130 and 140 to bend the flat tubes 63 and 64 of the heat exchange units 130 and 140.
  • the curvature radius of the flat tube 64 is larger than the curvature radius of the flat tube 63 at the place where the bent portion B3 is formed.
  • the second header collecting pipe 120 approaches the gas collecting pipe 160 after forming the bent portion B3. Further, when the bent part B2 and the bent part B1 are formed, the gas collecting pipe 160 protrudes outside the second header collecting pipe 120 as shown in FIG.
  • the bent portions B1 to B3 are formed by the bending process described with reference to FIGS. 9A and 9B, the positional relationship between the second header collecting pipe 120, the first header collecting pipe 110, and the gas collecting pipe 160 changes.
  • the bent collecting pipe 161 causes the gas collecting pipe 160 to be connected to the second header collecting pipe 120. Is mounted at a position shifted to the opposite side.
  • the gas collecting pipe 160 includes a bottomed cylindrical main body 165 and an upper pipe expanding portion 166.
  • the expanded pipe portion 166 has a larger inner diameter than the main body portion 165.
  • the inner diameter of the expanded portion 166 is slightly larger than the outer diameter of the inverted U-shaped pipe 180. Therefore, the inverted U-shaped pipe 180 can be inserted into the expanded portion 166. For example, the operator can manually braze the inverted U-shaped pipe 180 to the expanded portion 166.
  • first header collecting pipe 110, the connecting pipe 161, and the gas collecting pipe 160 are assembled before the brazing in the furnace. Done.
  • the 16 connection pipes 161 shown in FIG. 11 are aligned, and one end 610 of the connection pipe 161 has 16 openings formed in the pipe side member 113 of the first header collecting pipe 110. 115. If the direction of the connection pipe 161 inserted into the pipe side member 113 is various, the position of the other end 620 of the connection pipe 161 will not be aligned. If the position of the other end 620 of the connecting pipe 161 is not aligned, the other end 620 is inserted into all of the 16 openings 167 (see FIG.
  • the opening 115 is formed so as to be elliptical when viewed from the gas collecting pipe 160 side so that the connecting pipe 161 inserted into the opening 115 bends in the same direction. Yes.
  • the major axis direction of the elliptical shape of the opening 115 coincides with the longitudinal direction of the first header collecting pipe 110.
  • the pipe side member 113 has a semicircular shape when viewed from above. When the side surface of the pipe-side member 113 facing in the direction of air flow is viewed, it has the shape shown in FIG. 12C, and the opening 115 is hollowed and recessed.
  • Each connecting pipe 161 has an elliptical shape with one end 610 shown in FIG. 13A shown in FIG. 13C.
  • the bending direction of the bent portion 630 of each connecting pipe 161 coincides with the elliptical short axis direction of the end portion 610 (the direction of the arrow Ar3 in FIG. 13C).
  • the major axis direction of the elliptical shape of the end portion 610 coincides with the longitudinal direction (vertical direction) of the first header collecting pipe 110.
  • the other end 620 of each connecting pipe 161 is circular.
  • Tapers 611 and 621 are attached to one end 610 and the other end 620 of each connecting pipe 161.
  • the opening 167 of the gas collecting pipe 160 is tapered (not shown) in accordance with the taper 621. These tapers 611 and 621 and the like facilitate attachment of the connecting pipe 161 to the pipe side member 113 and the gas collecting pipe 160.
  • FIG. 14 shows a state in which the second header collecting pipe 120 is disassembled.
  • FIG. 15 is an enlarged view of a part of the second header collecting pipe 120 shown in FIG.
  • FIG. 16 is an enlarged view of a part of the partition member 122 to which the partition plate 124 and the rectifying plate 125 are attached.
  • FIG. 17 shows a state where the assembled second header collecting pipe 120 is viewed from above.
  • FIG. 18 shows a cross section relating to a part of the structure of the second header collecting pipe 120.
  • the second header collecting pipe 120 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the second header collecting pipe 120 is erected on one end side of the heat exchange unit 140 in the windward row.
  • the second header collecting pipe 120 includes a multi-hole pipe side member 121, a partition member 122, a pipe side member 123, a partition plate 124 and a rectifying plate 125.
  • the elongated multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 are such that the partition member 122 is sandwiched between the multi-hole pipe side member 121 and the pipe side member 123, and the respective longitudinal directions coincide with the vertical direction.
  • the multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 form a second header collecting pipe 120 that extends in the vertical direction in the heat source side heat exchanger 10.
  • Two partition plates 124 close the upper and lower sides of the second header collecting pipe 120.
  • the multi-hole pipe side member 121, the partition member 122, the pipe side member 123, the partition plate 124, and the rectifying plate 125 are joined together and integrated in the furnace by, for example, a brazing material.
  • the interior of the second header collecting pipe 120 is partitioned by a plurality of partition plates 124 and divided into a plurality of spaces. As shown in FIG. 18, the space SP ⁇ b> 1 formed between the two partition plates 124 communicates with a plurality of flat tubes 64 and at least one capillary tube 190.
  • the rectifying plate 125 is disposed near the upper portion of the capillary tube 190.
  • the partition member 122 is formed with an opening 122 a near the lower partition plate 124, an opening 122 b near the upper partition plate 124, and an opening 122 c near the rectifying plate 125. .
  • the rectifying plate 125 is formed with a rising opening 125a.
  • the refrigerant that reaches between the partition member 122 and the multi-hole tube side member 121 through the opening 122a from the capillary tube 190 is blown upward by the small ascending opening 125a. Thereafter, the refrigerant forms a loop-like flow (flow indicated by a thick arrow Ar4 in FIG. 18) that passes through the opening 122c next to the opening 122b.
  • the refrigerant flows separately from the loop flow into the passage 64c of the multi-stage flat tube 64 between the rectifying plate 125 and the upper partition plate 124.
  • FIG. 19 shows a state in which the connection header 200 is viewed obliquely from above.
  • the upper part of the connection header 200 is shown enlarged.
  • 21 shows a cross-sectional shape cut along line II in FIG. 20
  • FIG. 22 shows a cross-sectional shape cut along line II-II in FIG.
  • the connection header 200 is an elongated hollow cylindrical part whose upper end and lower end are closed.
  • the connection header 200 is erected on the other end side of the heat exchange unit 130 in the leeward row and the heat exchange unit 140 in the windward row.
  • the connection header 200 is configured by joining the first member 210, the second member 220, and the third member 230 together.
  • first member 210 two openings 211 and 212 are formed side by side in a direction orthogonal to the vertical direction.
  • the openings 211 and 212 are provided to correspond to the other end of the flat tubes 63 in the plural lee rows and the other end of the flat tubes 64 in the plural lee rows, respectively.
  • the second member 220 has a flat sealing wall 241 extending in the vertical direction and a partition wall 242 extending in a direction intersecting the sealing wall 241. Openings 211 and 212 are arranged between the partition walls 242 adjacent in the vertical direction. That is, in the communication space SP2 surrounded by the partition wall 242, the first member 210, and the sealing wall 241 adjacent in the vertical direction, the passage 63c of one flat tube 63 in the leeward row and one wind The passage 64c of the upper row of flat tubes 64 is in communication.
  • the refrigerant that has entered the communication space SP2 through the passage 63c of the flat tube 63 in one leeward row is folded back in the communication space SP2 and is supplied to the one wind arranged in the adjacent row. It flows into the passage 64c of the upper row of flat tubes 64.
  • the refrigerant that has entered the communication space SP2 through the passage 64c of the flat tube 64 in one upwind row is folded back in the communication space SP2 and arranged in the adjacent row. It flows into the passage 63c of the flat tube 63 in one leeward row.
  • the third member 230 is a member that is formed outside the second member 220 and suppresses the corrosion of the second member 220.
  • one end of the flat tube 63 in the leeward row that is the first flat tube is connected to the first header collecting tube 110 that is the first gas collecting member.
  • the second header collecting pipe 120 which is a liquid collecting member is connected to one end of the flat pipe 64 in the windward row which is the second flat pipe.
  • the gas collecting pipe 160 connected to the first header collecting pipe 110 by the connecting pipe 161 is a second gas collecting member.
  • the heat transfer fins 65 that are first heat transfer fins are attached to the flat tube 63 that is the first flat tube.
  • the heat transfer fin 66 which is a 2nd heat transfer fin.
  • the manufacturing process of the heat source side heat exchanger 10 for example, a plurality of flat pipes
  • the heat transfer fins 65, 66 can be brought close to the limit where members around the end of the flat tube 64, such as the second header collection tube 120, do not interfere with the gas collection tube 160, thereby reducing the distance.
  • the vertical sectional area of the internal space of the gas collecting pipe 160 that is the second gas collecting member is made larger than the vertical sectional area of the internal space of the first header collecting pipe 110 that is the first gas collecting member. Therefore, the pressure loss of the refrigerant is reduced. As a result, for example, the heat exchange performance of the air conditioner 1 can be improved as compared with the case where piping is directly performed from the first header collecting pipe 110 having a smaller vertical cross-sectional area in the internal space than the gas collecting pipe 160.
  • the heat source side heat exchanger 10 of the air conditioner 1 includes the second header collecting pipe 120 that is a liquid collecting member connected to the end of the flat pipe 64.
  • the flat tubes 63 and 64 have bent portions B1 to B3 that are bent in the same direction when viewed in the longitudinal direction of the first header collecting tube 110.
  • the second header collecting pipe 120 is on the opposite side of the first header collecting pipe 110 with respect to the gas collecting pipe 160.
  • the second header collecting pipe 120 is bent so as to be positioned on the same side as the first header collecting pipe 110 with respect to the gas collecting pipe 160.
  • the gas collecting tube 160 for forming the bent portions B1 to B3 even if the distance between the flat tubes 63 and 64 is reduced. Interference with the second header collecting pipe 120, which is a liquid collecting member, can be avoided. As a result, the distance between the heat transfer fins 65 and 66 can be reduced to easily provide the air conditioner 1 with good heat exchange performance.
  • the bent portions B1 to B3 are formed by pressing the roll jig 410 and the pressing jig 420, which are bending members, against the heat transfer fins 65 and 66 and bending the plurality of flat tubes 63 and 64. .
  • the curvature at the bent portions B1 to B3 can be increased. Damage to the flat tubes 63 and 64 and the heat transfer fins 65 and 66 can be suppressed as compared with the case of reducing the size. Even when the bending member is pressed against one of the heat transfer fins 65 and 66 to bend the flat tubes 63 and 64, the same effect as described above is obtained.
  • the first header collecting pipe 110 and the gas collecting pipe 160 are connected to each other by reducing the inner diameter of the connecting pipe 161 by communicating the first header collecting pipe 110 and the gas collecting pipe 160 with a plurality of connecting pipes 161. Since the flow passage area for communicating the above is secured, the pressure loss in the connecting pipe 161 can be suppressed and the deterioration of the heat exchange performance can be suppressed.
  • the centroid 169 of the gas collecting pipe 160 can be easily positioned on the opposite side of the flat tube 64 by using the connecting pipe 161 bent to the opposite side of the flat tube 64. .
  • the bending direction of the connecting pipe 161 can be made uniform by inserting the elliptical end 610, so that the assembly in which the first header collecting pipe 110 and the gas collecting pipe 160 are communicated by the connecting pipe 161 is easy. It has become. As a result, the manufacturing cost of the air conditioning apparatus 1 that is a refrigeration apparatus can be reduced.
  • the connecting pipe 161 of the above embodiment has tapers 611 and 612 at both ends 610 and 620. Therefore, even if the connecting pipe 161 is bent, the connecting pipe 161 can be easily introduced into the openings 115 and 167 which are holes of the first header collecting pipe 110 and the gas collecting pipe 160 by the tapers 611 and 612. As a result, the assembly around the first header collecting pipe 110 and the gas collecting pipe 160 is facilitated, and the cost of the air conditioner 1 that is a refrigeration apparatus can be reduced.
  • the taper may be formed at either one of both ends of the connecting pipe, and in this case as well, assembly around the first header collecting pipe 110 and the gas collecting pipe 160 is performed as compared with the case where no taper is provided. Becomes easier.
  • the bent portion 630 is formed in the connecting pipe 161 in order to position the centroid 169 of the gas collecting pipe 160 on the side opposite to the flat pipe 64 with respect to the virtual straight line L1 passing through the center of the flat pipe 63.
  • the example to do was demonstrated.
  • the configuration in which the centroid 169 of the gas collecting pipe 160 is positioned on the opposite side of the flat tube 64 with respect to the virtual straight line L1 is not limited to the configuration of the above embodiment.
  • the connecting pipe 161A extends from the first header collecting pipe 110 toward the opposite side of the flat pipe 64 with respect to the virtual straight line L1. Plugged in.
  • the extension line L3 of the central axis of the connecting pipe 161 is in the direction opposite to the flat pipe 64 with respect to the virtual straight line L1, and the extension line L3 and the virtual straight line L1 intersect at a predetermined angle ⁇ .
  • the connecting pipe 161 is inserted into the first header collecting pipe 110.
  • the connecting pipe 161A is connected to the gas collecting pipe 160 so that the centroid 169 of the gas collecting pipe 160 passes over the extension line L3.
  • the centroid 169 of the gas collecting pipe 160 can be easily positioned on the side opposite to the flat pipe 64.
  • Air conditioner (example of refrigeration equipment) 10 heat source side heat exchanger 63 flat tube (example of first flat tube) 64 flat tube (example of second flat tube) 65 Heat transfer fin (Example of first heat transfer fin) 66 Heat transfer fin (Example of second heat transfer fin) 110 First header collecting pipe (example of first gas collecting member) 120 Second header collecting pipe (example of liquid collecting member) 161, 161A Connecting pipe 160 Gas collecting pipe (Example of second gas collecting member) 611, 621 Taper B1-B3 Bending part

Abstract

A decline of heat exchange performance is suppressed in this refrigeration device which has bent sections in flat tubes that are arranged in a plurality of rows. A heat source-side heat exchanger (10) of an air conditioning device, which is a refrigeration device, is provided with: flat tubes (63, 64) arranged in two rows; heat transfer fins (65, 66); a first header collection pipe (110), which is a first gas collection member; a connecting pipe (161); and a gas collection pipe (160), which is a second gas collection member. When viewed along a lengthwise direction of the first header collection pipe (110), the centroid (169) of the gas collection pipe (160) is positioned on the side opposite the flat tube (64) with respect to a virtual straight line (L1) obtained by virtually extending the centerline of the flat tube (63) from the first header collection pipe (110) in the direction in which the flat tube (63) extends.

Description

冷凍装置Refrigeration equipment
 熱交換のために冷媒が流れる扁平管を備える冷凍装置 Refrigeration equipment with flat tubes through which refrigerant flows for heat exchange
 従来から、例えば特許文献1(国際公開第2013/161799号)に記載されているような熱交換器を備える冷凍装置が知られている。 Conventionally, a refrigeration apparatus including a heat exchanger as described in, for example, Patent Document 1 (International Publication No. 2013/161799) is known.
 特許文献1に記載されている冷凍装置の熱交換器は、扁平管が曲げられた曲げ部を有している。特許文献1に記載されている熱交換器は、扁平管が空気流れ方向において2列に配置されており、曲げ部が形成される際に扁平管の端部に接続されている集合管の位置がずれる。この集合管の位置ずれによる部材の干渉を避けるために冷凍装置の熱交換性能が低下することがある。 The heat exchanger of the refrigeration apparatus described in Patent Document 1 has a bent portion in which a flat tube is bent. In the heat exchanger described in Patent Literature 1, the flat tubes are arranged in two rows in the air flow direction, and the position of the collecting tube connected to the end of the flat tube when the bent portion is formed Shifts. In order to avoid the interference of members due to the displacement of the collecting pipe, the heat exchange performance of the refrigeration apparatus may deteriorate.
 本開示の課題は、複数列に配置されている扁平管に曲げ部を有する冷凍装置における熱交換性能の低下を抑制することである。 The problem of the present disclosure is to suppress a decrease in heat exchange performance in a refrigeration apparatus having a bent portion in flat tubes arranged in a plurality of rows.
 第1観点の冷凍装置は、空気流れの方向において2列に配置されている複数の第1扁平管及び複数の第2扁平管と、複数の第1扁平管及び複数の第2扁平管にそれぞれ取り付けられている複数の第1伝熱フィン及び複数の第2伝熱フィンと、複数の第1扁平管の端部が接続されている第1ガス集合部材と、第1ガス集合部材から延びる少なくとも1つの接続管と、接続管によって第1ガス集合部材と連通される第2ガス集合部材と、を備え、第2ガス集合部材は、第1ガス集合部材の長手方向に見て、第1ガス集合部材から複数の第1扁平管が延びる方向に第1扁平管の中心線を仮想的に延ばした仮想直線に対し複数の第2扁平管とは反対側に図心が位置している。 The refrigeration apparatus according to the first aspect includes a plurality of first flat tubes and a plurality of second flat tubes arranged in two rows in the direction of air flow, and a plurality of first flat tubes and a plurality of second flat tubes, respectively. A plurality of first heat transfer fins and a plurality of second heat transfer fins attached, a first gas collecting member to which ends of the plurality of first flat tubes are connected, and at least extending from the first gas collecting member One connecting pipe and a second gas collecting member communicated with the first gas collecting member by the connecting pipe, and the second gas collecting member is a first gas as viewed in the longitudinal direction of the first gas collecting member. A centroid is located on the opposite side of the plurality of second flat tubes with respect to an imaginary straight line obtained by virtually extending the center line of the first flat tubes in the direction in which the plurality of first flat tubes extend from the assembly member.
 このような構成の冷凍装置では、第1扁平管の中心を通る仮想直線に対して第2ガス集合部材の図心が第2扁平管とは反対側に位置することから、複数の第1扁平管及び複数の第2扁平管を曲げる際に第2ガス集合部材に第2扁平管の端部周辺の部材が干渉しない限度まで第1伝熱フィンと第2伝熱フィンとの間の距離を小さくでき、熱交換性能の低下を抑制することができる。 In the refrigeration apparatus having such a configuration, the centroid of the second gas collecting member is located on the opposite side of the second flat tube with respect to the virtual straight line passing through the center of the first flat tube. When bending the tube and the plurality of second flat tubes, the distance between the first heat transfer fins and the second heat transfer fins is set to a limit where members around the end of the second flat tube do not interfere with the second gas collecting member. It can be made small, and a decrease in heat exchange performance can be suppressed.
 第2観点の冷凍装置は、第1観点の冷凍装置であって、第2ガス集合部材が、長手方向に対する内部空間の垂直断面積が第1ガス集合部材の内部空間の垂直断面積よりも大きい、ものである。このような構成の冷凍装置では、第2ガス集合部材の垂直断面積を大きくすることで冷媒の圧力損失を小さくすることができるので、第2ガス集合部材よりも垂直断面積の小さな第1ガス集合部材から直接配管する場合に比べて熱交換性能を向上させることができる。 The refrigerating apparatus according to the second aspect is the refrigerating apparatus according to the first aspect, wherein the second gas collecting member has a vertical cross-sectional area of the internal space with respect to the longitudinal direction larger than a vertical cross-sectional area of the internal space of the first gas collecting member. , That is. In the refrigeration apparatus configured as described above, since the pressure loss of the refrigerant can be reduced by increasing the vertical sectional area of the second gas collecting member, the first gas having a smaller vertical sectional area than the second gas collecting member. The heat exchange performance can be improved as compared with the case of piping directly from the assembly member.
 第3観点の冷凍装置は、第1観点または第2観点の冷凍装置であって、複数の第2扁平管の端部が接続されている液集合部材をさらに備え、複数の第1扁平管及び複数の第2扁平管が、長手方向に見て同一方向に曲がっている曲げ部を有し、曲げ部の形成前に液集合部材が第2ガス集合部材に対し第1ガス集合部材の反対側にあるとともに曲げ部の形成後に液集合部材が第2ガス集合部材に対し第1ガス集合部材と同じ側に位置するほど曲げられている、ものである。このような構成の冷凍装置では、第1扁平管と第2扁平管とを近接させることができる距離を小さくしても曲げ部を形成する際の第2ガス集合部材と液集合部材の干渉を避けることができるので、第1伝熱フィンと第2伝熱フィンとの距離を小さくして熱交換性能の良好な冷凍装置を容易に提供することができる。 The refrigeration apparatus according to the third aspect is the refrigeration apparatus according to the first aspect or the second aspect, further comprising a liquid collecting member to which ends of the plurality of second flat tubes are connected, and the plurality of first flat tubes and The plurality of second flat tubes have a bent portion that is bent in the same direction as viewed in the longitudinal direction, and the liquid collecting member is opposite to the second gas collecting member on the opposite side of the first gas collecting member before forming the bent portion. In addition, the liquid collecting member is bent so as to be located on the same side as the first gas collecting member with respect to the second gas collecting member after the bent portion is formed. In the refrigeration apparatus having such a configuration, the interference between the second gas collecting member and the liquid collecting member when the bent portion is formed even if the distance that allows the first flat tube and the second flat tube to be close to each other is reduced. Since it can avoid, the distance of a 1st heat transfer fin and a 2nd heat transfer fin can be made small, and the refrigeration apparatus with favorable heat exchange performance can be provided easily.
 第4観点の冷凍装置は、第3観点の冷凍装置であって、曲げ部が、第1伝熱フィン及び/または第2伝熱フィンに曲げ部材を押し当てて複数の第1扁平管及び複数の第2扁平管が曲げられて形成されている、ものである。このような構成の冷凍装置では、第2ガス集合部材と第2扁平管の端部周辺の部材の干渉が抑制されているので、曲げ部における曲率を大きくすることができ、複数の第1扁平管及び複数の第2扁平管並びに複数の第1伝熱フィン及び複数の第2伝熱フィンの損傷を抑制することができる。 A refrigeration apparatus according to a fourth aspect is the refrigeration apparatus according to the third aspect, wherein the bending portion presses the bending member against the first heat transfer fin and / or the second heat transfer fin, and the plurality of first flat tubes and the plurality of first flat tubes. The second flat tube is bent and formed. In the refrigeration apparatus having such a configuration, since interference between the second gas collecting member and the members around the end of the second flat tube is suppressed, the curvature at the bent portion can be increased, and a plurality of first flat members can be formed. Damage to the tube, the plurality of second flat tubes, the plurality of first heat transfer fins, and the plurality of second heat transfer fins can be suppressed.
 第5観点の冷凍装置は、第1観点から第4観点のいずれかの冷凍装置であって、少なくとも1つの接続管が、第1ガス集合部材と第2ガス集合部材とを連通させる複数の接続管である、ものである。このような構成の冷凍装置では、複数の接続管で第1ガス集合部材と前記第2ガス集合部材とを連通させることにより、接続管の内径を小さくしつつ第1ガス集合部材と前記第2ガス集合部材とを連通させるための流路面積を確保できるので、接続管における圧力損失を抑制して熱交換性能の低下を抑制することができる。 A refrigeration apparatus according to a fifth aspect is the refrigeration apparatus according to any one of the first to fourth aspects, wherein at least one connection pipe communicates the first gas collecting member and the second gas collecting member. A thing that is a tube. In the refrigeration apparatus having such a configuration, the first gas collecting member and the second gas collecting member are reduced in communication with the first gas collecting member and the second gas collecting member through a plurality of connecting pipes, thereby reducing the inner diameter of the connecting pipe. Since the flow passage area for communicating with the gas collecting member can be secured, the pressure loss in the connecting pipe can be suppressed and the deterioration of the heat exchange performance can be suppressed.
 第6観点の冷凍装置は、第1観点から第5観点のいずれかの冷凍装置であって、接続管が、長手方向に見て、仮想直線に対し複数の第2扁平管とは反対側に曲がっている、ものである。このような構成の冷凍装置では、第2扁平管とは反対側に曲がっている接続管を用いることで、第2ガス集合部材の図心を容易に複数の第2扁平管とは反対側に位置させることができる。 A refrigeration apparatus according to a sixth aspect is the refrigeration apparatus according to any one of the first to fifth aspects, wherein the connection pipe is opposite to the plurality of second flat pipes with respect to the virtual straight line when viewed in the longitudinal direction. It's bent. In the refrigeration apparatus having such a configuration, the centroid of the second gas collecting member can be easily placed on the side opposite to the plurality of second flat tubes by using a connecting pipe bent to the side opposite to the second flat tubes. Can be positioned.
 第7観点の冷凍装置は、第6観点の冷凍装置であって、接続管の一方の端部が楕円形状である、ものである。このような構成の冷凍装置では、接続管の曲がる方向を楕円形状の端部を差し込むことによって揃えることができるので、第1ガス集合部材と第2ガス集合部材とを接続管で連通させる箇所の組み立てが容易になり、冷凍装置のコストを引き下げることができる。 The refrigeration apparatus according to the seventh aspect is the refrigeration apparatus according to the sixth aspect, wherein one end of the connecting pipe is elliptical. In the refrigeration apparatus having such a configuration, the bending direction of the connecting pipe can be made uniform by inserting an elliptical end, so that the first gas collecting member and the second gas collecting member are communicated by the connecting pipe. Assembling becomes easy and the cost of the refrigeration apparatus can be reduced.
 第8観点の冷凍装置は、第5観点から第7観点のいずれかの冷凍装置であって、接続管が、両端部のうちの少なくとも一方にテーパーが付けられている、ものである。このような構成の冷凍装置では、接続管が曲がっていても接続管を第1ガス集合部材と第2ガス集合部材の穴にテーパーによって容易に導入することができ、組み立てが容易になって冷凍装置のコストを引き下げることができる。 The refrigeration apparatus according to the eighth aspect is the refrigeration apparatus according to any one of the fifth to seventh aspects, in which the connection pipe is tapered at least one of both end portions. In the refrigeration apparatus having such a configuration, even if the connecting pipe is bent, the connecting pipe can be easily introduced into the holes of the first gas collecting member and the second gas collecting member by a taper, and the assembly can be easily performed. The cost of the apparatus can be reduced.
 第9観点の冷凍装置は、第1観点から第8観点のいずれかの冷凍装置であって、接続管が、仮想直線に対し複数の第2扁平管とは反対側に向って第1ガス集合部材から延びる、ものである。このような構成の冷凍装置では、第2ガス集合部材の図心を容易に複数の第2扁平管とは反対側に位置させることができる。 A refrigeration apparatus according to a ninth aspect is the refrigeration apparatus according to any one of the first to eighth aspects, wherein the connection pipe is directed to the opposite side of the plurality of second flat tubes with respect to the virtual straight line. It extends from the member. In the refrigeration apparatus having such a configuration, the centroid of the second gas collecting member can be easily positioned on the side opposite to the plurality of second flat tubes.
本開示の空気調和装置の冷媒回路の一例を示す図。The figure which shows an example of the refrigerant circuit of the air conditioning apparatus of this indication. 熱源ユニットを示す斜視図。The perspective view which shows a heat-source unit. 熱源ユニットの底フレーム上の熱源側熱交換器及び圧縮機などを示す平面図。The top view which shows the heat source side heat exchanger, compressor, etc. on the bottom frame of a heat source unit. 熱源側熱交換器を示す斜視図。The perspective view which shows a heat source side heat exchanger. 熱交換部を示す斜視図。The perspective view which shows a heat exchange part. 第1ヘッダ集合管及びガス集合管を示す分解斜視図。The disassembled perspective view which shows a 1st header collecting pipe and a gas collecting pipe. 第1ヘッダ集合管とガス集合管を互いに重ねて示す平面図。The top view which shows a 1st header collecting pipe and a gas collecting pipe mutually overlapping. 第1ヘッダ集合管、ガス集合管及び第2ヘッダ集合管の周辺構造を示す平面図。The top view which shows the surrounding structure of a 1st header collecting pipe, a gas collecting pipe, and a 2nd header collecting pipe. 熱源側熱交換器を曲げる曲げ部材を説明するための平面図。The top view for demonstrating the bending member which bends a heat source side heat exchanger. 熱源側熱交換器を曲げる工程を説明するための平面図。The top view for demonstrating the process of bending a heat source side heat exchanger. ろう付け前のガス集合管と逆U字形パイプを示す側面図。The side view which shows the gas collecting pipe and reverse U-shaped pipe before brazing. ろう付け後のガス集合管と逆U字形パイプを示す側面図。The side view which shows the gas collecting pipe and reverse U-shaped pipe after brazing. 第1ヘッダ集合管及びガス集合管を示す分解斜視図。The disassembled perspective view which shows a 1st header collecting pipe and a gas collecting pipe. 配管側部材の一部を拡大した拡大側面図。The enlarged side view which expanded a part of piping side member. 配管側部材の上部を拡大した拡大平面図。The enlarged plan view which expanded the upper part of the piping side member. 配管側部材の一部を拡大した拡大側面図。The enlarged side view which expanded a part of piping side member. 接続管を示す斜視図。The perspective view which shows a connecting pipe. 接続管を示す平面図。The top view which shows a connecting pipe. 接続管を示す側面図。The side view which shows a connecting pipe. 第2ヘッダ集合管を示す分解斜視図。The disassembled perspective view which shows the 2nd header collecting pipe. 第2ヘッダ集合管の一部を拡大して示す分解斜視図。The disassembled perspective view which expands and shows a part of 2nd header collecting pipe. 仕切部材、整流板及び仕切板を示す拡大斜視図。The expansion perspective view which shows a partition member, a baffle plate, and a partition plate. 第2ヘッダ集合管の平面図。The top view of the 2nd header collecting pipe. 第2ヘッダ集合管の一部を拡大して示す部分拡大断面図。The partial expanded sectional view which expands and shows a part of 2nd header collecting pipe. 連結ヘッダを示す斜視図。The perspective view which shows a connection header. 連結ヘッダの上部を拡大して示す拡大斜視図。The expansion perspective view which expands and shows the upper part of a connection header. 図20のI‐I線に沿った連結ヘッダの断面構造を模式的に示す図。The figure which shows typically the cross-section of the connection header along the II line | wire of FIG. 図20のII‐II線に沿った連結ヘッダの断面構造を模式的に示す図。The figure which shows typically the cross-section of the connection header along the II-II line of FIG. 変形例1Aに係る第1ヘッダ集合管と接続管とガス集合管を示す一部破断拡大断面図。The partially broken expanded sectional view which shows the 1st header collecting pipe which concerns on modification 1A, a connection pipe, and a gas collecting pipe.
 (1)全体構成
 本開示の実施形態に係る冷凍装置の一例として空気調和装置が図1に示されている。ここで冷凍装置とは、図1に示されている空気調和装置のように、圧縮機8で動力を消費し、熱源側熱交換器10と利用側熱交換器36a,36bのうちの一方から熱を取り入れ、他方から熱を排出する装置である。冷凍装置には、空気調和装置以外に、例えば、湯を供給するヒートポンプ式給湯器及び庫内を冷却する冷凍冷蔵庫が含まれる。
(1) Overall Configuration An air conditioner is shown in FIG. 1 as an example of a refrigeration apparatus according to an embodiment of the present disclosure. Here, the refrigeration apparatus consumes power in the compressor 8 as in the air conditioner shown in FIG. 1, and starts from one of the heat source side heat exchanger 10 and the use side heat exchangers 36 a and 36 b. It is a device that takes in heat and discharges heat from the other. In addition to the air conditioner, the refrigeration apparatus includes, for example, a heat pump water heater that supplies hot water and a refrigerator that cools the interior of the refrigerator.
 図1に示されている空気調和装置1は、熱源ユニット2と、2つの利用ユニット3a,3bと、熱源ユニット2と利用ユニット3a,3bとを接続する液冷媒連絡管4及びガス冷媒連絡管5とを有している。空気調和装置1には、利用ユニット3a,3bが設置されている建物等の室内を冷房及び暖房する機能がある。空気調和装置1の冷媒回路6は、液冷媒連絡管4及びガス冷媒連絡管5を介して熱源ユニット2と利用ユニット3a,3bとが接続されることによって構成されている。この冷媒回路6の中を冷媒が循環することによって、冷媒が、圧縮されて昇温され、放熱し、減圧膨張され、吸熱し、そして圧縮される前の状態に戻るような冷凍サイクルが繰り返される。冷凍サイクルが繰り返される際に、冷媒は、低圧の状態と高圧の状態とを交互に繰り返すことになる。熱源ユニット2は、例えば建物の屋上や建物の壁面近傍等の室外に設置される。 An air conditioner 1 shown in FIG. 1 includes a heat source unit 2, two usage units 3a and 3b, a liquid refrigerant communication tube 4 and a gas refrigerant communication tube connecting the heat source unit 2 and the usage units 3a and 3b. 5. The air conditioner 1 has a function of cooling and heating a room such as a building where the use units 3a and 3b are installed. The refrigerant circuit 6 of the air conditioner 1 is configured by connecting the heat source unit 2 and the utilization units 3a and 3b via the liquid refrigerant communication tube 4 and the gas refrigerant communication tube 5. As the refrigerant circulates in the refrigerant circuit 6, the refrigerant is compressed and heated up, radiated, radiated, decompressed and expanded, absorbed heat, and returned to the state before being compressed. . When the refrigeration cycle is repeated, the refrigerant alternately repeats a low pressure state and a high pressure state. The heat source unit 2 is installed, for example, outside a building, for example, on the roof of a building or in the vicinity of a wall surface of the building.
 熱源ユニット2は、アキュムレータ7、圧縮機8、四路切換弁11、熱源側熱交換器10、熱源側の膨張弁12、液側閉鎖弁13、ガス側閉鎖弁14及び熱源側ファン15を備えている。熱源ユニット2の中で、四路切換弁11の第3ポート11cとアキュムレータ7の入口管とが冷媒管16によって接続されている。アキュムレータ7の出口管と圧縮機8の吸入口とが冷媒管17によって接続されている。圧縮機8の吐出口と四路切換弁11の第1ポート11aが冷媒管18によって接続されている。四路切換弁11の第2ポート11bと熱源側熱交換器10のガス側出入口とが冷媒管19によって接続されている。熱源側熱交換器10の液側出入口と膨張弁12の一方出入口とが冷媒管20によって接続されている。膨張弁12の他方出入口と液側閉鎖弁13とが冷媒管21によって接続されている。そして、ガス側閉鎖弁14と四路切換弁11の第4ポート11dとが冷媒管22によって接続されている。 The heat source unit 2 includes an accumulator 7, a compressor 8, a four-way switching valve 11, a heat source side heat exchanger 10, a heat source side expansion valve 12, a liquid side closing valve 13, a gas side closing valve 14, and a heat source side fan 15. ing. In the heat source unit 2, the third port 11 c of the four-way switching valve 11 and the inlet pipe of the accumulator 7 are connected by a refrigerant pipe 16. The outlet pipe of the accumulator 7 and the suction port of the compressor 8 are connected by a refrigerant pipe 17. A discharge port of the compressor 8 and the first port 11 a of the four-way switching valve 11 are connected by a refrigerant pipe 18. The second port 11 b of the four-way switching valve 11 and the gas side inlet / outlet port of the heat source side heat exchanger 10 are connected by a refrigerant pipe 19. A liquid side inlet / outlet of the heat source side heat exchanger 10 and one inlet / outlet of the expansion valve 12 are connected by a refrigerant pipe 20. The other inlet / outlet of the expansion valve 12 and the liquid side closing valve 13 are connected by a refrigerant pipe 21. The gas side closing valve 14 and the fourth port 11 d of the four-way switching valve 11 are connected by a refrigerant pipe 22.
 利用ユニット3a,3bは、例えば居室や天井裏空間等の室内に設置される。利用ユニット3aは、利用側の膨張弁31aと利用側熱交換器32aと利用側ファン33aとを有し、利用ユニット3bは、利用側の膨張弁31bと利用側熱交換器32bと利用側ファン33bとを有している。液冷媒連絡管4と2つの膨張弁31a,31bの一方出入口とが接続されている。膨張弁31aの他方出入口と利用側熱交換器32aの一方出入口とが接続され、膨張弁31bの他方出入口と利用側熱交換器32bの一方出入口とが接続されている。そして、ガス冷媒連絡管5と2つの利用側熱交換器32a,32bの他方出入口とが接続されている。 The use units 3a and 3b are installed in a room such as a living room or a ceiling space. The usage unit 3a includes a usage-side expansion valve 31a, a usage-side heat exchanger 32a, and a usage-side fan 33a. The usage unit 3b includes a usage-side expansion valve 31b, a usage-side heat exchanger 32b, and a usage-side fan. 33b. The liquid refrigerant communication tube 4 is connected to one inlet / outlet of the two expansion valves 31a and 31b. The other entrance / exit of the expansion valve 31a is connected to one entrance / exit of the use side heat exchanger 32a, and the other entrance / exit of the expansion valve 31b is connected to the one entrance / exit of the use side heat exchanger 32b. And the gas refrigerant communication pipe 5 and the other entrance / exit of two utilization side heat exchangers 32a and 32b are connected.
 (2)空気調和装置1の動作
 (2-1)冷房運転
 冷房運転時に空気調和装置1では、圧縮機8から、熱源側熱交換器10、膨張弁12、膨張弁31a及び利用側熱交換器32aを通過して再び圧縮機8に戻る循環経路と、圧縮機8から、熱源側熱交換器10、膨張弁12、膨張弁31b及び利用側熱交換器32bを通過して再び圧縮機8に戻る循環経路のうちの少なくとも一方の経路が形成される。例えば、膨張弁31a,31bのうちの一方を閉じて、2つのうちの一方の経路を閉鎖することもできる。これらの経路を形成するために、冷房運転時には、四路切換弁11の内部で第1ポート11aから第2ポート11bへの通路が形成されるとともに第3ポート11cから第4ポート11dへの通路が形成される状態(図1の実線で示されている状態)になるように、四路切換弁11が切り換えられる。なお、ここでは、冷媒が、蒸気圧縮式冷凍サイクルにおいて、実質的に気体状態の冷媒からなるガス冷媒、実質的に液体状態の冷媒からなる液冷媒、及び気体の状態と液体の状態の冷媒が入り混じっている気液二相状態の冷媒に変化する場合を例に挙げて説明する。
(2) Operation of the air conditioner 1 (2-1) Cooling operation In the air conditioner 1 during the cooling operation, the compressor 8 starts the heat source side heat exchanger 10, the expansion valve 12, the expansion valve 31a, and the use side heat exchanger. A circulation path that passes through 32a and returns to the compressor 8 again, and passes from the compressor 8 to the compressor 8 again through the heat source side heat exchanger 10, the expansion valve 12, the expansion valve 31b, and the use side heat exchanger 32b. At least one of the returning circulation paths is formed. For example, one of the expansion valves 31a and 31b can be closed and one of the two paths can be closed. In order to form these paths, during the cooling operation, a path from the first port 11a to the second port 11b is formed inside the four-way switching valve 11, and a path from the third port 11c to the fourth port 11d. The four-way switching valve 11 is switched so that a state is formed (a state indicated by a solid line in FIG. 1). Here, in the vapor compression refrigeration cycle, the refrigerant is a gas refrigerant made of a substantially gaseous refrigerant, a liquid refrigerant made of a substantially liquid refrigerant, and a gas state and a liquid state refrigerant. The case where the refrigerant changes to a mixed gas-liquid two-phase state will be described as an example.
 冷房運転時の冷媒回路6において、低圧のガス冷媒が圧縮機8の吸入口から吸入され、圧縮機8で圧縮された後に圧縮機8の吐出口から高圧のガス冷媒が吐出される。高圧のガス冷媒は、圧縮機8から冷媒管18と四路切換弁11と冷媒管19を通って熱源側熱交換器10に送られる。高温高圧のガス冷媒は、冷媒の放熱器として機能する熱源側熱交換器10において、熱源側ファン15によって熱源側熱交換器10を通過させられる空気との間で熱交換を行って放熱し、高圧の液冷媒になる。高圧の液冷媒は、熱源側熱交換器10から冷媒管20、膨張弁12、冷媒管21、液側閉鎖弁13及び液冷媒連絡管4を通って膨張弁31a,31bに送られる。このとき、熱源ユニット2の膨張弁12は、例えば全開の状態になっていて減圧せずに、冷媒を通過させる。利用側膨張弁31a,31bに送られた冷媒は、膨張弁31a,31bによって減圧されて、低圧の気液二相状態の冷媒になる。低圧の気液二相状態の冷媒は、膨張弁31a,31bから利用側熱交換器32a,32bに送られる。低圧の気液二相状態の冷媒は、蒸発器として機能する利用側熱交換器32a,32bにおいて、利用側ファン33a,33bによって利用側熱交換器32a,32bを通過させられる室内空気との間で熱交換を行って吸熱し、低圧のガス冷媒になる。利用側熱交換器32a,32bにおいて冷却された室内空気が室内に供給されることで室内の冷房が行われる。低圧のガス冷媒は、利用側熱交換器32a,32bからガス冷媒連絡管5、ガス側閉鎖弁14、冷媒管22、四路切換弁11、冷媒管16、アキュムレータ7及び冷媒管17を通って、再び、圧縮機8に吸入される。 In the refrigerant circuit 6 during the cooling operation, low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8. The high-pressure gas refrigerant is sent from the compressor 8 to the heat source side heat exchanger 10 through the refrigerant pipe 18, the four-way switching valve 11, and the refrigerant pipe 19. The high-temperature and high-pressure gas refrigerant radiates heat by exchanging heat with the air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 in the heat source side heat exchanger 10 that functions as a refrigerant radiator. Becomes a high-pressure liquid refrigerant. The high-pressure liquid refrigerant is sent from the heat source side heat exchanger 10 to the expansion valves 31 a and 31 b through the refrigerant pipe 20, the expansion valve 12, the refrigerant pipe 21, the liquid side closing valve 13, and the liquid refrigerant communication pipe 4. At this time, the expansion valve 12 of the heat source unit 2 is in a fully open state, for example, and allows the refrigerant to pass therethrough without reducing the pressure. The refrigerant sent to the use side expansion valves 31a and 31b is decompressed by the expansion valves 31a and 31b to become a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant is sent from the expansion valves 31a and 31b to the use side heat exchangers 32a and 32b. The refrigerant in the low-pressure gas-liquid two-phase state is between the indoor air that is passed through the use side heat exchangers 32a and 32b by the use side fans 33a and 33b in the use side heat exchangers 32a and 32b functioning as an evaporator. The heat exchange is performed to absorb the heat and become a low-pressure gas refrigerant. The room air is cooled by supplying the room air cooled in the use side heat exchangers 32a and 32b into the room. The low-pressure gas refrigerant passes from the use side heat exchangers 32a and 32b through the gas refrigerant communication pipe 5, the gas side closing valve 14, the refrigerant pipe 22, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, and the refrigerant pipe 17. Then, it is sucked into the compressor 8 again.
 (2-2)暖房運転
 暖房運転時に空気調和装置1では、圧縮機8から、利用側熱交換器32a、膨張弁31a、膨張弁12及び熱源側熱交換器10を通過して再び圧縮機8に戻る循環経路と、圧縮機8から、利用側熱交換器32b、膨張弁31b、膨張弁12及び熱源側熱交換器10を通過して再び圧縮機8に戻る循環経路のうちの少なくとも一方の経路が形成される。例えば、膨張弁31a,31bのうちの一方を閉じて、2つのうちの一方の経路を閉鎖することもできる。これらの経路を形成するために、暖房運転時には、四路切換弁11の内部で第1ポート11aから第4ポート11dへの通路が形成されるとともに第2ポート11bから第3ポート11cへの通路が形成される状態(図1の破線で示されている状態)になるように、四路切換弁11が切り換えられる。
(2-2) Heating Operation In the air conditioning apparatus 1 during the heating operation, the compressor 8 passes through the use side heat exchanger 32a, the expansion valve 31a, the expansion valve 12, and the heat source side heat exchanger 10 from the compressor 8 again. At least one of the circulation path returning to the compressor 8 and the circulation path returning from the compressor 8 to the compressor 8 again after passing through the use side heat exchanger 32b, the expansion valve 31b, the expansion valve 12, and the heat source side heat exchanger 10. A path is formed. For example, one of the expansion valves 31a and 31b can be closed and one of the two paths can be closed. In order to form these paths, during the heating operation, a path from the first port 11a to the fourth port 11d is formed inside the four-way switching valve 11, and a path from the second port 11b to the third port 11c. The four-way switching valve 11 is switched so as to be in a state (state shown by a broken line in FIG. 1).
 暖房運転時の冷媒回路6において、低圧のガス冷媒が圧縮機8の吸入口から吸入され、圧縮機8で圧縮された後に圧縮機8の吐出口から高圧のガス冷媒が吐出される。高圧のガス冷媒は、圧縮機8から冷媒管18と四路切換弁11と冷媒管22とガス側閉鎖弁14とガス冷媒連絡管5とを通って利用側熱交換器32a,32bに送られる。高温高圧のガス冷媒は、冷媒の放熱器として機能する利用側熱交換器32a,32bにおいて、利用側ファン33a,33bによって利用側熱交換器32a,32bを通過させられる室内空気との間で熱交換を行って放熱し、高圧の液冷媒になる。利用側熱交換器32a,32bにおいて加熱された室内空気が室内に供給されることで室内の暖房が行われる。高圧の液冷媒は、利用側熱交換器32a,32bから膨張弁31a,31b、液冷媒連絡管4、液側閉鎖弁13及び冷媒管21を通って膨張弁12に送られる。このとき、利用ユニット3a,3bの膨張弁31a,31bは、例えば全開の状態になっていて減圧せずに、冷媒を通過させる。熱源ユニット2の膨張弁12に送られた冷媒は、膨張弁12によって減圧されて、低圧の気液二相状態の冷媒になる。低圧の気液二相状態の冷媒は、膨張弁12から熱源側熱交換器10に送られる。低圧の気液二相状態の冷媒は、蒸発器として機能する熱源側熱交換器10において、熱源側ファン15によって熱源側熱交換器10を通過させられる空気との間で熱交換を行って吸熱し、低圧のガス冷媒になる。低圧のガス冷媒は、熱源側熱交換器10から冷媒管19、四路切換弁11、冷媒管16、アキュムレータ7及び冷媒管17を通って、再び、圧縮機8に吸入される。 In the refrigerant circuit 6 during the heating operation, low-pressure gas refrigerant is sucked from the suction port of the compressor 8, and after being compressed by the compressor 8, high-pressure gas refrigerant is discharged from the discharge port of the compressor 8. The high-pressure gas refrigerant is sent from the compressor 8 to the use side heat exchangers 32a and 32b through the refrigerant pipe 18, the four-way switching valve 11, the refrigerant pipe 22, the gas side closing valve 14, and the gas refrigerant communication pipe 5. . The high-temperature and high-pressure gas refrigerant is heated between the use- side heat exchangers 32a and 32b functioning as a refrigerant radiator and the room air passed through the use- side heat exchangers 32a and 32b by the use- side fans 33a and 33b. It exchanges and dissipates heat to become a high-pressure liquid refrigerant. Indoor air is heated by supplying indoor air heated in the use side heat exchangers 32a and 32b into the room. The high-pressure liquid refrigerant is sent from the use side heat exchangers 32a and 32b to the expansion valve 12 through the expansion valves 31a and 31b, the liquid refrigerant communication pipe 4, the liquid side closing valve 13 and the refrigerant pipe 21. At this time, the expansion valves 31a and 31b of the utilization units 3a and 3b are in a fully open state, for example, and allow the refrigerant to pass through without being decompressed. The refrigerant sent to the expansion valve 12 of the heat source unit 2 is decompressed by the expansion valve 12 and becomes a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant is sent from the expansion valve 12 to the heat source side heat exchanger 10. In the heat source side heat exchanger 10 functioning as an evaporator, the low-pressure gas-liquid two-phase refrigerant exchanges heat with air that is passed through the heat source side heat exchanger 10 by the heat source side fan 15 to absorb heat. And it becomes a low-pressure gas refrigerant. The low-pressure gas refrigerant passes through the refrigerant pipe 19, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7 and the refrigerant pipe 17 from the heat source side heat exchanger 10 and is again sucked into the compressor 8.
 (3)熱源ユニット2の構成
 図2には、熱源ユニット2を斜め上方から見た状態が示されている。熱源ユニット2は、ケーシング40をさらに備え、ケーシング40の中にアキュムレータ7、圧縮機8、四路切換弁11、熱源側熱交換器10、膨張弁12及び熱源側ファン15を収納している。なお、以下の説明において、熱源ユニット2の「上」、「下」、「左」、「右」、「前」、「後」は、特にことわりのない限り、図2に記載された座標に示されている方向を意味している。熱源ユニット2は、ケーシング40の側面から内部に空気を吸い込んで、ケーシング40の中で熱交換された空気をケーシング40の天面から上方に吹き出す熱交換ユニットである。
(3) Configuration of Heat Source Unit 2 FIG. 2 shows a state in which the heat source unit 2 is viewed obliquely from above. The heat source unit 2 further includes a casing 40, and the accumulator 7, the compressor 8, the four-way switching valve 11, the heat source side heat exchanger 10, the expansion valve 12, and the heat source side fan 15 are accommodated in the casing 40. In the following description, “upper”, “lower”, “left”, “right”, “front”, and “rear” of the heat source unit 2 are the coordinates described in FIG. 2 unless otherwise specified. Means the direction shown. The heat source unit 2 is a heat exchange unit that draws air into the inside from the side surface of the casing 40 and blows out the air heat-exchanged in the casing 40 upward from the top surface of the casing 40.
 ケーシング40は、左右方向に延びる一対の据付脚41上に架け渡される底フレーム42と、底フレーム42の角部から鉛直方向に延びる支柱43と、支柱43の上端近傍に取り付けられている吹出グリル44と、前面パネル45とを有している。ケーシング40の側面に空気の吸込口40a、40b、40c、40dが設けられ、天面に空気の吹出口40eが設けられている。吹出口40eは、吹出グリル44で覆われており、熱源側ファン15が吹出グリル44に面して配置されている。 The casing 40 includes a bottom frame 42 that spans a pair of installation legs 41 that extend in the left-right direction, a column 43 that extends in a vertical direction from a corner of the bottom frame 42, and a blowout grill that is attached near the upper end of the column 43. 44 and a front panel 45. Air inlets 40a, 40b, 40c, and 40d are provided on the side surface of the casing 40, and an air outlet 40e is provided on the top surface. The air outlet 40 e is covered with an air outlet grill 44, and the heat source side fan 15 is disposed facing the air outlet grill 44.
 底フレーム42がケーシング40の底面を形成しており、底フレーム42上に、熱源側熱交換器10、アキュムレータ7及び圧縮機8が取り付けられている。図3には、熱源側ファン15の下の空間に配置されている熱源側熱交換器10、四路切換弁11、冷媒管16、アキュムレータ7、冷媒管17、圧縮機8及び冷媒管18などが示されている。熱源側熱交換器10は、4つの側面を囲む全周囲のうちの一部分を除いて4つの側面に沿うように配置され、上から見るとC字形の形状を呈する。熱源側ファン15によってケーシング40の側面の吸込口40a~40dから吸い込まれて天面の吹出口40eに向って流れる気流は、熱源側熱交換器10を通過する。底フレーム42は、熱源側熱交換器10の下端部分に接しており、冷房運転時に熱源側熱交換器10において発生するドレン水を受けるドレンパンとして機能する。 The bottom frame 42 forms the bottom surface of the casing 40, and the heat source side heat exchanger 10, the accumulator 7 and the compressor 8 are attached on the bottom frame 42. In FIG. 3, the heat source side heat exchanger 10, the four-way switching valve 11, the refrigerant pipe 16, the accumulator 7, the refrigerant pipe 17, the compressor 8, the refrigerant pipe 18, and the like disposed in the space below the heat source side fan 15. It is shown. The heat source side heat exchanger 10 is arranged along the four side surfaces except for a part of the entire circumference surrounding the four side surfaces, and has a C-shape when viewed from above. The airflow sucked from the suction ports 40a to 40d on the side surface of the casing 40 by the heat source side fan 15 and flowing toward the top surface outlet 40e passes through the heat source side heat exchanger 10. The bottom frame 42 is in contact with the lower end portion of the heat source side heat exchanger 10 and functions as a drain pan that receives drain water generated in the heat source side heat exchanger 10 during cooling operation.
 (4)熱源側熱交換器10の構成
 図4には、熱源側熱交換器10を斜め上方から見た状態が示されている。熱源側熱交換器10は、第1ヘッダ集合管110と、第2ヘッダ集合管120と、風下列の熱交換部130と、風上列の熱交換部140と、連結ヘッダ200と、ガス集合管160と、冷媒分流器170とを有している。この熱源側熱交換器10においては、第1ヘッダ集合管110、第2ヘッダ集合管120、熱交換部130,140、連結ヘッダ200、ガス集合管160及び冷媒分流器170のすべてが、アルミニウム合金で形成されている。第1ヘッダ集合管110、第2ヘッダ集合管120、熱交換部130,140、連結ヘッダ200、ガス集合管160及び冷媒分流器170が熱源側熱交換器10に組み立てられる際には、アルミニウム合金製のろう材によって炉中ろう付けされて接合される。
(4) Configuration of Heat Source Side Heat Exchanger 10 FIG. 4 shows a state in which the heat source side heat exchanger 10 is viewed obliquely from above. The heat source side heat exchanger 10 includes a first header collecting pipe 110, a second header collecting pipe 120, a leeward row heat exchanging unit 130, an upwind row heat exchanging unit 140, a connection header 200, and a gas assembly. It has a tube 160 and a refrigerant flow divider 170. In the heat source side heat exchanger 10, the first header collecting pipe 110, the second header collecting pipe 120, the heat exchange units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant flow divider 170 are all made of an aluminum alloy. It is formed with. When the first header collecting pipe 110, the second header collecting pipe 120, the heat exchanging units 130 and 140, the connection header 200, the gas collecting pipe 160, and the refrigerant distributor 170 are assembled in the heat source side heat exchanger 10, an aluminum alloy is used. It is brazed in a furnace with a brazing material made of steel and joined.
 図4に示されている熱源側熱交換器10においては、外側から内側に向う太い矢印Ar1が空気の流れを示している。また、図4において、二点差線の矢印Ar2は冷媒の流れを示している。矢印Ar2が双方向に向いているのは、暖房運転と冷房運転で冷媒の流れが反対になるからである。冷房運転において、冷媒は、第1ヘッダ集合管110から風下列の熱交換部130を通って連結ヘッダ200で折返し、連結ヘッダ200から風上列の熱交換部140を通って第2ヘッダ集合管120に達する。暖房運転において、冷媒は、第2ヘッダ集合管120から風上列の熱交換部140を通って連結ヘッダ200で折返し、連結ヘッダ200から風下列の熱交換部130を通って第1ヘッダ集合管110に達する。 In the heat source side heat exchanger 10 shown in FIG. 4, a thick arrow Ar1 directed from the outside to the inside indicates the flow of air. Moreover, in FIG. 4, the arrow Ar2 of a two-dot chain line has shown the flow of the refrigerant | coolant. The reason why the arrow Ar2 is directed in both directions is that the flow of refrigerant is reversed between the heating operation and the cooling operation. In the cooling operation, the refrigerant returns from the first header collecting pipe 110 through the heat exchange unit 130 in the leeward row at the connection header 200 and passes from the connection header 200 through the heat exchange unit 140 in the upwind row to the second header collection tube. Reach 120. In the heating operation, the refrigerant turns back from the second header collecting pipe 120 through the heat exchange unit 140 in the upwind row at the connection header 200, and passes from the connection header 200 through the heat exchange unit 130 in the downwind row to the first header collection tube. 110 is reached.
 (4-1)熱交換部130,140
 風下列の熱交換部130は、図5に示されている複数の風下列の扁平管63と、複数の風下列の伝熱フィン65とを含んで構成されている。図5においても、矢印Ar1が空気の流れを示している。風上列の熱交換部140は、図5に示されている複数の風上列の扁平管64と、複数の風上列の伝熱フィン66とを含んで構成されている。
(4-1) Heat exchange units 130 and 140
The leeward row heat exchanging section 130 includes a plurality of leeward row flat tubes 63 shown in FIG. 5 and a plurality of leeward row heat transfer fins 65. Also in FIG. 5, the arrow Ar <b> 1 indicates the air flow. The upwind row heat exchanging section 140 includes a plurality of upwind flat tubes 64 shown in FIG. 5 and a plurality of upwind row heat transfer fins 66.
 扁平管63,64は、鉛直方向を向く上面部63a,64a及び下面部63b,64bと、内部に形成された冷媒が流れる多数の小さな通路63c,64cを有する扁平多穴管である。扁平管63は、風下列において上下方向に並べて複数段に配置され、扁平管64は、風上列において上下方向に並べて複数段に配置されている。風下列の扁平管63の一端が第1ヘッダ集合管110に接続され、他端が連結ヘッダ200に接続されている。風上列の扁平管64の一端が第2ヘッダ集合管120に接続され、他端が連結ヘッダ200に接続されている。各伝熱フィン65,66は、冷媒の熱交換における伝熱面積を広げるために、隣り合う段の扁平管63,64の間を流れる空気に沿う方向及び上下方向に広がっている。伝熱フィン65,66には、扁平管63,64の各段に対応して複数の切欠き65a,66aが形成されている。各切欠き65a,66aは、上下方向に対して直交する方向に細長く延びている。各切欠き65a,66aの周囲は、伝熱面となる各上面部63a,64a及び各下面部63b,64bに密着して接合されている。 The flat tubes 63 and 64 are flat multi-hole tubes having upper surface portions 63a and 64a and lower surface portions 63b and 64b facing in the vertical direction, and a large number of small passages 63c and 64c through which a refrigerant formed inside flows. The flat tubes 63 are arranged in a plurality of stages in the up-down direction in the leeward row, and the flat tubes 64 are arranged in a plurality of steps in the up-down direction in the upwind row. One end of the flat tube 63 in the leeward row is connected to the first header collecting pipe 110, and the other end is connected to the connection header 200. One end of the flat tube 64 in the windward row is connected to the second header collecting tube 120, and the other end is connected to the connection header 200. Each heat transfer fin 65, 66 extends in the direction along the air flowing between the flat tubes 63, 64 in the adjacent stage and in the vertical direction in order to increase the heat transfer area in the heat exchange of the refrigerant. In the heat transfer fins 65 and 66, a plurality of notches 65a and 66a are formed corresponding to the respective stages of the flat tubes 63 and 64. Each notch 65a, 66a is elongated in a direction perpendicular to the up-down direction. The circumferences of the notches 65a and 66a are in close contact with and joined to the upper surface portions 63a and 64a and the lower surface portions 63b and 64b that serve as heat transfer surfaces.
 (4-2)第1ヘッダ集合管110及びガス集合管160
 (4-2-1)構成の概要
 図6には、第1ヘッダ集合管110及びガス集合管160を分解した状態が示されている。第1ヘッダ集合管110は、上端及び下端が閉じた細長い中空筒形の部品である。第1ヘッダ集合管110は、風下列の熱交換部130の一端側に立設されている。第1ヘッダ集合管110は、多穴管側部材111、仕切部材112、配管側部材113及び仕切板114を有している。細長い多穴管側部材111、仕切部材112及び配管側部材113は、多穴管側部材111と配管側部材113の間に仕切部材112を挟み、それぞれの長手方向が上下方向に一致するように組み合わされて一体化されることによって、熱源側熱交換器10において上下方向に延びる第1ヘッダ集合管110を形成している。そして、2枚の仕切板114が第1ヘッダ集合管110の上方と下方を閉じている。多穴管側部材111、仕切部材112、配管側部材113及び仕切板114は、例えばろう材によって炉中において互いに接合されて一体化される。
(4-2) First header collecting pipe 110 and gas collecting pipe 160
(4-2-1) Outline of Configuration FIG. 6 shows a state where the first header collecting pipe 110 and the gas collecting pipe 160 are disassembled. The first header collecting pipe 110 is an elongated hollow cylindrical part whose upper end and lower end are closed. The first header collecting pipe 110 is erected on one end side of the heat exchange section 130 in the leeward row. The first header collecting pipe 110 includes a multi-hole pipe side member 111, a partition member 112, a pipe side member 113, and a partition plate 114. The elongated multi-hole pipe side member 111, the partition member 112, and the pipe side member 113 sandwich the partition member 112 between the multi-hole pipe side member 111 and the pipe side member 113 so that the respective longitudinal directions coincide with the vertical direction. By being combined and integrated, the first header collecting pipe 110 extending in the vertical direction in the heat source side heat exchanger 10 is formed. Two partition plates 114 close the top and bottom of the first header collecting pipe 110. The multi-hole pipe side member 111, the partition member 112, the pipe side member 113, and the partition plate 114 are joined together and integrated in the furnace by, for example, a brazing material.
 多穴管側部材111を上下方向に垂直な平面で切断した断面が弧状であり、多穴管側部材111には段方向に並べて配置されている複数の扁平管63が挿入される開口が扁平管63の段数だけ形成されている。仕切部材112の中央には、複数の扁平管63の一端の位置決めをするための棒状のストッパが上下に延びている。仕切部材112のストッパの両側には、多穴管側部材111の方から配管側部材113の方に冷媒を流すための開口が形成されている。配管側部材113を上下方向に垂直な平面で切断した断面が弧状であり、上下方向に並べて配置されている複数の接続管161が挿入される複数の開口115が配管側部材113に形成されている。 The cross-section of the multi-hole tube side member 111 cut along a plane perpendicular to the vertical direction is arcuate, and the multi-hole tube side member 111 has flat openings in which a plurality of flat tubes 63 arranged in a step direction are inserted. The number of stages of the pipes 63 is formed. In the center of the partition member 112, a bar-shaped stopper for positioning one end of the plurality of flat tubes 63 extends vertically. On both sides of the stopper of the partition member 112, openings for allowing the coolant to flow from the multi-hole tube side member 111 toward the pipe side member 113 are formed. A cross section obtained by cutting the pipe side member 113 along a plane perpendicular to the vertical direction is an arc shape, and a plurality of openings 115 into which a plurality of connection pipes 161 arranged in the vertical direction are inserted are formed in the pipe side member 113. Yes.
 ガス集合管160は、有底の円筒直管であり、複数の接続管161が接続される複数の開口167(図10A参照)が側面に形成されている。ガス集合管160と第1ヘッダ集合管110は、アルミニウム合金製の結束バンド162で結束されている。ガス集合管160の上部には、アルミニウム合金製の逆U字形パイプ180が接続される。この逆U字形パイプ180は、冷媒管19の一部である。 The gas collecting pipe 160 is a bottomed cylindrical straight pipe, and a plurality of openings 167 (see FIG. 10A) to which the plurality of connecting pipes 161 are connected are formed on the side surface. The gas collecting pipe 160 and the first header collecting pipe 110 are bound by a binding band 162 made of an aluminum alloy. An inverted U-shaped pipe 180 made of an aluminum alloy is connected to the upper part of the gas collecting pipe 160. The inverted U-shaped pipe 180 is a part of the refrigerant pipe 19.
 熱源側熱交換器10は、第1ヘッダ集合管110、複数の接続管161及びガス集合管160を通して、風下列の複数の扁平管63から逆U字形パイプ180まで連通している。 The heat source side heat exchanger 10 communicates from the plurality of flat tubes 63 in the leeward row to the inverted U-shaped pipe 180 through the first header collecting pipe 110, the plurality of connecting pipes 161, and the gas collecting pipe 160.
 (4-2-2)位置関係
 図7では、第1ヘッダ集合管110とガス集合管160が、上から見た状態で、それらの図心119,169を重ねるように示されている。本開示において図心とは、平面図形の中心をいう。第1ヘッダ集合管110を上から見て、第1ヘッダ集合管110の外周で囲まれた形状と同じ形状の厚みの均一な板材を考え、その均一な板材の重心が図心に一致する。ここでは、ガス集合管160が円管であるので、上方から見て円形状のガス集合管160の図心169はガス集合管160の外周円の中心点と一致する。第1ヘッダ集合管110の図心119は、第1ヘッダ集合管110の長手方向に見て(平面視において)、第1ヘッダ集合管110から複数の風下列の扁平管63が延びる方向に扁平管63の中心線を仮想的に延ばした仮想直線L1の上に位置する。なお、ここでは、第1ヘッダ集合管110の長手方向が上下方向に一致している。
(4-2-2) Positional Relationship In FIG. 7, the first header collecting pipe 110 and the gas collecting pipe 160 are shown so that their centroids 119 and 169 overlap with each other when viewed from above. In the present disclosure, the centroid refers to the center of a planar figure. When the first header collecting pipe 110 is viewed from above, a uniform plate material having the same thickness as the shape surrounded by the outer periphery of the first header collecting pipe 110 is considered, and the center of gravity of the uniform plate material coincides with the centroid. Here, since the gas collecting pipe 160 is a circular pipe, the centroid 169 of the circular gas collecting pipe 160 as viewed from above coincides with the center point of the outer circumferential circle of the gas collecting pipe 160. The centroid 119 of the first header collecting pipe 110 is flat in the direction in which the plurality of leeward flat tubes 63 extend from the first header collecting pipe 110 when viewed in the longitudinal direction of the first header collecting pipe 110 (in plan view). It is located on a virtual straight line L1 obtained by virtually extending the center line of the pipe 63. Here, the longitudinal direction of the first header collecting pipe 110 coincides with the vertical direction.
 ガス集合管160の外径D1は、第1ヘッダ集合管110の幅W1よりも大きい。また、このガス集合管160の内径D2は、幅W1よりも大きい。この第1ヘッダ集合管110の幅W1は、扁平管63が第1ヘッダ集合管110から延びる方向に対して垂直な方向の幅である。図7に示されているように、ガス集合管160の内周内に第1ヘッダ集合管110が収まっているので、明らかに、上下方向に対する第1ヘッダ集合管110の内部空間の垂直断面積よりもガス集合管160の内部空間の垂直断面積(π×(D2/2))の方が大きい。 The outer diameter D1 of the gas collecting pipe 160 is larger than the width W1 of the first header collecting pipe 110. Further, the inner diameter D2 of the gas collecting pipe 160 is larger than the width W1. The width W 1 of the first header collecting pipe 110 is a width in a direction perpendicular to the direction in which the flat pipe 63 extends from the first header collecting pipe 110. As shown in FIG. 7, since the first header collecting pipe 110 is accommodated in the inner periphery of the gas collecting pipe 160, it is apparent that the vertical sectional area of the internal space of the first header collecting pipe 110 with respect to the vertical direction. The vertical sectional area (π × (D2 / 2) 2 ) of the internal space of the gas collecting pipe 160 is larger than that.
 第1ヘッダ集合管110の内部空間の垂直断面積は、図7に斜線で示されている部分の面積である。第1ヘッダ集合管110の垂直断面積よりもガス集合管160の垂直断面積が大きいので、ガス集合管160を設けない場合に比べて、ガス冷媒の圧力を下げることができる。このようにガス集合管160を設けることによって、空気調和装置1に要求されるガス冷媒の圧力の条件を空気調和装置1が容易に満たすことができる。ここでは、説明を分かり易くするためにガス集合管160の内周内に第1ヘッダ集合管110が収まっている場合を例に挙げて説明したが、第1ヘッダ集合管110がガス集合管160の内周内に収まらなくても、(第1ヘッダ集合管110の内部空間の垂直断面積)<(ガス集合管160の内部空間の垂直断面積)の関係が満たされれば、ガス集合管160を設けることによるガス冷媒の圧力の設定が容易になる効果を奏する。 The vertical cross-sectional area of the internal space of the first header collecting pipe 110 is the area of the portion indicated by hatching in FIG. Since the vertical cross-sectional area of the gas collecting pipe 160 is larger than the vertical cross-sectional area of the first header collecting pipe 110, the pressure of the gas refrigerant can be reduced as compared with the case where the gas collecting pipe 160 is not provided. By providing the gas collecting pipe 160 in this way, the air conditioner 1 can easily satisfy the condition of the pressure of the gas refrigerant required for the air conditioner 1. Here, in order to make the explanation easy to understand, the case where the first header collecting pipe 110 is accommodated in the inner periphery of the gas collecting pipe 160 has been described as an example, but the first header collecting pipe 110 is used as the gas collecting pipe 160. If the relationship of (vertical sectional area of the inner space of the first header collecting pipe 110) <(vertical sectional area of the inner space of the gas collecting pipe 160) is satisfied, the gas collecting pipe 160 is not included. The effect of facilitating the setting of the pressure of the gas refrigerant is provided.
 図8には、扁平管63,64、伝熱フィン65,66、第1ヘッダ集合管110、接続管161、ガス集合管160、第2ヘッダ集合管120などを上方から見た位置関係(第1ヘッダ集合管110の長手方向に見た位置関係)が示されている。ガス集合管160の図心169は、上述の仮想直線L1に対し風上列の複数の扁平管64とは反対側に位置している。このような仮想直線L1とガス集合管160との位置関係を構成するために、第1ヘッダ集合管110とガス集合管160とを連通させる接続管161が曲がっている。さらに詳細には、接続管161は、第1ヘッダ集合管110の長手方向に見て、仮想直線L1に対し複数の扁平管64とは反対側に曲がっている。複数の接続管161は、いずれも、第1ヘッダ集合管110から扁平管63が延びる方向に沿って(仮想直線L1に沿って)第1ヘッダ集合管110から延び、途中で曲がってガス集合管160に達する。ガス集合管160を扁平管64が存する方とは反対側にずらして位置させる場合、第1ヘッダ集合管110において最も扁平管64に近い箇所を通り且つ仮想直線L1に平行な延長線L2を扁平管64の側に超えないようにガス集合管160を配置するのが好ましい。 FIG. 8 shows the positional relationship of the flat tubes 63 and 64, the heat transfer fins 65 and 66, the first header collecting pipe 110, the connecting pipe 161, the gas collecting pipe 160, the second header collecting pipe 120, and the like (first view). 1 shows the positional relationship of the header collecting pipe 110 in the longitudinal direction). The centroid 169 of the gas collecting pipe 160 is located on the opposite side of the imaginary straight line L1 from the plurality of flat tubes 64 in the windward row. In order to configure such a positional relationship between the virtual straight line L1 and the gas collecting pipe 160, the connecting pipe 161 that connects the first header collecting pipe 110 and the gas collecting pipe 160 is bent. More specifically, the connection pipe 161 is bent to the opposite side of the plurality of flat tubes 64 with respect to the virtual straight line L1 when viewed in the longitudinal direction of the first header collecting pipe 110. Each of the plurality of connecting pipes 161 extends from the first header collecting pipe 110 along the direction in which the flat pipe 63 extends from the first header collecting pipe 110 (along the virtual straight line L1), and bends in the middle to form a gas collecting pipe. 160 is reached. When the gas collecting pipe 160 is positioned so as to be shifted to the side opposite to the side where the flat pipe 64 exists, the extension line L2 passing through the portion closest to the flat pipe 64 in the first header collecting pipe 110 and parallel to the virtual straight line L1 is flattened. It is preferable to arrange the gas collecting pipe 160 so as not to exceed the pipe 64 side.
 (4-2-3)熱源側熱交換器10の製造工程
 図4に示されているように、熱源側熱交換器10には、3箇所に、曲げ部B1,B2,B3が形成されている。言い換えると、扁平管63,64が、上下方向に見て同一方向に曲がっている曲げ部B1~B3を有しているということである。ろう付けを炉の大きさは決まっているので、できるだけ多くの熱源側熱交換器10の炉中ろう付けをするために、熱交換部130,140が平たい状態で、言い換えると曲げ部B1,B2,B3の形成前に炉中ろう付けを行う。図9A及び図9Bに、曲げ部B1~B3が形成される前の熱源側熱交換器10に、上方から見て、曲げ部B3の形成される状況が示されている。炉中ろう付けが終わった状態では、図9Aに示されているように、平たい状態の熱交換部130,140の扁平管63,64の他端が連結ヘッダ200で揃って固定されている。また、曲げ部B1~B3が形成される前は、第2ヘッダ集合管120が、第1ヘッダ集合管110及びガス集合管160よりも外側(連結ヘッダ200よりも遠い方)に突出している。曲げ加工前に図9Aに示されているように、第2ヘッダ集合管120と第1ヘッダ集合管110及びガス集合管160を配置すると、曲げ加工が完成した時点で、扁平管63,64の端部を互いに離れすぎないように配置することができる。
(4-2-3) Manufacturing Process of Heat Source Side Heat Exchanger 10 As shown in FIG. 4, the heat source side heat exchanger 10 has bending portions B1, B2, and B3 formed at three locations. Yes. In other words, the flat tubes 63 and 64 have bent portions B1 to B3 that are bent in the same direction when viewed in the vertical direction. Since the size of the furnace for brazing is determined, in order to braze as many of the heat source side heat exchanger 10 as possible in the furnace, the heat exchanging parts 130 and 140 are flat, in other words, the bent parts B1 and B2. , B3 is brazed before forming B3. 9A and 9B show a state where the bent portion B3 is formed in the heat source side heat exchanger 10 before the bent portions B1 to B3 are formed as viewed from above. In the state where brazing in the furnace is finished, as shown in FIG. 9A, the other ends of the flat tubes 63 and 64 of the heat exchange units 130 and 140 in a flat state are fixed together by the connection header 200. Further, before the bent portions B1 to B3 are formed, the second header collecting pipe 120 protrudes to the outside (the farther from the connecting header 200) than the first header collecting pipe 110 and the gas collecting pipe 160. When the second header collecting pipe 120, the first header collecting pipe 110, and the gas collecting pipe 160 are arranged as shown in FIG. 9A before bending, the flat pipes 63 and 64 of the flat pipes 63 and 64 are formed when the bending process is completed. The ends can be arranged so as not to be too far away from each other.
 熱源側熱交換器10の曲げ部B3を形成するには、例えば図9A及び図9Bに示されているロール治具410と押付治具420を用いる。図9Aに示されているように、ロール治具410を、曲げ部B3を形成すべき場所に当てて熱源側熱交換器10の連結ヘッダ200に近い側に固定する。そして、ロール治具410のロール部分411とは反対側から熱交換部140に押付治具420を押し付ける。その際、押付治具420は、ロール部分411よりも連結ヘッダ200から遠い側に押し付ける。 In order to form the bent portion B3 of the heat source side heat exchanger 10, for example, a roll jig 410 and a pressing jig 420 shown in FIGS. 9A and 9B are used. As shown in FIG. 9A, the roll jig 410 is fixed to the side close to the connection header 200 of the heat source side heat exchanger 10 by hitting the place where the bent portion B3 is to be formed. Then, the pressing jig 420 is pressed against the heat exchanging unit 140 from the side opposite to the roll part 411 of the roll jig 410. At that time, the pressing jig 420 presses to the side farther from the connection header 200 than the roll portion 411.
 次に、図9Bに示されているように、押付治具420から熱交換部130,140に力を加えて、熱交換部130,140の扁平管63,64を曲げる。曲げ部B3が形成された場所において、扁平管64の曲率半径が扁平管63の曲率半径よりも大きくなる。このような理由により、曲げ部B3の形成後には、第2ヘッダ集合管120がガス集合管160に近づく。さらに、曲げ部B2及び曲げ部B1が形成されると、図8に示されているようにガス集合管160が第2ヘッダ集合管120よりも外側に突出する。 Next, as shown in FIG. 9B, a force is applied from the pressing jig 420 to the heat exchange units 130 and 140 to bend the flat tubes 63 and 64 of the heat exchange units 130 and 140. The curvature radius of the flat tube 64 is larger than the curvature radius of the flat tube 63 at the place where the bent portion B3 is formed. For this reason, the second header collecting pipe 120 approaches the gas collecting pipe 160 after forming the bent portion B3. Further, when the bent part B2 and the bent part B1 are formed, the gas collecting pipe 160 protrudes outside the second header collecting pipe 120 as shown in FIG.
 図9A及び図9Bで説明した曲げ加工によって曲げ部B1~B3を形成する際に第2ヘッダ集合管120と第1ヘッダ集合管110及びガス集合管160との位置関係が変化する。このような位置関係の変化の際に、ガス集合管160と第2ヘッダ集合管120の干渉による不具合が生じないように、曲がった接続管161によってガス集合管160が第2ヘッダ集合管120とは反対側にずれた位置に取り付けられている。 When the bent portions B1 to B3 are formed by the bending process described with reference to FIGS. 9A and 9B, the positional relationship between the second header collecting pipe 120, the first header collecting pipe 110, and the gas collecting pipe 160 changes. In order to prevent a problem due to interference between the gas collecting pipe 160 and the second header collecting pipe 120 when the positional relationship changes, the bent collecting pipe 161 causes the gas collecting pipe 160 to be connected to the second header collecting pipe 120. Is mounted at a position shifted to the opposite side.
 図10A及び図10Bには、曲げ部B1~B3の形成後に行われる逆U字形パイプ180のろう付けが示されている。ガス集合管160は、有底円筒状の本体部165と上部の拡管部166とからなる。拡管部166は、本体部165よりも大きな内径を持つ。拡管部166の内径は逆U字形パイプ180の外径よりも僅かに大きい。そのため、逆U字形パイプ180を拡管部166に差し込むことができ、例えば作業者が手作業で拡管部166に逆U字形パイプ180をろう付けすることができる。 10A and 10B show brazing of the inverted U-shaped pipe 180 performed after the formation of the bent portions B1 to B3. The gas collecting pipe 160 includes a bottomed cylindrical main body 165 and an upper pipe expanding portion 166. The expanded pipe portion 166 has a larger inner diameter than the main body portion 165. The inner diameter of the expanded portion 166 is slightly larger than the outer diameter of the inverted U-shaped pipe 180. Therefore, the inverted U-shaped pipe 180 can be inserted into the expanded portion 166. For example, the operator can manually braze the inverted U-shaped pipe 180 to the expanded portion 166.
 (4-2-4)第1ヘッダ集合管110と接続管161とガス集合管160の組み立て
 炉中ろう付けの前に、第1ヘッダ集合管110と接続管161とガス集合管160の組み立てが行われる。図11に示されている16本の接続管161の向きを揃えて、接続管161の一方の端部610が、第1ヘッダ集合管110の配管側部材113に形成されている16個の開口115に差し込まれる。配管側部材113に差し込まれた接続管161の向きがもしも区々であるとすると、接続管161の他方の端部620の位置が一直線上に並ばなくなる。接続管161の他方の端部620の位置が一直線上に並ばないと、他方の端部620を、一直線上に並ぶガス集合管160の16個の開口167(図10A参照)の全てに挿入することができなくなってしまう。そこで、開口115に差し込まれた接続管161が同一方向に曲がるよう、図12Aに示されているように、ガス集合管160の側から見て、楕円形になるように開口115が形成されている。開口115の楕円形の長軸方向は、第1ヘッダ集合管110の長手方向に一致する。配管側部材113は、図12Bに示されているように、上方から見ると半円形の形状を呈する。空気の流れる方向に向いている配管側部材113の側面を見ると、図12Cに示されている形状を有しており、開口115の部分が抉られて窪んでいる。
(4-2-4) Assembly of the first header collecting pipe 110, the connecting pipe 161, and the gas collecting pipe 160 Before the brazing in the furnace, the first header collecting pipe 110, the connecting pipe 161, and the gas collecting pipe 160 are assembled. Done. The 16 connection pipes 161 shown in FIG. 11 are aligned, and one end 610 of the connection pipe 161 has 16 openings formed in the pipe side member 113 of the first header collecting pipe 110. 115. If the direction of the connection pipe 161 inserted into the pipe side member 113 is various, the position of the other end 620 of the connection pipe 161 will not be aligned. If the position of the other end 620 of the connecting pipe 161 is not aligned, the other end 620 is inserted into all of the 16 openings 167 (see FIG. 10A) of the gas collecting pipe 160 aligned in a straight line. It becomes impossible to do. Therefore, as shown in FIG. 12A, the opening 115 is formed so as to be elliptical when viewed from the gas collecting pipe 160 side so that the connecting pipe 161 inserted into the opening 115 bends in the same direction. Yes. The major axis direction of the elliptical shape of the opening 115 coincides with the longitudinal direction of the first header collecting pipe 110. As shown in FIG. 12B, the pipe side member 113 has a semicircular shape when viewed from above. When the side surface of the pipe-side member 113 facing in the direction of air flow is viewed, it has the shape shown in FIG. 12C, and the opening 115 is hollowed and recessed.
 各接続管161は、図13Aに示されている一方の端部610が図13Cに示されているように楕円形である。各接続管161の屈曲部630の屈曲方向は、端部610の楕円形の短軸方向(図13Cの矢印Ar3の方向)に一致する。端部610の楕円形の長軸方向は、第1ヘッダ集合管110の長手方向(上下方向)に一致する。それに対して、各接続管161の他方の端部620は、円形になっている。各接続管161の一方の端部610及び他方の端部620には、テーパー611,621が付けられている。ガス集合管160の開口167には、テーパー621に合わせてテーパー(図示せず)が付けられている。これらのテーパー611,621などによって配管側部材113とガス集合管160に対する接続管161の取り付けが容易になる。 Each connecting pipe 161 has an elliptical shape with one end 610 shown in FIG. 13A shown in FIG. 13C. The bending direction of the bent portion 630 of each connecting pipe 161 coincides with the elliptical short axis direction of the end portion 610 (the direction of the arrow Ar3 in FIG. 13C). The major axis direction of the elliptical shape of the end portion 610 coincides with the longitudinal direction (vertical direction) of the first header collecting pipe 110. On the other hand, the other end 620 of each connecting pipe 161 is circular. Tapers 611 and 621 are attached to one end 610 and the other end 620 of each connecting pipe 161. The opening 167 of the gas collecting pipe 160 is tapered (not shown) in accordance with the taper 621. These tapers 611 and 621 and the like facilitate attachment of the connecting pipe 161 to the pipe side member 113 and the gas collecting pipe 160.
 (4-3)第2ヘッダ集合管120
 図14には、第2ヘッダ集合管120を分解した状態が示されている。また、図15には、図14に示されている第2ヘッダ集合管120の一部が拡大して示されている。また、図16には、仕切板124と整流板125が取り付けられた仕切部材122の一部が拡大して示されている。また、図17には、組み立てられた第2ヘッダ集合管120を上方から見た状態が示されている。さらに、図18には、第2ヘッダ集合管120の一部の構造に係る断面が示されている。第2ヘッダ集合管120は、上端及び下端が閉じた細長い中空筒形の部品である。第2ヘッダ集合管120は、風上列の熱交換部140の一端側に立設されている。第2ヘッダ集合管120は、多穴管側部材121、仕切部材122、配管側部材123、仕切板124及び整流板125を有している。細長い多穴管側部材121、仕切部材122及び配管側部材123は、多穴管側部材121と配管側部材123の間に仕切部材122が挟まれ、それぞれの長手方向が上下方向に一致するように組み合わされて一体化される。このように一体化されることによって、多穴管側部材121、仕切部材122及び配管側部材123は、熱源側熱交換器10において上下方向に延びる第2ヘッダ集合管120を形成する。そして、2枚の仕切板124が第2ヘッダ集合管120の上方と下方を閉じている。多穴管側部材121、仕切部材122、配管側部材123、仕切板124及び整流板125は、例えばろう材によって炉中において互いに接合されて一体化される。
(4-3) Second header collecting pipe 120
FIG. 14 shows a state in which the second header collecting pipe 120 is disassembled. FIG. 15 is an enlarged view of a part of the second header collecting pipe 120 shown in FIG. FIG. 16 is an enlarged view of a part of the partition member 122 to which the partition plate 124 and the rectifying plate 125 are attached. FIG. 17 shows a state where the assembled second header collecting pipe 120 is viewed from above. Further, FIG. 18 shows a cross section relating to a part of the structure of the second header collecting pipe 120. The second header collecting pipe 120 is an elongated hollow cylindrical part whose upper end and lower end are closed. The second header collecting pipe 120 is erected on one end side of the heat exchange unit 140 in the windward row. The second header collecting pipe 120 includes a multi-hole pipe side member 121, a partition member 122, a pipe side member 123, a partition plate 124 and a rectifying plate 125. The elongated multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 are such that the partition member 122 is sandwiched between the multi-hole pipe side member 121 and the pipe side member 123, and the respective longitudinal directions coincide with the vertical direction. Are combined and integrated. By being integrated in this way, the multi-hole pipe side member 121, the partition member 122, and the pipe side member 123 form a second header collecting pipe 120 that extends in the vertical direction in the heat source side heat exchanger 10. Two partition plates 124 close the upper and lower sides of the second header collecting pipe 120. The multi-hole pipe side member 121, the partition member 122, the pipe side member 123, the partition plate 124, and the rectifying plate 125 are joined together and integrated in the furnace by, for example, a brazing material.
 第2ヘッダ集合管120の内部は、複数の仕切板124によって仕切られて、複数の空間に分割されている。図18に示されているように、2枚の仕切板124の間に形成される空間SP1には、複数段の扁平管64が連通し、少なくとも1つのキャピラリチューブ190が連通している。整流板125は、キャピラリチューブ190の上方近傍に配置されている。仕切部材122には、下方の仕切板124の上近傍の開口部122aと、上方の仕切板124の下近傍に開口部122bと、整流板125の上近傍の開口部122cとが形成されている。整流板125には、上昇用開口125aが形成されている。キャピラリチューブ190から開口部122aを通って仕切部材122と多穴管側部材121の間に達した冷媒は、小さな上昇用開口125aによって上方に吹き上げられる。その後、冷媒は、開口部122bの次に開口部122cを通過するループ状の流れ(図18に太い矢印Ar4で示されている流れ)を形成する。整流板125と上方の仕切板124との間にある複数段の扁平管64の通路64cには、冷媒がループ状の流れから分かれて流れ込む。 The interior of the second header collecting pipe 120 is partitioned by a plurality of partition plates 124 and divided into a plurality of spaces. As shown in FIG. 18, the space SP <b> 1 formed between the two partition plates 124 communicates with a plurality of flat tubes 64 and at least one capillary tube 190. The rectifying plate 125 is disposed near the upper portion of the capillary tube 190. The partition member 122 is formed with an opening 122 a near the lower partition plate 124, an opening 122 b near the upper partition plate 124, and an opening 122 c near the rectifying plate 125. . The rectifying plate 125 is formed with a rising opening 125a. The refrigerant that reaches between the partition member 122 and the multi-hole tube side member 121 through the opening 122a from the capillary tube 190 is blown upward by the small ascending opening 125a. Thereafter, the refrigerant forms a loop-like flow (flow indicated by a thick arrow Ar4 in FIG. 18) that passes through the opening 122c next to the opening 122b. The refrigerant flows separately from the loop flow into the passage 64c of the multi-stage flat tube 64 between the rectifying plate 125 and the upper partition plate 124.
 (4-4)連結ヘッダ200
 図19には、連結ヘッダ200を斜め上方から見た状態が示されている。図20には、連結ヘッダ200の上方部分が拡大して示されている。図21には、図20のI‐I線に沿って切断した断面形状が示され、図22には、図20のII‐II線に沿って切断した断面形状が示されている。連結ヘッダ200は、上端及び下端が閉じた細長い中空筒形の部品である。連結ヘッダ200は風下列の熱交換部130及び風上列の熱交換部140の他端側に立設されている。
(4-4) Connection header 200
FIG. 19 shows a state in which the connection header 200 is viewed obliquely from above. In FIG. 20, the upper part of the connection header 200 is shown enlarged. 21 shows a cross-sectional shape cut along line II in FIG. 20, and FIG. 22 shows a cross-sectional shape cut along line II-II in FIG. The connection header 200 is an elongated hollow cylindrical part whose upper end and lower end are closed. The connection header 200 is erected on the other end side of the heat exchange unit 130 in the leeward row and the heat exchange unit 140 in the windward row.
 連結ヘッダ200は、第1部材210と第2部材220と第3部材230とが接合されることによって構成されている。第1部材210には、上下方向に対して直交する方向に2つの開口部211,212が並べて形成されている。開口部211,212は、それぞれ、複数段の風下列の扁平管63の他端及び複数段の風上列の扁平管64の他端に対応して設けられている。 The connection header 200 is configured by joining the first member 210, the second member 220, and the third member 230 together. In the first member 210, two openings 211 and 212 are formed side by side in a direction orthogonal to the vertical direction. The openings 211 and 212 are provided to correspond to the other end of the flat tubes 63 in the plural lee rows and the other end of the flat tubes 64 in the plural lee rows, respectively.
 第2部材220は、上下方向に延びる平板状の封止壁241と、封止壁241と交差する方向に延びる仕切壁242とを持っている。上下方向において隣接する仕切壁242の間には、開口部211,212が配置されている。つまり、上下方向において隣接する仕切壁242と、第1部材210と、封止壁241とで囲まれた連通空間SP2には、1本の風下列の扁平管63の通路63cと1本の風上列の扁平管64の通路64cが連通している。従って、冷房運転時には、1本の風下列の扁平管63の通路63cを通って連通空間SP2に入った冷媒は、連通空間SP2で折り返されて、隣の列に配置されている1本の風上列の扁平管64の通路64cに流れ込む。暖房運転時には、冷房運転時とは逆に、1本の風上列の扁平管64の通路64cを通って連通空間SP2に入った冷媒は、連通空間SP2で折り返されて、隣の列に配置されている1本の風下列の扁平管63の通路63cに流れ込む。第3部材230は、第2部材220の外側に形成され、第2部材220の腐食を抑制する部材である。 The second member 220 has a flat sealing wall 241 extending in the vertical direction and a partition wall 242 extending in a direction intersecting the sealing wall 241. Openings 211 and 212 are arranged between the partition walls 242 adjacent in the vertical direction. That is, in the communication space SP2 surrounded by the partition wall 242, the first member 210, and the sealing wall 241 adjacent in the vertical direction, the passage 63c of one flat tube 63 in the leeward row and one wind The passage 64c of the upper row of flat tubes 64 is in communication. Accordingly, during the cooling operation, the refrigerant that has entered the communication space SP2 through the passage 63c of the flat tube 63 in one leeward row is folded back in the communication space SP2 and is supplied to the one wind arranged in the adjacent row. It flows into the passage 64c of the upper row of flat tubes 64. In the heating operation, contrary to the cooling operation, the refrigerant that has entered the communication space SP2 through the passage 64c of the flat tube 64 in one upwind row is folded back in the communication space SP2 and arranged in the adjacent row. It flows into the passage 63c of the flat tube 63 in one leeward row. The third member 230 is a member that is formed outside the second member 220 and suppresses the corrosion of the second member 220.
 (5)特徴
 (5-1)
 上記実施形態の空気調和装置1においては、第1扁平管である風下列の扁平管63の一端が接続されているのが、第1ガス集合部材である第1ヘッダ集合管110である。それに対して、第2扁平管である風上列の扁平管64の一端が接続されているのが、液集合部材である第2ヘッダ集合管120である。接続管161によって第1ヘッダ集合管110に接続されているガス集合管160が、第2ガス集合部材である。第1扁平管である扁平管63に取り付けられているのが、第1伝熱フィンである伝熱フィン65である。また、第2扁平管である扁平管64に取り付けられているのが、第2伝熱フィンである伝熱フィン66である。
(5) Features (5-1)
In the air conditioner 1 of the above embodiment, one end of the flat tube 63 in the leeward row that is the first flat tube is connected to the first header collecting tube 110 that is the first gas collecting member. On the other hand, the second header collecting pipe 120 which is a liquid collecting member is connected to one end of the flat pipe 64 in the windward row which is the second flat pipe. The gas collecting pipe 160 connected to the first header collecting pipe 110 by the connecting pipe 161 is a second gas collecting member. The heat transfer fins 65 that are first heat transfer fins are attached to the flat tube 63 that is the first flat tube. Moreover, what is attached to the flat tube 64 which is a 2nd flat tube is the heat transfer fin 66 which is a 2nd heat transfer fin.
 扁平管63の中心を通る仮想直線L1に対してガス集合管160の図心169が扁平管64とは反対側に位置することから、熱源側熱交換器10の製造工程、例えば複数の扁平管63,64を曲げる際にガス集合管160に扁平管64の端部周辺の部材例えば第2ヘッダ集合管120などが干渉しない限度まで伝熱フィン65,66を接近させて距離を小さくできる。伝熱フィン65,66の間の距離を小さくすることで、その距離が大きい場合に比べて良好な熱交換性能が得やすくなり、熱交換性能の良好な冷凍装置である空気調和装置1を容易に提供することができる。 Since the centroid 169 of the gas collecting pipe 160 is located on the opposite side of the flat pipe 64 with respect to the virtual straight line L1 passing through the center of the flat pipe 63, the manufacturing process of the heat source side heat exchanger 10, for example, a plurality of flat pipes When bending 63, 64, the heat transfer fins 65, 66 can be brought close to the limit where members around the end of the flat tube 64, such as the second header collection tube 120, do not interfere with the gas collection tube 160, thereby reducing the distance. By reducing the distance between the heat transfer fins 65, 66, it becomes easier to obtain good heat exchange performance than when the distance is large, and the air conditioner 1 that is a refrigeration apparatus with good heat exchange performance can be easily obtained. Can be provided.
 (5-2)
 上記実施形態では、第2ガス集合部材であるガス集合管160の内部空間の垂直断面積を、第1ガス集合部材である第1ヘッダ集合管110の内部空間の垂直断面積よりも大きくすることで、冷媒の圧力損失を小さくしている。その結果、例えば、ガス集合管160よりも内部空間の垂直断面積の小さな第1ヘッダ集合管110から直接配管する場合に比べて空気調和装置1の熱交換性能を向上させることができている。
(5-2)
In the above embodiment, the vertical sectional area of the internal space of the gas collecting pipe 160 that is the second gas collecting member is made larger than the vertical sectional area of the internal space of the first header collecting pipe 110 that is the first gas collecting member. Therefore, the pressure loss of the refrigerant is reduced. As a result, for example, the heat exchange performance of the air conditioner 1 can be improved as compared with the case where piping is directly performed from the first header collecting pipe 110 having a smaller vertical cross-sectional area in the internal space than the gas collecting pipe 160.
 (5-3)
 上記実施形態では、空気調和装置1の熱源側熱交換器10は、扁平管64の端部に接続されている液集合部材である第2ヘッダ集合管120を備えている。扁平管63,64は、第1ヘッダ集合管110の長手方向に見て、同一方向に曲がっている曲げ部B1~B3を有している。図9A及び図9Bを用いて説明したように、曲げ部B1~B3の形成前には、第2ヘッダ集合管120がガス集合管160に対し第1ヘッダ集合管110の反対側にあるが、図8に示されているように、曲げ部B1~B3の形成後には第2ヘッダ集合管120がガス集合管160に対し第1ヘッダ集合管110と同じ側に位置するほど曲げられている。
(5-3)
In the above embodiment, the heat source side heat exchanger 10 of the air conditioner 1 includes the second header collecting pipe 120 that is a liquid collecting member connected to the end of the flat pipe 64. The flat tubes 63 and 64 have bent portions B1 to B3 that are bent in the same direction when viewed in the longitudinal direction of the first header collecting tube 110. As described with reference to FIGS. 9A and 9B, before forming the bent portions B1 to B3, the second header collecting pipe 120 is on the opposite side of the first header collecting pipe 110 with respect to the gas collecting pipe 160. As shown in FIG. 8, after the formation of the bent portions B1 to B3, the second header collecting pipe 120 is bent so as to be positioned on the same side as the first header collecting pipe 110 with respect to the gas collecting pipe 160.
 上述のような構造を扁平管63,64が有しているにもかかわらず、扁平管63,64の間の距離を小さくしても曲げ部B1~B3を形成する際のガス集合管160と液集合部材である第2ヘッダ集合管120の干渉を避けることができている。その結果、伝熱フィン65,66の距離を小さくして熱交換性能の良好な空気調和装置1を容易に提供することができる。 Despite the flat tubes 63 and 64 having the above-described structure, the gas collecting tube 160 for forming the bent portions B1 to B3 even if the distance between the flat tubes 63 and 64 is reduced. Interference with the second header collecting pipe 120, which is a liquid collecting member, can be avoided. As a result, the distance between the heat transfer fins 65 and 66 can be reduced to easily provide the air conditioner 1 with good heat exchange performance.
 (5-4)
 上記実施形態では、曲げ部B1~B3は、伝熱フィン65,66に曲げ部材であるロール治具410及び押付治具420を押し当てて複数の扁平管63,64が曲げられて形成される。このとき、ガス集合管160と扁平管64の端部周辺の部材例えば第2ヘッダ集合管120の干渉が抑制されているので、曲げ部B1~B3における曲率を大きくすることができ、この曲率を小さくする場合に比べて扁平管63,64及び伝熱フィン65,66の損傷を抑制することができる。曲げ部材を伝熱フィン65,66の一方に押し当てて扁平管63,64を曲げる場合でも、前述と同様の効果を奏する。
(5-4)
In the above embodiment, the bent portions B1 to B3 are formed by pressing the roll jig 410 and the pressing jig 420, which are bending members, against the heat transfer fins 65 and 66 and bending the plurality of flat tubes 63 and 64. . At this time, since interference between members around the ends of the gas collecting pipe 160 and the flat pipe 64, such as the second header collecting pipe 120, is suppressed, the curvature at the bent portions B1 to B3 can be increased. Damage to the flat tubes 63 and 64 and the heat transfer fins 65 and 66 can be suppressed as compared with the case of reducing the size. Even when the bending member is pressed against one of the heat transfer fins 65 and 66 to bend the flat tubes 63 and 64, the same effect as described above is obtained.
 (5-5)
 上記実施形態では、複数の接続管161で第1ヘッダ集合管110とガス集合管160とを連通させることにより、接続管161の内径を小さくしつつ第1ヘッダ集合管110とガス集合管160とを連通させるための流路面積を確保しているので、接続管161における圧力損失を抑制して熱交換性能の低下を抑制することができている。
(5-5)
In the above embodiment, the first header collecting pipe 110 and the gas collecting pipe 160 are connected to each other by reducing the inner diameter of the connecting pipe 161 by communicating the first header collecting pipe 110 and the gas collecting pipe 160 with a plurality of connecting pipes 161. Since the flow passage area for communicating the above is secured, the pressure loss in the connecting pipe 161 can be suppressed and the deterioration of the heat exchange performance can be suppressed.
 (5-6)
 上記実施形態では、扁平管64とは反対側に曲がっている接続管161を用いることで、ガス集合管160の図心169を容易に扁平管64とは反対側に位置させることができている。
(5-6)
In the above embodiment, the centroid 169 of the gas collecting pipe 160 can be easily positioned on the opposite side of the flat tube 64 by using the connecting pipe 161 bent to the opposite side of the flat tube 64. .
 (5-7)
 上記実施形態では、接続管161の曲がる方向を楕円形状の端部610を差し込むことによって揃えることができるので、第1ヘッダ集合管110とガス集合管160とを接続管161で連通させる組み立てが容易になっている。その結果、冷凍装置である空気調和装置1の製造コストを引き下げることができている。
(5-7)
In the above embodiment, the bending direction of the connecting pipe 161 can be made uniform by inserting the elliptical end 610, so that the assembly in which the first header collecting pipe 110 and the gas collecting pipe 160 are communicated by the connecting pipe 161 is easy. It has become. As a result, the manufacturing cost of the air conditioning apparatus 1 that is a refrigeration apparatus can be reduced.
 (5-8)
 上記実施形態の接続管161は、両端部610,620にテーパー611,612が付けられている。従って、接続管161が曲がっていても接続管161を第1ヘッダ集合管110とガス集合管160の穴である開口115,167にテーパー611,612によって容易に導入することができる。その結果、第1ヘッダ集合管110とガス集合管160の周辺の組み立てが容易になって冷凍装置である空気調和装置1のコストを引き下げることができている。なお、テーパーは、接続管の両端部のうちのいずれか一方に形成されてもよく、その場合にもテーパーを設けない場合に比べて第1ヘッダ集合管110とガス集合管160の周辺の組み立てが容易になる。
(5-8)
The connecting pipe 161 of the above embodiment has tapers 611 and 612 at both ends 610 and 620. Therefore, even if the connecting pipe 161 is bent, the connecting pipe 161 can be easily introduced into the openings 115 and 167 which are holes of the first header collecting pipe 110 and the gas collecting pipe 160 by the tapers 611 and 612. As a result, the assembly around the first header collecting pipe 110 and the gas collecting pipe 160 is facilitated, and the cost of the air conditioner 1 that is a refrigeration apparatus can be reduced. Note that the taper may be formed at either one of both ends of the connecting pipe, and in this case as well, assembly around the first header collecting pipe 110 and the gas collecting pipe 160 is performed as compared with the case where no taper is provided. Becomes easier.
 (6)変形例
 (6-1)変形例1A
 上記実施形態では、扁平管63の中心を通る仮想直線L1に対してガス集合管160の図心169を、扁平管64とは反対側に位置させるために、接続管161に屈曲部630を形成する例について説明した。しかし、仮想直線L1に対してガス集合管160の図心169を、扁平管64とは反対側に位置させる構成は、上記実施形態の構成に限られるものではない。例えば、図23に示されているように、接続管161Aが、仮想直線L1に対し扁平管64とは反対側に向って第1ヘッダ集合管110から延びるように、第1ヘッダ集合管110に差し込まれている。言い換えると、接続管161の中心軸の延長線L3が、仮想直線L1に対して扁平管64とは反対側の方向にあって、延長線L3と仮想直線L1が所定角度αで交差するように接続管161が第1ヘッダ集合管110に差し込まれる。例えば、ガス集合管160の図心169が延長線L3の上を通るように、接続管161Aがガス集合管160に接続される。このように構成することで、ガス集合管160の図心169を容易に扁平管64とは反対側に位置させることができる。
(6) Modification (6-1) Modification 1A
In the above embodiment, the bent portion 630 is formed in the connecting pipe 161 in order to position the centroid 169 of the gas collecting pipe 160 on the side opposite to the flat pipe 64 with respect to the virtual straight line L1 passing through the center of the flat pipe 63. The example to do was demonstrated. However, the configuration in which the centroid 169 of the gas collecting pipe 160 is positioned on the opposite side of the flat tube 64 with respect to the virtual straight line L1 is not limited to the configuration of the above embodiment. For example, as shown in FIG. 23, the connecting pipe 161A extends from the first header collecting pipe 110 toward the opposite side of the flat pipe 64 with respect to the virtual straight line L1. Plugged in. In other words, the extension line L3 of the central axis of the connecting pipe 161 is in the direction opposite to the flat pipe 64 with respect to the virtual straight line L1, and the extension line L3 and the virtual straight line L1 intersect at a predetermined angle α. The connecting pipe 161 is inserted into the first header collecting pipe 110. For example, the connecting pipe 161A is connected to the gas collecting pipe 160 so that the centroid 169 of the gas collecting pipe 160 passes over the extension line L3. With this configuration, the centroid 169 of the gas collecting pipe 160 can be easily positioned on the side opposite to the flat pipe 64.
 (6-2)変形例1B
 上記実施形態では、熱源側熱交換器10がアルミニウム合金である場合について説明したが、熱源側熱交換器10はアルミニウム合金以外の金属、例えばアルミニウムまたは銅で形成されてもよい。
(6-2) Modification 1B
Although the said embodiment demonstrated the case where the heat source side heat exchanger 10 was an aluminum alloy, the heat source side heat exchanger 10 may be formed with metals other than an aluminum alloy, for example, aluminum or copper.
 (6-3)変形例1C
 上記実施形態では、第1扁平管である扁平管63が風下列に配置され、第2扁平管である扁平管64が風上列に配置される場合について説明したが、第1扁平管が風下列に配置され、第2扁平管が風上列に配置されてもよい。
(6-3) Modification 1C
In the above embodiment, the case where the flat tubes 63 that are the first flat tubes are arranged in the leeward row and the flat tubes 64 that are the second flat tubes are arranged in the windward row has been described. The second flat tubes may be arranged in the windward row.
 (6-4)変形例1D
 上記実施形態では、第1ヘッダ集合管110に対して所定方向でしか嵌合しない接続管161の端部610の形状が楕円形である場合について説明した。しかし、所定方向でしか嵌合しない接続管161の端部610の形状は、楕円形に限られるものではなく、例えば卵型や長円などであってもよい。
(6-4) Modification 1D
In the above embodiment, the case where the shape of the end portion 610 of the connection pipe 161 that fits only in a predetermined direction with the first header collecting pipe 110 is an ellipse has been described. However, the shape of the end portion 610 of the connection pipe 161 that is fitted only in a predetermined direction is not limited to an ellipse, and may be, for example, an egg shape or an ellipse.
 (6-5)変形例1E
 上記実施形態では、第1ヘッダ集合管110を流れる冷媒が全てガス集合管160を通過する場合について説明したが、第1ヘッダ集合管110を流れる冷媒の一部がガス集合管160以外の経路を流れるように構成してもよい。
(6-5) Modification 1E
In the above-described embodiment, the case where all the refrigerant flowing through the first header collecting pipe 110 passes through the gas collecting pipe 160 has been described. However, a part of the refrigerant flowing through the first header collecting pipe 110 passes along a route other than the gas collecting pipe 160. You may comprise so that it may flow.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 While the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as set forth in the claims. .
 1 空気調和装置 (冷凍装置の例)
 10 熱源側熱交換器
 63 扁平管 (第1扁平管の例)
 64 扁平管 (第2扁平管の例)
 65 伝熱フィン (第1伝熱フィンの例)
 66 伝熱フィン (第2伝熱フィンの例)
 110 第1ヘッダ集合管 (第1ガス集合部材の例)
 120 第2ヘッダ集合管 (液集合部材の例)
 161,161A 接続管
 160 ガス集合管 (第2ガス集合部材の例)
 611,621 テーパー
 B1~B3 曲げ部
1 Air conditioner (example of refrigeration equipment)
10 heat source side heat exchanger 63 flat tube (example of first flat tube)
64 flat tube (example of second flat tube)
65 Heat transfer fin (Example of first heat transfer fin)
66 Heat transfer fin (Example of second heat transfer fin)
110 First header collecting pipe (example of first gas collecting member)
120 Second header collecting pipe (example of liquid collecting member)
161, 161A Connecting pipe 160 Gas collecting pipe (Example of second gas collecting member)
611, 621 Taper B1-B3 Bending part
国際公開第2013/161799号International Publication No. 2013/161799

Claims (9)

  1.  空気流れの方向において2列に配置されている複数の第1扁平管(63)及び複数の第2扁平管(64)と、
     前記複数の第1扁平管及び前記複数の第2扁平管にそれぞれ取り付けられている複数の第1伝熱フィン(65)及び複数の第2伝熱フィン(66)と、
     前記複数の第1扁平管の端部が接続されている第1ガス集合部材(110)と、
     前記第1ガス集合部材から延びる少なくとも1つの接続管(161,161A)と、
     前記接続管によって前記第1ガス集合部材と連通される第2ガス集合部材(160)と、
    を備え、
     前記第2ガス集合部材は、前記第1ガス集合部材の長手方向に見て、前記第1ガス集合部材から前記複数の第1扁平管が延びる方向に第1扁平管の中心線を仮想的に延ばした仮想直線に対し前記複数の第2扁平管とは反対側に図心が位置している、冷凍装置(1)。
    A plurality of first flat tubes (63) and a plurality of second flat tubes (64) arranged in two rows in the direction of air flow;
    A plurality of first heat transfer fins (65) and a plurality of second heat transfer fins (66) respectively attached to the plurality of first flat tubes and the plurality of second flat tubes;
    A first gas collecting member (110) to which ends of the plurality of first flat tubes are connected;
    At least one connecting pipe (161, 161A) extending from the first gas collecting member;
    A second gas collecting member (160) communicated with the first gas collecting member by the connecting pipe;
    With
    The second gas collecting member virtually has a center line of the first flat tube in a direction in which the plurality of first flat tubes extend from the first gas collecting member when viewed in the longitudinal direction of the first gas collecting member. The refrigeration apparatus (1), wherein a centroid is located on the opposite side of the plurality of second flat tubes with respect to the extended virtual straight line.
  2.  前記第2ガス集合部材は、前記長手方向に対する内部空間の垂直断面積が前記第1ガス集合部材の内部空間の垂直断面積よりも大きい、
    請求項1に記載の冷凍装置(1)。
    The second gas collecting member has a vertical sectional area of the internal space with respect to the longitudinal direction larger than a vertical sectional area of the internal space of the first gas collecting member,
    The refrigeration apparatus (1) according to claim 1.
  3.  前記複数の第2扁平管の端部が接続されている液集合部材(120)をさらに備え、
     前記複数の第1扁平管及び前記複数の第2扁平管は、前記長手方向に見て同一方向に曲がっている曲げ部(B1,B2,B3)を有し、前記曲げ部の形成前に前記液集合部材が前記第2ガス集合部材に対し前記第1ガス集合部材の反対側にあるとともに前記曲げ部の形成後に前記液集合部材が前記第2ガス集合部材に対し前記第1ガス集合部材と同じ側に位置するほど曲げられている、
    請求項1または請求項2に記載の冷凍装置(1)。
    A liquid collecting member (120) to which ends of the plurality of second flat tubes are connected;
    The plurality of first flat tubes and the plurality of second flat tubes have bent portions (B1, B2, B3) that are bent in the same direction when viewed in the longitudinal direction, and before the bent portions are formed, A liquid collecting member is on the opposite side of the first gas collecting member with respect to the second gas collecting member, and the liquid collecting member is formed with the first gas collecting member with respect to the second gas collecting member after forming the bent portion. It is bent so that it is located on the same side,
    The refrigeration apparatus (1) according to claim 1 or claim 2.
  4.  前記曲げ部は、前記第1伝熱フィン及び/または前記第2伝熱フィンに曲げ部材を押し当てて前記複数の第1扁平管及び前記複数の第2扁平管が曲げられて形成されている、
    請求項3に記載の冷凍装置(1)。
    The bending portion is formed by pressing a bending member against the first heat transfer fin and / or the second heat transfer fin and bending the plurality of first flat tubes and the plurality of second flat tubes. ,
    The refrigeration apparatus (1) according to claim 3.
  5.  前記少なくとも1つの接続管は、前記第1ガス集合部材と前記第2ガス集合部材とを連通させる複数の接続管である、
    請求項1から4のいずれか一項に記載の冷凍装置(1)。
    The at least one connecting pipe is a plurality of connecting pipes for communicating the first gas collecting member and the second gas collecting member.
    The refrigeration apparatus (1) according to any one of claims 1 to 4.
  6.  前記接続管(161)は、前記長手方向に見て、前記仮想直線に対し前記複数の第2扁平管とは反対側に曲がっている、
    請求項1から5のいずれか一項に記載の冷凍装置。
    The connection pipe (161) is bent to the opposite side of the plurality of second flat tubes with respect to the virtual straight line when viewed in the longitudinal direction.
    The refrigeration apparatus according to any one of claims 1 to 5.
  7.  前記接続管は、一方の端部が楕円形状である、
    請求項6に記載の冷凍装置。
    The connecting pipe has an elliptical shape at one end.
    The refrigeration apparatus according to claim 6.
  8.  前記接続管は、両端部のうちの少なくとも一方にテーパー(611,621)が付けられている、
    請求項5または請求項6に記載の冷凍装置。
    The connecting pipe has a taper (611, 621) attached to at least one of both ends.
    The refrigeration apparatus according to claim 5 or 6.
  9.  前記接続管(161A)は、前記仮想直線に対し前記複数の第2扁平管とは反対側に向って前記第1ガス集合部材から延びる、
    請求項1から8のいずれか一項に記載の冷凍装置。
     
    The connecting pipe (161A) extends from the first gas collecting member toward the side opposite to the plurality of second flat pipes with respect to the virtual straight line.
    The refrigeration apparatus according to any one of claims 1 to 8.
PCT/JP2018/047901 2018-01-31 2018-12-26 Refrigeration device WO2019150864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-014961 2018-01-31
JP2018014961A JP6493575B1 (en) 2018-01-31 2018-01-31 Refrigeration system

Publications (1)

Publication Number Publication Date
WO2019150864A1 true WO2019150864A1 (en) 2019-08-08

Family

ID=65999161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047901 WO2019150864A1 (en) 2018-01-31 2018-12-26 Refrigeration device

Country Status (2)

Country Link
JP (1) JP6493575B1 (en)
WO (1) WO2019150864A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114234700B (en) * 2021-12-22 2022-12-13 珠海格力电器股份有限公司 Collecting pipe assembly, micro-channel heat exchanger and air conditioning system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492156U (en) * 1990-11-30 1992-08-11
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
WO2009063679A1 (en) * 2007-11-15 2009-05-22 Mitsubishi Electric Corporation Heat exchanger and heat pump system
WO2012017681A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Heat exchanger and refrigeration and air conditioning device
JP2014115057A (en) * 2012-12-12 2014-06-26 Daikin Ind Ltd Heat exchanger
WO2015025702A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle device, and method for producing heat exchanger
JP2016205744A (en) * 2015-04-27 2016-12-08 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2017015388A (en) * 2016-09-28 2017-01-19 ダイキン工業株式会社 Heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0492156U (en) * 1990-11-30 1992-08-11
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
WO2009063679A1 (en) * 2007-11-15 2009-05-22 Mitsubishi Electric Corporation Heat exchanger and heat pump system
WO2012017681A1 (en) * 2010-08-05 2012-02-09 三菱電機株式会社 Heat exchanger and refrigeration and air conditioning device
JP2014115057A (en) * 2012-12-12 2014-06-26 Daikin Ind Ltd Heat exchanger
WO2015025702A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle device, and method for producing heat exchanger
JP2016205744A (en) * 2015-04-27 2016-12-08 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2017015388A (en) * 2016-09-28 2017-01-19 ダイキン工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP6493575B1 (en) 2019-04-03
JP2019132516A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
KR101902017B1 (en) A heat exchanger and a manufacturing method the same
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
JP6305574B2 (en) Plate heat exchanger and heat pump outdoor unit
JP6923051B2 (en) Heat exchanger and heat pump equipment
CN111684233B (en) Heat exchanger and air conditioner
JP6520353B2 (en) Heat exchanger and air conditioner
EP2982924A1 (en) Heat exchanger
JPWO2018235215A1 (en) Heat exchangers, refrigeration cycle devices and air conditioners
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
WO2019150864A1 (en) Refrigeration device
JP6929451B2 (en) Air conditioner and heat exchanger
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
KR100893746B1 (en) Air conditioner
JP2004183960A (en) Heat exchanger
JP5664272B2 (en) Heat exchanger and air conditioner
JP7174291B1 (en) heat exchangers and air conditioners
JP5476789B2 (en) Heat exchanger
JP7137092B2 (en) Heat exchanger
WO2019058514A1 (en) Heat exchanger, refrigeration cycle device, and method for manufacturing heat exchanger
WO2022014516A1 (en) Heat exchanger
JP2015021664A (en) Heat exchanger and air conditioner
JP5849697B2 (en) Outdoor unit
WO2019167312A1 (en) Heat exchanger
WO2019078066A1 (en) Heat exchanger and air conditioning device with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18904156

Country of ref document: EP

Kind code of ref document: A1