JP4867569B2 - Heat exchanger and refrigeration air conditioner - Google Patents

Heat exchanger and refrigeration air conditioner Download PDF

Info

Publication number
JP4867569B2
JP4867569B2 JP2006285066A JP2006285066A JP4867569B2 JP 4867569 B2 JP4867569 B2 JP 4867569B2 JP 2006285066 A JP2006285066 A JP 2006285066A JP 2006285066 A JP2006285066 A JP 2006285066A JP 4867569 B2 JP4867569 B2 JP 4867569B2
Authority
JP
Japan
Prior art keywords
gas
liquid
flat tube
heat exchanger
inlet header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006285066A
Other languages
Japanese (ja)
Other versions
JP2008101852A (en
Inventor
寿守務 吉村
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006285066A priority Critical patent/JP4867569B2/en
Publication of JP2008101852A publication Critical patent/JP2008101852A/en
Application granted granted Critical
Publication of JP4867569B2 publication Critical patent/JP4867569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、低温流体と高温流体とを熱交換させて高温流体から低温流体に熱を伝える熱交換器に関するものである。また、この熱交換器を用いた冷凍空調装置に関するものである。   The present invention relates to a heat exchanger for transferring heat from a high temperature fluid to a low temperature fluid by exchanging heat between the low temperature fluid and the high temperature fluid. The present invention also relates to a refrigeration air conditioner using this heat exchanger.

従来の熱交換器は、低温流体が流れる複数の貫通穴を有する扁平状の第1扁平管と、高温流体が流れる複数の貫通穴を有する扁平状の第2扁平管と、第1扁平管の両端に接続された第1ヘッダーと、第2扁平管の両端に接続された第2ヘッダーとを備え、第1の扁平管と第2の扁平管とを長手方向(流体の流れ方向)が並行になるようにして、それぞれの扁平な面同士を接触積層させることにより、高い熱交換性能を得ている(例えば、特許文献1参照。)。   A conventional heat exchanger includes a flat first flat tube having a plurality of through holes through which a low temperature fluid flows, a flat second flat tube having a plurality of through holes through which a high temperature fluid flows, and a first flat tube. A first header connected to both ends and a second header connected to both ends of the second flat tube are provided, and the first flat tube and the second flat tube are parallel in the longitudinal direction (fluid flow direction). Thus, high heat exchange performance is obtained by making the flat surfaces contact and laminate each other (see, for example, Patent Document 1).

特開2002−340485号公報(第4〜5頁、図1)JP 2002-340485 (pages 4-5, FIG. 1)

上記のような従来の熱交換器を用いた冷凍空調装置は、圧縮機、放熱器、流量制御手段、蒸発器を冷媒配管で接続しHFC(ハイドロフルオロカーボン)系冷媒、炭化水素、二酸化酸素などの冷媒が循環するように構成されており、冷凍空調装置の効率を上げるためには、熱交換器の熱交換性能を上げることが重要となる。   A conventional refrigeration air conditioner using a heat exchanger as described above has a compressor, a radiator, a flow rate control means, an evaporator connected by a refrigerant pipe, and an HFC (hydrofluorocarbon) refrigerant, hydrocarbon, oxygen dioxide, etc. The refrigerant is configured to circulate, and it is important to improve the heat exchange performance of the heat exchanger in order to increase the efficiency of the refrigeration air conditioner.

このような熱交換器にあって高い熱交換性能を得るには、第1扁平管及び第2扁平管の長さ(流体の流れ方向の長さ)または幅(流体の流れ方向に垂直な方向の長さ)を大きくして第1扁平管と第2扁平管との接触面積を増加させる必要がある。しかしながら、第1扁平管及び第2扁平管の長さを大きくすると、圧力損失が上昇し流体を熱交換器に送り駆動させるための駆動装置の動力増加を招く。一方、幅を大きくすると並列流路数が増えるため、第1ヘッダー及び第2ヘッダーで各流路(各貫通穴)に流体を分配する際に流量の偏りが発生するという問題があった。特に、流体が気相と液相の混在した気液二相状態の場合には、ヘッダー内で発生する不均一な気液分布などに起因して、各流路への気液比率に偏りが発生しやすく、有効に熱交換できる流体の流量に過不足が生じ、温度効率が著しく低下して、熱交換性能が低下する問題があった。また、この熱交換性能の低下を補うために熱交換器を必要以上に大きくしなければならないという問題があった。   In such a heat exchanger, in order to obtain high heat exchange performance, the length (length in the fluid flow direction) or width (direction perpendicular to the fluid flow direction) of the first flat tube and the second flat tube It is necessary to increase the contact area between the first flat tube and the second flat tube. However, when the lengths of the first flat tube and the second flat tube are increased, the pressure loss increases and the power of the driving device for feeding and driving the fluid to the heat exchanger is increased. On the other hand, when the width is increased, the number of parallel flow paths increases, and thus there is a problem that a flow rate deviation occurs when fluid is distributed to each flow path (each through hole) in the first header and the second header. In particular, when the fluid is in a gas-liquid two-phase state in which a gas phase and a liquid phase are mixed, the gas-liquid ratio to each flow path is biased due to uneven gas-liquid distribution generated in the header. There is a problem that the flow rate of the fluid that is easily generated and can effectively exchange heat is excessive and insufficient, the temperature efficiency is remarkably lowered, and the heat exchange performance is lowered. In addition, there is a problem that the heat exchanger must be made larger than necessary in order to compensate for the deterioration of the heat exchange performance.

この発明は、上記のような問題点を解決するためになされたものであり、コンパクトで高性能な熱交換器および冷凍空調装置を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a compact and high-performance heat exchanger and refrigeration air conditioner.

この発明の熱交換器は、高温流体が流れる貫通穴を複数有する扁平状の第1扁平管と、フロン冷媒、HC系冷媒またはアンモニアの低温流体が流れる貫通穴を複数有する扁平状の第2扁平管と、第1扁平管の両端にそれぞれ接続された管状の第1入口ヘッダー及び第1出口ヘッダーと、第2扁平管の両端にそれぞれ接続された管状の第2入口ヘッダー及び第2出口ヘッダーとを備え、第1扁平管と第2扁平管とは、扁平な面で互いに接触するように積層配置され、第2扁平管の各貫通穴に流れる低温流体は、第2入口ヘッダーから各貫通穴に分配される気液二相状態の流体であり、気液二相状態の流体が流れる第2扁平管の入口ヘッダーの内直径は、第2扁平管の第2出口ヘッダーの内直径より小さいものである。 The heat exchanger according to the present invention includes a flat first flat tube having a plurality of through-holes through which a high-temperature fluid flows, and a flat second flat plate having a plurality of through-holes through which a low-temperature fluid such as Freon refrigerant, HC refrigerant, or ammonia flows. A tube, a tubular first inlet header and a first outlet header respectively connected to both ends of the first flat tube, and a tubular second inlet header and a second outlet header respectively connected to both ends of the second flat tube The first flat tube and the second flat tube are stacked so as to be in contact with each other on a flat surface, and the low-temperature fluid flowing into each through hole of the second flat tube passes from the second inlet header to each through hole. what is the fluid of the gas-liquid two-phase state to be dispensed, the inner diameter of the inlet header of the second flat tube through which fluid flows in a gas-liquid two-phase state, smaller than the inner diameter of the second outlet header of the second flat tube It is.

また、この発明の熱交換器は、高温流体が流れる貫通穴を複数有する扁平状の第1扁平管と、フロン冷媒、HC系冷媒またはアンモニアの低温流体が流れる貫通穴を複数有する扁平状の第2扁平管と、第1扁平管の両端にそれぞれ接続された管状の第1入口ヘッダー及び第1出口ヘッダーと、第2扁平管の両端にそれぞれ接続された管状の第2入口ヘッダー及び第2出口ヘッダーとを備え、第1扁平管と上記第2扁平管とが、扁平な面で互いに接触するように積層配置され、第2扁平管の各貫通穴に流れる低温流体は、第2入口ヘッダーから各貫通穴に分配される気液二相状態の流体であり、第2入口ヘッダーの内直径および第2出口ヘッダーの内直径より小さい内直径の流路を、第2入口ヘッダーの上流側直前と第2出口ヘッダーの下流側直前のうち、第2入口ヘッダーの上流側直前にのみ設けたものである。
The heat exchanger according to the present invention also has a flat first flat tube having a plurality of through-holes through which a high-temperature fluid flows, and a flat first tube having a plurality of through-holes through which a low-temperature fluid such as Freon refrigerant, HC refrigerant, or ammonia flows. 2 flat tubes, tubular first inlet header and first outlet header respectively connected to both ends of the first flat tube, and tubular second inlet header and second outlet respectively connected to both ends of the second flat tube The first flat tube and the second flat tube are stacked so as to contact each other on a flat surface, and the low-temperature fluid flowing through each through hole of the second flat tube is discharged from the second inlet header. It is a gas-liquid two-phase fluid distributed to each through hole, and a flow path having an inner diameter smaller than the inner diameter of the second inlet header and the inner diameter of the second outlet header is set immediately before the upstream side of the second inlet header. Downstream side of the second outlet header Among previous, but provided only on the upstream side just before the second inlet header.

この発明の冷凍空調装置は、放熱器または放熱器と減圧装置との間に設けた第2放熱器として、上記熱交換器を用いたものである。   The refrigerating and air-conditioning apparatus of the present invention uses the heat exchanger as a radiator or a second radiator provided between the radiator and the pressure reducing device.

この発明によれば、コンパクトで高性能な熱交換器を提供することができる。また、この発明によれば、コンパクトで高性能な冷凍空調装置を提供することができる。   According to the present invention, a compact and high-performance heat exchanger can be provided. In addition, according to the present invention, a compact and high-performance refrigeration air conditioner can be provided.

実施の形態1.
図1は本発明の実施の形態1による熱交換器を示す図であり、図1(a)は正面図、図1(b)は図1(a)のb−b線での断面図、図1(c)は図1(a)のc−c線での断面図である。図において、同一の符号を付したものは、同一またはこれに相当するものであり、このことは、明細書の全文において共通することである。
Embodiment 1 FIG.
1 is a view showing a heat exchanger according to Embodiment 1 of the present invention, FIG. 1 (a) is a front view, FIG. 1 (b) is a cross-sectional view taken along line bb of FIG. 1 (a), FIG.1 (c) is sectional drawing in the cc line | wire of Fig.1 (a). In the drawings, the same reference numerals are the same or equivalent, and this is common throughout the entire specification.

図1において、第1扁平管1及び第2扁平管2は、それぞれ高温流体及び低温流体が流れる複数の貫通穴を有しており、扁平な面で互いに接触するように、かつそれぞれの扁平管1,2内を流れる流体の流れ方向(L1方向、L2方向)が直交するように積層され、ロウ付け等で接合されている。第1扁平管1の長手方向(L1方向)の両端は、それぞれ管状の第1入口ヘッダー3の側面及び管状の第1出口ヘッダー4の側面に接続されており、第1扁平管1は並列流路を構成する。第2扁平管2の長手方向(L2方向)の両端は、それぞれ管状の第2入口ヘッダー5及び管状の第2出口ヘッダー6と接続されており、第2扁平管2も並列流路を構成する。また、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5及び第2出口ヘッダー6は、それぞれの管軸方向と扁平管1,2の扁平な面とが並行になるように配置されている。さらに、低温流体が気液二相状態となって流れる第2入口ヘッダー5の内直径Dは、他のヘッダーの内直径より小さく形成されている。   In FIG. 1, a first flat tube 1 and a second flat tube 2 each have a plurality of through holes through which a high-temperature fluid and a low-temperature fluid flow, and are in contact with each other on a flat surface. 1 and 2 are laminated so that the flow directions (L1 direction, L2 direction) of the fluid flowing through them are orthogonal to each other, and are joined by brazing or the like. Both ends in the longitudinal direction (L1 direction) of the first flat tube 1 are connected to the side surface of the tubular first inlet header 3 and the side surface of the tubular first outlet header 4, respectively. Configure the road. Both ends of the second flat tube 2 in the longitudinal direction (L2 direction) are connected to a tubular second inlet header 5 and a tubular second outlet header 6, respectively, and the second flat tube 2 also constitutes a parallel flow path. . The first inlet header 3, the first outlet header 4, the second inlet header 5, and the second outlet header 6 are arranged so that the respective tube axis directions and the flat surfaces of the flat tubes 1 and 2 are parallel to each other. Has been. Furthermore, the inner diameter D of the second inlet header 5 in which the low-temperature fluid flows in a gas-liquid two-phase state is formed smaller than the inner diameter of the other headers.

図1において、FHは高温流体の流れを示し、FCは低温流体の流れを示す。高温流体は第1入口ヘッダー3、第1扁平管1、第1出口ヘッダー4の順に流れ、低温流体は第2入口ヘッダー5、第2扁平管2、第2出口ヘッダー6の順に流れ、第1扁平管1と第2扁平管2との接触部を介して両流体が熱交換される。   In FIG. 1, FH indicates the flow of the hot fluid and FC indicates the flow of the cold fluid. The high-temperature fluid flows in the order of the first inlet header 3, the first flat tube 1, and the first outlet header 4, and the low-temperature fluid flows in the order of the second inlet header 5, the second flat tube 2, and the second outlet header 6, Both fluids exchange heat through a contact portion between the flat tube 1 and the second flat tube 2.

なお、本実施の形態では、熱交換器10は、それぞれ1本の第1扁平管1及び第2扁平管2により構成されるものとしたが、各扁平管1,2の数は本実施の形態の数に限らない。複数の第1の扁平管1と複数の第2の扁平管2とを扁平面に沿って交互に並べ、並列流路を構成するようにしてもよい。また、本実施の形態では、第1扁平管1と第2扁平管2とは、それぞれの管内を流れる流体の流れ方向(L1方向とL2方向)が直交となるように接触させているが、並行となるにように接触させてもよい。この際、扁平面に沿って並んだ複数の扁平管を折り返して積層してもよい。   In the present embodiment, the heat exchanger 10 is composed of a single first flat tube 1 and a second flat tube 2, but the number of the flat tubes 1 and 2 is the same as that of the present embodiment. It is not limited to the number of forms. A plurality of first flat tubes 1 and a plurality of second flat tubes 2 may be alternately arranged along the flat surface to constitute a parallel flow path. In the present embodiment, the first flat tube 1 and the second flat tube 2 are in contact with each other so that the flow directions (L1 direction and L2 direction) of the fluid flowing in the respective tubes are orthogonal. You may make it contact so that it may become parallel. At this time, a plurality of flat tubes arranged along the flat surface may be folded and stacked.

本実施の形態に示す熱交換器10においては、気液二相流体が流れる第2入口ヘッダー5の内直径は他のヘッダー3,4,6の内直径よりも小さいので、ガス流速を大きくすることができ、ガス流速の増加により管内での気液のミキシングが促進され、気液が均一化する。このため、気液比率が均等になり各貫通穴へ低温流体を分配することでき、流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交換器10の熱交換性能を向上することができる。したがって、本実施の形態に示す熱交換器10においては、コンパクトで高性能な熱交換器を得ることができる。
なお、他のヘッダー3、4、6の内直径については、気液二相流体が流入しない限り、気液のミキシングによる分配特性の向上効果が得られないため、圧力損失の増加を招かないように第2入口ヘッダー5の内直径より大きくすることが望ましい。
In the heat exchanger 10 shown in the present embodiment, since the inner diameter of the second inlet header 5 through which the gas-liquid two-phase fluid flows is smaller than the inner diameters of the other headers 3, 4, 6, the gas flow rate is increased. In addition, the gas-liquid mixing in the pipe is promoted by increasing the gas flow rate, and the gas-liquid becomes uniform. For this reason, the gas-liquid ratio becomes uniform and the low-temperature fluid can be distributed to each through hole, the temperature efficiency of the fluid can be maximized, and the pressure loss can be minimized, and the heat exchange performance of the heat exchanger 10 can be minimized. Can be improved. Therefore, in the heat exchanger 10 shown in the present embodiment, a compact and high-performance heat exchanger can be obtained.
As for the inner diameters of the other headers 3, 4, and 6, unless the gas-liquid two-phase fluid flows in, the effect of improving the distribution characteristics by gas-liquid mixing cannot be obtained, so that the pressure loss does not increase. It is desirable that the inner diameter of the second inlet header 5 be larger.

一般に、気液二相流体の気液の流れ状態は、主に流体のガス速度及び物性値(特に気液の密度)に強く影響される。このため、第2入口ヘッダー5の管内直径Dを変化させるかわりに、第2入口ヘッダー5内のガス流速を変化させることによって、ガス流速(すなわち、管内直径D)が伝熱特性(すなわち、気液二相流体の分配特性)に与える影響を実験で調べた。実験では、第1偏平管1に、高温流体として温水を流し、第2扁平管2に、低温流体として気液二相状態の低温フロン冷媒を流して、各流体の出入口温度から、数1および数2の式を用いて伝熱特性KA(W/K)を測定した。   In general, the gas-liquid flow state of a gas-liquid two-phase fluid is strongly influenced mainly by the gas velocity and physical properties (particularly gas-liquid density) of the fluid. For this reason, by changing the gas flow velocity in the second inlet header 5 instead of changing the pipe inner diameter D of the second inlet header 5, the gas flow velocity (ie, the pipe diameter D) is changed to the heat transfer characteristic (ie, the gas flow rate). The effect on the distribution characteristics of liquid two-phase fluids was investigated experimentally. In the experiment, warm water as a high-temperature fluid is caused to flow through the first flat tube 1, and a low-temperature chlorofluorocarbon refrigerant in a gas-liquid two-phase state is caused to flow as the low-temperature fluid into the second flat tube 2. The heat transfer characteristic KA (W / K) was measured using the equation (2).

Figure 0004867569
Figure 0004867569

Figure 0004867569
ここで、M:高温流体の質量流量(kg/h)、Cp:高温流体の定圧比熱(J/kgK)、Thi:高温流体の入口温度、Tho:高温流体の出口温度、TCO:低温流体の出口温度、TCi:低温流体の入口温度である。
Figure 0004867569
Here, M h : Mass flow rate of high-temperature fluid (kg / h), Cp h : Constant pressure specific heat of high-temperature fluid (J / kgK), T hi : High-temperature fluid inlet temperature, T ho : High-temperature fluid outlet temperature, T CO 2 is the outlet temperature of the cryogenic fluid, and T Ci is the inlet temperature of the cryogenic fluid.

第2入口ヘッダー5の内直径Dは6mmとし、第1偏平管1および第2扁平管2は、それぞれ幅方向1列に並んだ孔径1mmの貫通穴を60個有し、第1偏平管1と第2扁平管2とは図1に示す熱交換器10とは異なり、管内を流れる流体の流れ方向が対向するように貼り合わされている。高温流体の質量流量Mは600kg/h、低温流体の質量流量Mcは50〜150kg/h、低温流体の気液の全質量流量に対するガスの質量流量の割合、すなわち乾き度Xは0.05〜0.5の範囲で伝熱特性KA(W/K)を測定した。この乾き度の範囲は、一般の冷凍空調装置に用いる熱交換器10の入口乾き度としては一般的な使用範囲である。また、第2入口ヘッダー5を水平に配置した場合と垂直に配置した場合とについて、伝熱特性KA(W/K)を測定した。 The inner diameter D of the second inlet header 5 is 6 mm, and each of the first flat tube 1 and the second flat tube 2 has 60 through holes each having a hole diameter of 1 mm arranged in one row in the width direction. Unlike the heat exchanger 10 shown in FIG. 1, the second flat tube 2 and the second flat tube 2 are bonded so that the flow directions of the fluid flowing in the tube face each other. Mass flow rate M h is 600 kg / h of high-temperature fluid, the mass flow rate M c is 50~150kg / h of the cryogen, the mass flow rate of the gas to the total mass flow rate of liquid cryogen, i.e. the degree of dryness X 0. The heat transfer characteristic KA (W / K) was measured in the range of 05 to 0.5. This range of dryness is a general use range as the dryness of the inlet of the heat exchanger 10 used in a general refrigeration air conditioner. Further, the heat transfer characteristics KA (W / K) were measured for the case where the second inlet header 5 was arranged horizontally and the case where it was arranged vertically.

図2は、ガス流速と伝熱特性(相対値)との関係を示す図である。ただし、横軸には、数3および数4の式に示すように、流体密度が気液の流動様式に及ぼす影響を表すパラメータに用いられるλを用いて流体密度の影響を考慮した修正ガス質量速度G/λで示した。縦軸の気液の伝熱特性(相対値)は、第2入口ヘッダー5の各貫通穴へ気液比率が均等になるように低温流体を分配させた条件における伝熱特性を1として相対値で表した。 FIG. 2 is a diagram showing the relationship between the gas flow rate and the heat transfer characteristic (relative value). However, on the horizontal axis, as shown in the equations (3) and (4), the corrected gas mass considering the influence of the fluid density using λ used as a parameter representing the influence of the fluid density on the gas-liquid flow pattern The speed was expressed as G g / λ. The heat transfer characteristic (relative value) of the gas-liquid on the vertical axis is a relative value, assuming that the heat transfer characteristic under the condition that the low-temperature fluid is distributed to each through hole of the second inlet header 5 so that the gas-liquid ratio is uniform. Expressed in

Figure 0004867569
Figure 0004867569

Figure 0004867569
ここで、G:ガスの質量速度(kg/mh)、M:ガスの質量流量(kg/h)、D:内直径(m)、X:乾き度、ρ:ガスの密度(kg/m)、ρ:液体の密度(kg/m)である。
Figure 0004867569
Here, G g : mass rate of gas (kg / m 2 h), M g : mass flow rate of gas (kg / h), D: inner diameter (m), X: dryness, ρ g : density of gas (Kg / m 3 ), ρ l : liquid density (kg / m 3 ).

図2に示すように、第2入口ヘッダー5の配置が水平、垂直にかかわらず、G/λが大きくなるほど、伝熱特性は第2入口ヘッダー5において気液比率が等しく分配される性能(伝熱性能[相対値]=1)に近づき、特に、G/λが約44000以上になると、伝熱特性はほぼ一定値に漸近する。以上の結果から、少なくともG/λが約44000以上であれば、気液比率が等しく各貫通穴に分配されることがわかった。G/λ≧44000という条件を内直径Dの式として整理すると、数5の式に示す範囲内であれば、気液比率が等しく各貫通穴に分配されることがわかった。 As shown in FIG. 2, regardless of whether the second inlet header 5 is arranged horizontally or vertically, the larger the G g / λ, the more the heat transfer characteristics are distributed at the second inlet header 5 so that the gas-liquid ratio is equally distributed ( When the heat transfer performance [relative value] = 1) is approached, and particularly when G g / λ is about 44000 or more, the heat transfer characteristics gradually approach a substantially constant value. From the above results, it was found that when at least G g / λ is about 44000 or more, the gas-liquid ratio is equally distributed to each through hole. When the condition of G g / λ ≧ 44000 is arranged as an expression of the inner diameter D, it is found that the gas-liquid ratio is equally distributed to each through hole as long as it is within the range shown in the expression (5).

Figure 0004867569
Figure 0004867569

気液のミキシングによる分配特性の向上効果をより確実に得るには、第2入口ヘッダー5の内直径Dを十分小さくすることが望ましい。しかしながら、内直径Dを小さくしすぎると、圧力損失が増大することは言うまでもない。ここで、許容できる圧力損失は、熱交換器10が用いられる冷凍空調装置の回路構成や動作条件により異なるが、一般的に、流体の圧力の数%程度、具体的には、0.1〜1kgf/cm程度である。なお、第2入口ヘッダー5内の気液二相流体の圧力損失ΔPは、種々の推算式(例えばLockhart-Martinelliの相関式)を用いて、第2入口ヘッダー5の内直径D、長さL、ガスの質量流量M等から求めることができる。 In order to obtain the effect of improving the distribution characteristics by gas-liquid mixing more reliably, it is desirable to make the inner diameter D of the second inlet header 5 sufficiently small. However, it goes without saying that if the inner diameter D is too small, the pressure loss increases. Here, although the allowable pressure loss varies depending on the circuit configuration and operating conditions of the refrigeration air conditioner in which the heat exchanger 10 is used, it is generally about several percent of the fluid pressure, specifically 0.1 to 0.1%. It is about 1 kgf / cm 2 . The pressure loss ΔP of the gas-liquid two-phase fluid in the second inlet header 5 is calculated using various estimation formulas (for example, Lockhart-Martinelli correlation formula), and the inner diameter D and length L of the second inlet header 5. it can be determined from the mass flow rate M g and the like gases.

なお、第2入口ヘッダー5内では下流側ほど低温流体の流量が低下するため、第2入口ヘッダー5の内直径Dを管軸方向に入口から離れるに従って徐々に小さくすれば、最適な気液のミキシング効果が得られ、より一層、各貫通穴への気液比率が等しくなるように分配させることができる。この場合には、第2入口ヘッダーの入口の内直径Dを他のヘッダー3,4,6の内直径よりも小さくすればよく、好ましくは第2入口ヘッダー5の入口の内直径Dを数5の式の範囲内とすればよい。   Since the flow rate of the low-temperature fluid decreases in the second inlet header 5 toward the downstream side, if the inner diameter D of the second inlet header 5 is gradually reduced in the direction of the tube axis, the optimum gas-liquid flow is reduced. A mixing effect can be obtained, and distribution can be further performed so that the gas-liquid ratio to each through hole becomes equal. In this case, the inner diameter D of the inlet of the second inlet header may be made smaller than the inner diameters of the other headers 3, 4, 6. Preferably, the inner diameter D of the inlet of the second inlet header 5 is It may be within the range of the formula.

なお、気液二相流体が流れる第2入口ヘッダー5に対して、内直径Dを他のヘッダー3,4,6の内直径より小さくする代わりに、内部に詰め物を挿入することも考えられる。しかし、この方法は、組立てが複雑になること、安定して第2入口ヘッダー5と詰め物との間のすきまを確保しにくいなど製造上の問題に加え、詰め物が冷媒回路内に流出して流路閉塞を起こすなど信頼性を低下させる問題があり、望ましくない。さらに、第2入口ヘッダー5と詰め物とにより形成される流路は、単純な管状流路に比べ、流路断面積あたりの流体の濡れ面積が大きく、また流体が第2入口ヘッダー5から各貫通穴へ分配されるまでのパス長が長くなるため、圧力損失が大きくなりやすい。また、流路形状が複雑であることに加え、流体の表面張力の影響も受けやすいことから、期待できる気液のミキシング効果が得ることが難しいと考えられ、したがって、第2入口ヘッダー5に詰め物をする方法は有利でない。   In addition, instead of making the inner diameter D smaller than the inner diameters of the other headers 3, 4, and 6 with respect to the second inlet header 5 through which the gas-liquid two-phase fluid flows, it is also conceivable to insert padding inside. However, this method is complicated in assembly, and it is difficult to secure a clearance between the second inlet header 5 and the padding stably. In addition, the padding flows out into the refrigerant circuit and flows. There is a problem of lowering reliability such as road blockage, which is not desirable. Furthermore, the flow path formed by the second inlet header 5 and the padding has a larger fluid wetting area per cross-sectional area of the flow path than that of a simple tubular flow path, and the fluid penetrates from the second inlet header 5 to the respective passages. Since the path length until it is distributed to the holes becomes long, the pressure loss tends to increase. In addition to the complexity of the flow path shape, it is also easily affected by the surface tension of the fluid, so that it is considered difficult to obtain the expected gas-liquid mixing effect. The method of doing is not advantageous.

図3は、本発明の実施の形態1による熱交換器を備えた冷凍空調装置を示す系統図である。   FIG. 3 is a system diagram showing a refrigeration air conditioner including a heat exchanger according to Embodiment 1 of the present invention.

図3において、冷凍空調装置は、第1圧縮機20、第1放熱器21、第1減圧装置22、第1冷却器23が順に配管で接続された第1冷媒回路を有し、第1冷媒回路は、高温流体である第1冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するようにするように構成されている。また、第1冷媒回路の第1放熱器21と第1減圧装置22との間に図1に示した熱交換器10が配置されており、熱交換器10の第1入口ヘッダー3は第1放熱器21と接続され、第1出口ヘッダー4は第1減圧装置22と接続されている。また、この冷凍空調装置は、熱交換器10、第2圧縮機40、第2放熱器41、第2減圧装置42が順に配管で接続された第2冷媒回路を有し、熱交換器10の第2出口ヘッダー6は第2圧縮機40と接続され、第2入口ヘッダー5は第2減圧装置42と接続されている。第2冷媒回路は、低温流体である第2冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。第1冷媒、第2冷媒ともに二酸化炭素、HFC系冷媒、HC系冷媒、アンモニアなどの冷媒が用いられるが、本実施の形態では、第1冷媒に二酸化炭素が用いられている。   In FIG. 3, the refrigeration air conditioner has a first refrigerant circuit in which a first compressor 20, a first radiator 21, a first pressure reducing device 22, and a first cooler 23 are connected in order by a pipe, The circuit is configured so that the first refrigerant, which is a high-temperature fluid, circulates and operates in a vapor compression refrigeration cycle. Moreover, the heat exchanger 10 shown in FIG. 1 is arrange | positioned between the 1st heat radiator 21 and the 1st decompression device 22 of a 1st refrigerant circuit, and the 1st inlet header 3 of the heat exchanger 10 is 1st. The first outlet header 4 is connected to the first decompressor 22 and is connected to the radiator 21. The refrigerating and air-conditioning apparatus has a second refrigerant circuit in which the heat exchanger 10, the second compressor 40, the second radiator 41, and the second decompression device 42 are connected in order by piping. The second outlet header 6 is connected to the second compressor 40, and the second inlet header 5 is connected to the second pressure reducing device 42. The second refrigerant circuit is configured so that the second refrigerant, which is a low-temperature fluid, circulates and operates in a vapor compression refrigeration cycle. Carbon dioxide, HFC refrigerant, HC refrigerant, ammonia, or other refrigerant is used for both the first refrigerant and the second refrigerant. In the present embodiment, carbon dioxide is used as the first refrigerant.

圧縮機20の冷媒配管内における低温低圧の蒸気である第1冷媒は、第1圧縮機20によって圧縮され、高温高圧の超臨界流体となって吐出される。高温高圧の超臨界流体となった第1冷媒は第1放熱器21に送られ、第1放熱器21で空気などと熱交換して温度が低下し、高圧の超臨界流体になる。高圧の超臨界流体となった第1冷媒は熱交換器10によって冷却されて温度が低下した後、第1減圧装置22に流入して減圧され、低温低圧の気液二相流状態に変化し第1冷却器23に送られる。低温低圧の気液二相流状態となった第1冷媒は第1冷却器23で空気などと熱交換して蒸発し、圧縮機20に戻る。   The first refrigerant, which is a low-temperature and low-pressure vapor in the refrigerant pipe of the compressor 20, is compressed by the first compressor 20 and discharged as a high-temperature and high-pressure supercritical fluid. The 1st refrigerant | coolant used as the high temperature / high pressure supercritical fluid is sent to the 1st heat radiator 21, heat exchanges with air etc. in the 1st heat radiator 21, temperature falls, and it becomes a high pressure supercritical fluid. The first refrigerant that has become a high-pressure supercritical fluid is cooled by the heat exchanger 10 and the temperature is lowered. Then, the first refrigerant flows into the first decompression device 22 to be decompressed, and changes to a low-temperature and low-pressure gas-liquid two-phase flow state. It is sent to the first cooler 23. The first refrigerant in the low-temperature low-pressure gas-liquid two-phase flow state is evaporated by exchanging heat with air or the like in the first cooler 23 and returns to the compressor 20.

一方、低圧の蒸気である第2冷媒は、第2圧縮機40によって圧縮され、高温高圧の蒸気となって吐出される。高温高圧の蒸気となった第2冷媒は、第2放熱器41に送られ、第2放熱器41で空気などと熱交換して温度が低下し、高圧の液体になる。高圧の液体となった第2冷媒は、第2減圧装置42で減圧され、低温の気液二相流状態に変化し、熱交換器10に送られる。低温の気液二相流状態となった第2冷媒は、熱交換器10で加熱され蒸気となり、第2圧縮機40に戻る。   On the other hand, the second refrigerant, which is low-pressure steam, is compressed by the second compressor 40 and discharged as high-temperature and high-pressure steam. The second refrigerant, which has become high-temperature and high-pressure vapor, is sent to the second radiator 41, and heat exchange with air or the like is performed in the second radiator 41 to lower the temperature and become a high-pressure liquid. The second refrigerant that has become a high-pressure liquid is decompressed by the second decompression device 42, changes to a low-temperature gas-liquid two-phase flow state, and is sent to the heat exchanger 10. The second refrigerant in the low-temperature gas-liquid two-phase flow state is heated by the heat exchanger 10 to become steam and returns to the second compressor 40.

図4は、二酸化炭素の圧力−エンタルピー線図である。図4において、A点は第1放熱器21入口の二酸化炭素の状態、B点は第1放熱器21出口の二酸化炭素の状態、C点は第1減圧装置22入口の二酸化炭素の状態を示す。   FIG. 4 is a pressure-enthalpy diagram of carbon dioxide. In FIG. 4, point A indicates the state of carbon dioxide at the inlet of the first radiator 21, point B indicates the state of carbon dioxide at the outlet of the first radiator 21, and point C indicates the state of carbon dioxide at the inlet of the first decompressor 22. .

図3に示す冷凍空調装置においては、B点とC点との間のエンタルピー差を大きくすることによって大幅に効率を向上できる。しかしながら、外気温度が高い場合には、B点の温度である第1放熱器21の出口温度を十分に下げることができない。本実施の形態に示す冷凍空調装置においては、図1に示す熱交換器10を第1放熱器21の出口に設けることによって、第2減圧装置42の出口からの冷媒液を含んだ低温の第2冷媒(低温流体)が、第1放熱器21の出口から減圧装置22の入口へと流れる第1冷媒(高温流体)を効率良く冷却することができる。このため、第1減圧装置22入口の第1冷媒の温度を十分下げることができ、冷凍空調装置の効率を大幅に向上することができる。
なお、第1冷媒回路を流れる第1冷媒として、HFC系冷媒、HC系冷媒またはアンモニアを用いた場合においても、第1放熱器21出口温度を下げることで冷凍空調装置の効率が向上する。第1冷媒回路の第1冷媒が二酸化炭素であって、臨界点以上で放熱する場合に、冷凍空調装置の効率が特に向上する。
In the refrigerating and air-conditioning apparatus shown in FIG. 3, the efficiency can be greatly improved by increasing the enthalpy difference between the points B and C. However, when the outside air temperature is high, the outlet temperature of the first radiator 21 that is the temperature at the point B cannot be lowered sufficiently. In the refrigerating and air-conditioning apparatus shown in the present embodiment, by providing the heat exchanger 10 shown in FIG. 1 at the outlet of the first radiator 21, a low-temperature first containing the refrigerant liquid from the outlet of the second decompressor 42. Two refrigerants (low temperature fluid) can efficiently cool the first refrigerant (high temperature fluid) flowing from the outlet of the first radiator 21 to the inlet of the decompression device 22. For this reason, the temperature of the 1st refrigerant | coolant of the 1st decompression device 22 entrance can fully be lowered | hung, and the efficiency of a refrigerating air conditioner can be improved significantly.
Even when HFC refrigerant, HC refrigerant, or ammonia is used as the first refrigerant flowing through the first refrigerant circuit, the efficiency of the refrigeration air conditioner is improved by lowering the outlet temperature of the first radiator 21. The efficiency of the refrigeration air conditioner is particularly improved when the first refrigerant in the first refrigerant circuit is carbon dioxide and radiates heat above the critical point.

また、図3に示す冷凍空調装置では、第2冷媒回路において、第2圧縮機40に流入する(熱交換器10から流出する)第2冷媒の飽和温度(気液平衡温度)が高いほど、第2圧縮機40の効率が高くなり、所要動力も小さくできる。本実施の形態のように、熱交換器10によって第1冷媒回路の第1放熱器21出口を冷却する場合には、特に外気温度が高く第1放熱器21出口における第1冷媒の温度が比較的高いと、熱交換器10において第1冷媒(高温流体)と第2冷媒(低温流体)との温度差を十分大きくとれる。このため、第2冷媒の温度を高めに維持することができ、第2圧縮機40の高い効率を確保することできる。   In the refrigerating and air-conditioning apparatus shown in FIG. 3, in the second refrigerant circuit, the higher the saturation temperature (gas-liquid equilibrium temperature) of the second refrigerant flowing into the second compressor 40 (flowing out of the heat exchanger 10), The efficiency of the second compressor 40 is increased and the required power can be reduced. When the heat exchanger 10 cools the first radiator 21 outlet of the first refrigerant circuit as in the present embodiment, the outside air temperature is particularly high and the temperature of the first refrigerant at the first radiator 21 outlet is compared. When the temperature is high, the temperature difference between the first refrigerant (high temperature fluid) and the second refrigerant (low temperature fluid) can be sufficiently increased in the heat exchanger 10. For this reason, the temperature of a 2nd refrigerant | coolant can be maintained high and the high efficiency of the 2nd compressor 40 can be ensured.

さらに、一般に、第2冷媒の飽和圧力(気液平衡圧力)変化に対する飽和温度変化の割合は、飽和温度が高いほど緩やかである。第1冷媒回路の第1放熱器21出口を冷却する場合には、上記の理由から第2冷媒の温度は比較的高めの条件にできる。したがって、第2入口ヘッダー5の内直径Dを十分小さくして熱交換器10の圧力損失を多少増加させても、圧力損失に伴う第2圧縮機40に流入する流体の飽和温度の低下は小さい。このため、第2圧縮機40の効率低下をほとんど招くことなく、気液のミキシングによる分配特性の向上効果がより確実に得られる。   Furthermore, in general, the ratio of the saturation temperature change to the saturation pressure (gas-liquid equilibrium pressure) change of the second refrigerant is more gradual as the saturation temperature is higher. When the outlet of the first radiator 21 of the first refrigerant circuit is cooled, the temperature of the second refrigerant can be made relatively high for the above reason. Therefore, even if the inner diameter D of the second inlet header 5 is made sufficiently small to increase the pressure loss of the heat exchanger 10 slightly, the decrease in the saturation temperature of the fluid flowing into the second compressor 40 due to the pressure loss is small. . For this reason, the improvement effect of the distribution characteristic by gas-liquid mixing is acquired more reliably, without incurring the efficiency fall of the 2nd compressor 40 almost.

以上のように、本発明の実施の形態1に示す熱交換器においては、熱交換器の第1扁平管及び第2扁平管をそれぞれ流れる低温流体及び高温流体の少なくとも一方が気液二相状態の流体であり、気液二相状態の流体が流れる入口ヘッダーの内直径は他のヘッダーよりも小さい。このため、気液二相状態の流体が流れる入口ヘッダー内ガス流速を大きくすることができ、ガス流速の増加によって管内での気液のミキシングが促進され、気液が均一化する。したがって、気液比率が均等になるように各貫通穴へ流体を分配することができ、流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交換器の熱交換性能を向上させることができ、コンパクトで高性能な熱交換器を得ることができる。
また、本発明の実施の形態1に示す冷凍空調装置においては、上記熱交換器を用いているので、熱交換器がコンパクトになるとともに、封入する使用冷媒量の増加も抑制できるので、コンパクトで高性能であって環境性の高い冷凍空調装置を得ることができる。
As described above, in the heat exchanger shown in Embodiment 1 of the present invention, at least one of the low-temperature fluid and the high-temperature fluid flowing through the first flat tube and the second flat tube of the heat exchanger is in a gas-liquid two-phase state. The inner diameter of the inlet header through which the fluid in the gas-liquid two-phase state flows is smaller than the other headers. For this reason, it is possible to increase the gas flow velocity in the inlet header through which the gas-liquid two-phase fluid flows, and by increasing the gas flow velocity, gas-liquid mixing in the pipe is promoted, and the gas-liquid becomes uniform. Therefore, the fluid can be distributed to each through hole so that the gas-liquid ratio is uniform, the temperature efficiency of the fluid can be maximized, and the pressure loss can be minimized, and the heat exchange performance of the heat exchanger Thus, a compact and high-performance heat exchanger can be obtained.
Moreover, in the refrigerating and air-conditioning apparatus shown in Embodiment 1 of the present invention, since the heat exchanger is used, the heat exchanger becomes compact, and an increase in the amount of refrigerant used can be suppressed. A refrigeration air conditioner having high performance and high environmental performance can be obtained.

なお、本実施の形態においては、第2入口ヘッダー5を流れる低温流体が気液二相状態となる場合について説明した。第1入口ヘッダー3を流れる高温流体が気液二相状態となる場合には、第1入口ヘッダー3の内直径を他のヘッダー4,5,6の内直径より小さくすることによって、同様の効果を得ることができる。   In the present embodiment, the case where the low-temperature fluid flowing through the second inlet header 5 is in a gas-liquid two-phase state has been described. When the high-temperature fluid flowing through the first inlet header 3 is in a gas-liquid two-phase state, the same effect can be obtained by making the inner diameter of the first inlet header 3 smaller than the inner diameters of the other headers 4, 5, 6. Can be obtained.

図5は、本発明の実施の形態1による他の冷凍空調装置を示す系統図である。   FIG. 5 is a system diagram showing another refrigeration air-conditioning apparatus according to Embodiment 1 of the present invention.

図5に示すように、図3に示す冷凍空調装置の構成から第1放熱器21を省略し、圧縮機20から吐出された高温高圧の蒸気である第1冷媒を全て図1に示す熱交換器10で冷却する、いわゆる二次ループ形冷凍空調装置としてもよい。この場合、図5に示すように、熱交換器10を第1放熱器21として用いる。図5に示す冷凍空調装置では、熱交換器10において、必要熱交換量が大きくなり冷凍空調装置全体に占める容積割合が第1放熱器21を設けた場合よりも大きくなるので、熱交換器10がコンパクトとなることによって冷凍空調装置全体がコンパクトとなる効果が一層高まる。   As shown in FIG. 5, the first heat radiator 21 is omitted from the configuration of the refrigeration air conditioner shown in FIG. 3, and all the first refrigerant that is high-temperature and high-pressure steam discharged from the compressor 20 is shown in FIG. 1. It is good also as what is called a secondary loop type | mold refrigerating air-conditioning apparatus cooled with the container 10. FIG. In this case, the heat exchanger 10 is used as the first radiator 21 as shown in FIG. In the refrigeration air conditioner shown in FIG. 5, in the heat exchanger 10, the necessary heat exchange amount becomes large, and the volume ratio in the entire refrigeration air conditioner becomes larger than the case where the first radiator 21 is provided. As a result of being compact, the effect of making the entire refrigerating and air-conditioning apparatus compact is further enhanced.

実施の形態2.
図6は、本発明の実施の形態2による熱交換器を示す図であり、図6(a)は正面図、図6(b)は図6(a)のb−b線での断面図である。
Embodiment 2. FIG.
6 is a view showing a heat exchanger according to Embodiment 2 of the present invention, FIG. 6 (a) is a front view, and FIG. 6 (b) is a cross-sectional view taken along line bb of FIG. 6 (a). It is.

図6に示す熱交換器11は、気液二相流体が流れる第2入口ヘッダー5の内直径は、他のヘッダー3,4,6の内直径と等しく、第2入口ヘッダー5の上流に、各ヘッダー3,4,5,6の内直径より小さな内直径dをもつ細管流路101を設けたものである。その他の構成および機能は、図1に示す熱交換器10と同様である。   In the heat exchanger 11 shown in FIG. 6, the inner diameter of the second inlet header 5 through which the gas-liquid two-phase fluid flows is equal to the inner diameter of the other headers 3, 4, 6, and upstream of the second inlet header 5, A capillary channel 101 having an inner diameter d smaller than the inner diameter of each header 3, 4, 5, 6 is provided. Other configurations and functions are the same as those of the heat exchanger 10 shown in FIG.

この発明の実施の形態2に示す熱交換器11においては、内直径の小さな部分が細管流路101のみに限られているため圧力損失の増加が抑制され、気液を効率よくミキシングし、各貫通穴への気液比率が等しくなるように分配させることができる。さらに、細管流路101の内直径dを実施の形態1の熱交換器10と同様に数6の式の条件にすれば、より均等になるように分配させることができる。   In the heat exchanger 11 shown in the second embodiment of the present invention, since the portion having a small inner diameter is limited only to the thin-tube channel 101, an increase in pressure loss is suppressed, and gas and liquid are mixed efficiently. It can distribute so that the gas-liquid ratio to a through-hole may become equal. Further, if the inner diameter d of the narrow tube channel 101 is set to the condition of the formula 6 as in the heat exchanger 10 of the first embodiment, it can be distributed more evenly.

Figure 0004867569
Figure 0004867569

また、この発明の実施の形態2に示す熱交換器11においては、製造の簡素化が図れるとともに、既存の熱交換器にも設計変更することなく適用することできる。なお、細管流路101は、気液二相流体が流れる第2入口ヘッダー5の直前に設けるのが効果的である。   Moreover, in the heat exchanger 11 shown in Embodiment 2 of this invention, manufacture can be simplified and it can be applied to an existing heat exchanger without changing the design. In addition, it is effective to provide the narrow channel 101 immediately before the second inlet header 5 through which the gas-liquid two-phase fluid flows.

さらに、この発明の実施の形態2に示す熱交換器11を図1に示す熱交換器10に代わって図3または図5に示す冷凍空調装置に適用することによって、コンパクトで高性能であって環境性の高い冷凍空調装置を得ることができる。   Furthermore, by applying the heat exchanger 11 shown in Embodiment 2 of the present invention to the refrigeration air conditioner shown in FIG. 3 or FIG. 5 in place of the heat exchanger 10 shown in FIG. A highly environmental refrigeration air conditioner can be obtained.

実施の形態3.
図7は、本発明の実施の形態3による冷凍空調装置の系統図である。
Embodiment 3 FIG.
FIG. 7 is a system diagram of a refrigeration air conditioner according to Embodiment 3 of the present invention.

図7において、冷凍空調装置は、第1圧縮機20、第1放熱器21、第1減圧装置22、第1冷却器23が順に接続された冷媒回路と、一端が第1放熱器21と第1減圧装置22との間に接続され、他端が第1圧縮機20における冷媒の圧縮工程の途中に設けられたインジェクションポート53に接続されたバイパス配管52とを備えている。冷媒回路には、第1放熱器21と第1減圧装置22との間に図1に示す熱交換器10が配置されており、熱交換器10の第1入口ヘッダー3と放熱器21とが接続され、第1出口ヘッダー4と第1減圧装置22とが接続されている。一方、バイパス配管52には、途中にバイパス減圧装置51と図1に示す熱交換器10とが配置されており、熱交換器10の第2入口ヘッダー5とバイパス減圧装置51とが接続され、第2出口ヘッダー6とインジェクションポート53とが接続されている。バイパス減圧装置51で減圧された冷媒(低温流体)は、低温の気液二相流状態に変化し、熱交換器10で第1放熱器21から流出した冷媒(高温流体)と熱交換し、第1圧縮機20のインジェクションポート53に送られる。なお、本実施の形態3に示す冷凍空調装置においては、HFC系冷媒、HC冷媒、アンモニア、二酸化炭素などの冷媒が用いられる。   In FIG. 7, the refrigeration air conditioner includes a refrigerant circuit in which a first compressor 20, a first radiator 21, a first pressure reducing device 22, and a first cooler 23 are connected in order, and one end is connected to the first radiator 21 and the first radiator. 1 and a bypass pipe 52 connected to an injection port 53 provided at the other end in the middle of the refrigerant compression process in the first compressor 20. In the refrigerant circuit, the heat exchanger 10 shown in FIG. 1 is disposed between the first radiator 21 and the first decompressor 22, and the first inlet header 3 and the radiator 21 of the heat exchanger 10 are connected to each other. The first outlet header 4 and the first pressure reducing device 22 are connected. On the other hand, in the bypass pipe 52, the bypass pressure reducing device 51 and the heat exchanger 10 shown in FIG. 1 are arranged on the way, and the second inlet header 5 of the heat exchanger 10 and the bypass pressure reducing device 51 are connected. The second outlet header 6 and the injection port 53 are connected. The refrigerant (low-temperature fluid) decompressed by the bypass decompression device 51 changes to a low-temperature gas-liquid two-phase flow state and exchanges heat with the refrigerant (high-temperature fluid) flowing out from the first radiator 21 by the heat exchanger 10. It is sent to the injection port 53 of the first compressor 20. In the refrigerating and air-conditioning apparatus shown in the third embodiment, refrigerants such as HFC-based refrigerant, HC refrigerant, ammonia, and carbon dioxide are used.

本発明の実施の形態3に示す熱交換器10においては、第2入口ヘッダー5の内直径Dは、他のヘッダー3,4,6の内直径よりも小さいので、第2入口ヘッダー5内を流れるガス流速を大きくすることができ、第2入口ヘッダー5内での気液のミキシングが促進され、気液が均一化する。このため、気液比率が均等になるように各貫通穴へ低温流体を分配することでき、流体の温度効率を最大化、さらには圧力損失を最小化することができ、熱交換器10の性能が増加し、つまりは、第1放熱器21の出口の冷媒温度を効率よく下げることができる。   In the heat exchanger 10 shown in Embodiment 3 of the present invention, the inner diameter D of the second inlet header 5 is smaller than the inner diameters of the other headers 3, 4, 6. The flow velocity of the flowing gas can be increased, mixing of gas and liquid in the second inlet header 5 is promoted, and the gas and liquid are made uniform. For this reason, the low-temperature fluid can be distributed to each through-hole so that the gas-liquid ratio is uniform, the temperature efficiency of the fluid can be maximized, and the pressure loss can be minimized, and the performance of the heat exchanger 10 Increases, that is, the refrigerant temperature at the outlet of the first radiator 21 can be efficiently reduced.

また、本発明の実施の形態3に示す冷凍空調装置においては、熱交換器10で、バイパス減圧装置51の出口から流出した冷媒液を含んだ低温の冷媒(低温流体)が、放熱器51の出口から第1減圧装置22の入口へと流れる冷媒(高温流体)を効率良く冷却するので、図3に示した冷凍空調装置と同様、第1減圧装置22入口の冷媒温度を十分下げることができる。したがって、実施の形態1に示す冷凍空調装置と同様に、コンパクトで高性能であって環境性の高い冷凍空調装置を得ることができる。   Further, in the refrigerating and air-conditioning apparatus shown in Embodiment 3 of the present invention, the low-temperature refrigerant (cold fluid) containing the refrigerant liquid flowing out from the outlet of the bypass pressure reducing device 51 in the heat exchanger 10 is Since the refrigerant (high-temperature fluid) flowing from the outlet to the inlet of the first decompression device 22 is efficiently cooled, the refrigerant temperature at the inlet of the first decompression device 22 can be sufficiently lowered as in the refrigeration air conditioner shown in FIG. . Therefore, similarly to the refrigeration air conditioner shown in the first embodiment, a refrigeration air conditioner that is compact, has high performance, and has high environmental performance can be obtained.

さらに、本発明の実施の形態3に示す冷凍空調装置においては、熱交換器10からインジェクションポート53に流入する低温流体の飽和温度(気液平衡温度)が高いほど、第1圧縮機20の効率が高くなり、所要動力も小さくできる。図7に示すように、第1放熱器21の出口を冷却すると、特に外気温度が高く第1放熱器21出口における高温流体の温度が比較的高い場合は、熱交換器10において、高温流体との温度差を十分大きくとれる。このため、インジェクションポート53に流入する低温流体の温度を高めに維持でき、第1圧縮機20の高い効率を確保することできる。   Furthermore, in the refrigerating and air-conditioning apparatus shown in Embodiment 3 of the present invention, the higher the saturation temperature (gas-liquid equilibrium temperature) of the low-temperature fluid flowing from the heat exchanger 10 into the injection port 53, the higher the efficiency of the first compressor 20 is. The required power can be reduced. As shown in FIG. 7, when the outlet of the first radiator 21 is cooled, particularly in the case where the outside air temperature is high and the temperature of the hot fluid at the outlet of the first radiator 21 is relatively high, The temperature difference can be sufficiently large. For this reason, the temperature of the low-temperature fluid flowing into the injection port 53 can be maintained high, and the high efficiency of the first compressor 20 can be ensured.

また、一般に、低温流体の飽和圧力(気液平衡圧力)変化に対する飽和温度変化の割合は、飽和温度が高いほど緩やかである。冷媒回路の第1放熱器21出口を冷却する場合には、上記の理由から低温流体の温度は比較的高めの条件となる。このため、第2入口ヘッダー5の内直径Dを十分小さくして熱交換器10の圧力損失を多少増加させても、圧力損失に伴うインジェクションポート53に流入する流体の飽和温度の低下は小さい。このため、第1圧縮機20の効率低下をほとんど招くことなく、気液のミキシングによる分配特性の向上効果がより確実に得られる。   In general, the rate of change in saturation temperature with respect to change in saturation pressure (vapor-liquid equilibrium pressure) of a low-temperature fluid is more gradual as the saturation temperature is higher. When cooling the outlet of the first radiator 21 of the refrigerant circuit, the temperature of the low-temperature fluid is relatively high for the above reason. For this reason, even if the inner diameter D of the second inlet header 5 is made sufficiently small to increase the pressure loss of the heat exchanger 10 somewhat, the decrease in the saturation temperature of the fluid flowing into the injection port 53 due to the pressure loss is small. For this reason, the improvement effect of the distribution characteristic by gas-liquid mixing is acquired more reliably, without causing the efficiency fall of the 1st compressor 20 almost.

図7に示すように、第1放熱器21出口を冷却する場合には、特に外気温度が高く第1放熱器21出口における高温流体の温度が高いと、熱交換器10において、高温流体と低温流体との温度差を十分とれる。このため、熱交換性能を低下させずに、低温流体の温度を上げることができ、第1圧縮機20の効率を上げることできる。
なお、この発明の実施の形態3に示す冷凍空調装置においては、図1に示す熱交換器10に替わって図6に示す熱交換器11を用いた場合も同様の効果を得ることができる。
As shown in FIG. 7, when cooling the outlet of the first radiator 21, particularly when the outside air temperature is high and the temperature of the high-temperature fluid at the outlet of the first radiator 21 is high, A sufficient temperature difference from the fluid can be obtained. For this reason, the temperature of the low-temperature fluid can be raised without deteriorating the heat exchange performance, and the efficiency of the first compressor 20 can be raised.
In the refrigerating and air-conditioning apparatus shown in Embodiment 3 of the present invention, the same effect can be obtained when the heat exchanger 11 shown in FIG. 6 is used instead of the heat exchanger 10 shown in FIG.

本発明の実施の形態1による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による熱交換器の伝熱特性を示す図である。It is a figure which shows the heat-transfer characteristic of the heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍空調装置を示す系統図である。It is a systematic diagram which shows the refrigerating air conditioning apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による冷凍空調装置の動作を説明するための二酸化炭素の圧力−エンタルピー線図である。It is a pressure-enthalpy diagram of carbon dioxide for explaining operation of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1による他の冷凍空調装置を示す系統図である。It is a systematic diagram which shows the other refrigeration air conditioner by Embodiment 1 of this invention. 本発明の実施の形態2による熱交換器を示す図である。It is a figure which shows the heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態3による冷凍空調装置を示す系統図である。It is a systematic diagram which shows the refrigerating air conditioning apparatus by Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 第1扁平管、2 第2扁平管、3 第1入口ヘッダー、4 第1出口ヘッダー、5 第2入口ヘッダー、6 第2出口ヘッダー、10 熱交換器、11 熱交換器、20 第1圧縮機、 21 第1放熱器、22 第1減圧装置、23 第1冷却器、40 第2圧縮機、41 第2放熱器、42 第2減圧装置、51 バイパス減圧装置、52 バイパス配管、53 インジェクションポート、101 細管流路。   DESCRIPTION OF SYMBOLS 1 1st flat pipe, 2 2nd flat pipe, 3 1st inlet header, 4 1st outlet header, 5 2nd inlet header, 6 2nd outlet header, 10 heat exchanger, 11 heat exchanger, 20 1st compression 21 first radiator, 22 first decompressor, 23 first cooler, 40 second compressor, 41 second radiator, 42 second decompressor, 51 bypass decompressor, 52 bypass piping, 53 injection port 101 capillary channel.

Claims (6)

高温流体が流れる貫通穴を複数有する扁平状の第1扁平管と、
フロン冷媒、HC系冷媒またはアンモニアの低温流体が流れる貫通穴を複数有する扁平状の第2扁平管と、
上記第1扁平管の両端にそれぞれ接続された管状の第1入口ヘッダー及び第1出口ヘッダーと、
上記第2扁平管の両端にそれぞれ接続された管状の第2入口ヘッダー及び第2出口ヘッダーとを備え、
上記第1扁平管と上記第2扁平管とは、扁平な面で互いに接触するように積層配置され、
上記第2扁平管の各貫通穴に流れる上記低温流体は、上記第2入口ヘッダーから各貫通穴に分配される気液二相状態の流体であり、
上記気液二相状態の流体が流れる上記第2扁平管の上記入口ヘッダーの内直径は、上記第2扁平管の上記第2出口ヘッダーの内直径より小さいことを特徴とする熱交換器。
A flat first flat tube having a plurality of through holes through which a high-temperature fluid flows;
A flat second flat tube having a plurality of through-holes through which a low-temperature fluid such as Freon refrigerant, HC refrigerant, or ammonia flows;
A tubular first inlet header and a first outlet header respectively connected to both ends of the first flat tube;
A tubular second inlet header and a second outlet header respectively connected to both ends of the second flat tube;
The first flat tube and the second flat tube are stacked so as to contact each other on a flat surface,
The low-temperature fluid flowing into each through hole of the second flat tube is a gas-liquid two-phase fluid distributed from the second inlet header to each through hole ,
The heat exchanger according to claim 1 , wherein an inner diameter of the inlet header of the second flat tube through which the gas-liquid two-phase fluid flows is smaller than an inner diameter of the second outlet header of the second flat tube .
上記気液二相状態の流体が流れる入口ヘッダーの内直径をD(m)、上記気液二相状態の流体のうちガスの密度をρ(kg/m)、上記気液二相状態の流体のうち液体の密度をρ(kg/m)、上記気液二相状態の流体のうちガスの質量流量をM(kg/h)とすると、
上記気液二相状態の流体が流れる入口ヘッダーの内直径D(m)は、(1)式の範囲にあることを特徴とする請求項1記載の熱交換器。
Figure 0004867569
The inner diameter of the inlet header through which the gas-liquid two-phase fluid flows is D (m), the gas density of the gas-liquid two-phase fluid is ρ g (kg / m 3 ), and the gas-liquid two-phase state If the density of the liquid is ρ l (kg / m 3 ) and the mass flow rate of the gas is M g (kg / h) among the fluids in the gas-liquid two-phase state,
2. The heat exchanger according to claim 1, wherein an inner diameter D (m) of the inlet header through which the fluid in the gas-liquid two-phase state flows is in the range of the formula (1).
Figure 0004867569
高温流体が流れる貫通穴を複数有する扁平状の第1扁平管と、
フロン冷媒、HC系冷媒またはアンモニアの低温流体が流れる貫通穴を複数有する扁平状の第2扁平管と、
上記第1扁平管の両端にそれぞれ接続された管状の第1入口ヘッダー及び第1出口ヘッダーと、
上記第2扁平管の両端にそれぞれ接続された管状の第2入口ヘッダー及び第2出口ヘッダーとを備え、
上記第1扁平管と上記第2扁平管とが、扁平な面で互いに接触するように積層配置され、
上記第2扁平管の各貫通穴に流れる上記低温流体は、上記第2入口ヘッダーから各貫通穴に分配される気液二相状態の流体であり、
上記第2入口ヘッダーの内直径および上記第2出口ヘッダーの内直径より小さい内直径の流路を、上記第2入口ヘッダーの上流側直前と上記第2出口ヘッダーの下流側直前のうち、上記第2入口ヘッダーの上流側直前にのみ設けたことを特徴とする熱交換器。
A flat first flat tube having a plurality of through holes through which a high-temperature fluid flows;
A flat second flat tube having a plurality of through-holes through which a low-temperature fluid such as Freon refrigerant, HC refrigerant, or ammonia flows;
A tubular first inlet header and a first outlet header respectively connected to both ends of the first flat tube;
A tubular second inlet header and a second outlet header respectively connected to both ends of the second flat tube;
The first flat tube and the second flat tube are stacked so as to contact each other on a flat surface,
The low-temperature fluid flowing into each through hole of the second flat tube is a gas-liquid two-phase fluid distributed from the second inlet header to each through hole ,
A flow path having an inner diameter smaller than the inner diameter of the second inlet header and the inner diameter of the second outlet header is set between the immediately preceding upstream side of the second inlet header and the immediately downstream side of the second outlet header. A heat exchanger provided only immediately upstream of the two inlet header .
上記第2入口ヘッダーの上流側直前に設けた上記流路の内直径をd(m)、上記気液二相状態の流体のうちガスの密度をρ(kg/m)、上記気液二相状態の流体のうち液体の密度をρ(kg/m)、上記気液二相状態の流体のうちガスの質量流量をM(kg/h)とすると、
上記流路の内直径d(m)は、(2)式の範囲にあることを特徴とする請求項3記載の熱交換器。
Figure 0004867569
The inner diameter of the flow path provided immediately upstream of the second inlet header is d (m), the gas density of the gas-liquid two-phase fluid is ρ g (kg / m 3 ), and the gas-liquid If the density of the liquid in the two-phase fluid is ρ l (kg / m 3 ) and the mass flow rate of the gas in the gas-liquid two-phase fluid is M g (kg / h),
The heat exchanger according to claim 3 , wherein the inner diameter d (m) of the flow path is in the range of the formula (2).
Figure 0004867569
圧縮機、放熱器、減圧装置、冷却器が順に接続された冷媒回路を有する冷凍空調装置において、
上記放熱器と上記減圧装置との間に請求項1〜4のいずれかに記載の熱交換器を備えたことを特徴とする冷凍空調装置。
In a refrigeration air conditioner having a refrigerant circuit in which a compressor, a radiator, a decompressor, and a cooler are connected in order,
A refrigerating and air-conditioning apparatus comprising the heat exchanger according to any one of claims 1 to 4 between the radiator and the pressure reducing device.
圧縮機、放熱器、減圧装置、冷却器が順に接続された冷媒回路を有する冷凍空調装置において、
上記放熱器を請求項1〜4のいずれかに記載の熱交換器とすることを特徴とする冷凍空調装置。
In a refrigeration air conditioner having a refrigerant circuit in which a compressor, a radiator, a decompressor, and a cooler are connected in order,
A refrigerating and air-conditioning apparatus, wherein the heat radiator is the heat exchanger according to any one of claims 1 to 4.
JP2006285066A 2006-10-19 2006-10-19 Heat exchanger and refrigeration air conditioner Active JP4867569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285066A JP4867569B2 (en) 2006-10-19 2006-10-19 Heat exchanger and refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285066A JP4867569B2 (en) 2006-10-19 2006-10-19 Heat exchanger and refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2008101852A JP2008101852A (en) 2008-05-01
JP4867569B2 true JP4867569B2 (en) 2012-02-01

Family

ID=39436316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285066A Active JP4867569B2 (en) 2006-10-19 2006-10-19 Heat exchanger and refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4867569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101071236B1 (en) 2009-02-11 2011-10-10 르노삼성자동차 주식회사 Fuel apparatus of Liquid phase LPG Injection vehicle
EP2602578B1 (en) * 2010-08-05 2019-01-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air conditioning device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526539A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Heat-exchanger
JP2002031433A (en) * 2000-07-13 2002-01-31 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2002340485A (en) * 2001-05-15 2002-11-27 Mitsubishi Heavy Ind Ltd Heat exchanger for vehicle
JP2004177041A (en) * 2002-11-28 2004-06-24 Matsushita Electric Ind Co Ltd Heat exchanger
JP4561305B2 (en) * 2004-10-18 2010-10-13 三菱電機株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2008101852A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
EP1083395B1 (en) Combined evaporator/accumulator/suction line heat exchanger
JP4055449B2 (en) Heat exchanger and air conditioner using the same
EP2399089B1 (en) Heat exchanger
JP2011512509A (en) Refrigerant vapor compression system
JP2002206890A (en) Heat exchanger, and freezing air-conditioning cycle device using it
JP5720331B2 (en) Evaporator unit
JP2007192447A (en) Evaporator
US11656033B2 (en) Combined core microchannel heat exchanger
US20110061845A1 (en) Heat exchanger
WO2020179651A1 (en) Cooling module for cooling vehicle battery
US9671176B2 (en) Heat exchanger, and method for transferring heat
US7690217B2 (en) Refrigeration system, compressing and heat-releasing apparatus and heat-releasing device
EP2578966A1 (en) Refrigeration device and cooling and heating device
JP4867569B2 (en) Heat exchanger and refrigeration air conditioner
EP3141857B1 (en) Radiator and supercritical pressure refrigeration cycle using the same
CN111829385A (en) Distributor, heat exchanger, indoor unit, outdoor unit, and air conditioning apparatus
JP2013134024A (en) Refrigeration cycle device
JP2006266522A (en) Refrigeration device
JP4710869B2 (en) Air conditioner
WO2017149642A1 (en) Refrigeration cycle device
JP2002228380A (en) Heat exchanger and cooling apparatus
JP2009168383A (en) Heat exchanger and heat pump type water heater using the same
KR100825709B1 (en) Heat exchanger
KR100950395B1 (en) Heat-exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111031

R151 Written notification of patent or utility model registration

Ref document number: 4867569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250