JP2007040605A - Heat exchanger for multistage compression type refrigeration cycle device - Google Patents

Heat exchanger for multistage compression type refrigeration cycle device Download PDF

Info

Publication number
JP2007040605A
JP2007040605A JP2005225293A JP2005225293A JP2007040605A JP 2007040605 A JP2007040605 A JP 2007040605A JP 2005225293 A JP2005225293 A JP 2005225293A JP 2005225293 A JP2005225293 A JP 2005225293A JP 2007040605 A JP2007040605 A JP 2007040605A
Authority
JP
Japan
Prior art keywords
radiator
heat exchanger
refrigerant
refrigeration cycle
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225293A
Other languages
Japanese (ja)
Inventor
Tadashi Ikeda
直史 池田
Junichiro Kasuya
潤一郎 粕谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005225293A priority Critical patent/JP2007040605A/en
Publication of JP2007040605A publication Critical patent/JP2007040605A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0443Combination of units extending one beside or one above the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F2009/0285Other particular headers or end plates
    • F28F2009/0287Other particular headers or end plates having passages for different heat exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger for multistage compression type refrigeration cycle device, which is miniaturized by incorporating a first radiator and a second radiator to a multiflow heat exchanger in an integrated manner. <P>SOLUTION: In the heat exchanger for multistage compression type refrigeration cycle device comprises the first radiator for cooling primarily compressed refrigerant and the second radiator B for cooling secondarily compressed refrigerant, the first radiator A and the second radiator B are formed as an integrated unit by the multiflow heat exchanger 10 including a pair of headers 11 and 12 for dividing or combining the refrigerant, a plurality of refrigerant distributing heat exchanger tubes erected at intervals between the headers 11 and 12 and a heat exchanger fin 14 interposed each between the heat exchanger tubes 13. According to this structure, the setting space of the first radiator A and the second radiator can be minimized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷媒として二酸化炭素(CO2)冷媒等を複数回に亘って圧縮する多段圧縮式冷凍サイクル装置に使用される熱交換器に関するものである。 The present invention relates to a heat exchanger used in a multistage compression refrigeration cycle apparatus that compresses a carbon dioxide (CO 2 ) refrigerant or the like as a refrigerant a plurality of times.

従来、この種の多段圧縮式冷凍サイクル装置として図9に示されたものが知られており、この冷凍サイクル装置の冷媒サイクルを図9を参照して説明する。なお、実線矢印はCO2冷媒の流れを示す。 Conventionally, as this type of multistage compression refrigeration cycle apparatus, what is shown in FIG. 9 is known, and the refrigerant cycle of this refrigeration cycle apparatus will be described with reference to FIG. The solid arrow indicates the flow of the CO 2 refrigerant.

まず、CO2冷媒は多段(2段)圧縮可能な圧縮機1で一次圧縮され、この一次圧縮されたCO2冷媒が第1放熱器2に流される。この第1放熱器2で冷却されたCO2冷媒は再び圧縮機1に戻され、圧縮機1で二次圧縮される。二次圧縮されたCO2冷媒は第2放熱器3に流され、第2放熱器3で冷却される。この低温のCO2冷媒は二重管構造の内部熱交換器4に流され、内部熱交換器4で更に冷却される。しかる後、この低温のCO2冷媒は膨張弁5を通って減圧され、減圧低温冷媒となる。この減圧低温冷媒は蒸発器6に流され、熱交換媒体である水や空気等から吸熱する。この吸熱したCO2冷媒は内部熱交換器4に流され、内部熱交換器4で更に吸熱し、しかる後、低圧高温冷媒となって圧縮機1に戻ることとなる。
特開2004−317073号公報
First, the CO 2 refrigerant is primarily compressed by a multistage (two-stage) compressible compressor 1, and this primarily compressed CO 2 refrigerant is passed through the first radiator 2. The CO 2 refrigerant cooled by the first radiator 2 is returned to the compressor 1 and is secondarily compressed by the compressor 1. The second-compressed CO 2 refrigerant flows into the second radiator 3 and is cooled by the second radiator 3. This low-temperature CO 2 refrigerant flows into the internal heat exchanger 4 having a double-pipe structure, and is further cooled by the internal heat exchanger 4. Thereafter, the low-temperature CO 2 refrigerant is depressurized through the expansion valve 5 and becomes a depressurized low-temperature refrigerant. The reduced-pressure low-temperature refrigerant flows into the evaporator 6 and absorbs heat from water, air, or the like that is a heat exchange medium. The absorbed CO 2 refrigerant flows into the internal heat exchanger 4, further absorbs heat in the internal heat exchanger 4, and then returns to the compressor 1 as a low-pressure high-temperature refrigerant.
JP 2004-317073 A

ところで、従来の多段圧縮式冷凍サイクル装置に使用されている熱交換器、即ち、第1放熱器2及び第2放熱器3は、フィンコイル式の熱交換器で構成されている。   By the way, the heat exchangers used in the conventional multistage compression refrigeration cycle apparatus, that is, the first radiator 2 and the second radiator 3 are constituted by fin-coil heat exchangers.

しかしながら、第1放熱器2及び第2放熱器3を一体的にフィンコイル式の熱交換器に組み込むときは、フィンの横幅寸法が大きい分、放熱器全体が大型化するため、設置スペースに余裕のない自動車等では不向きなものとなっていた。   However, when the first radiator 2 and the second radiator 3 are integrally incorporated into a fin coil type heat exchanger, the entire radiator becomes larger due to the large width of the fin, so there is room for installation space. It was unsuitable for automobiles without it.

本発明の目的は前記従来の課題に鑑み、第1放熱器及び第2放熱器をマルチフロー熱交換器に一体的に組み込んで小型化した多段圧縮式冷凍サイクル装置用熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger for a multistage compression refrigeration cycle apparatus in which the first radiator and the second radiator are integrally incorporated in a multiflow heat exchanger in view of the above-described conventional problems. It is in.

本発明は前記課題を解決するため、請求項1の発明は、一次圧縮された冷媒が冷却される第1放熱器と二次圧縮された冷媒が冷却される第2放熱器とを備えた多段圧縮式冷凍サイクル装置用熱交換器において、第1放熱器及び第2放熱器は、冷媒を分流又は合流させる一対のヘッダと、各ヘッダ間に間隔をおいて複数架設された冷媒流通用の熱交換チューブと、各熱交換チューブの間に介装された熱交換フィンとを有するマルチフロー熱交換器にて一体に形成された構造となっている。   In order to solve the above-mentioned problems, the invention of claim 1 includes a multi-stage including a first radiator that cools a primary compressed refrigerant and a second radiator that cools a secondary compressed refrigerant. In the heat exchanger for the compression refrigeration cycle apparatus, the first radiator and the second radiator include a pair of headers for diverting or merging the refrigerant, and a plurality of refrigerant circulation heats installed at intervals between the headers. It has a structure integrally formed by a multiflow heat exchanger having an exchange tube and heat exchange fins interposed between the heat exchange tubes.

請求項1の発明によれば、第1放熱器及び第2放熱器がマルチフロー熱交換器にて一体成形されているため、熱交換器全体が小型化する。なお、第1放熱器及び第2放熱器を並設するようにしてもよいし(請求項2)、また、第2放熱器を間にして複数の第1放熱器を配置するようにしてもよい(請求項3)。   According to invention of Claim 1, since the 1st heat radiator and the 2nd heat radiator are integrally molded by the multiflow heat exchanger, the whole heat exchanger is reduced in size. The first radiator and the second radiator may be arranged side by side (Claim 2), or a plurality of first radiators may be arranged with the second radiator interposed therebetween. (Claim 3)

また、第1放熱器の冷媒圧力と第2放熱器の冷媒圧力を比較すると、第1放熱器側の冷媒圧力が低くなっているため(二次圧縮冷媒より一次圧縮冷媒の方が圧力が低いため)、第1放熱器側の押さえ板及びキャップの強度が小さくて済み(請求項4及び請求項5)、また、第1放熱器側の熱交換チューブの強度が小さくて済み(請求項6)、逆に第1放熱器側の熱交換チューブの強度が小さい分、第1放熱器側の熱交換チューブの冷媒流通断面積を大きくすることができる(請求項7)。また、熱交換チューブの冷媒流通断面を円形状にするときは、二酸化炭素などの高圧冷媒に対しても強度上優れたものとなる。   Further, when the refrigerant pressure of the first radiator and the refrigerant pressure of the second radiator are compared, the refrigerant pressure on the first radiator side is lower (the pressure of the primary compressed refrigerant is lower than that of the secondary compressed refrigerant). Therefore, the strength of the holding plate and the cap on the first radiator side is small (Claims 4 and 5), and the strength of the heat exchanger tube on the first radiator side is small (Claim 6). On the contrary, since the strength of the heat exchanger tube on the first radiator side is small, the refrigerant flow cross-sectional area of the heat exchanger tube on the first radiator side can be increased (Claim 7). Further, when the refrigerant flow cross section of the heat exchange tube is circular, it is excellent in strength against a high-pressure refrigerant such as carbon dioxide.

更に、請求項9の発明は、請求項1乃至請求項8の多段圧縮式冷凍サイクル装置用熱交換器において、マルチフロー熱交換器で形成された第1放熱器及び第2放熱器は、冷媒と熱交換する熱交換媒体の流れ方向に対して下流側に配置された第1マルチフロー熱交換器と上流側に配置された第2マルチフロー熱交換器とを互いに連通させて並設してなり、第1マルチフロー熱交換器には冷媒入口を通じて流入した冷媒が流通し、第2マルチフロー熱交換器には第1マルチフロー熱交換器を通過した冷媒が流通するよう設定した構造となっている。   Further, the invention of claim 9 is the heat exchanger for a multistage compression refrigeration cycle apparatus according to claims 1 to 8, wherein the first radiator and the second radiator formed by the multiflow heat exchanger are refrigerants. A first multi-flow heat exchanger disposed downstream with respect to the flow direction of the heat exchange medium to exchange heat with the second multi-flow heat exchanger disposed upstream is arranged in parallel with each other. Thus, the first multi-flow heat exchanger has a structure in which the refrigerant flowing in through the refrigerant inlet flows and the second multi-flow heat exchanger is set so that the refrigerant that has passed through the first multi-flow heat exchanger flows. ing.

請求項9の発明によれば、圧縮機から吐出した冷媒が、風下側の第1マルチフロー熱交換器31に流れた後に、風上側の第2マルチフロー熱交換器32に流れるので、冷媒と熱交換媒体(例えば空気)との熱交換が効率よく行われる。   According to the ninth aspect of the present invention, since the refrigerant discharged from the compressor flows to the first multiflow heat exchanger 31 on the leeward side and then flows to the second multiflow heat exchanger 32 on the leeward side, Heat exchange with a heat exchange medium (for example, air) is efficiently performed.

なお、請求項1乃至請求項9の多段圧縮式冷凍サイクル装置用熱交換器の冷媒として二酸化炭素を使用するようにしても良い。   In addition, you may make it use a carbon dioxide as a refrigerant | coolant of the heat exchanger for multistage compression refrigeration cycle apparatuses of Claims 1 thru | or 9.

本発明によれば、第1放熱器及び第2放熱器がマルチフロー熱交換器にて一体成形されているため、小型化の多段圧縮式冷凍サイクル装置用熱交換器を実現できるという利点を有する。   According to the present invention, since the first radiator and the second radiator are integrally formed by the multiflow heat exchanger, there is an advantage that a heat exchanger for a multistage compression refrigeration cycle apparatus can be realized with a reduced size. .

図1及び図2は本発明に係る多段圧縮式冷凍サイクル装置用熱交換器の第1実施形態を示すもので、図1は第1実施形態に係るマルチフロー熱交換器の正面図、図2は第1実施形態に係るマルチフロー熱交換器の平面図である。なお、多段圧縮式冷凍サイクル装置の冷媒サイクルは図9で説明した従来例と同一であるため、その図示及び説明を省略する。   1 and 2 show a first embodiment of a heat exchanger for a multistage compression refrigeration cycle apparatus according to the present invention. FIG. 1 is a front view of the multiflow heat exchanger according to the first embodiment. These are top views of the multiflow heat exchanger which concerns on 1st Embodiment. The refrigerant cycle of the multistage compression refrigeration cycle apparatus is the same as that of the conventional example described with reference to FIG.

マルチフロー熱交換器10は、冷媒を分流又は合流させる一対のヘッダ11,12と、各ヘッダ11,12の間で冷媒を流通させる複数の熱交換チューブ13と、熱交換媒体例えば空気と熱交換する熱交換フィン14と、最上位或いは最下位の熱交換フィン14を保持する押さえ板15,16とから構成されたもので、各部材11〜16がろう付けにより一体に固着されている。   The multiflow heat exchanger 10 exchanges heat with a pair of headers 11 and 12 for diverting or merging refrigerant, a plurality of heat exchange tubes 13 for circulating the refrigerant between the headers 11 and 12, and a heat exchange medium such as air. The heat exchange fins 14 and the holding plates 15 and 16 for holding the uppermost or lowermost heat exchange fins 14 are formed, and the members 11 to 16 are integrally fixed by brazing.

各ヘッダ11,12は密閉した縦長円筒状を呈したもので、互いに間隔をおいて対向配置されている。また、各ヘッダ11,12の内部は上下に2つに分離され、上部には第1放熱器用のタンク部11a,12aが形成され、下部には第2放熱器用のタンク部11b、12bが形成されている。   Each of the headers 11 and 12 has a sealed vertically long cylindrical shape, and is opposed to each other with a space therebetween. Further, the interior of each header 11 and 12 is divided into two vertically, the first radiator tank portions 11a and 12a are formed in the upper portion, and the second radiator tank portions 11b and 12b are formed in the lower portion. Has been.

ここで、第1放熱器用のタンク部11aの側壁には一次圧縮冷媒流入口11cが形成され、圧縮機で一次圧縮された冷媒が一次圧縮冷媒流入口11cを通じてタンク部11aに流入されるようになっている。第1放熱器用のタンク部12aの側壁には一次圧縮冷媒流出口12cが形成され、タンク12aに流入した冷媒が一次圧縮冷媒流出口12cを通じて圧縮機に戻されるようになっている。他方、第2放熱器用のタンク部11bの側壁には二次圧縮冷媒流入口11dが形成され、圧縮機で二次圧縮された冷媒が二次圧縮冷媒流入口11dを通じてタンク部11bに流入されるようになっている。第2放熱器用のタンク部12bの側壁には二次圧縮冷媒流出口12dが形成され、タンク12dに流入した冷媒が二次圧縮冷媒流出口12dを通じて内部熱交換器に向かって流出されるようになっている。   Here, a primary compressed refrigerant inlet 11c is formed on the side wall of the tank portion 11a for the first radiator so that the refrigerant primarily compressed by the compressor flows into the tank portion 11a through the primary compressed refrigerant inlet 11c. It has become. A primary compressed refrigerant outlet 12c is formed on the side wall of the tank portion 12a for the first radiator, and the refrigerant flowing into the tank 12a is returned to the compressor through the primary compressed refrigerant outlet 12c. On the other hand, a secondary compressed refrigerant inlet 11d is formed on the side wall of the tank portion 11b for the second radiator, and the refrigerant secondarily compressed by the compressor flows into the tank portion 11b through the secondary compressed refrigerant inlet 11d. It is like that. A secondary compressed refrigerant outlet 12d is formed on the side wall of the tank portion 12b for the second radiator so that the refrigerant flowing into the tank 12d flows out toward the internal heat exchanger through the secondary compressed refrigerant outlet 12d. It has become.

熱交換チューブ13は偏平状に形成されたもので、各ヘッダ11,12間に上下に間隔をおいて多数架設されている。また、各熱交換チューブ13の両端はヘッダー11のタンク部11a,11bとヘッダ12のタンク部12a,12bに連通し、タンク部11aからタンク部12aに冷媒が流れ、また、タンク部11bからタンク部12bに冷媒が流れるようになっている。   The heat exchanging tube 13 is formed in a flat shape, and a large number of the heat exchanging tubes 13 are installed between the headers 11 and 12 at intervals in the vertical direction. Further, both ends of each heat exchange tube 13 communicate with the tank portions 11a and 11b of the header 11 and the tank portions 12a and 12b of the header 12, and the refrigerant flows from the tank portion 11a to the tank portion 12a. The refrigerant flows through the portion 12b.

熱交換フィン14は各熱交換チューブ13の間に介装されたもので、各熱交換チューブ13に流れる冷媒と各熱交換フィン14との間に流れる熱交換媒体が各熱交換フィン14を介して熱交換するようになっている。   The heat exchange fins 14 are interposed between the heat exchange tubes 13, and a heat exchange medium flowing between the refrigerant flowing in the heat exchange tubes 13 and the heat exchange fins 14 passes through the heat exchange fins 14. Heat exchange.

押さえ板15は最上位の熱交換フィン14aの上面を覆うよう延在するとともに、両端側を熱交換フィン14aの両端に沿って下方に屈曲させて熱交換フィン14aの全体を覆い、これにより、熱交換フィン14aを最上位の熱交換チューブ13に保持するようになっている。他方、押さえ板16は最下位の熱交換フィン14bの下面を覆うよう延在するとともに、両端側を熱交換フィン14bの両端に沿って上方に屈曲させて熱交換フィン14bの全体を覆い、これにより、熱交換フィン14bを最下位の熱交換チューブ13に保持するようになっている。   The holding plate 15 extends so as to cover the upper surface of the uppermost heat exchange fin 14a, and both ends are bent downward along both ends of the heat exchange fin 14a to cover the entire heat exchange fin 14a. The heat exchange fins 14a are held in the uppermost heat exchange tube 13. On the other hand, the pressing plate 16 extends so as to cover the lower surface of the lowest heat exchange fin 14b, and both end sides are bent upward along both ends of the heat exchange fin 14b to cover the entire heat exchange fin 14b. Thus, the heat exchange fins 14b are held in the lowest heat exchange tube 13.

以上のように多段圧縮式冷凍サイクル装置用熱交換器をマルチフロー熱交換器10で構成することにより、第1放熱器A及び第2放熱器Bが一体に組み込まれている。   As described above, the heat exchanger for the multistage compression refrigeration cycle apparatus is configured by the multiflow heat exchanger 10, whereby the first radiator A and the second radiator B are integrally incorporated.

即ち、第1放熱器Aは、タンク部11a,12a、各タンク部11a,12aに連通する熱交換チューブ13、一次圧縮冷媒流入口11c、一次圧縮冷媒流出口12c及び押さえ板15により構成されている。また、第2放熱器Bは、タンク部11b,12b、各タンク部11b,12bに連通する熱交換チューブ13、二次圧縮冷媒流入口11d、二次圧縮冷媒流出口12d及び押さえ板16により構成されている。   That is, the first radiator A includes tank portions 11a and 12a, a heat exchange tube 13 communicating with each of the tank portions 11a and 12a, a primary compressed refrigerant inlet port 11c, a primary compressed refrigerant outlet port 12c, and a holding plate 15. Yes. The second radiator B includes tank portions 11b and 12b, a heat exchange tube 13 communicating with each of the tank portions 11b and 12b, a secondary compressed refrigerant inlet port 11d, a secondary compressed refrigerant outlet port 12d, and a pressing plate 16. Has been.

本実施形態は、前述の如く、第1放熱器A及び第2放熱器Bが上下並列でマルチフロー熱交換器10に一体に組み込まれ、また、マルチフロー熱交換器10はフィンコイル式熱交換器と比較して設置スペースが狭くて済むため、自動車等の狭い設置スペースにも容易に設置することができる。   In the present embodiment, as described above, the first radiator A and the second radiator B are integrated in the multiflow heat exchanger 10 in a vertical parallel manner, and the multiflow heat exchanger 10 is a fin coil heat exchanger. Since the installation space is narrower than that of the container, it can be easily installed in a narrow installation space such as an automobile.

一般にマルチフロー熱交換器10では、各熱交換チューブ13内を流通する高圧冷媒により各熱交換チューブ13の上下方向に圧力が付加され、この結果、各熱交換チューブ13の長手方向中央を中心として外側に向かって湾曲する傾向がある。ここで、第1放熱器側熱交換チューブ13の冷媒圧力と第2放熱器側熱交換チューブ13の冷媒圧力を比較するとき、第2放熱器B側が第1放熱器A側よりも高くなっているため、第2放熱器B側の湾曲が顕著となり、これにより、第2放熱器側熱交換チューブ13とタンク部11b,12bとの連結部分に隙間ができ、この連結部分で冷媒漏れを起こすおそれがある。   In general, in the multi-flow heat exchanger 10, pressure is applied in the vertical direction of each heat exchange tube 13 by the high-pressure refrigerant flowing through each heat exchange tube 13, and as a result, the longitudinal center of each heat exchange tube 13 is centered. There is a tendency to bend outward. Here, when comparing the refrigerant pressure of the first radiator-side heat exchange tube 13 and the refrigerant pressure of the second radiator-side heat exchange tube 13, the second radiator B side is higher than the first radiator A side. Therefore, the curvature on the second radiator B side becomes prominent, and as a result, a gap is formed in the connecting portion between the second radiator-side heat exchange tube 13 and the tank portions 11b and 12b, and refrigerant leakage occurs at this connecting portion. There is a fear.

本実施形態に係るマルチフロー熱交換器10は、前述の如く、第1放熱器A及び第2放熱器Bが並列に一体成形されているため、第2放熱器B側の湾曲が第1放熱器Aによって抑制され、第2放熱器Bにおける冷媒漏れを抑制することができる。   In the multiflow heat exchanger 10 according to the present embodiment, as described above, since the first radiator A and the second radiator B are integrally formed in parallel, the curvature on the second radiator B side is the first heat dissipation. It can be suppressed by the radiator A, and refrigerant leakage in the second radiator B can be suppressed.

図3(a)(b)はマルチフロー熱交換器10の各押さえ板15,16の変形例を示すものである。前記実施形態では各押さえ板15,16は、同一素材、同一形状のものを用いており、同一の強度となっているが、本変形例では各押さえ板150,160として強度の異なるものを用いている。即ち、図3(a)(b)に示すように、第1放熱器Aの構成部材である押さえ板150の厚さ寸法T1を第2放熱器Bの構成部材である押さえ板160の厚さ寸法T2よりも小さくしている。   FIGS. 3A and 3B show a modification of the holding plates 15 and 16 of the multi-flow heat exchanger 10. In the embodiment, the pressing plates 15 and 16 are made of the same material and the same shape and have the same strength. However, in the present modification, the pressing plates 150 and 160 having different strengths are used. ing. That is, as shown in FIGS. 3A and 3B, the thickness dimension T1 of the pressing plate 150 which is a constituent member of the first radiator A is set to the thickness of the pressing plate 160 which is a constituent member of the second radiator B. It is smaller than the dimension T2.

前述の如く、第2放熱器側熱交換チューブ13よりも第1放熱器側熱交換チューブ13の冷媒圧力が小さくなっているため、押さえ板160の強度よりも押さえ板150の強度が小さくてよく、これに伴い、押さえ板150の板厚を薄くした分、押さえ板150の材料費が割安になる。なお、各押さえ板15,16の強度変更を板厚ではなく、材質強度の異なる材料を用いて実現するようにしてもよい。   As described above, since the refrigerant pressure in the first radiator-side heat exchange tube 13 is smaller than that in the second radiator-side heat exchange tube 13, the strength of the holding plate 150 may be lower than the strength of the holding plate 160. Accordingly, the material cost of the pressing plate 150 is reduced by the thickness of the pressing plate 150 being reduced. In addition, you may make it implement | achieve the intensity | strength change of each holding | suppressing board 15 and 16 not using board thickness but using the material from which material strength differs.

図4はマルチフロー熱交換器10のヘッダ11,12のキャップの変形例を示すものである。以下、ヘッダ110のみを図4に示して説明するが、他方のヘッダについても同様であるので、図示及び説明は省略する。   FIG. 4 shows a modification of the caps of the headers 11 and 12 of the multiflow heat exchanger 10. Hereinafter, only the header 110 will be described with reference to FIG. 4, but the same applies to the other header, and thus illustration and description thereof will be omitted.

図4に示すように、ヘッダ110は密閉した縦長円筒状を呈している。このヘッダ110は上下端を開口したヘッダ本体110aと該各開口を閉塞するキャップ110b,110cとを有し、また、各キャップ110b,110cは強度の異なるものを用いている。即ち、図4に示すように、第1放熱器Aの構成部材であるキャップ110bの厚さ寸法T3を第2放熱器Bの構成部材であるキャップ110cの厚さ寸法T4よりも小さくしている。   As shown in FIG. 4, the header 110 has a sealed vertically long cylindrical shape. The header 110 has a header body 110a having upper and lower ends opened and caps 110b and 110c that close the openings, and the caps 110b and 110c have different strengths. That is, as shown in FIG. 4, the thickness dimension T3 of the cap 110b that is a constituent member of the first radiator A is made smaller than the thickness dimension T4 of the cap 110c that is a constituent member of the second radiator B. .

前述の如く、第2放熱器Bの冷媒圧力よりも第1放熱器Aの冷媒圧力が小さくなっているため、キャップ110cの強度よりもキャップ110bの強度が小さくてよく、これに伴い、キャップ110bの厚さ寸法T3が薄くなった分、キャップ110bの材料費が割安になる。なお、各キャップ110b,110cの強度変更を板厚ではなく、材質強度の異なる材料を用いて実現するようにしてもよい。   As described above, since the refrigerant pressure of the first radiator A is smaller than the refrigerant pressure of the second radiator B, the strength of the cap 110b may be smaller than the strength of the cap 110c. The material cost of the cap 110b is cheaper because the thickness dimension T3 is reduced. In addition, you may make it implement | achieve the intensity | strength change of each cap 110b and 110c using the material from which material strength differs instead of board thickness.

図5(a)(b)はマルチフロー熱交換器10の熱交換チューブ13の一変形例を示すものである。前記実施形態では第1放熱器A及び第2放熱器Bの各熱交換チューブ13は同一強度のものを用いているが、本変形例では第1放熱器A側の熱交換チューブ130の強度を第2放熱器B側の熱交換チューブ131の強度よりも小さなものを用いている。即ち、図5(a)(b)に示すように、各熱交換チューブ130,131の内部には断面円形状の複数の冷媒流通路130a,131aが形成されている。また、各冷媒流通路130aの合計冷媒流通量と各冷媒流通路131aの合計冷媒流通量がほぼ同一となっているが、各冷媒流通路130aの隔壁130bの厚さ寸法T5を各冷媒流通路131aの隔壁131bの厚さ寸法T6よりも小さくしている。   FIGS. 5A and 5B show a modification of the heat exchange tube 13 of the multiflow heat exchanger 10. In the embodiment, the heat exchanger tubes 13 of the first radiator A and the second radiator B have the same strength, but in this modification, the strength of the heat exchanger tube 130 on the first radiator A side is increased. The thing smaller than the intensity | strength of the heat exchange tube 131 by the side of the 2nd heat radiator B is used. That is, as shown in FIGS. 5A and 5B, a plurality of refrigerant flow passages 130a and 131a having a circular cross section are formed inside the heat exchange tubes 130 and 131, respectively. Further, although the total refrigerant flow amount in each refrigerant flow passage 130a and the total refrigerant flow amount in each refrigerant flow passage 131a are substantially the same, the thickness T5 of the partition wall 130b of each refrigerant flow passage 130a is set to each refrigerant flow passage. It is smaller than the thickness dimension T6 of the partition wall 131b of 131a.

既に説明したように、第2放熱器B側の熱交換チューブ131よりも第1放熱器A側の熱交換チューブ130の冷媒圧力が小さくなっているため、熱交換チューブ131の強度よりも熱交換チューブ130の強度が小さくてよく、これに伴い、各冷媒流通路130aの隔壁130bが薄くなった分、熱交換チューブ130が小型化されるし、また、材料費が割安になる。なお、各熱交換チューブ130,131の強度変更を板厚ではなく、材質強度の異なる材料を用いて実現するようにしてもよい。   As already described, since the refrigerant pressure in the heat exchanger tube 130 on the first radiator A side is smaller than the heat exchanger tube 131 on the second radiator B side, the heat exchange is higher than the strength of the heat exchanger tube 131. The strength of the tube 130 may be small, and as a result, the heat exchange tube 130 is reduced in size and the material cost is reduced by the amount that the partition wall 130b of each refrigerant flow passage 130a is thinned. In addition, you may make it implement | achieve the intensity | strength change of each heat exchange tube 130 and 131 using the material from which material strength differs instead of plate | board thickness.

図6(a)(b)はマルチフロー熱交換器10の熱交換チューブ13の他の変形例を示すものである。前記実施形態では第1放熱器A及び第2放熱器Bの各熱交換チューブ13はほぼ同一冷媒流通量のものを用いているが、本変形例では第1放熱器A側の熱交換チューブ132の冷媒流通量を第2放熱器B側の熱交換チューブ133の冷媒流通量よりも小さなものを用いている。即ち、図6(a)(b)に示すように、各熱交換チューブ132,133の内部には複数の冷媒流通路132a,133aが形成されている。また、各冷媒流通路132a,133aの冷媒流通断面積が異なるよう、各冷媒流通路132aの隔壁132bの厚さ寸法T7を各冷媒流通路133aの隔壁133bの厚さ寸法T8よりも小さくしている。   FIGS. 6A and 6B show another modification of the heat exchange tube 13 of the multiflow heat exchanger 10. In the above-described embodiment, the heat exchanger tubes 13 of the first radiator A and the second radiator B use substantially the same refrigerant circulation amount, but in this modification, the heat exchanger tube 132 on the first radiator A side. The refrigerant circulation amount is smaller than the refrigerant circulation amount of the heat exchanger tube 133 on the second radiator B side. That is, as shown in FIGS. 6A and 6B, a plurality of refrigerant flow passages 132a and 133a are formed inside the heat exchange tubes 132 and 133, respectively. Further, the thickness dimension T7 of the partition wall 132b of each refrigerant flow path 132a is made smaller than the thickness dimension T8 of the partition wall 133b of each refrigerant flow path 133a so that the refrigerant flow cross sections of the refrigerant flow paths 132a and 133a are different. Yes.

既に説明したように、第2放熱器B側の熱交換チューブ133よりも第1放熱器A側の熱交換チューブ132の冷媒圧力が小さくなっているため、その分、各熱交換チューブ132の冷媒流通量を多くすることができる。これにより、各熱交換チューブ132の本数を減らすことができため、マルチフロー熱交換器10を小型化でき、かつ、製造コストの低減化を実現することができる。   As already described, the refrigerant pressure in the heat exchanger tube 132 on the first radiator A side is smaller than the heat exchanger tube 133 on the second radiator B side. The amount of distribution can be increased. Thereby, since the number of each heat exchange tube 132 can be reduced, the multiflow heat exchanger 10 can be reduced in size and the reduction of manufacturing cost can be implement | achieved.

図7は本発明に係る多段圧縮式冷凍サイクル装置用熱交換器の第2実施形態に係るマルチフロー熱交換器を示すものである。なお、多段圧縮式冷凍サイクル装置用熱交換器の冷媒サイクルは図9で説明した従来例と同一であるため、その図示及び説明を省略する。   FIG. 7 shows a multiflow heat exchanger according to a second embodiment of the heat exchanger for a multistage compression refrigeration cycle apparatus according to the present invention. The refrigerant cycle of the heat exchanger for the multistage compression refrigeration cycle apparatus is the same as that of the conventional example described with reference to FIG.

前記実施形態に係るマルチフロー熱交換器10は第1放熱器Aと第2放熱器Bとを一台ずつ上下に並設した構成となっているが、本実施形態に係るマルチフロー熱交換器20は第1放熱器A1,A2が2台で、且つ、第2放熱器B1が1台で構成され、第2放熱器B1を間にして第1放熱器A1,A2を上下に並設している。   The multiflow heat exchanger 10 according to the embodiment has a configuration in which the first radiator A and the second radiator B are arranged one above the other vertically, but the multiflow heat exchanger according to the present embodiment is arranged. 20 includes two first radiators A1 and A2 and one second radiator B1, and the first radiators A1 and A2 are arranged in parallel up and down with the second radiator B1 in between. ing.

即ち、マルチフロー熱交換器20は、冷媒を分流又は合流させる一対のヘッダ21,22と、各ヘッダ21,22の間で冷媒を流通させる複数の熱交換チューブ23と、熱交換媒体例えば空気と熱交換する熱交換フィン24と、最上位及び最下位の熱交換フィン24を保持する押さえ板25,26とから構成されたもので、各部21〜26がろう付けにより一体に固着されている。なお、熱交換チューブ23、熱交換フィン24及び押さえ板25,26は、前記実施形態に係る熱交換チューブ13、熱交換フィン14及び押さえ板15,16と同一の構成となっているので、その詳細は省略する。   That is, the multi-flow heat exchanger 20 includes a pair of headers 21 and 22 that divide or join the refrigerant, a plurality of heat exchange tubes 23 that circulate the refrigerant between the headers 21 and 22, and a heat exchange medium such as air. The heat exchanging fins 24 for exchanging heat and the pressing plates 25 and 26 for holding the uppermost and lowermost heat exchanging fins 24 are provided, and the respective parts 21 to 26 are fixed together by brazing. The heat exchange tube 23, the heat exchange fin 24, and the holding plates 25, 26 have the same configuration as the heat exchange tube 13, the heat exchange fin 14, and the holding plates 15, 16 according to the above embodiment. Details are omitted.

各ヘッダ21,22は密閉した縦長円筒状を呈したもので、互いに間隔をおいて対向配置されている。また、各ヘッダ21,22の内部は上下に3つに分離され、上部と下部には第1放熱器用のタンク部21a,21b,22a,22bが形成され、中間には第2放熱器用のタンク部21c,22cが形成されている。   Each of the headers 21 and 22 has a sealed vertically long cylindrical shape, and is disposed so as to face each other with a space therebetween. Further, the inside of each header 21 and 22 is divided into three in the vertical direction, tank portions 21a, 21b, 22a and 22b for the first radiator are formed in the upper and lower portions, and a tank for the second radiator is formed in the middle. Portions 21c and 22c are formed.

ここで、ヘッダ21側の第1放熱器用のタンク部21a,21bの側壁には一次圧縮冷媒流入口21d,21eが形成され、圧縮機で一次圧縮された冷媒が一次圧縮冷媒流入口21d,21eを通じてタンク部21a,21bに流入されるようになっている。ヘッダ22側の第1放熱器用のタンク部22a,22bの側壁には一次圧縮冷媒流出口22d,22eが形成され、各タンク22a,22bに流入した冷媒が一次圧縮冷媒流出口22d,22eを通じて圧縮機に戻されるようになっている。他方、第2放熱器用のタンク部21cの側壁には二次圧縮冷媒流入口21fが形成され、圧縮機で二次圧縮された冷媒が二次圧縮冷媒流入口21fを通じてタンク部21cに流入されるようになっている。第2放熱器用のタンク部22cの側壁には二次圧縮冷媒流出口22fが形成され、タンク22cに流入した冷媒が二次圧縮冷媒流出口22fを通じて内部熱交換器に向かって流出されるようになっている。   Here, primary compressed refrigerant inlets 21d and 21e are formed on the side walls of the first radiator tank portions 21a and 21b on the header 21 side, and the refrigerant primarily compressed by the compressor is the primary compressed refrigerant inlets 21d and 21e. Through the tank portion 21a and 21b. Primary compressed refrigerant outlets 22d and 22e are formed on the side walls of the first radiator tank portions 22a and 22b on the header 22 side, and the refrigerant flowing into the tanks 22a and 22b is compressed through the primary compressed refrigerant outlets 22d and 22e. It is supposed to be returned to the machine. On the other hand, a secondary compressed refrigerant inlet 21f is formed on the side wall of the tank portion 21c for the second radiator, and the refrigerant secondarily compressed by the compressor flows into the tank portion 21c through the secondary compressed refrigerant inlet 21f. It is like that. A secondary compressed refrigerant outlet 22f is formed on the side wall of the tank portion 22c for the second radiator, so that the refrigerant flowing into the tank 22c flows out toward the internal heat exchanger through the secondary compressed refrigerant outlet 22f. It has become.

以上のようにマルチフロー熱交換器20を構成することにより、第1放熱器A1,A2及び第2放熱器B1が一体に形成されている。   By configuring the multiflow heat exchanger 20 as described above, the first radiators A1 and A2 and the second radiator B1 are integrally formed.

即ち、上側の第1放熱器A1は、タンク部21a,22a、各タンク部21a,22aに連通する熱交換チューブ23、一次圧縮冷媒流入口21d、一次圧縮冷媒流出口22d及び押さえ板25により構成されている。下側の第1放熱器A2は、タンク部21b,22b、各タンク部21b,22bに連通する熱交換チューブ23、一次圧縮冷媒流入口21e、一次圧縮冷媒流出口22e及び押さえ板26により構成されている。第2放熱器B1は、タンク部21c,22c、各タンク部21c,22cに連通する熱交換チューブ23、二次圧縮冷媒流入口21f、二次圧縮冷媒流出口22fにより構成されている。   That is, the upper first radiator A1 includes tank portions 21a and 22a, a heat exchange tube 23 communicating with each of the tank portions 21a and 22a, a primary compressed refrigerant inlet 21d, a primary compressed refrigerant outlet 22d, and a holding plate 25. Has been. The lower first radiator A2 includes tank portions 21b and 22b, a heat exchange tube 23 communicating with each of the tank portions 21b and 22b, a primary compressed refrigerant inlet 21e, a primary compressed refrigerant outlet 22e, and a holding plate 26. ing. The second radiator B1 includes tank portions 21c and 22c, a heat exchange tube 23 communicating with each of the tank portions 21c and 22c, a secondary compressed refrigerant inlet 21f, and a secondary compressed refrigerant outlet 22f.

本実施形態に係るマルチフロー熱交換器20は、熱交換チューブ23のうち外側に湾曲しがちな第2放熱器B1を各第1放熱器A1,A2で挟み込むようにしているので、第2放熱器B1側の湾曲が各第1放熱器A1,A2によって抑制され、第2放熱器B1における冷媒漏れを確実に抑制することができる。なお、その他の構成、作用は前記実施形態と同様である。   In the multi-flow heat exchanger 20 according to the present embodiment, the second radiator B1 that tends to be bent outward is sandwiched between the first radiators A1 and A2 in the heat exchange tube 23. The curvature on the side of the radiator B1 is suppressed by the first radiators A1 and A2, and the refrigerant leakage in the second radiator B1 can be reliably suppressed. Other configurations and operations are the same as those in the above embodiment.

図9は本発明に係る多段圧縮式冷凍サイクル装置用熱交換器の第3実施形態に係るマルチフロー熱交換器を示すものである。なお、多段圧縮式冷凍サイクル装置の冷媒サイクルは図9で説明した従来例と同一であるため、その図示及び説明を省略する。   FIG. 9 shows a multiflow heat exchanger according to a third embodiment of the heat exchanger for a multistage compression refrigeration cycle apparatus according to the present invention. The refrigerant cycle of the multistage compression refrigeration cycle apparatus is the same as that of the conventional example described with reference to FIG.

本実施形態に係るマルチフロー熱交換器30は、熱交換媒体(空気)の流れ方向に対向して並設された、風下側の第1マルチフロー熱交換部31と風上側のマルチフロー熱交換部32とから構成されている。   The multiflow heat exchanger 30 according to the present embodiment includes a first multiflow heat exchange section 31 on the leeward side and a multiflow heat exchange on the leeward side that are arranged in parallel in the flow direction of the heat exchange medium (air). Part 32.

第1,2マルチフロー熱交換器31,32は前記第1実施形態と同様に上下に第1放熱器Aと第2放熱器(図示しない)を有するもので、第1マルチフロー熱交換器31はタンク部31d,31e同士を熱交換チューブ31cを介して連結した一対のヘッダ31a,31bを有し、同じく、第2マルチフロー熱交換器32はタンク部32d,32e同士を熱交換チューブ32cを介して連結した一対のヘッダ32a,32bを有している。   The first and second multi-flow heat exchangers 31 and 32 have a first heat radiator A and a second heat radiator (not shown) in the upper and lower sides as in the first embodiment. Has a pair of headers 31a and 31b in which the tank parts 31d and 31e are connected to each other via a heat exchange tube 31c. Similarly, the second multi-flow heat exchanger 32 connects the tank parts 32d and 32e to the heat exchange tube 32c. It has a pair of headers 32a and 32b connected via each other.

また、図示しないが、熱交換フィン及び押さえ板についても前記第1実施形態と同様になっている。   Although not shown, the heat exchange fins and the pressing plate are the same as in the first embodiment.

更に、第1マルチフロー熱交換器31のヘッダ31aには一次圧縮冷媒流入口31fが連結し、第2マルチフロー熱交換器32のヘッダ32aには同じく一次圧縮冷媒流出口31fが連結している。   Furthermore, a primary compressed refrigerant inlet 31f is connected to the header 31a of the first multiflow heat exchanger 31, and a primary compressed refrigerant outlet 31f is also connected to the header 32a of the second multiflow heat exchanger 32. .

更にまた、第1マルチフロー熱交換器31のヘッダ31bと第2マルチフロー熱交換器32のヘッダ32bは連結パイプ33にて連結し、第1マルチフロー熱交換器31を流れた冷媒が連結パイプ33を介して第2マルチフロー熱交換器32に流れるようになっている。   Furthermore, the header 31b of the first multiflow heat exchanger 31 and the header 32b of the second multiflow heat exchanger 32 are connected by a connecting pipe 33, and the refrigerant flowing through the first multiflow heat exchanger 31 is connected to the connecting pipe. It flows through the second multi-flow heat exchanger 32 through 33.

この冷媒の流れを図9の一点矢印で説明すれば、圧縮機から吐出した冷媒は一次圧縮冷媒流入口31f→タンク部31d→熱交換チューブ31c→タンク部31e→連結パイプ33→タンク部32e→熱交換チューブ32c→タンク部32d→一次圧縮冷媒流出口32f→圧縮機と順次流れることとなる。   If the flow of this refrigerant is described with a single-pointed arrow in FIG. 9, the refrigerant discharged from the compressor is the primary compressed refrigerant inlet 31f → tank part 31d → heat exchange tube 31c → tank part 31e → connection pipe 33 → tank part 32e → The heat exchange tube 32c, the tank portion 32d, the primary compressed refrigerant outlet 32f, and the compressor sequentially flow.

本実施形態によれば、圧縮機から吐出した冷媒を一旦風下側の第1マルチフロー熱交換器31に流した後に、風上側の第2マルチフロー熱交換器32に流すようにしたので、冷媒と熱交換媒体である空気と効率よく熱交換される。   According to the present embodiment, the refrigerant discharged from the compressor is once allowed to flow to the first multiflow heat exchanger 31 on the leeward side and then to the second multiflow heat exchanger 32 on the leeward side. And efficiently exchanges heat with air, which is a heat exchange medium.

なお、図9では第1放熱器A側の構造を図示しているが、図示しない第2放熱器側の構造についても同様に冷媒を風下側から風上側に冷媒を流すようになっている。その他の構成、作用は前記第1実施形態と同様である。   In FIG. 9, the structure on the first radiator A side is illustrated, but the refrigerant is similarly caused to flow from the leeward side to the leeward side also on the second radiator side structure (not shown). Other configurations and operations are the same as those in the first embodiment.

第1実施形態に係るマルチフロー熱交換器の正面図Front view of the multiflow heat exchanger according to the first embodiment 第1実施形態に係るマルチフロー熱交換器の平面図The top view of the multiflow heat exchanger concerning a 1st embodiment 押さえ板の変形例を示す正面図Front view showing a modification of the holding plate キャップの変形例を示す一部断面正面図Partially sectional front view showing a modified example of the cap 熱交換チューブの一変形例を示す断面図Sectional drawing which shows one modification of heat exchange tube 熱交換チューブの他の変形例を示す断面図Sectional drawing which shows the other modification of a heat exchange tube 第2実施形態に係るマルチフロー熱交換器の正面図Front view of the multi-flow heat exchanger according to the second embodiment 第3実施形態に係るマルチフロー熱交換器の平面断面図Plan sectional drawing of the multiflow heat exchanger which concerns on 3rd Embodiment 多段圧縮式冷凍サイクル装置を示す冷媒管路図Refrigerant pipeline diagram showing multistage compression refrigeration cycle equipment

符号の説明Explanation of symbols

1…圧縮機、2,A,A1,A2…第1放熱器、3,B,B1…第2放熱器、10,20,30…マルチフロー熱交換器、11,12,21,22,31a,31b,32a,32b…ヘッダ、11f,11g…キャップ、13,23,31c,32c…熱交換チューブ、14,24…熱交換フィン、15,16,25,26…押さえ板、31…第1マルチフロー熱交換器、32…第2マルチフロー熱交換器。   DESCRIPTION OF SYMBOLS 1 ... Compressor, 2, A, A1, A2 ... 1st heat radiator, 3, B, B1 ... 2nd heat radiator, 10, 20, 30 ... Multiflow heat exchanger, 11, 12, 21, 22, 31a , 31b, 32a, 32b ... header, 11f, 11g ... cap, 13, 23, 31c, 32c ... heat exchange tube, 14, 24 ... heat exchange fins, 15, 16, 25, 26 ... pressure plate, 31 ... first Multi-flow heat exchanger, 32 ... second multi-flow heat exchanger.

Claims (10)

一次圧縮された冷媒が冷却される第1放熱器と二次圧縮された冷媒が冷却される第2放熱器とを備えた多段圧縮式冷凍サイクル装置用熱交換器において、
前記第1放熱器及び前記第2放熱器は、冷媒を分流又は合流させる一対のヘッダと、該各ヘッダ間に間隔をおいて複数架設された冷媒流通用の熱交換チューブと、該各熱交換チューブの間に介装された熱交換フィンとを有するマルチフロー熱交換器にて一体に形成された
ことを特徴とする多段圧縮式冷凍サイクル装置用熱交換器。
In a heat exchanger for a multistage compression refrigeration cycle apparatus comprising a first radiator that cools a primary compressed refrigerant and a second radiator that cools a secondary compressed refrigerant,
The first radiator and the second radiator include a pair of headers for diverting or merging the refrigerant, a plurality of refrigerant circulation heat exchange tubes provided at intervals between the headers, and the heat exchanges. A heat exchanger for a multistage compression refrigeration cycle apparatus, which is integrally formed by a multiflow heat exchanger having heat exchange fins interposed between tubes.
前記第1放熱器及び前記第2放熱器を並設してなる
ことを特徴とする請求項1記載の多段圧縮式冷凍サイクル装置用熱交換器。
The heat exchanger for a multistage compression refrigeration cycle apparatus according to claim 1, wherein the first radiator and the second radiator are arranged in parallel.
前記第2放熱器を間にして複数の前記第1放熱器を配置した
ことを特徴とする請求項2記載の多段圧縮式冷凍サイクル装置用熱交換器。
The heat exchanger for a multistage compression refrigeration cycle apparatus according to claim 2, wherein a plurality of the first radiators are arranged with the second radiator interposed therebetween.
前記第1放熱器及び前記第2放熱器は一番外側の前記熱交換フィンを押さえる押さえ板を有し、該第1放熱器の押さえ板の強度は該第2放熱器の押さえ板の強度より小さくした
ことを特徴とする請求項2記載の多段圧縮式冷凍サイクル装置用熱交換器。
The first radiator and the second radiator have a pressing plate for pressing the outermost heat exchange fin, and the strength of the pressing plate of the first radiator is higher than the strength of the pressing plate of the second radiator. The heat exchanger for a multistage compression refrigeration cycle apparatus according to claim 2, wherein the heat exchanger is small.
前記第1放熱器及び前記第2放熱器は前記ヘッダの端部を閉塞するキャップを有し、該第1放熱器のキャップの強度は該第2放熱器のキャップの強度より小さくした
ことを特徴とする請求項1乃至請求項4の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The first radiator and the second radiator have a cap that closes an end of the header, and the strength of the cap of the first radiator is smaller than the strength of the cap of the second radiator. The heat exchanger for a multistage compression refrigeration cycle apparatus according to any one of claims 1 to 4.
前記第1放熱器の前記熱交換チューブの強度を前記第2放熱器の前記熱交換チューブの強度より小さくした
ことを特徴とする請求項1乃至請求項5の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The multistage compression type according to any one of claims 1 to 5, wherein the strength of the heat exchange tube of the first radiator is smaller than the strength of the heat exchange tube of the second radiator. Heat exchanger for refrigeration cycle equipment.
前記第1放熱器の前記熱交換チューブの冷媒流通断面積を前記第2放熱器の前記熱交換チューブの冷媒流通断面積より大きくした
ことを特徴とする請求項1乃至請求項5の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The refrigerant flow cross-sectional area of the heat exchange tube of the first radiator is made larger than the refrigerant flow cross-sectional area of the heat exchange tube of the second radiator. A heat exchanger for a multistage compression refrigeration cycle apparatus as described in the paragraph
前記熱交換チューブの冷媒流通断面を円形状に形成した
ことを特徴とする請求項1乃至請求項5の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The refrigerant flow section of the heat exchange tube is formed in a circular shape. The heat exchanger for a multistage compression refrigeration cycle apparatus according to any one of claims 1 to 5.
前記マルチフロー熱交換器で形成された前記第1放熱器及び前記第2放熱器は、冷媒と熱交換する熱交換媒体の流れ方向に対して下流側に配置された第1マルチフロー熱交換器と上流側に配置された第2マルチフロー熱交換器とを互いに連通させて並設してなり、該第1マルチフロー熱交換器には冷媒入口を通じて流入した冷媒が流通し、該第2マルチフロー熱交換器には第1マルチフロー熱交換器を通過した冷媒が流通するよう設定した
ことを特徴とする請求項1乃至請求項8の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The first radiator and the second radiator formed by the multiflow heat exchanger are disposed on the downstream side with respect to the flow direction of the heat exchange medium that exchanges heat with the refrigerant. And a second multi-flow heat exchanger arranged on the upstream side are connected in parallel with each other, and the refrigerant flowing in through the refrigerant inlet flows through the first multi-flow heat exchanger, The heat for a multistage compression refrigeration cycle apparatus according to any one of claims 1 to 8, wherein the refrigerant that has passed through the first multiflow heat exchanger flows in the flow heat exchanger. Exchanger.
前記冷媒として二酸化炭素を使用した
ことを特徴とする請求項1乃至請求項9の何れか一項記載の多段圧縮式冷凍サイクル装置用熱交換器。
The carbon exchanger is used as the refrigerant. The heat exchanger for a multistage compression refrigeration cycle apparatus according to any one of claims 1 to 9, wherein carbon dioxide is used as the refrigerant.
JP2005225293A 2005-08-03 2005-08-03 Heat exchanger for multistage compression type refrigeration cycle device Pending JP2007040605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225293A JP2007040605A (en) 2005-08-03 2005-08-03 Heat exchanger for multistage compression type refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225293A JP2007040605A (en) 2005-08-03 2005-08-03 Heat exchanger for multistage compression type refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2007040605A true JP2007040605A (en) 2007-02-15

Family

ID=37798760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225293A Pending JP2007040605A (en) 2005-08-03 2005-08-03 Heat exchanger for multistage compression type refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2007040605A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013001816A1 (en) * 2011-06-30 2013-01-03 ダイキン工業株式会社 Outdoor machine of refrigeration device
CN104748601A (en) * 2013-12-25 2015-07-01 无锡博利达换热器有限公司 Internally-arranged type two-in-one water tank heat exchanger
US20160237878A1 (en) * 2015-02-16 2016-08-18 Hyundai Motor Company Radiator for vehicle
CN112204312A (en) * 2018-06-11 2021-01-08 三菱电机株式会社 Outdoor unit of air conditioner and air conditioner
CN114364931A (en) * 2019-08-05 2022-04-15 乔治洛德方法研究和开发液化空气有限公司 Refrigeration device and system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2012277182B2 (en) * 2011-06-30 2015-05-28 Daikin Industries, Ltd. Outdoor unit of refrigeration system
WO2013001816A1 (en) * 2011-06-30 2013-01-03 ダイキン工業株式会社 Outdoor machine of refrigeration device
CN103635752A (en) * 2011-06-30 2014-03-12 大金工业株式会社 Outdoor machine of refrigeration device
EP2728270A1 (en) * 2011-06-30 2014-05-07 Daikin Industries, Ltd. Outdoor machine of refrigeration device
CN103635752B (en) * 2011-06-30 2015-04-01 大金工业株式会社 Outdoor machine of refrigeration device
EP2728270A4 (en) * 2011-06-30 2015-04-01 Daikin Ind Ltd Outdoor machine of refrigeration device
JP2013015228A (en) * 2011-06-30 2013-01-24 Daikin Industries Ltd Outdoor machine of refrigeration device
CN104748601A (en) * 2013-12-25 2015-07-01 无锡博利达换热器有限公司 Internally-arranged type two-in-one water tank heat exchanger
US20160237878A1 (en) * 2015-02-16 2016-08-18 Hyundai Motor Company Radiator for vehicle
CN105888813A (en) * 2015-02-16 2016-08-24 现代自动车株式会社 Radiator For Vehicle
US9857126B2 (en) * 2015-02-16 2018-01-02 Hyundai Motor Company Radiator for vehicle
CN105888813B (en) * 2015-02-16 2019-11-19 现代自动车株式会社 Radiator for vehicle
CN112204312A (en) * 2018-06-11 2021-01-08 三菱电机株式会社 Outdoor unit of air conditioner and air conditioner
CN112204312B (en) * 2018-06-11 2022-06-28 三菱电机株式会社 Outdoor unit of air conditioner and air conditioner
CN114364931A (en) * 2019-08-05 2022-04-15 乔治洛德方法研究和开发液化空气有限公司 Refrigeration device and system

Similar Documents

Publication Publication Date Title
WO2015178005A1 (en) Stacked heat exchanger
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
KR101462173B1 (en) Heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2006329511A (en) Heat exchanger
KR20060086708A (en) Heat exchanger
EP2865983B1 (en) Heat-exchanger header and heat exchanger provided therewith
KR101786965B1 (en) Header and heat exchanger having the same
JP6497262B2 (en) Laminate heat exchanger
CN109520330B (en) Heat exchanger and heat exchange system
US10337808B2 (en) Condenser
US9797656B2 (en) Vehicle interior heat exchanger and inter-header connecting member of vehicle interior heat exchanger
JP2006207997A (en) Heat exchanger
CN103542619A (en) Heat exchanger unit
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
EP2982924A1 (en) Heat exchanger
JP2006029697A (en) Refrigerant evaporator
JP6554182B2 (en) Heat exchanger having a plurality of stacked plates
JP5878480B2 (en) Heat exchanger
JP6160385B2 (en) Laminate heat exchanger
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001343174A (en) Evaporator with distributing inflow unit
JP2008256234A (en) Evaporator
KR101067248B1 (en) Heat exchanger
KR101989445B1 (en) Radiator Tank And Condenser Assembly