WO2012153490A1 - Heat exchanger and cold cycle device provided therewith - Google Patents

Heat exchanger and cold cycle device provided therewith Download PDF

Info

Publication number
WO2012153490A1
WO2012153490A1 PCT/JP2012/002912 JP2012002912W WO2012153490A1 WO 2012153490 A1 WO2012153490 A1 WO 2012153490A1 JP 2012002912 W JP2012002912 W JP 2012002912W WO 2012153490 A1 WO2012153490 A1 WO 2012153490A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
heat exchanger
temperature refrigerant
flow
Prior art date
Application number
PCT/JP2012/002912
Other languages
French (fr)
Japanese (ja)
Inventor
寿守務 吉村
浩昭 中宗
瑞朗 酒井
宗史 池田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2012153490A1 publication Critical patent/WO2012153490A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0444Condensers with an integrated receiver where the flow of refrigerant through the condenser receiver is split into two or more flows, each flow following a different path through the condenser receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Definitions

  • the present invention relates to a heat exchanger that performs heat exchange between a high-temperature refrigerant and a low-temperature refrigerant, and a refrigeration cycle apparatus including the heat exchanger.
  • a first flat tube having a plurality of through holes through which a high-temperature fluid (that is, a high-temperature refrigerant) flows, and a second flat tube having a plurality of through-holes through which a low-temperature fluid (that is, a low-temperature refrigerant) flows.
  • a first header connected to both ends of the first flat tube, and a second header connected to both ends of the second flat tube, and the first flat tube and the second flat tube are arranged in a longitudinal direction (fluid of fluid There is one in which flat surfaces are contact-laminated by brazing or the like such that the flow direction is parallel (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems, and a first object is to obtain a heat exchanger with improved heat exchange performance and a refrigeration cycle apparatus including the same. Moreover, the 2nd objective is to obtain the heat exchanger which can be comprised compactly, and a refrigeration cycle apparatus provided with the same.
  • the heat exchanger according to the present invention is configured such that a first flow path portion configured by arranging a plurality of refrigerant flow paths through which a high-temperature refrigerant flows in parallel and a plurality of refrigerant flow paths through which a low-temperature refrigerant flows are arranged in parallel.
  • the second flow path portion and the first flow path portion are disposed at one end in the flow direction of the high-temperature refrigerant, and form a cylindrical flow path that communicates with each of the refrigerant flow paths.
  • a cylindrical inlet channel is formed, and a second inlet for allowing a low-temperature refrigerant to flow into the second channel from outside, and a low temperature of the second channel.
  • a second outlet portion that is disposed at the other end in the flow direction of the medium, forms a cylindrical channel that communicates with each refrigerant channel, and causes the low-temperature refrigerant to flow out from the second channel unit;
  • An intermediate communication part disposed in the middle of the refrigerant flow path of the first flow path part and forming a cylindrical flow path communicating with at least a part of the refrigerant flow path of the first flow path part,
  • the refrigerant flow paths of the first flow path section and the refrigerant flow paths of the second flow path section are arranged so that the flow path directions are parallel and adjacent to each other via a partition wall, and the intermediate communication The portion is for causing the high-temperature refrigerant condensed in the upstream portion of the first flow path portion to flow downward.
  • the high temperature refrigerant condensate is prevented from covering the flow path inner surface (heat transfer surface) and becoming a heat resistance layer. Therefore, heat exchange performance can be improved. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
  • FIG. 1 is an external view of a heat exchanger 8 according to Embodiment 1 of the present invention.
  • FIG. 1A is a perspective view of the heat exchanger 8
  • FIG. 1B is a plan view of the heat exchanger 8.
  • the heat exchanger 8 includes a flat first flat tube 1 having a plurality of through holes through which a high-temperature refrigerant (refrigerant or the like) flows in the longitudinal direction, and a low-temperature refrigerant (water or the like) in the longitudinal direction.
  • a flat second flat tube 2 having a plurality of through-holes flowing therethrough, a first inlet header 3 and a first outlet header 4 connected to both longitudinal ends of the first flat tube 1, and a second flat tube 2, a second inlet header 5 and a second outlet header 6 connected to both longitudinal ends.
  • an intermediate header 31 is provided in the middle portion of the first flat tube 1 in the longitudinal direction.
  • the first flat tube 1 is provided with an upstream first flat plate that is upstream of the high-temperature refrigerant. It is divided into a pipe 11 and a downstream first flat pipe 12 that is the downstream side of the high-temperature refrigerant.
  • These pipes and headers are made of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, and are manufactured by, for example, extrusion or pultrusion.
  • each through-hole formed in the 1st flat tube 1 and the 2nd flat tube 2 comprises the refrigerant
  • coolant assumes the refrigerant
  • the first inlet header 3 has a cylindrical shape, is attached to one end in the longitudinal direction of the first flat tube 1, and the high-temperature refrigerant flowing into the first flat header 1 flows into each refrigerant flow path of the first flat tube 1. Inflow.
  • the first inlet header 3 has an upper surface portion opened and a lower surface portion closed in order to allow the high-temperature refrigerant to flow from the upper surface.
  • the first outlet header 4 has a cylindrical shape, is attached to an end opposite to the first inlet header 3 in the longitudinal direction of the first flat tube 1, and each refrigerant channel of the first flat tube 1.
  • the high-temperature refrigerant that has flowed into the inside from the outside flows out to the outside.
  • the first outlet header 4 has a lower surface portion opened and a top surface portion closed in order to allow the high-temperature refrigerant to flow out from the lower surface.
  • the second inlet header 5 has a cylindrical shape and is attached to the same side as the first outlet header 4 attached to the first flat tube 1 in both longitudinal ends of the second flat tube 2.
  • the low-temperature refrigerant that has flowed into the inside flows into the refrigerant flow paths of the second flat tube 2.
  • the second inlet header 5 has an upper surface portion opened and a lower surface portion closed in order to allow a low-temperature refrigerant to flow (not shown) from the upper surface.
  • the second outlet header 6 has a cylindrical shape, and is opposite to the second inlet header 5 in the longitudinal direction of the second flat tube 2, that is, both end portions of the second flat tube 2 in the longitudinal direction. Among them, it is attached to the same side as the first inlet header 3 attached to the first flat tube 1, and causes the low-temperature refrigerant flowing into each of the refrigerant channels of the second flat tube 2 to flow outside. is there. Further, the second outlet header 6 has a lower surface portion opened and a top surface portion closed to allow the low-temperature refrigerant to flow out (not shown) from the lower surface.
  • the first inlet header 3 and the second outlet header 6 are arranged slightly shifted in the flow direction of the refrigerant flow path. The same applies to the first outlet header 4 and the second inlet header 5. Thereby, when it is necessary to increase the inner diameter of each header, the heat exchanger 8 can be reduced in thickness and can be made compact.
  • the first inlet header 3 and the second inlet header 5 are configured such that the upper surface portion is opened and the lower surface portion is closed. However, the present invention is not limited to this, and the lower surface portion is opened and the upper surface portion is closed. It is good also as a closed structure.
  • the first outlet header 4 and the second outlet header 6 are configured such that the lower surface portion is opened and the upper surface portion is closed. However, the present invention is not limited to this, and the upper surface portion is opened and the lower surface portion is It is good also as a closed structure.
  • the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are each cylindrical, but are not limited thereto. Any other shape may be used as long as it has a cylindrical shape.
  • the intermediate header 31 has a cylindrical shape and is installed in the middle of the first flat tube 1 in the longitudinal direction, as described above, and each refrigerant flow path of the upstream first flat tube 11 and downstream
  • the side first flat tube 12 communicates with each refrigerant flow path.
  • the intermediate header 31 has a function of separating the liquid high-temperature refrigerant condensed from the high-temperature refrigerant in the upstream first flat tube 11, and causes the liquid high-temperature refrigerant to flow down to the outside.
  • the bottom surface is opened and the top surface is closed.
  • the first flat tube 1, the second flat tube 2, the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6, and the intermediate header 31 are respectively referred to as “first” It corresponds to a “flow channel portion”, a “second flow channel portion”, a “first inlet portion”, a “first outlet portion”, a “second inlet portion”, a “second outlet portion”, and an “intermediate communication portion”.
  • the wall where the first flat tube 1 and the second flat tube 2 are joined corresponds to the “partition wall” of the present invention.
  • FIG. Fig.1 (a) has shown the flow of the high temperature refrigerant
  • the high-temperature refrigerant flows into the inside from the upper surface portion of the first inlet header 3, in the order of the refrigerant flow path of the upstream first flat tube 11, the intermediate header 31, and the refrigerant flow path of the downstream first flat tube 12. It flows through and flows out from the lower surface portion of the first outlet header 4.
  • the low-temperature refrigerant flows into the inside from the upper surface portion of the second inlet header 5, flows through the refrigerant flow path of the second flat tube 2, and flows out from the lower surface portion of the second outlet header 6.
  • coolant flow path of the upstream 1st flat tube 11 and the downstream 1st flat tube 12 are each joining surface.
  • the heat exchange is carried out in a counter flow through
  • the high-temperature refrigerant in the gas state flows into the inside from the upper surface portion of the first inlet header 3 and flows through the refrigerant flow path of the upstream first flat tube 11 in the second stage.
  • Heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the flat tube 2. At least part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate header 31.
  • the intermediate header 31 separates most of the high-temperature refrigerant in the liquid state condensed in the upstream first flat tube 11, and almost all the high-temperature refrigerant in the gas state flows into the downstream first flat tube 12. Inflow. Therefore, in the refrigerant flow path of the downstream first flat tube 12, it is possible to suppress the condensate of the high-temperature refrigerant from covering the flow path inner surface (heat transfer surface) and becoming a heat resistance layer, so heat exchange Performance can be improved. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
  • the intermediate header 31 may be provided with two or more in the middle part of the longitudinal direction of the 1st flat tube 1 (two in a figure).
  • the condensate of the high-temperature refrigerant condensed in the upstream first flat tube 11 separates the condensate before covering the flow path inner surface (heat transfer surface) thickly, and can be prevented from becoming a heat resistance layer. Since the ratio of the 1 flat tube 12 increases, heat exchange performance can be improved more. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
  • the outflow pipe 41 installed at the lower part of the first outlet header 4 and the lower part of the intermediate header 31 are connected by a bypass pipe 42, and the flow rate adjusting means is connected to the bypass pipe 42. 43 may be provided.
  • the high-temperature refrigerant in the liquid state separated by the intermediate header 31 flows through the bypass pipe 42 and merges with the high-temperature refrigerant flowing out from the first outlet header 4 through the flow rate adjusting means 43 in the outflow pipe 41. All of the high temperature refrigerant flows out of the heat exchanger 8.
  • the bypass pipe 42 is not limited to the configuration connected to the outflow pipe 41, and the lower part of the intermediate header 31 and the lower part of the first outlet header 4 are connected, and the combined high-temperature refrigerant is the first. It is good also as a structure which flows out through the outflow pipe 41 from the lower part of the exit header 4. FIG.
  • the heat exchanger 8 is a condenser in which a high-temperature refrigerant flows through the first flat tube 1, a low-temperature refrigerant flows through the second flat tube 2, and the high-temperature refrigerant condenses in the first flat tube 1. As explained. However, it is not limited to this, The heat exchanger 8 is good also as what acts as an evaporator. In this case, in FIG. 2, the low-temperature refrigerant flows in the first flat tube 1, and the high-temperature refrigerant flows in the second flat tube 2. At this time, the flow rate adjusting means 43 is closed.
  • the intermediate header 31 is in communication with all the refrigerant flow paths of the first flat tube 1, but is not limited thereto. That is, it may be configured to communicate with at least a part of the refrigerant flow path of the first flat tube 1, for example, with respect to a part of the refrigerant flow path positioned above the first flat pipe 1, these As for the refrigerant flow path, the refrigerant flow path of the upstream first flat tube 11 and the refrigerant flow path of the downstream first flat tube 12 may be in direct communication.
  • the intermediate header 31 provided in the heat exchanger 8a is closed on both the upper surface portion and the lower surface portion, unlike the intermediate header 31 provided in the heat exchanger 8 according to Embodiment 1.
  • the intermediate header 31 provided in the heat exchanger 8 according to Embodiment 1 is closed on both the upper surface portion and the lower surface portion, unlike the intermediate header 31 provided in the heat exchanger 8 according to Embodiment 1.
  • the intermediate header 31 provided in the heat exchanger 8 according to Embodiment 1. about another structure, it is the same as that of the heat exchanger 8 which concerns on Embodiment 1.
  • FIG. 3 shows the flow of the high-temperature refrigerant when the heat exchanger 8a according to the present embodiment acts as a condenser
  • the FH (gas) arrow in the figure indicates the flow of the high-temperature refrigerant in the gas state.
  • FH (liquid) arrows indicate the flow of high-temperature refrigerant in the liquid state.
  • circulated refrigerant flow paths other than the bypass flow path 42a of the downstream 1st flat tube 12 are 1st. 1 It mixes in the exit header 4, and flows out outside from the lower surface part.
  • the behavior of the low-temperature refrigerant is the same as that in the first embodiment.
  • Embodiment 3 FIG.
  • the heat exchanger 8b according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • FIG. 4 is an external perspective view of a heat exchanger 8b according to Embodiment 3 of the present invention. As shown in FIG. 4, a columnar collision member 32 is installed in the intermediate header 31 provided in the heat exchanger 8 b so as to coincide with the longitudinal direction. About another structure, it is the same as that of the heat exchanger 8 which concerns on Embodiment 1.
  • FIG. 4 is an external perspective view of a heat exchanger 8b according to Embodiment 3 of the present invention.
  • a columnar collision member 32 is installed in the intermediate header 31 provided in the heat exchanger 8 b so as to coincide with the longitudinal direction.
  • the heat exchanger 8 which concerns on Embodiment 1.
  • the behavior of the high-temperature refrigerant and the low-temperature refrigerant is basically the same as that in the first embodiment.
  • the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate header 31 collides with the collision member 32, whereby liquid droplets that are difficult to separate and mist-state fluid are separated, and liquid separation is performed. Is promoted.
  • the efficiently separated liquid high-temperature refrigerant flows down along the collision member 32, and the amount of liquid high-temperature refrigerant flowing into the downstream first flat tube 12 can be reduced.
  • the collision member 32 shall be arrange
  • the columnar collision member 32 is not limited to this, but may be a wave shape, a zigzag shape, a net shape, or the like, and the high-temperature refrigerant in the gas-liquid two-phase state that has flowed into the intermediate header 31 is liquid-separated. Any shape can be used.
  • the configuration in which the collision member 32 is installed in the intermediate header 31 can also be applied to the intermediate header 31 in the second embodiment.
  • Embodiment 4 FIG.
  • the heat exchanger 8c according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • the 1st flat tube 1 showed the structure by which the upstream 1st flat tube 11 and the downstream 1st flat tube 12 are arrange
  • a configuration in which the upstream first flat tube 11 and the downstream first flat tube 12 are arranged vertically will be described.
  • FIG. 5 is an external view of a heat exchanger 8c according to Embodiment 4 of the present invention.
  • Fig.5 (a) is a perspective view of the heat exchanger 8c
  • FIG.5 (b) is a top view of the heat exchanger 8c.
  • the upstream first flat tube 11 and the downstream first flat tube 12 constituting the first flat tube 1 have flat surfaces parallel to the upper and lower portions of the cylindrical shape of the intermediate header 31. It is connected to become.
  • the upstream first flat tube 11 is disposed above the intermediate header 31 and the downstream first flat tube 12 is disposed below the intermediate header 31 so as not to contact each other.
  • a first inlet header 3 is attached to the other end of the upstream first flat tube 11 in the refrigerant flow direction
  • a first outlet header 4 is attached to the other end of the downstream first flat tube 12 in the refrigerant flow direction. Is attached.
  • the upper surface of the first inlet header 3 is opened and the lower surface is closed in order to allow high temperature refrigerant to flow from the upper surface.
  • the intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and flows the liquid high-temperature refrigerant down to the outside.
  • the lower surface portion is opened and the upper surface portion is closed.
  • the second inlet header 5 is attached to the same side as the intermediate header 31 attached to the upstream first flat tube 11 and the downstream first flat tube 12 in both ends of the second flat tube 2 in the refrigerant flow direction. It has been.
  • the second inlet header 5 has an upper surface portion opened and a lower surface portion closed in order to allow a low-temperature refrigerant to flow (not shown) from the upper surface.
  • the second outlet header 6 is attached to the end opposite to the second inlet header 5 in the refrigerant flow direction of the second flat tube 2 among the both ends of the second flat tube 2 in the refrigerant flow direction. . That is, on both ends of the second flat tube 2, on the same side as the first outlet header 3 attached to the upstream first flat tube 11 and the first outlet header 4 attached to the downstream first flat tube 12. It is attached. Further, the second outlet header 6 has a lower surface portion opened and a top surface portion closed to allow the low-temperature refrigerant to flow out (not shown) from the lower surface.
  • the first inlet header 3 and the second inlet header 5 are configured such that the upper surface portion is opened and the lower surface portion is closed. However, the present invention is not limited to this, and the lower surface portion is opened and the upper surface portion is closed. It is good also as a closed structure.
  • the first outlet header 4 and the second outlet header 6 are configured such that the lower surface portion is opened and the upper surface portion is closed. However, the present invention is not limited to this, and the upper surface portion is opened and the lower surface portion is It is good also as a closed structure.
  • FIG. Fig.5 has shown the flow of the high temperature refrigerant
  • the arrow of FH (gas) in a figure shows the high temperature refrigerant
  • the arrow of FH (liquid) indicates the flow of the high-temperature refrigerant in the liquid state.
  • the upstream side first flat tube 11 and the downstream side first flat tube 12 are arranged on the intermediate header 31 so that their refrigerant flow direction directions coincide in plan view.
  • the present invention is not limited to this and may not match. However, in that case, it is necessary to change the shape of the second flat tube 2 so as to join the flat surfaces of the upstream first flat tube 11 and the downstream first flat tube 12.
  • FIG. The heat exchanger 8d according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8c according to the fourth embodiment.
  • the configuration is shown in which the upstream first flat tube 11 and the downstream first flat tube 12 arranged vertically are joined to the second flat tube 2 that is an integral type.
  • a configuration in which the second flat tube 2 is also divided in the vertical direction will be described in the same manner as the first flat tube 1.
  • FIG. 7 is an external perspective view of a heat exchanger 8d according to Embodiment 5 of the present invention.
  • the second flat tube 2 is configured by a downstream second flat tube 21 and an upstream second flat tube 22 that are divided into upper and lower portions, like the first flat tube 1.
  • the downstream second flat tube 21 is laminated by joining the respective flat surfaces to each other by brazing or the like so that the refrigerant flow direction is parallel to the upstream first flat tube 11.
  • the upstream second flat tube 22 is laminated by joining the respective flat surfaces by brazing or the like so that the refrigerant flow direction is parallel to the downstream first flat tube 12. .
  • the second inlet header 5 whose lower surface portion is open and whose upper surface portion is closed is the second inlet header 5 attached to the downstream first flat tube 12 among the both ends of the upstream second flat tube 22 in the refrigerant flow direction. 1 is attached to the same side as the outlet header 4.
  • the second outlet header 6 whose upper surface portion is open and whose lower surface portion is closed is the second outlet header 6 attached to the upstream first flat tube 11 in both ends of the downstream second flat tube 21 in the refrigerant flow direction. It is attached to the same side as the one inlet header 3.
  • the other end of the downstream second flat tube 21 (the same side as the end of the upstream first flat tube 11 in the direction of the refrigerant flow path where the intermediate header 31 is attached) and the upstream second An intermediate header 51 is attached to the other end of the flat tube 22 (the same side as the end of the downstream first flat tube 12 in the direction of the refrigerant flow path where the intermediate header 31 is attached).
  • the first inlet header 3 and the second outlet header 6 are arranged slightly shifted in the flow direction of the refrigerant flow path.
  • the heat exchanger 8d can be made thinner and more compact when it is necessary to increase the inner diameter of each header.
  • FIG. 7 shows the flow of the high-temperature refrigerant when the heat exchanger 8d according to the present embodiment acts as a condenser
  • the FH (gas) arrow in the figure indicates the flow of the high-temperature refrigerant in the gas state.
  • FH (liquid) arrows indicate the flow of high-temperature refrigerant in the liquid state.
  • the high-temperature refrigerant flows into the inside from the upper surface portion of the first inlet header 3, in the order of the refrigerant flow path of the upstream first flat tube 11, the intermediate header 31, and the refrigerant flow path of the downstream first flat tube 12. It flows through and flows out from the lower surface portion of the first outlet header 4.
  • the low-temperature refrigerant flows into the inside from the lower surface portion of the second inlet header 5, and the refrigerant channel of the upstream second flat tube 22, the intermediate header 51, and the refrigerant channel of the downstream second flat tube 21. And flows out from the upper surface of the second outlet header 6.
  • the high-temperature refrigerant in the gas state flows into the inside from the upper surface portion of the first inlet header 3 and flows through the refrigerant flow path of the upstream first flat tube 11 in the downstream side.
  • Heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the second flat tube 21.
  • At least part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate header 31.
  • the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate header 31 collides with the inner wall surface of the intermediate header 31, whereby liquid droplets that are difficult to separate and mist refrigerant are separated, and liquid separation is promoted.
  • the high-temperature refrigerant in the gas-liquid two-phase state can be efficiently separated by colliding with the inner wall surface of the intermediate header 31, and the liquid flowing into the downstream first flat tube 12.
  • the amount of the high-temperature refrigerant in the state can be reduced, and further the condensation performance and heat exchange performance can be improved.
  • the heat exchanger 8d according to the present embodiment has the same length of the high-temperature refrigerant flow path and the low-temperature refrigerant flow path, and thus further heat exchange. Performance can be improved.
  • the upstream first flat tube 11 and the downstream first flat tube 12 are connected to the intermediate header 31 so that the respective refrigerant flow channel directions coincide with each other
  • the downstream side second flat tube 21 and the upstream side second flat tube 22 are also connected to the intermediate header 51 so that the respective refrigerant flow path directions coincide with each other.
  • the present invention is not limited to this and does not match. It may be a thing. In this case, the upstream first flat tube 11 and the downstream second flat tube 21, and the downstream first flat tube 12 and the upstream second flat tube 22 are joined to each other by flat surfaces. do it.
  • the intermediate header 31 and the intermediate header 51 are configured to be attached to the same side of the first flat tube 1 and the second flat tube 2 in the refrigerant flow direction, respectively. It is good also as a structure attached to the other side rather than a refrigerant
  • the second inlet header 5 and the second outlet header 6 are also attached to the opposite side of the first inlet header 3 and the first outlet header 4.
  • the behavior of the low-temperature refrigerant in the heat exchanger 8d is assumed to flow from the lower surface portion of the second inlet header 5 and flow out from the upper surface portion of the second outlet header 6, but is not limited to this. That is, the low-temperature refrigerant may flow from the upper surface portion of the second outlet header 6 and flow out from the lower surface portion of the second inlet header 5. In this case, heat exchange between the high-temperature refrigerant and the low-temperature refrigerant is performed by a parallel flow.
  • the liquid high-temperature refrigerant is separated by simply colliding with the inner wall surface of the intermediate header 31, but this is not limitative. Is not to be done. That is, as shown in FIGS. 6A and 6B in the fourth embodiment, the intermediate header 31 has a cylindrical shape, and the gas-liquid two-phase high-temperature refrigerant is exchanged with the circular cross section of the intermediate header 31. It is good also as what is comprised so that it may flow toward toward the tangential direction. As a result, a swirling flow of the high-temperature refrigerant is generated in the intermediate header 31, and the high-temperature refrigerant in the liquid state is centrifuged and can be separated more efficiently.
  • FIG. 8 is an external perspective view of a heat exchanger 8e according to Embodiment 6 of the present invention. As shown in FIG.
  • the main body 110 of the heat exchanger 8e is formed so that a plurality of first refrigerant flow paths 101a through which a high-temperature refrigerant flows are arranged in a row and penetrate in the longitudinal direction.
  • the first refrigerant path 101 is configured.
  • a plurality of second refrigerant flow paths 102a through which the low-temperature refrigerant flows are arranged in a row so as to be adjacent to the first refrigerant flow paths 101a of the first refrigerant path 101, and are formed so as to penetrate in the longitudinal direction.
  • Two refrigerant paths 102 are configured.
  • the main body 110 in which the first refrigerant path 101 and the second refrigerant path 102 are formed is formed of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, for example, extrusion or pultrusion molding. Manufactured by.
  • a hole 105a is formed.
  • a hole 106a is formed on the side where the first inlet communication hole 103a is formed on both ends of the main body 110.
  • first inlet communication hole 103a and the second outlet communication hole 106a are formed with a slight shift in the flow direction of the refrigerant flow path of the first refrigerant path 101 (or the second refrigerant path 102).
  • the first outlet communication hole 104a and the second inlet communication hole 105a are formed so as to be slightly shifted in the flow direction of the refrigerant flow path of the first refrigerant path 101 (or the second refrigerant path 102).
  • the insertion direction of the first inlet communication hole 103a and the first outlet communication hole 104a does not necessarily have to be perpendicular to the direction of each first refrigerant flow path 101a. Further, the insertion direction of the second inlet communication hole 105a and the second outlet communication hole 106a is not necessarily perpendicular to the direction of the second refrigerant flow path 102a.
  • the lower ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are opened, and the first inlet connection so as to communicate with the outside respectively.
  • the pipe 103, the first outlet connecting pipe 104, the second inlet connecting pipe 105, and the second outlet connecting pipe 106 are connected.
  • the upper ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are closed by a sealing member or the like.
  • the intermediate communication hole 131 has a lower end opened, and an upper end is closed by a sealing member or the like.
  • FIG. 8 shows the flow of the high-temperature refrigerant when the heat exchanger 8e according to the present embodiment acts as a condenser, and the arrow of FH (gas) in the figure shows the flow of the high-temperature refrigerant. .
  • the high-temperature refrigerant flows into the first inlet communication hole 103a through the first inlet connection pipe 103, flows in the order of the first refrigerant path 101, and the first outlet communication hole 104a, from the first outlet connection pipe 104. leak.
  • the low-temperature refrigerant flows into the second inlet communication hole 105a through the second inlet connection pipe 105, and flows through the second refrigerant path 102 and the second outlet communication hole 106a in this order, and then the second outlet connection pipe. It flows out from 106.
  • heat exchange is performed between the high-temperature refrigerant flowing through the first refrigerant path 101 and the low-temperature refrigerant flowing through the second refrigerant path 102 in a counterflow via a partition between the refrigerant paths.
  • the high-temperature refrigerant in the gas state flows into the first inlet communication hole 103a from the first inlet connection pipe 103 and flows through each first refrigerant flow path 101a of the first refrigerant path 101.
  • heat is absorbed by the low-temperature refrigerant flowing through each second refrigerant flow path 102 a of the second refrigerant path 102.
  • At least a part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate communication hole 131.
  • first refrigerant path 101 and the second refrigerant path 102 are configured integrally with the main body 110, heat conduction thermal resistance or contact thermal resistance generated in the joint portion when configured separately is suppressed, and Heat exchange performance can be improved.
  • the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are provided in the heat exchanger 8e, the first refrigerant There is no need to provide a separate pipe for connecting to the path 101 and the second refrigerant path 102. Therefore, the heat exchanger 8e can be made compact and the manufacturing operation can be simplified.
  • the heat exchanger 8e is a condenser in which a high-temperature refrigerant flows through the first refrigerant path 101, a low-temperature refrigerant flows through the second refrigerant path 102, and the high-temperature refrigerant condenses in the first refrigerant path 101. As explained. However, it is not limited to this, The heat exchanger 8e is good also as what acts as an evaporator. In this case, the low temperature refrigerant flows in the first refrigerant path 101 and the high temperature refrigerant flows in the second refrigerant path 102.
  • FIG. 9 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
  • the refrigeration cycle apparatus 200 includes a first compressor 230, a first radiator 231, a heat exchanger 8, a first decompressor 232, and a first cooler 233, which are sequentially connected by refrigerant piping.
  • the first refrigerant circuit is provided.
  • the 1st inlet header 3 in the heat exchanger 8 is connected to the 1st heat radiator 231 by refrigerant
  • the 1st exit header 4 is connected to the 1st decompression device 232 by refrigerant
  • the first refrigerant circuit is configured such that the first refrigerant, which is a high-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
  • This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 8, where it absorbs heat and evaporates from the first refrigerant flowing through the first refrigerant circuit, and is a low-temperature and low-pressure gas-state refrigerant. It becomes.
  • the second refrigerant in the low-temperature and low-pressure gas state is again sucked into the second compressor 240 and compressed.
  • Embodiment 8 FIG. The refrigeration cycle apparatus 200a according to the present embodiment will be described focusing on differences from the configuration and operation of the refrigeration cycle apparatus 200 according to Embodiment 7.
  • Embodiment 9 FIG.
  • the refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
  • FIG. 11 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 9 of the present invention.
  • the refrigeration cycle apparatus 200b includes a refrigerant circuit in which a compressor 250, a heat radiator 251, a heat exchanger 8, a pressure reducing device 252, and a cooler 253 are sequentially connected by a refrigerant pipe.
  • a bypass pipe 255 branched from the refrigerant pipe between the heat exchanger 8 and the decompression device 252 is connected to an injection port 256 provided in the compression chamber of the compressor 250 or to the compressor 250 although not shown here. It is connected between the cooler 253.
  • the bypass pressure reducing device 254 and the heat exchanger 8 are installed in this order from the branch point of the refrigerant pipe between the heat exchanger 8 and the pressure reducing device 252.
  • first inlet header 3 in the heat exchanger 8 is connected to the radiator 251 through the refrigerant pipe, and the first outlet header 4 is connected to the decompression device 252 through the refrigerant pipe.
  • second inlet header 5 in the heat exchanger 8 is connected to the bypass pressure reducing device 254 by the refrigerant pipe, and the second outlet header 6 is connected to the injection port 256 of the compressor 250 by the refrigerant pipe.
  • the gas refrigerant is compressed by the compressor 250 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant flows into the radiator 251, exchanges heat with air or the like to radiate heat, and the high-pressure refrigerant (high-temperature refrigerant) that flows out of the radiator 251 flows into the heat exchanger 8.
  • the high-pressure refrigerant (high-temperature refrigerant) that has flowed into the heat exchanger 8 is cooled by dissipating heat to the low-temperature refrigerant that has flowed out of the bypass decompression device 254, and further flows into the decompression device 252, where it is depressurized. It becomes a two-phase refrigerant.
  • This low-temperature low-pressure gas-liquid two-phase refrigerant flows into the cooler 253, exchanges heat with air or the like, and evaporates to become a low-temperature low-pressure gas refrigerant.
  • This low-temperature and low-pressure gas refrigerant is again sucked into the compressor 250 and compressed.
  • a part of the refrigerant that has flowed out of the heat exchanger 8 branches before flowing into the decompression device 252, and flows into the bypass pipe 255.
  • the refrigerant flowing into the bypass pipe 255 is decompressed by the bypass decompression device 254, becomes a low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant), and flows into the heat exchanger 8.
  • the low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant) flowing into the heat exchanger 8 is heated by absorbing heat from the high-temperature refrigerant, and is injected into the compression chamber from the injection port 256 of the compressor 250.
  • refrigerant circulating in the refrigeration cycle apparatus 200b carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, refrigerant such as ammonia, or a mixed refrigerant thereof is used.
  • the heat exchanger 8 when the high-temperature refrigerant flowing out from the radiator 251 is cooled by the heat exchanger 8, particularly when the outside air temperature is high and the temperature of the high-temperature refrigerant flowing out from the radiator 251 is relatively high, the temperature difference between the high temperature refrigerant and the low temperature refrigerant can be sufficiently large. For this reason, the temperature of the low-temperature refrigerant injected into the compression chamber of the compressor 250 from the injection port 256 can be maintained high, and high efficiency of the first compressor 230 can be ensured.
  • the refrigerant flowing through the cooler 253 without reducing the refrigeration effect compared to the case where the heat exchanger 8 is not used.
  • the flow rate can be reduced.
  • the piping length between the compressor 250 and the cooler 253 is long, it is possible to suppress a decrease in performance due to an increase in pressure loss.
  • the heat exchanger 8 when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200b.
  • Embodiment 10 FIG.
  • the heat exchanger 8f according to the present embodiment will be described with a focus on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • FIG. 12A and 12B are side views of the heat exchanger 8f according to the tenth embodiment of the present invention.
  • FIG. 12A is a cylindrical shape in which the cross section of the intermediate header 31 is substantially circular, and FIG. An elliptical or rectangular cylindrical shape is shown.
  • the intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and in order to cause the liquid high-temperature refrigerant to flow down and flow outside, A part of the side surface portion is opened.
  • the gravity separation of the condensate is promoted in the space at the bottom of the intermediate header part, and the condensate generated on the upstream side becomes a buffer space. Even in the case of a large amount, the overflow does not occur and the condensate does not flow downstream, so that the condensation performance and the heat exchange performance can be improved more stably.
  • Embodiment 11 FIG.
  • the heat exchanger 8g according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • the first flat tube 1 and the second flat tube 2 are in the vertical direction
  • the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are The structure arrange
  • FIG. 13 is an external view of a heat exchanger 8g according to Embodiment 11 of the present invention, in which (a) is a perspective view and (b) is a side view.
  • the intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and has one end portion for allowing the liquid high-temperature refrigerant to flow out to the outside. Is open. Further, a trap member that is slightly inclined in the vertical direction is inserted into the intermediate header so as to trap the condensate flowing in from the upstream side and to flow the condensate to the end portion.
  • Embodiment 12 FIG.
  • the heat exchangers 8h and 8i according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
  • the first flat tube 1 and the second flat tube 2 are in the vertical direction
  • the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are The structure arrange
  • the intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and one side surface portion is provided to allow the liquid high-temperature refrigerant to flow out. The part is opened. Further, one end of the downstream second flat tube 12 protrudes into the intermediate header 31 and is fixed.
  • the heat exchanger is arranged vertically, liquid separation is possible at the intermediate header, and the high-temperature refrigerant in the gas-liquid two-phase state is the first flat side on the downstream side as in the first embodiment.
  • the amount of liquid high-temperature refrigerant flowing into the pipe 12 can be reduced, and the condensation performance and heat exchange performance can be improved.
  • the upstream condensate can be prevented from flowing directly into the downstream first flat tube 12, Liquid separation at the header can be further promoted.
  • the configuration is such that the end of the pipe connected at a part of the side surface portion is bent downward and fixed to the intermediate header in order to allow the condensate to flow outside, the condensate is connected to flow out to the outside. The condensate can be stably separated from the piping without causing gas to flow out.
  • Embodiment 13 FIG.
  • the heat exchanger 8j according to the present embodiment will be described focusing on the differences from the configuration and operation of the heat exchanger 8 according to the sixth embodiment.
  • the first refrigerant path 101, the second refrigerant path 102, the first refrigerant path, and the first refrigerant path 101 are integrally formed of a refrigerant flow path through which a high-temperature refrigerant flows and a refrigerant flow path through which a low-temperature refrigerant flows.
  • FIG. 16 is a perspective view of a heat exchanger 8j according to Embodiment 13 of the present invention.
  • the intermediate communication hole 131 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant on the upstream side, and in order to cause the liquid high-temperature refrigerant to flow down and flow outside, A part is opened (not shown).
  • Embodiment 14 FIG.
  • the heat exchanger 8k according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the sixth embodiment.
  • the first refrigerant path 101, the second refrigerant path 102, the first inlet of the configuration in which the refrigerant flow path through which the high-temperature refrigerant flows and the refrigerant flow path through which the low-temperature refrigerant flows are integrally formed.
  • the case where the communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are arranged in the vertical direction is shown.
  • the first refrigerant path 101 and the second refrigerant path 102 are in the vertical direction, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and A configuration in which the intermediate communication hole 131 is horizontally disposed will be described.
  • FIG. 17 is an external view of a heat exchanger 8k according to Embodiment 14 of the present invention.
  • the intermediate communication hole 131 has a function of separating the condensed liquid high-temperature refrigerant out of the high-temperature refrigerant on the upstream side, and one end portion is opened to allow the liquid high-temperature refrigerant to flow out to the outside. Yes. Further, a trap member 31a in the heat exchanger 8 according to the eleventh embodiment shown in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

An intermediate header (31) is provided in the middle portion in the longitudinal direction of a first flat tube (1). The intermediate header (31) partitions the first flat tube (1) into an upstream first flat tube (11) upstream of a high-temperature coolant and a downstream first flat tube (12) downstream of the high-temperature coolant, and high-temperature coolant that has liquefied in the upstream portion of the first flat tube (1) flows downwards in the intermediate header (31). By this means, in the coolant flow path in the downstream portion of the first flat tube (1), it is possible to suppress condensate of the high-temperature coolant from covering the inner surface of the flow path (the heat-transmitting surface) and forming a thermal resistance layer, making it possible to obtain a heat exchanger with improved heat exchange performance, and a cold cycle device provided therewith.

Description

熱交換器及びそれを備えた冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus including the same
 本発明は、高温冷媒と低温冷媒との間で熱交換を実施させる熱交換器及びそれを備えた冷凍サイクル装置に関する。 The present invention relates to a heat exchanger that performs heat exchange between a high-temperature refrigerant and a low-temperature refrigerant, and a refrigeration cycle apparatus including the heat exchanger.
 従来の熱交換器として、高温流体(すなわち、高温冷媒)が流れる複数の貫通穴を有する第1扁平管と、低温流体(すなわち、低温冷媒)が流れる複数の貫通穴を有する第2扁平管と、第1扁平管の両端に接続された第1ヘッダーと、第2扁平管の両端に接続された第2ヘッダーと、を備え、第1扁平管と第2扁平管とを長手方向(流体の流れ方向)が平行になるようにして、それぞれの扁平な面同士をろう付け等で接触積層させたものがある(例えば、特許文献1参照)。 As a conventional heat exchanger, a first flat tube having a plurality of through holes through which a high-temperature fluid (that is, a high-temperature refrigerant) flows, and a second flat tube having a plurality of through-holes through which a low-temperature fluid (that is, a low-temperature refrigerant) flows. A first header connected to both ends of the first flat tube, and a second header connected to both ends of the second flat tube, and the first flat tube and the second flat tube are arranged in a longitudinal direction (fluid of fluid There is one in which flat surfaces are contact-laminated by brazing or the like such that the flow direction is parallel (see, for example, Patent Document 1).
特開2002-340485号公報(第8頁、図1)Japanese Patent Laid-Open No. 2002-340485 (page 8, FIG. 1)
 しかしながら、上記のような熱交換器を凝縮器として利用する場合、高温流体側の流路において、高温流体の凝縮に伴い、その流れ方向に沿って凝縮液が増加し、その凝縮液が流路内面(伝熱面)を覆うことになる。そのため、その凝縮液が熱抵抗層となって、熱交換性能が低下するという問題点があった。また、このような場合に必要な熱交換性能を得るためには、伝熱面積を増加させる必要があり、熱交換器が大型化する問題点があった。 However, when the heat exchanger as described above is used as a condenser, in the flow path on the high temperature fluid side, condensate increases along the flow direction as the high temperature fluid condenses, and the condensate flows in the flow path. The inner surface (heat transfer surface) will be covered. Therefore, there is a problem that the condensed liquid becomes a heat resistance layer and the heat exchange performance is lowered. Further, in order to obtain the heat exchange performance required in such a case, it is necessary to increase the heat transfer area, and there is a problem that the heat exchanger becomes large.
 本発明は、上記のような問題点を解決するためになされたものであり、第1の目的は、熱交換性能を向上させた熱交換器及びそれを備えた冷凍サイクル装置を得ることである。
 また、第2の目的は、コンパクトに構成ができる熱交換器及びそれを備えた冷凍サイクル装置を得ることである。
The present invention has been made to solve the above-described problems, and a first object is to obtain a heat exchanger with improved heat exchange performance and a refrigeration cycle apparatus including the same. .
Moreover, the 2nd objective is to obtain the heat exchanger which can be comprised compactly, and a refrigeration cycle apparatus provided with the same.
 本発明に係る熱交換器は、高温冷媒が流れる複数の冷媒流路が並列配置されて構成された第1流路部と、低温冷媒が流れる複数の冷媒流路が並列配置されて構成された第2流路部と、前記第1流路部の高温冷媒の流通方向の一方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、高温冷媒を外部から前記第1流路部に流入させる第1入口部と、前記第1流路部の高温冷媒の流通方向の他方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、高温冷媒を前記第1流路部から外部に流出させる第1出口部と、前記第2流路部の低温冷媒の流通方向の一方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、低温冷媒を外部から前記第2流路部に流入させる第2入口部と、前記第2流路部の低温冷媒の流通方向の他方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、低温冷媒を前記第2流路部から外部に流出させる第2出口部と、前記第1流路部の冷媒流路の途中に配置され、前記第1流路部の少なくとも一部の冷媒流路に連通した筒状の流路を形成した中間連通部と、を備え、前記第1流路部の各冷媒流路と前記第2流路部の各冷媒流路とは、流路方向が平行であり、かつ、互いに隔壁を介して隣接するように配置され、前記中間連通部は、前記第1流路部の上流側部分において凝縮した高温冷媒を下方に流下させるものである。 The heat exchanger according to the present invention is configured such that a first flow path portion configured by arranging a plurality of refrigerant flow paths through which a high-temperature refrigerant flows in parallel and a plurality of refrigerant flow paths through which a low-temperature refrigerant flows are arranged in parallel. The second flow path portion and the first flow path portion are disposed at one end in the flow direction of the high-temperature refrigerant, and form a cylindrical flow path that communicates with each of the refrigerant flow paths. A first inlet portion that flows into the first flow path portion and a cylindrical flow path that is disposed at the other end of the first flow path portion in the flow direction of the high-temperature refrigerant and communicates with each of the refrigerant flow paths; Formed and disposed at one end of the second flow path portion in the flow direction of the low-temperature refrigerant, and flows into each of the refrigerant flow paths. A cylindrical inlet channel is formed, and a second inlet for allowing a low-temperature refrigerant to flow into the second channel from outside, and a low temperature of the second channel. A second outlet portion that is disposed at the other end in the flow direction of the medium, forms a cylindrical channel that communicates with each refrigerant channel, and causes the low-temperature refrigerant to flow out from the second channel unit; An intermediate communication part disposed in the middle of the refrigerant flow path of the first flow path part and forming a cylindrical flow path communicating with at least a part of the refrigerant flow path of the first flow path part, The refrigerant flow paths of the first flow path section and the refrigerant flow paths of the second flow path section are arranged so that the flow path directions are parallel and adjacent to each other via a partition wall, and the intermediate communication The portion is for causing the high-temperature refrigerant condensed in the upstream portion of the first flow path portion to flow downward.
 本発明によれば、第1流路部の下流側部分の冷媒流路においては、高温冷媒の凝縮液が流路内面(伝熱面)を覆って、熱抵抗層となることを抑制することができるので、熱交換性能を向上させることができる。また、これによって、伝熱面積を増加させる必要がなく、熱交換器8をコンパクトにすることができる。 According to the present invention, in the refrigerant flow path in the downstream portion of the first flow path portion, the high temperature refrigerant condensate is prevented from covering the flow path inner surface (heat transfer surface) and becoming a heat resistance layer. Therefore, heat exchange performance can be improved. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
本発明の実施の形態1に係る熱交換器8の外観図である。It is an external view of the heat exchanger 8 which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器8の別形態の外観斜視図である。It is an external appearance perspective view of another form of the heat exchanger 8 which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器8aの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8a which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器8bの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8b which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器8cの外観図である。It is an external view of the heat exchanger 8c which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る熱交換器8cの中間ヘッダー31の円形断面の接線方向に向かって冷媒を流入させる状態を示す図である。It is a figure which shows the state which makes a refrigerant | coolant flow in toward the tangential direction of the circular cross section of the intermediate header 31 of the heat exchanger 8c which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る熱交換器8dの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8d which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る熱交換器8eの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8e which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the refrigeration cycle apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る冷凍サイクル装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the refrigerating-cycle apparatus which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る熱交換器8fの外観側面図である。It is an external appearance side view of the heat exchanger 8f which concerns on Embodiment 10 of this invention. 本発明の実施の形態11に係る熱交換器8gの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8g which concerns on Embodiment 11 of this invention. 本発明の実施の形態12に係る熱交換器8hの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8h which concerns on Embodiment 12 of this invention. 本発明の実施の形態12に係る熱交換器8iの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8i which concerns on Embodiment 12 of this invention. 本発明の実施の形態13に係る熱交換器8jの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8j which concerns on Embodiment 13 of this invention. 本発明の実施の形態14に係る熱交換器8kの外観斜視図である。It is an external appearance perspective view of the heat exchanger 8k which concerns on Embodiment 14 of this invention.
実施の形態1.
(熱交換器8の構成)
 図1は、本発明の実施の形態1に係る熱交換器8の外観図である。このうち、図1(a)は、同熱交換器8の斜視図であり、図1(b)は、同熱交換器8の平面図である。
 図1で示されるように、熱交換器8は、長手方向に高温冷媒(冷媒等)が流れる複数の貫通穴を有する扁平状の第1扁平管1と、長手方向に低温冷媒(水等)が流れる複数の貫通穴を有する扁平状の第2扁平管2と、第1扁平管1の長手方向の両端部に接続された第1入口ヘッダー3及び第1出口ヘッダー4と、第2扁平管2の長手方向の両端部に接続された第2入口ヘッダー5及び第2出口ヘッダー6と、を備えている。また、第1扁平管1の長手方向の途中部分には、中間ヘッダー31が設けられており、第1扁平管1は、この中間ヘッダー31によって、高温冷媒の上流側である上流側第1扁平管11と、高温冷媒の下流側である下流側第1扁平管12とに分割されて構成されている。これらの管及びヘッダーは、例えば、アルミニウム若しくはアルミニウム合金、銅若しくは銅合金、又は、鉄鋼若しくはステンレス合金によって形成されており、例えば、押し出し又は引き抜き成形によって製造される。
Embodiment 1 FIG.
(Configuration of heat exchanger 8)
FIG. 1 is an external view of a heat exchanger 8 according to Embodiment 1 of the present invention. Among these, FIG. 1A is a perspective view of the heat exchanger 8, and FIG. 1B is a plan view of the heat exchanger 8.
As shown in FIG. 1, the heat exchanger 8 includes a flat first flat tube 1 having a plurality of through holes through which a high-temperature refrigerant (refrigerant or the like) flows in the longitudinal direction, and a low-temperature refrigerant (water or the like) in the longitudinal direction. A flat second flat tube 2 having a plurality of through-holes flowing therethrough, a first inlet header 3 and a first outlet header 4 connected to both longitudinal ends of the first flat tube 1, and a second flat tube 2, a second inlet header 5 and a second outlet header 6 connected to both longitudinal ends. Further, an intermediate header 31 is provided in the middle portion of the first flat tube 1 in the longitudinal direction. The first flat tube 1 is provided with an upstream first flat plate that is upstream of the high-temperature refrigerant. It is divided into a pipe 11 and a downstream first flat pipe 12 that is the downstream side of the high-temperature refrigerant. These pipes and headers are made of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, and are manufactured by, for example, extrusion or pultrusion.
 第1扁平管1及び第2扁平管2は、長手方向(冷媒の流れ方向)が平行になるように、それぞれの扁平な面同士をろう付け等で接合して積層されている。また、第1扁平管1及び第2扁平管2に形成された各貫通穴は、冷媒が流通する冷媒流路を構成している。ここで、高温冷媒は、相変化と伴う冷媒を想定しているが、低温冷媒は、相変化があるものかないもの(水等)かは問わない。 The first flat tube 1 and the second flat tube 2 are laminated by joining the flat surfaces by brazing or the like so that the longitudinal direction (flow direction of the refrigerant) is parallel. Moreover, each through-hole formed in the 1st flat tube 1 and the 2nd flat tube 2 comprises the refrigerant | coolant flow path through which a refrigerant | coolant distribute | circulates. Here, although the high-temperature refrigerant | coolant assumes the refrigerant | coolant accompanying a phase change, it does not ask | require whether a low-temperature refrigerant | coolant is what has only a phase change (water etc.).
 第1入口ヘッダー3は、筒状の形状をしており、第1扁平管1の長手方向の一端に取り付けられ、その内部に流入してきた高温冷媒を第1扁平管1の各冷媒流路に流入させるものである。また、第1入口ヘッダー3は、上面から高温冷媒を流入させるために、上面部が開口されており、下面部が閉口されている。 The first inlet header 3 has a cylindrical shape, is attached to one end in the longitudinal direction of the first flat tube 1, and the high-temperature refrigerant flowing into the first flat header 1 flows into each refrigerant flow path of the first flat tube 1. Inflow. The first inlet header 3 has an upper surface portion opened and a lower surface portion closed in order to allow the high-temperature refrigerant to flow from the upper surface.
 第1出口ヘッダー4は、筒状の形状をしており、第1扁平管1の長手方向において第1入口ヘッダー3とは逆の端部に取り付けられ、第1扁平管1の各冷媒流路からその内部に流入してきた高温冷媒を外部に流出させるものである。また、第1出口ヘッダー4は、下面から高温冷媒を流出させるために、下面部が開口されており、上面部が閉口されている。 The first outlet header 4 has a cylindrical shape, is attached to an end opposite to the first inlet header 3 in the longitudinal direction of the first flat tube 1, and each refrigerant channel of the first flat tube 1. The high-temperature refrigerant that has flowed into the inside from the outside flows out to the outside. The first outlet header 4 has a lower surface portion opened and a top surface portion closed in order to allow the high-temperature refrigerant to flow out from the lower surface.
 第2入口ヘッダー5は、筒状の形状をしており、第2扁平管2の長手方向の両端部のうち、第1扁平管1に取り付けられた第1出口ヘッダー4と同じ側に取り付けられ、その内部に流入してきた低温冷媒を第2扁平管2の各冷媒流路に流入させるものである。また、第2入口ヘッダー5は、上面から低温冷媒を流入(図示せず)させるために、上面部が開口されており、下面部が閉口されている。 The second inlet header 5 has a cylindrical shape and is attached to the same side as the first outlet header 4 attached to the first flat tube 1 in both longitudinal ends of the second flat tube 2. The low-temperature refrigerant that has flowed into the inside flows into the refrigerant flow paths of the second flat tube 2. The second inlet header 5 has an upper surface portion opened and a lower surface portion closed in order to allow a low-temperature refrigerant to flow (not shown) from the upper surface.
 第2出口ヘッダー6は、筒状の形状をしており、第2扁平管2の長手方向において第2入口ヘッダー5とは逆の端部、すなわち、第2扁平管2の長手方向の両端部のうち、第1扁平管1に取り付けられた第1入口ヘッダー3と同じ側に取り付けられ、第2扁平管2の各冷媒流路からその内部に流入してきた低温冷媒を外部に流出させるものである。また、第2出口ヘッダー6は、下面から低温冷媒を流出(図示せず)させるために、下面部が開口されており、上面部が閉口されている。 The second outlet header 6 has a cylindrical shape, and is opposite to the second inlet header 5 in the longitudinal direction of the second flat tube 2, that is, both end portions of the second flat tube 2 in the longitudinal direction. Among them, it is attached to the same side as the first inlet header 3 attached to the first flat tube 1, and causes the low-temperature refrigerant flowing into each of the refrigerant channels of the second flat tube 2 to flow outside. is there. Further, the second outlet header 6 has a lower surface portion opened and a top surface portion closed to allow the low-temperature refrigerant to flow out (not shown) from the lower surface.
 また、図1(b)で示されるように、第1入口ヘッダー3と第2出口ヘッダー6とは、冷媒流路の流通方向に少しずらして配置されている。第1出口ヘッダー4と第2入口ヘッダー5とについても同様である。これによって、各ヘッダーの内径を大きくする必要がある場合等、熱交換器8を薄型化することができ、コンパクト化を図ることができる。 Further, as shown in FIG. 1 (b), the first inlet header 3 and the second outlet header 6 are arranged slightly shifted in the flow direction of the refrigerant flow path. The same applies to the first outlet header 4 and the second inlet header 5. Thereby, when it is necessary to increase the inner diameter of each header, the heat exchanger 8 can be reduced in thickness and can be made compact.
 なお、第1入口ヘッダー3及び第2入口ヘッダー5は、上面部が開口され、下面部が閉口された構成としているが、これに限定されるものではなく、下面部が開口され、上面部が閉口された構成としてもよい。
 また、第1出口ヘッダー4及び第2出口ヘッダー6は、下面部が開口され、上面部が閉口された構成としているが、これに限定されるものではなく、上面部が開口され、下面部が閉口された構成としてもよい。
The first inlet header 3 and the second inlet header 5 are configured such that the upper surface portion is opened and the lower surface portion is closed. However, the present invention is not limited to this, and the lower surface portion is opened and the upper surface portion is closed. It is good also as a closed structure.
The first outlet header 4 and the second outlet header 6 are configured such that the lower surface portion is opened and the upper surface portion is closed. However, the present invention is not limited to this, and the upper surface portion is opened and the lower surface portion is It is good also as a closed structure.
 また、図1で示されるように、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッダー6及び中間ヘッダー31は、それぞれ円筒形状としているが、これに限定されるものではなく、筒状を呈しているものであれば、その他の形状でも構わない。 Further, as shown in FIG. 1, the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are each cylindrical, but are not limited thereto. Any other shape may be used as long as it has a cylindrical shape.
 中間ヘッダー31は、筒状の形状をしており、前述のように、第1扁平管1の長手方向の途中部分に設置され、上流側第1扁平管11の各冷媒流路、及び、下流側第1扁平管12の各冷媒流路に連通している。そして、中間ヘッダー31は、後述するように、上流側第1扁平管11において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を流下させて外部に流出させるために、下面部が開口されており、上面部は閉口されている。 The intermediate header 31 has a cylindrical shape and is installed in the middle of the first flat tube 1 in the longitudinal direction, as described above, and each refrigerant flow path of the upstream first flat tube 11 and downstream The side first flat tube 12 communicates with each refrigerant flow path. As will be described later, the intermediate header 31 has a function of separating the liquid high-temperature refrigerant condensed from the high-temperature refrigerant in the upstream first flat tube 11, and causes the liquid high-temperature refrigerant to flow down to the outside. The bottom surface is opened and the top surface is closed.
 なお、第1扁平管1、第2扁平管2、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッダー6及び中間ヘッダー31は、それぞれ本発明の「第1流路部」、「第2流路部」、「第1入口部」、「第1出口部」、「第2入口部」、「第2出口部」及び「中間連通部」に相当する。
 また、第1扁平管1と第2扁平管2とが接合された壁は、本発明の「隔壁」に相当する。
The first flat tube 1, the second flat tube 2, the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6, and the intermediate header 31 are respectively referred to as “first” It corresponds to a “flow channel portion”, a “second flow channel portion”, a “first inlet portion”, a “first outlet portion”, a “second inlet portion”, a “second outlet portion”, and an “intermediate communication portion”.
The wall where the first flat tube 1 and the second flat tube 2 are joined corresponds to the “partition wall” of the present invention.
(熱交換器8の熱交換動作)
 次に、図1を参照しながら、熱交換器8における高温冷媒と低温冷媒との熱交換動作について説明する。図1(a)は、本実施の形態に係る熱交換器8が凝縮器として作用した場合の高温冷媒の流れを示しており、図中のFH(ガス)の矢印は、ガス状態の高温冷媒の流れを、FH(液)の矢印は、液状態の高温冷媒の流れを示している。
(Heat exchange operation of the heat exchanger 8)
Next, the heat exchange operation between the high-temperature refrigerant and the low-temperature refrigerant in the heat exchanger 8 will be described with reference to FIG. Fig.1 (a) has shown the flow of the high temperature refrigerant | coolant when the heat exchanger 8 which concerns on this Embodiment acts as a condenser, The arrow of FH (gas) in a figure shows the high temperature refrigerant | coolant of a gas state The arrow of FH (liquid) indicates the flow of the high-temperature refrigerant in the liquid state.
 高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路、中間ヘッダー31、そして、下流側第1扁平管12の冷媒流路の順に流通して、第1出口ヘッダー4の下面部から流出する。一方、低温冷媒は、第2入口ヘッダー5の上面部からその内部へ流入し、第2扁平管2の冷媒流路を流通し、第2出口ヘッダー6の下面部から流出する。その際、上流側第1扁平管11及び下流側第1扁平管12の冷媒流路を流通する高温冷媒と、第2扁平管2の冷媒流路を流通する低温冷媒とは、それぞれの接合面を介して対向流で熱交換が実施される。 The high-temperature refrigerant flows into the inside from the upper surface portion of the first inlet header 3, in the order of the refrigerant flow path of the upstream first flat tube 11, the intermediate header 31, and the refrigerant flow path of the downstream first flat tube 12. It flows through and flows out from the lower surface portion of the first outlet header 4. On the other hand, the low-temperature refrigerant flows into the inside from the upper surface portion of the second inlet header 5, flows through the refrigerant flow path of the second flat tube 2, and flows out from the lower surface portion of the second outlet header 6. In that case, the high temperature refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path of the upstream 1st flat tube 11 and the downstream 1st flat tube 12, and the low temperature refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path of the 2nd flat tube 2 are each joining surface. The heat exchange is carried out in a counter flow through
 ここで、高温冷媒の挙動について詳しく説明する。ガス状態(又は、気液二相状態)の高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路を流通する過程で、第2扁平管2の冷媒流路を流通する低温冷媒によって吸熱される。吸熱された高温冷媒の少なくとも一部は、凝縮して液化し、気液二相状態の高温冷媒が、中間ヘッダー31へ流入する。このとき、中間ヘッダー31へ流入した気液二相状態の高温冷媒のうち、液状態の高温冷媒の大部分は、自重落下して、中間ヘッダー31の下方に向かって流下し、その下面部から外部へ流出する。したがって、気液二相状態の高温冷媒から、液状態の高温冷媒の大部分が中間ヘッダー31によって分離されることになる。そして、液状態の高温冷媒の大部分が分離され、ほぼガス状態となった高温冷媒は、下流側第1扁平管12の冷媒流路に流入し、その流通する過程で、第2扁平管2の冷媒流路を流通する低温冷媒によって吸熱される。そして、下流側第1扁平管12の冷媒流路から第1出口ヘッダー4内に流入した高温冷媒は、その下面部から外部に流出する。 Here, the behavior of the high-temperature refrigerant will be described in detail. The high-temperature refrigerant in the gas state (or gas-liquid two-phase state) flows into the inside from the upper surface portion of the first inlet header 3 and flows through the refrigerant flow path of the upstream first flat tube 11 in the second stage. Heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the flat tube 2. At least part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate header 31. At this time, among the high-temperature refrigerant in the gas-liquid two-phase state that has flowed into the intermediate header 31, most of the liquid-state high-temperature refrigerant falls by its own weight and flows down toward the lower side of the intermediate header 31. It flows out to the outside. Therefore, most of the high-temperature refrigerant in the liquid state is separated by the intermediate header 31 from the high-temperature refrigerant in the gas-liquid two-phase state. The high-temperature refrigerant, which is mostly in a liquid state after being separated from most of the liquid high-temperature refrigerant, flows into the refrigerant flow path of the downstream first flat tube 12, and in the course of its circulation, the second flat tube 2. The heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path. And the high temperature refrigerant | coolant which flowed in in the 1st exit header 4 from the refrigerant | coolant flow path of the downstream 1st flat tube 12 flows out out of the lower surface part.
(実施の形態1の効果)
 以上の構成及び動作のように、中間ヘッダー31によって、上流側第1扁平管11において凝縮した液状態の高温冷媒の多くは分離され、ほとんどガス状態の高温冷媒が下流側第1扁平管12に流入する。したがって、下流側第1扁平管12の冷媒流路においては、高温冷媒の凝縮液が流路内面(伝熱面)を覆って、熱抵抗層となることを抑制することができるので、熱交換性能を向上させることができる。また、これによって、伝熱面積を増加させる必要がなく、熱交換器8をコンパクトにすることができる。
(Effect of Embodiment 1)
As described above, the intermediate header 31 separates most of the high-temperature refrigerant in the liquid state condensed in the upstream first flat tube 11, and almost all the high-temperature refrigerant in the gas state flows into the downstream first flat tube 12. Inflow. Therefore, in the refrigerant flow path of the downstream first flat tube 12, it is possible to suppress the condensate of the high-temperature refrigerant from covering the flow path inner surface (heat transfer surface) and becoming a heat resistance layer, so heat exchange Performance can be improved. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
 また、第1入口ヘッダー3及び第2出口ヘッダー6、並びに、第1出口ヘッダー4及び第2入口ヘッダー5は、それぞれ冷媒流路の流通方向に少しずらして配置されているので、各ヘッダーの内径を大きくする必要がある場合等、熱交換器8を薄型化することができ、コンパクト化を図ることができる。
 また、図1(c)に示すように、第1扁平管1の長手方向の途中部分に、中間ヘッダー31が複数(図では2個)設けても良い。この場合、上流側第1扁平管11において凝縮した高温冷媒の凝縮液が流路内面(伝熱面)を厚く覆う前に凝縮液を分離し、熱抵抗層となることを抑制できる下流側第1扁平管12の割合が増加するため、より熱交換性能を向上させることができる。また、これによって、伝熱面積を増加させる必要がなく、熱交換器8をコンパクトにすることができる。
Further, since the first inlet header 3 and the second outlet header 6 and the first outlet header 4 and the second inlet header 5 are arranged slightly shifted in the flow direction of the refrigerant flow path, the inner diameter of each header The heat exchanger 8 can be thinned and the size can be reduced, for example, when it is necessary to increase the size.
Moreover, as shown in FIG.1 (c), the intermediate header 31 may be provided with two or more in the middle part of the longitudinal direction of the 1st flat tube 1 (two in a figure). In this case, the condensate of the high-temperature refrigerant condensed in the upstream first flat tube 11 separates the condensate before covering the flow path inner surface (heat transfer surface) thickly, and can be prevented from becoming a heat resistance layer. Since the ratio of the 1 flat tube 12 increases, heat exchange performance can be improved more. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8 can be made compact.
 なお、図2で示されるように、第1出口ヘッダー4の下部に設置された流出管41と、中間ヘッダー31の下部との間をバイパス配管42によって接続し、そのバイパス配管42に流量調整手段43を設ける構成としてもよい。これによって、中間ヘッダー31によって分離された液状態の高温冷媒は、バイパス配管42を流通し、流量調整手段43を介して、第1出口ヘッダー4から流出した高温冷媒と流出管41において合流し、高温冷媒の全部が熱交換器8から流出される。なお、バイパス配管42は、流出管41に接続される構成に限定されるものではなく、中間ヘッダー31の下部と、第1出口ヘッダー4の下方部とを接続し、合流した高温冷媒が第1出口ヘッダー4の下部から流出管41を介して外部に流出する構成としてもよい。 As shown in FIG. 2, the outflow pipe 41 installed at the lower part of the first outlet header 4 and the lower part of the intermediate header 31 are connected by a bypass pipe 42, and the flow rate adjusting means is connected to the bypass pipe 42. 43 may be provided. Thereby, the high-temperature refrigerant in the liquid state separated by the intermediate header 31 flows through the bypass pipe 42 and merges with the high-temperature refrigerant flowing out from the first outlet header 4 through the flow rate adjusting means 43 in the outflow pipe 41. All of the high temperature refrigerant flows out of the heat exchanger 8. The bypass pipe 42 is not limited to the configuration connected to the outflow pipe 41, and the lower part of the intermediate header 31 and the lower part of the first outlet header 4 are connected, and the combined high-temperature refrigerant is the first. It is good also as a structure which flows out through the outflow pipe 41 from the lower part of the exit header 4. FIG.
 また、上記の熱交換器8は、第1扁平管1に高温冷媒が流通し、第2扁平管2に低温冷媒が流通し、第1扁平管1において高温冷媒が凝縮する凝縮器であるものとして説明した。しかし、これに限定されるものではなく、熱交換器8は蒸発器として作用するものとしてもよい。この場合、図2において、第1扁平管1においては低温冷媒が流通し、第2扁平管2においては高温冷媒が流通することになる。このとき、流量調整手段43は閉止するものとする。これによって、流出管41を介して低温冷媒の全部を第1出口ヘッダー4に流入させ、下流側第1扁平管12、中間ヘッダー31、そして、上流側第1扁平管11の順に流通させることができる。
 なお、熱交換器8を凝縮器としてのみ機能させる場合においては、流量調整手段43を設置する必要がないのは言うまでもない。
The heat exchanger 8 is a condenser in which a high-temperature refrigerant flows through the first flat tube 1, a low-temperature refrigerant flows through the second flat tube 2, and the high-temperature refrigerant condenses in the first flat tube 1. As explained. However, it is not limited to this, The heat exchanger 8 is good also as what acts as an evaporator. In this case, in FIG. 2, the low-temperature refrigerant flows in the first flat tube 1, and the high-temperature refrigerant flows in the second flat tube 2. At this time, the flow rate adjusting means 43 is closed. As a result, all of the low-temperature refrigerant flows into the first outlet header 4 through the outflow pipe 41, and flows in the order of the downstream first flat pipe 12, the intermediate header 31, and the upstream first flat pipe 11. it can.
Needless to say, when the heat exchanger 8 functions only as a condenser, it is not necessary to install the flow rate adjusting means 43.
 また、図1で示されるように、熱交換器8は、第1扁平管1にのみ中間ヘッダー31を有する構成としているが、これに限定されるものではない。例えば、熱交換器8が蒸発器として作用し、第2扁平管2に高温冷媒が流通し、この高温冷媒が、相転移の生じない水等ではなく、吸熱されることによってガス状態から液状態に相転移する冷媒である場合、第2扁平管2にも中間ヘッダー31を設置するものとしてもよい。これによって、熱交換器8が凝縮器として作用した場合は、第1扁平管1の中間ヘッダー31において液状態の冷媒を分離し、蒸発器として作用した場合は、第2扁平管2の中間ヘッダー31において液状態の流体を分離できる。したがって、熱交換器8が凝縮器として作用した場合、及び、蒸発器として作用した場合の双方で、熱交換性能を向上させることができる。また、第1扁平管1の中間ヘッダー31と、第2扁平管2の中間ヘッダー31とを、冷媒流路の流通方向に少しずらして配置するものとすれば、熱交換器8を薄型化することができ、コンパクト化を図ることができる。 Further, as shown in FIG. 1, the heat exchanger 8 is configured to have the intermediate header 31 only in the first flat tube 1, but is not limited thereto. For example, the heat exchanger 8 acts as an evaporator, a high-temperature refrigerant circulates in the second flat tube 2, and this high-temperature refrigerant absorbs heat instead of water or the like that does not cause a phase transition, so that the liquid state changes from a gas state In the case of a refrigerant that undergoes phase transition, the intermediate header 31 may also be installed on the second flat tube 2. Thereby, when the heat exchanger 8 acts as a condenser, the liquid state refrigerant is separated in the intermediate header 31 of the first flat tube 1, and when acting as an evaporator, the intermediate header of the second flat tube 2. In 31, the liquid fluid can be separated. Therefore, heat exchange performance can be improved both when the heat exchanger 8 acts as a condenser and when it acts as an evaporator. Further, if the intermediate header 31 of the first flat tube 1 and the intermediate header 31 of the second flat tube 2 are arranged slightly shifted in the refrigerant flow direction, the heat exchanger 8 is made thin. Can be made compact.
 また、第1扁平管1を流通する高温冷媒と、第2扁平管2を流通する低温冷媒とは、それぞれの接合面を介して対向流で熱交換が実施されるものとしたが、これに限定されるものではなく、並行流として熱交換を実施するものとしてもよい。 Moreover, although the high temperature refrigerant | coolant which distribute | circulates the 1st flat tube 1 and the low temperature refrigerant | coolant which distribute | circulates the 2nd flat tube 2, heat exchange shall be implemented by counterflow through each junction surface, It is not limited and heat exchange may be performed as a parallel flow.
 さらに、図1で示されるように、中間ヘッダー31は、第1扁平管1の各冷媒流路すべてに連通しているものとしているが、これに限定されるものではない。すなわち、第1扁平管1の少なくとも一部の冷媒流路と連通している構成としてもよく、例えば、第1扁平管1の上方に位置する一部の冷媒流路については連通せず、これらの冷媒流路については、上流側第1扁平管11の冷媒流路と下流側第1扁平管12の冷媒流路とが直接連通しているものとしてもよい。 Further, as shown in FIG. 1, the intermediate header 31 is in communication with all the refrigerant flow paths of the first flat tube 1, but is not limited thereto. That is, it may be configured to communicate with at least a part of the refrigerant flow path of the first flat tube 1, for example, with respect to a part of the refrigerant flow path positioned above the first flat pipe 1, these As for the refrigerant flow path, the refrigerant flow path of the upstream first flat tube 11 and the refrigerant flow path of the downstream first flat tube 12 may be in direct communication.
実施の形態2.
 本実施の形態に係る熱交換器8aについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
Embodiment 2. FIG.
The heat exchanger 8a according to the present embodiment will be described with a focus on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
(熱交換器8aの構成)
 図3は、本発明の実施の形態2に係る熱交換器8aの外観斜視図である。
 図3で示されるように、熱交換器8aが備える下流側第1扁平管12は、その幅が上流側第1扁平管11の幅よりも大きくなるように形成されている。この下流側第1扁平管12は、その下面が上流側第1扁平管11の下面よりも下方に位置するように設置されている。このとき、下流側第1扁平管12の冷媒流路のうち、上流側第1扁平管11の下面より下方に位置するものは、バイパス流路42aを形成している。このバイパス流路42aは、前述の図2で示されるバイパス配管42に代わるものである。また、熱交換器8aが備える中間ヘッダー31は、実施の形態1に係る熱交換器8が備える中間ヘッダー31と異なり、上面部及び下面部共に閉口されている。その他の構成については、実施の形態1に係る熱交換器8と同様である。
(Configuration of heat exchanger 8a)
FIG. 3 is an external perspective view of the heat exchanger 8a according to Embodiment 2 of the present invention.
As shown in FIG. 3, the downstream first flat tube 12 included in the heat exchanger 8 a is formed so that the width thereof is larger than the width of the upstream first flat tube 11. The downstream first flat tube 12 is installed such that its lower surface is located below the lower surface of the upstream first flat tube 11. At this time, the refrigerant flow path of the downstream first flat tube 12 that is located below the lower surface of the upstream first flat tube 11 forms a bypass flow path 42a. The bypass flow path 42a replaces the bypass pipe 42 shown in FIG. Further, the intermediate header 31 provided in the heat exchanger 8a is closed on both the upper surface portion and the lower surface portion, unlike the intermediate header 31 provided in the heat exchanger 8 according to Embodiment 1. About another structure, it is the same as that of the heat exchanger 8 which concerns on Embodiment 1. FIG.
(熱交換器8aの熱交換動作)
 次に、図3を参照しながら、熱交換器8aにおける高温冷媒と低温冷媒との熱交換動作について説明する。図3は、本実施の形態に係る熱交換器8aが凝縮器として作用した場合の高温冷媒の流れを示しており、図中のFH(ガス)の矢印は、ガス状態の高温冷媒の流れを、FH(液)の矢印は、液状態の高温冷媒の流れを示している。
(Heat exchange operation of the heat exchanger 8a)
Next, the heat exchange operation between the high-temperature refrigerant and the low-temperature refrigerant in the heat exchanger 8a will be described with reference to FIG. FIG. 3 shows the flow of the high-temperature refrigerant when the heat exchanger 8a according to the present embodiment acts as a condenser, and the FH (gas) arrow in the figure indicates the flow of the high-temperature refrigerant in the gas state. , FH (liquid) arrows indicate the flow of high-temperature refrigerant in the liquid state.
 高温冷媒が、第1入口ヘッダー3へ流入し、上流側第1扁平管11の冷媒流路を通って、中間ヘッダー31に気液二相状態の高温冷媒が流入するまでの動作は、実施の形態1に係る熱交換器8と同様である。中間ヘッダー31に流入した気液二相状態の高温冷媒のうち、液状態の高温冷媒の大部分は、自重落下して、中間ヘッダー31の下方へ向かって流下し、中間ヘッダー31の下部から下流側第1扁平管12の下部に形成された冷媒流路であるバイパス流路42aに流入する。したがって、気液二相状態の高温冷媒から、液状態の高温冷媒の大部分が中間ヘッダー31によって分離されることになる。一方、中間ヘッダー31に流入した気液二相状態の高温冷媒のうち、大部分の液状態の高温冷媒が分離され、ほぼガス状態となった高温冷媒は、実施の形態1と同様に、下流側第1扁平管12の冷媒流路に流入し、その流通する過程で、第2扁平管2の冷媒流路を流通する低温冷媒によって吸熱される。そして、下流側第1扁平管12のバイパス流路42aを流通した液状態の高温冷媒と、下流側第1扁平管12のバイパス流路42a以外の冷媒流路を流通した高温冷媒とが、第1出口ヘッダー4において混合され、その下面部から外部に流出する。 The operation until the high-temperature refrigerant flows into the first inlet header 3, passes through the refrigerant flow path of the upstream first flat tube 11, and flows into the intermediate header 31 into the gas-liquid two-phase state is performed. This is the same as the heat exchanger 8 according to the first embodiment. Of the high-temperature refrigerant in the gas-liquid two-phase state that has flowed into the intermediate header 31, most of the high-temperature refrigerant in the liquid state falls by its own weight and flows downward below the intermediate header 31, and then flows downstream from the lower portion of the intermediate header 31. It flows into the bypass flow path 42a which is a refrigerant flow path formed in the lower part of the side first flat tube 12. Therefore, most of the high-temperature refrigerant in the liquid state is separated by the intermediate header 31 from the high-temperature refrigerant in the gas-liquid two-phase state. On the other hand, among the high-temperature refrigerants in the gas-liquid two-phase state flowing into the intermediate header 31, most of the high-temperature refrigerants in the liquid state are separated, and the high-temperature refrigerant almost in the gas state is downstream as in the first embodiment. In the process of flowing into and flowing through the refrigerant flow path of the side first flat tube 12, heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the second flat tube 2. And the high temperature refrigerant | coolant which distribute | circulated the bypass flow path 42a of the downstream 1st flat tube 12 and the high temperature refrigerant | coolant which distribute | circulated refrigerant flow paths other than the bypass flow path 42a of the downstream 1st flat tube 12 are 1st. 1 It mixes in the exit header 4, and flows out outside from the lower surface part.
 また、低温冷媒の挙動は、実施の形態1と同様である。 Further, the behavior of the low-temperature refrigerant is the same as that in the first embodiment.
(実施の形態2の効果)
 以上の構成のように、下流側第1扁平管12にバイパス流路42aを形成することによって、中間ヘッダー31によって分離した液状態の高温冷媒を別流路で流通させることができるので、実施の形態1に係る熱交換器8のバイパス配管42及び流量調整手段43等が不要となるので、構造を簡素化することができる。また、実施の形態1に係る熱交換器8と同様の効果を有するのは言うまでもない。
(Effect of Embodiment 2)
As described above, by forming the bypass flow path 42a in the downstream first flat tube 12, the liquid high-temperature refrigerant separated by the intermediate header 31 can be circulated in another flow path. Since the bypass pipe 42 and the flow rate adjusting means 43 of the heat exchanger 8 according to the first embodiment are not necessary, the structure can be simplified. Moreover, it cannot be overemphasized that it has the same effect as the heat exchanger 8 which concerns on Embodiment 1. FIG.
実施の形態3.
 本実施の形態に係る熱交換器8bについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
Embodiment 3 FIG.
The heat exchanger 8b according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
(熱交換器8bの構成)
 図4は、本発明の実施の形態3に係る熱交換器8bの外観斜視図である。
 図4で示されるように、熱交換器8bが備える中間ヘッダー31内には、その長手方向に一致するように、柱状の衝突部材32が設置されている。その他の構成については、実施の形態1に係る熱交換器8と同様である。
(Configuration of heat exchanger 8b)
FIG. 4 is an external perspective view of a heat exchanger 8b according to Embodiment 3 of the present invention.
As shown in FIG. 4, a columnar collision member 32 is installed in the intermediate header 31 provided in the heat exchanger 8 b so as to coincide with the longitudinal direction. About another structure, it is the same as that of the heat exchanger 8 which concerns on Embodiment 1. FIG.
(熱交換器8bの熱交換動作)
 高温冷媒及び低温冷媒の挙動は、実施の形態1と基本的に同様である。ただし、本実施の形態においては、中間ヘッダー31に流入した気液二相状態の高温冷媒は、衝突部材32に衝突することによって、分離されにくい液滴及びミスト状態の流体が分離され、液分離が促進される。これによって、効率よく分離された液状態の高温冷媒は、衝突部材32に沿って下方に流下し、下流側第1扁平管12に流入する液状態の高温冷媒の量を低減することができる。
(Heat exchange operation of the heat exchanger 8b)
The behavior of the high-temperature refrigerant and the low-temperature refrigerant is basically the same as that in the first embodiment. However, in the present embodiment, the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate header 31 collides with the collision member 32, whereby liquid droplets that are difficult to separate and mist-state fluid are separated, and liquid separation is performed. Is promoted. As a result, the efficiently separated liquid high-temperature refrigerant flows down along the collision member 32, and the amount of liquid high-temperature refrigerant flowing into the downstream first flat tube 12 can be reduced.
(実施の形態3の効果)
 以上の構成のように、中間ヘッダー31に衝突部材32を設置することによって、気液二相状態の高温冷媒から効率よく液分離することが可能となり、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、さらに凝縮性能及び熱交換性能を向上させることができる。また、実施の形態1に係る熱交換器8と同様の効果を有するのは言うまでもない。
(Effect of Embodiment 3)
By installing the collision member 32 in the intermediate header 31 as described above, it becomes possible to efficiently separate the liquid from the high-temperature refrigerant in the gas-liquid two-phase state, and the liquid flowing into the downstream first flat tube 12 The amount of the high-temperature refrigerant in the state can be reduced, and further the condensation performance and heat exchange performance can be improved. Moreover, it cannot be overemphasized that it has the same effect as the heat exchanger 8 which concerns on Embodiment 1. FIG.
 なお、図4においては、中間ヘッダー31内に衝突部材32が1つだけ設置されている構成が示されているが、これに限定されるものではなく、複数の衝突部材32が設置される構成としてもよい。また、衝突部材32が中間ヘッダー31内の長手方向に一致するように配置されるものとしているが、これに限定されるものではなく、方向が一致しないように配置してもよい。また、柱状の衝突部材32としているが、これに限定されるものではなく、波形状、ジグザグ形状又は網形状等としてもよく、中間ヘッダー31に流入した気液二相状態の高温冷媒が液分離されるものであればどのような形状でもよい。 4 shows a configuration in which only one collision member 32 is installed in the intermediate header 31, this is not a limitation, and a configuration in which a plurality of collision members 32 is installed. It is good. Moreover, although the collision member 32 shall be arrange | positioned so that it may correspond with the longitudinal direction in the intermediate header 31, it is not limited to this, You may arrange | position so that a direction may not correspond. The columnar collision member 32 is not limited to this, but may be a wave shape, a zigzag shape, a net shape, or the like, and the high-temperature refrigerant in the gas-liquid two-phase state that has flowed into the intermediate header 31 is liquid-separated. Any shape can be used.
 また、本実施の形態に係る熱交換器8bに、図2で示される実施の形態1に係る熱交換器8における流出管41、バイパス配管42及び流量調整手段43の構成、又は、図3で示される実施の形態2に係る熱交換器8aにおける下流側第1扁平管12のバイパス流路42aの構成を適用してもよい。 Further, the configuration of the outflow pipe 41, the bypass pipe 42 and the flow rate adjusting means 43 in the heat exchanger 8 according to the first embodiment shown in FIG. You may apply the structure of the bypass flow path 42a of the downstream 1st flat tube 12 in the heat exchanger 8a which concerns on Embodiment 2 shown.
 また、中間ヘッダー31内に、衝突部材32を設置する構成は、実施の形態2における中間ヘッダー31に対しても適用することができる。 Further, the configuration in which the collision member 32 is installed in the intermediate header 31 can also be applied to the intermediate header 31 in the second embodiment.
実施の形態4.
 本実施の形態に係る熱交換器8cについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
 実施の形態1においては、第1扁平管1について、中間ヘッダー31を介して上流側第1扁平管11及び下流側第1扁平管12が冷媒の流れ方向に配置される構成を示した。本実施の形態においては、上流側第1扁平管11及び下流側第1扁平管12が上下に配置される構成について説明する。
Embodiment 4 FIG.
The heat exchanger 8c according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
In Embodiment 1, the 1st flat tube 1 showed the structure by which the upstream 1st flat tube 11 and the downstream 1st flat tube 12 are arrange | positioned through the intermediate header 31 in the flow direction of a refrigerant | coolant. In the present embodiment, a configuration in which the upstream first flat tube 11 and the downstream first flat tube 12 are arranged vertically will be described.
(熱交換器8cの構成)
 図5は、本発明の実施の形態4に係る熱交換器8cの外観図である。このうち、図5(a)は、同熱交換器8cの斜視図であり、図5(b)は、同熱交換器8cの平面図である。
 図5で示されるように、第1扁平管1を構成する上流側第1扁平管11及び下流側第1扁平管12は、中間ヘッダー31の筒状形状の上下部にそれぞれ扁平な面が平行となるように接続されている。すなわち、中間ヘッダー31の上部には上流側第1扁平管11が、そして、中間ヘッダー31の下部には下流側第1扁平管12が、それぞれ当接しないように配置されている。また、上流側第1扁平管11の冷媒流路方向の他端には第1入口ヘッダー3が取り付けられ、下流側第1扁平管12の冷媒流路方向の他端には第1出口ヘッダー4が取り付けられている。
(Configuration of heat exchanger 8c)
FIG. 5 is an external view of a heat exchanger 8c according to Embodiment 4 of the present invention. Among these, Fig.5 (a) is a perspective view of the heat exchanger 8c, and FIG.5 (b) is a top view of the heat exchanger 8c.
As shown in FIG. 5, the upstream first flat tube 11 and the downstream first flat tube 12 constituting the first flat tube 1 have flat surfaces parallel to the upper and lower portions of the cylindrical shape of the intermediate header 31. It is connected to become. In other words, the upstream first flat tube 11 is disposed above the intermediate header 31 and the downstream first flat tube 12 is disposed below the intermediate header 31 so as not to contact each other. A first inlet header 3 is attached to the other end of the upstream first flat tube 11 in the refrigerant flow direction, and a first outlet header 4 is attached to the other end of the downstream first flat tube 12 in the refrigerant flow direction. Is attached.
 第1入口ヘッダー3は、上面から高温冷媒を流入させるために、上面部が開口されており、下面部が閉口されている。 The upper surface of the first inlet header 3 is opened and the lower surface is closed in order to allow high temperature refrigerant to flow from the upper surface.
 第1出口ヘッダー4は、下面から高温冷媒を流出させるために、下面部が開口されており、上面部が閉口されている。 The first outlet header 4 has a bottom surface opened and a top surface closed to allow the high-temperature refrigerant to flow out from the bottom surface.
 中間ヘッダー31は、後述するように、上流側第1扁平管11において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を流下させて外部に流出させるために、下面部が開口されており、上面部は閉口されている。 As will be described later, the intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and flows the liquid high-temperature refrigerant down to the outside. For this purpose, the lower surface portion is opened and the upper surface portion is closed.
 また、第2扁平管2は、上流側第1扁平管11及び下流側第1扁平管12のそれぞれと、冷媒流路方向が平行となるように、扁平な面同士でろう付け等で接合されて積層されている。 Further, the second flat tube 2 is joined to each of the upstream first flat tube 11 and the downstream first flat tube 12 by brazing or the like between the flat surfaces so that the refrigerant flow direction is parallel. Are stacked.
 第2入口ヘッダー5は、第2扁平管2の冷媒流路方向の両端部のうち、上流側第1扁平管11及び下流側第1扁平管12に取り付けられた中間ヘッダー31と同じ側に取り付けられている。また、第2入口ヘッダー5は、上面から低温冷媒を流入(図示せず)させるために、上面部が開口されており、下面部が閉口されている。 The second inlet header 5 is attached to the same side as the intermediate header 31 attached to the upstream first flat tube 11 and the downstream first flat tube 12 in both ends of the second flat tube 2 in the refrigerant flow direction. It has been. The second inlet header 5 has an upper surface portion opened and a lower surface portion closed in order to allow a low-temperature refrigerant to flow (not shown) from the upper surface.
 第2出口ヘッダー6は、第2扁平管2の冷媒流路方向の両端部のうち、第2扁平管2の冷媒流路方向において第2入口ヘッダー5とは逆の端部に取り付けられている。すなわち、第2扁平管2の両端部のうち、上流側第1扁平管11に取り付けられた第1入口ヘッダー3及び下流側第1扁平管12に取り付けられた第1出口ヘッダー4と同じ側に取り付けられている。また、第2出口ヘッダー6は、下面から低温冷媒を流出(図示せず)させるために、下面部が開口されており、上面部が閉口されている。 The second outlet header 6 is attached to the end opposite to the second inlet header 5 in the refrigerant flow direction of the second flat tube 2 among the both ends of the second flat tube 2 in the refrigerant flow direction. . That is, on both ends of the second flat tube 2, on the same side as the first outlet header 3 attached to the upstream first flat tube 11 and the first outlet header 4 attached to the downstream first flat tube 12. It is attached. Further, the second outlet header 6 has a lower surface portion opened and a top surface portion closed to allow the low-temperature refrigerant to flow out (not shown) from the lower surface.
 また、図5(b)で示されるように、第1入口ヘッダー3及び第1出口ヘッダー4(図示せず)と、第2出口ヘッダー6とは、冷媒流路の流通方向に少しずらして配置されている。第2入口ヘッダー5と中間ヘッダー31とについても同様である。これによって、各ヘッダーの内径を大きくする必要がある場合等、熱交換器8cを薄型化することができ、コンパクト化を図ることができる。 Further, as shown in FIG. 5B, the first inlet header 3 and the first outlet header 4 (not shown) and the second outlet header 6 are arranged with a slight shift in the flow direction of the refrigerant flow path. Has been. The same applies to the second inlet header 5 and the intermediate header 31. As a result, when it is necessary to increase the inner diameter of each header, the heat exchanger 8c can be thinned, and the size can be reduced.
 なお、第1入口ヘッダー3及び第2入口ヘッダー5は、上面部が開口され、下面部が閉口された構成としているが、これに限定されるものではなく、下面部が開口され、上面部が閉口された構成としてもよい。
 また、第1出口ヘッダー4及び第2出口ヘッダー6は、下面部が開口され、上面部が閉口された構成としているが、これに限定されるものではなく、上面部が開口され、下面部が閉口された構成としてもよい。
The first inlet header 3 and the second inlet header 5 are configured such that the upper surface portion is opened and the lower surface portion is closed. However, the present invention is not limited to this, and the lower surface portion is opened and the upper surface portion is closed. It is good also as a closed structure.
The first outlet header 4 and the second outlet header 6 are configured such that the lower surface portion is opened and the upper surface portion is closed. However, the present invention is not limited to this, and the upper surface portion is opened and the lower surface portion is It is good also as a closed structure.
(熱交換器8cの熱交換動作)
 次に、図5を参照しながら、熱交換器8cにおける高温冷媒と低温冷媒との熱交換動作について説明する。図5(a)は、本実施の形態に係る熱交換器8cが凝縮器として作用した場合の高温冷媒の流れを示しており、図中のFH(ガス)の矢印は、ガス状態の高温冷媒の流れを、FH(液)の矢印は、液状態の高温冷媒の流れを示している。
(Heat exchange operation of the heat exchanger 8c)
Next, the heat exchange operation between the high-temperature refrigerant and the low-temperature refrigerant in the heat exchanger 8c will be described with reference to FIG. Fig.5 (a) has shown the flow of the high temperature refrigerant | coolant when the heat exchanger 8c which concerns on this Embodiment acts as a condenser, The arrow of FH (gas) in a figure shows the high temperature refrigerant | coolant of a gas state The arrow of FH (liquid) indicates the flow of the high-temperature refrigerant in the liquid state.
 高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路、中間ヘッダー31、そして、下流側第1扁平管12の冷媒流路の順に流通して、第1出口ヘッダー4の下面部から流出する。一方、低温冷媒は、第2入口ヘッダー5の上面部からその内部へ流入し、第2扁平管2の冷媒流路を流通し、第2出口ヘッダー6の下面部から流出する。その際、上流側第1扁平管11及び下流側第1扁平管12の冷媒流路を流通する高温冷媒と、第2扁平管2の冷媒流路を流通する低温冷媒とは、それぞれの接合面を介して熱交換が実施される。 The high-temperature refrigerant flows into the inside from the upper surface portion of the first inlet header 3, in the order of the refrigerant flow path of the upstream first flat tube 11, the intermediate header 31, and the refrigerant flow path of the downstream first flat tube 12. It flows through and flows out from the lower surface portion of the first outlet header 4. On the other hand, the low-temperature refrigerant flows into the inside from the upper surface portion of the second inlet header 5, flows through the refrigerant flow path of the second flat tube 2, and flows out from the lower surface portion of the second outlet header 6. In that case, the high temperature refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path of the upstream 1st flat tube 11 and the downstream 1st flat tube 12, and the low temperature refrigerant | coolant which distribute | circulates the refrigerant | coolant flow path of the 2nd flat tube 2 are each joining surface. Heat exchange is performed via
 ここで、高温冷媒の挙動について詳しく説明する。ガス状態(又は、気液二相状態)の高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路を流通する過程で、第2扁平管2の冷媒流路を流通する低温冷媒によって吸熱される。吸熱された高温冷媒の少なくとも一部は、凝縮して液化し、気液二相状態の高温冷媒が、中間ヘッダー31へ流入する。このとき、中間ヘッダー31へ流入した気液二相状態の高温冷媒は、中間ヘッダー31の内壁面に衝突することによって、分離されにくい液滴及びミスト状態の冷媒が分離され、液分離が促進される。これによって、気液二相状態の高温冷媒のうち、液状態の高温冷媒の大部分が分離され、自重落下して、中間ヘッダー31の下方に向かって流下し、その下面部から外部へ流出する。そして、液状態の高温冷媒の大部分が分離され、ほぼガス状態となった高温冷媒は、上流側第1扁平管11の下方に位置する下流側第1扁平管12の冷媒流路に流入し、その流通する過程で、第2扁平管2の冷媒流路を流通する低温冷媒によって吸熱される。そして、下流側第1扁平管12の冷媒流路から第1出口ヘッダー4内に流入した高温冷媒は、その下面部から外部に流出する。 Here, the behavior of the high-temperature refrigerant will be described in detail. The high-temperature refrigerant in the gas state (or gas-liquid two-phase state) flows into the inside from the upper surface portion of the first inlet header 3 and flows through the refrigerant flow path of the upstream first flat tube 11 in the second stage. Heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the flat tube 2. At least part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate header 31. At this time, the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate header 31 collides with the inner wall surface of the intermediate header 31, whereby liquid droplets that are difficult to separate and mist refrigerant are separated, and liquid separation is promoted. The As a result, of the high-temperature refrigerant in the gas-liquid two-phase state, most of the liquid-state high-temperature refrigerant is separated, falls by its own weight, flows down below the intermediate header 31, and flows out from the lower surface portion to the outside. . Then, most of the liquid high-temperature refrigerant is separated, and the high-temperature refrigerant almost in the gas state flows into the refrigerant flow path of the downstream first flat tube 12 located below the upstream first flat tube 11. In the process of circulation, heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the second flat tube 2. And the high temperature refrigerant | coolant which flowed in in the 1st exit header 4 from the refrigerant | coolant flow path of the downstream 1st flat tube 12 flows out out of the lower surface part.
(実施の形態4の効果)
 以上の構成のように、気液二相状態の高温冷媒は、中間ヘッダー31の内壁面に衝突することによって、効率よく液分離することが可能となり、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、さらに凝縮性能及び熱交換性能を向上させることができる。
(Effect of Embodiment 4)
As described above, the high-temperature refrigerant in the gas-liquid two-phase state can be efficiently separated by colliding with the inner wall surface of the intermediate header 31, and the liquid flowing into the downstream first flat tube 12. The amount of the high-temperature refrigerant in the state can be reduced, and further the condensation performance and heat exchange performance can be improved.
 また、第1入口ヘッダー3及び第2出口ヘッダー6、並びに、第1出口ヘッダー4及び第2入口ヘッダー5は、それぞれ冷媒流路の流通方向に少しずらして配置されているので、各ヘッダーの内径を大きくする必要がある場合等、熱交換器8を薄型化することができ、コンパクト化を図ることができる。 Further, since the first inlet header 3 and the second outlet header 6 and the first outlet header 4 and the second inlet header 5 are arranged slightly shifted in the flow direction of the refrigerant flow path, the inner diameter of each header The heat exchanger 8 can be thinned and the size can be reduced, for example, when it is necessary to increase the size.
 なお、本実施の形態の熱交換器8cに、図2で示される実施の形態1に係る熱交換器8における流出管41、バイパス配管42及び流量調整手段43の構成を適用してもよい。 In addition, you may apply the structure of the outflow pipe | tube 41, the bypass piping 42, and the flow volume adjustment means 43 in the heat exchanger 8 which concerns on Embodiment 1 shown by FIG. 2 to the heat exchanger 8c of this Embodiment.
 また、熱交換器8cにおける低温冷媒の挙動について、第2入口ヘッダー5の上面部からその内部へ流入し、第2扁平管2の冷媒流路を流通し、第2出口ヘッダー6の下面部から流出するものとしているが、これに限定されるものではない。すなわち、第2出口ヘッダー6の下面部(又は上面部)からその内部へ流入し、第2入口ヘッダー5の上面部(又は下面部)から流出するものとしてもよい。 Further, regarding the behavior of the low-temperature refrigerant in the heat exchanger 8 c, it flows into the inside from the upper surface portion of the second inlet header 5, flows through the refrigerant flow path of the second flat tube 2, and from the lower surface portion of the second outlet header 6. Although it is supposed to flow out, it is not limited to this. That is, the second outlet header 6 may flow into the inside from the lower surface portion (or upper surface portion) and flow out from the upper surface portion (or lower surface portion) of the second inlet header 5.
 また、図5(a)で示されるように、上流側第1扁平管11及び下流側第1扁平管12は、平面視において、それぞれの冷媒流路方向が一致するように、中間ヘッダー31に接続されているが、これに限定されるものではなく、一致しないものとしてもよい。ただし、その場合、第2扁平管2は、上流側第1扁平管11及び下流側第1扁平管12の扁平な各面に接合するように、形状を変形する必要がある。 Further, as shown in FIG. 5A, the upstream side first flat tube 11 and the downstream side first flat tube 12 are arranged on the intermediate header 31 so that their refrigerant flow direction directions coincide in plan view. Although connected, the present invention is not limited to this and may not match. However, in that case, it is necessary to change the shape of the second flat tube 2 so as to join the flat surfaces of the upstream first flat tube 11 and the downstream first flat tube 12.
 また、中間ヘッダー31に流入した気液二相状態の高温冷媒の挙動について、単に、中間ヘッダー31の内壁面に衝突させることによって、液状態の高温冷媒を分離させるものとしているが、これに限定されるものではない。すなわち、図6(a)及び図6(b)で示されるように、中間ヘッダー31の形状を円筒形状とし、気液二相状態の高温冷媒を、中間ヘッダー31の円形断面の接線方向に向かって流入するように構成するものとしてもよい。これによって、中間ヘッダー31内で高温冷媒の旋回流が発生し、液状態の高温冷媒が遠心分離され、より効率的に分離することができる。
 なお、このように中間ヘッダー31の形状を円筒形状とし、高温冷媒を円筒断面の接線方向に流入させる構成は、実施の形態1~実施の形態3における中間ヘッダー31についても適用することができる。
Further, regarding the behavior of the gas-liquid two-phase high-temperature refrigerant flowing into the intermediate header 31, the liquid high-temperature refrigerant is separated by simply colliding with the inner wall surface of the intermediate header 31, but this is not limitative. Is not to be done. That is, as shown in FIGS. 6A and 6B, the intermediate header 31 has a cylindrical shape, and the high-temperature refrigerant in the gas-liquid two-phase state is directed toward the tangential direction of the circular cross section of the intermediate header 31. It is good also as what is comprised so that it may flow in. As a result, a swirling flow of the high-temperature refrigerant is generated in the intermediate header 31, and the high-temperature refrigerant in the liquid state is centrifuged and can be separated more efficiently.
The configuration in which the shape of the intermediate header 31 is cylindrical and the high-temperature refrigerant is allowed to flow in the tangential direction of the cylindrical cross section can also be applied to the intermediate header 31 in the first to third embodiments.
 また、本実施の形態に係る熱交換器8cに、図4で示される実施の形態3に係る熱交換器8bのように衝突部材32を中間ヘッダー31内に設置される構成を適用してもよい。 Moreover, even if the structure which installs the collision member 32 in the intermediate header 31 like the heat exchanger 8b which concerns on Embodiment 3 shown by FIG. 4 at the heat exchanger 8c which concerns on this Embodiment is applied. Good.
実施の形態5.
 本実施の形態に係る熱交換器8dについて、実施の形態4に係る熱交換器8cの構成及び動作と相違する点を中心に説明する。
 実施の形態4においては、上下に配置された上流側第1扁平管11及び下流側第1扁平管12が、それぞれ一体型である第2扁平管2に接合される構成を示した。本実施の形態においては、この第2扁平管2についても、第1扁平管1と同様に、上下に分割させた構成について説明する。
Embodiment 5. FIG.
The heat exchanger 8d according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8c according to the fourth embodiment.
In the fourth embodiment, the configuration is shown in which the upstream first flat tube 11 and the downstream first flat tube 12 arranged vertically are joined to the second flat tube 2 that is an integral type. In the present embodiment, a configuration in which the second flat tube 2 is also divided in the vertical direction will be described in the same manner as the first flat tube 1.
(熱交換器8dの構成)
 図7は、本発明の実施の形態5に係る熱交換器8dの外観斜視図である。
 図7で示されるように、第2扁平管2は、第1扁平管1と同様に、上下に分割された下流側第2扁平管21及び上流側第2扁平管22によって構成されている。下流側第2扁平管21は、上流側第1扁平管11に対して、冷媒流路方向が平行となるように、それぞれの扁平な面同士をろう付け等で接合し積層されている。また、上流側第2扁平管22は、下流側第1扁平管12に対して、冷媒流路方向が平行となるように、それぞれの扁平な面同士をろう付け等で接合し積層されている。
(Configuration of heat exchanger 8d)
FIG. 7 is an external perspective view of a heat exchanger 8d according to Embodiment 5 of the present invention.
As shown in FIG. 7, the second flat tube 2 is configured by a downstream second flat tube 21 and an upstream second flat tube 22 that are divided into upper and lower portions, like the first flat tube 1. The downstream second flat tube 21 is laminated by joining the respective flat surfaces to each other by brazing or the like so that the refrigerant flow direction is parallel to the upstream first flat tube 11. Further, the upstream second flat tube 22 is laminated by joining the respective flat surfaces by brazing or the like so that the refrigerant flow direction is parallel to the downstream first flat tube 12. .
 また、下面部が開口し、上面部が閉口した第2入口ヘッダー5は、上流側第2扁平管22の冷媒流路方向の両端部のうち、下流側第1扁平管12に取り付けられた第1出口ヘッダー4と同じ側に取り付けられている。また、上面部が開口し、下面部が閉口した第2出口ヘッダー6は、下流側第2扁平管21の冷媒流路方向の両端部のうち、上流側第1扁平管11に取り付けられた第1入口ヘッダー3と同じ側に取り付けられている。さらに、下流側第2扁平管21の他端(上流側第1扁平管11の冷媒流路方向の両端部のうち中間ヘッダー31が取り付けられた端部と同じ側)、及び、上流側第2扁平管22の他端(下流側第1扁平管12の冷媒流路方向の両端部のうち中間ヘッダー31が取り付けられた端部と同じ側)には、中間ヘッダー51が取り付けられている。 In addition, the second inlet header 5 whose lower surface portion is open and whose upper surface portion is closed is the second inlet header 5 attached to the downstream first flat tube 12 among the both ends of the upstream second flat tube 22 in the refrigerant flow direction. 1 is attached to the same side as the outlet header 4. In addition, the second outlet header 6 whose upper surface portion is open and whose lower surface portion is closed is the second outlet header 6 attached to the upstream first flat tube 11 in both ends of the downstream second flat tube 21 in the refrigerant flow direction. It is attached to the same side as the one inlet header 3. Furthermore, the other end of the downstream second flat tube 21 (the same side as the end of the upstream first flat tube 11 in the direction of the refrigerant flow path where the intermediate header 31 is attached) and the upstream second An intermediate header 51 is attached to the other end of the flat tube 22 (the same side as the end of the downstream first flat tube 12 in the direction of the refrigerant flow path where the intermediate header 31 is attached).
 また、実施の形態4に係る熱交換器8cと同様の趣旨で、第1入口ヘッダー3と第2出口ヘッダー6とは、冷媒流路の流通方向に少しずらして配置されている。第1出口ヘッダー4と第2入口ヘッダー5とについて、及び、中間ヘッダー31と中間ヘッダー51とについても同様である。これによって、各ヘッダーの内径を大きくする必要がある場合等、熱交換器8dを薄型化することができ、コンパクト化を図ることができる。 Further, for the same purpose as the heat exchanger 8c according to the fourth embodiment, the first inlet header 3 and the second outlet header 6 are arranged slightly shifted in the flow direction of the refrigerant flow path. The same applies to the first outlet header 4 and the second inlet header 5, and the intermediate header 31 and the intermediate header 51. As a result, the heat exchanger 8d can be made thinner and more compact when it is necessary to increase the inner diameter of each header.
 なお、中間ヘッダー51は、本発明の「第2中間連通部」に相当する。 The intermediate header 51 corresponds to the “second intermediate communication portion” of the present invention.
(熱交換器8dの熱交換動作)
 次に、図7を参照しながら、熱交換器8dにおける高温冷媒と低温冷媒との熱交換動作について説明する。図7は、本実施の形態に係る熱交換器8dが凝縮器として作用した場合の高温冷媒の流れを示しており、図中のFH(ガス)の矢印は、ガス状態の高温冷媒の流れを、FH(液)の矢印は、液状態の高温冷媒の流れを示している。
(Heat exchange operation of the heat exchanger 8d)
Next, the heat exchange operation between the high-temperature refrigerant and the low-temperature refrigerant in the heat exchanger 8d will be described with reference to FIG. FIG. 7 shows the flow of the high-temperature refrigerant when the heat exchanger 8d according to the present embodiment acts as a condenser, and the FH (gas) arrow in the figure indicates the flow of the high-temperature refrigerant in the gas state. , FH (liquid) arrows indicate the flow of high-temperature refrigerant in the liquid state.
 高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路、中間ヘッダー31、そして、下流側第1扁平管12の冷媒流路の順に流通して、第1出口ヘッダー4の下面部から流出する。一方、低温冷媒は、第2入口ヘッダー5の下面部からその内部へ流入し、上流側第2扁平管22の冷媒流路、中間ヘッダー51、そして、下流側第2扁平管21の冷媒流路の順に流通して、第2出口ヘッダー6の上面部から流出する。このとき、上流側第1扁平管11を流通する高温冷媒と、下流側第2扁平管21を流通する低温冷媒とは、それぞれの接合面を介して対向流で熱交換が実施される。また、下流側第1扁平管12を流通する高温冷媒と、上流側第2扁平管22を流通する低温冷媒とは、それぞれの接合面を介して対向流で熱交換が実施される。 The high-temperature refrigerant flows into the inside from the upper surface portion of the first inlet header 3, in the order of the refrigerant flow path of the upstream first flat tube 11, the intermediate header 31, and the refrigerant flow path of the downstream first flat tube 12. It flows through and flows out from the lower surface portion of the first outlet header 4. On the other hand, the low-temperature refrigerant flows into the inside from the lower surface portion of the second inlet header 5, and the refrigerant channel of the upstream second flat tube 22, the intermediate header 51, and the refrigerant channel of the downstream second flat tube 21. And flows out from the upper surface of the second outlet header 6. At this time, the high-temperature refrigerant that flows through the upstream first flat tube 11 and the low-temperature refrigerant that flows through the downstream second flat tube 21 are subjected to heat exchange in a counterflow through their respective joint surfaces. Moreover, the high temperature refrigerant | coolant which distribute | circulates the downstream 1st flat tube 12 and the low temperature refrigerant | coolant which distribute | circulates the upstream 2nd flat tube 22 are heat-exchanged by counterflow through each junction surface.
 ここで、高温冷媒の挙動について詳しく説明する。ガス状態(又は、気液二相状態)の高温冷媒は、第1入口ヘッダー3の上面部からその内部へ流入し、上流側第1扁平管11の冷媒流路を流通する過程で、下流側第2扁平管21の冷媒流路を流通する低温冷媒によって吸熱される。吸熱された高温冷媒の少なくとも一部は、凝縮して液化し、気液二相状態の高温冷媒が、中間ヘッダー31へ流入する。このとき、中間ヘッダー31へ流入した気液二相状態の高温冷媒は、中間ヘッダー31の内壁面に衝突することによって、分離されにくい液滴及びミスト状態の冷媒が分離され、液分離が促進される。これによって、気液二相状態の高温冷媒のうち、液状態の高温冷媒の大部分が分離され、自重落下して、中間ヘッダー31の下方に向かって流下し、その下面部から外部へ流出する。そして、液状態の高温冷媒の大部分が分離され、ほぼガス状態となった高温冷媒は、上流側第1扁平管11の下方に位置する下流側第1扁平管12の冷媒流路に流入し、その流通する過程で、上流側第2扁平管22の冷媒流路を流通する低温冷媒によって吸熱される。そして、下流側第1扁平管12の冷媒流路から第1出口ヘッダー4内に流入した高温冷媒は、その下面部から外部に流出する。 Here, the behavior of the high-temperature refrigerant will be described in detail. The high-temperature refrigerant in the gas state (or gas-liquid two-phase state) flows into the inside from the upper surface portion of the first inlet header 3 and flows through the refrigerant flow path of the upstream first flat tube 11 in the downstream side. Heat is absorbed by the low-temperature refrigerant flowing through the refrigerant flow path of the second flat tube 21. At least part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate header 31. At this time, the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate header 31 collides with the inner wall surface of the intermediate header 31, whereby liquid droplets that are difficult to separate and mist refrigerant are separated, and liquid separation is promoted. The As a result, of the high-temperature refrigerant in the gas-liquid two-phase state, most of the liquid-state high-temperature refrigerant is separated, falls by its own weight, flows down below the intermediate header 31, and flows out from the lower surface portion to the outside. . Then, most of the liquid high-temperature refrigerant is separated, and the high-temperature refrigerant almost in the gas state flows into the refrigerant flow path of the downstream first flat tube 12 located below the upstream first flat tube 11. In the process of circulation, heat is absorbed by the low-temperature refrigerant that flows through the refrigerant flow path of the upstream second flat tube 22. And the high temperature refrigerant | coolant which flowed in in the 1st exit header 4 from the refrigerant | coolant flow path of the downstream 1st flat tube 12 flows out out of the lower surface part.
(実施の形態5の効果)
 以上の構成のように、気液二相状態の高温冷媒は、中間ヘッダー31の内壁面に衝突することによって、効率よく液分離することが可能となり、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、さらに凝縮性能及び熱交換性能を向上させることができる。
(Effect of Embodiment 5)
As described above, the high-temperature refrigerant in the gas-liquid two-phase state can be efficiently separated by colliding with the inner wall surface of the intermediate header 31, and the liquid flowing into the downstream first flat tube 12. The amount of the high-temperature refrigerant in the state can be reduced, and further the condensation performance and heat exchange performance can be improved.
 また、実施の形態4に係る熱交換器8cと比較して、本実施の形態に係る熱交換器8dは、高温冷媒の流通経路及び低温冷媒の流通経路の長さが同一なので、さらに熱交換性能を向上させることができる。 In addition, compared with the heat exchanger 8c according to the fourth embodiment, the heat exchanger 8d according to the present embodiment has the same length of the high-temperature refrigerant flow path and the low-temperature refrigerant flow path, and thus further heat exchange. Performance can be improved.
 なお、本実施の形態の熱交換器8dに、図2で示される実施の形態1に係る熱交換器8における流出管41、バイパス配管42及び流量調整手段43の構成を適用してもよい。 In addition, you may apply the structure of the outflow pipe | tube 41, the bypass piping 42, and the flow volume adjustment means 43 in the heat exchanger 8 which concerns on Embodiment 1 shown by FIG. 2 to the heat exchanger 8d of this Embodiment.
 また、図7で示されるように、平面視において、上流側第1扁平管11及び下流側第1扁平管12は、それぞれの冷媒流路方向が一致するように、中間ヘッダー31に接続され、下流側第2扁平管21及び上流側第2扁平管22も、それぞれの冷媒流路方向が一致するように、中間ヘッダー51に接続されているが、これに限定されるものではなく、一致しないものとしてもよい。この場合、上流側第1扁平管11及び下流側第2扁平管21、並びに、下流側第1扁平管12及び上流側第2扁平管22が、それぞれ扁平な面同士で接合されている構成とすればよい。 In addition, as shown in FIG. 7, in a plan view, the upstream first flat tube 11 and the downstream first flat tube 12 are connected to the intermediate header 31 so that the respective refrigerant flow channel directions coincide with each other, The downstream side second flat tube 21 and the upstream side second flat tube 22 are also connected to the intermediate header 51 so that the respective refrigerant flow path directions coincide with each other. However, the present invention is not limited to this and does not match. It may be a thing. In this case, the upstream first flat tube 11 and the downstream second flat tube 21, and the downstream first flat tube 12 and the upstream second flat tube 22 are joined to each other by flat surfaces. do it.
 また、図7で示されるように、中間ヘッダー31及び中間ヘッダー51は、それぞれ第1扁平管1及び第2扁平管2の冷媒流路方向の同じ側に取り付けた構成としているが、これに限定されるものではなく、冷媒流路方向の反対側に取り付ける構成としてもよい。この場合、第2入口ヘッダー5及び第2出口ヘッダー6についても、第1入口ヘッダー3及び第1出口ヘッダー4とは反対側に取り付けられることになる。 Further, as shown in FIG. 7, the intermediate header 31 and the intermediate header 51 are configured to be attached to the same side of the first flat tube 1 and the second flat tube 2 in the refrigerant flow direction, respectively. It is good also as a structure attached to the other side rather than a refrigerant | coolant flow path direction. In this case, the second inlet header 5 and the second outlet header 6 are also attached to the opposite side of the first inlet header 3 and the first outlet header 4.
 また、熱交換器8dにおける低温冷媒の挙動について、第2入口ヘッダー5の下面部から流入し、第2出口ヘッダー6の上面部から流出するものとしているが、これに限定されるものではない。すなわち、低温冷媒が、第2出口ヘッダー6の上面部から流入し、第2入口ヘッダー5の下面部から流出するものとしてもよい。この場合、高温冷媒と低温冷媒とは並行流によって熱交換が実施されることになる。 Further, the behavior of the low-temperature refrigerant in the heat exchanger 8d is assumed to flow from the lower surface portion of the second inlet header 5 and flow out from the upper surface portion of the second outlet header 6, but is not limited to this. That is, the low-temperature refrigerant may flow from the upper surface portion of the second outlet header 6 and flow out from the lower surface portion of the second inlet header 5. In this case, heat exchange between the high-temperature refrigerant and the low-temperature refrigerant is performed by a parallel flow.
 また、中間ヘッダー31に流入した気液二相状態の高温冷媒の挙動について、単に、中間ヘッダー31の内壁面に衝突させることによって、液状態の高温冷媒を分離させるものとしているが、これに限定されるものではない。すなわち、実施の形態4における図6(a)及び図6(b)で示されるように、中間ヘッダー31の形状を円筒形状とし、気液二相状態の高温冷媒を、中間ヘッダー31の円形断面の接線方向に向かって流入するように構成するものとしてもよい。これによって、中間ヘッダー31内で高温冷媒の旋回流が発生し、液状態の高温冷媒が遠心分離され、より効率的に分離することができる。 Further, regarding the behavior of the gas-liquid two-phase high-temperature refrigerant flowing into the intermediate header 31, the liquid high-temperature refrigerant is separated by simply colliding with the inner wall surface of the intermediate header 31, but this is not limitative. Is not to be done. That is, as shown in FIGS. 6A and 6B in the fourth embodiment, the intermediate header 31 has a cylindrical shape, and the gas-liquid two-phase high-temperature refrigerant is exchanged with the circular cross section of the intermediate header 31. It is good also as what is comprised so that it may flow toward toward the tangential direction. As a result, a swirling flow of the high-temperature refrigerant is generated in the intermediate header 31, and the high-temperature refrigerant in the liquid state is centrifuged and can be separated more efficiently.
 また、本実施の形態に係る熱交換器8dに、図4で示される実施の形態3に係る熱交換器8bのように衝突部材32を中間ヘッダー31内に設置される構成を適用してもよい。 Moreover, even if the structure which installs the collision member 32 in the intermediate header 31 like the heat exchanger 8b which concerns on Embodiment 3 shown by FIG. 4 to the heat exchanger 8d which concerns on this Embodiment is applied. Good.
実施の形態6.
 実施の形態1においては、それぞれ別体である高温冷媒が流通する第1扁平管1及び低温冷媒が流通する第2扁平管2が、扁平な面同士をろう付け等で接合して積層された構成を示した。本実施の形態においては、高温冷媒が流通する冷媒流路、及び、低温冷媒が流通する冷媒流路が一体として形成された構成について説明する。
(熱交換器8eの構成)
 図8は、本発明の実施の形態6に係る熱交換器8eの外観斜視図である。
 図8で示されるように、本実施の形態に係る熱交換器8eの本体110には、高温冷媒が流通する複数の第1冷媒流路101aを一列に並べて長手方向に貫通するように形成された第1冷媒パス101が構成されている。そして、この第1冷媒パス101の各第1冷媒流路101aに隣接するように、低温冷媒が流通する複数の第2冷媒流路102aを一列に並べて長手方向に貫通するように形成された第2冷媒パス102が構成されている。この第1冷媒パス101及び第2冷媒パス102が形成された本体110は、例えば、アルミニウム若しくはアルミニウム合金、銅若しくは銅合金、又は、鉄鋼若しくはステンレス合金によって形成されており、例えば、押し出し又は引き抜き成形によって製造される。
Embodiment 6 FIG.
In the first embodiment, the first flat tube 1 through which the high-temperature refrigerant, which is a separate body, and the second flat tube 2 through which the low-temperature refrigerant circulate are laminated by joining the flat surfaces by brazing or the like. The configuration was shown. In the present embodiment, a configuration in which a refrigerant flow path through which a high-temperature refrigerant flows and a refrigerant flow path through which a low-temperature refrigerant flows are integrally formed will be described.
(Configuration of heat exchanger 8e)
FIG. 8 is an external perspective view of a heat exchanger 8e according to Embodiment 6 of the present invention.
As shown in FIG. 8, the main body 110 of the heat exchanger 8e according to the present embodiment is formed so that a plurality of first refrigerant flow paths 101a through which a high-temperature refrigerant flows are arranged in a row and penetrate in the longitudinal direction. The first refrigerant path 101 is configured. A plurality of second refrigerant flow paths 102a through which the low-temperature refrigerant flows are arranged in a row so as to be adjacent to the first refrigerant flow paths 101a of the first refrigerant path 101, and are formed so as to penetrate in the longitudinal direction. Two refrigerant paths 102 are configured. The main body 110 in which the first refrigerant path 101 and the second refrigerant path 102 are formed is formed of, for example, aluminum or an aluminum alloy, copper or a copper alloy, or steel or a stainless alloy, for example, extrusion or pultrusion molding. Manufactured by.
 本体110の両端側のうち一方には、各第1冷媒流路101aの並び方向に、全ての第1冷媒流路101aに連通する第1入口連通穴103aが形成されている。また、他方には、各第1冷媒流路101aの並び方向に、全ての第1冷媒流路101aに連通する第1出口連通穴104aが形成されている。 A first inlet communication hole 103a that communicates with all the first refrigerant flow paths 101a is formed in one of both ends of the main body 110 in the direction in which the first refrigerant flow paths 101a are arranged. On the other side, first outlet communication holes 104a communicating with all the first refrigerant flow paths 101a are formed in the direction in which the first refrigerant flow paths 101a are arranged.
 さらに、本体110の両端側のうち第1出口連通穴104aが形成された側には、各第2冷媒流路102aの並び方向に、全ての第2冷媒流路102aに連通する第2入口連通穴105aが形成されている。また、本体110の両端側のうち第1入口連通穴103aが形成された側には、各第2冷媒流路102aの並び方向に、全ての第2冷媒流路102aに連通する第2出口連通穴106aが形成されている。 Further, the second inlet communication that communicates with all the second refrigerant flow paths 102a in the direction in which the second refrigerant flow paths 102a are arranged on the side where the first outlet communication holes 104a are formed on both ends of the main body 110. A hole 105a is formed. In addition, on the side where the first inlet communication hole 103a is formed on both ends of the main body 110, second outlet communication communicating with all the second refrigerant flow paths 102a in the direction in which the second refrigerant flow paths 102a are arranged. A hole 106a is formed.
 また、第1入口連通穴103a及び第2出口連通穴106aは、第1冷媒パス101(又は第2冷媒パス102)の冷媒流路の流通方向に少しずらして形成されている。また、第1出口連通穴104a及び第2入口連通穴105aは、第1冷媒パス101(又は第2冷媒パス102)の冷媒流路の流通方向に少しずらして形成されている。 Further, the first inlet communication hole 103a and the second outlet communication hole 106a are formed with a slight shift in the flow direction of the refrigerant flow path of the first refrigerant path 101 (or the second refrigerant path 102). The first outlet communication hole 104a and the second inlet communication hole 105a are formed so as to be slightly shifted in the flow direction of the refrigerant flow path of the first refrigerant path 101 (or the second refrigerant path 102).
 なお、第1入口連通穴103a及び第1出口連通穴104aの挿通方向は、必ずしも各第1冷媒流路101aの方向と垂直関係となっている必要もない。また、第2入口連通穴105a及び第2出口連通穴106aの挿通方向についても、必ずしも第2冷媒流路102aの方向と垂直関係となっている必要もない。 Note that the insertion direction of the first inlet communication hole 103a and the first outlet communication hole 104a does not necessarily have to be perpendicular to the direction of each first refrigerant flow path 101a. Further, the insertion direction of the second inlet communication hole 105a and the second outlet communication hole 106a is not necessarily perpendicular to the direction of the second refrigerant flow path 102a.
 また、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの下端は開口されており、それぞれ、外部に連通するように、第1入口接続管103、第1出口接続管104、第2入口接続管105及び第2出口接続管106が接続されている。また、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aの上端は、封止部材等によって閉口されている。 The lower ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are opened, and the first inlet connection so as to communicate with the outside respectively. The pipe 103, the first outlet connecting pipe 104, the second inlet connecting pipe 105, and the second outlet connecting pipe 106 are connected. The upper ends of the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are closed by a sealing member or the like.
 また、本体110における第1入口連通穴103aと第1出口連通穴104aとの間の部分に、第1冷媒流路101aの並び方向に、全ての第1冷媒流路101aに連通する中間連通穴131が形成されている。この中間連通穴131は、下端が開口されており、上端は封止部材等によって閉口されている。 Further, an intermediate communication hole communicating with all the first refrigerant flow paths 101a in the direction in which the first refrigerant flow paths 101a are arranged in a portion between the first inlet communication holes 103a and the first outlet communication holes 104a in the main body 110. 131 is formed. The intermediate communication hole 131 has a lower end opened, and an upper end is closed by a sealing member or the like.
 また、本体110の長手方向に貫通して形成された複数の第1冷媒流路101a及び第2冷媒流路102aの両端部は、ピンチ加工等による封止加工、又は、封止部材によって封止(図示せず)されている。 In addition, both ends of the plurality of first refrigerant channels 101a and second refrigerant channels 102a formed so as to penetrate in the longitudinal direction of the main body 110 are sealed by pinching or the like or sealed by a sealing member (Not shown).
 なお、第1冷媒パス101、第2冷媒パス102、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a、第2出口連通穴106a及び中間連通穴131は、それぞれ本発明の「第1流路部」、「第2流路部」、「第1入口部」、「第1出口部」、「第2入口部」、「第2出口部」及び「中間連通部」に相当する。 Note that the first refrigerant path 101, the second refrigerant path 102, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are the main line, respectively. The “first flow path part”, “second flow path part”, “first inlet part”, “first outlet part”, “second inlet part”, “second outlet part” and “intermediate communication part” of the invention Is equivalent to.
(熱交換器8eの熱交換動作)
 次に、図8を参照しながら、熱交換器8eにおける高温冷媒と低温冷媒との熱交換動作について説明する。図8は、本実施の形態に係る熱交換器8eが凝縮器として作用した場合の高温冷媒の流れを示しており、図中のFH(ガス)の矢印は、高温冷媒の流れを示している。
(Heat exchange operation of the heat exchanger 8e)
Next, the heat exchange operation between the high-temperature refrigerant and the low-temperature refrigerant in the heat exchanger 8e will be described with reference to FIG. FIG. 8 shows the flow of the high-temperature refrigerant when the heat exchanger 8e according to the present embodiment acts as a condenser, and the arrow of FH (gas) in the figure shows the flow of the high-temperature refrigerant. .
 高温冷媒は、第1入口接続管103を介して第1入口連通穴103aへ流入し、第1冷媒パス101、そして、第1出口連通穴104aの順に流通して、第1出口接続管104から流出する。一方、低温冷媒は、第2入口接続管105を介して第2入口連通穴105aへ流入し、第2冷媒パス102、そして、第2出口連通穴106aの順に流通して、第2出口接続管106から流出する。その際、第1冷媒パス101を流通する高温冷媒と、第2冷媒パス102を流通する低温冷媒とは、各冷媒パス同士間の隔壁を介して対向流で熱交換が実施される。 The high-temperature refrigerant flows into the first inlet communication hole 103a through the first inlet connection pipe 103, flows in the order of the first refrigerant path 101, and the first outlet communication hole 104a, from the first outlet connection pipe 104. leak. On the other hand, the low-temperature refrigerant flows into the second inlet communication hole 105a through the second inlet connection pipe 105, and flows through the second refrigerant path 102 and the second outlet communication hole 106a in this order, and then the second outlet connection pipe. It flows out from 106. At this time, heat exchange is performed between the high-temperature refrigerant flowing through the first refrigerant path 101 and the low-temperature refrigerant flowing through the second refrigerant path 102 in a counterflow via a partition between the refrigerant paths.
 ここで、高温冷媒の挙動について詳しく説明する。ガス状態(又は、気液二相状態)の高温冷媒は、第1入口接続管103から第1入口連通穴103a内部へ流入し、第1冷媒パス101の各第1冷媒流路101aを流通する過程で、第2冷媒パス102の各第2冷媒流路102aを流通する低温冷媒によって吸熱される。吸熱された高温冷媒の少なくとも一部は、凝縮して液化し、気液二相状態の高温冷媒が、中間連通穴131へ流入する。このとき、中間連通穴131へ流入した気液二相状態の高温冷媒のうち、液状態の高温冷媒の大部分は、自重落下して、中間連通穴131の下方に向かって流下し、その下端から外部へ流出する。したがって、気液二相状態の高温冷媒から、液状態の高温冷媒の大部分が中間連通穴131によって分離されることになる。そして、液状態の高温冷媒の大部分が分離され、ほぼガス状態となった高温冷媒は、再び、第1出口連通穴104aへ向かう各第1冷媒流路101aへ流入し、その流通する過程で、各第2冷媒流路102aを流通する低温冷媒によって吸熱される。そして、各第1冷媒流路101aから第1出口連通穴104a内に流入した高温冷媒は、第1出口接続管104を介して外部に流出する。 Here, the behavior of the high-temperature refrigerant will be described in detail. The high-temperature refrigerant in the gas state (or the gas-liquid two-phase state) flows into the first inlet communication hole 103a from the first inlet connection pipe 103 and flows through each first refrigerant flow path 101a of the first refrigerant path 101. In the process, heat is absorbed by the low-temperature refrigerant flowing through each second refrigerant flow path 102 a of the second refrigerant path 102. At least a part of the absorbed high-temperature refrigerant is condensed and liquefied, and the gas-liquid two-phase high-temperature refrigerant flows into the intermediate communication hole 131. At this time, most of the high-temperature refrigerant in the liquid state out of the gas-liquid two-phase high-temperature refrigerant that has flowed into the intermediate communication hole 131 falls by its own weight and flows down toward the lower side of the intermediate communication hole 131, and its lower end. Out to the outside. Therefore, most of the liquid high-temperature refrigerant is separated from the high-temperature refrigerant in the gas-liquid two-phase state by the intermediate communication hole 131. Then, the high-temperature refrigerant that has been mostly separated from the liquid-state high-temperature refrigerant and is almost in a gas state flows again into the first refrigerant flow passages 101a toward the first outlet communication holes 104a, and in the process of flowing therethrough. The heat is absorbed by the low-temperature refrigerant flowing through each second refrigerant flow path 102a. And the high temperature refrigerant | coolant which flowed in in the 1st exit communication hole 104a from each 1st refrigerant | coolant flow path 101a flows out outside via the 1st exit connection pipe 104. FIG.
(実施の形態6の効果)
 以上の構成のように、中間連通穴131によって、第1冷媒パス101において凝縮した液状態の高温冷媒の多くは分離され、ほとんどガス状態の高温冷媒が下流に流れ込む。したがって、下流側の第1冷媒パス101においては、高温冷媒の凝縮液が流路内面(伝熱面)を覆って、熱抵抗層となることを抑制することができるので、熱交換性能を向上させることができる。また、これによって、伝熱面積を増加させる必要がなく、熱交換器8eをコンパクトにすることができる。
(Effect of Embodiment 6)
As described above, most of the liquid high-temperature refrigerant condensed in the first refrigerant path 101 is separated by the intermediate communication hole 131, and almost all the high-temperature refrigerant in the gas state flows downstream. Accordingly, in the first refrigerant path 101 on the downstream side, it is possible to suppress the condensate of the high-temperature refrigerant from covering the flow path inner surface (heat transfer surface) and becoming a heat resistance layer, thereby improving the heat exchange performance. Can be made. Further, this eliminates the need to increase the heat transfer area, and the heat exchanger 8e can be made compact.
 また、第1冷媒パス101及び第2冷媒パス102が本体110に一体として構成されているので、別体で構成した場合に接合部に発生する熱伝導熱抵抗又は接触熱抵抗が抑制され、さらに熱交換性能を向上させることができる。 In addition, since the first refrigerant path 101 and the second refrigerant path 102 are configured integrally with the main body 110, heat conduction thermal resistance or contact thermal resistance generated in the joint portion when configured separately is suppressed, and Heat exchange performance can be improved.
 また、熱交換器8eの内部に、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a、第2出口連通穴106a及び中間連通穴131を設けたので、第1冷媒パス101及び第2冷媒パス102に接続するための、別体の管を設ける必要がない。したがって、熱交換器8eのコンパクト化が図れると共に、製造作業を簡素化することもできる。 Since the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are provided in the heat exchanger 8e, the first refrigerant There is no need to provide a separate pipe for connecting to the path 101 and the second refrigerant path 102. Therefore, the heat exchanger 8e can be made compact and the manufacturing operation can be simplified.
 さらに、第1入口連通穴103a及び第2出口連通穴106a、並びに、第1出口連通穴104a及び第2入口連通穴105aは、それぞれ第1冷媒パス101(又は第2冷媒パス102)の冷媒流路の流通方向に少しずらして形成されている。したがって、各連通穴の径を大きくする必要がある場合等、隣合う冷媒流路間の距離を大きくすることなく、それぞれの連通穴が干渉しないようにすることができ、熱交換器8eのコンパクト化を図ることができる。 Further, the first inlet communication hole 103a and the second outlet communication hole 106a, and the first outlet communication hole 104a and the second inlet communication hole 105a are respectively connected to the refrigerant flow in the first refrigerant path 101 (or the second refrigerant path 102). It is formed with a slight shift in the distribution direction of the road. Therefore, when it is necessary to increase the diameter of each communication hole, each communication hole can be prevented from interfering without increasing the distance between adjacent refrigerant flow paths, and the heat exchanger 8e is compact. Can be achieved.
 なお、本実施の形態に係る熱交換器8eに、図2で示される実施の形態1に係る熱交換器8における流出管41、バイパス配管42及び流量調整手段43の構成を適用してもよい。 In addition, you may apply the structure of the outflow pipe | tube 41, the bypass piping 42, and the flow volume adjustment means 43 in the heat exchanger 8 which concerns on Embodiment 1 shown by FIG. 2 to the heat exchanger 8e which concerns on this Embodiment. .
 また、上記の熱交換器8eは、第1冷媒パス101に高温冷媒が流通し、第2冷媒パス102に低温冷媒が流通し、第1冷媒パス101において高温冷媒が凝縮する凝縮器であるものとして説明した。しかし、これに限定されるものではなく、熱交換器8eは蒸発器として作用するものとしてもよい。この場合、第1冷媒パス101においては低温冷媒が流通し、第2冷媒パス102においては高温冷媒が流通することになる。このとき、熱交換器8eに図2で示される実施の形態1に係る熱交換器8における流出管41、バイパス配管42及び流量調整手段43の構成を適用した場合において、流量調整手段43は閉止するものとする。これによって、流出管41を介して低温冷媒の全部を第1出口連通穴104aに流入させ、第1冷媒パス101(上流側)、中間連通穴131、第1冷媒パス101(下流側)、そして、第1入口連通穴103aの順に流通させることができる。
 なお、熱交換器8eを凝縮器としてのみ機能させる場合においては、流量調整手段43を設置する必要がないのは言うまでもない。
The heat exchanger 8e is a condenser in which a high-temperature refrigerant flows through the first refrigerant path 101, a low-temperature refrigerant flows through the second refrigerant path 102, and the high-temperature refrigerant condenses in the first refrigerant path 101. As explained. However, it is not limited to this, The heat exchanger 8e is good also as what acts as an evaporator. In this case, the low temperature refrigerant flows in the first refrigerant path 101 and the high temperature refrigerant flows in the second refrigerant path 102. At this time, when the configuration of the outflow pipe 41, the bypass pipe 42 and the flow rate adjusting means 43 in the heat exchanger 8 according to Embodiment 1 shown in FIG. 2 is applied to the heat exchanger 8e, the flow rate adjusting means 43 is closed. It shall be. As a result, all of the low-temperature refrigerant flows into the first outlet communication hole 104a via the outflow pipe 41, the first refrigerant path 101 (upstream side), the intermediate communication hole 131, the first refrigerant path 101 (downstream side), and The first inlet communication hole 103a can be circulated in this order.
Needless to say, when the heat exchanger 8e functions only as a condenser, it is not necessary to install the flow rate adjusting means 43.
 また、実施の形態4における中間ヘッダー31の形状を円筒形状とし、高温冷媒を円筒断面の接線方向に流入させる構成は、本実施の形態に係る熱交換器8eの中間連通穴131についても適用することができる。 Further, the configuration in which the shape of the intermediate header 31 in the fourth embodiment is cylindrical and the high-temperature refrigerant is allowed to flow in the tangential direction of the cylindrical cross section is also applied to the intermediate communication hole 131 of the heat exchanger 8e according to the present embodiment. be able to.
 また、本実施の形態に係る熱交換器8eについて、図4で示される実施の形態3に係る熱交換器8bのように衝突部材32を中間ヘッダー31内に設置される構成と同様に、中間連通穴131内に衝突部材32を設置する構成としてもよい。 Moreover, about the heat exchanger 8e which concerns on this Embodiment, like the structure where the collision member 32 is installed in the intermediate header 31 like the heat exchanger 8b which concerns on Embodiment 3 shown by FIG. The collision member 32 may be installed in the communication hole 131.
 また、第1冷媒パス101を流通する高温冷媒と、第2冷媒パス102を流通する低温冷媒とは、対向流で熱交換が実施されるものとしたが、これに限定されるものではなく、並行流として熱交換を実施するものとしてもよい。 In addition, the high-temperature refrigerant that circulates through the first refrigerant path 101 and the low-temperature refrigerant that circulates through the second refrigerant path 102 are assumed to perform heat exchange in a counterflow, but are not limited thereto. It is good also as what implements heat exchange as a parallel flow.
 また、図8で示されるように、第1冷媒流路101a及び第2冷媒流路102aの流路断面の形状を矩形としているが、これに限定されるものではなく、どのような多角形でもよく、また、耐圧性能を高めるために円形にしてもよい。さらに、伝熱性能を高めるために、冷媒流路内面に溝を設けて伝熱面積を大きくしてもよい。この場合、溝を熱交換器8eの押し出し及び引き抜き成形時に、同時に加工するものとすれば、製造作業を簡素化することができる。 Further, as shown in FIG. 8, the cross-sectional shapes of the first refrigerant flow path 101a and the second refrigerant flow path 102a are rectangular, but the present invention is not limited to this, and any polygon can be used. Also, it may be circular in order to improve pressure resistance. Furthermore, in order to improve the heat transfer performance, a groove may be provided on the inner surface of the refrigerant flow path to increase the heat transfer area. In this case, if the groove is processed at the same time as the extrusion of the heat exchanger 8e and the pultrusion molding, the manufacturing operation can be simplified.
 また、図8で示されるように、第1冷媒パス101及び第2冷媒パス102の冷媒流路数を同数としているが、これに限定されるものではない。すなわち、熱交換器8eの動作条件、冷媒の熱及び流動物性値に合わせて、伝熱性能が高く、圧力損失が低い、かつ、好適な熱交換器となるように、それぞれ異なる数としてもよい。 Also, as shown in FIG. 8, the number of refrigerant flow paths in the first refrigerant path 101 and the second refrigerant path 102 is the same, but the present invention is not limited to this. That is, according to the operating conditions of the heat exchanger 8e, the heat of the refrigerant and the fluid property values, the heat transfer performance is high, the pressure loss is low, and the numbers may be different from each other so as to be a suitable heat exchanger. .
 また、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a及び第2出口連通穴106aは、それぞれ、下端を開口させ、上端を閉口する構成としているが、これに限定されるものではなく、それぞれ個別に、開口側及び閉口側を逆にしてもよい。 Further, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, and the second outlet communication hole 106a are configured such that the lower end is opened and the upper end is closed. However, the opening side and the closing side may be reversed individually.
 また、本実施の形態に係る熱交換器8eにおいて、第1冷媒流路101aに連通するように中間連通穴131を形成する構成は、実施の形態1~実施の形態3に係る各熱交換器の中間ヘッダー31の代わりに適用してもよい。すなわち、実施の形態1~実施の形態3に係る各熱交換器の第1扁平管1を分割するように形成された中間ヘッダー31の代わりに、第1扁平管1に対して、各冷媒流路に連通するように中間連通穴131のような穴を形成する構成としてもよい。これによって、第1扁平管1を分割し、上流側第1扁平管11及び下流側第1扁平管12をそれぞれ中間ヘッダー31に接続する必要がなく、製造作業を簡素化することができる。 Further, in the heat exchanger 8e according to the present embodiment, the configuration in which the intermediate communication hole 131 is formed so as to communicate with the first refrigerant channel 101a is the heat exchanger according to each of the first to third embodiments. It may be applied instead of the intermediate header 31. That is, instead of the intermediate header 31 formed so as to divide the first flat tube 1 of each heat exchanger according to the first to third embodiments, each refrigerant flow is directed to the first flat tube 1. It is good also as a structure which forms a hole like the intermediate | middle communication hole 131 so that it may connect with a path | route. Thereby, it is not necessary to divide the first flat tube 1 and connect the upstream first flat tube 11 and the downstream first flat tube 12 to the intermediate header 31 respectively, and the manufacturing work can be simplified.
 また、本実施の形態に係る熱交換器8eにおいて、実施の形態2に係る熱交換器8aにおけるバイパス流路42aに相当する冷媒流路を構成するものとしてもよい。すなわち、中間連通穴131について、下端についても上端と同様に封止部材等によって閉口するものとし、第1入口連通穴103aよりも上流側の第1冷媒パス101部分の下面よりも、下流側の第1冷媒パス101部分の下面が下方となるように形成するものとすれば、バイパス流路42aに相当する冷媒流路を形成できる。 Further, in the heat exchanger 8e according to the present embodiment, a refrigerant flow path corresponding to the bypass flow path 42a in the heat exchanger 8a according to the second embodiment may be configured. That is, the lower end of the intermediate communication hole 131 is closed by a sealing member or the like in the same manner as the upper end, and the downstream side of the lower surface of the first refrigerant path 101 portion upstream of the first inlet communication hole 103a. If the first refrigerant path 101 is formed so that the lower surface of the first refrigerant path 101 is on the lower side, a refrigerant channel corresponding to the bypass channel 42a can be formed.
実施の形態7.
 前述の実施の形態1~実施の形態6に係る各熱交換器は、例えば、空気調和装置、貯湯装置及び冷凍機等の冷凍サイクル装置に搭載される。本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る熱交換器8を搭載した場合を例として説明する。
Embodiment 7 FIG.
Each heat exchanger according to Embodiments 1 to 6 described above is mounted on a refrigeration cycle apparatus such as an air conditioner, a hot water storage apparatus, and a refrigerator. The refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
(冷凍サイクル装置200の構成)
 図9は、本発明の実施の形態7に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図9で示されるように、冷凍サイクル装置200は、第1圧縮機230、第1放熱器231、熱交換器8、第1減圧装置232、そして、第1冷却器233が順に冷媒配管によって接続された第1冷媒回路を備えている。また、熱交換器8における第1入口ヘッダー3が冷媒配管によって第1放熱器231に接続され、第1出口ヘッダー4が冷媒配管によって第1減圧装置232に接続されている。この第1冷媒回路は、高温冷媒である第1冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。
(Configuration of refrigeration cycle apparatus 200)
FIG. 9 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 7 of the present invention.
As shown in FIG. 9, the refrigeration cycle apparatus 200 includes a first compressor 230, a first radiator 231, a heat exchanger 8, a first decompressor 232, and a first cooler 233, which are sequentially connected by refrigerant piping. The first refrigerant circuit is provided. Moreover, the 1st inlet header 3 in the heat exchanger 8 is connected to the 1st heat radiator 231 by refrigerant | coolant piping, and the 1st exit header 4 is connected to the 1st decompression device 232 by refrigerant | coolant piping. The first refrigerant circuit is configured such that the first refrigerant, which is a high-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
 また、冷凍サイクル装置200は、第2圧縮機240、第2放熱器241、第2減圧装置242、そして、熱交換器8が順に冷媒配管によって接続された第2冷媒回路を備えている。また、熱交換器8における第2入口ヘッダー5が冷媒配管によって第2減圧装置242に接続され、第2出口ヘッダー6が冷媒配管によって第2圧縮機240に接続されている。この第2冷媒回路は、低温冷媒である第2冷媒が循環し、蒸気圧縮式冷凍サイクルで動作するように構成されている。 Further, the refrigeration cycle apparatus 200 includes a second refrigerant circuit in which a second compressor 240, a second heat radiator 241, a second pressure reducing device 242, and a heat exchanger 8 are sequentially connected by a refrigerant pipe. Moreover, the 2nd inlet header 5 in the heat exchanger 8 is connected to the 2nd decompression device 242 by refrigerant | coolant piping, and the 2nd outlet header 6 is connected to the 2nd compressor 240 by refrigerant | coolant piping. The second refrigerant circuit is configured such that the second refrigerant, which is a low-temperature refrigerant, circulates and operates in a vapor compression refrigeration cycle.
 第1冷媒及び第2冷媒として、二酸化炭素、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒が用いられる。本実施の形態においては、第1冷媒として二酸化炭素が用いられた場合について説明する。 As the first refrigerant and the second refrigerant, a refrigerant such as carbon dioxide, an HFC refrigerant, an HC refrigerant, an HFO refrigerant, ammonia, or a mixed refrigerant thereof is used. In the present embodiment, a case where carbon dioxide is used as the first refrigerant will be described.
(冷凍サイクル装置200の動作)
 ガス状態の第1冷媒は、第1圧縮機230によって圧縮され、高温高圧の超臨界状態の冷媒となって吐出される。この高温高圧の超臨界状態の第1冷媒は、第1放熱器231に流入し、空気等と熱交換して放熱し、高圧の超臨界状態の冷媒になる。この高圧の超臨界状態の第1冷媒は、熱交換器8に流入し、この熱交換器8において、第2冷媒回路を流通する第2冷媒に放熱することによって冷却され、さらに、第1減圧装置232に流入して減圧され、低温低圧の気液二相冷媒になる。この低温低圧の気液二相冷媒は、第1冷却器233に流入し、空気等と熱交換して蒸発し、低温低圧のガス状態の冷媒となる。この低温低圧のガス状態の第1冷媒は、再び、第1圧縮機230に吸入され圧縮される。
(Operation of refrigeration cycle apparatus 200)
The first refrigerant in the gas state is compressed by the first compressor 230 and discharged as a high-temperature and high-pressure supercritical refrigerant. The first high-temperature and high-pressure supercritical refrigerant flows into the first radiator 231 and exchanges heat with air or the like to dissipate heat to become a high-pressure supercritical refrigerant. The high-pressure supercritical first refrigerant flows into the heat exchanger 8, where it is cooled by dissipating heat to the second refrigerant flowing through the second refrigerant circuit. It flows into the apparatus 232 and is depressurized to become a low-temperature low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the first cooler 233, evaporates by exchanging heat with air or the like, and becomes a low-temperature and low-pressure gas-state refrigerant. The low-temperature and low-pressure gas state first refrigerant is again sucked into the first compressor 230 and compressed.
 一方、ガス状態の第2冷媒は、第2圧縮機240によって圧縮され、高温高圧のガス状態の冷媒となって吐出される。この高温高圧のガス状態の第2冷媒は、第2放熱器241に流入し、空気等と熱交換して凝縮し、高圧の液体状態の冷媒になる。この高圧の液体状態の第2冷媒は、第2減圧装置242で流入して減圧され、低温低圧の気液二相状態の冷媒になる。この低温低圧の気液二相冷媒は、熱交換器8に流入し、この熱交換器8において、第1冷媒回路を流通する第1冷媒から吸熱して蒸発し、低温低圧のガス状態の冷媒となる。この低温低圧のガス状態の第2冷媒は、再び、第2圧縮機240に吸入され圧縮される。 On the other hand, the second refrigerant in the gas state is compressed by the second compressor 240 and is discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas state second refrigerant flows into the second radiator 241, exchanges heat with air and the like, and condenses to become a high-pressure liquid state refrigerant. The second refrigerant in the high-pressure liquid state flows into the second decompression device 242 and is depressurized to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. This low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the heat exchanger 8, where it absorbs heat and evaporates from the first refrigerant flowing through the first refrigerant circuit, and is a low-temperature and low-pressure gas-state refrigerant. It becomes. The second refrigerant in the low-temperature and low-pressure gas state is again sucked into the second compressor 240 and compressed.
(実施の形態7の効果)
 以上のような構成の冷凍サイクル装置200においては、第1放熱器231を流出した第1冷媒の過冷却度を大きく確保することができ、冷凍サイクル装置200の効率を大幅に向上することができる。特に、上記の例では、第1冷媒として二酸化炭素を用いているので、熱交換器8において臨界点以上の状態で第2冷媒に対して放熱する場合、冷凍サイクル装置200の効率が特に向上する。
(Effect of Embodiment 7)
In the refrigeration cycle apparatus 200 configured as described above, a large degree of supercooling of the first refrigerant that has flowed out of the first radiator 231 can be secured, and the efficiency of the refrigeration cycle apparatus 200 can be greatly improved. . In particular, in the above example, since carbon dioxide is used as the first refrigerant, the efficiency of the refrigeration cycle apparatus 200 is particularly improved when the heat exchanger 8 dissipates heat to the second refrigerant in a state above the critical point. .
 また、熱交換器8がコンパクト化することによって、冷凍サイクル装置200全体のコンパクト化に寄与することになる。 Moreover, when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200.
 なお、第1冷媒回路を流れる第1冷媒として、二酸化炭素を用いた例を説明したが、これに限定されるものではなく、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒を用いてもよいのは言うまでもない。この場合においても、第1放熱器231を流出した第1冷媒の過冷却度を大きく確保することによって、冷凍サイクル装置200の効率を向上させることができる。 In addition, although the example which used the carbon dioxide was demonstrated as a 1st refrigerant | coolant which flows through a 1st refrigerant circuit, it is not limited to this, HFC type refrigerant | coolant, HC type | system | group refrigerant | coolant, HFO type | system | group refrigerant | coolants, such as ammonia, Needless to say, these mixed refrigerants may be used. Even in this case, the efficiency of the refrigeration cycle apparatus 200 can be improved by ensuring a large degree of supercooling of the first refrigerant that has flowed out of the first radiator 231.
 また、図9で示される冷凍サイクル装置200において、熱交換器8を放熱器として用いた場合を示したが、これに限定されるものではなく、四方弁等を用いて第1冷媒の循環方向を逆にすれば、熱交換器8を冷却器としても用いることができる。 Moreover, in the refrigeration cycle apparatus 200 shown in FIG. 9, the case where the heat exchanger 8 is used as a radiator is shown, but the present invention is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
 なお、本実施の形態では、第2冷媒回路は、蒸気圧縮式冷凍サイクルの場合を示したが、第2冷媒を水やエチレングリコール水溶液などのブライン(不凍液)、第2圧縮機240をポンプで構成しても良い。
また、図9で示されるように、本実施の形態に係る冷凍サイクル装置200における熱交換器として、実施の形態1に係る熱交換器8を用いた例を示したが、これに限定されるものではなく、実施の形態2~実施の形態6に係る熱交換器8a~8eのいずれかを用いるものとしてもよいのは言うまでもない。
In the present embodiment, the second refrigerant circuit is a vapor compression refrigeration cycle, but the second refrigerant is brine (antifreeze) such as water or ethylene glycol aqueous solution, and the second compressor 240 is pumped. It may be configured.
Moreover, as shown in FIG. 9, although the example using the heat exchanger 8 which concerns on Embodiment 1 was shown as a heat exchanger in the refrigerating-cycle apparatus 200 which concerns on this Embodiment, it is limited to this. Needless to say, any one of the heat exchangers 8a to 8e according to the second to sixth embodiments may be used.
実施の形態8.
 本実施の形態に係る冷凍サイクル装置200aについて、実施の形態7に係る冷凍サイクル装置200の構成及び動作と相違する点を中心に説明する。
Embodiment 8 FIG.
The refrigeration cycle apparatus 200a according to the present embodiment will be described focusing on differences from the configuration and operation of the refrigeration cycle apparatus 200 according to Embodiment 7.
(冷凍サイクル装置200aの構成)
 図10は、本発明の実施の形態8に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図10で示されるように、冷凍サイクル装置200aは、図9で示される実施の形態7に係る冷凍サイクル装置200の構成から第1放熱器231を除き、第1圧縮機230から吐出された高温高圧の第1冷媒の全てを熱交換器8において冷却させる構成としたものである。すなわち、図10で示される冷凍サイクル装置200aは、いわゆる二次ループ形冷凍サイクル装置となっている。この場合、本実施の形態における熱交換器8は、実施の形態7における第1放熱器231及び熱交換器8の双方の作用を代替するものである。
(Configuration of refrigeration cycle apparatus 200a)
FIG. 10 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 8 of the present invention.
As shown in FIG. 10, the refrigeration cycle apparatus 200a is the high temperature discharged from the first compressor 230 except for the first radiator 231 from the configuration of the refrigeration cycle apparatus 200 according to the seventh embodiment shown in FIG. All the high-pressure first refrigerant is cooled in the heat exchanger 8. That is, the refrigeration cycle apparatus 200a shown in FIG. 10 is a so-called secondary loop refrigeration cycle apparatus. In this case, the heat exchanger 8 in the present embodiment replaces the functions of both the first radiator 231 and the heat exchanger 8 in the seventh embodiment.
(実施の形態8の効果)
 以上の構成によって、熱交換器8における必要熱交換量が大きくなり、冷凍サイクル装置200a装置全体に占める熱交換器8の容積割合が、第1放熱器231を備えた実施の形態7に係る冷凍サイクル装置200よりも大きくなる。このとき、熱交換器8がコンパクト化されることによって、冷凍サイクル装置200a全体のコンパクト化に寄与することになる。
(Effect of Embodiment 8)
With the above configuration, the necessary heat exchange amount in the heat exchanger 8 is increased, and the volume ratio of the heat exchanger 8 in the entire refrigeration cycle apparatus 200a is the refrigeration according to the seventh embodiment including the first radiator 231. It becomes larger than the cycle device 200. At this time, the heat exchanger 8 is made compact, which contributes to making the entire refrigeration cycle apparatus 200a compact.
 なお、図10で示される冷凍サイクル装置200aにおいて、熱交換器8を放熱器として用いた場合を示したが、これに限定されるものではなく、四方弁等を用いて第1冷媒の循環方向を逆にすれば、熱交換器8を冷却器としても用いることができる。 In addition, although the case where the heat exchanger 8 was used as a radiator was shown in the refrigeration cycle apparatus 200a shown in FIG. 10, it is not limited to this, and the circulation direction of the first refrigerant using a four-way valve or the like. If the above is reversed, the heat exchanger 8 can also be used as a cooler.
実施の形態9.
 本実施の形態に係る冷凍サイクル装置は、実施の形態1に係る熱交換器8を搭載した場合を例として説明する。
Embodiment 9 FIG.
The refrigeration cycle apparatus according to the present embodiment will be described by taking as an example a case where the heat exchanger 8 according to the first embodiment is mounted.
(冷凍サイクル装置200bの構成)
 図11は、本発明の実施の形態9に係る冷凍サイクル装置の一例を示す冷媒回路図である。
 図11で示されるように、冷凍サイクル装置200bは、圧縮機250、放熱器251、熱交換器8、減圧装置252、そして、冷却器253が順に冷媒配管によって接続された冷媒回路を構成している。また、熱交換器8と減圧装置252との間の冷媒配管から分岐されたバイパス配管255が、圧縮機250の圧縮室に設けられたインジェクションポート256に、又はここでは図示しないが圧縮機250と冷却器253との間に接続されている。このバイパス配管255には、熱交換器8と減圧装置252との間の冷媒配管の分岐点からバイパス減圧装置254、そして、熱交換器8の順に設置されている。
(Configuration of refrigeration cycle apparatus 200b)
FIG. 11 is a refrigerant circuit diagram illustrating an example of a refrigeration cycle apparatus according to Embodiment 9 of the present invention.
As shown in FIG. 11, the refrigeration cycle apparatus 200b includes a refrigerant circuit in which a compressor 250, a heat radiator 251, a heat exchanger 8, a pressure reducing device 252, and a cooler 253 are sequentially connected by a refrigerant pipe. Yes. Further, a bypass pipe 255 branched from the refrigerant pipe between the heat exchanger 8 and the decompression device 252 is connected to an injection port 256 provided in the compression chamber of the compressor 250 or to the compressor 250 although not shown here. It is connected between the cooler 253. In this bypass pipe 255, the bypass pressure reducing device 254 and the heat exchanger 8 are installed in this order from the branch point of the refrigerant pipe between the heat exchanger 8 and the pressure reducing device 252.
 また、熱交換器8における第1入口ヘッダー3が冷媒配管によって放熱器251に接続され、第1出口ヘッダー4が冷媒配管によって減圧装置252に接続されている。さらに、熱交換器8における第2入口ヘッダー5が冷媒配管によってバイパス減圧装置254に接続され、第2出口ヘッダー6が冷媒配管によって圧縮機250のインジェクションポート256に接続されている。 In addition, the first inlet header 3 in the heat exchanger 8 is connected to the radiator 251 through the refrigerant pipe, and the first outlet header 4 is connected to the decompression device 252 through the refrigerant pipe. Further, the second inlet header 5 in the heat exchanger 8 is connected to the bypass pressure reducing device 254 by the refrigerant pipe, and the second outlet header 6 is connected to the injection port 256 of the compressor 250 by the refrigerant pipe.
(冷凍サイクル装置200bの動作)
 ガス冷媒は、圧縮機250によって圧縮され、高温高圧のガス冷媒となって吐出される。この高温高圧のガス冷媒は、放熱器251に流入し、空気等と熱交換して放熱し、そして、放熱器251から流出した高圧の冷媒(高温冷媒)は、熱交換器8に流入する。熱交換器8に流入した高圧の冷媒(高温冷媒)は、バイパス減圧装置254から流出した低温冷媒に放熱することによって冷却され、さらに、減圧装置252に流入して減圧され、低温低圧の気液二相冷媒となる。この低温低圧の気液二相冷媒は、冷却器253に流入し、空気等と熱交換して蒸発し、低温低圧のガス冷媒となる。この低温低圧のガス冷媒は、再び、圧縮機250に吸入され圧縮される。
(Operation of refrigeration cycle apparatus 200b)
The gas refrigerant is compressed by the compressor 250 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant flows into the radiator 251, exchanges heat with air or the like to radiate heat, and the high-pressure refrigerant (high-temperature refrigerant) that flows out of the radiator 251 flows into the heat exchanger 8. The high-pressure refrigerant (high-temperature refrigerant) that has flowed into the heat exchanger 8 is cooled by dissipating heat to the low-temperature refrigerant that has flowed out of the bypass decompression device 254, and further flows into the decompression device 252, where it is depressurized. It becomes a two-phase refrigerant. This low-temperature low-pressure gas-liquid two-phase refrigerant flows into the cooler 253, exchanges heat with air or the like, and evaporates to become a low-temperature low-pressure gas refrigerant. This low-temperature and low-pressure gas refrigerant is again sucked into the compressor 250 and compressed.
 また、熱交換器8から流出した冷媒の一部は、減圧装置252に流入する前に分岐して、バイパス配管255に流入する。バイパス配管255に流入した冷媒は、バイパス減圧装置254によって減圧され、低温の気液二相冷媒(低温冷媒)となり、熱交換器8に流入する。熱交換器8に流入した低温の気液二相冷媒(低温冷媒)は、高温冷媒から吸熱することによって加熱され、圧縮機250のインジェクションポート256から圧縮室にインジェクションされる。 Further, a part of the refrigerant that has flowed out of the heat exchanger 8 branches before flowing into the decompression device 252, and flows into the bypass pipe 255. The refrigerant flowing into the bypass pipe 255 is decompressed by the bypass decompression device 254, becomes a low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant), and flows into the heat exchanger 8. The low-temperature gas-liquid two-phase refrigerant (low-temperature refrigerant) flowing into the heat exchanger 8 is heated by absorbing heat from the high-temperature refrigerant, and is injected into the compression chamber from the injection port 256 of the compressor 250.
 なお、冷凍サイクル装置200bを循環する冷媒としては、二酸化炭素、HFC系冷媒、HC系冷媒、HFO系冷媒、アンモニア等の冷媒又はそれらの混合冷媒が用いられる。 As the refrigerant circulating in the refrigeration cycle apparatus 200b, carbon dioxide, HFC refrigerant, HC refrigerant, HFO refrigerant, refrigerant such as ammonia, or a mixed refrigerant thereof is used.
(実施の形態9の効果)
 以上のように構成された冷凍サイクル装置200bにおいても、放熱器251を流出した冷媒の過冷却度を大きく確保することができ、冷凍サイクル装置200bの効率を大幅に向上させることができる。
(Effect of Embodiment 9)
Also in the refrigeration cycle apparatus 200b configured as described above, a large degree of supercooling of the refrigerant that has flowed out of the radiator 251 can be secured, and the efficiency of the refrigeration cycle apparatus 200b can be greatly improved.
 また、図11で示される冷凍サイクル装置200bにおいては、熱交換器8からインジェクションポート256に流入する低温冷媒の飽和温度(気液平衡温度)が高いほど、圧縮機250の効率が高くなり、所要動力も小さくできる。 Further, in the refrigeration cycle apparatus 200b shown in FIG. 11, the higher the saturation temperature (gas-liquid equilibrium temperature) of the low-temperature refrigerant flowing from the heat exchanger 8 into the injection port 256, the higher the efficiency of the compressor 250. Power can be reduced.
 また、図11で示されるように、熱交換器8によって、放熱器251から流出した高温冷媒を冷却すると、特に外気温度が高く放熱器251から流出する高温冷媒の温度が比較的高い場合、熱交換器8において高温冷媒と低温冷媒との温度差を十分大きくとれる。このため、インジェクションポート256から圧縮機250の圧縮室にインジェクションされる低温冷媒の温度を高めに維持することができ、第1圧縮機230の高い効率を確保することができる。
なお、バイパス配管255の他端が圧縮機250と冷却器253との間に接続される場合、熱交換器8を用いない場合に比べ、冷凍効果を低下させることなく、冷却器253を流れる冷媒流量を低下させることができ、特に圧縮機250と冷却器253の間の配管長が長い場合、圧力損失の増加に伴う性能の低下を抑制することができる。
As shown in FIG. 11, when the high-temperature refrigerant flowing out from the radiator 251 is cooled by the heat exchanger 8, particularly when the outside air temperature is high and the temperature of the high-temperature refrigerant flowing out from the radiator 251 is relatively high, In the exchanger 8, the temperature difference between the high temperature refrigerant and the low temperature refrigerant can be sufficiently large. For this reason, the temperature of the low-temperature refrigerant injected into the compression chamber of the compressor 250 from the injection port 256 can be maintained high, and high efficiency of the first compressor 230 can be ensured.
In addition, when the other end of the bypass pipe 255 is connected between the compressor 250 and the cooler 253, the refrigerant flowing through the cooler 253 without reducing the refrigeration effect compared to the case where the heat exchanger 8 is not used. The flow rate can be reduced. In particular, when the piping length between the compressor 250 and the cooler 253 is long, it is possible to suppress a decrease in performance due to an increase in pressure loss.
 また、熱交換器8がコンパクト化することによって、冷凍サイクル装置200b全体のコンパクト化に寄与することになる。 Moreover, when the heat exchanger 8 is downsized, it contributes to downsizing of the entire refrigeration cycle apparatus 200b.
実施の形態10.
 本実施の形態に係る熱交換器8fについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
Embodiment 10 FIG.
The heat exchanger 8f according to the present embodiment will be described with a focus on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
図12は、本発明の実施の形態10に係る熱交換器8fの側面図であり、(a)は中間ヘッダー31の断面がほぼ円形の筒状形状、(b)は中間ヘッダー31の断面が楕円形や長方形状の筒状形状の場合を示す。
 中間ヘッダー31は、上流側第1扁平管11において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を流下させて外部に流出させるために、下側側面部の一部が開口されている。
 このような構成にすれば、熱交換器を水平配置にした場合でも、中間ヘッダーで液分離が可能となり、実施の形態1と同様、気液二相状態の高温冷媒は、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、凝縮性能及び熱交換性能を向上させることができる。
12A and 12B are side views of the heat exchanger 8f according to the tenth embodiment of the present invention. FIG. 12A is a cylindrical shape in which the cross section of the intermediate header 31 is substantially circular, and FIG. An elliptical or rectangular cylindrical shape is shown.
The intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and in order to cause the liquid high-temperature refrigerant to flow down and flow outside, A part of the side surface portion is opened.
With such a configuration, even when the heat exchanger is horizontally arranged, liquid separation is possible at the intermediate header, and the high-temperature refrigerant in the gas-liquid two-phase state is the first flat side on the downstream side as in the first embodiment. The amount of liquid high-temperature refrigerant flowing into the pipe 12 can be reduced, and the condensation performance and heat exchange performance can be improved.
 また、図12(b)に示すような構成にすれば、中間ヘッダー部の底部のスペースで凝縮液の重力分離が促進されること、また、バッファースペースとなるため上流側で生成した凝縮液が多い場合でもオーバーフローして下流側に凝縮液が流出しないため、より安定して凝縮性能及び熱交換性能を向上させることができる。
 なお、本実施の形態の熱交換器8fの中間ヘッダーに、図4で示される実施の形態3に係る熱交換器8における衝突部材32を適用してもよい。
12B, the gravity separation of the condensate is promoted in the space at the bottom of the intermediate header part, and the condensate generated on the upstream side becomes a buffer space. Even in the case of a large amount, the overflow does not occur and the condensate does not flow downstream, so that the condensation performance and the heat exchange performance can be improved more stably.
In addition, you may apply the collision member 32 in the heat exchanger 8 which concerns on Embodiment 3 shown by FIG. 4 to the intermediate header of the heat exchanger 8f of this Embodiment.
実施の形態11.
 本実施の形態に係る熱交換器8gについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
本実施の形態においては、第1扁平管1、第2扁平管2が上下方向、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッダー6及び中間ヘッダー31が水平に配置される構成について説明する。
Embodiment 11 FIG.
The heat exchanger 8g according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
In the present embodiment, the first flat tube 1 and the second flat tube 2 are in the vertical direction, and the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are The structure arrange | positioned horizontally is demonstrated.
図13は、本発明の実施の形態11に係る熱交換器8gの外観図であり、ぞれぞれ(a)に斜視図、(b)に側面図を示す。
 中間ヘッダー31は、上流側第1扁平管11において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を外部に流出させるために、一方の端部が開口されている。また、中間ヘッダー内には、上流側から流入する凝縮液をトラップし、かつ、その凝縮液が上記端部に流れるように上下方向に少し傾斜したトラップ部材が挿入されている。
FIG. 13 is an external view of a heat exchanger 8g according to Embodiment 11 of the present invention, in which (a) is a perspective view and (b) is a side view.
The intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and has one end portion for allowing the liquid high-temperature refrigerant to flow out to the outside. Is open. Further, a trap member that is slightly inclined in the vertical direction is inserted into the intermediate header so as to trap the condensate flowing in from the upstream side and to flow the condensate to the end portion.
このような構成にすれば、熱交換器を垂直配置にした場合でも、中間ヘッダーで液分離が可能となり、実施の形態1と同様、気液二相状態の高温冷媒は、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、凝縮性能及び熱交換性能を向上させることができる。
 なお、本実施の形態の熱交換器8gの中間ヘッダーに、図4で示される実施の形態3に係る熱交換器8における衝突部材32を適用してもよい。
With such a configuration, even when the heat exchanger is arranged vertically, liquid separation is possible at the intermediate header, and the high-temperature refrigerant in the gas-liquid two-phase state is the first flat side on the downstream side as in the first embodiment. The amount of liquid high-temperature refrigerant flowing into the pipe 12 can be reduced, and the condensation performance and heat exchange performance can be improved.
In addition, you may apply the collision member 32 in the heat exchanger 8 which concerns on Embodiment 3 shown by FIG. 4 to the intermediate header of the heat exchanger 8g of this Embodiment.
実施の形態12.
 本実施の形態に係る熱交換器8h、8iについて、実施の形態1に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
本実施の形態においては、第1扁平管1、第2扁平管2が上下方向、第1入口ヘッダー3、第1出口ヘッダー4、第2入口ヘッダー5、第2出口ヘッダー6及び中間ヘッダー31が水平に配置される構成について説明する。
Embodiment 12 FIG.
The heat exchangers 8h and 8i according to the present embodiment will be described focusing on differences from the configuration and operation of the heat exchanger 8 according to the first embodiment.
In the present embodiment, the first flat tube 1 and the second flat tube 2 are in the vertical direction, and the first inlet header 3, the first outlet header 4, the second inlet header 5, the second outlet header 6 and the intermediate header 31 are The structure arrange | positioned horizontally is demonstrated.
図14、図15は、本発明の実施の形態11に係る熱交換器8h、8iの外観図であり、ぞれぞれ(a)に斜視図、(b)に側面図を示す。
 中間ヘッダー31は、上流側第1扁平管11において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を外部に流出させるために、側面部の一部が開口されている。また、下流側第2扁平管12の一方の端部は中間ヘッダー31の内部に突き出して固定されている。
14 and 15 are external views of heat exchangers 8h and 8i according to Embodiment 11 of the present invention, in which (a) is a perspective view and (b) is a side view, respectively.
The intermediate header 31 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant in the upstream first flat tube 11, and one side surface portion is provided to allow the liquid high-temperature refrigerant to flow out. The part is opened. Further, one end of the downstream second flat tube 12 protrudes into the intermediate header 31 and is fixed.
このような構成にすれば、熱交換器を垂直配置にした場合でも、中間ヘッダーで液分離が可能となり、実施の形態1と同様、気液二相状態の高温冷媒は、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、凝縮性能及び熱交換性能を向上させることができる。 With such a configuration, even when the heat exchanger is arranged vertically, liquid separation is possible at the intermediate header, and the high-temperature refrigerant in the gas-liquid two-phase state is the first flat side on the downstream side as in the first embodiment. The amount of liquid high-temperature refrigerant flowing into the pipe 12 can be reduced, and the condensation performance and heat exchange performance can be improved.
 また、図15に示すように、中間ヘッダー31内の上記端部の先端を曲げて構成すれば、上流側の凝縮液が直接、下流側第1扁平管12に流入するのを抑制でき、中間ヘッダーでの液分離をより促進できる。また、その凝縮液を外部に流出させるために側面部の一部で接続された配管の端部を下方に曲げて中間ヘッダーに固定する構成にすれば、上記外部に流出させるために接続された配管から、ガスを流出させることなく安定して凝縮液の分離を行うことができる。 Further, as shown in FIG. 15, if the tip of the end in the intermediate header 31 is bent, the upstream condensate can be prevented from flowing directly into the downstream first flat tube 12, Liquid separation at the header can be further promoted. In addition, if the configuration is such that the end of the pipe connected at a part of the side surface portion is bent downward and fixed to the intermediate header in order to allow the condensate to flow outside, the condensate is connected to flow out to the outside. The condensate can be stably separated from the piping without causing gas to flow out.
なお、本実施の形態の熱交換器8h、8iの中間ヘッダーに、図4で示される実施の形態3に係る熱交換器8における衝突部材32を適用してもよい。 In addition, you may apply the collision member 32 in the heat exchanger 8 which concerns on Embodiment 3 shown by FIG. 4 to the intermediate header of the heat exchangers 8h and 8i of this Embodiment.
実施の形態13.
 本実施の形態に係る熱交換器8jについて、実施の形態6に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
実施の形態6においては、高温冷媒が流通する冷媒流路、及び、低温冷媒が流通する冷媒流路が一体として形成された構成のうち、第1冷媒パス101、第2冷媒パス102、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a、第2出口連通穴106a及び中間連通穴131が上下方向に配置される場合について示したが、本実施の形態では、それらが水平に配置される構成について説明する。
Embodiment 13 FIG.
The heat exchanger 8j according to the present embodiment will be described focusing on the differences from the configuration and operation of the heat exchanger 8 according to the sixth embodiment.
In the sixth embodiment, the first refrigerant path 101, the second refrigerant path 102, the first refrigerant path, and the first refrigerant path 101 are integrally formed of a refrigerant flow path through which a high-temperature refrigerant flows and a refrigerant flow path through which a low-temperature refrigerant flows. Although the case where the inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are arranged in the vertical direction has been shown, A configuration in which is arranged horizontally will be described.
図16は、本発明の実施の形態13に係る熱交換器8jの斜視図である。中間連通穴131は、上流側において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を流下させて外部に流出させるために、下側側面部の一部が開口(図示せず)されている。 FIG. 16 is a perspective view of a heat exchanger 8j according to Embodiment 13 of the present invention. The intermediate communication hole 131 has a function of separating the condensed liquid high-temperature refrigerant from the high-temperature refrigerant on the upstream side, and in order to cause the liquid high-temperature refrigerant to flow down and flow outside, A part is opened (not shown).
 このような構成にすれば、熱交換器を水平配置にした場合でも、中間連通穴で液分離が可能となり、実施の形態6と同様、気液二相状態の高温冷媒は、下流側へ流入する液状態の高温冷媒の量を低減し、凝縮性能及び熱交換性能を向上させることができる。 With such a configuration, even when the heat exchanger is horizontally arranged, liquid separation can be performed at the intermediate communication hole, and the high-temperature refrigerant in the gas-liquid two-phase state flows downstream as in the sixth embodiment. The amount of high-temperature refrigerant in the liquid state can be reduced, and the condensation performance and heat exchange performance can be improved.
 なお、本実施の形態の熱交換器8jの中間連通穴に、図12(b)で示される実施の形態10に係る熱交換器8における中間ヘッダーのような断面形状の穴を適用してもよい。
 また、本実施の形態の熱交換器8jの中間ヘッダーに、図4で示される実施の形態3に係る熱交換器8における衝突部材32を適用してもよい。
Note that a hole having a cross-sectional shape like the intermediate header in the heat exchanger 8 according to Embodiment 10 shown in FIG. 12B is applied to the intermediate communication hole of the heat exchanger 8j of this embodiment. Good.
Moreover, you may apply the collision member 32 in the heat exchanger 8 which concerns on Embodiment 3 shown by FIG. 4 to the intermediate header of the heat exchanger 8j of this Embodiment.
実施の形態14.
 本実施の形態に係る熱交換器8kについて、実施の形態6に係る熱交換器8の構成及び動作と相違する点を中心に説明する。
Embodiment 14 FIG.
The heat exchanger 8k according to the present embodiment will be described mainly with respect to differences from the configuration and operation of the heat exchanger 8 according to the sixth embodiment.
実施の形態6においては、高温冷媒が流通する冷媒流路、及び、低温冷媒が流通する冷媒流路が一体として形成された構成のうち第1冷媒パス101、第2冷媒パス102、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a、第2出口連通穴106a及び中間連通穴131が上下方向に配置される場合について示した。本実施の形態においては、第1冷媒パス101、第2冷媒パス102が上下方向、第1入口連通穴103a、第1出口連通穴104a、第2入口連通穴105a、第2出口連通穴106a及び中間連通穴131が水平に配置される構成について説明する。 In the sixth embodiment, the first refrigerant path 101, the second refrigerant path 102, the first inlet of the configuration in which the refrigerant flow path through which the high-temperature refrigerant flows and the refrigerant flow path through which the low-temperature refrigerant flows are integrally formed. The case where the communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and the intermediate communication hole 131 are arranged in the vertical direction is shown. In the present embodiment, the first refrigerant path 101 and the second refrigerant path 102 are in the vertical direction, the first inlet communication hole 103a, the first outlet communication hole 104a, the second inlet communication hole 105a, the second outlet communication hole 106a, and A configuration in which the intermediate communication hole 131 is horizontally disposed will be described.
図17は、本発明の実施の形態14に係る熱交換器8kの外観図である。中間連通穴131は、上流側において高温冷媒のうち凝縮した液状の高温冷媒を分離する機能を有しており、その液状の高温冷媒を外部に流出させるために、一方の端部が開口されている。また、中間連通穴中131内には、図13で示される実施の形態11に係わる熱交換器8におけるトラップ部材31aが取り付けられている。 FIG. 17 is an external view of a heat exchanger 8k according to Embodiment 14 of the present invention. The intermediate communication hole 131 has a function of separating the condensed liquid high-temperature refrigerant out of the high-temperature refrigerant on the upstream side, and one end portion is opened to allow the liquid high-temperature refrigerant to flow out to the outside. Yes. Further, a trap member 31a in the heat exchanger 8 according to the eleventh embodiment shown in FIG.
このような構成にすれば、熱交換器を垂直配置にした場合でも、中間ヘッダーで液分離が可能となり、実施の形態6と同様、気液二相状態の高温冷媒は、下流側第1扁平管12へ流入する液状態の高温冷媒の量を低減し、凝縮性能及び熱交換性能を向上させることができる。 With such a configuration, even when the heat exchanger is arranged vertically, liquid separation can be performed at the intermediate header, and the high-temperature refrigerant in the gas-liquid two-phase state is the first flat side on the downstream side as in the sixth embodiment. The amount of liquid high-temperature refrigerant flowing into the pipe 12 can be reduced, and the condensation performance and heat exchange performance can be improved.
 なお、本実施の形態の熱交換器8kの中間ヘッダーに、図4で示される実施の形態3に係る熱交換器8における衝突部材32を適用してもよい。 In addition, you may apply the collision member 32 in the heat exchanger 8 which concerns on Embodiment 3 shown by FIG. 4 to the intermediate header of the heat exchanger 8k of this Embodiment.
 1 第1扁平管、2 第2扁平管、3 第1入口ヘッダー、4 第1出口ヘッダー、5 第2入口ヘッダー、6 第2出口ヘッダー、8、8a~8e 熱交換器、11 上流側第1扁平管、12 下流側第1扁平管、21 下流側第2扁平管、22 上流側第2扁平管、31 中間ヘッダー、32 衝突部材、41 流出管、42 バイパス配管、42a バイパス流路、43 流量調整手段、51 中間ヘッダー、101 第1冷媒パス、101a 第1冷媒流路、102 第2冷媒パス、102a 第2冷媒流路、103 第1入口接続管、103a 第1入口連通穴、104 第1出口接続管、104a 第1出口連通穴、105 第2入口接続管、105a 第2入口連通穴、106 第2出口接続管、106a 第2出口連通穴、110 本体、131 中間連通穴、200、200a、200b 冷凍サイクル装置、230 第1圧縮機、231 第1放熱器、232 第1減圧装置、233 第1冷却器、240 第2圧縮機、241 第2放熱器、242 第2減圧装置、250 圧縮機、251 放熱器、252 減圧装置、253 冷却器、254 バイパス減圧装置、255 バイパス配管、256 インジェクションポート。 1 1st flat tube, 2nd flat tube, 3rd first inlet header, 4th first outlet header, 5th 2nd inlet header, 6th 2nd outlet header, 8, 8a ~ 8e heat exchanger, 11 upstream first Flat tube, 12 downstream first flat tube, 21 downstream second flat tube, 22 upstream second flat tube, 31 intermediate header, 31 intermediate header, 32 impact member, 41 outflow tube, 42 bypass piping, 42a bypass flow path, 43 flow rate Adjustment means, 51, intermediate header, 101, first refrigerant path, 101a, first refrigerant flow path, 102, second refrigerant path, 102a, second refrigerant flow path, 103, first inlet connection pipe, 103a, first inlet communication hole, 104, first Outlet connection pipe, 104a, first outlet communication hole, 105, second inlet connection pipe, 105a, second inlet communication hole, 106, second outlet connection pipe, 106a, second outlet communication hole 110 main body, 131 intermediate communication hole, 200, 200a, 200b refrigeration cycle apparatus, 230 first compressor, 231 first radiator, 232 first decompressor, 233 first cooler, 240 second compressor, 241 second Radiator, 242 second decompressor, 250 compressor, 251 radiator, 252 decompressor, 253 cooler, 254 bypass decompressor, 255 bypass pipe, 256 injection port.

Claims (15)

  1.  高温冷媒が流れる複数の冷媒流路が並列配置されて構成された第1流路部と、
     低温冷媒が流れる複数の冷媒流路が並列配置されて構成された第2流路部と、
     前記第1流路部の高温冷媒の流通方向の一方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、高温冷媒を外部から前記第1流路部に流入させる第1入口部と、
     前記第1流路部の高温冷媒の流通方向の他方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、高温冷媒を前記第1流路部から外部に流出させる第1出口部と、
     前記第2流路部の低温冷媒の流通方向の一方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、低温冷媒を外部から前記第2流路部に流入させる第2入口部と、
     前記第2流路部の低温冷媒の流通方向の他方の端部に配置され、その各冷媒流路に連通した筒状の流路を形成し、低温冷媒を前記第2流路部から外部に流出させる第2出口部と、
     前記第1流路部の冷媒流路の途中に配置され、前記第1流路部の少なくとも一部の冷媒流路に連通した筒状の流路を形成した中間連通部と、
     を備え、
     前記第1流路部の各冷媒流路と前記第2流路部の各冷媒流路とは、流路方向が平行であり、かつ、互いに隔壁を介して隣接するように配置され、
     前記中間連通部は、前記第1流路部の上流側部分において液化した高温冷媒を下方に流下させる
     ことを特徴とする熱交換器。
    A first flow path portion configured by arranging a plurality of refrigerant flow paths through which a high-temperature refrigerant flows;
    A second flow path portion configured by arranging a plurality of refrigerant flow paths through which a low-temperature refrigerant flows;
    A cylindrical flow path is formed at one end of the first flow path portion in the flow direction of the high-temperature refrigerant and communicated with each of the refrigerant flow paths, and the high-temperature refrigerant is passed from the outside to the first flow path portion. A first inlet to be introduced,
    A cylindrical flow path is formed at the other end of the first flow path portion in the flow direction of the high-temperature refrigerant, and communicates with each of the refrigerant flow paths. A first outlet portion for draining;
    A cylindrical flow path is formed at one end of the second flow path portion in the flow direction of the low-temperature refrigerant and communicated with each of the refrigerant flow paths, and the low-temperature refrigerant is supplied from the outside to the second flow path portion. A second inlet to be introduced,
    The second flow path portion is disposed at the other end in the flow direction of the low-temperature refrigerant to form a cylindrical flow path that communicates with each of the refrigerant flow paths, and the low-temperature refrigerant is discharged from the second flow path portion to the outside. A second outlet portion for draining;
    An intermediate communication part that is disposed in the middle of the refrigerant flow path of the first flow path part and forms a cylindrical flow path that communicates with at least a part of the refrigerant flow path of the first flow path part;
    With
    Each refrigerant flow path of the first flow path section and each refrigerant flow path of the second flow path section are arranged so that the flow path directions are parallel and adjacent to each other via a partition wall,
    The intermediate communication portion causes the high-temperature refrigerant liquefied in the upstream portion of the first flow path portion to flow downward.
  2.  前記高温冷媒が流れる複数の冷媒流路及び、低温冷媒が流れる複数の冷媒流路は、上下方向に配置されている
     ことを特徴とする請求項1記載の熱交換器。
    The heat exchanger according to claim 1, wherein the plurality of refrigerant flow paths through which the high-temperature refrigerant flows and the plurality of refrigerant flow paths through which the low-temperature refrigerant flows are arranged in the vertical direction.
  3.  前記中間連通部は、その下端部が閉口しており、
     前記第1流路部は、前記中間連通部に対する上流側部分の下面よりも、前記中間連通部を介して反対側に位置する下流側部分の下面の方が下方に位置するように構成され、
     前記下流側部分において、前記上流側部分の下面よりも下方部分に形成された冷媒流路であるバイパス流路を備えた
     ことを特徴とする請求項2記載の熱交換器。
    The intermediate communication portion has a lower end closed.
    The first flow path portion is configured such that the lower surface of the downstream portion located on the opposite side via the intermediate communication portion is positioned below the lower surface of the upstream portion with respect to the intermediate communication portion,
    The heat exchanger according to claim 2, further comprising a bypass channel that is a refrigerant channel formed in a lower portion of the downstream portion than a lower surface of the upstream portion.
  4.  前記第1出口部及び前記中間連通部は、下端部又は側面部が開口しており、
     前記第1出口部から延設された配管又は該第1出口部の外部と接続する側と、前記中間連通部の下端部又は側面部とを接続し、前記第1出口部及び前記中間連通部から流出した高温冷媒を合流させるバイパス配管を備えた
     ことを特徴とする請求項1記載の熱交換器。
    The first outlet part and the intermediate communication part have a lower end part or a side part opened,
    A pipe extending from the first outlet part or a side connected to the outside of the first outlet part and a lower end part or a side part of the intermediate communication part are connected, and the first outlet part and the intermediate communication part are connected. The heat exchanger according to claim 1, further comprising a bypass pipe that joins the high-temperature refrigerant that has flowed out of the refrigerant.
  5.  前記第1流路部及び前記第2流路部は、一体として形成された
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の熱交換器。
    The heat exchanger according to any one of claims 1 to 4, wherein the first channel portion and the second channel portion are integrally formed.
  6.  前記第1入口部及び前記第1出口部は、前記第1流路部の各冷媒流路に連通するように、貫通させた穴として形成され、
     前記第2入口部及び前記第2出口部は、前記第2流路部の各冷媒流路に連通するように、貫通させた穴として形成された
     ことを特徴とする請求項5記載の熱交換器。
    The first inlet part and the first outlet part are formed as holes that are penetrated so as to communicate with each refrigerant flow path of the first flow path part,
    The heat exchange according to claim 5, wherein the second inlet portion and the second outlet portion are formed as through holes so as to communicate with the respective refrigerant flow paths of the second flow path section. vessel.
  7.  前記第1流路部と前記第2流路部とは、別体で形成され、当接面で接合されて構成された
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の熱交換器。
    The first flow path section and the second flow path section are formed as separate bodies, and are configured to be joined at a contact surface. The described heat exchanger.
  8.  前記中間連通部は、前記第1流路部の少なくとも一部の冷媒流路に連通するように、貫通させた穴として形成された
     ことを特徴とする請求項1~請求項7のいずれか一項に記載の熱交換器。
    The intermediate communication part is formed as a through-hole so as to communicate with at least a part of the refrigerant flow path of the first flow path part. The heat exchanger according to item.
  9.  前記第1流路部の高温冷媒の流通方向の一方の端部に配置された前記第1入口部と、前記第2流路部の低温冷媒の流通方向の両端部のうち、前記一方の端部と同じ側の端部に接続された前記第2入口部又は前記第2出口部とを、各冷媒の流通方向に所定量ずらして配置し、
     前記第1流路部の高温冷媒の流通方向の他方の端部に配置された前記第1出口部と、前記第2流路部の低温冷媒の流通方向の両端部のうち、前記他方の端部と同じ側の端部に接続された前記第2入口部又は前記第2出口部とを、各冷媒の流通方向に所定量ずらして配置した
     ことを特徴とする請求項1~請求項8のいずれか一項に記載の熱交換器。
    Of the first inlet portion disposed at one end of the first flow path portion in the flow direction of the high-temperature refrigerant and the both ends of the second flow path portion in the flow direction of the low-temperature refrigerant, the one end The second inlet part or the second outlet part connected to the end on the same side as the part is arranged with a predetermined amount shifted in the flow direction of each refrigerant,
    The other end of the first outlet portion disposed at the other end portion of the first flow path portion in the flow direction of the high-temperature refrigerant and the both ends of the second flow path portion in the flow direction of the low-temperature refrigerant. 9. The second inlet portion or the second outlet portion connected to an end portion on the same side as the portion is arranged so as to be shifted by a predetermined amount in the flow direction of each refrigerant. The heat exchanger as described in any one.
  10.  前記第1流路部の上流側部分と下流側部分とが上下方向に分離して配置され、
     前記上流側部分は、高温冷媒の流通方向の一方の端部が前記中間連結部に接続され、他方の端部が前記第1入口部に接続され、
     前記下流側部分は、高温冷媒の流通方向の一方の端部が前記中間連結部に接続され、他方の端部が前記第1出口部に接続された
     ことを特徴とする請求項7記載の熱交換器。
    An upstream part and a downstream part of the first flow path part are arranged separately in the vertical direction,
    In the upstream portion, one end in the flow direction of the high-temperature refrigerant is connected to the intermediate coupling portion, and the other end is connected to the first inlet portion.
    8. The heat according to claim 7, wherein the downstream portion has one end in the flow direction of the high-temperature refrigerant connected to the intermediate coupling portion and the other end connected to the first outlet portion. Exchanger.
  11.  平面視において、前記第1流路部の上流側部分及び下流側部分は、該上流側部分の冷媒流路方向と該下流側部分の冷媒流路方向とが平行となるように、前記中間連通部に接続され、
     前記中間連通部と、前記第2流路部の低温冷媒の流通方向の両端部のうち、前記中間連通部と同じ側の端部に接続された前記第2入口部又は前記第2出口部とを、各冷媒の流通方向に所定量ずらして配置し、
     前記第1入口部及び前記第1出口部と、前記第2流路部の低温冷媒の流通方向の両端部のうち、前記中間連通部と反対側の端部に接続された前記第2入口部又は前記第2出口部とを、各冷媒の流通方向に所定量ずらして配置した
     ことを特徴とする請求項10記載の熱交換器。
    In plan view, the upstream communication portion and the downstream communication portion of the first flow channel section are arranged so that the refrigerant flow direction of the upstream flow portion and the refrigerant flow direction of the downstream flow portion are parallel to each other. Connected to the
    The intermediate inlet and the second inlet or the second outlet connected to the end on the same side as the intermediate outlet of both ends of the second flow path in the flow direction of the low-temperature refrigerant Are shifted by a predetermined amount in the flow direction of each refrigerant,
    Of the first inlet portion and the first outlet portion, and the second inlet portion connected to the opposite end of the intermediate communication portion among both ends of the second flow path portion in the flow direction of the low-temperature refrigerant. Alternatively, the heat exchanger according to claim 10, wherein the second outlet portion is arranged by being shifted by a predetermined amount in the flow direction of each refrigerant.
  12.  前記中間連通部は、その内部に、流入した気液二相状態の高温冷媒における液相部分と衝突し、該液相部分を下方に流下させる衝突部材を有した
     ことを特徴とする請求項1~請求項11のいずれか一項に記載の熱交換器。
    The intermediate communication portion includes a collision member that collides with a liquid phase portion in a flowing high-temperature refrigerant in a gas-liquid two-phase state and causes the liquid phase portion to flow downward. The heat exchanger according to any one of claims 11 to 11.
  13.  前記中間連通部は、円筒形状とし、高温冷媒がその円形断面の接線方向に向かって流入するように形成された
     ことを特徴とする請求項1~請求項12のいずれか一項に記載の熱交換器。
    The heat according to any one of claims 1 to 12, wherein the intermediate communication portion has a cylindrical shape and is formed such that the high-temperature refrigerant flows in a tangential direction of the circular cross section. Exchanger.
  14.  前記第1流路部における高温冷媒の流通方向、及び、前記第2流路部における低温冷媒の流通方向が、少なくとも一部の冷媒流路において対向流となるように構成された
     ことを特徴とする請求項1~請求項13のいずれか一項に記載の熱交換器。
    The flow direction of the high-temperature refrigerant in the first flow path part and the flow direction of the low-temperature refrigerant in the second flow path part are configured to be opposed to each other in at least some of the refrigerant flow paths. The heat exchanger according to any one of claims 1 to 13.
  15.  請求項1~請求項14のいずれか一項に記載の熱交換器を備えた
     ことを特徴とする冷凍サイクル装置。
    A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 14.
PCT/JP2012/002912 2011-05-06 2012-04-27 Heat exchanger and cold cycle device provided therewith WO2012153490A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-103661 2011-05-06
JP2011103661A JP2014139484A (en) 2011-05-06 2011-05-06 Heat exchanger and refrigeration cycle device including the same

Publications (1)

Publication Number Publication Date
WO2012153490A1 true WO2012153490A1 (en) 2012-11-15

Family

ID=47138979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002912 WO2012153490A1 (en) 2011-05-06 2012-04-27 Heat exchanger and cold cycle device provided therewith

Country Status (2)

Country Link
JP (1) JP2014139484A (en)
WO (1) WO2012153490A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7010608B2 (en) * 2017-06-28 2022-01-26 日立ジョンソンコントロールズ空調株式会社 Air-cooled absorption chiller
JP7221158B2 (en) * 2019-07-03 2023-02-13 三菱重工パワー環境ソリューション株式会社 Heat exchanger, flue gas treatment device, and heat exchanger replacement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822855A (en) * 1981-07-31 1983-02-10 クラリオン株式会社 Condenser
JPS5852954A (en) * 1981-09-25 1983-03-29 クラリオン株式会社 Condenser
JPS63223492A (en) * 1987-03-11 1988-09-16 Okawara Mfg Co Ltd Heat exchanger
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
WO2007122685A1 (en) * 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigeration air conditioner
JP2009079781A (en) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
JP2009121758A (en) * 2007-11-15 2009-06-04 Mitsubishi Electric Corp Heat exchanger and cryogenic system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822855A (en) * 1981-07-31 1983-02-10 クラリオン株式会社 Condenser
JPS5852954A (en) * 1981-09-25 1983-03-29 クラリオン株式会社 Condenser
JPS63223492A (en) * 1987-03-11 1988-09-16 Okawara Mfg Co Ltd Heat exchanger
JP2006112756A (en) * 2004-10-18 2006-04-27 Mitsubishi Electric Corp Heat exchanger
WO2007122685A1 (en) * 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigeration air conditioner
JP2009079781A (en) * 2007-09-25 2009-04-16 Mitsubishi Electric Corp Heat exchanger, heat pump water heater using the same, and heat pump air conditioner
JP2009121758A (en) * 2007-11-15 2009-06-04 Mitsubishi Electric Corp Heat exchanger and cryogenic system

Also Published As

Publication number Publication date
JP2014139484A (en) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5777622B2 (en) Heat exchanger, heat exchange method and refrigeration air conditioner
JP5758991B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2009287837A (en) Refrigeration cycle device
KR101755456B1 (en) Heat exchanger
JP2006329511A (en) Heat exchanger
JP6341099B2 (en) Refrigerant evaporator
JP6218944B2 (en) Air conditioner
JP2015141009A (en) Heat exchanger for heat source unit of refrigeration device and heat source unit including the same
JP2016095094A (en) Heat exchanger and refrigeration cycle device
KR101173157B1 (en) Air-Conditioning System for Vehicle having Water-Cooled Condenser and Water-Cooled Heat Exchanger for Supercooling
JP4577188B2 (en) Cooling system
WO2012153490A1 (en) Heat exchanger and cold cycle device provided therewith
JP2005127529A (en) Heat exchanger
RU2693946C2 (en) Micro-channel heat exchanger resistant to frost formation
JP5540816B2 (en) Evaporator unit
JP5262916B2 (en) Heat exchanger
JP5709777B2 (en) Heat exchanger and refrigeration air conditioner
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
JP2014126284A (en) Refrigeration device
JP6599056B1 (en) Gas header, heat exchanger and refrigeration cycle apparatus
JP2018048766A (en) Parallel flow heat exchanger and refrigeration cycle device
JP6111655B2 (en) Refrigeration equipment
CN221005577U (en) Condenser and refrigerant circulation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12782365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP