WO2012017681A1 - Heat exchanger and refrigeration and air conditioning device - Google Patents

Heat exchanger and refrigeration and air conditioning device Download PDF

Info

Publication number
WO2012017681A1
WO2012017681A1 PCT/JP2011/004459 JP2011004459W WO2012017681A1 WO 2012017681 A1 WO2012017681 A1 WO 2012017681A1 JP 2011004459 W JP2011004459 W JP 2011004459W WO 2012017681 A1 WO2012017681 A1 WO 2012017681A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
inlet header
heat exchanger
liquid
gas
Prior art date
Application number
PCT/JP2011/004459
Other languages
French (fr)
Japanese (ja)
Inventor
寿守務 吉村
浩昭 中宗
瑞朗 酒井
宗史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11814315.5A priority Critical patent/EP2602578B1/en
Priority to JP2012527610A priority patent/JP5777622B2/en
Priority to US13/813,675 priority patent/US20130126127A1/en
Priority to CN2011800384129A priority patent/CN103069245A/en
Publication of WO2012017681A1 publication Critical patent/WO2012017681A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a heat exchanger for transferring heat from a high temperature fluid to a low temperature fluid by exchanging heat between the low temperature fluid and the high temperature fluid.
  • the present invention also relates to a refrigeration air conditioner using this heat exchanger.
  • a conventional heat exchanger is connected to both ends of a first flow path portion having a plurality of through-holes through which a low-temperature fluid flows, a second flow path portion having a plurality of through-holes through which a high-temperature fluid flows.
  • the first header and the second header connected to both ends of the second flow path section are provided, and the first flow path section and the second flow path section are parallel to each other in the longitudinal direction (fluid flow direction).
  • the respective surfaces are contact-laminated, and at least one of the high-temperature fluid and the low-temperature fluid is a gas-liquid two-phase fluid, and the inner diameter of the inlet header through which the gas-liquid two-phase fluid flows is By making it smaller than the inner diameter of the other headers, by mixing the gas and liquid in the pipe by increasing the gas flow rate, the gas and liquid are made uniform, and by distributing the cryogenic fluid to each through hole with the same gas-liquid ratio, Maximizes the temperature efficiency of the fluid and achieves high heat exchange performance Are (e.g., see Patent Document 1.).
  • JP 2008-101852 (paragraph 0036, FIG. 1)
  • a refrigeration air conditioner using a conventional heat exchanger as described above has a refrigerant circuit in which a compressor, a radiator, a flow rate control means, and an evaporator are connected by a refrigerant pipe, and an HFC (hydrofluorocarbon) refrigerant,
  • a refrigerant such as hydrocarbon or oxygen dioxide is configured to circulate in the refrigerant circuit.
  • it is important to improve the heat exchange performance of the heat exchanger.
  • the conventional heat exchanger as described above, when the gas-liquid two-phase refrigerant flows through the inlet header in a low flow rate region, the gas-liquid mixing becomes insufficient and the gas-liquid is separated. And the ratio of the gas-liquid distributed to each through-hole of a flow-path part will become non-uniform
  • the conventional heat exchanger as described above realizes an even distribution of gas and liquid in a wide operation range, and it is difficult to operate the heat exchanger efficiently.
  • the present invention has been made to solve the above-described problems, and aims to obtain a compact and high-performance heat exchanger and refrigeration air conditioner.
  • the heat exchanger of the present invention includes a first flow path portion having a plurality of through holes through which a high temperature fluid flows, a second flow path portion having a plurality of through holes through which a low temperature fluid flows, and one end of the first flow path portion.
  • a tubular first inlet header connected to the first flow path portion, a tubular first outlet header connected to the other end portion of the first flow path portion, and a tubular shape connected to one end portion of the second flow path portion.
  • a second inlet header and a tubular second outlet header connected to the other end of the second flow path portion, wherein the first flow path portion and the second flow path portion are provided between each other.
  • a high-temperature fluid that is arranged to be capable of exchanging heat through the partition wall and flows into the through hole of the first flow path portion from the first inlet header and a low-temperature fluid that flows into the through hole of the second flow path portion from the second inlet header Is a gas-liquid two-phase fluid, and the flow direction of the gas-liquid two-phase fluid from the inlet header to the flow path portion is In which it has an upper direction than the substantially horizontal direction or a substantially horizontal direction.
  • the refrigeration air conditioner of the present invention is equipped with the heat exchanger of the present invention.
  • a compact and high-performance heat exchanger can be provided. Further, according to the present invention, a compact and high-performance refrigeration air conditioner can be provided.
  • FIG. 1 is a view showing a heat exchanger according to Embodiment 1 of the present invention.
  • FIG. 1 (a) is a perspective view
  • FIG. 1 (b) is a side view
  • FIG. Sectional drawing of the connection part vicinity with 2 flat tubes is shown.
  • FH shown to Fig.1 (a) shows the flow of a high temperature fluid
  • FC shown to Fig.1 (a) shows the flow of a low temperature fluid.
  • FH shown to Fig.1 (a) shows the flow of a high temperature fluid
  • FC shown to Fig.1 (a) shows the flow of a low temperature fluid.
  • the case where a low-temperature fluid flows in into a 2nd header in a gas-liquid two-phase state is demonstrated.
  • symbol is the same or it corresponds, This is common in the whole text of a specification.
  • the second flatness shown in FIG. 1 is based on the knowledge obtained by the experiments shown in FIGS. 3 to 5, that is, the range of posture angles ⁇ , ⁇ , and ⁇ , which will be described later, excellent in heat transfer characteristics.
  • the inflow part 2a which becomes substantially horizontal at the end part of the pipe 2
  • Each of the first flat tubes 1 has a plurality of through holes through which a high-temperature fluid flows along the longitudinal direction (the left-right direction in FIG. 1B). This through hole is provided side by side in the width direction of the first flat tube 1 (in the direction orthogonal to the plane of FIG. 1B).
  • Each of the second flat tubes 2 has a plurality of through holes 21 through which a low-temperature fluid flows along the longitudinal direction (the left-right direction in FIG. 1B). The through hole 21 is provided side by side in the width direction of the second flat tube 2 (the direction perpendicular to the paper surface of FIG. 1B).
  • the 1st flat tube 1 and the 2nd flat tube 2 are laminated
  • the first flat tube 1 and the second flat tube 2 are laminated so that the flow directions of the fluid flowing in the flat tubes 1 and 2 are parallel to each other.
  • the 1st flat tube 1 and the 2nd flat tube 2 are joined by brazing, adhesion
  • the brazing material and flux used for brazing are those of aluminum / silicon or fluoride.
  • brazing material or flux used for brazing Zinc / aluminum and aluminum / cesium / fluoride materials are used.
  • the combination of brazing material and flux is more suitable as the former melting point and the latter activation temperature are closer, because the brazing property is improved by improving the flowability of the brazing material.
  • the first flat tube 1 has one end portion in the longitudinal direction connected to the side surface of the tubular first inlet header 3 and the other end portion connected to the side surface of the tubular first outlet header 4. That is, the through holes formed in the first flat tube 1 constitute a parallel flow path through which a high-temperature fluid flows.
  • An inflow portion 2 a that is one end portion in the longitudinal direction of the second flat tube 2 is connected to a side surface of the tubular second inlet header 5.
  • An outflow portion 2 d that is the other end portion in the longitudinal direction of the second flat tube 2 is connected to a side surface of the tubular second outlet header 6.
  • the inflow part 2a and the outflow part 2d are connected with the heat exchange part 2c through the bending part 2b. That is, the through hole 21 formed in the second flat tube 2 constitutes a parallel flow path through which a low-temperature fluid flows.
  • the first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 are respectively in the tube axis direction and the flat surfaces of the flat tubes 1 and 2 (that is, the flat tubes 1 and 2. Are arranged in parallel with each other. Further, the inflow portion 2a of the second flat tube 2 connected to the second inlet header 5 in which the low-temperature fluid flows in a gas-liquid two-phase state is substantially horizontal. That is, the flow path of the low-temperature fluid in a gas-liquid two-phase state flowing into the second flat tube 2 from the second inlet header 5 (in other words, the through hole 21 of the inflow portion 2a) is substantially horizontal.
  • the first flat tube 1 corresponds to the “first flow channel portion” of the present invention
  • the second flat tube 2 corresponds to the “second flow channel portion” of the present invention.
  • the high-temperature fluid flows in the order of the first inlet header 3, the first flat tube 1, and the first outlet header 4, and the low-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6,
  • Both fluids exchange heat through a contact portion between the flat tube 1 and the second flat tube 2 (more specifically, the heat exchanging portion 2c). That is, the high-temperature fluid flowing through the through hole of the first flat tube 1 and the low-temperature fluid flowing through the through hole of the second flat tube 2 are the first flat tube 1 and the second flat tube 2 that serve as a partition wall between the two through holes. Heat is exchanged through the outer shell.
  • the heat exchanger 10 is configured by several first flat tubes 1 and second flat tubes 2, but the number of the flat tubes 1 and 2 is the number of the first embodiment. Not limited to.
  • One first flat tube 1 and one second flat tube 2 may be alternately arranged along the flat surface to form a parallel flow path. Further, in the first embodiment, the first flat tube 1 and the second flat tube 2 are in contact with each other so that the flow directions of the fluids flowing in the respective tubes are parallel to each other. You may let them.
  • the 1st flat tube 1 and the 2nd flat tube 2 may be folded, and the 1st flat tube 1 and the 2nd flat tube 2 may be laminated
  • edge part of the inflow part 2a of the 2nd flat tube 2 has substantially corresponded to the inner surface of the 2nd inlet header 5
  • the edge part of the inflow part 2a of the 2nd flat tube 2 is the 1st.
  • the two inlet headers 5 may be protruded inside.
  • the end of the second flat tube 2 connected to the second inlet header 5 through which the gas-liquid two-phase fluid flows is substantially horizontal. That is, the outflow direction of the gas-liquid two-phase fluid flowing out from the second inlet header 5 to each through hole 21 (in other words, the inflow direction of the gas-liquid two-phase fluid flowing into each through hole 21) is substantially horizontal. . More specifically, in the case of the first embodiment, even if the flow rate of the refrigerant is reduced in the second inlet header 5 and the gas and liquid are separated vertically, the second flattening from the bottom of the second inlet header 5 occurs.
  • the gas-liquid distribution is improved. That is, for example, when the refrigerant flows vertically downward from the second inlet header 5 to each second flat tube 2, before the liquid level is formed in the second inlet header 5, the upstream side Since only the liquid tends to selectively flow out to the second flat tube 2, the gas-liquid distribution is deteriorated.
  • the end of the second flat tube 2 connected to the second inlet header 5 is substantially horizontal, so that has never been said.
  • the second flat tube 2 is bent outside the second inlet header 5 to form the inflow portion 2a.
  • the gas-liquid in the second inlet header 5 is formed.
  • the inflow portion 2a may be formed by bending the second flat tube 2 inside the second inlet header 5 to such an extent that the flow of the air is not disturbed.
  • the inflow portion 2a of the second flat tube 2 connected to the second inlet header 5 is kept substantially horizontal even when the direction of the heat exchanger 10 is reversed upside down. . For this reason, the distribution of gas and liquid does not deteriorate. Therefore, the heat exchanger 10 according to the first embodiment also has an effect that the degree of freedom in installation and the degree of freedom in connection and connection of piping are increased.
  • the distribution characteristics of a gas-liquid two-phase fluid to each through hole of a flat tube vary greatly depending on the outflow direction of the fluid flowing from the header to each through hole (in other words, the inflow direction of the fluid flowing into each through hole). To do. Therefore, the effect of this direction on the heat transfer characteristics of the heat exchanger 10 (that is, the distribution characteristics of the gas-liquid two-phase fluid) was examined by experiments (FIGS. 3 to 5). In the experiments shown in FIG. 3 to FIG. 5, warm water was allowed to flow through the first flat tube 1 as a high-temperature fluid, and low-temperature chlorofluorocarbon refrigerant in a gas-liquid two-phase state was flowed through the second flat tube 2 as a low-temperature fluid. And the heat-transfer characteristic KA (W / K) of the heat exchanger 10 was measured using the inlet-and-outlet temperature of each fluid, Formula 1 and Formula 2.
  • M h Mass flow rate of high-temperature fluid (kg / h)
  • Cp h Constant pressure specific heat of high-temperature fluid (J / kgK)
  • T hi High-temperature fluid inlet temperature
  • T ho High-temperature fluid outlet temperature
  • T CO 2 is the outlet temperature of the cryogenic fluid
  • T Ci is the inlet temperature of the cryogenic fluid.
  • the configuration of the heat exchanger 10 was set as follows.
  • the inner diameter D of the second inlet header 5 was 6 mm.
  • the through holes formed in the first flat tubes 1 were rectangular holes of about 1 mm square, and the total number of through holes formed in each first flat tube 1 was 60.
  • the through holes are formed side by side in the width direction of the first flat tube 1.
  • the through holes 21 formed in the second flat tube 2 were also rectangular holes of about 1 mm square, and the total number of through holes 21 formed in each second flat tube 2 was 60.
  • the through holes 21 are formed side by side in the width direction of the second flat tube 2.
  • the protruding length of the end portion of the first flat tube 1 from the inner surface of the header was 2 mm.
  • the heat transfer characteristic KA (W / K) was measured under the following conditions.
  • the mass flow rate M h of the high-temperature fluid was 600 kg / h.
  • Mass flow rate M c of the cryogen is in the range of 80 ⁇ 100kg / h.
  • the ratio of the mass flow rate of the gas to the total mass flow rate of the gas-liquid (ie, dryness X) of the cryogenic fluid was adjusted to 0.1 to 0.2.
  • the range of the dryness X is a general use range as the dryness of the inlet of the heat exchanger 10 used in a general refrigeration air conditioner.
  • the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 80 kg / h.
  • the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 90 kg / h.
  • Circles, the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 100 kg / h.
  • the refrigerant flow in the second inlet header 5 tends to be a flow in which the gas and liquid are vertically separated by the mass velocity. Further, in the state where the second inlet header 5 is nearly vertical, the flow of the refrigerant in the second inlet header 5 tends to cause the gas-liquid to be separated into an annular shape due to the mass velocity. For example, such a difference in properties between the horizontal and vertical headers occurs when the attitude angle ⁇ or ⁇ is around 45 °.
  • FIG. 3 shows that the second inlet header 5 is arranged in the horizontal direction, and the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2 (in other words, flows into the through hole 21).
  • FIG. 3A is an explanatory diagram of the posture angle ⁇ .
  • FIG. 3B is a layout diagram of the heat exchanger 10 at the main posture angle ⁇ .
  • FIG. 3C shows the experimental results and shows the relationship between the posture angle ⁇ and the heat transfer characteristic (relative value).
  • the heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis of FIG. 3 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio becomes uniform.
  • the heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction.
  • the posture angle ⁇ 90 °
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is the horizontal direction.
  • 90 ° ⁇ attitude angle ⁇ ⁇ 180 ° the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is lower than the horizontal direction.
  • the attitude angle ⁇ is set to approximately ⁇ 90 ° or approximately 90 °, even if the flow velocity decreases in the second inlet header 5 and the gas-liquid is separated vertically, the second inlet header 5
  • the inflow portion into the second flat tube 2 is not always filled with the liquid phase, and only the liquid selectively flows out into the second flat tube 2 on the upstream side, and the distribution of gas and liquid is deteriorated. Absent.
  • the attitude angle ⁇ is around 0 °, the liquid tends to flow into the second flat tube 2 on the back side as viewed from the inlet side of the second header 5 due to the inertia of the liquid, but the flow is caused by gravity acting on the liquid. This suppresses the deterioration of distribution to some extent.
  • FIG. 4 shows the transmission when the orientation angle ⁇ of the second inlet header 5 is changed with the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2.
  • FIG. 4A is an explanatory diagram of the posture angle ⁇ .
  • FIG. 4B is a layout diagram of the heat exchanger 10 at main posture angles ⁇ .
  • FIG. 4C shows the experimental results and shows the relationship between the posture angle ⁇ and the heat transfer characteristic (relative value).
  • the heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis in FIG. 4 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio is uniform.
  • the heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
  • the edge part of the 2nd flat tube 2 shown in FIG. 4 becomes a structure without a bending part. That is, the 2nd flat tube 2 shown in FIG. 4 becomes the structure by which the inflow part 2a and the outflow part 2d, and the heat exchange part 2c became parallel.
  • the posture angle ⁇ 0 °
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is the horizontal direction.
  • 0 ° ⁇ attitude angle ⁇ ⁇ 90 ° the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is downward from the horizontal direction.
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is a vertically downward direction.
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is upward from the horizontal direction.
  • the attitude angle ⁇ ⁇ 90 °
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is a vertically upward direction.
  • the heat transfer characteristics of the heat exchanger 10 tend to be slightly higher when the second inlet header 5 is vertical, but the posture angle ⁇ is relative to the posture of the second inlet header 5. It was found that the impact was relatively small.
  • FIG. 5 shows the heat transfer characteristics when both the attitude of the second inlet header 5 and the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out to the through hole 21 of the second flat tube 2 are changed.
  • FIG. 5A is an explanatory diagram of the posture angle ⁇ .
  • FIG. 5B is a layout diagram of the heat exchanger 10 at the main posture angle ⁇ .
  • FIG. 5C shows the experimental results and shows the relationship between the posture angle ⁇ and the heat transfer characteristic (relative value).
  • the heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis in FIG. 5 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio becomes uniform.
  • the heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
  • the end of the second flat tube 2 shown in FIG. 5 has one bent portion. That is, the 2nd flat tube 2 shown in FIG. 5 becomes a structure by which the inflow part 2a and the outflow part 2d are directly connected to the heat exchange part 2c (not via the bending part 2b).
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid flowing into the second inlet header 5
  • the inflow direction of (gas-liquid two-phase state) is a vertically downward direction.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction, and to the second inlet header 5
  • the inflow direction of the inflowing low-temperature fluid (gas-liquid two-phase state) is downward from the horizontal direction.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is a vertically upward direction and flows into the second inlet header 5
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) is horizontal.
  • 90 ° ⁇ attitude angle ⁇ ⁇ 180 ° the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction, and the second inlet The inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the header 5 is upward from the horizontal direction.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid (air) flowing into the second inlet header 5
  • the inflow direction of the liquid two-phase state is a vertically upward direction.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is lower than the horizontal direction, and the second inlet The inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the header 5 is downward from the horizontal direction.
  • the attitude angle ⁇ ⁇ 90 °
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is a vertically downward direction
  • the second inlet header 5 The inflow direction of the inflowing low-temperature fluid (gas-liquid two-phase state) is the horizontal direction.
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is lower than the horizontal direction.
  • the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the two inlet header 5 is downward from the horizontal direction.
  • the attitude angle ⁇ ⁇ 180 °
  • the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid flowing into the second inlet header 5 (
  • the inflow direction of the gas-liquid two-phase state is a vertically downward direction.
  • the heat transfer characteristics can be maintained high when 0 ° ⁇ attitude angle ⁇ ⁇ 180 °.
  • the heat transfer characteristics were found to be highest when the posture angle ⁇ was around 90 ° and around 180 °. Further, it has been found that when the posture angle ⁇ is smaller than 0 °, the heat transfer characteristics are rapidly deteriorated. That is, from this result, it was found that when 0 ° ⁇ attitude angle ⁇ ⁇ 180 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 is substantially equal. Further, it has been found that when the posture angle ⁇ is around 90 ° and around 180 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 can be made more equal.
  • the heat exchanger 10 shown in Embodiment 1 of the present invention includes the high-temperature fluid flowing from the first inlet header 3 into the through hole of the first flat tube 1 and the second flat tube from the second inlet header 4. At least one of the low-temperature fluids flowing into the two through holes 21 is a gas-liquid two-phase fluid.
  • the inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flat tube is substantially horizontal or upward from the substantially horizontal direction. For this reason, even if the flow velocity decreases in the second inlet header 5 and the gas-liquid is separated into upper and lower parts, the inflow portion from the second inlet header 5 to the second flat tube 2 is always filled with the liquid phase.
  • the heat exchange performance of the heat exchanger 10 can be improved.
  • a compact and high-performance heat exchanger can be obtained.
  • FIG. 1 The configuration of the heat exchanger 10 shown in the first embodiment is merely an example.
  • the heat exchanger 10 may be configured as follows. In the following description, differences from the heat exchanger 10 according to Embodiment 1 will be mainly described.
  • FIG. 6 is a side view showing an example of a heat exchanger according to Embodiment 2 of the present invention.
  • the bent portion 2b of the second flat tube 2 has a substantially U-shaped cross section. That is, the bending part 2b which connects the inflow part 2a of the 2nd flat tube 2 and the heat exchange part 2c is arrange
  • the heat exchanger 10 configured in this manner is compact because the height in the stacking direction of the flat tubes 1 and 2 can be suppressed in addition to the effects of the first embodiment.
  • the second flat tube 2 of the heat exchanger 10 shown in FIG. 6B is reverse in the bending direction between the end on the second inlet header 5 side and the end on the second outlet header 6 side. ing.
  • the 1st flat tube 1 is provided with the inflow part 1a, the heat exchange part 1c, the outflow part 1d, and the bending part 1b.
  • the inflow portion 1a is connected to the first inlet header 3, and the flow path is substantially horizontal.
  • the outflow portion 1d is connected to the first outlet header 4, and the flow path is substantially horizontal.
  • the heat exchanging portion 1c and the heat exchanging portion 2c of the second flat tube 2 are laminated so that their flat surfaces are in contact with each other.
  • the bent portion 1b connects between the inflow portion 1a and the heat exchange portion 1c and between the heat exchange portion 1c and the outflow portion 1d.
  • the bending direction of the end portion on the first inlet header 3 side of the first flat tube 1 is the same as the bending direction of the end portion on the second outlet header 6 side of the second flat tube 2.
  • the bending direction of the end portion on the first outlet header 4 side of the first flat tube 1 is the same as the bending direction of the end portion on the second inlet header 5 side of the second flat tube 2.
  • the installation space in the height direction can be made compact. That is, in order to increase the heat exchange capability, when installing a plurality of heat exchangers 10 stacked in the stacking direction of the flat tubes 1 and 2, while preventing interference between the headers 3, 4, 5 and 6, The clearance in the height direction of the heat exchanger 10 can be reduced.
  • the heat exchanger 10 shown in FIG. 6C is provided with a second flat tube below the first flat tube 1 in addition to the first flat tube 1.
  • positioned above the 1st flat tube 1 is equipped with inflow part 2Aa, heat exchange part 2Ac, outflow part 2Ad, and bending part 2Ab.
  • the inflow portion 2Aa is connected to the second inlet header 5A, and the flow path is substantially horizontal.
  • the outflow portion 2Ad is connected to the second outlet header 6A, and the flow path is substantially horizontal.
  • Heat exchange part 2Ac and 1st flat tube 1 are laminated so that a mutually flat surface may contact.
  • the bent portion 2Ab connects between the inflow portion 2Aa and the heat exchange portion 2Ac and between the heat exchange portion 2Ac and the outflow portion 2Ad.
  • the end of the second flat tube 2A is bent so as to ride over the first inlet header 3 and the first outlet header 4.
  • the second flat tube 2B disposed below the first flat tube 1 includes an inflow portion 2Ba, a heat exchange portion 2Bc, an outflow portion 2Bd, and a bent portion 2Bb.
  • the inflow portion 2Ba is connected to the second inlet header 5B, and the flow path is substantially horizontal.
  • the outflow portion 2Bd is connected to the second outlet header 6B, and the flow path is substantially horizontal.
  • Heat exchange part 2Bc and 1st flat tube 1 are laminated so that a mutual flat surface may contact.
  • the bent portion 2Bb connects between the inflow portion 2Ba and the heat exchange portion 2Bc and between the heat exchange portion 2Bc and the outflow portion 2Bd.
  • the end of the second flat tube 2B is bent so as to go below the first inlet header 3 and the first outlet header 4.
  • Two second flat tubes 2A and 2B are arranged with respect to one first flat tube 1, such as when heat exchange capacity is increased or heat transfer / flow characteristics of the second flat tube 2 are optimized.
  • the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2A is substantially horizontal.
  • the outflow direction when the low-temperature fluid of a gas-liquid two-phase state flows out into the through-hole 21 of the 2nd flat tube 2B is substantially horizontal.
  • the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 can be made equal, and the compact and high-performance heat exchanger 10 can be obtained.
  • Embodiment 3 FIG.
  • the heat exchanger 10 of Embodiment 1 or Embodiment 2 is mounted on a refrigerating and air-conditioning apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator.
  • a refrigerating and air-conditioning apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator.
  • FIG. 7 is a refrigerant circuit diagram illustrating an example of a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the refrigerating and air-conditioning apparatus shown in FIG. 7 has a first refrigerant circuit in which a first compressor 30, a first radiator 31, a first decompressor 32, and a first cooler 33 are sequentially connected by piping.
  • the first refrigerant circuit is configured so that the first refrigerant, which is a high-temperature fluid, circulates and operates in a vapor compression refrigeration cycle.
  • the heat exchanger 10 is disposed between the first radiator 31 of the first refrigerant circuit and the first pressure reducing device 32, and the first inlet header 3 of the heat exchanger 10 is connected to the first radiator 31.
  • the first outlet header 4 is connected to the first pressure reducing device 32.
  • this refrigeration air conditioner has a second refrigerant circuit in which the heat exchanger 10, the second compressor 40, the second radiator 41, and the second decompression device 42 are connected in order by piping.
  • the second outlet header 6 of the heat exchanger 10 is connected to the second compressor 40, and the second inlet header 5 is connected to the second decompression device 42.
  • the second refrigerant circuit is configured so that the second refrigerant, which is a low-temperature fluid, circulates and operates in a vapor compression refrigeration cycle.
  • refrigerants such as carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, and ammonia are used.
  • carbon dioxide is used as the first refrigerant.
  • the first refrigerant is compressed by the first compressor 30 and discharged as a high-temperature and high-pressure supercritical fluid.
  • coolant used as the high temperature / high pressure supercritical fluid is sent to the 1st heat radiator 31, heat exchanges with air etc. in the 1st heat radiator 31, temperature falls, and it becomes a high pressure supercritical fluid.
  • the first refrigerant, which has become a high-pressure supercritical fluid, is cooled by the heat exchanger 10 and the temperature is lowered. Then, the first refrigerant flows into the first decompression device 32 and is decompressed to change into a low-temperature and low-pressure gas-liquid two-phase flow state. Then, it is sent to the first cooler 33.
  • the first refrigerant in a low-temperature and low-pressure gas-liquid two-phase flow state is evaporated by exchanging heat with air or the like in the first cooler 33 and returns to the first compressor 30.
  • the second refrigerant is compressed by the second compressor 40 and discharged as high-temperature and high-pressure steam.
  • the second refrigerant that has become high-temperature and high-pressure vapor is sent to the second radiator 41, and heat exchange with the air or the like is performed by the second radiator 41 to lower the temperature, and become a high-pressure liquid.
  • the second refrigerant that has become a high-pressure liquid is decompressed by the second decompression device 42, changes to a low-temperature gas-liquid two-phase flow state, and is sent to the heat exchanger 10.
  • the second refrigerant in the low-temperature gas-liquid two-phase flow state is heated by the heat exchanger 10 to become steam and returns to the second compressor 40.
  • the refrigeration air conditioner configured as described above, it is possible to ensure a large degree of supercooling of the refrigerant that has flowed out of the first radiator 31, and to greatly improve the efficiency of the refrigeration air conditioner. Even when an HFC refrigerant, HC refrigerant, HFO refrigerant, or ammonia is used as the first refrigerant flowing through the first refrigerant circuit, a large degree of supercooling of the refrigerant that has flowed out of the first radiator 31 is ensured. This improves the efficiency of the refrigeration air conditioner. When the first refrigerant in the first refrigerant circuit is carbon dioxide and radiates heat at a critical point or higher, the efficiency of the refrigeration air conditioner is particularly improved.
  • the second refrigerant circuit is a vapor compression refrigeration cycle.
  • the second refrigerant is brine (antifreeze) such as water or ethylene glycol aqueous solution, and the second compressor 40 is pumped. You may comprise.
  • FIG. 8 is a refrigerant circuit diagram illustrating another example of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the refrigeration air conditioner shown in FIG. 8 omits the first radiator 31 from the configuration of the refrigeration air conditioner shown in FIG. 7, and exchanges all heat of the first refrigerant that is high-temperature and high-pressure steam discharged from the first compressor 30. It is cooled by the vessel 10. That is, the refrigeration air conditioner shown in FIG. 8 is a so-called secondary loop type refrigeration air conditioner.
  • the heat exchanger 10 is used as the first radiator 31.
  • the necessary heat exchange amount is increased in the heat exchanger 10, and the volume ratio in the entire refrigeration air conditioner is larger than that in the case where the first radiator 31 is provided.
  • FIG. 9 is a refrigerant circuit diagram illustrating still another example of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
  • the refrigeration air conditioner shown in FIG. 9 includes a refrigerant circuit in which a first compressor 30, a first radiator 31, a first decompressor 32, and a first cooler 33 are connected in order. Further, the refrigeration air conditioner shown in FIG. 9 includes a bypass pipe 52. One end of the bypass pipe 52 is connected between the first radiator 31 and the first pressure reducing device 32, and the other end is an injection port 53 provided in the middle of the refrigerant compression process in the first compressor 30, or here Then, although not shown, it is connected between the compressor 30 and the first cooler 33.
  • the heat exchanger 10 is disposed between the first heat radiator 31 and the first pressure reducing device 32 in the refrigerant circuit and at a position in the middle of the bypass pipe 52.
  • the first inlet header 3 and the first radiator 31 are connected, and the first outlet header 4 and the first pressure reducing device 32 are connected.
  • the heat exchanger 10 is connected to the second inlet header 5 and the bypass pressure reducing device 51, and is connected to the second outlet header 6 and the injection port 53, or although not shown here, the compressor 30 and the first cooler 33. Are connected.
  • the refrigerant (low-temperature fluid) decompressed by the bypass decompression device 51 changes to a low-temperature gas-liquid two-phase flow state, and exchanges heat with the refrigerant (high-temperature fluid) flowing out from the first radiator 31 by the heat exchanger 10. It is sent to the injection port 53 of the first compressor 30.
  • refrigerants such as HFC refrigerant, HC refrigerant, HFO refrigerant, ammonia, and carbon dioxide are used.
  • the outlet of the first radiator 31 is cooled, particularly when the outside air temperature is high and the temperature of the high-temperature fluid at the outlet of the first radiator 31 is relatively high, The temperature difference can be sufficiently large. For this reason, the temperature of the low-temperature fluid flowing into the injection port 53 can be maintained high, and the high efficiency of the first compressor 30 can be ensured.
  • the first effect is achieved without reducing the refrigeration effect as compared with the case where the heat exchanger 10 is not used.
  • the flow rate of the refrigerant flowing through the cooler 33 can be reduced.
  • the piping length between the first compressor 30 and the first cooler 33 is long, it is possible to suppress a decrease in performance due to an increase in pressure loss, which is useful.
  • Embodiment 4 FIG.
  • the first flat tube 1 through which the high-temperature fluid flows and the second flat tube 2 through which the low-temperature fluid flows are configured separately, and the first flat tube 1 and the second flat tube 2 are formed separately.
  • the heat exchanger 10 in which the flat surfaces of the tube 2 are joined together by brazing or the like and laminated together has been described. That is, in the first embodiment and the second embodiment, the heat exchanger 10 is described in which the refrigerant flow path through which the high-temperature fluid flows and the refrigerant flow path through which the low-temperature fluid flows are formed as separate parts.
  • the heat exchanger 10 may be configured by forming the refrigerant flow path through which the high-temperature fluid flows and the refrigerant flow path through which the low-temperature fluid flows in the same component (that is, the first flow path according to the present invention). Part and the second flow path part may be integrally formed). And you may mount the heat exchanger 10 comprised in this way in the refrigerating air conditioner as shown in Embodiment 3.
  • FIG. in the fourth embodiment items that are not particularly described are the same as those in the first to third embodiments.
  • FIG. 10 is a structural diagram of a heat exchanger according to Embodiment 4 of the present invention.
  • Fig.10 (a) is a perspective view of the heat exchanger 10
  • FIG.10 (b) is A arrow view of Fig.10 (a).
  • a plurality of first refrigerant flow paths 101 a through which a first refrigerant (for example, high-temperature fluid) flows are, for example, in the longitudinal direction ( It is formed penetrating in the vertical direction of FIG.
  • the main body 110 is formed with a plurality of second refrigerant flow paths 102a through which a second refrigerant (for example, low-temperature fluid) flows, for example, penetrating in the longitudinal direction (vertical direction in FIG. 10).
  • second refrigerant for example, low-temperature fluid
  • These second refrigerant flow paths 102 a are arranged in parallel to constitute the second refrigerant path 102.
  • the first refrigerant path 101 and the second refrigerant 102 are arranged such that the juxtaposed direction of the first refrigerant channel 101a and the juxtaposed direction of the second refrigerant channel 102a are aligned.
  • the first refrigerant path 101 that is, the first refrigerant flow path 101a
  • the second refrigerant path 102 that is, the second refrigerant flow path 102a
  • “aligning” does not mean that the juxtaposed direction of the first refrigerant flow path 101a and the juxtaposed direction of the second refrigerant flow path 102a are strictly parallel. It shows that the direction is substantially aligned. For this reason, even if the juxtaposed direction of the first refrigerant channel 101a and the juxtaposed direction of the second refrigerant channel 102a are slightly inclined, in the fourth embodiment, the juxtaposed direction of both is “aligned”. Express.
  • the first refrigerant path 101 and the second refrigerant path 102 are integrally formed.
  • the main body 110 in which the first refrigerant path 101 and the second refrigerant path 102 are formed is formed of, for example, aluminum or aluminum alloy, copper or copper alloy, steel, or stainless alloy, and is manufactured by extrusion or pultrusion molding or the like. Is done.
  • a second inlet communication hole 105a that communicates with all the second refrigerant flow paths 102a is formed along one of the two ends of the main body 110 in the refrigerant flow direction along the direction in which the second refrigerant flow paths 102a are juxtaposed.
  • second outlet communication holes 106a communicating with all the second refrigerant flow paths 102a are formed along the parallel direction of the second refrigerant flow paths 102a. That is, in the heat exchanger 10 shown in FIG. 10, the second inlet communication hole 105a and the second outlet communication hole 106a are horizontally arranged.
  • all the first refrigerant flow paths 101a are arranged along the direction in which the first refrigerant flow paths 101a are arranged on both sides of the main body 110 in the refrigerant flow direction on the side where the second outlet communication holes 106a are formed.
  • a first inlet communication hole 103a communicating with the first inlet hole 103a is formed.
  • all the first refrigerant flow paths 101a are arranged along the parallel arrangement direction of the first refrigerant flow paths 101a.
  • a first outlet communication hole 104a that communicates is formed. That is, in the heat exchanger 10 shown in FIG. 10, the first inlet communication hole 103a and the first outlet communication hole 104a are horizontally arranged.
  • first inlet communication hole 103a and the second outlet communication hole 106a are formed slightly shifted in the refrigerant flow direction of the first refrigerant channel 101a (in other words, the second refrigerant channel 102a). Further, the first outlet communication hole 104a and the second inlet communication hole 105a are formed with a slight shift in the refrigerant flow direction of the first refrigerant flow path 101a (in other words, the second refrigerant flow path 102a).
  • the penetration direction of the first inlet communication hole 103a and the first outlet communication hole 104a is not necessarily perpendicular to the direction of each first refrigerant flow path 101a. Further, the penetrating direction of the second inlet communication hole 105a and the second outlet communication hole 106a is not necessarily perpendicular to the direction of the second refrigerant channel 102a.
  • first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a is opened, and the first inlet connection so as to communicate with the outside respectively.
  • the pipe 103, the first outlet connecting pipe 104, the second inlet connecting pipe 105, and the second outlet connecting pipe 106 are connected.
  • the other ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are closed by a sealing member or the like.
  • the opening (or closing) side end portions of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are all on the same side. Yes.
  • the opening (or closing) side end portions of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are limited to the positions shown in FIG. Instead, each communication hole need not be on the same side as long as one end is opened and the other end is closed.
  • both ends of the plurality of first refrigerant channels 101a and second refrigerant channels 102a formed so as to penetrate in the longitudinal direction of the main body 110 are sealed by pinching or the like or sealed by a sealing member (Not shown).
  • the heat exchanger 10 according to the fourth embodiment is assumed to be used in a posture in which a low-temperature fluid and a high-temperature fluid flow in the vertical direction as shown in FIG. Further, in the heat exchanger 10 according to the fourth embodiment, the low-temperature fluid in the gas-liquid two-phase state flows through each second refrigerant flow in the second refrigerant path via the second inlet connection pipe 105 and the second inlet communication hole 105a. This is assumed to flow into the path 102a. For this reason, the heat exchanger 10 according to the fourth embodiment is based on the knowledge obtained by the experiments shown in FIGS. 3 to 5 of the first embodiment, that is, the above-described attitude angles ⁇ , ⁇ excellent in heat transfer characteristics. , ⁇ , the second inlet communication hole 105a is arranged at the following position.
  • the central axis of the second inlet communication hole 105a is the second inlet communication hole 105a and the second refrigerant path 102 (that is, , A position that coincides with a connection portion with each second refrigerant flow path 102a), or a position that is farther from the first refrigerant path 101 (that is, each first refrigerant flow path 101a) than the connection portion.
  • the second flow path portion 102 and the second inlet header 5 are set to a posture angle ⁇ of 0 ° ⁇ ⁇ ⁇ 110 ° (in the same direction as FIG. 3). When positive, the connection is made at ⁇ 110 ° ⁇ ⁇ 0).
  • the first refrigerant path 101, the second refrigerant path 102, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second inlet communication hole 106a are the “first flow” of the present invention. It corresponds to a “channel portion”, “second flow path portion”, “first inlet header”, “first outlet header”, “second inlet header”, and “second outlet header”.
  • the high-temperature fluid flows into the first inlet communication hole 103a through the first inlet connection pipe 103, flows in the order of the first refrigerant path 101, and the first outlet communication hole 104a, and then passes through the first outlet connection pipe 104. leak.
  • the low-temperature fluid flows into the second inlet communication hole 105a through the second inlet connection pipe 105 in a gas-liquid two-phase state, and flows in the order of the second refrigerant path 102 and the second outlet communication hole 106a. And flows out from the second outlet connecting pipe 106.
  • heat exchange is performed between the high-temperature fluid flowing through the first refrigerant path 101 and the low-temperature fluid flowing through the second refrigerant path 102 in a counterflow through a partition between the refrigerant paths.
  • the second inlet communication hole 105a when the second inlet communication hole 105a is observed in the central axis direction of the second inlet communication hole 105a, the second inlet communication hole 105a
  • the central axis corresponds to a connection portion between the second inlet communication hole 105a and the second refrigerant path 102 (that is, each second refrigerant flow path 102a), or the first refrigerant path 101 (that is, the connection portion).
  • the first refrigerant flow path 101a) is away from each other.
  • the posture angle ⁇ when the low-temperature refrigerant in the gas-liquid two-phase state flows into the second refrigerant path 102 from the second inlet communication hole 105a is 0 ° ⁇ ⁇ ⁇ 110 °.
  • the low-temperature refrigerant in the gas-liquid two-phase state is easily distributed to each second refrigerant flow path 102a of the second refrigerant path 102 at a substantially equal gas-liquid ratio, and the heat exchanger 10 with stable performance is obtained.
  • the distribution characteristics of the gas phase component and the liquid phase component of the low-temperature fluid Is most preferred. Then, the distance between the adjacent first refrigerant path 101 and the second refrigerant path 102 can be reduced. For this reason, when the direction of the arrow in FIG. 10B is a positive direction, the second inlet communication hole 105a is formed so as to satisfy 80 ° ⁇ ⁇ 100 °. And the performance of the heat exchanger 10 can be further improved.
  • first inlet communication hole 103a and the first outlet communication hole 104a are provided inside the main body 110 of the heat exchanger 10, it is not necessary to provide a separate header pipe for connecting to the first refrigerant path 101.
  • the heat exchanger 10 can be made compact and the manufacturing process can be simplified. The same applies to the second inlet communication hole 105a and the second outlet communication hole 106a for the second refrigerant path 102.
  • first inlet communication hole 103a and the second outlet communication hole 106a, and the first outlet communication hole 104a and the second inlet communication hole 105a are formed slightly shifted in the flow direction of each fluid, Compared with the case where it does not shift, the distance between the adjacent first refrigerant path 101 and the second refrigerant path 102 can be reduced, and the heat exchanger 10 can be made compact.
  • the first refrigerant flow path 101a and the second refrigerant flow path 102a have rectangular cross-sectional shapes.
  • the shape of the cross section is not limited to a rectangle.
  • the cross sections of the first refrigerant flow path 101a and the second refrigerant flow path 102a may be formed in a polygonal shape, for example, or may be circular in order to improve pressure resistance.
  • the cross sections of the first refrigerant flow path 101a and the second refrigerant flow path 102a may be long holes or ellipses.
  • a groove may be provided on the inner surface of the first refrigerant channel 101a or the second refrigerant channel 102a to increase the heat transfer area. In this case, if this groove is processed at the same time as extrusion molding or pultrusion molding of the main body 10, the manufacturing operation can be simplified.
  • the number of the first refrigerant flow paths 101a of the first refrigerant path 101 and the second refrigerant flow paths 102a of the second refrigerant path 102 is set as shown in FIG. Although the number is the same, it is not limited to this. That is, different numbers are used so that the heat exchanger 10 has a high heat transfer performance, a low pressure loss, and a suitable heat exchanger 10 according to the operating conditions or flow property values of the high temperature fluid and the low temperature fluid in the heat exchanger 10. It is good.
  • the high-temperature fluid flowing through the first refrigerant path 101 and the low-temperature fluid flowing through the second refrigerant path 102 are assumed to perform heat exchange in a counterflow, but are not limited thereto. It is good also as what implements heat exchange as a parallel flow. For example, if the high temperature fluid flows in from the first inlet connecting pipe 103 and the low temperature fluid flows in from the second outlet connecting pipe 106, the high temperature fluid and the low temperature fluid become parallel flows.
  • the heat exchanger 10 used in a posture in which the low-temperature fluid and the high-temperature fluid flow in the vertical direction has been described, but in the fourth embodiment in which the first refrigerant path 101 and the second refrigerant path 102 are integrally formed.
  • the installation posture of the heat exchanger 10 is not limited to the posture shown in FIG.
  • FIG. 11 is a structural diagram showing another example of a heat exchanger according to Embodiment 4 of the present invention.
  • Fig.11 (a) is a perspective view of the heat exchanger 10
  • FIG.11 (b) is A arrow view of Fig.11 (a).
  • the heat exchanger 10 shown in FIG. 11 is assumed to be used in a posture in which a low-temperature fluid and a high-temperature fluid flow in the left-right direction (substantially horizontal direction). That is, in the heat exchanger 10 shown in FIG. 11, the first refrigerant path 101 (that is, the first refrigerant flow path 101a) and the second refrigerant path 102 (that is, the second refrigerant flow path 102a) are arranged horizontally. It is.
  • the other configuration is the same as that of the heat exchanger 10 shown in FIG. 10, and has the same effect. 10 and FIG. 11 have the same function and operation, and thus description of the function and operation is omitted.
  • the central axis of the second inlet communication hole 105a is The position corresponding to the connection portion between the two inlet communication holes 105a and the second refrigerant path 102 (that is, each second refrigerant flow path 102a), or the first refrigerant path 101 (that is, each first refrigerant than the connection portion). What is necessary is just to set it as the position away from the flow path 101a).
  • the attitude angle ⁇ when the low-temperature refrigerant in the gas-liquid two-phase state flows into the second refrigerant path 102 from the second inlet communication hole 105a can be set to 0 ⁇ ⁇ 90 °.
  • the low-temperature refrigerant in the gas-liquid two-phase state is easily distributed to each second refrigerant flow path 102a of the second refrigerant path 102 at a substantially equal gas-liquid ratio, and the heat exchanger 10 with stable performance is obtained.
  • 80 ° ⁇ ⁇ 100 ° is most suitable as the distribution characteristic.
  • the posture angle ⁇ that can suppress the thermal resistance due to heat conduction and improve the performance is at least between 0 ⁇ ⁇ 90 °.
  • a low-temperature fluid in a gas-liquid two-phase state is caused to flow from the second outlet connection pipe 106 and the second inlet connection pipe.
  • a usage pattern in which a low-temperature fluid flows out from 105 is also assumed.
  • the central axis of the second outlet communication hole 106a is connected to the second outlet communication hole 106a and the second refrigerant path 102 ( That is, it is set to a position that coincides with a connection portion with each second refrigerant flow path 102a) or a position farther from the first refrigerant path 101 (that is, each first refrigerant flow path 101a) than the connection portion.

Abstract

A heat exchanger (10) is provided with first flat tubes (1) having multiple through-holes through which a high-temperature fluid flows, second flat tubes (2) having multiple through-holes (21) through which a low-temperature fluid flows, a tube-shape first inlet header (3) connected to one end of the first flat tubes (1), a tube-shape first outlet header (4) connected to the other end of the first flat tubes (1), a tube-shape second inlet header (5) connected to one end of the second flat tubes (2), and a tube-shape second outlet header (6) connected to the other end of the second flat tubes (2), wherein the first flat tubes (1) and the second flat tubes (2) are stacked so as be in contact with another on the flat surface. The low-temperature fluid flowing from the second inlet header (5) into the through-holes (21) of the second flat tubes (2) is in a gas-liquid two-phase state, and the direction of flow of the low-temperature fluid from the second inlet header (5) into the through-holes (21) of the second flat tubes (2) is either substantially horizontal or more upwards than substantially horizontal.

Description

熱交換器及び冷凍空調装置Heat exchanger and refrigeration air conditioner
 本発明は、低温流体と高温流体とを熱交換させて高温流体から低温流体に熱を伝える熱交換器に関するものである。また、この熱交換器を用いた冷凍空調装置に関するものである。 The present invention relates to a heat exchanger for transferring heat from a high temperature fluid to a low temperature fluid by exchanging heat between the low temperature fluid and the high temperature fluid. The present invention also relates to a refrigeration air conditioner using this heat exchanger.
 従来の熱交換器は、低温流体が流れる複数の貫通穴を有する第1流路部と、高温流体が流れる複数の貫通穴を有する第2流路部と、第1流路部の両端に接続された第1ヘッダーと、第2流路部の両端に接続された第2ヘッダーとを備え、第1流路部と第2流路部とを長手方向(流体の流れ方向)が並行になるようにして、それぞれの面同士を接触積層させるとともに、高温流体及び低温流体の少なくとも一方は、気液二相状態の流体であり、気液二相状態の流体が流れる入口ヘッダーの内直径は、他のヘッダーの内直径より小さくすることにより、ガス流速の増加により管内での気液のミキシングにより、気液を均一化させ、気液比率が等しく各貫通穴へ低温流体を分配することによって、流体の温度効率を最大化し、高い熱交換性能を得ている(例えば、特許文献1参照。)。 A conventional heat exchanger is connected to both ends of a first flow path portion having a plurality of through-holes through which a low-temperature fluid flows, a second flow path portion having a plurality of through-holes through which a high-temperature fluid flows. The first header and the second header connected to both ends of the second flow path section are provided, and the first flow path section and the second flow path section are parallel to each other in the longitudinal direction (fluid flow direction). In this manner, the respective surfaces are contact-laminated, and at least one of the high-temperature fluid and the low-temperature fluid is a gas-liquid two-phase fluid, and the inner diameter of the inlet header through which the gas-liquid two-phase fluid flows is By making it smaller than the inner diameter of the other headers, by mixing the gas and liquid in the pipe by increasing the gas flow rate, the gas and liquid are made uniform, and by distributing the cryogenic fluid to each through hole with the same gas-liquid ratio, Maximizes the temperature efficiency of the fluid and achieves high heat exchange performance Are (e.g., see Patent Document 1.).
特開2008-101852号公報(段落0036、図1)JP 2008-101852 (paragraph 0036, FIG. 1)
 上記のような従来の熱交換器を用いた冷凍空調装置は、圧縮機、放熱器、流量制御手段及び蒸発器が冷媒配管で接続された冷媒回路を有し、HFC(ハイドロフルオロカーボン)系冷媒、炭化水素又は二酸化酸素等の冷媒がこの冷媒回路を循環するように構成されている。冷凍空調装置の効率を上げるためには、熱交換器の熱交換性能を上げることが重要となる。 A refrigeration air conditioner using a conventional heat exchanger as described above has a refrigerant circuit in which a compressor, a radiator, a flow rate control means, and an evaporator are connected by a refrigerant pipe, and an HFC (hydrofluorocarbon) refrigerant, A refrigerant such as hydrocarbon or oxygen dioxide is configured to circulate in the refrigerant circuit. In order to increase the efficiency of the refrigeration air conditioner, it is important to improve the heat exchange performance of the heat exchanger.
 しかしながら、上記のような従来の熱交換器は、気液二相状態の冷媒が入口ヘッダーを低流量域で流れると、気液の混合が不十分となり、気液が分離した流れとなる。そして、流路部の各貫通穴に分配される気液の比率が不均等となってしまう。このため、流路部の貫通穴毎で有効に熱交換できる流体の流量に過不足が生じてしまう。したがって、上記のような従来の熱交換器は、温度効率が著しく低下して、熱交換性能が低下するという問題点があった。また、この熱交換性能の低下を補うために熱交換器を必要以上に大きくしなければならないという問題点があった。一方、低流量域に合わせてヘッダー径を細くしすぎると、気液二相状態の冷媒が入口ヘッダーを高流量域で流れた場合、圧力損失が上昇し、流体を熱交換器に送る駆動装置の動力増加を招くという問題点があった。このように、上記のような従来の熱交換器は、幅広い運転範囲で、気液の均等分配を実現し、熱交換器を効率よく動作させることが困難であった。 However, in the conventional heat exchanger as described above, when the gas-liquid two-phase refrigerant flows through the inlet header in a low flow rate region, the gas-liquid mixing becomes insufficient and the gas-liquid is separated. And the ratio of the gas-liquid distributed to each through-hole of a flow-path part will become non-uniform | heterogenous. For this reason, excess and deficiency arises in the flow rate of the fluid which can exchange heat effectively for every through hole of a channel part. Therefore, the conventional heat exchanger as described above has a problem that the temperature efficiency is remarkably lowered and the heat exchange performance is lowered. In addition, there is a problem that the heat exchanger must be made larger than necessary to compensate for the deterioration of the heat exchange performance. On the other hand, if the header diameter is made too thin in accordance with the low flow rate region, when the gas-liquid two-phase refrigerant flows through the inlet header in the high flow rate region, the pressure loss increases, and the drive device sends the fluid to the heat exchanger There was a problem of causing an increase in power. As described above, the conventional heat exchanger as described above realizes an even distribution of gas and liquid in a wide operation range, and it is difficult to operate the heat exchanger efficiently.
 本発明は、上記のような問題点を解決するためになされたものであり、コンパクトで高性能な熱交換器及び冷凍空調装置を得ることを目的としている。 The present invention has been made to solve the above-described problems, and aims to obtain a compact and high-performance heat exchanger and refrigeration air conditioner.
 本発明の熱交換器は、高温流体が流れる貫通穴を複数有する第1流路部と、低温流体が流れる貫通穴を複数有する第2流路部と、第1流路部の一方の端部に接続された管状の第1入口ヘッダーと、第1流路部の他方の端部に接続された管状の第1出口ヘッダーと、第2流路部の一方の端部に接続された管状の第2入口ヘッダーと、第2流路部の他方の端部に接続された管状の第2出口ヘッダーと、を備え、第1流路部と第2流路部とは、互いの間に設けられた隔壁を介して熱交換可能に配置され、第1入口ヘッダーから第1流路部の貫通穴へ流入する高温流体及び第2入口ヘッダーから第2流路部の貫通穴へ流入する低温流体の少なくとも一方は、気液二相状態の流体であり、気液二相状態の流体の入口ヘッダーから流路部への流入方向が、略水平方向又は略水平方向よりも上方向となっているものである。 The heat exchanger of the present invention includes a first flow path portion having a plurality of through holes through which a high temperature fluid flows, a second flow path portion having a plurality of through holes through which a low temperature fluid flows, and one end of the first flow path portion. A tubular first inlet header connected to the first flow path portion, a tubular first outlet header connected to the other end portion of the first flow path portion, and a tubular shape connected to one end portion of the second flow path portion. A second inlet header and a tubular second outlet header connected to the other end of the second flow path portion, wherein the first flow path portion and the second flow path portion are provided between each other. A high-temperature fluid that is arranged to be capable of exchanging heat through the partition wall and flows into the through hole of the first flow path portion from the first inlet header and a low-temperature fluid that flows into the through hole of the second flow path portion from the second inlet header Is a gas-liquid two-phase fluid, and the flow direction of the gas-liquid two-phase fluid from the inlet header to the flow path portion is In which it has an upper direction than the substantially horizontal direction or a substantially horizontal direction.
 また、本発明の冷凍空調装置は、本発明の熱交換器を搭載したものである。 Further, the refrigeration air conditioner of the present invention is equipped with the heat exchanger of the present invention.
 本発明によれば、コンパクトで高性能な熱交換器を提供することができる。また、本発明によれば、コンパクトで高性能な冷凍空調装置を提供することができる。 According to the present invention, a compact and high-performance heat exchanger can be provided. Further, according to the present invention, a compact and high-performance refrigeration air conditioner can be provided.
本発明の実施の形態1による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による第2扁平管の別の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of the 2nd flat tube by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の伝熱特性を示す図である。It is a figure which shows the heat-transfer characteristic of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の別の伝熱特性を示す図である。It is a figure which shows another heat transfer characteristic of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の別の伝熱特性を示す図である。It is a figure which shows another heat transfer characteristic of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態2による熱交換器の一例を示す側面図である。It is a side view which shows an example of the heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態3による冷凍空調装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating air conditioning apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による冷凍空調装置の別の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows another example of the refrigerating air conditioning apparatus by Embodiment 3 of this invention. 本発明の実施の形態3による冷凍空調装置のさらに別の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows another example of the refrigerating air conditioning apparatus by Embodiment 3 of this invention. 本発明の実施の形態4による熱交換器の構造図である。It is a structural diagram of the heat exchanger by Embodiment 4 of this invention. 本発明の実施の形態4による熱交換器の別の一例を示す構造図である。It is a structural diagram which shows another example of the heat exchanger by Embodiment 4 of this invention.
実施の形態1.
 図1は本発明の実施の形態1による熱交換器を示す図であり、図1(a)は斜視図、図1(b)は側面図、図1(c)は第2入口ヘッダーと第2扁平管との接続部近傍の断面図を示す。なお、図1(a)に示すFHは高温流体の流れを示し、図1(a)に示すFCは低温流体の流れを示す。また、本実施の形態1では、低温流体が気液二相状態で第2ヘッダーへ流入する場合について説明する。また、以下の図において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは、明細書の全文において共通することである。
Embodiment 1 FIG.
FIG. 1 is a view showing a heat exchanger according to Embodiment 1 of the present invention. FIG. 1 (a) is a perspective view, FIG. 1 (b) is a side view, and FIG. Sectional drawing of the connection part vicinity with 2 flat tubes is shown. In addition, FH shown to Fig.1 (a) shows the flow of a high temperature fluid, and FC shown to Fig.1 (a) shows the flow of a low temperature fluid. Moreover, in this Embodiment 1, the case where a low-temperature fluid flows in into a 2nd header in a gas-liquid two-phase state is demonstrated. Moreover, in the following drawings, what attached | subjected the same code | symbol is the same or it corresponds, This is common in the whole text of a specification.
 本実施の形態1では、図3~図5に示す実験により得られた知見、即ち、伝熱特性に優れた後述する姿勢角α,β,γの範囲に基づき、図1に示す第2扁平管2の端部に略水平となる流入部2aを設けることにより、優れた伝熱特性を有する熱交換器10を実現している。即ち、図1では、第2扁平管2を姿勢角α=90°にて第2入口ヘッダー5に接続している。 In Embodiment 1, the second flatness shown in FIG. 1 is based on the knowledge obtained by the experiments shown in FIGS. 3 to 5, that is, the range of posture angles α, β, and γ, which will be described later, excellent in heat transfer characteristics. By providing the inflow part 2a which becomes substantially horizontal at the end part of the pipe 2, the heat exchanger 10 having excellent heat transfer characteristics is realized. That is, in FIG. 1, the second flat tube 2 is connected to the second inlet header 5 at a posture angle α = 90 °.
 第1扁平管1のそれぞれは、長手方向(図1(b)の左右方向)に沿って、高温流体が流れる複数の貫通穴を有している。この貫通穴は、第1扁平管1の幅方向(図1(b)の紙面直交方向)に併設されている。また、第2扁平管2のそれぞれは、長手方向(図1(b)の左右方向)に沿って、低温流体が流れる複数の貫通穴21を有している。この貫通穴21は、第2扁平管2の幅方向(図1(b)の紙面直交方向)に併設されている。第1扁平管1と第2扁平管2とは、第1扁平管1の扁平な面と第2扁平管2における熱交換部2cの扁平な面とが互いに接触するように積層されている。また、第1扁平管1及び第2扁平管2は、扁平管1,2内を流れる流体の流れ方向が並行するように積層されている。第1扁平管1及び第2扁平管2は、例えばロウ付け、接着等で接合されている。例えば、第1扁平管1及び第2扁平管2がいずれもアルミニウム又はアルミニウム合金の場合、ロウ付けに用いられるロウ材やフラックスは、アルミニウム/シリコン系やフッ化物系等のものが用いられる。また例えば、第1扁平管1又は第2扁平管2の一方がアルミニウムまたはアルミニウム合金で、第1扁平管1又は第2扁平管2の他方が銅の場合、ロウ付けに用いられるロウ材やフラックスは、亜鉛/アルミニウム系やアルミニウム/セシウム/フッ化物系等のものが用いられる。なお、ロウ材とフラックスの組み合わせは、前者の融点及び後者の活性化温度が近い組み合わせほど、ロウ材の流れ性が良くなる等によってロウ付け性が向上するため好適である。 Each of the first flat tubes 1 has a plurality of through holes through which a high-temperature fluid flows along the longitudinal direction (the left-right direction in FIG. 1B). This through hole is provided side by side in the width direction of the first flat tube 1 (in the direction orthogonal to the plane of FIG. 1B). Each of the second flat tubes 2 has a plurality of through holes 21 through which a low-temperature fluid flows along the longitudinal direction (the left-right direction in FIG. 1B). The through hole 21 is provided side by side in the width direction of the second flat tube 2 (the direction perpendicular to the paper surface of FIG. 1B). The 1st flat tube 1 and the 2nd flat tube 2 are laminated | stacked so that the flat surface of the 1st flat tube 1 and the flat surface of the heat exchange part 2c in the 2nd flat tube 2 may mutually contact. The first flat tube 1 and the second flat tube 2 are laminated so that the flow directions of the fluid flowing in the flat tubes 1 and 2 are parallel to each other. The 1st flat tube 1 and the 2nd flat tube 2 are joined by brazing, adhesion | attachment, etc., for example. For example, when the first flat tube 1 and the second flat tube 2 are both aluminum or an aluminum alloy, the brazing material and flux used for brazing are those of aluminum / silicon or fluoride. Also, for example, when one of the first flat tube 1 or the second flat tube 2 is aluminum or an aluminum alloy and the other of the first flat tube 1 or the second flat tube 2 is copper, a brazing material or flux used for brazing Zinc / aluminum and aluminum / cesium / fluoride materials are used. In addition, the combination of brazing material and flux is more suitable as the former melting point and the latter activation temperature are closer, because the brazing property is improved by improving the flowability of the brazing material.
 第1扁平管1は、長手方向の一方の端部が管状の第1入口ヘッダー3の側面に接続されており、他方の端部が管状の第1出口ヘッダー4の側面に接続されている。つまり、第1扁平管1に形成された貫通穴は、高温流体が流れる並列流路を構成する。第2扁平管2の長手方向の一方の端部である流入部2aは、管状の第2入口ヘッダー5の側面に接続されている。第2扁平管2の長手方向の他方の端部である流出部2dは、管状の第2出口ヘッダー6の側面に接続されている。また、流入部2a及び流出部2dは、屈曲部2bを介して熱交換部2cと接続されている。つまり、第2扁平管2に形成された貫通穴21は、低温流体が流れる並列流路を構成する。 The first flat tube 1 has one end portion in the longitudinal direction connected to the side surface of the tubular first inlet header 3 and the other end portion connected to the side surface of the tubular first outlet header 4. That is, the through holes formed in the first flat tube 1 constitute a parallel flow path through which a high-temperature fluid flows. An inflow portion 2 a that is one end portion in the longitudinal direction of the second flat tube 2 is connected to a side surface of the tubular second inlet header 5. An outflow portion 2 d that is the other end portion in the longitudinal direction of the second flat tube 2 is connected to a side surface of the tubular second outlet header 6. Moreover, the inflow part 2a and the outflow part 2d are connected with the heat exchange part 2c through the bending part 2b. That is, the through hole 21 formed in the second flat tube 2 constitutes a parallel flow path through which a low-temperature fluid flows.
 また、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5及び第2出口ヘッダー6は、それぞれの管軸方向と扁平管1,2の扁平な面(つまり、扁平管1,2に形成された貫通穴の並列方向)とが並行になるように配置されている。
 さらに、低温流体が気液二相状態となって流れる第2入口ヘッダー5に接続された第2扁平管2の流入部2aは、略水平になっている。つまり、第2入口ヘッダー5から第2扁平管2へ流入する気液二相状態の低温流体の流路(換言すると、流入部2aの貫通穴21)は、略水平になっている。
 なお、第1扁平管1が本発明の「第1流路部」に相当し、第2扁平管2が本発明の「第2流路部」に相当する。
The first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 are respectively in the tube axis direction and the flat surfaces of the flat tubes 1 and 2 (that is, the flat tubes 1 and 2. Are arranged in parallel with each other.
Further, the inflow portion 2a of the second flat tube 2 connected to the second inlet header 5 in which the low-temperature fluid flows in a gas-liquid two-phase state is substantially horizontal. That is, the flow path of the low-temperature fluid in a gas-liquid two-phase state flowing into the second flat tube 2 from the second inlet header 5 (in other words, the through hole 21 of the inflow portion 2a) is substantially horizontal.
The first flat tube 1 corresponds to the “first flow channel portion” of the present invention, and the second flat tube 2 corresponds to the “second flow channel portion” of the present invention.
 高温流体は第1入口ヘッダー3、第1扁平管1、第1出口ヘッダー4の順に流れ、低温流体は第2入口ヘッダー5、第2扁平管2、第2出口ヘッダー6の順に流れ、第1扁平管1と第2扁平管2(より詳しくは、熱交換部2c)との接触部を介して両流体が熱交換される。つまり、第1扁平管1の貫通穴を流れる高温流体と第2扁平管2の貫通穴を流れる低温流体とは、両貫通穴の間の隔壁となる第1扁平管1及び第2扁平管2の外郭部を介して熱交換される。 The high-temperature fluid flows in the order of the first inlet header 3, the first flat tube 1, and the first outlet header 4, and the low-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6, Both fluids exchange heat through a contact portion between the flat tube 1 and the second flat tube 2 (more specifically, the heat exchanging portion 2c). That is, the high-temperature fluid flowing through the through hole of the first flat tube 1 and the low-temperature fluid flowing through the through hole of the second flat tube 2 are the first flat tube 1 and the second flat tube 2 that serve as a partition wall between the two through holes. Heat is exchanged through the outer shell.
 なお、本実施の形態1では、それぞれ数本の第1扁平管1及び第2扁平管2により熱交換器10を構成したが、各扁平管1,2の数は本実施の形態1の数に限らない。1本の第1の扁平管1と1本の第2の扁平管2とを扁平面に沿って交互に並べ、並列流路を構成するようにしてもよい。また、本実施の形態1では、第1扁平管1と第2扁平管2とは、それぞれの管内を流れる流体の流れ方向が並行となるように接触させているが、直交となるように接触させてもよい。また、第1扁平管1や第2扁平管2を折り返して、第1扁平管1と第2扁平管2とを積層してもよい。また、図1(c)では第2扁平管2の流入部2aの端部が第2入口ヘッダー5の内面にほぼ一致しているが、第2扁平管2の流入部2aの端部が第2入口ヘッダー5の内部に突き出して構成してもよい。 In the first embodiment, the heat exchanger 10 is configured by several first flat tubes 1 and second flat tubes 2, but the number of the flat tubes 1 and 2 is the number of the first embodiment. Not limited to. One first flat tube 1 and one second flat tube 2 may be alternately arranged along the flat surface to form a parallel flow path. Further, in the first embodiment, the first flat tube 1 and the second flat tube 2 are in contact with each other so that the flow directions of the fluids flowing in the respective tubes are parallel to each other. You may let them. Moreover, the 1st flat tube 1 and the 2nd flat tube 2 may be folded, and the 1st flat tube 1 and the 2nd flat tube 2 may be laminated | stacked. Moreover, in FIG.1 (c), although the edge part of the inflow part 2a of the 2nd flat tube 2 has substantially corresponded to the inner surface of the 2nd inlet header 5, the edge part of the inflow part 2a of the 2nd flat tube 2 is the 1st. The two inlet headers 5 may be protruded inside.
 本実施の形態1に示す熱交換器10においては、気液二相流体が流れる第2入口ヘッダー5に接続する第2扁平管2の端部が略水平となっている。つまり、第2入口ヘッダー5から各貫通穴21へ流出する気液二相流体の流出方向(換言すると、各貫通穴21へ流入する気液二相流体の流入方向)が略水平となっている。より詳しくは、本実施の形態1の場合、第2入口ヘッダー5内で冷媒の流速が低下して気液が上下に分離した流れとなっても、第2入口ヘッダー5の底部から第2扁平管2への流入部付近まで液がたまり、気液境界面がちょうど第2扁平管2への流入部付近に形成されるため、気液の分配が良好となる。つまり、例えば、水平に配置された第2入口ヘッダー5から冷媒が鉛直下向きに各第2扁平管2に流出する場合、第2入口ヘッダー5内で液面が形成される前に、上流側の第2扁平管2に選択的に液だけが流出しやすくなるため気液の分配が悪化してしまう。しかしながら、本実施の形態1に係る熱交換器10は、第2入口ヘッダー5に接続する第2扁平管2の端部が略水平となっているのでそう言ったことがない。このため、第2扁平管2の各貫通穴21へ気液比率が均等になるように低温流体を分配することができ、流体の温度効率を最大化でき、さらには圧力損失を最小化することができるので、熱交換器10の熱交換性能を向上することができる。したがって、本実施の形態1に示す熱交換器10においては、コンパクトで高性能な熱交換器を得ることができる。 In the heat exchanger 10 shown in the first embodiment, the end of the second flat tube 2 connected to the second inlet header 5 through which the gas-liquid two-phase fluid flows is substantially horizontal. That is, the outflow direction of the gas-liquid two-phase fluid flowing out from the second inlet header 5 to each through hole 21 (in other words, the inflow direction of the gas-liquid two-phase fluid flowing into each through hole 21) is substantially horizontal. . More specifically, in the case of the first embodiment, even if the flow rate of the refrigerant is reduced in the second inlet header 5 and the gas and liquid are separated vertically, the second flattening from the bottom of the second inlet header 5 occurs. Since the liquid is accumulated up to the vicinity of the inflow portion to the tube 2 and the gas-liquid boundary surface is formed in the vicinity of the inflow portion to the second flat tube 2, the gas-liquid distribution is improved. That is, for example, when the refrigerant flows vertically downward from the second inlet header 5 to each second flat tube 2, before the liquid level is formed in the second inlet header 5, the upstream side Since only the liquid tends to selectively flow out to the second flat tube 2, the gas-liquid distribution is deteriorated. However, in the heat exchanger 10 according to the first embodiment, the end of the second flat tube 2 connected to the second inlet header 5 is substantially horizontal, so that has never been said. For this reason, it is possible to distribute the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio is uniform, to maximize the temperature efficiency of the fluid, and to minimize the pressure loss. Therefore, the heat exchange performance of the heat exchanger 10 can be improved. Therefore, in the heat exchanger 10 shown in this Embodiment 1, a compact and high-performance heat exchanger can be obtained.
 なお、他のヘッダー3,4,6に接続される扁平管の端部については、気液二相流体が流入しない限り、特に、水平にする必要はない。
 また、本実施の形態1では、第2入口ヘッダー5の外部で第2扁平管2を屈曲させて流入部2aを形成したが、図2に示すように、第2入口ヘッダー5内の気液の流れを乱さない程度に第2入口ヘッダー5の内部で第2扁平管2を屈曲させて流入部2aを形成してもよい。
In addition, about the edge part of the flat tube connected to other headers 3, 4, and 6 as long as a gas-liquid two-phase fluid does not flow in, it does not need to be horizontal especially.
In the first embodiment, the second flat tube 2 is bent outside the second inlet header 5 to form the inflow portion 2a. However, as shown in FIG. 2, the gas-liquid in the second inlet header 5 is formed. The inflow portion 2a may be formed by bending the second flat tube 2 inside the second inlet header 5 to such an extent that the flow of the air is not disturbed.
 本実施の形態1の熱交換器10は、熱交換器10の向きが上下逆転しても、第2入口ヘッダー5に接続される第2扁平管2の流入部2aは略水平に保たれる。このため、気液の分配が悪化することがない。したがって、本実施の形態1の熱交換器10は、設置上の自由度や配管の接続取り回しの自由度が増加するという効果も奏する。 In the heat exchanger 10 of the first embodiment, the inflow portion 2a of the second flat tube 2 connected to the second inlet header 5 is kept substantially horizontal even when the direction of the heat exchanger 10 is reversed upside down. . For this reason, the distribution of gas and liquid does not deteriorate. Therefore, the heat exchanger 10 according to the first embodiment also has an effect that the degree of freedom in installation and the degree of freedom in connection and connection of piping are increased.
 一般に、扁平管の各貫通穴への気液二相流体の分配特性は、ヘッダーから各貫通穴へ流出する流体の流出方向(換言すると、各貫通穴へ流入する流体の流入方向)によって大きく変化する。このため、この方向が熱交換器10の伝熱特性(すなわち、気液二相流体の分配特性)に与える影響を実験で調べた(図3~図5)。図3~図5に示す実験では、第1扁平管1に高温流体として温水を流し、第2扁平管2に低温流体として気液二相状態の低温フロン冷媒を流した。そして、各流体の出入口温度、数1及び数2の式を用いて、熱交換器10の伝熱特性KA(W/K)を測定した。 In general, the distribution characteristics of a gas-liquid two-phase fluid to each through hole of a flat tube vary greatly depending on the outflow direction of the fluid flowing from the header to each through hole (in other words, the inflow direction of the fluid flowing into each through hole). To do. Therefore, the effect of this direction on the heat transfer characteristics of the heat exchanger 10 (that is, the distribution characteristics of the gas-liquid two-phase fluid) was examined by experiments (FIGS. 3 to 5). In the experiments shown in FIG. 3 to FIG. 5, warm water was allowed to flow through the first flat tube 1 as a high-temperature fluid, and low-temperature chlorofluorocarbon refrigerant in a gas-liquid two-phase state was flowed through the second flat tube 2 as a low-temperature fluid. And the heat-transfer characteristic KA (W / K) of the heat exchanger 10 was measured using the inlet-and-outlet temperature of each fluid, Formula 1 and Formula 2.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 ここで、M :高温流体の質量流量(kg/h)、Cp :高温流体の定圧比熱(J/kgK)、Thi:高温流体の入口温度、Tho:高温流体の出口温度、TCO:低温流体の出口温度、TCi:低温流体の入口温度である。
Figure JPOXMLDOC01-appb-M000002
Here, M h : Mass flow rate of high-temperature fluid (kg / h), Cp h : Constant pressure specific heat of high-temperature fluid (J / kgK), T hi : High-temperature fluid inlet temperature, T ho : High-temperature fluid outlet temperature, T CO 2 is the outlet temperature of the cryogenic fluid, and T Ci is the inlet temperature of the cryogenic fluid.
 また、図3~図5に示す実験では、熱交換器10の構成を以下のように設定した。
 第2入口ヘッダー5の内直径Dは6mmとした。第1扁平管1に形成された貫通穴は約1mm角の矩形穴とし、各第1扁平管1に形成された貫通穴は合計で60個とした。また、これら貫通穴を第1扁平管1の幅方向に並べて形成する構成とした。第2扁平管2に形成された貫通穴21も約1mm角の矩形穴とし、各第2扁平管2に形成された貫通穴21は合計で60個とした。また、これら貫通穴21を第2扁平管2の幅方向に並べて形成する構成とした。
 なお、第1扁平管1の端部のヘッダー内面からの突き出し長さは2mmとした。
In the experiments shown in FIGS. 3 to 5, the configuration of the heat exchanger 10 was set as follows.
The inner diameter D of the second inlet header 5 was 6 mm. The through holes formed in the first flat tubes 1 were rectangular holes of about 1 mm square, and the total number of through holes formed in each first flat tube 1 was 60. The through holes are formed side by side in the width direction of the first flat tube 1. The through holes 21 formed in the second flat tube 2 were also rectangular holes of about 1 mm square, and the total number of through holes 21 formed in each second flat tube 2 was 60. The through holes 21 are formed side by side in the width direction of the second flat tube 2.
The protruding length of the end portion of the first flat tube 1 from the inner surface of the header was 2 mm.
 また、図3~図5に示す実験では、以下の条件で伝熱特性KA(W/K)を測定した。
 高温流体の質量流量M は600kg/hとした。低温流体の質量流量M は80~100kg/hの範囲とした。低温流体の気液の全質量流量に対するガスの質量流量の割合(すなわち乾き度X)は0.1~0.2に調節した。この乾き度Xの範囲は、一般の冷凍空調装置に用いる熱交換器10の入口乾き度としては一般的な使用範囲である。
 なお、以下の図3(c)、図4(c)及び図5(c)に示した、三角、四角及び丸は、以下の条件での伝熱特性を表している。四角は、低温流体の質量流量M が80kg/hの場合の伝熱特性を表している。三角は、低温流体の質量流量M が90kg/hの場合の伝熱特性を表している。丸は、低温流体の質量流量M が100kg/hの場合の伝熱特性を表している。
In the experiments shown in FIGS. 3 to 5, the heat transfer characteristic KA (W / K) was measured under the following conditions.
The mass flow rate M h of the high-temperature fluid was 600 kg / h. Mass flow rate M c of the cryogen is in the range of 80 ~ 100kg / h. The ratio of the mass flow rate of the gas to the total mass flow rate of the gas-liquid (ie, dryness X) of the cryogenic fluid was adjusted to 0.1 to 0.2. The range of the dryness X is a general use range as the dryness of the inlet of the heat exchanger 10 used in a general refrigeration air conditioner.
In addition, the triangle, square, and circle shown in FIG. 3C, FIG. 4C, and FIG. 5C below represent heat transfer characteristics under the following conditions. Squares, the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 80 kg / h. Triangles, the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 90 kg / h. Circles, the mass flow rate M c of the cryogen represents the heat transfer characteristics in the case of 100 kg / h.
 なお、図3~図5において、第2入口ヘッダー5が水平に近い状態においては、第2入口ヘッダー5内での冷媒の流れは、質量速度により気液が上下に分離した流れとなりやすい。また、第2入口ヘッダー5が垂直に近い状態においては、第2入口ヘッダー5内での冷媒の流れは、質量速度により気液が環状に分離しやすい。例えば、このようなヘッダーが水平の場合と垂直の場合の性質の違いは、姿勢角γ又はβで表すと、45°付近を境に生じる。 3 to 5, in the state where the second inlet header 5 is almost horizontal, the refrigerant flow in the second inlet header 5 tends to be a flow in which the gas and liquid are vertically separated by the mass velocity. Further, in the state where the second inlet header 5 is nearly vertical, the flow of the refrigerant in the second inlet header 5 tends to cause the gas-liquid to be separated into an annular shape due to the mass velocity. For example, such a difference in properties between the horizontal and vertical headers occurs when the attitude angle γ or β is around 45 °.
 図3は、第2入口ヘッダー5を水平方向に配置し、気液二相状態の低温流体が第2扁平管2の貫通穴21へ流出する際の流出方向(換言すると、貫通穴21へ流入する低温流体の流入方向)である姿勢角αを変化させた場合の伝熱特性を示す。ここで、図3(a)は、姿勢角αの説明図である。図3(b)は、主な姿勢角αにおける熱交換器10の配置図である。図3(c)は、実験結果であり、姿勢角αと伝熱特性(相対値)との関係を示す図である。図3(c)の縦軸に示す熱交換器10の伝熱特性(相対値)は、第2扁平管2の各貫通穴21へ気液比率が均等になるように低温流体を分配させた条件における伝熱特性を1として相対値で表した。 3 shows that the second inlet header 5 is arranged in the horizontal direction, and the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2 (in other words, flows into the through hole 21). The heat transfer characteristics when the posture angle α, which is the inflow direction of the low-temperature fluid to be changed, is changed. Here, FIG. 3A is an explanatory diagram of the posture angle α. FIG. 3B is a layout diagram of the heat exchanger 10 at the main posture angle α. FIG. 3C shows the experimental results and shows the relationship between the posture angle α and the heat transfer characteristic (relative value). The heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis of FIG. 3 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio becomes uniform. The heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
 なお、図3に示す第2扁平管2の端部は、図1に示す熱交換器10とは異なり、折れ曲り部が1箇所になっている。つまり、図3に示す第2扁平管2は、流入部2a及び流出部2dが直接(屈曲部2bを介さず)熱交換部2cに接続される構成となっている。また、姿勢角α=0°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が垂直上向きの方向となっている。0°<姿勢角α<90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも上向きとなっている。姿勢角α=90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向となっている。90°<姿勢角α<180°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも下向きとなっている。姿勢角α=180°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が垂直下向きの方向となっている。 Note that, unlike the heat exchanger 10 shown in FIG. 1, the end of the second flat tube 2 shown in FIG. 3 has one bent portion. That is, the 2nd flat tube 2 shown in FIG. 3 becomes a structure by which the inflow part 2a and the outflow part 2d are directly connected to the heat exchange part 2c (not via the bending part 2b). Further, when the posture angle α = 0 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is a vertically upward direction. When 0 ° <attitude angle α <90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction. When the posture angle α = 90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is the horizontal direction. When 90 ° <attitude angle α <180 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is lower than the horizontal direction. When the posture angle α = 180 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is a vertically downward direction.
 図3(c)に示すように、-110°<姿勢角α<110°のとき(より好ましくは、80°<姿勢角α<100°又は-80°<姿勢角α<-100°において)伝熱特性を高く維持できることがわかった。特に、伝熱特性は、姿勢角αが90°付近(85°<姿勢角α<95°又は-85°<姿勢角α<-95°)が最も高いことがわかった。また、姿勢角αが110°以下となると、伝熱特性が急激に低下することがわかった。つまり、この結果から、-110°<姿勢角α<110°のとき、各貫通穴21に分配される低温流体の気液比率が概ね等しくなることがわかった。また、姿勢角αを略-90°又は略90°にすると、各貫通穴21に分配される低温流体の気液比率をより等しくできることがわかった。このように、姿勢角αを略-90°又は略90°にすると、第2入口ヘッダー5内で流速が低下して気液が上下に分離した流れとなっても、第2入口ヘッダー5から第2扁平管2への流入部が常に液相に満たされていることなく、上流側の第2扁平管2に選択的に液だけが流出して気液の分配が悪化するようなことはない。なお、姿勢角αが0°付近では、液の慣性等により液が第2ヘッダー5の入口側から見て奥側の第2扁平管2へ流入しやすいが、液に作用する重力により流れが抑制されるため分配の悪化がある程度抑えられる。 As shown in FIG. 3C, when −110 ° <attitude angle α <110 ° (more preferably, at 80 ° <attitude angle α <100 ° or −80 ° <attitude angle α <−100 °). It was found that the heat transfer characteristics can be maintained high. In particular, the heat transfer characteristics were found to be highest when the posture angle α was around 90 ° (85 ° <posture angle α <95 ° or −85 ° <posture angle α <−95 °). Further, it has been found that when the posture angle α is 110 ° or less, the heat transfer characteristics are drastically lowered. That is, from this result, it was found that when −110 ° <attitude angle α <110 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 is substantially equal. Further, it has been found that when the posture angle α is set to approximately −90 ° or approximately 90 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 can be made more equal. As described above, when the attitude angle α is set to approximately −90 ° or approximately 90 °, even if the flow velocity decreases in the second inlet header 5 and the gas-liquid is separated vertically, the second inlet header 5 The inflow portion into the second flat tube 2 is not always filled with the liquid phase, and only the liquid selectively flows out into the second flat tube 2 on the upstream side, and the distribution of gas and liquid is deteriorated. Absent. When the attitude angle α is around 0 °, the liquid tends to flow into the second flat tube 2 on the back side as viewed from the inlet side of the second header 5 due to the inertia of the liquid, but the flow is caused by gravity acting on the liquid. This suppresses the deterioration of distribution to some extent.
 図4は、気液二相状態の低温流体が第2扁平管2の貫通穴21へ流出する際の流出方向を水平にして、第2入口ヘッダー5の姿勢角γを変化させた場合の伝熱特性を示す。ここで、図4(a)は、姿勢角γの説明図である。図4(b)は、主な姿勢角γにおける熱交換器10の配置図である。図4(c)は、実験結果であり、姿勢角γと伝熱特性(相対値)との関係を示す図である。図4(c)の縦軸に示す熱交換器10の伝熱特性(相対値)は、第2扁平管2の各貫通穴21へ気液比率が均等になるように低温流体を分配させた条件における伝熱特性を1として相対値で表した。 FIG. 4 shows the transmission when the orientation angle γ of the second inlet header 5 is changed with the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2. Shows thermal properties. Here, FIG. 4A is an explanatory diagram of the posture angle γ. FIG. 4B is a layout diagram of the heat exchanger 10 at main posture angles γ. FIG. 4C shows the experimental results and shows the relationship between the posture angle γ and the heat transfer characteristic (relative value). The heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis in FIG. 4 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio is uniform. The heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
 なお、図4に示す第2扁平管2の端部は、図1に示す熱交換器10とは異なり、折れ曲り部がない構成となっている。つまり、図4に示す第2扁平管2は、流入部2a及び流出部2dと熱交換部2cとが平行になった構成となっている。また、姿勢角γ=0°のとき、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向となっている。0°<姿勢角γ<90°のとき、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも下向きとなっている。姿勢角γ=90°のとき、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が垂直下向きの方向となっている。-90°<姿勢角γ<0°のとき、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも上向きとなっている。姿勢角γ=-90°のとき、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が垂直上向きの方向となっている。 In addition, unlike the heat exchanger 10 shown in FIG. 1, the edge part of the 2nd flat tube 2 shown in FIG. 4 becomes a structure without a bending part. That is, the 2nd flat tube 2 shown in FIG. 4 becomes the structure by which the inflow part 2a and the outflow part 2d, and the heat exchange part 2c became parallel. Further, when the posture angle γ = 0 °, the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is the horizontal direction. When 0 ° <attitude angle γ <90 °, the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is downward from the horizontal direction. When the attitude angle γ is 90 °, the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is a vertically downward direction. When −90 ° <attitude angle γ <0 °, the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is upward from the horizontal direction. When the attitude angle γ = −90 °, the inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the second inlet header 5 is a vertically upward direction.
 図4(c)に示すように、熱交換器10の伝熱特性は、第2入口ヘッダー5を垂直にした方がやや高い傾向があるが、姿勢角γは第2入口ヘッダー5の姿勢に対する影響が比較的少ないことがわかった。 As shown in FIG. 4C, the heat transfer characteristics of the heat exchanger 10 tend to be slightly higher when the second inlet header 5 is vertical, but the posture angle γ is relative to the posture of the second inlet header 5. It was found that the impact was relatively small.
 図5は、第2入口ヘッダー5の姿勢、及び気液二相状態の低温流体が第2扁平管2の貫通穴21へ流出する際の流出方向の双方を変化させた場合の伝熱特性を示す。ここで、図5(a)は、姿勢角βの説明図である。図5(b)は、主な姿勢角βにおける熱交換器10の配置図である。図5(c)は、実験結果であり、姿勢角βと伝熱特性(相対値)との関係を示す図である。図5(c)の縦軸に示す熱交換器10の伝熱特性(相対値)は、第2扁平管2の各貫通穴21へ気液比率が均等になるように低温流体を分配させた条件における伝熱特性を1として相対値で表した。 FIG. 5 shows the heat transfer characteristics when both the attitude of the second inlet header 5 and the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out to the through hole 21 of the second flat tube 2 are changed. Show. Here, FIG. 5A is an explanatory diagram of the posture angle β. FIG. 5B is a layout diagram of the heat exchanger 10 at the main posture angle β. FIG. 5C shows the experimental results and shows the relationship between the posture angle β and the heat transfer characteristic (relative value). The heat transfer characteristic (relative value) of the heat exchanger 10 shown on the vertical axis in FIG. 5 (c) distributes the low-temperature fluid to each through hole 21 of the second flat tube 2 so that the gas-liquid ratio becomes uniform. The heat transfer characteristics under the conditions were expressed as relative values with the value of 1.
 なお、図5に示す第2扁平管2の端部は、図1に示す熱交換器10とは異なり、折れ曲り部が1箇所になっている。つまり、図5に示す第2扁平管2は、流入部2a及び流出部2dが直接(屈曲部2bを介さず)熱交換部2cに接続される構成となっている。 Note that, unlike the heat exchanger 10 shown in FIG. 1, the end of the second flat tube 2 shown in FIG. 5 has one bent portion. That is, the 2nd flat tube 2 shown in FIG. 5 becomes a structure by which the inflow part 2a and the outflow part 2d are directly connected to the heat exchange part 2c (not via the bending part 2b).
 また、姿勢角β=0°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向となり、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が垂直下向きの方向となっている。0°<姿勢角β<90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも上向きとなり、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも下向きとなっている。姿勢角β=90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が垂直上向きの方向となっており、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向となっている。90°<姿勢角β<180°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも上向きとなっており、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも上向きとなっている。姿勢角β=180°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向となり、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が垂直上向きの方向となっている。 Further, when the posture angle β = 0 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid flowing into the second inlet header 5 The inflow direction of (gas-liquid two-phase state) is a vertically downward direction. When 0 ° <attitude angle β <90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction, and to the second inlet header 5 The inflow direction of the inflowing low-temperature fluid (gas-liquid two-phase state) is downward from the horizontal direction. When the attitude angle β = 90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is a vertically upward direction and flows into the second inlet header 5 The inflow direction of the low-temperature fluid (gas-liquid two-phase state) is horizontal. When 90 ° <attitude angle β <180 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is upward from the horizontal direction, and the second inlet The inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the header 5 is upward from the horizontal direction. When the attitude angle β = 180 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid (air) flowing into the second inlet header 5 The inflow direction of the liquid two-phase state is a vertically upward direction.
 また、-90°<姿勢角β<0°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも下向きとなり、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも下向きとなっている。姿勢角β=-90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が垂直下向きの方向となっており、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向となっている。-180°<姿勢角β<-90°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向よりも下向きとなっており、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が水平方向よりも下向きとなっている。姿勢角β=-180°のとき、第2扁平管2の貫通穴21へ流出する低温流体(気液二相状態)の流出方向が水平方向となり、第2入口ヘッダー5へ流入する低温流体(気液二相状態)の流入方向が垂直下向きの方向となっている。 When −90 ° <attitude angle β <0 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 is lower than the horizontal direction, and the second inlet The inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the header 5 is downward from the horizontal direction. When the attitude angle β = −90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is a vertically downward direction, and the second inlet header 5 The inflow direction of the inflowing low-temperature fluid (gas-liquid two-phase state) is the horizontal direction. When −180 ° <attitude angle β <−90 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out into the through hole 21 of the second flat tube 2 is lower than the horizontal direction. The inflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing into the two inlet header 5 is downward from the horizontal direction. When the attitude angle β = −180 °, the outflow direction of the low-temperature fluid (gas-liquid two-phase state) flowing out to the through hole 21 of the second flat tube 2 becomes the horizontal direction, and the low-temperature fluid flowing into the second inlet header 5 ( The inflow direction of the gas-liquid two-phase state is a vertically downward direction.
 図5(c)に示すように、0°≦姿勢角β≦180°のとき、伝熱特性を高く維持できることがわかった。特に、伝熱特性は、姿勢角βが90°付近及び180°付近が最も高いことがわかった。また、姿勢角βが0°よりも小さくなると、伝熱特性が急激に低下することがわかった。つまり、この結果から、0°≦姿勢角β≦180°のとき、各貫通穴21に分配される低温流体の気液比率が概ね等しくなることがわかった。また、姿勢角βを90°付近及び180°付近にすると、各貫通穴21に分配される低温流体の気液比率をより等しくできることがわかった。 As shown in FIG. 5C, it was found that the heat transfer characteristics can be maintained high when 0 ° ≦ attitude angle β ≦ 180 °. In particular, the heat transfer characteristics were found to be highest when the posture angle β was around 90 ° and around 180 °. Further, it has been found that when the posture angle β is smaller than 0 °, the heat transfer characteristics are rapidly deteriorated. That is, from this result, it was found that when 0 ° ≦ attitude angle β ≦ 180 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 is substantially equal. Further, it has been found that when the posture angle β is around 90 ° and around 180 °, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 can be made more equal.
(効果)
 以上のように、本発明の実施の形態1に示す熱交換器10は、第1入口ヘッダー3から第1扁平管1の貫通穴へ流入する高温流体及び第2入口ヘッダー4から第2扁平管2の貫通穴21へ流入する低温流体の少なくとも一方は、気液二相状態の流体となる。そして、気液二相状態の流体の入口ヘッダーから扁平管への流入方向が、略水平方向又は略水平方向よりも上方向となっている。このため、第2入口ヘッダー5内で流速が低下して気液が上下に分離した流れとなっても、第2入口ヘッダー5から第2扁平管2への流入部が常に液相に満たされていることなく、上流側の第2扁平管2に選択的に液だけが流出して気液の分配が悪化するようなことはない。したがって、各貫通穴へ気液比率が均等になるように気液二相流体を分配することができ、流体の温度効率を最大化でき、さらには圧力損失を最小化することができる。つまり、熱交換器10の熱交換性能を向上することができる。
 このように、本実施の形態1に示す熱交換器10においては、コンパクトで高性能な熱交換器を得ることができる。
(effect)
As described above, the heat exchanger 10 shown in Embodiment 1 of the present invention includes the high-temperature fluid flowing from the first inlet header 3 into the through hole of the first flat tube 1 and the second flat tube from the second inlet header 4. At least one of the low-temperature fluids flowing into the two through holes 21 is a gas-liquid two-phase fluid. The inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flat tube is substantially horizontal or upward from the substantially horizontal direction. For this reason, even if the flow velocity decreases in the second inlet header 5 and the gas-liquid is separated into upper and lower parts, the inflow portion from the second inlet header 5 to the second flat tube 2 is always filled with the liquid phase. Therefore, only the liquid will selectively flow out to the second flat tube 2 on the upstream side, and the distribution of gas and liquid will not deteriorate. Therefore, the gas-liquid two-phase fluid can be distributed to each through hole so that the gas-liquid ratio is uniform, the temperature efficiency of the fluid can be maximized, and the pressure loss can be minimized. That is, the heat exchange performance of the heat exchanger 10 can be improved.
Thus, in the heat exchanger 10 shown in this Embodiment 1, a compact and high-performance heat exchanger can be obtained.
 なお、本実施の形態1においては、第2入口ヘッダー5を流れる低温流体が気液二相状態となる場合について説明した。第1入口ヘッダー3を流れる高温流体が気液二相状態となる場合には、第1入口ヘッダー3から第1扁平管1の貫通穴へ流入する高温流体の流入方向を略水平にすることによって、同様の効果を得ることができる。 In addition, in this Embodiment 1, the case where the low temperature fluid which flows through the 2nd inlet header 5 will be in a gas-liquid two-phase state was demonstrated. When the high-temperature fluid flowing through the first inlet header 3 is in a gas-liquid two-phase state, the inflow direction of the high-temperature fluid flowing from the first inlet header 3 into the through hole of the first flat tube 1 is made substantially horizontal. The same effect can be obtained.
実施の形態2.
 実施の形態1で示した熱交換器10の構成はあくまでも一例であり、例えば以下のように熱交換器10を構成してもよい。なお、以下では、実施の形態1に係る熱交換器10との差異点を主に説明する。
Embodiment 2. FIG.
The configuration of the heat exchanger 10 shown in the first embodiment is merely an example. For example, the heat exchanger 10 may be configured as follows. In the following description, differences from the heat exchanger 10 according to Embodiment 1 will be mainly described.
 図6は、本発明の実施の形態2による熱交換器の一例を示す側面図である。
 図6(a)に示す熱交換器10は、第2扁平管2の屈曲部2bが横断面略コの字形状となっている。つまり、第2扁平管2の流入部2aと熱交換部2cとを接続する屈曲部2bは、高温流体が流れる第1出口ヘッダー4を乗り越えるように配置されてる。また、第2扁平管2の熱交換部2cと流出部2dとを接続する屈曲部2bは、高温流体が流れる第1入口ヘッダー3を乗り越えるように配置されてる。
FIG. 6 is a side view showing an example of a heat exchanger according to Embodiment 2 of the present invention.
In the heat exchanger 10 shown in FIG. 6A, the bent portion 2b of the second flat tube 2 has a substantially U-shaped cross section. That is, the bending part 2b which connects the inflow part 2a of the 2nd flat tube 2 and the heat exchange part 2c is arrange | positioned so that it may get over the 1st exit header 4 into which a high temperature fluid flows. Moreover, the bending part 2b which connects the heat exchange part 2c and the outflow part 2d of the 2nd flat tube 2 is arrange | positioned so that it may get over the 1st inlet header 3 into which a high temperature fluid flows.
 このように構成された熱交換器10においては、実施の形態1の効果に加えて、扁平管1,2の積層方向の高さを抑制することができるためコンパクトとなる。 The heat exchanger 10 configured in this manner is compact because the height in the stacking direction of the flat tubes 1 and 2 can be suppressed in addition to the effects of the first embodiment.
 また、図6(b)に示す熱交換器10の第2扁平管2は、第2入口ヘッダー5側の端部と第2出口ヘッダー6側の端部とで、その屈曲方向が逆となっている。また、第1扁平管1は、流入部1a、熱交換部1c、流出部1d及び屈曲部1bを備えている。流入部1aは、第1入口ヘッダー3と接続され、流路が略水平となっている。流出部1dは、第1出口ヘッダー4と接続され、流路が略水平となっている。熱交換部1cと第2扁平管2の熱交換部2cとは、互いの扁平な面が接触するように積層されている。屈曲部1bは、流入部1aと熱交換部1cとの間、及び熱交換部1cと流出部1dとの間を接続する。第1扁平管1の第1入口ヘッダー3側端部の屈曲方向は、第2扁平管2の第2出口ヘッダー6側端部の屈曲方向と同じになっている。第1扁平管1の第1出口ヘッダー4側端部の屈曲方向は、第2扁平管2の第2入口ヘッダー5側端部の屈曲方向と同じになっている。 In addition, the second flat tube 2 of the heat exchanger 10 shown in FIG. 6B is reverse in the bending direction between the end on the second inlet header 5 side and the end on the second outlet header 6 side. ing. Moreover, the 1st flat tube 1 is provided with the inflow part 1a, the heat exchange part 1c, the outflow part 1d, and the bending part 1b. The inflow portion 1a is connected to the first inlet header 3, and the flow path is substantially horizontal. The outflow portion 1d is connected to the first outlet header 4, and the flow path is substantially horizontal. The heat exchanging portion 1c and the heat exchanging portion 2c of the second flat tube 2 are laminated so that their flat surfaces are in contact with each other. The bent portion 1b connects between the inflow portion 1a and the heat exchange portion 1c and between the heat exchange portion 1c and the outflow portion 1d. The bending direction of the end portion on the first inlet header 3 side of the first flat tube 1 is the same as the bending direction of the end portion on the second outlet header 6 side of the second flat tube 2. The bending direction of the end portion on the first outlet header 4 side of the first flat tube 1 is the same as the bending direction of the end portion on the second inlet header 5 side of the second flat tube 2.
 このように構成された熱交換器10においては、実施の形態1の効果に加え、複数台の熱交換器10を設置する場合、高さ方向の設置スペースをコンパクトにできるという効果を奏する。つまり、熱交換能力を大きくするため、複数台の熱交換器10を扁平管1,2の積層方向に積上げて設置する場合、各ヘッダー3,4,5,6の干渉を防止しながら、各熱交換器10の高さ方向すきまを小さくすることができる。 In the heat exchanger 10 configured as described above, in addition to the effect of the first embodiment, when a plurality of heat exchangers 10 are installed, the installation space in the height direction can be made compact. That is, in order to increase the heat exchange capability, when installing a plurality of heat exchangers 10 stacked in the stacking direction of the flat tubes 1 and 2, while preventing interference between the headers 3, 4, 5 and 6, The clearance in the height direction of the heat exchanger 10 can be reduced.
 また、図6(c)に示す熱交換器10は、第1扁平管1の上方に加え、第1扁平管1の下方にも第2扁平管が設けられている。第1扁平管1の上方に配置される第2扁平管2Aは、流入部2Aa、熱交換部2Ac、流出部2Ad及び屈曲部2Abを備えている。流入部2Aaは、第2入口ヘッダー5Aと接続され、流路が略水平となっている。流出部2Adは、第2出口ヘッダー6Aと接続され、流路が略水平となっている。熱交換部2Acと第1扁平管1とは、互いの扁平な面が接触するように積層されている。屈曲部2Abは、流入部2Aaと熱交換部2Acとの間、及び熱交換部2Acと流出部2Adとの間を接続する。第2扁平管2Aの端部は、第1入口ヘッダー3及び第1出口ヘッダー4を乗り上げるように屈曲している。 In addition, the heat exchanger 10 shown in FIG. 6C is provided with a second flat tube below the first flat tube 1 in addition to the first flat tube 1. The 2nd flat tube 2A arrange | positioned above the 1st flat tube 1 is equipped with inflow part 2Aa, heat exchange part 2Ac, outflow part 2Ad, and bending part 2Ab. The inflow portion 2Aa is connected to the second inlet header 5A, and the flow path is substantially horizontal. The outflow portion 2Ad is connected to the second outlet header 6A, and the flow path is substantially horizontal. Heat exchange part 2Ac and 1st flat tube 1 are laminated so that a mutually flat surface may contact. The bent portion 2Ab connects between the inflow portion 2Aa and the heat exchange portion 2Ac and between the heat exchange portion 2Ac and the outflow portion 2Ad. The end of the second flat tube 2A is bent so as to ride over the first inlet header 3 and the first outlet header 4.
 第1扁平管1の下方に配置される第2扁平管2Bは、流入部2Ba、熱交換部2Bc、流出部2Bd及び屈曲部2Bbを備えている。流入部2Baは、第2入口ヘッダー5Bと接続され、流路が略水平となっている。流出部2Bdは、第2出口ヘッダー6Bと接続され、流路が略水平となっている。熱交換部2Bcと第1扁平管1とは、互いの扁平な面が接触するように積層されている。屈曲部2Bbは、流入部2Baと熱交換部2Bcとの間、及び熱交換部2Bcと流出部2Bdとの間を接続する。第2扁平管2Bの端部は、第1入口ヘッダー3及び第1出口ヘッダー4の下方へもぐり込むように屈曲している。 The second flat tube 2B disposed below the first flat tube 1 includes an inflow portion 2Ba, a heat exchange portion 2Bc, an outflow portion 2Bd, and a bent portion 2Bb. The inflow portion 2Ba is connected to the second inlet header 5B, and the flow path is substantially horizontal. The outflow portion 2Bd is connected to the second outlet header 6B, and the flow path is substantially horizontal. Heat exchange part 2Bc and 1st flat tube 1 are laminated so that a mutual flat surface may contact. The bent portion 2Bb connects between the inflow portion 2Ba and the heat exchange portion 2Bc and between the heat exchange portion 2Bc and the outflow portion 2Bd. The end of the second flat tube 2B is bent so as to go below the first inlet header 3 and the first outlet header 4.
 熱交換能力を大きくしたり、第2扁平管2の伝熱・流動特性を最適化するとき等、1本の第1扁平管1に対して2本の第2扁平管2A,2Bを配置する場合がある。このように構成された熱交換器10においては、気液二相状態の低温流体が第2扁平管2Aの貫通穴21へ流出する際の流出方向が略水平となっている。また、このように構成された熱交換器10においては、気液二相状態の低温流体が第2扁平管2Bの貫通穴21へ流出する際の流出方向が略水平となっている。このため、実施の形態1と同様、各貫通穴21に分配される低温流体の気液比率を等しくでき、コンパクトで高性能な熱交換器10を得ることができる。 Two second flat tubes 2A and 2B are arranged with respect to one first flat tube 1, such as when heat exchange capacity is increased or heat transfer / flow characteristics of the second flat tube 2 are optimized. There is a case. In the heat exchanger 10 configured as described above, the outflow direction when the low-temperature fluid in the gas-liquid two-phase state flows out into the through hole 21 of the second flat tube 2A is substantially horizontal. Moreover, in the heat exchanger 10 comprised in this way, the outflow direction when the low-temperature fluid of a gas-liquid two-phase state flows out into the through-hole 21 of the 2nd flat tube 2B is substantially horizontal. For this reason, similarly to Embodiment 1, the gas-liquid ratio of the low-temperature fluid distributed to each through hole 21 can be made equal, and the compact and high-performance heat exchanger 10 can be obtained.
実施の形態3.
 実施の形態1や実施の形態2の熱交換器10は、例えば空気調和装置、貯湯装置及び冷凍機等の冷凍空調装置に搭載される。以下に、実施の形態1や実施の形態2の熱交換器10を搭載した冷凍空調装置の一例について説明する。
Embodiment 3 FIG.
The heat exchanger 10 of Embodiment 1 or Embodiment 2 is mounted on a refrigerating and air-conditioning apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator. Below, an example of the refrigerating air-conditioner which mounts the heat exchanger 10 of Embodiment 1 or Embodiment 2 is demonstrated.
 図7は、本発明の実施の形態3による冷凍空調装置の一例を示す冷媒回路図である。
 図7に示す冷凍空調装置は、第1圧縮機30、第1放熱器31、第1減圧装置32、第1冷却器33が順に配管で接続された第1冷媒回路を有している。第1冷媒回路は、高温流体である第1冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。また、第1冷媒回路の第1放熱器31と第1減圧装置32との間に熱交換器10が配置されており、熱交換器10の第1入口ヘッダー3は第1放熱器31と接続され、第1出口ヘッダー4は第1減圧装置32と接続されている。
FIG. 7 is a refrigerant circuit diagram illustrating an example of a refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
The refrigerating and air-conditioning apparatus shown in FIG. 7 has a first refrigerant circuit in which a first compressor 30, a first radiator 31, a first decompressor 32, and a first cooler 33 are sequentially connected by piping. The first refrigerant circuit is configured so that the first refrigerant, which is a high-temperature fluid, circulates and operates in a vapor compression refrigeration cycle. Further, the heat exchanger 10 is disposed between the first radiator 31 of the first refrigerant circuit and the first pressure reducing device 32, and the first inlet header 3 of the heat exchanger 10 is connected to the first radiator 31. The first outlet header 4 is connected to the first pressure reducing device 32.
 また、この冷凍空調装置は、熱交換器10、第2圧縮機40、第2放熱器41、第2減圧装置42が順に配管で接続された第2冷媒回路を有している。熱交換器10の第2出口ヘッダー6は第2圧縮機40と接続され、第2入口ヘッダー5は第2減圧装置42と接続されている。第2冷媒回路は、低温流体である第2冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。第1冷媒、第2冷媒ともに、二酸化炭素、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒が用いられる。本実施の形態3では、第1冷媒に二酸化炭素が用いられている。 In addition, this refrigeration air conditioner has a second refrigerant circuit in which the heat exchanger 10, the second compressor 40, the second radiator 41, and the second decompression device 42 are connected in order by piping. The second outlet header 6 of the heat exchanger 10 is connected to the second compressor 40, and the second inlet header 5 is connected to the second decompression device 42. The second refrigerant circuit is configured so that the second refrigerant, which is a low-temperature fluid, circulates and operates in a vapor compression refrigeration cycle. As the first refrigerant and the second refrigerant, refrigerants such as carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, and ammonia are used. In the third embodiment, carbon dioxide is used as the first refrigerant.
 第1冷媒は、第1圧縮機30によって圧縮され、高温高圧の超臨界流体となって吐出される。高温高圧の超臨界流体となった第1冷媒は、第1放熱器31に送られ、第1放熱器31で空気等と熱交換して温度が低下し、高圧の超臨界流体になる。高圧の超臨界流体となった第1冷媒は、熱交換器10によって冷却されて温度が低下した後、第1減圧装置32に流入して減圧され、低温低圧の気液二相流状態に変化し、第1冷却器33に送られる。低温低圧の気液二相流状態となった第1冷媒は、第1冷却器33で空気等と熱交換して蒸発し、第1圧縮機30に戻る。 The first refrigerant is compressed by the first compressor 30 and discharged as a high-temperature and high-pressure supercritical fluid. The 1st refrigerant | coolant used as the high temperature / high pressure supercritical fluid is sent to the 1st heat radiator 31, heat exchanges with air etc. in the 1st heat radiator 31, temperature falls, and it becomes a high pressure supercritical fluid. The first refrigerant, which has become a high-pressure supercritical fluid, is cooled by the heat exchanger 10 and the temperature is lowered. Then, the first refrigerant flows into the first decompression device 32 and is decompressed to change into a low-temperature and low-pressure gas-liquid two-phase flow state. Then, it is sent to the first cooler 33. The first refrigerant in a low-temperature and low-pressure gas-liquid two-phase flow state is evaporated by exchanging heat with air or the like in the first cooler 33 and returns to the first compressor 30.
 一方、第2冷媒は、第2圧縮機40によって圧縮され、高温高圧の蒸気となって吐出される。高温高圧の蒸気となった第2冷媒は、第2放熱器41に送られ、第2放熱器41で空気等と熱交換して温度が低下し、高圧の液体になる。高圧の液体となった第2冷媒は、第2減圧装置42で減圧され、低温の気液二相流状態に変化し、熱交換器10に送られる。低温の気液二相流状態となった第2冷媒は、熱交換器10で加熱され蒸気となり、第2圧縮機40に戻る。 On the other hand, the second refrigerant is compressed by the second compressor 40 and discharged as high-temperature and high-pressure steam. The second refrigerant that has become high-temperature and high-pressure vapor is sent to the second radiator 41, and heat exchange with the air or the like is performed by the second radiator 41 to lower the temperature, and become a high-pressure liquid. The second refrigerant that has become a high-pressure liquid is decompressed by the second decompression device 42, changes to a low-temperature gas-liquid two-phase flow state, and is sent to the heat exchanger 10. The second refrigerant in the low-temperature gas-liquid two-phase flow state is heated by the heat exchanger 10 to become steam and returns to the second compressor 40.
 このように構成された冷凍空調装置においては、第1放熱器31を流出した冷媒の過冷却度を大きく確保することができ、冷凍空調装置の効率を大幅に向上することができる。
 なお、第1冷媒回路を流れる第1冷媒として、HFC系冷媒、HC系冷媒、HFO系冷媒又はアンモニアを用いた場合においても、第1放熱器31を流出した冷媒の過冷却度を大きく確保することで、冷凍空調装置の効率が向上する。第1冷媒回路の第1冷媒が二酸化炭素であって、臨界点以上で放熱する場合、冷凍空調装置の効率が特に向上する。
 なお、本実施の形態3では、第2冷媒回路は、蒸気圧縮式冷凍サイクルの場合を示したが、第2冷媒を水やエチレングリコール水溶液等のブライン(不凍液)、第2圧縮機40をポンプで構成してもよい。
In the refrigeration air conditioner configured as described above, it is possible to ensure a large degree of supercooling of the refrigerant that has flowed out of the first radiator 31, and to greatly improve the efficiency of the refrigeration air conditioner.
Even when an HFC refrigerant, HC refrigerant, HFO refrigerant, or ammonia is used as the first refrigerant flowing through the first refrigerant circuit, a large degree of supercooling of the refrigerant that has flowed out of the first radiator 31 is ensured. This improves the efficiency of the refrigeration air conditioner. When the first refrigerant in the first refrigerant circuit is carbon dioxide and radiates heat at a critical point or higher, the efficiency of the refrigeration air conditioner is particularly improved.
In the third embodiment, the second refrigerant circuit is a vapor compression refrigeration cycle. However, the second refrigerant is brine (antifreeze) such as water or ethylene glycol aqueous solution, and the second compressor 40 is pumped. You may comprise.
 図8は、本発明の実施の形態3による冷凍空調装置の別の一例を示す冷媒回路図である。
 図8に示す冷凍空調装置は、図7に示す冷凍空調装置の構成から第1放熱器31を省略し、第1圧縮機30から吐出された高温高圧の蒸気である第1冷媒を全て熱交換器10で冷却している。つまり、図8に示す冷凍空調装置は、いわゆる二次ループ形冷凍空調装置となっている。この場合、熱交換器10は第1放熱器31として用いられる。図8に示す冷凍空調装置では、熱交換器10において必要熱交換量が大きくなり、冷凍空調装置全体に占める容積割合が第1放熱器31を設けた場合よりも大きくなる。熱交換器10がコンパクトとなることによって、冷凍空調装置全体がコンパクトとなる効果が一層高まる。
FIG. 8 is a refrigerant circuit diagram illustrating another example of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
The refrigeration air conditioner shown in FIG. 8 omits the first radiator 31 from the configuration of the refrigeration air conditioner shown in FIG. 7, and exchanges all heat of the first refrigerant that is high-temperature and high-pressure steam discharged from the first compressor 30. It is cooled by the vessel 10. That is, the refrigeration air conditioner shown in FIG. 8 is a so-called secondary loop type refrigeration air conditioner. In this case, the heat exchanger 10 is used as the first radiator 31. In the refrigeration air conditioner shown in FIG. 8, the necessary heat exchange amount is increased in the heat exchanger 10, and the volume ratio in the entire refrigeration air conditioner is larger than that in the case where the first radiator 31 is provided. By making the heat exchanger 10 compact, the effect of making the entire refrigeration air conditioner compact is further enhanced.
 図9は、本発明の実施の形態3による冷凍空調装置のさらに別の一例を示す冷媒回路図である。
 図9に示す冷凍空調装置は、第1圧縮機30、第1放熱器31、第1減圧装置32及び第1冷却器33が順に接続された冷媒回路を備えている。また、図9に示す冷凍空調装置は、バイパス配管52を備えている。バイパス配管52は、一端が第1放熱器31と第1減圧装置32との間に接続され、他端が第1圧縮機30における冷媒の圧縮工程の途中に設けられたインジェクションポート53、又はここでは図示しないが圧縮機30と第1冷却器33との間に接続されている。熱交換器10は、冷媒回路における第1放熱器31と第1減圧装置32との間であり、バイパス配管52の途中となる位置に配置されている。熱交換器10は、第1入口ヘッダー3と第1放熱器31とが接続され、第1出口ヘッダー4と第1減圧装置32とが接続されている。また、熱交換器10は、第2入口ヘッダー5とバイパス減圧装置51とが接続され、第2出口ヘッダー6とインジェクションポート53、又はここでは図示しないが圧縮機30と第1冷却器33との間とが接続されている。
FIG. 9 is a refrigerant circuit diagram illustrating still another example of the refrigerating and air-conditioning apparatus according to Embodiment 3 of the present invention.
The refrigeration air conditioner shown in FIG. 9 includes a refrigerant circuit in which a first compressor 30, a first radiator 31, a first decompressor 32, and a first cooler 33 are connected in order. Further, the refrigeration air conditioner shown in FIG. 9 includes a bypass pipe 52. One end of the bypass pipe 52 is connected between the first radiator 31 and the first pressure reducing device 32, and the other end is an injection port 53 provided in the middle of the refrigerant compression process in the first compressor 30, or here Then, although not shown, it is connected between the compressor 30 and the first cooler 33. The heat exchanger 10 is disposed between the first heat radiator 31 and the first pressure reducing device 32 in the refrigerant circuit and at a position in the middle of the bypass pipe 52. In the heat exchanger 10, the first inlet header 3 and the first radiator 31 are connected, and the first outlet header 4 and the first pressure reducing device 32 are connected. Further, the heat exchanger 10 is connected to the second inlet header 5 and the bypass pressure reducing device 51, and is connected to the second outlet header 6 and the injection port 53, or although not shown here, the compressor 30 and the first cooler 33. Are connected.
 バイパス減圧装置51で減圧された冷媒(低温流体)は、低温の気液二相流状態に変化し、熱交換器10で第1放熱器31から流出した冷媒(高温流体)と熱交換し、第1圧縮機30のインジェクションポート53に送られる。なお、図9に示す冷凍空調装置においては、HFC系冷媒、HC冷媒、HFO系冷媒、アンモニア、二酸化炭素等の冷媒が用いられる。 The refrigerant (low-temperature fluid) decompressed by the bypass decompression device 51 changes to a low-temperature gas-liquid two-phase flow state, and exchanges heat with the refrigerant (high-temperature fluid) flowing out from the first radiator 31 by the heat exchanger 10. It is sent to the injection port 53 of the first compressor 30. In the refrigerating and air-conditioning apparatus shown in FIG. 9, refrigerants such as HFC refrigerant, HC refrigerant, HFO refrigerant, ammonia, and carbon dioxide are used.
 このように構成された冷凍空調装置においても、第1放熱器31を流出した冷媒の過冷却度を大きく確保することができ、冷凍空調装置の効率を大幅に向上することができる。 Also in the refrigeration air conditioner configured as described above, it is possible to ensure a large degree of supercooling of the refrigerant that has flowed out of the first radiator 31, and to greatly improve the efficiency of the refrigeration air conditioner.
 また、図9に示す冷凍空調装置においては、熱交換器10からインジェクションポート53に流入する低温流体の飽和温度(気液平衡温度)が高いほど、第1圧縮機30の効率が高くなり、所要動力も小さくできる。図9に示すように第1放熱器31の出口を冷却すると、特に外気温度が高く第1放熱器31出口における高温流体の温度が比較的高い場合、熱交換器10において高温流体と低温流体との温度差を十分大きくとれる。このため、インジェクションポート53に流入する低温流体の温度を高めに維持でき、第1圧縮機30の高い効率を確保することができる。 In the refrigeration air conditioner shown in FIG. 9, the higher the saturation temperature (vapor-liquid equilibrium temperature) of the low-temperature fluid flowing from the heat exchanger 10 into the injection port 53, the higher the efficiency of the first compressor 30 and the required Power can be reduced. As shown in FIG. 9, when the outlet of the first radiator 31 is cooled, particularly when the outside air temperature is high and the temperature of the high-temperature fluid at the outlet of the first radiator 31 is relatively high, The temperature difference can be sufficiently large. For this reason, the temperature of the low-temperature fluid flowing into the injection port 53 can be maintained high, and the high efficiency of the first compressor 30 can be ensured.
 なお、バイパス配管52の他端が第1圧縮機30と第1冷却器33との間に接続される場合、熱交換器10を用いない場合に比べ、冷凍効果を低下させることなく、第1冷却器33を流れる冷媒流量を低下させることができる。特に、第1圧縮機30と第1冷却器33の間の配管長が長い場合、圧力損失の増加に伴う性能の低下を抑制することができ、有用である。 In addition, when the other end of the bypass pipe 52 is connected between the first compressor 30 and the first cooler 33, the first effect is achieved without reducing the refrigeration effect as compared with the case where the heat exchanger 10 is not used. The flow rate of the refrigerant flowing through the cooler 33 can be reduced. In particular, when the piping length between the first compressor 30 and the first cooler 33 is long, it is possible to suppress a decrease in performance due to an increase in pressure loss, which is useful.
 以上のように、コンパクトで高性能な熱交換器10を搭載することにより、上述のような効果を有しつつ、コンパクトな冷凍空調装置を得ることができる。 As described above, by mounting the compact and high-performance heat exchanger 10, it is possible to obtain a compact refrigeration air conditioner while having the above-described effects.
実施の形態4.
 実施の形態1及び実施の形態2においては、高温流体が流通する第1扁平管1及び低温流体が流通する第2扁平管2をそれぞれ別体で構成し、第1扁平管1及び第2扁平管2の扁平な面同士をろう付け等で接合して両者を積層した熱交換器10について説明した。つまり、実施の形態1及び実施の形態2においては、高温流体が流通する冷媒流路及び低温流体が流通する冷媒流路をそれぞれ別部品に形成した熱交換器10について説明した。これに限らず、高温流体が流通する冷媒流路及び低温流体が流通する冷媒流路を同一部品に形成して熱交換器10を構成してもよい(つまり、本発明に係る第1流路部及び第2流路部を一体で形成してもよい)。そして、このように構成された熱交換器10を実施の形態3で示したような冷凍空調装置に搭載してもよい。なお、本実施の形態4において、特に記述しない項目については実施の形態1~実施の形態3と同様とする。
Embodiment 4 FIG.
In the first embodiment and the second embodiment, the first flat tube 1 through which the high-temperature fluid flows and the second flat tube 2 through which the low-temperature fluid flows are configured separately, and the first flat tube 1 and the second flat tube 2 are formed separately. The heat exchanger 10 in which the flat surfaces of the tube 2 are joined together by brazing or the like and laminated together has been described. That is, in the first embodiment and the second embodiment, the heat exchanger 10 is described in which the refrigerant flow path through which the high-temperature fluid flows and the refrigerant flow path through which the low-temperature fluid flows are formed as separate parts. However, the heat exchanger 10 may be configured by forming the refrigerant flow path through which the high-temperature fluid flows and the refrigerant flow path through which the low-temperature fluid flows in the same component (that is, the first flow path according to the present invention). Part and the second flow path part may be integrally formed). And you may mount the heat exchanger 10 comprised in this way in the refrigerating air conditioner as shown in Embodiment 3. FIG. In the fourth embodiment, items that are not particularly described are the same as those in the first to third embodiments.
 図10は、本発明の実施の形態4による熱交換器の構造図である。このうち、図10(a)は、同熱交換器10の斜視図であり、図10(b)は、図10(a)のA矢視図である。
 図10で示されるように、本実施の形態4に係る熱交換器10の本体110には、第1冷媒(例えば、高温流体)が流通する複数の第1冷媒流路101aが例えば長手方向(図10の上下方向)に貫通して形成されている。そして、これら第1冷媒流路101aが並列配置されて、第1冷媒パス101を構成している。また、本体110には、第2冷媒(例えば、低温流体)が流通する複数の第2冷媒流路102aが例えば長手方向(図10の上下方向)に貫通して形成されている。そして、これら第2冷媒流路102aが並列配置されて第2冷媒パス102を構成している。これら第1冷媒パス101及び第2冷媒102は、第1冷媒流路101aの並設方向と第2冷媒流路102aの並設方向を揃えて配置されている。なお、図10に示す熱交換器10では、第1冷媒パス101(つまり、第1冷媒流路101a)及び第2冷媒パス102(つまり、第2冷媒流路102a)が垂直に配置されている。
 なお、ここでいう「揃えて」とは、第1冷媒流路101aの並設方向と第2冷媒流路102aの並設方向とが厳密に平行となっているものではなく、両者の並設方向が実質的に揃っていることを示している。このため、第1冷媒流路101aの並設方向と第2冷媒流路102aの並設方向とが多少傾いていても、本実施の形態4では、両者の並設方向を「揃えて」と表現する。
FIG. 10 is a structural diagram of a heat exchanger according to Embodiment 4 of the present invention. Among these, Fig.10 (a) is a perspective view of the heat exchanger 10, and FIG.10 (b) is A arrow view of Fig.10 (a).
As shown in FIG. 10, in the main body 110 of the heat exchanger 10 according to the fourth embodiment, a plurality of first refrigerant flow paths 101 a through which a first refrigerant (for example, high-temperature fluid) flows are, for example, in the longitudinal direction ( It is formed penetrating in the vertical direction of FIG. And these 1st refrigerant | coolant flow paths 101a are arrange | positioned in parallel, and the 1st refrigerant | coolant path | pass 101 is comprised. The main body 110 is formed with a plurality of second refrigerant flow paths 102a through which a second refrigerant (for example, low-temperature fluid) flows, for example, penetrating in the longitudinal direction (vertical direction in FIG. 10). These second refrigerant flow paths 102 a are arranged in parallel to constitute the second refrigerant path 102. The first refrigerant path 101 and the second refrigerant 102 are arranged such that the juxtaposed direction of the first refrigerant channel 101a and the juxtaposed direction of the second refrigerant channel 102a are aligned. In the heat exchanger 10 shown in FIG. 10, the first refrigerant path 101 (that is, the first refrigerant flow path 101a) and the second refrigerant path 102 (that is, the second refrigerant flow path 102a) are arranged vertically. .
Here, “aligning” does not mean that the juxtaposed direction of the first refrigerant flow path 101a and the juxtaposed direction of the second refrigerant flow path 102a are strictly parallel. It shows that the direction is substantially aligned. For this reason, even if the juxtaposed direction of the first refrigerant channel 101a and the juxtaposed direction of the second refrigerant channel 102a are slightly inclined, in the fourth embodiment, the juxtaposed direction of both is “aligned”. Express.
 つまり、本実施の形態4においては、第1冷媒パス101と第2冷媒パス102とが一体で形成されている。この第1冷媒パス101及び第2冷媒パス102が形成された本体110は、例えば、アルミニウム若しくはアルミニウム合金、銅若しくは銅合金、鉄鋼、又はステンレス合金によって形成されており、押し出し又は引き抜き成形等によって製造される。 That is, in the fourth embodiment, the first refrigerant path 101 and the second refrigerant path 102 are integrally formed. The main body 110 in which the first refrigerant path 101 and the second refrigerant path 102 are formed is formed of, for example, aluminum or aluminum alloy, copper or copper alloy, steel, or stainless alloy, and is manufactured by extrusion or pultrusion molding or the like. Is done.
 また、本体110の冷媒流通方向の両端のうち一方には、各第2冷媒流路102aの並設方向に沿って、全ての第2冷媒流路102aに連通する第2入口連通穴105aが形成されている。また、他方には、各第2冷媒流路102aの並設方向に沿って、全ての第2冷媒流路102aに連通する第2出口連通穴106aが形成されている。つまり、図10に示す熱交換器10では、第2入口連通穴105a及び第2出口連通穴106aが水平に配置されている。 In addition, a second inlet communication hole 105a that communicates with all the second refrigerant flow paths 102a is formed along one of the two ends of the main body 110 in the refrigerant flow direction along the direction in which the second refrigerant flow paths 102a are juxtaposed. Has been. On the other side, second outlet communication holes 106a communicating with all the second refrigerant flow paths 102a are formed along the parallel direction of the second refrigerant flow paths 102a. That is, in the heat exchanger 10 shown in FIG. 10, the second inlet communication hole 105a and the second outlet communication hole 106a are horizontally arranged.
 同様に、本体110の冷媒流通方向の両端のうち第2出口連通穴106aが形成された側には、各第1冷媒流路101aの並設方向に沿って、全ての第1冷媒流路101aに連通する第1入口連通穴103aが形成されている。また、本体110の冷媒流通方向の両端のうち第2入口連通穴105aが形成された側には、各第1冷媒流路101aの並設方向に沿って、全ての第1冷媒流路101aに連通する第1出口連通穴104aが形成されている。つまり、図10に示す熱交換器10では、第1入口連通穴103a及び第1出口連通穴104aが水平に配置されている。 Similarly, all the first refrigerant flow paths 101a are arranged along the direction in which the first refrigerant flow paths 101a are arranged on both sides of the main body 110 in the refrigerant flow direction on the side where the second outlet communication holes 106a are formed. A first inlet communication hole 103a communicating with the first inlet hole 103a is formed. Further, on both sides of the main body 110 in the refrigerant flow direction on the side where the second inlet communication holes 105a are formed, all the first refrigerant flow paths 101a are arranged along the parallel arrangement direction of the first refrigerant flow paths 101a. A first outlet communication hole 104a that communicates is formed. That is, in the heat exchanger 10 shown in FIG. 10, the first inlet communication hole 103a and the first outlet communication hole 104a are horizontally arranged.
 さらに、第1入口連通穴103aと第2出口連通穴106aとは、第1冷媒流路101a(換言すると、第2冷媒流路102a)の冷媒流通方向に少しずらして形成されている。また、第1出口連通穴104aと第2入口連通穴105aとは、第1冷媒流路101a(換言すると、第2冷媒流路102a)の冷媒流通方向に少しずらして形成されている。 Furthermore, the first inlet communication hole 103a and the second outlet communication hole 106a are formed slightly shifted in the refrigerant flow direction of the first refrigerant channel 101a (in other words, the second refrigerant channel 102a). Further, the first outlet communication hole 104a and the second inlet communication hole 105a are formed with a slight shift in the refrigerant flow direction of the first refrigerant flow path 101a (in other words, the second refrigerant flow path 102a).
 なお、第1入口連通穴103a及び第1出口連通穴104aの貫通方向は、必ずしも各第1冷媒流路101aの方向と垂直になっている必要はない。また、第2入口連通穴105a及び第2出口連通穴106aの貫通方向についても、必ずしも第2冷媒流路102aの方向と垂直になっている必要もない。 In addition, the penetration direction of the first inlet communication hole 103a and the first outlet communication hole 104a is not necessarily perpendicular to the direction of each first refrigerant flow path 101a. Further, the penetrating direction of the second inlet communication hole 105a and the second outlet communication hole 106a is not necessarily perpendicular to the direction of the second refrigerant channel 102a.
 また、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの一端は開口されており、それぞれ、外部に連通するように、第1入口接続管103、第1出口接続管104、第2入口接続管105及び第2出口接続管106が接続されている。また、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの他端は、封止部材等によって閉口されている。
 なお、図10では、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの開口(又は閉口)側端部が、すべて同じ側になっている。しかしながら、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの開口(又は閉口)側端部は、図10に示す位置に限定されるものではなく、各連通穴において一端が開口され、他端が閉口されている構成であれば、それぞれ同じ側である必要はない。
In addition, one end of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a is opened, and the first inlet connection so as to communicate with the outside respectively. The pipe 103, the first outlet connecting pipe 104, the second inlet connecting pipe 105, and the second outlet connecting pipe 106 are connected. The other ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are closed by a sealing member or the like.
In FIG. 10, the opening (or closing) side end portions of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are all on the same side. Yes. However, the opening (or closing) side end portions of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are limited to the positions shown in FIG. Instead, each communication hole need not be on the same side as long as one end is opened and the other end is closed.
 また、本体110の長手方向に貫通して形成された複数の第1冷媒流路101a及び第2冷媒流路102aの両端部は、ピンチ加工等による封止加工、又は、封止部材によって封止(図示せず)されている。 In addition, both ends of the plurality of first refrigerant channels 101a and second refrigerant channels 102a formed so as to penetrate in the longitudinal direction of the main body 110 are sealed by pinching or the like or sealed by a sealing member (Not shown).
 ここで、本実施の形態4に係る熱交換器10は、図10に示すような低温流体及び高温流体が上下方向に流れる姿勢で用いられることを想定したものである。また、本実施の形態4に係る熱交換器10は、気液二相状態の低温流体が第2入口接続管105及び第2入口連通穴105aを介して第2冷媒パスの各第2冷媒流路102aに流入することを想定したものである。このため、本実施の形態4に係る熱交換器10は、実施の形態1の図3~図5に示す実験により得られた知見、即ち、伝熱特性に優れた前述した姿勢角α,β,γの範囲に基づき、第2入口連通穴105aを次のような位置に配置している。 Here, the heat exchanger 10 according to the fourth embodiment is assumed to be used in a posture in which a low-temperature fluid and a high-temperature fluid flow in the vertical direction as shown in FIG. Further, in the heat exchanger 10 according to the fourth embodiment, the low-temperature fluid in the gas-liquid two-phase state flows through each second refrigerant flow in the second refrigerant path via the second inlet connection pipe 105 and the second inlet communication hole 105a. This is assumed to flow into the path 102a. For this reason, the heat exchanger 10 according to the fourth embodiment is based on the knowledge obtained by the experiments shown in FIGS. 3 to 5 of the first embodiment, that is, the above-described attitude angles α, β excellent in heat transfer characteristics. , Γ, the second inlet communication hole 105a is arranged at the following position.
 つまり、第2入口連通穴105aを当該第2入口連通穴105aの中心軸方向に観察した場合、第2入口連通穴105aの中心軸は、第2入口連通穴105aと第2冷媒パス102(つまり、各第2冷媒流路102a)との接続部と一致する位置、又は、当該接続部よりも第1冷媒パス101(つまり、各第1冷媒流路101a)から離れた位置となっている。
 これにより、本実施の形態4に係る熱交換器10においては、第2流路部102と第2入口ヘッダー5とを、姿勢角αとして0°≦α<110°(図3と同じ方向を正とした場合は-110°<α≦0)で接続している。
That is, when the second inlet communication hole 105a is observed in the central axis direction of the second inlet communication hole 105a, the central axis of the second inlet communication hole 105a is the second inlet communication hole 105a and the second refrigerant path 102 (that is, , A position that coincides with a connection portion with each second refrigerant flow path 102a), or a position that is farther from the first refrigerant path 101 (that is, each first refrigerant flow path 101a) than the connection portion.
As a result, in the heat exchanger 10 according to the fourth embodiment, the second flow path portion 102 and the second inlet header 5 are set to a posture angle α of 0 ° ≦ α <110 ° (in the same direction as FIG. 3). When positive, the connection is made at −110 ° <α ≦ 0).
 なお、第1冷媒パス101、第2冷媒パス102、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2入口連通穴106aが、本発明の「第1流路部」、「第2流路部」、「第1入口ヘッダー」、「第1出口ヘッダー」、「第2入口ヘッダー」及び「第2出口ヘッダー」に相当する。 The first refrigerant path 101, the second refrigerant path 102, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second inlet communication hole 106a are the “first flow” of the present invention. It corresponds to a “channel portion”, “second flow path portion”, “first inlet header”, “first outlet header”, “second inlet header”, and “second outlet header”.
 次に、図10を参照しながら、本実施の形態4に係る熱交換器10における高温流体と低温流体との熱交換動作について説明する。 Next, the heat exchange operation between the high-temperature fluid and the low-temperature fluid in the heat exchanger 10 according to Embodiment 4 will be described with reference to FIG.
 高温流体は、第1入口接続管103を介して第1入口連通穴103aへ流入し、第1冷媒パス101、そして、第1出口連通穴104aの順に流通して、第1出口接続管104から流出する。一方、低温流体は、気液二相状態で、第2入口接続管105を介して第2入口連通穴105aへ流入し、第2冷媒パス102、そして、第2出口連通穴106aの順に流通して、第2出口接続管106から流出する。その際、第1冷媒パス101を流通する高温流体と、第2冷媒パス102を流通する低温流体とは、各冷媒パス同士間の隔壁を介して対向流で熱交換が実施される。 The high-temperature fluid flows into the first inlet communication hole 103a through the first inlet connection pipe 103, flows in the order of the first refrigerant path 101, and the first outlet communication hole 104a, and then passes through the first outlet connection pipe 104. leak. On the other hand, the low-temperature fluid flows into the second inlet communication hole 105a through the second inlet connection pipe 105 in a gas-liquid two-phase state, and flows in the order of the second refrigerant path 102 and the second outlet communication hole 106a. And flows out from the second outlet connecting pipe 106. At this time, heat exchange is performed between the high-temperature fluid flowing through the first refrigerant path 101 and the low-temperature fluid flowing through the second refrigerant path 102 in a counterflow through a partition between the refrigerant paths.
 以上、本実施の形態4のように構成された熱交換器10においては、第2入口連通穴105aを当該第2入口連通穴105aの中心軸方向に観察した場合、第2入口連通穴105aの中心軸は、第2入口連通穴105aと第2冷媒パス102(つまり、各第2冷媒流路102a)との接続部と一致する位置、又は、当該接続部よりも第1冷媒パス101(つまり、各第1冷媒流路101a)から離れた位置となっている。これにより、気液二相状態の低温冷媒が第2入口連通穴105aから第2冷媒パス102へ流入する際の姿勢角αが、0°≦α<110°となっている。このため、気液二相状態の低温冷媒は、第2冷媒パス102の各第2冷媒流路102aへほぼ等しい気液比率で分配されやすくなり、安定した性能の熱交換器10が得られる。 As described above, in the heat exchanger 10 configured as in Embodiment 4, when the second inlet communication hole 105a is observed in the central axis direction of the second inlet communication hole 105a, the second inlet communication hole 105a The central axis corresponds to a connection portion between the second inlet communication hole 105a and the second refrigerant path 102 (that is, each second refrigerant flow path 102a), or the first refrigerant path 101 (that is, the connection portion). The first refrigerant flow path 101a) is away from each other. Accordingly, the posture angle α when the low-temperature refrigerant in the gas-liquid two-phase state flows into the second refrigerant path 102 from the second inlet communication hole 105a is 0 ° ≦ α <110 °. For this reason, the low-temperature refrigerant in the gas-liquid two-phase state is easily distributed to each second refrigerant flow path 102a of the second refrigerant path 102 at a substantially equal gas-liquid ratio, and the heat exchanger 10 with stable performance is obtained.
 なお、実施の形態1からもわかるように、図10(b)の矢印方向を正方向とした場合、80°<α<100°のとき、低温流体の気相成分と液相成分の分配特性が最も好適となる。そして、隣り合う第1冷媒パス101と第2冷媒パス102との距離を近づけることができる。このため、図10(b)の矢印方向を正方向とした場合、80°<α<100°となるように第2入口連通穴105aを形成することにより、本体110おいて熱伝導による熱抵抗をより抑制でき、熱交換器10の性能向上をより図ることができる。 As can be seen from the first embodiment, when the arrow direction in FIG. 10B is a positive direction, when 80 ° <α <100 °, the distribution characteristics of the gas phase component and the liquid phase component of the low-temperature fluid Is most preferred. Then, the distance between the adjacent first refrigerant path 101 and the second refrigerant path 102 can be reduced. For this reason, when the direction of the arrow in FIG. 10B is a positive direction, the second inlet communication hole 105a is formed so as to satisfy 80 ° <α <100 °. And the performance of the heat exchanger 10 can be further improved.
 また、第1冷媒パス101と第2冷媒パス102とが本体110において一体として構成することにより、以下の種々の効果を得ることもできる。 Moreover, the following various effects can also be acquired by comprising the 1st refrigerant path 101 and the 2nd refrigerant path 102 as integral in the main body 110. FIG.
 まず、高温流体が流通する流路と低温冷媒が流通する流路とが別部品に形成された場合、これら部品の接合面で発生する熱抵抗が抑制され、熱交換器10の熱交換性能を向上させることができる。 First, when the flow path through which the high-temperature fluid circulates and the flow path through which the low-temperature refrigerant circulate are formed as separate parts, the heat resistance generated at the joint surfaces of these parts is suppressed, and the heat exchange performance of the heat exchanger 10 is reduced. Can be improved.
 また、熱交換器10の本体110内部に第1入口連通穴103a及び第1出口連通穴104aを設けたため、第1冷媒パス101に接続するための別体のヘッダー管を備える必要がないので、熱交換器10のコンパクト化が図れると共に、製造工程を簡素化することができる。これについては、第2冷媒パス102についての第2入口連通穴105a及び第2出口連通穴106aについても同様である。 In addition, since the first inlet communication hole 103a and the first outlet communication hole 104a are provided inside the main body 110 of the heat exchanger 10, it is not necessary to provide a separate header pipe for connecting to the first refrigerant path 101. The heat exchanger 10 can be made compact and the manufacturing process can be simplified. The same applies to the second inlet communication hole 105a and the second outlet communication hole 106a for the second refrigerant path 102.
 さらに、第1入口連通穴103a及び第2出口連通穴106a、並びに、第1出口連通穴104a及び第2入口連通穴105aは、それぞれ、各流体の流通方向に少しずらして形成されているので、ずらさない場合と比較して、隣り合う第1冷媒パス101と第2冷媒パス102との距離を近づけることができ、熱交換器10のコンパクト化を図ることができる。 Furthermore, since the first inlet communication hole 103a and the second outlet communication hole 106a, and the first outlet communication hole 104a and the second inlet communication hole 105a are formed slightly shifted in the flow direction of each fluid, Compared with the case where it does not shift, the distance between the adjacent first refrigerant path 101 and the second refrigerant path 102 can be reduced, and the heat exchanger 10 can be made compact.
 なお、本実施の形態4に係る熱交換器10では、図10で示されるように第1冷媒流路101a及び第2冷媒流路102aの流路断面の形状を矩形としているが、これら流路断面の形状は矩形に限定されるものではない。第1冷媒流路101a及び第2冷媒流路102aの流路断面は、例えば多角形に形成してもよいし、耐圧性能を高めるために円形にしてもよい。第1冷媒流路101a及び第2冷媒流路102aの流路断面を長穴又は楕円等としても勿論よい。この場合、第1冷媒流路101aの流路断面と、第2冷媒流路102aの流路断面とを同形状にする必要もないことは言うまでもない。さらに、伝熱性能を高めるために、第1冷媒流路101aや第2冷媒流路102aの内面に溝を設けて伝熱面積を大きくしてもよい。この場合、本体10の押し出し成形時や引き抜き成形時に、同時にこの溝を加工するものとすれば、製造作業を簡素化することができる。 In the heat exchanger 10 according to the fourth embodiment, as shown in FIG. 10, the first refrigerant flow path 101a and the second refrigerant flow path 102a have rectangular cross-sectional shapes. The shape of the cross section is not limited to a rectangle. The cross sections of the first refrigerant flow path 101a and the second refrigerant flow path 102a may be formed in a polygonal shape, for example, or may be circular in order to improve pressure resistance. Of course, the cross sections of the first refrigerant flow path 101a and the second refrigerant flow path 102a may be long holes or ellipses. In this case, it goes without saying that the flow path cross section of the first refrigerant flow path 101a and the flow path cross section of the second refrigerant flow path 102a need not have the same shape. Furthermore, in order to improve the heat transfer performance, a groove may be provided on the inner surface of the first refrigerant channel 101a or the second refrigerant channel 102a to increase the heat transfer area. In this case, if this groove is processed at the same time as extrusion molding or pultrusion molding of the main body 10, the manufacturing operation can be simplified.
 また、本実施の形態4に係る熱交換器10では、図10で示されるように第1冷媒パス101の第1冷媒流路101aと第2冷媒パス102の第2冷媒流路102aの数を同数としているが、これに限定されるものではない。すなわち、熱交換器10における高温流体及び低温流体の動作条件又は流動物性値に合わせて、伝熱性能が高く、圧力損失が低く、かつ、好適な熱交換器10となるように、それぞれ異なる数としてもよい。 Further, in the heat exchanger 10 according to the fourth embodiment, the number of the first refrigerant flow paths 101a of the first refrigerant path 101 and the second refrigerant flow paths 102a of the second refrigerant path 102 is set as shown in FIG. Although the number is the same, it is not limited to this. That is, different numbers are used so that the heat exchanger 10 has a high heat transfer performance, a low pressure loss, and a suitable heat exchanger 10 according to the operating conditions or flow property values of the high temperature fluid and the low temperature fluid in the heat exchanger 10. It is good.
 また、第1冷媒パス101を流通する高温流体と、第2冷媒パス102を流通する低温流体とは、対向流で熱交換が実施されるものとしたが、これに限定されるものではなく、並行流として熱交換を実施するものとしてもよい。例えば、高温流体が第1入口接続管103から流入し、かつ、低温流体が第2出口接続管106から流入するようにすれば、高温流体及び低温流体が並行流となる。 In addition, the high-temperature fluid flowing through the first refrigerant path 101 and the low-temperature fluid flowing through the second refrigerant path 102 are assumed to perform heat exchange in a counterflow, but are not limited thereto. It is good also as what implements heat exchange as a parallel flow. For example, if the high temperature fluid flows in from the first inlet connecting pipe 103 and the low temperature fluid flows in from the second outlet connecting pipe 106, the high temperature fluid and the low temperature fluid become parallel flows.
 また、図10では、低温流体及び高温流体が上下方向に流れる姿勢で用いられる熱交換器10について説明したが、第1冷媒パス101及び第2冷媒パス102を一体形成した本実施の形態4に係る熱交換器10の設置姿勢は、図10に示す姿勢に限定されるものではない。 In addition, in FIG. 10, the heat exchanger 10 used in a posture in which the low-temperature fluid and the high-temperature fluid flow in the vertical direction has been described, but in the fourth embodiment in which the first refrigerant path 101 and the second refrigerant path 102 are integrally formed. The installation posture of the heat exchanger 10 is not limited to the posture shown in FIG.
 図11は、本発明の実施の形態4による熱交換器の別の一例を示す構造図である。このうち、図11(a)は、同熱交換器10の斜視図であり、図11(b)は、図11(a)のA矢視図である。
 図11に示した熱交換器10は、低温流体及び高温流体が左右方向(略水平方向)に流れる姿勢で用いられることを想定したものである。つまり、図11に示した熱交換器10は、第1冷媒パス101(つまり、第1冷媒流路101a)及び第2冷媒パス102(つまり、第2冷媒流路102a)を水平に配置したものである。なお、その他の構成は、図10で示した熱交換器10と同様の構成となっており、同様の効果を奏する。図10と図11で示した同じ記号の部位は、同じ機能、動作を有するため、機能、動作の説明を省略する。
FIG. 11 is a structural diagram showing another example of a heat exchanger according to Embodiment 4 of the present invention. Among these, Fig.11 (a) is a perspective view of the heat exchanger 10, and FIG.11 (b) is A arrow view of Fig.11 (a).
The heat exchanger 10 shown in FIG. 11 is assumed to be used in a posture in which a low-temperature fluid and a high-temperature fluid flow in the left-right direction (substantially horizontal direction). That is, in the heat exchanger 10 shown in FIG. 11, the first refrigerant path 101 (that is, the first refrigerant flow path 101a) and the second refrigerant path 102 (that is, the second refrigerant flow path 102a) are arranged horizontally. It is. The other configuration is the same as that of the heat exchanger 10 shown in FIG. 10, and has the same effect. 10 and FIG. 11 have the same function and operation, and thus description of the function and operation is omitted.
 図11のように構成された熱交換器10においても、第2入口連通穴105aを当該第2入口連通穴105aの中心軸方向に観察した場合、第2入口連通穴105aの中心軸を、第2入口連通穴105aと第2冷媒パス102(つまり、各第2冷媒流路102a)との接続部と一致する位置、又は、当該接続部よりも第1冷媒パス101(つまり、各第1冷媒流路101a)から離れた位置とすればよい。これにより、気液二相状態の低温冷媒が第2入口連通穴105aから第2冷媒パス102へ流入する際の姿勢角αを、0<α≦90°に設定できる。このため、気液二相状態の低温冷媒は、第2冷媒パス102の各第2冷媒流路102aへほぼ等しい気液比率で分配されやすくなり、安定した性能の熱交換器10が得られる。ただし、80°<α<100°が分配特性としてはもっとも好適であるが、本実施の形態4の場合、αが90°から0°に近づくほど(すなわち、第2入口連通穴105aの中心軸を第1冷媒パス101から離れた位置に配置させるほど)、隣り合う第1冷媒パス101と第2冷媒パス102との距離を近づけることができる。このため、熱伝導による熱抵抗を抑制でき、性能向上を図ることができる姿勢角αとしては、少なくとも0<α<90°の間になっていればよい。 Also in the heat exchanger 10 configured as shown in FIG. 11, when the second inlet communication hole 105a is observed in the central axis direction of the second inlet communication hole 105a, the central axis of the second inlet communication hole 105a is The position corresponding to the connection portion between the two inlet communication holes 105a and the second refrigerant path 102 (that is, each second refrigerant flow path 102a), or the first refrigerant path 101 (that is, each first refrigerant than the connection portion). What is necessary is just to set it as the position away from the flow path 101a). Thereby, the attitude angle α when the low-temperature refrigerant in the gas-liquid two-phase state flows into the second refrigerant path 102 from the second inlet communication hole 105a can be set to 0 <α ≦ 90 °. For this reason, the low-temperature refrigerant in the gas-liquid two-phase state is easily distributed to each second refrigerant flow path 102a of the second refrigerant path 102 at a substantially equal gas-liquid ratio, and the heat exchanger 10 with stable performance is obtained. However, 80 ° <α <100 ° is most suitable as the distribution characteristic. However, in the case of the fourth embodiment, as α approaches 90 ° from 0 ° (that is, the central axis of the second inlet communication hole 105a). The distance between the first refrigerant path 101 and the second refrigerant path 102 that are adjacent to each other can be reduced as the distance between the first refrigerant path 101 and the second refrigerant path 102 increases. For this reason, it is sufficient that the posture angle α that can suppress the thermal resistance due to heat conduction and improve the performance is at least between 0 <α <90 °.
 なお、図10及び図11に示すように、本実施の形態4に係る熱交換器10においては、第2出口接続管106から気液二相状態の低温流体を流入させて第2入口接続管105から低温流体を流出させる使用形態も想定している。このため、第2出口連通穴106aを当該第2出口連通穴106aの中心軸方向に観察した場合、第2出口連通穴106aの中心軸を、第2出口連通穴106aと第2冷媒パス102(つまり、各第2冷媒流路102a)との接続部と一致する位置、又は、当該接続部よりも第1冷媒パス101(つまり、各第1冷媒流路101a)から離れた位置としている。 As shown in FIGS. 10 and 11, in the heat exchanger 10 according to the fourth embodiment, a low-temperature fluid in a gas-liquid two-phase state is caused to flow from the second outlet connection pipe 106 and the second inlet connection pipe. A usage pattern in which a low-temperature fluid flows out from 105 is also assumed. For this reason, when the second outlet communication hole 106a is observed in the central axis direction of the second outlet communication hole 106a, the central axis of the second outlet communication hole 106a is connected to the second outlet communication hole 106a and the second refrigerant path 102 ( That is, it is set to a position that coincides with a connection portion with each second refrigerant flow path 102a) or a position farther from the first refrigerant path 101 (that is, each first refrigerant flow path 101a) than the connection portion.
 1 第1扁平管、1a 流入部、1b 屈曲部、1c 熱交換部、1d 流出部、2 第2扁平管、2a 流入部、2b 屈曲部、2c 熱交換部、2d 流出部、2A 第2扁平管、2Aa 流入部、2Ab 屈曲部、2Ac 熱交換部、2Ad 流出部、2B 第2扁平管、2Ba 流入部、2Bb 屈曲部、2Bc 熱交換部、2Bd 流出部、3 第1入口ヘッダー、4 第1出口ヘッダー、5 第2入口ヘッダー、5A 第2入口ヘッダー、5B 第2入口ヘッダー、6 第2出口ヘッダー、6A 第2出口ヘッダー、6B 第2出口ヘッダー、10 熱交換器、21 貫通穴、30 第1圧縮機、31 第1放熱器、32 第1減圧装置、33 第1冷却器、40 第2圧縮機、41 第2放熱器、42 第2減圧装置、52 バイパス配管、53 インジェクションポート、101 第1冷媒パス、101a 第1冷媒流路、102 第2冷媒パス、102a 第2冷媒流路、103 第1入口接続管、103a 第1入口連通穴、104 第1出口接続管、104a 第1出口連通穴、105 第2入口接続管、105a 第2入口連通穴、106 第2出口接続管、106a 第2出口連通穴、110 本体。
 
DESCRIPTION OF SYMBOLS 1 1st flat tube, 1a inflow part, 1b bending part, 1c heat exchange part, 1d outflow part, 2nd flat tube, 2a inflow part, 2b bending part, 2c heat exchange part, 2d outflow part, 2A 2nd flat Pipe, 2Aa inflow part, 2Ab bent part, 2Ac heat exchange part, 2Ad outflow part, 2B second flat tube, 2Ba inflow part, 2Bb bent part, 2Bc heat exchange part, 2Bd outflow part, 3 first inlet header, 4th 1 outlet header, 5 second inlet header, 5A second inlet header, 5B second inlet header, 6 second outlet header, 6A second outlet header, 6B second outlet header, 10 heat exchanger, 21 through hole, 30 1st compressor, 31 1st radiator, 32 1st decompression device, 33 1st cooler, 40 2nd compressor, 41 2nd radiator, 42 2nd decompression device, 52 bypass piping, 53 injection port, 101 First 1 refrigerant path, 101a first refrigerant flow path, 102 second refrigerant path, 102a second refrigerant flow path, 103 first inlet connection pipe, 103a first inlet communication hole, 104 first outlet connection pipe, 104a first outlet communication Hole, 105 second inlet connecting pipe, 105a second inlet connecting hole, 106 second outlet connecting pipe, 106a second outlet connecting hole, 110 main body.

Claims (9)

  1.  高温流体が流れる貫通穴を複数有する第1流路部と、
     低温流体が流れる貫通穴を複数有する第2流路部と、
     上記第1流路部の一方の端部に接続された管状の第1入口ヘッダーと、
     上記第1流路部の他方の端部に接続された管状の第1出口ヘッダーと、
     上記第2流路部の一方の端部に接続された管状の第2入口ヘッダーと、
     上記第2流路部の他方の端部に接続された管状の第2出口ヘッダーと、
     を備え、
     上記第1流路部と上記第2流路部とは、互いの間に設けられた隔壁を介して熱交換可能に配置され、
     上記第1入口ヘッダーから上記第1流路部の貫通穴へ流入する上記高温流体及び上記第2入口ヘッダーから上記第2流路部の貫通穴へ流入する上記低温流体の少なくとも一方は、気液二相状態の流体であり、
     上記気液二相状態の流体の入口ヘッダーから流路部への流入方向が、垂直方向から下向き方向の角度αを正とすると、-110°<姿勢角α<110°であることを特徴とする熱交換器。
    A first flow path portion having a plurality of through holes through which a high-temperature fluid flows;
    A second flow path portion having a plurality of through holes through which a low-temperature fluid flows;
    A tubular first inlet header connected to one end of the first flow path portion;
    A tubular first outlet header connected to the other end of the first flow path portion;
    A tubular second inlet header connected to one end of the second flow path portion;
    A tubular second outlet header connected to the other end of the second flow path portion;
    With
    The first flow path part and the second flow path part are arranged so as to be able to exchange heat via a partition wall provided between them.
    At least one of the high temperature fluid flowing from the first inlet header into the through hole of the first flow path portion and the low temperature fluid flowing from the second inlet header to the through hole of the second flow path portion is gas-liquid. A two-phase fluid,
    The inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flow path section is −110 ° <attitude angle α <110 °, where the angle α from the vertical direction to the downward direction is positive. Heat exchanger.
  2.  上記気液二相状態の流体の入口ヘッダーから流路部への流入方向が、垂直方向から下向き方向の角度αを正とすると、-80°<姿勢角α<-100°又は80°<姿勢角α<100°であることを特徴とする請求項1に記載の熱交換器。 Assuming that the inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flow path is positive when the angle α from the vertical direction to the downward direction is positive, −80 ° <attitude angle α <−100 ° or 80 ° <attitude The heat exchanger according to claim 1, wherein the angle α <100 °.
  3.  上記気液二相状態の流体の入口ヘッダーから流路部への流入方向が、略水平方向又は略水平方向よりも上方向となっていることを特徴とする請求項1に記載の熱交換器。 2. The heat exchanger according to claim 1, wherein an inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flow path is substantially horizontal or upward from the substantially horizontal. .
  4.  上記気液二相状態の流体の入口ヘッダーから流路部への流入方向が、水平から上向方向の角度を正とすると、正の範囲であることを特徴とする請求項1に記載の熱交換器。 2. The heat according to claim 1, wherein the inflow direction of the fluid in the gas-liquid two-phase state from the inlet header to the flow path is in a positive range when the angle from the horizontal to the upward direction is positive. Exchanger.
  5.  上記気液二相状態の流体の入口ヘッダーから流路部への流入方向が、水平から上向方向の角度を正とすると、略水平方向となっていることを特徴とする請求項1に記載の熱交換器。 The inflow direction from the inlet header to the flow path portion of the gas-liquid two-phase fluid is substantially horizontal when the angle from the horizontal to the upward direction is positive. Heat exchanger.
  6.  上記気液二相状態の流体が流れる入口ヘッダーに接続された流路部の端部は、上記気液二相状態の流体が流れる当該入口ヘッダーの内部で屈曲していることを特徴とする請求項1~請求項5のいずれか一項に記載の熱交換器。 The end of the flow path connected to the inlet header through which the gas-liquid two-phase fluid flows is bent inside the inlet header through which the gas-liquid two-phase fluid flows. The heat exchanger according to any one of claims 1 to 5.
  7.  上記気液二相状態の流体が流れる入口ヘッダーに接続された流路部の端部は、上記気液二相状態の流体が流れる当該入口ヘッダーの外部で屈曲していることを特徴とする請求項1~請求項5のいずれか一項に記載の熱交換器。 The end portion of the flow path connected to the inlet header through which the gas-liquid two-phase fluid flows is bent outside the inlet header through which the gas-liquid two-phase fluid flows. The heat exchanger according to any one of claims 1 to 5.
  8.  高温流体が流れる貫通穴が複数並設され垂直又は水平に配置された第1流路部と、
     低温流体が流れる貫通穴が複数並設され垂直又は水平に配置された第2流路部と、
     上記第1流路部の一方の端部に接続され水平に配置された管状の第1入口ヘッダーと、
     上記第1流路部の他方の端部に接続され水平に配置された管状の第1出口ヘッダーと、
     上記第2流路部の一方の端部に接続され水平に配置された管状の第2入口ヘッダーと、
     上記第2流路部の他方の端部に接続され水平に配置された管状の第2出口ヘッダーと、
     を備え
     上記第1流路部、上記第2流路部、上記第1入口ヘッダー、上記第1出口ヘッダー、上記第2入口ヘッダー及び上記第2出口ヘッダーは、一体で形成され、
     上記第1流路部と上記第2流路部とは、互いの間に設けられた隔壁を介して熱交換可能となるように、互いの貫通穴の並設方向を揃えて配置され、
     上記第1入口ヘッダーから上記第1流路部の貫通穴へ流入する上記高温流体及び上記第2入口ヘッダーから上記第2流路部の貫通穴へ流入する上記低温流体の少なくとも一方は、気液二相状態の流体であり、
     上記気液二相状態の流体が流れる入口ヘッダーを当該入口ヘッダーの中心軸方向に観察した状態においては、
     上記気液二相状態の流体が流れる入口ヘッダーの中心軸は、当該入口ヘッダーと当該入口ヘッダーに接続される流路部との接続部と一致する位置、又は、当該接続部よりも当該入口ヘッダーに接続されない流路部から離れた位置となっていることを特徴とする熱交換器。
    A plurality of through-holes through which a high-temperature fluid flows are arranged in parallel and arranged vertically or horizontally;
    A plurality of through-holes through which a low-temperature fluid flows are arranged side by side and arranged vertically or horizontally; and
    A tubular first inlet header connected to one end of the first flow path portion and disposed horizontally;
    A tubular first outlet header connected to the other end of the first flow path portion and disposed horizontally;
    A tubular second inlet header connected to one end of the second flow path portion and disposed horizontally;
    A tubular second outlet header connected to the other end of the second flow path portion and disposed horizontally;
    The first flow path part, the second flow path part, the first inlet header, the first outlet header, the second inlet header and the second outlet header are integrally formed,
    The first flow path part and the second flow path part are arranged with the through-holes arranged in parallel so that heat exchange is possible via a partition wall provided between them.
    At least one of the high temperature fluid flowing from the first inlet header into the through hole of the first flow path portion and the low temperature fluid flowing from the second inlet header to the through hole of the second flow path portion is gas-liquid. A two-phase fluid,
    In the state where the inlet header through which the gas-liquid two-phase fluid flows is observed in the central axis direction of the inlet header,
    The central axis of the inlet header through which the fluid in the gas-liquid two-phase state flows coincides with the connection portion between the inlet header and the flow path portion connected to the inlet header, or the inlet header rather than the connection portion. A heat exchanger characterized in that the heat exchanger is located away from a flow path portion not connected to the heat exchanger.
  9.  請求項1~請求項8のいずれか一項に記載の熱交換器を搭載したことを特徴とする冷凍空調装置。
     
    A refrigerating and air-conditioning apparatus comprising the heat exchanger according to any one of claims 1 to 8.
PCT/JP2011/004459 2010-08-05 2011-08-05 Heat exchanger and refrigeration and air conditioning device WO2012017681A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11814315.5A EP2602578B1 (en) 2010-08-05 2011-08-05 Heat exchanger and refrigeration and air conditioning device
JP2012527610A JP5777622B2 (en) 2010-08-05 2011-08-05 Heat exchanger, heat exchange method and refrigeration air conditioner
US13/813,675 US20130126127A1 (en) 2010-08-05 2011-08-05 Heat exchanger and refrigeration and air-conditioning apparatus
CN2011800384129A CN103069245A (en) 2010-08-05 2011-08-05 Heat exchanger and refrigeration and air conditioning device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-176044 2010-08-05
JP2010176044 2010-08-05

Publications (1)

Publication Number Publication Date
WO2012017681A1 true WO2012017681A1 (en) 2012-02-09

Family

ID=45559200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004459 WO2012017681A1 (en) 2010-08-05 2011-08-05 Heat exchanger and refrigeration and air conditioning device

Country Status (5)

Country Link
US (1) US20130126127A1 (en)
EP (1) EP2602578B1 (en)
JP (1) JP5777622B2 (en)
CN (1) CN103069245A (en)
WO (1) WO2012017681A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132679A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2013172181A1 (en) * 2012-05-17 2013-11-21 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2015092122A (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Heat exchanger
EP2942594A4 (en) * 2012-12-25 2016-10-26 Daikin Ind Ltd Heat exchanger
WO2017208784A1 (en) * 2016-06-02 2017-12-07 サンデンホールディングス株式会社 Vehicle interior heat exchanger
JP2019132516A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2020095572A1 (en) * 2018-11-05 2020-05-14 三菱日立パワーシステムズ株式会社 Heat exchanger, boiler equipped with heat exchanger, and heat exchanging method
JPWO2020100897A1 (en) * 2018-11-12 2021-06-10 三菱電機株式会社 How to manufacture heat exchangers and heat exchangers
JP7461719B2 (en) 2018-12-14 2024-04-04 ダンフォス アクチ-セルスカブ Heat exchanger and air conditioning system

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015004720A1 (en) * 2013-07-08 2015-01-15 三菱電機株式会社 Heat exchanger, and air conditioner
EP3077755B1 (en) * 2013-12-04 2020-02-05 Zehnder Group International AG Bank for a heating element, and a heating element comprising such a bank
US10578377B2 (en) * 2016-03-31 2020-03-03 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN107796143A (en) * 2017-07-13 2018-03-13 杭州三花研究院有限公司 Heat exchanger and refrigeration system
CN110230902A (en) * 2019-02-01 2019-09-13 广东美的暖通设备有限公司 Micro-channel flat, heat exchanger and heat pump system
EP3936791A4 (en) * 2019-03-05 2022-03-09 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
JP7037076B2 (en) * 2019-05-10 2022-03-16 ダイキン工業株式会社 Manufacturing method of heat exchanger, heat pump device and heat exchanger
US20210278147A1 (en) * 2020-03-05 2021-09-09 Uchicago Argonne, Llc Additively Manufactured Modular Heat Exchanger Accommodating High Pressure, High Temperature and Corrosive Fluids
CN114111390B (en) * 2020-08-26 2023-11-10 广东美的暖通设备有限公司 Heat exchanger, electric control box and air conditioning system
CN214676259U (en) * 2020-08-26 2021-11-09 广东美的暖通设备有限公司 Air conditioner and electric control box
BR112023000336A2 (en) * 2020-08-26 2023-03-14 Midea Group Co Ltd HEAT EXCHANGER, ELECTRICAL CONTROL BOX AND AIR CONDITIONING SYSTEM.
US20230184445A1 (en) * 2020-08-26 2023-06-15 Gd Midea Heating & Ventilating Equipment Co., Ltd. Air conditioning apparatus and electric control box
CN114909715B (en) * 2021-02-08 2024-03-22 广东美的暖通设备有限公司 Heat exchanger, manufacturing method thereof, electric control box and air conditioning system
CN114909831A (en) * 2021-02-08 2022-08-16 广东美的暖通设备有限公司 Heat exchanger, electric control box and air conditioning system
CN115235149B (en) * 2022-06-22 2023-10-31 西安交通大学 Disk-type micro-channel heat regenerator for low-temperature refrigerator or freezer and working method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003202197A (en) * 2002-01-07 2003-07-18 Denso Corp Heat exchanger
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
JP2008101852A (en) * 2006-10-19 2008-05-01 Mitsubishi Electric Corp Heat exchanger and refrigerating air conditioner

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979923A (en) * 1975-08-04 1976-09-14 Jennings John H Preassembled refrigerant subcooling unit
JPH0239122Y2 (en) * 1985-05-02 1990-10-22
JPH0258665U (en) * 1988-10-18 1990-04-26
US5309637A (en) * 1992-10-13 1994-05-10 Rockwell International Corporation Method of manufacturing a micro-passage plate fin heat exchanger
JP3092484B2 (en) * 1994-07-22 2000-09-25 三菱電機株式会社 Heat exchanger and its manufacturing method, refrigeration system, air conditioner, heat exchanger manufacturing apparatus and jig thereof
JPH0968371A (en) * 1995-08-31 1997-03-11 Nippon Soken Inc Gas/liquid separator
US6354002B1 (en) * 1997-06-30 2002-03-12 Solid State Cooling Systems Method of making a thick, low cost liquid heat transfer plate with vertically aligned fluid channels
US6032726A (en) * 1997-06-30 2000-03-07 Solid State Cooling Systems Low-cost liquid heat transfer plate and method of manufacturing therefor
JP2000249479A (en) * 1999-02-26 2000-09-14 Matsushita Electric Ind Co Ltd Heat exchanger
EP1072453B1 (en) * 1999-07-26 2006-11-15 Denso Corporation Refrigeration-cycle device
JP3945208B2 (en) * 2001-10-09 2007-07-18 株式会社デンソー Heat exchange tubes and heat exchangers
JP2003279276A (en) * 2002-03-19 2003-10-02 Toyo Radiator Co Ltd Heat exchanger
US20030178188A1 (en) * 2002-03-22 2003-09-25 Coleman John W. Micro-channel heat exchanger
JP4179092B2 (en) * 2003-07-30 2008-11-12 株式会社デンソー Heat exchanger
JP2005127611A (en) * 2003-10-23 2005-05-19 Mitsubishi Heavy Ind Ltd Heat exchanger
US7124805B2 (en) * 2004-05-24 2006-10-24 Modine Manufacturing Company Tube feature for limiting insertion depth into header slot
JP4742233B2 (en) * 2005-05-13 2011-08-10 株式会社東芝 Ceramic heat exchanger
JP4521513B2 (en) * 2006-01-30 2010-08-11 独立行政法人産業技術総合研究所 Internal heating type heat exchange structure
JP2007278624A (en) * 2006-04-07 2007-10-25 Denso Corp Heat pump cycle
EP2144028B1 (en) * 2006-04-14 2018-06-06 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigerating air conditioner
DE102006055837A1 (en) * 2006-11-10 2008-05-15 Visteon Global Technologies Inc., Van Buren Heat exchanger i.e. evaporator, for vehicle air conditioning system, has two heat exchanger registers with respective ports that are arranged diagonally and third heat exchanger register with third port that is arranged on same side
JP2009121758A (en) * 2007-11-15 2009-06-04 Mitsubishi Electric Corp Heat exchanger and cryogenic system
CN201392114Y (en) * 2009-04-16 2010-01-27 大冶斯瑞尔换热器有限公司 High and low-temperature water high-efficiency heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2003202197A (en) * 2002-01-07 2003-07-18 Denso Corp Heat exchanger
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
JP2008101852A (en) * 2006-10-19 2008-05-01 Mitsubishi Electric Corp Heat exchanger and refrigerating air conditioner

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132679A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JPWO2013132679A1 (en) * 2012-03-07 2015-07-30 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
EP2840342A4 (en) * 2012-03-07 2016-02-17 Mitsubishi Electric Corp Heat exchanger and refrigeration cycle device
WO2013172181A1 (en) * 2012-05-17 2013-11-21 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP5759068B2 (en) * 2012-05-17 2015-08-05 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
EP2942594A4 (en) * 2012-12-25 2016-10-26 Daikin Ind Ltd Heat exchanger
US9791213B2 (en) 2012-12-25 2017-10-17 Daikin Industries, Ltd. Heat exchanger
JP2015092122A (en) * 2013-11-08 2015-05-14 三菱電機株式会社 Heat exchanger
WO2017208784A1 (en) * 2016-06-02 2017-12-07 サンデンホールディングス株式会社 Vehicle interior heat exchanger
JP2019132516A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2019150864A1 (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2020095572A1 (en) * 2018-11-05 2020-05-14 三菱日立パワーシステムズ株式会社 Heat exchanger, boiler equipped with heat exchanger, and heat exchanging method
JP2020076511A (en) * 2018-11-05 2020-05-21 三菱日立パワーシステムズ株式会社 Heat exchanger, boiler mounted with the same and heat exchange method
JP7202851B2 (en) 2018-11-05 2023-01-12 三菱重工業株式会社 HEAT EXCHANGER, BOILER INCLUDING THE SAME, AND HEAT EXCHANGE METHOD
JP7427761B2 (en) 2018-11-05 2024-02-05 三菱重工業株式会社 Heat exchanger, boiler equipped with the same, and heat exchange method
JPWO2020100897A1 (en) * 2018-11-12 2021-06-10 三菱電機株式会社 How to manufacture heat exchangers and heat exchangers
JP7461719B2 (en) 2018-12-14 2024-04-04 ダンフォス アクチ-セルスカブ Heat exchanger and air conditioning system

Also Published As

Publication number Publication date
US20130126127A1 (en) 2013-05-23
EP2602578A1 (en) 2013-06-12
CN103069245A (en) 2013-04-24
JPWO2012017681A1 (en) 2013-10-03
EP2602578A4 (en) 2015-03-11
EP2602578B1 (en) 2019-01-23
JP5777622B2 (en) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
US8272233B2 (en) Heat exchanger and refrigerating air conditioner
KR20110099278A (en) In-ground heat exchanger and air conditioning system equipped with same
JP5517801B2 (en) Heat exchanger and heat pump system equipped with this heat exchanger
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP2006329511A (en) Heat exchanger
JP4561305B2 (en) Heat exchanger
CN101915480B (en) Heat exchanger and refrigeration air conditioning device
US20130146264A1 (en) Heat exchanger for vehicle
JP5141730B2 (en) Heat exchanger and refrigeration air conditioner
WO2013114474A1 (en) Stacked heat exchanger, heat pump system equipped therewith, and method for manufacturing stacked heat exchanger
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5540816B2 (en) Evaporator unit
JP2003269822A (en) Heat exchanger and refrigerating cycle
JP5709777B2 (en) Heat exchanger and refrigeration air conditioner
KR100638488B1 (en) Heat exchanger for using CO2 as a refrigerant
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
WO2012153490A1 (en) Heat exchanger and cold cycle device provided therewith
KR100723810B1 (en) Heat exchanger
JP4867569B2 (en) Heat exchanger and refrigeration air conditioner
WO2021130835A1 (en) Heat exchanger and refrigeration cycle device
CN113654277B (en) Condenser
WO2021109975A1 (en) Refrigeration system, and heat exchange system used for heat dissipation of electronic control component of air conditioning system
JP7348308B2 (en) Heat exchanger and refrigeration cycle equipment
JP2004239479A (en) Radiator and vehicle mounted structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180038412.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527610

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13813675

Country of ref document: US

Ref document number: 2011814315

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE