WO2021234961A1 - Heat exchanger, outdoor unit for air conditioning device, and air conditioning device - Google Patents

Heat exchanger, outdoor unit for air conditioning device, and air conditioning device Download PDF

Info

Publication number
WO2021234961A1
WO2021234961A1 PCT/JP2020/020354 JP2020020354W WO2021234961A1 WO 2021234961 A1 WO2021234961 A1 WO 2021234961A1 JP 2020020354 W JP2020020354 W JP 2020020354W WO 2021234961 A1 WO2021234961 A1 WO 2021234961A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
header
refrigerant
outdoor heat
pipe
Prior art date
Application number
PCT/JP2020/020354
Other languages
French (fr)
Japanese (ja)
Inventor
洋次 尾中
崇 松本
七海 岸田
哲二 七種
祐基 中尾
裕之 森本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022524849A priority Critical patent/JP7366255B2/en
Priority to PCT/JP2020/020354 priority patent/WO2021234961A1/en
Publication of WO2021234961A1 publication Critical patent/WO2021234961A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure discloses a heat exchanger comprising a first heat exchanger including a plurality of rows of heat exchangers having a plurality of heat transfer tubes and a second heat exchanger containing a plurality of rows of heat exchangers having a plurality of heat transfer tubes, air harmonizing.
  • a heat exchanger comprising a first heat exchanger including a plurality of rows of heat exchangers having a plurality of heat transfer tubes and a second heat exchanger containing a plurality of rows of heat exchangers having a plurality of heat transfer tubes, air harmonizing.
  • the outdoor unit of the device and the air conditioner Regarding the outdoor unit of the device and the air conditioner.
  • Heat exchangers including the body are known. Then, two such heat exchangers are provided. Here, for convenience of explanation, one of the two heat exchangers is referred to as a first heat exchanger and the other is referred to as a second heat exchanger.
  • the first heat exchanger and the second heat exchanger are arranged in directions substantially orthogonal to each other.
  • the first heat exchanger and the second heat exchanger are a bent connection pipe connecting the inner header of the first heat exchanger and the inner header of the second heat exchanger, and the outer header of the first heat exchanger and the second. It is connected by a bent connection pipe that connects to the outer header of the heat exchanger.
  • the first heat exchanger and the second heat exchanger connected by two bent connecting pipes function as one heat exchanger (see, for example, Patent Document 1).
  • the inner headers and outer headers of the first heat exchanger and the second heat exchanger are connected by two bent connecting pipes. Therefore, by having a connection pipe connecting the inner headers of the first heat exchanger and the second heat exchanger, the mounting area of at least one longitudinal length of the first heat exchanger and the second heat exchanger is provided. There is a problem that becomes smaller.
  • the present disclosure has been made in view of the above circumstances, and it is possible to improve the mounting area of the heat exchanger having the first heat exchanger and the second heat exchanger connected to the first heat exchanger. It is an object of the present invention to provide an outdoor unit of a heat exchanger, an air conditioner, and an air conditioner.
  • a first heat exchanger having a plurality of heat transfer tubes arranged at intervals and one end of the upper side or the lower side of the plurality of heat transfer tubes of the first heat exchanger.
  • a first inner header provided, a second heat exchanger having a plurality of heat transfer tubes provided in the ventilation direction of the first heat exchanger and arranged at intervals, and a plurality of the second heat exchangers.
  • a first heat exchanger including a first outer header provided at one end of the upper or lower end of the heat transfer tube, a third heat exchanger having a plurality of heat transfer tubes arranged at intervals, and the first heat exchanger.
  • a plurality of heat exchangers provided at one end of the upper or lower ends of the plurality of heat exchangers of the three heat exchangers and a plurality of heat exchangers provided at intervals in the ventilation direction between the third heat exchanger and the third heat exchanger.
  • the heat exchanger is provided with a connection pipe connecting the first outer header and the second outer header and having a bent portion, and the refrigerant flowing from the first heat exchanger to the second heat exchanger and the said. The refrigerant flowing from the second heat exchanger to the first heat exchanger flows only through the connecting pipe.
  • the first outer header and the second outer header are connected by a connecting pipe.
  • the refrigerant flowing from the first heat exchanger to the second heat exchanger and the refrigerant flowing from the second heat exchanger to the first heat exchanger flow only through the connecting pipes. Therefore, according to the heat exchanger of the present disclosure, a connection pipe for connecting the inner header of the first heat exchanger and the inner header of the third heat exchanger is not required, so that the mounting area of the heat exchanger is improved. Can be done.
  • FIG. It is a refrigerant circuit diagram of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the outdoor unit of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows an example of the 1st outer header of the air conditioner which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows an example of the cross section orthogonal to the pipe extension direction of the 1st outer header of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the comparative example for demonstrating the effect of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the effect of the air conditioner which concerns on Embodiment 1.
  • FIG. It is a figure which shows the flow path cross-sectional area per one of the plurality of flat pipes of the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating the flow of the refrigerant of the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger 3b of the air conditioner which concerns on Embodiment 2.
  • FIG. It is a figure for demonstrating the connection relationship between the 1st outer header and the 2nd outer header of the air conditioner which concerns on Embodiment 3.
  • FIG. 1 is a refrigerant circuit diagram of the air conditioner 100 according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 10 and a plurality of indoor units 11, 12, and 13. A plurality of indoor units 11, 12 and 13 are connected to the outdoor unit 10. The indoor units 11, 12 and 13 are connected in parallel with each other. The refrigerant circulates inside the outdoor unit 10 and the plurality of indoor units 11, 12, and 13.
  • the air conditioner 100 is a multi-type air conditioner. In the first embodiment, three indoor units 11, 12 and 13 are connected to the outdoor unit 10. However, the first embodiment does not limit the number of indoor units connected to the outdoor unit 10.
  • the air conditioner 100 has a refrigerant circuit in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 5, an indoor heat exchanger 6, and an accumulator 8 are connected by a refrigerant pipe. ..
  • a compressor 1 a four-way valve 2
  • an outdoor heat exchanger 3 an expansion valve 5
  • an indoor heat exchanger 6 an accumulator 8
  • a refrigerant pipe a refrigerant pipe. ..
  • the outdoor heat exchanger 3 the air is exchanged with the refrigerant flowing inside by the wind generated by the fan 4.
  • the indoor heat exchanger 6 the air is exchanged with the refrigerant flowing inside by the wind generated by the fan 7.
  • the refrigerant of the high-temperature and high-pressure gas compressed by the compressor 1 is transferred from the refrigerant pipe 26 connecting the four-way valve 2 and the outdoor heat exchanger 3 to the outdoor heat exchanger 3 via the four-way valve 2. Inflow.
  • the refrigerant flowing into the outdoor heat exchanger 3 exchanges heat with the wind generated by the fan 4, and then flows out from the refrigerant pipe 27 connecting the outdoor heat exchanger 3 and the expansion valve 5.
  • the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
  • FIG. 2 is a perspective view showing the outdoor unit 10 of the air conditioner 100 according to the first embodiment.
  • the outdoor unit 10 of the air conditioner 100 includes a compressor 1, a fan 4, and an outdoor heat exchanger 3.
  • the outdoor heat exchanger 3 includes four first outdoor heat exchangers 3a, a second outdoor heat exchanger 3b, a third outdoor heat exchanger 3c, and a fourth outdoor heat exchanger 3d.
  • the housing 9 of the outdoor unit 10 of the air conditioner 100 has a rectangular parallelepiped portion 9a and a fan accommodating portion 9b.
  • a compressor 1 and four first outdoor heat exchangers 3a to a fourth outdoor heat exchanger 3d are arranged in the rectangular parallelepiped portion 9a.
  • the four first outdoor heat exchangers 3a to the fourth outdoor heat exchanger 3d are attached to the side surfaces of the rectangular parallelepiped portion 9a of the housing 9, respectively.
  • the fan storage portion 9b is formed on the upper portion of the rectangular parallelepiped portion 9a, and the fan 4 is arranged.
  • Each of the first outdoor heat exchangers 3a to the fourth outdoor heat exchanger 3d is located near the fan 4 and is located at the upper part of the rectangular parallelepiped portion 9a where the intake efficiency of the fan 4 is high.
  • the fan 4 is arranged above the outdoor heat exchanger 3 and blows air upward. That is, the outdoor unit 10 of the air conditioner 100 is a top-flow type in which a fan 4 that blows air upward is arranged above the outdoor heat exchanger 3.
  • the compressor 1 is arranged at the lower part inside the rectangular parallelepiped portion 9a of the housing 9.
  • the lower end of the first outdoor heat exchanger 3a to the fourth outdoor heat exchanger 3d is located higher than the upper end of the compressor 1.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are connected by an L-shaped connecting pipe 31 (see FIG. 2).
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b have a function as one heat exchanger.
  • the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d are connected by an L-shaped connecting pipe, and the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d are one. It has a function as a heat exchanger.
  • FIG. 3 is a perspective view showing the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the air conditioner 100 according to the first embodiment.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b will be described as representatives.
  • the configuration of the third outdoor heat exchanger 3c is the same as that of the first outdoor heat exchanger 3a
  • the configuration of the fourth outdoor heat exchanger 3d is the same as that of the second outdoor heat exchanger 3b.
  • the description of the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d will be omitted in the first embodiment.
  • the white arrows in the figure indicate the flow of wind generated by the fan 4.
  • the first outer header 24aa of the first outdoor heat exchanger 3a is connected to the second outer header 24bb of the second outdoor heat exchanger 3b by a connecting pipe 31.
  • connection pipe 31 is an L-shaped bent pipe and has a bent portion 31r.
  • the bent portion 31r is a portion of the connecting pipe 31 having a predetermined curvature other than the straight portion.
  • the first outdoor heat exchanger 3a has a first heat exchanger 20aa and a second heat exchanger 20ab.
  • the first heat exchanger 20aa has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
  • the second heat exchanger 20ab has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
  • the first heat exchanger 20aa has fins 22 joined to the flat tube 21.
  • the second heat exchanger 20ab has fins 22 joined to the flat tube 21.
  • the plurality of flat tubes 21 are arranged in the horizontal direction at intervals so that the wind generated by the fan 4 flows.
  • the plurality of flat tubes 21 are arranged so as to extend in the vertical direction. Refrigerant flows in the vertical direction in the pipes of the plurality of flat pipes 21.
  • the plurality of flat tubes 21 of the first heat exchanger 20aa are arranged parallel to the plurality of flat tubes 21 of the second heat exchanger 20ab in the ventilation direction.
  • the fins 22 of the first heat exchanger 20aa are connected between adjacent flat tubes 21 of the first heat exchanger 20aa and transfer heat to the flat tubes 21.
  • the fins 22 of the second heat exchanger 20ab are connected between adjacent flat tubes 21 of the second heat exchanger 20ab and transfer heat to the flat tubes 21.
  • the fin 22 improves the heat exchange efficiency between air and the refrigerant, and for example, a corrugated fin is used.
  • the fin 22 is not limited to the corrugated fin. Since heat exchange between air and the refrigerant is performed on the surface of the flat tube 21, the fins 22 may be omitted.
  • a first inner header 23a is provided at the lower part of the first heat exchanger 20aa on the leeward side of the first outdoor heat exchanger 3a.
  • the lower ends of a plurality of flat tubes 21 of the first heat exchanger 20aa of the first outdoor heat exchanger 3a are inserted into the first inner header 23a.
  • the first inner header 23a is connected to the refrigerant pipe 26 of the refrigerant circuit of the air conditioner 100, and hot gas refrigerant flows in from the refrigerant circuit.
  • the first inner header 23a is also referred to as a gas header.
  • the high-temperature and high-pressure gas refrigerant from the compressor 1 flows into the first inner header 23a.
  • the refrigerant after heat exchange in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b flows out from the first inner header 23a.
  • a first outer header 24aa is provided at the lower part of the first heat exchanger 20aa on the windward side.
  • the first outer header 24aa is arranged parallel to the first inner header 23a in the ventilation direction.
  • the first outer header 24aa is connected to the second outer header 24bb of the second outdoor heat exchanger 3b via the connection pipe 31.
  • a first folded header 25a is provided on the upper part of the first heat exchanger 20aa and the second heat exchanger 20ab.
  • the upper end portions of the plurality of flat tubes 21 inserted in the first inner header 23a and the first outer header 24aa are inserted into the first folded header 25a.
  • the second outdoor heat exchanger 3b has a third heat exchanger 20ba and a fourth heat exchanger 20bb.
  • the third heat exchanger 20ba has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
  • the fourth heat exchanger 20bb has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
  • the third heat exchanger 20ba has fins 22 joined to the flat tube 21.
  • the fourth heat exchanger 20bb has fins 22 joined to the flat tube 21.
  • the plurality of flat tubes 21 are arranged in the horizontal direction at intervals so that the wind generated by the fan 4 flows.
  • the plurality of flat tubes 21 are arranged so as to extend in the vertical direction. Refrigerant flows in the vertical direction in the pipes of the plurality of flat pipes 21.
  • the plurality of flat tubes 21 of the third heat exchanger 20ba are arranged parallel to the plurality of flat tubes 21 of the fourth heat exchanger 20bb in the ventilation direction.
  • the fins 22 of the third heat exchanger 20ba are connected between adjacent flat tubes 21 of the third heat exchanger 20ba and transfer heat to the flat tubes 21.
  • the fins 22 of the fourth heat exchanger 20bb are connected between adjacent flat tubes 21 of the fourth heat exchanger 20bb and transfer heat to the flat tubes 21.
  • a second inner header 23b is provided at the lower part of the third heat exchanger 20ba on the leeward side of the second outdoor heat exchanger 3b.
  • the lower ends of the plurality of flat tubes 21 of the third heat exchanger 20ba of the second outdoor heat exchanger 3b are inserted into the second inner header 23b.
  • the lower ends of the plurality of flat tubes 21 of the third heat exchanger 20ba of the second outdoor heat exchanger 3b are directly inserted into the second inner header 23b.
  • the second inner header 23b is connected to the refrigerant pipe 27 of the refrigerant circuit of the air conditioner 100.
  • the refrigerant after heat exchange by the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b during the cooling operation is output to the refrigerant pipe 27.
  • the refrigerant from the expansion valve 5 flows into the second inner header 23b.
  • a second outer header 24bb is provided at the lower part of the fourth heat exchanger 20bb on the windward side.
  • the second outer header 24bb is arranged parallel to the second inner header 23b in the ventilation direction.
  • the second outer header 24bb is connected to the first outer header 24aa of the first outdoor heat exchanger 3a via the connection pipe 31.
  • a second folded header 25b is provided on the upper part of the third heat exchanger 20ba and the fourth heat exchanger 20bb.
  • the upper end portions of the plurality of flat tubes 21 inserted in the second inner header 23b and the second outer header 24bb are inserted into the second folded header 25b.
  • a plurality of flat pipes 21, fins 22, first inner header 23a, second inner header 23b, first outer header 24aa, second outer header 24bb, first folded header 25a, second folded header 25b, and refrigerant pipes 26, 27. are all made of aluminum.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are arranged at right angles in the substantially horizontal direction, but the present disclosure describes the first.
  • the case is not limited to the case where the outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are arranged at substantially right angles.
  • the outdoor heat exchanger 3 of the present disclosure includes a case where the direction of the second outdoor heat exchanger 3b is different from the direction of the first outdoor heat exchanger 3a.
  • FIG. 4 is a diagram showing an example of the first outer header 24aa of the air conditioner 100 according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing an example of a cross section orthogonal to the pipe extension direction of the first outer header 24aa of the air conditioner 100 according to the first embodiment. Although FIG. 5 shows the first outer header 24aa, the second outer header 24bb has the same configuration. As shown in FIGS. 4 and 5, the first outer header 24aa is provided below the windward first heat exchanger 20aa.
  • the gas-liquid two-phase refrigerant can be distributed relatively uniformly, and the first outer header 24aa is a normal pipe. Distributing performance is better than in the case of structure. Similar to the first outer header 24aa, if the second outer header 24bb also has a double pipe structure having an inner pipe and an outer pipe, the gas-liquid two-phase refrigerant can be distributed relatively uniformly, and the second outer side can be distributed relatively uniformly. Distributing performance is better than when the header 24bb has a normal pipe structure.
  • the inner pipe 24a is a circular pipe.
  • a plurality of refrigerant flow holes 24c through which the refrigerant flows are formed in the inner pipe 24a at intervals.
  • the refrigerant flow hole 24c is provided in the lower part of the inner pipe 24a.
  • the position of the refrigerant flow hole 24c may be between adjacent flat pipes 21. Further, the position where the refrigerant flow hole 24c is provided may be, for example, the position of the liquid level of the refrigerant flowing through the outer pipe 24b. Specifically, the refrigerant flow hole 24c has an angle ⁇ of 10 ° from the lower end of the vertical inner pipe 24a passing through the center of the inner pipe 24a as seen from the center of the inner pipe 24a to the position where the refrigerant flow hole 24c exists. It is provided in the range of ⁇
  • the inner pipe 24a is inserted inside the outer pipe 24b.
  • the outer pipe 24b is a pipe having a U-shaped cross section formed in an arc shape below.
  • the outer pipe 24b having a U-shaped cross section smoothly changes the refrigerant from the refrigerant flow hole 24c opened downward along the arc.
  • the inner pipe 24a and the outer pipe 24b extend straight in the pipe extending direction.
  • the inner pipe 24a and the outer pipe 24b are joined by brazing.
  • the refrigerant flattens the second heat exchanger 20ab on the wind side from the first folded header 25a of the first outdoor heat exchanger 3a. It flows into the outer tube 24b via the tube 21.
  • the refrigerant that has flowed into the outer pipe 24b of the first outer header 24aa flows into the inner pipe 24a through the refrigerant flow hole 24c provided in the inner pipe 24a.
  • the refrigerant that has flowed into the inner pipe 24a flows into the second outer header 24bb of the second outdoor heat exchanger 3b via the connecting pipe 31.
  • connection pipe 31 is configured by bending the inner inner pipe 24a. That is, the inner pipe 24a of the first outer header 24aa may be the connecting pipe 31.
  • the connection pipe 31 is connected to the inner pipe of the second outer header 24bb.
  • the refrigerant flowing into the outdoor heat exchanger 3 exchanges heat with the air generated by the fan 4, evaporates and gasifies, and flows out through the first inner header 23a.
  • the refrigerant flowing out through the first inner header 23a is sucked into the compressor 1 again through the refrigerant pipe 26 and the accumulator 8 in this order, and circulates in the refrigerant circuit.
  • the refrigerating machine oil required to drive the compressor 1 also circulates in the refrigerant circuit.
  • the flow of the refrigerant and the refrigerating machine oil rotates in the reverse direction in the refrigerant circuit.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as condensers.
  • the refrigerant compressed by the compressor 1 and turned into a high-temperature high-pressure gas flows into the outdoor heat exchanger 3 via the four-way valve 2.
  • the refrigerants other than the refrigerant flowing into the third outdoor heat exchanger 3c flow into the first inner header 23a of the first outdoor heat exchanger 3a via the refrigerant pipe 26.
  • the refrigerant flowing into the first inner header 23a rises in the plurality of flat tubes 21 inserted in the first inner header 23a, exchanges heat with the air on the wind generated by the fan 4, and gradually liquefies the first.
  • the refrigerant that has reached the first folded header 25a descends the plurality of flat pipes 21 of the second heat exchanger 20ab of the first outdoor heat exchanger 3a and reaches the first outer header 24aa.
  • the refrigerant that has reached the first outer header 24aa and merged flows into the second outer header 24bb of the second outdoor heat exchanger 3b via the connection pipe 31.
  • the refrigerant that has reached the second outer header 24bb rises in the plurality of flat pipes 21 of the fourth heat exchanger 20bb of the second outdoor heat exchanger 3b, and gradually exchanges heat with the air on the wind generated by the fan 4. While liquefying, it reaches the second folded header 25b of the second outdoor heat exchanger 3b.
  • the refrigerant that has reached the second folded header 25b descends from the plurality of flat pipes 21 of the third heat exchanger 20ba, reaches the second inner header 23b, and is output from the refrigerant pipe 27 to the expansion valve 5.
  • the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
  • connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the first embodiment is connected by the connection pipe 31.
  • the configuration can also be applied to the indoor heat exchanger 6.
  • first outer header 24aa and the second outer header 24bb are connected via the connection pipe 31 .
  • first wrapping header 25a has an inner header and an outer header
  • second wrapping header 25b has an inner header and an outer header
  • the outer header of the first wrapping header 25a and the outer header of the second wrapping header 25b are used. It may be connected by the connection pipe 31.
  • a bent connection pipe is required to connect headers that extend in orthogonal directions.
  • the bending of the connecting pipe should be as curved as possible in order to suppress the resistance of the refrigerant.
  • a large space was required between the headers in order to secure the curvature of the connecting pipe on the inner side.
  • the first outer header 24aa and the second outer header 24bb are connected by a connection pipe 31.
  • the refrigerant flowing from the first outdoor heat exchanger 3a to the second outdoor heat exchanger 3b and the refrigerant flowing from the second outdoor heat exchanger 3b to the first outdoor heat exchanger 3a flow only through the connection pipe 31. Therefore, since a connection pipe for connecting the first inner header 23a of the first heat exchanger and the second inner header 23b of the third heat exchanger is not required, the first heat exchanger 20aa and the second heat exchanger 20ab are not required.
  • FIG. 6 is a diagram showing a comparative example for explaining the effect of the air conditioner 100 according to the first embodiment.
  • FIG. 7 is a diagram for explaining the effect of the air conditioner 100 according to the first embodiment.
  • the second inner header 23b of the exchange body 20ba is connected to the second inner header 23b by a connecting pipe 31a.
  • the first outer header 24aa arranged outside the first outdoor heat exchanger 3a and the second outer header 24bb arranged outside the second outdoor heat exchanger 3b are connected by a connecting pipe 31b. ..
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are connected by only one connection pipe 31.
  • the connection pipe 31 connects the first outer header 24aa arranged on the outside and the second outer header 24bb arranged on the outside.
  • the connection pipe 31b since the connection pipe 31b is not required, the lengths of the first heat exchanger 20aa and the second heat exchanger 20ab are set. It can be extended by L. As a result, the mounting area of the first heat exchanger 20aa and the second heat exchanger 20ab can be improved.
  • connection pipe 31 connects the inner pipe 24a of the first outer header 24aa and the inner pipe of the second outer header 24bb. Therefore, as compared with the case where the connection pipe 31 connects the outer pipe 24b of the first outer header 24aa and the outer pipe of the second outer header 24bb, the first heat exchanger 20aa and the second heat exchanger are further connected.
  • the mounting area of 20ab can be improved.
  • Embodiment 2 in the second embodiment, in the first embodiment, a partition is provided to block the refrigerant flow path of the second outer header 24bb, the second inner header 23b, and the second folded header 25b of the second outdoor heat exchanger 3b.
  • the refrigerant pipe 27 will be described as being connected to the second outer header 24bb due to the flow of the refrigerant due to the partition.
  • the partition of the second outdoor heat exchanger 3b is the second folded header 25b and the second outer header 24bb partitioned by the partition when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser.
  • the cross-sectional area of the refrigerant flow path of the plurality of flat pipes 21 connected to the refrigerant flow region where the refrigerant is an upward flow is provided so as to be small in the process of phase change from the gas refrigerant to the liquid refrigerant.
  • the refrigerant is included in the regions of the second folded header 25b and the second outer header 24bb partitioned by the partition.
  • the cross-sectional area of the refrigerant flow path of the plurality of flat tubes 21 of the second outdoor heat exchanger 3b in the region on the downstream side where is an upward flow is the cross-sectional area of the second outdoor heat exchanger 3b in the region on the upstream side where the refrigerant is an upward flow. It is smaller than the cross-sectional area of the refrigerant flow path of the plurality of flat tubes 21.
  • the gas-liquid two-phase refrigerant flow flowing in the refrigerant flow region that is the most downstream of the gas refrigerant flow and is the upward flow has a flooding constant. It is designed so that C> 1 or more.
  • the flooding constant C is defined based on the flow rate in the intermediate load capacity (50% capacity) operation of the condenser flowing into the corresponding region.
  • J G is the apparent speed of the dimensionless gas
  • J L is the apparent speed of the dimensionless liquid
  • J G and J L are defined as follows.
  • J G U G ⁇ ⁇ G / [9.81 ⁇ D eq ( ⁇ L - ⁇ G)] ⁇ 0.5 ...
  • J L U L ⁇ ⁇ L / [9.81 ⁇ D eq ( ⁇ L - ⁇ G)] ⁇ 0.5 ...
  • Figure 8 is a view showing a flow path cross-sectional area A 1 per one of the first outdoor heat exchanger 3a and a plurality of flat tubes 21 of the second outdoor heat exchanger 3b of the air-conditioning apparatus 100 according to the second embodiment Is.
  • Deq is a corresponding diameter [m] defined by the number of flat tubes and the cross-sectional area of the flow path connected to the most downstream and ascending flow region when functioning as a condenser.
  • a eq A 1 x N ... (4)
  • D eq [(4 x A eq) /3.14] 0.5 ... (5) It is represented by.
  • N is the number of flat tubes connected to the most downstream and upstream flow region when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as condensers.
  • the number of flat tubes connected to the region L4 shown in FIG. 9 corresponds.
  • liquid density of the ⁇ L refrigerant [kg / m 3 ] and ⁇ G are the gas density of the refrigerant [kg / m 3 ].
  • ⁇ L and ⁇ G are state quantities that can be calculated by the type and pressure of the refrigerant flowing into the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b.
  • UG is the apparent gas speed [m / s]
  • UL is the apparent liquid speed [m / s]
  • x is the dryness of the refrigerant.
  • U G (G ⁇ x) / ⁇ G ... (6)
  • UL [G ⁇ (1-x)] / ⁇ L ... (7) Defined in.
  • G is the flow velocity [kg / m 2 s] of the gas refrigerant flowing into the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b
  • x is the dryness of the refrigerant flowing into the flow region flowing in the ascending flow at the most downstream.
  • x can be calculated from, for example, the amount and capacity of heat exchange in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b.
  • the dryness of the refrigerant changes from 1 to 0 at the inlet to the outlet of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b, and the heat exchange amount ⁇ heat transfer area.
  • FIG. 9 is a diagram for explaining the flow of the refrigerant in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the air conditioner 100 according to the second embodiment.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b will be described as representatives, but the third outdoor heat exchanger 3c is the first outdoor heat exchanger 3a and the fourth outdoor heat exchanger 3d.
  • the configuration is the same as that of the second outdoor heat exchanger 3b.
  • the outdoor heat exchanger 3 functions as a condenser.
  • the refrigerants other than the refrigerant flowing into the third outdoor heat exchanger 3c are the first inside of the first outdoor heat exchanger 3a via the refrigerant pipe 26. It flows into the header 23a (see FIG. 3).
  • the refrigerant flowing into the first inner header 23a rises in a plurality of flat tubes 21 (see FIG. 3) inserted in the first inner header 23a, and the air and heat generated by the fan 4 (see FIG. 2) ride on the wind. It reaches the first folded header 25a (see FIG.
  • the refrigerant that has reached the first folded header 25a descends from the plurality of flat tubes 21 of the second heat exchanger 20ab (see FIG. 3) of the first outdoor heat exchanger 3a, and descends from the first outer header 24aa (see FIG. 3). To reach.
  • the refrigerant that has reached the first outer header 24aa and merged flows into the second outer header 24bb (see FIG. 3) of the second outdoor heat exchanger 3b via the connection pipe 31.
  • the region of the first inner header 23a is the region L1.
  • a partition 41a is provided on the second outer header 24bb and the second folded header 25b (see FIG. 3).
  • the partition 41a provided in the first folded header 25a is provided directly above the partition 41b provided in the second outer header 24bb.
  • a partition 41b is provided on the downstream side of the partition 41a of the second inner header 23b and the second folded header 25b.
  • the partition 41b provided in the second folded header 25b is provided directly above the partition 41b provided in the second inner header 23b.
  • the refrigerant that has reached the second outer header 24bb of the second outdoor heat exchanger 3b flows through the second outer header 24bb to the partition 41a and turns.
  • the refrigerant flowing through the second outer header 24bb including the refrigerant turned by the partition 41a rises from the second outer header 24bb to the plurality of flat tubes 21 of the fourth heat exchanger 20bb (see FIG. 3).
  • the refrigerant rising from the plurality of flat tubes 21 reaches the second folded header 25b of the second outdoor heat exchanger 3b while exchanging heat with the air generated by the fan 4 and gradually liquefying.
  • the region L2 is from the inlet of the refrigerant of the second outer header 24bb of the second outdoor heat exchanger 3b to the partition 41a.
  • the refrigerant that has reached the second folded header 25b is turned by the partition 41a provided in the second folded header 25b, descends from the plurality of flat tubes 21 of the third heat exchanger 20ba in the region corresponding to the region L2, and is the second. 2 Reach the inner header 23b and join.
  • the refrigerant that has reached the second inner header 23b flows to the partition 41b provided in the second inner header 23b and turns.
  • the area of the second inner header 23b from the position corresponding to the partition 41a provided in the second outer header 24bb to the partition 41b provided in the second inner header 23b is the area L3.
  • the refrigerant flowing through the second inner header 23b rises in the plurality of flat pipes 21 of the third heat exchanger 20ba in the region L3 of the second inner header 23b, and gradually exchanges heat with the air on the wind generated by the fan 4. While liquefying, it reaches the second folded header 25b and joins.
  • the area from the position corresponding to the partition 41b of the second folded header 25b to the end of the second folded header 25b is the area L4.
  • the refrigerant that has reached the second folded header 25b and merged has descended from the plurality of flat pipes 21 of the fourth heat exchanger 20bb in the region L4, reached the second outer header 24bb, and merged.
  • the refrigerant that has reached the second outer header 24bb flows out from the second outdoor heat exchanger 3b via the refrigerant pipe 27. Further, a part of the refrigerant flowing through the region L4 of the second outer header 24bb descends the plurality of flat tubes 21 of the third heat exchanger 20ba (see FIG. 3) in the region corresponding to the region L4, and the second inner header It reaches 23b and joins.
  • the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
  • the first outer header 24aa of the first outdoor heat exchanger 3a and the second outer header 24bb of the second outdoor heat exchanger 3b may be connected only by the connection pipe 31. Further, the position and number of partitions are not limited to the positions and numbers described in the second embodiment.
  • the partition 41a is provided in the second folded header 25b and the second outer header 24bb. Further, a partition 41b is provided on the second inner header 23b.
  • the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser, in the region on the downstream side where the refrigerant of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b becomes an upward flow.
  • the flow path cross-sectional area of the plurality of flat tubes 21 is smaller than the refrigerant flow path cross-sectional area of the plurality of flat tubes 21 in the upstream region. Therefore, when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser, the cross-sectional area of the refrigerant flow path in the downstream region is smaller than the cross-sectional area of the refrigerant flow path on the upstream side. , The pressure of the refrigerant increases, and as a result, the flow velocity of the refrigerant can be increased. Further, the heat exchange performance of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b can be improved.
  • Embodiment 3 In the first and second embodiments, the connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b is connected by an L-shaped connection pipe 31.
  • the L-shaped connection pipe 31 In the air conditioner 100 of the third embodiment, the L-shaped connection pipe 31 is not used for the connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b.
  • the first outer header 24aa is stretched.
  • the first outer header 24aa and the second outer header 24bb are connected by a linear connecting pipe 51.
  • FIG. 10 is a diagram for explaining the connection relationship between the first outer header 24aa and the second outer header 24bb of the air conditioner 100 according to the third embodiment.
  • the first outer header 24aa arranged on the outer side is formed to be longer and extend than the first inner header 23aa.
  • the first inner header 23aa and the second outer header 24bb are connected by a linear connecting pipe 51.
  • the first outer header 24aa is stretched.
  • the extended first inner header 23aa and the second outer header 24bb are connected by a linear connecting pipe 51.
  • the first inner header 23aa and the second outer header 24bb can be connected by using the linear connecting pipe 51 without using the connecting pipe 31 having the bent portion 31r, so that the positioning of the pipe can be performed. Performance can be improved. As a result, the piping space used for positioning can be reduced, and the mounting area of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b can be improved.
  • the first outdoor heat exchanger 3a of the first embodiment, the second embodiment and the third embodiment is also referred to as a first heat exchanger
  • the second outdoor heat exchanger 3b is also referred to as a second heat exchanger
  • the second folded header 25b is also referred to as a common header.
  • 1 Compressor 2 4-way valve, 3 Outdoor heat exchanger, 3a 1st outdoor heat exchanger, 3b 2nd outdoor heat exchanger, 3c 3rd outdoor heat exchanger, 3d 4th outdoor heat exchanger, 4 fans, 5 Expansion valve, 6 indoor heat exchanger, 7 fan, 8 accumulator, 9 housing, 9a square body, 9b fan storage, 10 outdoor unit, 11, 12, 13 indoor unit, 20aa 1st heat exchanger, 20ab second Heat exchanger, 20ba 3rd heat exchanger, 20bb 4th heat exchanger, 21 flat tube, 22 fins, 23a 1st inner header, 23b 2nd inner header, 24aa 1st outer header, 24bb 2nd outer header, 24a Inner pipe, 24b outer pipe, 24c refrigerant flow hole, 25a 1st folded header, 25b 2nd folded header, 26, 27 refrigerant pipe, 31 connection pipe, 31r bend, 41a 1st partition, 41b 2nd partition, 51 connection pipe, 100 flow path cross-sectional area per one of

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The heat exchanger according to the present disclosure is provided with: a first heat exchanger including a first heat exchange body that has a plurality of heat conduction pipes spaced apart from each other, a first inner header that is provided to upper or lower ends of the plurality of heat conduction pipes of the first heat exchange body, a second heat exchange body that is provided in the direction of air passage of the first heat exchange body and that has a plurality of heat conduction pipes spaced apart from each other, and a first outer header that is provided to upper or lower ends of the plurality of heat conduction pipes of the second heat exchange body; a second heat exchanger including a third heat exchange body that has a plurality of heat conduction pipes spaced apart from each other, a second inner header that is provided to upper or lower ends of the plurality of heat conduction pipes of the third heat exchange body, a fourth heat exchange body that is provided in the direction of air passage of the third heat exchange body and that has a plurality of heat conduction pipes spaced apart from each other, and a second outer header that is provided to upper or lower ends, but on the same side where the first outer header is provided, of the plurality of heat conduction pipes of the fourth heat exchange body; and a connection pipe that connects the first and second outer headers together and that has a bent section. A refrigerant flowing from the first heat exchanger to the second heat exchanger and a refrigerant flowing from the second heat exchanger to the first heat exchanger flow only through the connection pipe.

Description

熱交換器、空気調和装置の室外機及び空気調和装置Heat exchanger, outdoor unit of air conditioner and air conditioner
 本開示は、複数の伝熱管を有する熱交換体を複数列含む第1熱交換器及び複数の伝熱管を有する熱交換体を複数列含む第2熱交換器を具備する熱交換器、空気調和装置の室外機及び空気調和装置に関する。 The present disclosure discloses a heat exchanger comprising a first heat exchanger including a plurality of rows of heat exchangers having a plurality of heat transfer tubes and a second heat exchanger containing a plurality of rows of heat exchangers having a plurality of heat transfer tubes, air harmonizing. Regarding the outdoor unit of the device and the air conditioner.
 間隔を空けて列状に配置された伝熱管を有する第1熱交換体と、第1熱交換体に平行に設けられ、間隔を空けて列状に配置された伝熱管を有する第2熱交換体とを含む熱交換器が知られている。そして、このような熱交換器を2つ設ける。ここで、説明の便宜上、2つの熱交換器のうち、一方を第1熱交換器と称し、他方を第2熱交換器と称する。 A first heat exchanger having heat transfer tubes arranged in rows at intervals and a second heat exchange having heat transfer tubes arranged in rows at intervals and provided in parallel with the first heat exchanger. Heat exchangers including the body are known. Then, two such heat exchangers are provided. Here, for convenience of explanation, one of the two heat exchangers is referred to as a first heat exchanger and the other is referred to as a second heat exchanger.
 第1熱交換器及び第2熱交換器は、互いに略直交する方向に配置される。第1熱交換器及び第2熱交換器は、第1熱交換器の内側ヘッダと第2熱交換器の内側ヘッダとを接続する屈曲した接続配管及び第1熱交換器の外側ヘッダと第2熱交換器の外側ヘッダとを接続する屈曲した接続配管により接続される。 The first heat exchanger and the second heat exchanger are arranged in directions substantially orthogonal to each other. The first heat exchanger and the second heat exchanger are a bent connection pipe connecting the inner header of the first heat exchanger and the inner header of the second heat exchanger, and the outer header of the first heat exchanger and the second. It is connected by a bent connection pipe that connects to the outer header of the heat exchanger.
 そして、2つの屈曲した接続配管により接続された第1熱交換器及び第2熱交換器は、1つの熱交換器として機能する(例えば、特許文献1参照)。 Then, the first heat exchanger and the second heat exchanger connected by two bent connecting pipes function as one heat exchanger (see, for example, Patent Document 1).
特許第6595125号公報Japanese Patent No. 6595125
 第1熱交換器及び第2熱交換器の内側ヘッダ同士及び外側ヘッダ同士は、屈曲した2つの接続配管により接続されている。従って、第1熱交換器及び第2熱交換器の内側ヘッダ同士を接続する接続配管があることにより、第1熱交換器及び第2熱交換器の少なくとも1つの長手方向の長さの実装面積が小さくなってしまうという問題がある。 The inner headers and outer headers of the first heat exchanger and the second heat exchanger are connected by two bent connecting pipes. Therefore, by having a connection pipe connecting the inner headers of the first heat exchanger and the second heat exchanger, the mounting area of at least one longitudinal length of the first heat exchanger and the second heat exchanger is provided. There is a problem that becomes smaller.
 本開示は、上記実情に鑑みてなされたものであり、第1熱交換器と第1熱交換器に接続された第2熱交換器とを有する熱交換器の実装面積を向上することが出来る熱交換器、空気調和装置の室外機及び空気調和装置を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and it is possible to improve the mounting area of the heat exchanger having the first heat exchanger and the second heat exchanger connected to the first heat exchanger. It is an object of the present invention to provide an outdoor unit of a heat exchanger, an air conditioner, and an air conditioner.
 本開示に係る熱交換器によれば、間隔を空けて配置された複数の伝熱管を有する第1熱交換体と、前記第1熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第1内側ヘッダと、前記第1熱交換体の通風方向に設けられ、間隔を空けて配置された複数の伝熱管を有する第2熱交換体と、前記第2熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第1外側ヘッダとを含む第1熱交換器と、間隔を空けて配置された複数の伝熱管を有する第3熱交換体と、前記第3熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第2内側ヘッダと、前記第3熱交換体との通風方向に設けられ、間隔を空けて配置された複数の伝熱管を有する第4熱交換体と、前記第4熱交換体の複数の伝熱管の前記第1外側ヘッダと同じ側の上側又は下側の一端に設けられた第2外側ヘッダとを含む第2熱交換器と、前記第1外側ヘッダと前記第2外側ヘッダとを接続し、屈曲部を有する接続配管とを具備し、前記第1熱交換器から前記第2熱交換器へ流れる冷媒及び前記第2熱交換器から前記第1熱交換器へ流れる冷媒は、前記接続配管のみを流れる。 According to the heat exchanger according to the present disclosure, a first heat exchanger having a plurality of heat transfer tubes arranged at intervals and one end of the upper side or the lower side of the plurality of heat transfer tubes of the first heat exchanger. A first inner header provided, a second heat exchanger having a plurality of heat transfer tubes provided in the ventilation direction of the first heat exchanger and arranged at intervals, and a plurality of the second heat exchangers. A first heat exchanger including a first outer header provided at one end of the upper or lower end of the heat transfer tube, a third heat exchanger having a plurality of heat transfer tubes arranged at intervals, and the first heat exchanger. A plurality of heat exchangers provided at one end of the upper or lower ends of the plurality of heat exchangers of the three heat exchangers and a plurality of heat exchangers provided at intervals in the ventilation direction between the third heat exchanger and the third heat exchanger. A second including a fourth heat exchanger having a heat exchanger and a second outer header provided at one upper or lower end on the same side as the first outer header of the plurality of heat transfer tubes of the fourth heat exchanger. The heat exchanger is provided with a connection pipe connecting the first outer header and the second outer header and having a bent portion, and the refrigerant flowing from the first heat exchanger to the second heat exchanger and the said. The refrigerant flowing from the second heat exchanger to the first heat exchanger flows only through the connecting pipe.
 本開示によれば、第1外側ヘッダと、第2外側ヘッダとは接続配管で接続されている。そして、第1熱交換器から第2熱交換器へ流れる冷媒及び第2熱交換器から第1熱交換器へ流れる冷媒は、接続配管のみを流れる。従って、本開示の熱交換器によれば、第1熱交換体の内側ヘッダと第3熱交換体の内側ヘッダとを接続する接続配管を必要としないので、熱交換器の実装面積を向上することが出来る。 According to the present disclosure, the first outer header and the second outer header are connected by a connecting pipe. The refrigerant flowing from the first heat exchanger to the second heat exchanger and the refrigerant flowing from the second heat exchanger to the first heat exchanger flow only through the connecting pipes. Therefore, according to the heat exchanger of the present disclosure, a connection pipe for connecting the inner header of the first heat exchanger and the inner header of the third heat exchanger is not required, so that the mounting area of the heat exchanger is improved. Can be done.
実施の形態1に係る空気調和装置の冷媒回路図である。It is a refrigerant circuit diagram of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の室外機を示す斜視図である。It is a perspective view which shows the outdoor unit of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の第1室外熱交換器及び第2室外熱交換器を示す斜視図である。It is a perspective view which shows the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の第1外側ヘッダの一例を示す図である。It is a figure which shows an example of the 1st outer header of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の第1外側ヘッダの管延方向に直交する断面の一例を示す断面図である。It is sectional drawing which shows an example of the cross section orthogonal to the pipe extension direction of the 1st outer header of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の効果を説明するための比較例を示す図である。It is a figure which shows the comparative example for demonstrating the effect of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態1に係る空気調和装置の効果を説明するための図である。It is a figure for demonstrating the effect of the air conditioner which concerns on Embodiment 1. FIG. 実施の形態2に係る空気調和装置の第1室外熱交換器及び第2室外熱交換器の複数の扁平管の1本あたりの流路断面積を示す図である。It is a figure which shows the flow path cross-sectional area per one of the plurality of flat pipes of the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger of the air conditioner which concerns on Embodiment 2. FIG. 実施の形態2に係る空気調和装置の第1室外熱交換器及び第2室外熱交換器3bの冷媒の流れを説明するための図である。It is a figure for demonstrating the flow of the refrigerant of the 1st outdoor heat exchanger and the 2nd outdoor heat exchanger 3b of the air conditioner which concerns on Embodiment 2. FIG. 実施の形態3に係る空気調和装置の第1外側ヘッダと第2外側ヘッダとの接続関係を説明するための図である。It is a figure for demonstrating the connection relationship between the 1st outer header and the 2nd outer header of the air conditioner which concerns on Embodiment 3. FIG.
 以下、図面を参照して、実施の形態に係る空気調和装置について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行なう。本開示は、以下の各実施の形態で説明する構成のうち、組合せ可能な構成のあらゆる組合せを含み得る。 Hereinafter, the air conditioner according to the embodiment will be described with reference to the drawings. In the drawings, the same components will be described with the same reference numerals, and duplicate explanations will be given only when necessary. The present disclosure may include any combination of configurable configurations among the configurations described in each of the following embodiments.
実施の形態1.
<空気調和装置100の構成>
 図1は、実施の形態1に係る空気調和装置100の冷媒回路図である。図1に示すように、空気調和装置100は、室外機10及び複数の室内機11、12及び13を備える。室外機10には、複数の室内機11、12及び13が接続される。室内機11、12及び13は、互いに並列に接続される。冷媒は、室外機10と複数の室内機11、12及び13との内部を冷媒が循環する。空気調和装置100は、マルチ型空気調和装置である。なお、本実施の形態1では、室外機10に3台の室内機11、12及び13が接続されている。しかし、実施の形態1は、室外機10に接続される室内機の接続台数を限定するものではない。
Embodiment 1.
<Structure of air conditioner 100>
FIG. 1 is a refrigerant circuit diagram of the air conditioner 100 according to the first embodiment. As shown in FIG. 1, the air conditioner 100 includes an outdoor unit 10 and a plurality of indoor units 11, 12, and 13. A plurality of indoor units 11, 12 and 13 are connected to the outdoor unit 10. The indoor units 11, 12 and 13 are connected in parallel with each other. The refrigerant circulates inside the outdoor unit 10 and the plurality of indoor units 11, 12, and 13. The air conditioner 100 is a multi-type air conditioner. In the first embodiment, three indoor units 11, 12 and 13 are connected to the outdoor unit 10. However, the first embodiment does not limit the number of indoor units connected to the outdoor unit 10.
 空気調和装置100は、圧縮機1と、四方弁2と、室外熱交換器3と、膨張弁5と、室内熱交換器6と、アキュムレータ8と、が冷媒配管で接続された冷媒回路を有する。室外熱交換器3においては、ファン4によって発生する風によって内部に流れる冷媒と空気とが熱交換される。室内熱交換器6においては、ファン7によって発生する風によって内部に流れる冷媒と空気とが熱交換される。 The air conditioner 100 has a refrigerant circuit in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 5, an indoor heat exchanger 6, and an accumulator 8 are connected by a refrigerant pipe. .. In the outdoor heat exchanger 3, the air is exchanged with the refrigerant flowing inside by the wind generated by the fan 4. In the indoor heat exchanger 6, the air is exchanged with the refrigerant flowing inside by the wind generated by the fan 7.
 冷房運転時には、圧縮機1にて圧縮された高温高圧のガスの冷媒は、四方弁2を介して、四方弁2と室外熱交換器3とを接続する冷媒配管26から室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、ファン4によって発生する風と熱交換が行なわれた後、室外熱交換器3と膨張弁5とを接続する冷媒配管27から流出する。暖房運転の場合、すなわち室外熱交換器3が蒸発器として機能する場合には、冷媒が上述の凝縮器の場合の冷媒流れ方向と逆に流れる。 During the cooling operation, the refrigerant of the high-temperature and high-pressure gas compressed by the compressor 1 is transferred from the refrigerant pipe 26 connecting the four-way valve 2 and the outdoor heat exchanger 3 to the outdoor heat exchanger 3 via the four-way valve 2. Inflow. The refrigerant flowing into the outdoor heat exchanger 3 exchanges heat with the wind generated by the fan 4, and then flows out from the refrigerant pipe 27 connecting the outdoor heat exchanger 3 and the expansion valve 5. In the case of heating operation, that is, when the outdoor heat exchanger 3 functions as an evaporator, the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
<空気調和装置100の室外機10の構成>
 図2は、実施の形態1に係る空気調和装置100の室外機10を示す斜視図である。図2に示すように、空気調和装置100の室外機10は、圧縮機1と、ファン4と、室外熱交換器3とを有する。室外熱交換器3は、4つの第1室外熱交換器3a、第2室外熱交換器3b、第3室外熱交換器3c及び第4室外熱交換器3dとを備える。空気調和装置100の室外機10の筐体9は、直方体部9aと、ファン収納部9bとを有する。直方体部9aには、圧縮機1及び4つの第1室外熱交換器3a~第4室外熱交換器3dが配置される。4つの第1室外熱交換器3a~第4室外熱交換器3dは、筐体9の直方体部9aの側面にそれぞれ取り付けられる。ファン収納部9bは、直方体部9aの上部に形成され、ファン4が配置される。
<Structure of outdoor unit 10 of air conditioner 100>
FIG. 2 is a perspective view showing the outdoor unit 10 of the air conditioner 100 according to the first embodiment. As shown in FIG. 2, the outdoor unit 10 of the air conditioner 100 includes a compressor 1, a fan 4, and an outdoor heat exchanger 3. The outdoor heat exchanger 3 includes four first outdoor heat exchangers 3a, a second outdoor heat exchanger 3b, a third outdoor heat exchanger 3c, and a fourth outdoor heat exchanger 3d. The housing 9 of the outdoor unit 10 of the air conditioner 100 has a rectangular parallelepiped portion 9a and a fan accommodating portion 9b. A compressor 1 and four first outdoor heat exchangers 3a to a fourth outdoor heat exchanger 3d are arranged in the rectangular parallelepiped portion 9a. The four first outdoor heat exchangers 3a to the fourth outdoor heat exchanger 3d are attached to the side surfaces of the rectangular parallelepiped portion 9a of the housing 9, respectively. The fan storage portion 9b is formed on the upper portion of the rectangular parallelepiped portion 9a, and the fan 4 is arranged.
 各第1室外熱交換器3a~第4室外熱交換器3dは、ファン4に近い位置であって、直方体部9aのファン4の吸気効率が高い上部に配置されている。 Each of the first outdoor heat exchangers 3a to the fourth outdoor heat exchanger 3d is located near the fan 4 and is located at the upper part of the rectangular parallelepiped portion 9a where the intake efficiency of the fan 4 is high.
 ファン4は、室外熱交換器3の上方に配置され、上向きに空気を吹き出す。すなわち、空気調和装置100の室外機10は、上向きに空気を吹き出すファン4が室外熱交換器3の上方に配置されるトップフロー型である。 The fan 4 is arranged above the outdoor heat exchanger 3 and blows air upward. That is, the outdoor unit 10 of the air conditioner 100 is a top-flow type in which a fan 4 that blows air upward is arranged above the outdoor heat exchanger 3.
 圧縮機1は、筐体9の直方体部9aの内部の下部に配置されている。第1室外熱交換器3a~第4室外熱交換器3dの下端は、圧縮機1の上端よりも高い位置にある。 The compressor 1 is arranged at the lower part inside the rectangular parallelepiped portion 9a of the housing 9. The lower end of the first outdoor heat exchanger 3a to the fourth outdoor heat exchanger 3d is located higher than the upper end of the compressor 1.
 第1室外熱交換器3aと第2室外熱交換器3bとは、L字形状の接続配管31(図2参照)により接続される。第1室外熱交換器3a及び第2室外熱交換器3bは、1つの熱交換器としての機能を有する。同様に、第3室外熱交換器3cと第4室外熱交換器3dとは、L字形状の接続配管により接続され、第3室外熱交換器3c及び第4室外熱交換器3dは、1つの熱交換器としての機能を有する。 The first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are connected by an L-shaped connecting pipe 31 (see FIG. 2). The first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b have a function as one heat exchanger. Similarly, the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d are connected by an L-shaped connecting pipe, and the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d are one. It has a function as a heat exchanger.
<第1室外熱交換器3a及び第2室外熱交換器3bの構成>
 図3は、実施の形態1に係る空気調和装置100の第1室外熱交換器3a及び第2室外熱交換器3bを示す斜視図である。ここでは、第1室外熱交換器3a及び第2室外熱交換器3bが代表して説明される。第3室外熱交換器3cの構成は第1室外熱交換器3aと同様であり、第4室外熱交換器3dの構成は第2室外熱交換器3bと同様である。第3室外熱交換器3cと第4室外熱交換器3dとの説明は、実施の形態1においては省略する。図中の白抜き矢印は、ファン4によって発生する風の流れを示す。
<Structure of 1st outdoor heat exchanger 3a and 2nd outdoor heat exchanger 3b>
FIG. 3 is a perspective view showing the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the air conditioner 100 according to the first embodiment. Here, the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b will be described as representatives. The configuration of the third outdoor heat exchanger 3c is the same as that of the first outdoor heat exchanger 3a, and the configuration of the fourth outdoor heat exchanger 3d is the same as that of the second outdoor heat exchanger 3b. The description of the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d will be omitted in the first embodiment. The white arrows in the figure indicate the flow of wind generated by the fan 4.
 図3に示すように、第1室外熱交換器3aの第1外側ヘッダ24aaは、第2室外熱交換器3bの第2外側ヘッダ24bbと接続配管31で接続されている。 As shown in FIG. 3, the first outer header 24aa of the first outdoor heat exchanger 3a is connected to the second outer header 24bb of the second outdoor heat exchanger 3b by a connecting pipe 31.
 接続配管31は、L字形状の屈曲管であり、屈曲部31rを有する。ここで屈曲部31rとは、接続配管31のうち、直線部分以外の所定の曲率を有する部分である。第1室外熱交換器3aから第2室外熱交換器3bへ流れる冷媒及び第2室外熱交換器3bから第1室外熱交換器3aへ流れる冷媒は、接続配管31のみを流れる。 The connection pipe 31 is an L-shaped bent pipe and has a bent portion 31r. Here, the bent portion 31r is a portion of the connecting pipe 31 having a predetermined curvature other than the straight portion. The refrigerant flowing from the first outdoor heat exchanger 3a to the second outdoor heat exchanger 3b and the refrigerant flowing from the second outdoor heat exchanger 3b to the first outdoor heat exchanger 3a flow only through the connection pipe 31.
 第1室外熱交換器3aは、第1熱交換体20aa及び第2熱交換体20abを有する。第1熱交換体20aaは、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管21を有する。第2熱交換体20abは、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管21を有する。 The first outdoor heat exchanger 3a has a first heat exchanger 20aa and a second heat exchanger 20ab. The first heat exchanger 20aa has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction. The second heat exchanger 20ab has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
 第1熱交換体20aaは、扁平管21に接合されたフィン22を有する。第2熱交換体20abは、扁平管21に接合されたフィン22を有する。複数の扁平管21は、ファン4によって発生した風が流れるように、間隔を空けて水平方向に配置される。複数の扁平管21は、上下方向に延びるように配置される。複数の扁平管21の管内には、冷媒が上下方向に流れる。第1熱交換体20aaの複数の扁平管21は、第2熱交換体20abの複数の扁平管21と通風方向に平行に配置される。 The first heat exchanger 20aa has fins 22 joined to the flat tube 21. The second heat exchanger 20ab has fins 22 joined to the flat tube 21. The plurality of flat tubes 21 are arranged in the horizontal direction at intervals so that the wind generated by the fan 4 flows. The plurality of flat tubes 21 are arranged so as to extend in the vertical direction. Refrigerant flows in the vertical direction in the pipes of the plurality of flat pipes 21. The plurality of flat tubes 21 of the first heat exchanger 20aa are arranged parallel to the plurality of flat tubes 21 of the second heat exchanger 20ab in the ventilation direction.
 第1熱交換体20aaのフィン22は、第1熱交換体20aaの隣り合う扁平管21の間にわたって接続され、扁平管21に伝熱する。第2熱交換体20abのフィン22は、第2熱交換体20abの隣り合う扁平管21の間にわたって接続され、扁平管21に伝熱する。 The fins 22 of the first heat exchanger 20aa are connected between adjacent flat tubes 21 of the first heat exchanger 20aa and transfer heat to the flat tubes 21. The fins 22 of the second heat exchanger 20ab are connected between adjacent flat tubes 21 of the second heat exchanger 20ab and transfer heat to the flat tubes 21.
 なお、フィン22は、空気と冷媒との熱交換効率を向上させるものであり、例えば、コルゲートフィンが用いられる。しかし、フィン22は、コルゲートフィンに限定されるものではない。扁平管21の表面で空気と冷媒との熱交換が行われるため、フィン22は無くてもよい。 The fin 22 improves the heat exchange efficiency between air and the refrigerant, and for example, a corrugated fin is used. However, the fin 22 is not limited to the corrugated fin. Since heat exchange between air and the refrigerant is performed on the surface of the flat tube 21, the fins 22 may be omitted.
 第1室外熱交換器3aの風下側の第1熱交換体20aaの下部には、第1内側ヘッダ23aが設けられている。第1内側ヘッダ23aには、第1室外熱交換器3aの第1熱交換体20aaの複数の扁平管21の下端部が挿入されている。第1内側ヘッダ23aは、空気調和装置100の冷媒回路の冷媒配管26に接続され、冷媒回路からホットガス冷媒が流入される。第1内側ヘッダ23aは、ガスヘッダとも呼ばれる。第1内側ヘッダ23aには、冷房運転時には、圧縮機1からの高温高圧のガス冷媒が流入する。暖房運転時には、第1室外熱交換器3a及び第2室外熱交換器3bで熱交換された後の冷媒が第1内側ヘッダ23aから流出する。 A first inner header 23a is provided at the lower part of the first heat exchanger 20aa on the leeward side of the first outdoor heat exchanger 3a. The lower ends of a plurality of flat tubes 21 of the first heat exchanger 20aa of the first outdoor heat exchanger 3a are inserted into the first inner header 23a. The first inner header 23a is connected to the refrigerant pipe 26 of the refrigerant circuit of the air conditioner 100, and hot gas refrigerant flows in from the refrigerant circuit. The first inner header 23a is also referred to as a gas header. During the cooling operation, the high-temperature and high-pressure gas refrigerant from the compressor 1 flows into the first inner header 23a. During the heating operation, the refrigerant after heat exchange in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b flows out from the first inner header 23a.
 風上側の第1熱交換体20aaの下部には、第1外側ヘッダ24aaが設けられている。第1外側ヘッダ24aaは、第1内側ヘッダ23aと通風方向に平行に配置されている。第1外側ヘッダ24aaは、接続配管31を介して、第2室外熱交換器3bの第2外側ヘッダ24bbに接続される。 A first outer header 24aa is provided at the lower part of the first heat exchanger 20aa on the windward side. The first outer header 24aa is arranged parallel to the first inner header 23a in the ventilation direction. The first outer header 24aa is connected to the second outer header 24bb of the second outdoor heat exchanger 3b via the connection pipe 31.
 第1熱交換体20aa及び第2熱交換体20abの上部には、第1折り返しヘッダ25aが設けられている。第1折り返しヘッダ25aには、第1内側ヘッダ23a及び第1外側ヘッダ24aaに挿入された複数の扁平管21の上端部が挿入される。 A first folded header 25a is provided on the upper part of the first heat exchanger 20aa and the second heat exchanger 20ab. The upper end portions of the plurality of flat tubes 21 inserted in the first inner header 23a and the first outer header 24aa are inserted into the first folded header 25a.
 第2室外熱交換器3bは、第3熱交換体20ba及び第4熱交換体20bbを有する。第3熱交換体20baは、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管21を有する。第4熱交換体20bbは、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管21を有する。 The second outdoor heat exchanger 3b has a third heat exchanger 20ba and a fourth heat exchanger 20bb. The third heat exchanger 20ba has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction. The fourth heat exchanger 20bb has a plurality of flat tubes 21 arranged at intervals in the horizontal direction with the vertical direction as the tube extending direction.
 第3熱交換体20baは、扁平管21に接合されたフィン22を有する。第4熱交換体20bbは、扁平管21に接合されたフィン22を有する。複数の扁平管21は、ファン4によって発生した風が流れるように、間隔を空けて水平方向に配置される。複数の扁平管21は、上下方向に延びるように配置される。複数の扁平管21の管内には、冷媒が上下方向に流れる。第3熱交換体20baの複数の扁平管21は、第4熱交換体20bbの複数の扁平管21と通風方向に平行に配置される。 The third heat exchanger 20ba has fins 22 joined to the flat tube 21. The fourth heat exchanger 20bb has fins 22 joined to the flat tube 21. The plurality of flat tubes 21 are arranged in the horizontal direction at intervals so that the wind generated by the fan 4 flows. The plurality of flat tubes 21 are arranged so as to extend in the vertical direction. Refrigerant flows in the vertical direction in the pipes of the plurality of flat pipes 21. The plurality of flat tubes 21 of the third heat exchanger 20ba are arranged parallel to the plurality of flat tubes 21 of the fourth heat exchanger 20bb in the ventilation direction.
 第3熱交換体20baのフィン22は、第3熱交換体20baの隣り合う扁平管21の間にわたって接続され、扁平管21に伝熱する。第4熱交換体20bbのフィン22は、第4熱交換体20bbの隣り合う扁平管21の間にわたって接続され、扁平管21に伝熱する。 The fins 22 of the third heat exchanger 20ba are connected between adjacent flat tubes 21 of the third heat exchanger 20ba and transfer heat to the flat tubes 21. The fins 22 of the fourth heat exchanger 20bb are connected between adjacent flat tubes 21 of the fourth heat exchanger 20bb and transfer heat to the flat tubes 21.
 第2室外熱交換器3bの風下側の第3熱交換体20baの下部には、第2内側ヘッダ23bが設けられている。第2内側ヘッダ23bには、第2室外熱交換器3bの第3熱交換体20baの複数の扁平管21の下端部が挿入されている。第2内側ヘッダ23bには、第2室外熱交換器3bの第3熱交換体20baの複数の扁平管21の下端部が直接挿入されている。第2内側ヘッダ23bは、空気調和装置100の冷媒回路の冷媒配管27に接続される。第2内側ヘッダ23bには、冷房運転時に第1室外熱交換器3a及び第2室外熱交換器3bで熱交換された後の冷媒が冷媒配管27に出力される。暖房運転時には、膨張弁5からの冷媒が第2内側ヘッダ23bに流入する。 A second inner header 23b is provided at the lower part of the third heat exchanger 20ba on the leeward side of the second outdoor heat exchanger 3b. The lower ends of the plurality of flat tubes 21 of the third heat exchanger 20ba of the second outdoor heat exchanger 3b are inserted into the second inner header 23b. The lower ends of the plurality of flat tubes 21 of the third heat exchanger 20ba of the second outdoor heat exchanger 3b are directly inserted into the second inner header 23b. The second inner header 23b is connected to the refrigerant pipe 27 of the refrigerant circuit of the air conditioner 100. In the second inner header 23b, the refrigerant after heat exchange by the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b during the cooling operation is output to the refrigerant pipe 27. During the heating operation, the refrigerant from the expansion valve 5 flows into the second inner header 23b.
 風上側の第4熱交換体20bbの下部には、第2外側ヘッダ24bbが設けられている。第2外側ヘッダ24bbは、第2内側ヘッダ23bと通風方向に平行に配置されている。第2外側ヘッダ24bbは、接続配管31を介して、第1室外熱交換器3aの第1外側ヘッダ24aaに接続される。 A second outer header 24bb is provided at the lower part of the fourth heat exchanger 20bb on the windward side. The second outer header 24bb is arranged parallel to the second inner header 23b in the ventilation direction. The second outer header 24bb is connected to the first outer header 24aa of the first outdoor heat exchanger 3a via the connection pipe 31.
 第3熱交換体20ba及び第4熱交換体20bbの上部には、第2折り返しヘッダ25bが設けられている。第2折り返しヘッダ25bには、第2内側ヘッダ23b及び第2外側ヘッダ24bbに挿入された複数の扁平管21の上端部が挿入される。 A second folded header 25b is provided on the upper part of the third heat exchanger 20ba and the fourth heat exchanger 20bb. The upper end portions of the plurality of flat tubes 21 inserted in the second inner header 23b and the second outer header 24bb are inserted into the second folded header 25b.
 複数の扁平管21、フィン22、第1内側ヘッダ23a、第2内側ヘッダ23b、第1外側ヘッダ24aa、第2外側ヘッダ24bb、第1折り返しヘッダ25a、第2折り返しヘッダ25b及び冷媒配管26、27は、いずれもアルミニウム製である。 A plurality of flat pipes 21, fins 22, first inner header 23a, second inner header 23b, first outer header 24aa, second outer header 24bb, first folded header 25a, second folded header 25b, and refrigerant pipes 26, 27. Are all made of aluminum.
 なお、実施の形態1においては、第1室外熱交換器3aと、第2室外熱交換器3bとは、略水平方向直角に配置されている場合を示しているが、本開示は、第1室外熱交換器3a及び第2室外熱交換器3bが略直角に配置される場合に限られない。本開示の室外熱交換器3は、第2室外熱交換器3bの方向が、第1室外熱交換器3aの方向と異なる場合を含む。 In the first embodiment, the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are arranged at right angles in the substantially horizontal direction, but the present disclosure describes the first. The case is not limited to the case where the outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are arranged at substantially right angles. The outdoor heat exchanger 3 of the present disclosure includes a case where the direction of the second outdoor heat exchanger 3b is different from the direction of the first outdoor heat exchanger 3a.
<第1外側ヘッダ24aa及び第2外側ヘッダ24bb>
 図4は、実施の形態1に係る空気調和装置100の第1外側ヘッダ24aaの一例を示す図である。図5は、実施の形態1に係る空気調和装置100の第1外側ヘッダ24aaの管延方向に直交する断面の一例を示す断面図である。なお、図5では、第1外側ヘッダ24aaを示すが、第2外側ヘッダ24bbも同様の構成である。図4及び図5に示すように、第1外側ヘッダ24aaは、風上側の第1熱交換体20aaの下部に設けられる。第1外側ヘッダ24aaは、内管24aと外管24bとを有する2重管構造であると、気液二相冷媒を比較的均一に分配することができ、第1外側ヘッダ24aaが通常の管構造である場合に比して、分配性能が良い。第2外側ヘッダ24bbも第1外側ヘッダ24aaと同様に、内管と外管とを有する2重管構造であると、気液二相冷媒を比較的均一に分配することができ、第2外側ヘッダ24bbが通常の管構造である場合に比して、分配性能が良い。
<First outer header 24aa and second outer header 24bb>
FIG. 4 is a diagram showing an example of the first outer header 24aa of the air conditioner 100 according to the first embodiment. FIG. 5 is a cross-sectional view showing an example of a cross section orthogonal to the pipe extension direction of the first outer header 24aa of the air conditioner 100 according to the first embodiment. Although FIG. 5 shows the first outer header 24aa, the second outer header 24bb has the same configuration. As shown in FIGS. 4 and 5, the first outer header 24aa is provided below the windward first heat exchanger 20aa. When the first outer header 24aa has a double pipe structure having an inner pipe 24a and an outer pipe 24b, the gas-liquid two-phase refrigerant can be distributed relatively uniformly, and the first outer header 24aa is a normal pipe. Distributing performance is better than in the case of structure. Similar to the first outer header 24aa, if the second outer header 24bb also has a double pipe structure having an inner pipe and an outer pipe, the gas-liquid two-phase refrigerant can be distributed relatively uniformly, and the second outer side can be distributed relatively uniformly. Distributing performance is better than when the header 24bb has a normal pipe structure.
 内管24aは、円管である。内管24aには、冷媒が流通する複数の冷媒流通孔24cが間隔を空けて形成されている。冷媒流通孔24cは、内管24aの下部に設けられている。 The inner pipe 24a is a circular pipe. A plurality of refrigerant flow holes 24c through which the refrigerant flows are formed in the inner pipe 24a at intervals. The refrigerant flow hole 24c is provided in the lower part of the inner pipe 24a.
 なお、冷媒流通孔24cの位置は、隣り合う扁平管21の間であっても良い。また、冷媒流通孔24cが設けられる位置は、例えば、外管24bを流れる冷媒の液面の位置であっても良い。具体的には、冷媒流通孔24cは、内管24aの中心から見た内管24aの中心を通る鉛直線の内管24aの下端から冷媒流通孔24cが存在する位置までの角度θが10°≦|θ|≦80°の範囲に設けられる。この場合、冷媒流通孔24cが設けられた位置の内管24aの鉛直方向の断面には、冷媒流通孔24cが1つのみである。 The position of the refrigerant flow hole 24c may be between adjacent flat pipes 21. Further, the position where the refrigerant flow hole 24c is provided may be, for example, the position of the liquid level of the refrigerant flowing through the outer pipe 24b. Specifically, the refrigerant flow hole 24c has an angle θ of 10 ° from the lower end of the vertical inner pipe 24a passing through the center of the inner pipe 24a as seen from the center of the inner pipe 24a to the position where the refrigerant flow hole 24c exists. It is provided in the range of ≦ | θ | ≦ 80 °. In this case, there is only one refrigerant flow hole 24c in the vertical cross section of the inner pipe 24a at the position where the refrigerant flow hole 24c is provided.
 外管24bの内部には、内管24aが挿入される。外管24bは、下方を円弧状に形成された断面U字状の管である。断面U字状の外管24bは、下方に向けて開口した冷媒流通孔24cからの冷媒を円弧に沿って上方に滑らかに変化させる。内管24a及び外管24bは、管延伸方向に真っ直ぐに延びている。内管24aと外管24bとは、ロウ付けによって接合される。 The inner pipe 24a is inserted inside the outer pipe 24b. The outer pipe 24b is a pipe having a U-shaped cross section formed in an arc shape below. The outer pipe 24b having a U-shaped cross section smoothly changes the refrigerant from the refrigerant flow hole 24c opened downward along the arc. The inner pipe 24a and the outer pipe 24b extend straight in the pipe extending direction. The inner pipe 24a and the outer pipe 24b are joined by brazing.
 第1室外熱交換器3a及び第2室外熱交換器3bが凝縮器として機能する場合、冷媒が第1室外熱交換器3aの第1折り返しヘッダ25aから風上側の第2熱交換体20abの扁平管21を介して外管24bに流入する。第1外側ヘッダ24aaの外管24bに流入した冷媒は、内管24aに設けられた冷媒流通孔24cから内管24aに流入する。内管24aに流入した冷媒は、接続配管31を介して第2室外熱交換器3bの第2外側ヘッダ24bbに流入する。 When the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as condensers, the refrigerant flattens the second heat exchanger 20ab on the wind side from the first folded header 25a of the first outdoor heat exchanger 3a. It flows into the outer tube 24b via the tube 21. The refrigerant that has flowed into the outer pipe 24b of the first outer header 24aa flows into the inner pipe 24a through the refrigerant flow hole 24c provided in the inner pipe 24a. The refrigerant that has flowed into the inner pipe 24a flows into the second outer header 24bb of the second outdoor heat exchanger 3b via the connecting pipe 31.
 接続配管31は、内側の内管24aを屈曲させて構成されている。すなわち、第1外側ヘッダ24aaの内管24aは、接続配管31であっても良い。接続配管31は、第2外側ヘッダ24bbの内管に接続される。 The connection pipe 31 is configured by bending the inner inner pipe 24a. That is, the inner pipe 24a of the first outer header 24aa may be the connecting pipe 31. The connection pipe 31 is connected to the inner pipe of the second outer header 24bb.
<冷媒回路の動作>
 次に、図1の冷媒回路の動作について簡単に説明する。暖房運転の場合には、冷媒が圧縮機1により圧縮され、高温高圧のガスとなった冷媒が四方弁2を介して複数の室内熱交換器6に流入する。室内熱交換器6に流入した冷媒は、ファン7によって発生される風によって放熱して凝縮し、液化する。液化した冷媒は、膨張弁5によって減圧され、低温低圧の気液二相状態となって冷媒配管27を介して室外熱交換器3に流入する。室外熱交換器3に流入した冷媒は、ファン4によって発生する空気と熱交換して蒸発してガス化し、第1内側ヘッダ23aを介して流出する。第1内側ヘッダ23aを介して流出した冷媒は、冷媒配管26、アキュムレータ8を順に介して再び圧縮機1に吸入され、冷媒回路を循環する。また、冷媒回路内には、冷媒の他に、圧縮機1の駆動に必要な冷凍機油も循環する。一方、冷房運転の場合には、冷媒及び冷凍機油の流れが冷媒回路内を逆回転する。
<Operation of refrigerant circuit>
Next, the operation of the refrigerant circuit of FIG. 1 will be briefly described. In the case of heating operation, the refrigerant is compressed by the compressor 1, and the refrigerant that has become a high-temperature and high-pressure gas flows into the plurality of indoor heat exchangers 6 via the four-way valve 2. The refrigerant that has flowed into the indoor heat exchanger 6 dissipates heat due to the wind generated by the fan 7, condenses, and liquefies. The liquefied refrigerant is depressurized by the expansion valve 5, becomes a low-temperature low-pressure gas-liquid two-phase state, and flows into the outdoor heat exchanger 3 via the refrigerant pipe 27. The refrigerant flowing into the outdoor heat exchanger 3 exchanges heat with the air generated by the fan 4, evaporates and gasifies, and flows out through the first inner header 23a. The refrigerant flowing out through the first inner header 23a is sucked into the compressor 1 again through the refrigerant pipe 26 and the accumulator 8 in this order, and circulates in the refrigerant circuit. In addition to the refrigerant, the refrigerating machine oil required to drive the compressor 1 also circulates in the refrigerant circuit. On the other hand, in the case of cooling operation, the flow of the refrigerant and the refrigerating machine oil rotates in the reverse direction in the refrigerant circuit.
<第1室外熱交換器3a及び第2室外熱交換器3bの動作>
 ここでは、第1室外熱交換器3a及び第2室外熱交換器3bの動作が代表して説明される。第3室外熱交換器3cの冷媒の流れは第1室外熱交換器3aと同様であり、第4室外熱交換器3dの冷媒の流れは第2室外熱交換器3bと同様である。第3室外熱交換器3cと第4室外熱交換器3dとの説明は、実施の形態1においては省略する。
<Operation of the 1st outdoor heat exchanger 3a and the 2nd outdoor heat exchanger 3b>
Here, the operations of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b will be described as representatives. The flow of the refrigerant in the third outdoor heat exchanger 3c is the same as that in the first outdoor heat exchanger 3a, and the flow of the refrigerant in the fourth outdoor heat exchanger 3d is the same as that in the second outdoor heat exchanger 3b. The description of the third outdoor heat exchanger 3c and the fourth outdoor heat exchanger 3d will be omitted in the first embodiment.
 冷房運転の場合、第1室外熱交換器3a及び第2室外熱交換器3bが凝縮器として機能する。圧縮機1により圧縮され、高温高圧ガスとなった冷媒は、四方弁2を介して、室外熱交換器3に流入する。高温高圧ガスの冷媒のうち、第3室外熱交換器3cに流入する冷媒以外の冷媒は、冷媒配管26を介して第1室外熱交換器3aの第1内側ヘッダ23aに流入する。第1内側ヘッダ23aに流入した冷媒は、第1内側ヘッダ23aに挿入された複数の扁平管21を上昇し、ファン4によって発生した風に乗る空気と熱交換して徐々に液化しながら、第1室外熱交換器3aの第1折り返しヘッダ25aに到達する。第1折り返しヘッダ25aに到達した冷媒は、第1室外熱交換器3aの第2熱交換体20abの複数の扁平管21を下降し、第1外側ヘッダ24aaに到達する。第1外側ヘッダ24aaに到達して合流した冷媒は、接続配管31を介して、第2室外熱交換器3bの第2外側ヘッダ24bbに流入する。 In the case of cooling operation, the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as condensers. The refrigerant compressed by the compressor 1 and turned into a high-temperature high-pressure gas flows into the outdoor heat exchanger 3 via the four-way valve 2. Of the high-temperature and high-pressure gas refrigerants, the refrigerants other than the refrigerant flowing into the third outdoor heat exchanger 3c flow into the first inner header 23a of the first outdoor heat exchanger 3a via the refrigerant pipe 26. The refrigerant flowing into the first inner header 23a rises in the plurality of flat tubes 21 inserted in the first inner header 23a, exchanges heat with the air on the wind generated by the fan 4, and gradually liquefies the first. 1 It reaches the first folded header 25a of the outdoor heat exchanger 3a. The refrigerant that has reached the first folded header 25a descends the plurality of flat pipes 21 of the second heat exchanger 20ab of the first outdoor heat exchanger 3a and reaches the first outer header 24aa. The refrigerant that has reached the first outer header 24aa and merged flows into the second outer header 24bb of the second outdoor heat exchanger 3b via the connection pipe 31.
 第2外側ヘッダ24bbに到達した冷媒は、第2室外熱交換器3bの第4熱交換体20bbの複数の扁平管21を上昇し、ファン4によって発生した風に乗る空気と熱交換して徐々に液化しながら、第2室外熱交換器3bの第2折り返しヘッダ25bに到達する。第2折り返しヘッダ25bに到達した冷媒は、第3熱交換体20baの複数の扁平管21を下降し、第2内側ヘッダ23bに到達し、冷媒配管27から膨張弁5に出力される。一方、暖房運転の場合、すなわち室外熱交換器3が蒸発器として機能する場合には、冷媒が上述の凝縮器の場合の冷媒流れ方向と逆に流れる。 The refrigerant that has reached the second outer header 24bb rises in the plurality of flat pipes 21 of the fourth heat exchanger 20bb of the second outdoor heat exchanger 3b, and gradually exchanges heat with the air on the wind generated by the fan 4. While liquefying, it reaches the second folded header 25b of the second outdoor heat exchanger 3b. The refrigerant that has reached the second folded header 25b descends from the plurality of flat pipes 21 of the third heat exchanger 20ba, reaches the second inner header 23b, and is output from the refrigerant pipe 27 to the expansion valve 5. On the other hand, in the case of heating operation, that is, when the outdoor heat exchanger 3 functions as an evaporator, the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
 なお、実施の形態1では、空気調和装置100の室外熱交換器3について説明したが、実施の形態1の第1室外熱交換器3aと第2室外熱交換器3bとの接続配管31による接続構成は、室内熱交換器6にも適用することが出来る。 Although the outdoor heat exchanger 3 of the air conditioner 100 has been described in the first embodiment, the connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the first embodiment is connected by the connection pipe 31. The configuration can also be applied to the indoor heat exchanger 6.
 また、実施の形態1においては、第1外側ヘッダ24aaと第2外側ヘッダ24bbとが接続配管31を介して接続される場合について説明した。第1折り返しヘッダ25aに内側ヘッダ及び外側ヘッダがあり、第2折り返しヘッダ25bに内側ヘッダ及び外側ヘッダがある場合には、第1折り返しヘッダ25aの外側ヘッダと第2折り返しヘッダ25bの外側ヘッダとを接続配管31で接続しても良い。 Further, in the first embodiment, the case where the first outer header 24aa and the second outer header 24bb are connected via the connection pipe 31 has been described. When the first wrapping header 25a has an inner header and an outer header and the second wrapping header 25b has an inner header and an outer header, the outer header of the first wrapping header 25a and the outer header of the second wrapping header 25b are used. It may be connected by the connection pipe 31.
<実施の形態1の効果>
 直交する方向に延びるヘッダを接続するには、曲がった接続配管が必要となる。この接続配管は、冷媒の抵抗抑制のため接続配管の曲がりはなるべく曲線状が良い。しかし、特に、内側側の接続配管の曲率の確保のため、ヘッダ間には大きなスペースが必要であった。
<Effect of Embodiment 1>
A bent connection pipe is required to connect headers that extend in orthogonal directions. The bending of the connecting pipe should be as curved as possible in order to suppress the resistance of the refrigerant. However, in particular, a large space was required between the headers in order to secure the curvature of the connecting pipe on the inner side.
 実施の形態1に係る空気調和装置100によれば、第1外側ヘッダ24aaと、第2外側ヘッダ24bbとは接続配管31で接続されている。そして、第1室外熱交換器3aから第2室外熱交換器3bへ流れる冷媒及び第2室外熱交換器3bから第1室外熱交換器3aへ流れる冷媒は、接続配管31のみを流れる。従って、第1熱交換体の第1内側ヘッダ23aと第3熱交換体の第2内側ヘッダ23bとを接続する接続配管を必要としないので、第1熱交換体20aaと第2熱交換体20abとの実装面積を向上することが出来る。 According to the air conditioner 100 according to the first embodiment, the first outer header 24aa and the second outer header 24bb are connected by a connection pipe 31. The refrigerant flowing from the first outdoor heat exchanger 3a to the second outdoor heat exchanger 3b and the refrigerant flowing from the second outdoor heat exchanger 3b to the first outdoor heat exchanger 3a flow only through the connection pipe 31. Therefore, since a connection pipe for connecting the first inner header 23a of the first heat exchanger and the second inner header 23b of the third heat exchanger is not required, the first heat exchanger 20aa and the second heat exchanger 20ab are not required. The mounting area with and can be improved.
 図6は、実施の形態1に係る空気調和装置100の効果を説明するための比較例を示す図である。図7は、実施の形態1に係る空気調和装置100の効果を説明するための図である。 FIG. 6 is a diagram showing a comparative example for explaining the effect of the air conditioner 100 according to the first embodiment. FIG. 7 is a diagram for explaining the effect of the air conditioner 100 according to the first embodiment.
 図6に示すように、第1室外熱交換器3aの内側に配置された第1熱交換体20aaの第1内側ヘッダ23aと、第2室外熱交換器3bの内側に配置された第3熱交換体20baの第2内側ヘッダ23bとは、接続配管31aにより接続される。また、第1室外熱交換器3aの外側に配置された第1外側ヘッダ24aaと、第2室外熱交換器3bの外側に配置された第2外側ヘッダ24bbとは、接続配管31bにより接続される。 As shown in FIG. 6, the first inner header 23a of the first heat exchanger 20aa arranged inside the first outdoor heat exchanger 3a and the third heat arranged inside the second outdoor heat exchanger 3b. The second inner header 23b of the exchange body 20ba is connected to the second inner header 23b by a connecting pipe 31a. Further, the first outer header 24aa arranged outside the first outdoor heat exchanger 3a and the second outer header 24bb arranged outside the second outdoor heat exchanger 3b are connected by a connecting pipe 31b. ..
 一方、実施の形態1に係る空気調和装置100によれば、第1室外熱交換器3aと第2室外熱交換器3bとは、1本の接続配管31のみで接続されている。接続配管31は、外側に配置された第1外側ヘッダ24aaと、外側に配置された第2外側ヘッダ24bbとを接続する。 On the other hand, according to the air conditioner 100 according to the first embodiment, the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b are connected by only one connection pipe 31. The connection pipe 31 connects the first outer header 24aa arranged on the outside and the second outer header 24bb arranged on the outside.
 従って、実施の形態1に係る空気調和装置100によれば、図7に示すように、接続配管31bを必要としないので、第1熱交換体20aaと第2熱交換体20abとの長さをLだけ延長することが出来る。その結果、第1熱交換体20aa及び第2熱交換体20abの実装面積を向上することが出来る。 Therefore, according to the air conditioner 100 according to the first embodiment, as shown in FIG. 7, since the connection pipe 31b is not required, the lengths of the first heat exchanger 20aa and the second heat exchanger 20ab are set. It can be extended by L. As a result, the mounting area of the first heat exchanger 20aa and the second heat exchanger 20ab can be improved.
 また、接続配管31は、第1外側ヘッダ24aaの内管24aと、第2外側ヘッダ24bbの内管とを接続する。従って、接続配管31が、第1外側ヘッダ24aaの外管24bと、第2外側ヘッダ24bbの外管とを接続する場合に比して、さらに、第1熱交換体20aa及び第2熱交換体20abの実装面積を向上することが出来る。 Further, the connection pipe 31 connects the inner pipe 24a of the first outer header 24aa and the inner pipe of the second outer header 24bb. Therefore, as compared with the case where the connection pipe 31 connects the outer pipe 24b of the first outer header 24aa and the outer pipe of the second outer header 24bb, the first heat exchanger 20aa and the second heat exchanger are further connected. The mounting area of 20ab can be improved.
実施の形態2.
 実施の形態2は、実施の形態1において、第2室外熱交換器3bの第2外側ヘッダ24bb、第2内側ヘッダ23b及び第2折り返しヘッダ25bの冷媒流路を塞ぐ仕切りを設ける。なお、実施の形態2においては、仕切りによる冷媒の流れの関係上、冷媒配管27は、第2外側ヘッダ24bbに接続されているものとして説明する。
Embodiment 2.
In the second embodiment, in the first embodiment, a partition is provided to block the refrigerant flow path of the second outer header 24bb, the second inner header 23b, and the second folded header 25b of the second outdoor heat exchanger 3b. In the second embodiment, the refrigerant pipe 27 will be described as being connected to the second outer header 24bb due to the flow of the refrigerant due to the partition.
 第2室外熱交換器3bの仕切りは、第1室外熱交換器3a及び第2室外熱交換器3bが凝縮器として機能する場合、仕切りにより仕切られた第2折り返しヘッダ25b及び第2外側ヘッダ24bbの領域のうち、冷媒が上昇流となる冷媒流動領域に接続された複数の扁平管21の冷媒流路断面積がガス冷媒から液冷媒に相変化していく過程において小さくなるように設けられる。具体的には、実施の形態2においては、第2室外熱交換器3bが凝縮器として機能する場合に、仕切りにより仕切られた第2折り返しヘッダ25b及び第2外側ヘッダ24bbの領域のうち、冷媒が上昇流となる下流側の領域における第2室外熱交換器3bの複数の扁平管21の冷媒流路断面積が、冷媒が上昇流となる上流側の領域における第2室外熱交換器3bの複数の扁平管21の冷媒流路断面積よりも小さい。 The partition of the second outdoor heat exchanger 3b is the second folded header 25b and the second outer header 24bb partitioned by the partition when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser. Of the above regions, the cross-sectional area of the refrigerant flow path of the plurality of flat pipes 21 connected to the refrigerant flow region where the refrigerant is an upward flow is provided so as to be small in the process of phase change from the gas refrigerant to the liquid refrigerant. Specifically, in the second embodiment, when the second outdoor heat exchanger 3b functions as a condenser, the refrigerant is included in the regions of the second folded header 25b and the second outer header 24bb partitioned by the partition. The cross-sectional area of the refrigerant flow path of the plurality of flat tubes 21 of the second outdoor heat exchanger 3b in the region on the downstream side where is an upward flow is the cross-sectional area of the second outdoor heat exchanger 3b in the region on the upstream side where the refrigerant is an upward flow. It is smaller than the cross-sectional area of the refrigerant flow path of the plurality of flat tubes 21.
 また、第1室外熱交換器3a及び第2室外熱交換器3bのうち、ガス冷媒流れの最も下流で、かつ、上昇流となる冷媒流動領域を流れる気液二相の冷媒流れは、フラッディング定数C>1以上になる様に設計される。ここで、フラッディング定数Cは、該当領域に流入する凝縮器の中間負荷能力(50%能力)運転での流量を基準として定義される。 Further, among the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b, the gas-liquid two-phase refrigerant flow flowing in the refrigerant flow region that is the most downstream of the gas refrigerant flow and is the upward flow has a flooding constant. It is designed so that C> 1 or more. Here, the flooding constant C is defined based on the flow rate in the intermediate load capacity (50% capacity) operation of the condenser flowing into the corresponding region.
 フラッディング定数Cの定義は、例えば、一般的に知られているWallisの式によると
C=J 0.5+J 0.5   …(1)
で定義される。
The definition of the flooding constant C is, for example, according to the generally known Wellis equation, C = J G 0.5 + J L 0.5 ... (1)
Defined in.
 ここで、Jは無次元ガス見かけ速度、Jは無次元液見かけ速度である。 Here, J G is the apparent speed of the dimensionless gas, and J L is the apparent speed of the dimensionless liquid.
 J及びJは以下の様に定義される。
=U×{ρG / [9.81×Deq (ρ-ρ)]}0.5 …(2)
=U×{ρL / [9.81×Deq (ρ-ρ)]}0.5 …(3)
J G and J L are defined as follows.
J G = U G × {ρ G / [9.81 × D eq (ρ L -ρ G)]} 0.5 ... (2)
J L = U L × {ρ L / [9.81 × D eq (ρ L -ρ G)]} 0.5 ... (3)
 図8は、実施の形態2に係る空気調和装置100の第1室外熱交換器3a及び第2室外熱交換器3bの複数の扁平管21の1本あたりの流路断面積Aを示す図である。
 ここで、
Deqは、凝縮器として機能するとき、最も下流で、かつ上昇流となる流動領域に接続される扁平管本数と流路断面積で定義される相当直径[m]であり、
eq=A×N …(4)
eq=[(4×Aeq)/3.14]0.5 …(5)
で表される。
Figure 8 is a view showing a flow path cross-sectional area A 1 per one of the first outdoor heat exchanger 3a and a plurality of flat tubes 21 of the second outdoor heat exchanger 3b of the air-conditioning apparatus 100 according to the second embodiment Is.
here,
Deq is a corresponding diameter [m] defined by the number of flat tubes and the cross-sectional area of the flow path connected to the most downstream and ascending flow region when functioning as a condenser.
A eq = A 1 x N ... (4)
D eq = [(4 x A eq) /3.14] 0.5 ... (5)
It is represented by.
 Nは、第1室外熱交換器3a及び第2室外熱交換器3bが凝縮器として機能するとき、最も下流で、かつ上昇流で流れる流動領域に接続される扁平管本数である。実施の形態2では、図9に示す領域L4に接続される扁平管本数が該当する。 N is the number of flat tubes connected to the most downstream and upstream flow region when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as condensers. In the second embodiment, the number of flat tubes connected to the region L4 shown in FIG. 9 corresponds.
 また、ρ冷媒の液密度[kg/m]、ρは冷媒のガス密度[kg/m]である。ρ及びρは、第1室外熱交換器3a及び第2室外熱交換器3bに流入する冷媒の種類と圧力とによって算出可能な状態量である。 Further, the liquid density of the ρ L refrigerant [kg / m 3 ] and ρ G are the gas density of the refrigerant [kg / m 3 ]. ρ L and ρ G are state quantities that can be calculated by the type and pressure of the refrigerant flowing into the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b.
 Uはガス見かけ速度[m/s]、Uは液見かけ速度[m/s]、xは冷媒乾き度であり、
=(G×x)/ρ …(6)
=[G×(1-x)]/ρ …(7)
で定義される。
UG is the apparent gas speed [m / s], UL is the apparent liquid speed [m / s], and x is the dryness of the refrigerant.
U G = (G × x) / ρ G … (6)
UL = [G × (1-x)] / ρ L … (7)
Defined in.
 ここで、Gは第1室外熱交換器3a及び第2室外熱交換器3bに流入するガス冷媒の流速[kg/ms]、Mは第1室外熱交換器3a及び第2室外熱交換器3bに流入するガス冷媒の流量[kg/s]であり、G=M/Aeqで求められる。 Here, G is the flow velocity [kg / m 2 s] of the gas refrigerant flowing into the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b, and M is the first outdoor heat exchanger 3a and the second outdoor heat exchange. It is the flow rate [kg / s] of the gas refrigerant flowing into the vessel 3b, and is obtained by G = M / A eq.
 xは最も下流で、上昇流で流れる流動領域に流入する冷媒乾き度である。xは、例えば、第1室外熱交換器3a及び第2室外熱交換器3bでの熱交換量及び能力などから算出することが出来る。例えば、第1室外熱交換器3a及び第2室外熱交換器3bの入口~出口で冷媒乾き度が1→0まで変化し、かつ熱交換量∝伝熱面積と仮定する。この場合、xは、全体の扁平管本数に対する、対象とする流動領域の上流に位置する伝熱管本数の比で推算することが出来る。例えば、図9で考えると、以下のように定義される。

x=1-(領域L1、L2、L3の扁平管本数)
       /(領域L1、L2、L3、L4の扁平管本数) …(8)
x is the dryness of the refrigerant flowing into the flow region flowing in the ascending flow at the most downstream. x can be calculated from, for example, the amount and capacity of heat exchange in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b. For example, it is assumed that the dryness of the refrigerant changes from 1 to 0 at the inlet to the outlet of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b, and the heat exchange amount ∝ heat transfer area. In this case, x can be estimated by the ratio of the number of heat transfer tubes located upstream of the target flow region to the total number of flat tubes. For example, considering FIG. 9, it is defined as follows.

x = 1- (number of flat tubes in regions L1, L2, L3)
/ (Number of flat tubes in regions L1, L2, L3, L4) ... (8)
 図9は、実施の形態2に係る空気調和装置100の第1室外熱交換器3a及び第2室外熱交換器3bの冷媒の流れを説明するための図である。ここでは、第1室外熱交換器3a及び第2室外熱交換器3bを代表して説明するが、第3室外熱交換器3cは第1室外熱交換器3a及び第4室外熱交換器3dは第2室外熱交換器3bの構成と同様である。 FIG. 9 is a diagram for explaining the flow of the refrigerant in the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b of the air conditioner 100 according to the second embodiment. Here, the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b will be described as representatives, but the third outdoor heat exchanger 3c is the first outdoor heat exchanger 3a and the fourth outdoor heat exchanger 3d. The configuration is the same as that of the second outdoor heat exchanger 3b.
 冷房運転の場合、室外熱交換器3が凝縮器として機能する。圧縮機1により圧縮され、高温高圧ガスとなった冷媒のうち、第3室外熱交換器3cに流入する冷媒以外の冷媒は、冷媒配管26を介して第1室外熱交換器3aの第1内側ヘッダ23a(図3参照)に流入する。第1内側ヘッダ23aに流入した冷媒は、第1内側ヘッダ23aに挿入された複数の扁平管21(図3参照)を上昇し、ファン4(図2参照)によって発生した風に乗る空気と熱交換して徐々に液化しながら、第1室外熱交換器3aの第1折り返しヘッダ25a(図3参照)に到達する。第1折り返しヘッダ25aに到達した冷媒は、第1室外熱交換器3aの第2熱交換体20ab(図3参照)の複数の扁平管21を下降し、第1外側ヘッダ24aa(図3参照)に到達する。第1外側ヘッダ24aaに到達して合流した冷媒は、接続配管31を介して、第2室外熱交換器3bの第2外側ヘッダ24bb(図3参照)に流入する。ここで、第1内側ヘッダ23aの領域が領域L1となる。 In the case of cooling operation, the outdoor heat exchanger 3 functions as a condenser. Of the refrigerants compressed by the compressor 1 and turned into high-temperature and high-pressure gas, the refrigerants other than the refrigerant flowing into the third outdoor heat exchanger 3c are the first inside of the first outdoor heat exchanger 3a via the refrigerant pipe 26. It flows into the header 23a (see FIG. 3). The refrigerant flowing into the first inner header 23a rises in a plurality of flat tubes 21 (see FIG. 3) inserted in the first inner header 23a, and the air and heat generated by the fan 4 (see FIG. 2) ride on the wind. It reaches the first folded header 25a (see FIG. 3) of the first outdoor heat exchanger 3a while being replaced and gradually liquefied. The refrigerant that has reached the first folded header 25a descends from the plurality of flat tubes 21 of the second heat exchanger 20ab (see FIG. 3) of the first outdoor heat exchanger 3a, and descends from the first outer header 24aa (see FIG. 3). To reach. The refrigerant that has reached the first outer header 24aa and merged flows into the second outer header 24bb (see FIG. 3) of the second outdoor heat exchanger 3b via the connection pipe 31. Here, the region of the first inner header 23a is the region L1.
 第2外側ヘッダ24bb及び第2折り返しヘッダ25b(図3参照)には、仕切り41aが設けられる。第1折り返しヘッダ25aに設けられる仕切り41aは、第2外側ヘッダ24bbに設けられた仕切り41bの直上に設けられる。 A partition 41a is provided on the second outer header 24bb and the second folded header 25b (see FIG. 3). The partition 41a provided in the first folded header 25a is provided directly above the partition 41b provided in the second outer header 24bb.
 第2内側ヘッダ23b及び第2折り返しヘッダ25bの仕切り41aよりも下流側には、仕切り41bが設けられる。第2折り返しヘッダ25bに設けられる仕切り41bは、第2内側ヘッダ23bに設けられた仕切り41bの直上に設けられる。 A partition 41b is provided on the downstream side of the partition 41a of the second inner header 23b and the second folded header 25b. The partition 41b provided in the second folded header 25b is provided directly above the partition 41b provided in the second inner header 23b.
 第2室外熱交換器3bの第2外側ヘッダ24bbに到達した冷媒は、第2外側ヘッダ24bbを仕切り41aまで流れ、ターンする。仕切り41aによりターンした冷媒を含む第2外側ヘッダ24bbを流れる冷媒は、第2外側ヘッダ24bbから第4熱交換体20bb(図3参照)の複数の扁平管21を上昇する。複数の扁平管21を上昇する冷媒は、ファン4によって発生した風に乗る空気と熱交換して徐々に液化しながら、第2室外熱交換器3bの第2折り返しヘッダ25bに到達する。ここで、第2室外熱交換器3bの第2外側ヘッダ24bbの冷媒の入口から仕切り41aまでが領域L2となる。第2折り返しヘッダ25bに到達した冷媒は、第2折り返しヘッダ25bに設けられた仕切り41aによりターンし、領域L2に対応する領域の第3熱交換体20baの複数の扁平管21を下降し、第2内側ヘッダ23bに到達して合流する。 The refrigerant that has reached the second outer header 24bb of the second outdoor heat exchanger 3b flows through the second outer header 24bb to the partition 41a and turns. The refrigerant flowing through the second outer header 24bb including the refrigerant turned by the partition 41a rises from the second outer header 24bb to the plurality of flat tubes 21 of the fourth heat exchanger 20bb (see FIG. 3). The refrigerant rising from the plurality of flat tubes 21 reaches the second folded header 25b of the second outdoor heat exchanger 3b while exchanging heat with the air generated by the fan 4 and gradually liquefying. Here, the region L2 is from the inlet of the refrigerant of the second outer header 24bb of the second outdoor heat exchanger 3b to the partition 41a. The refrigerant that has reached the second folded header 25b is turned by the partition 41a provided in the second folded header 25b, descends from the plurality of flat tubes 21 of the third heat exchanger 20ba in the region corresponding to the region L2, and is the second. 2 Reach the inner header 23b and join.
 第2内側ヘッダ23bに到達した冷媒は、第2内側ヘッダ23bに設けられた仕切り41bまで流れてターンする。第2外側ヘッダ24bbに設けられた仕切り41aに対応する位置から第2内側ヘッダ23bに設けられた仕切り41bまでの第2内側ヘッダ23bの領域が領域L3となる。第2内側ヘッダ23bを流れる冷媒は、第2内側ヘッダ23bの領域L3の第3熱交換体20baの複数の扁平管21を上昇し、ファン4によって発生した風に乗る空気と熱交換して徐々に液化しながら、第2折り返しヘッダ25bに到達して合流する。第2折り返しヘッダ25bの仕切り41bに対応する位置から第2折り返しヘッダ25bの終端までの領域が領域L4となる。第2折り返しヘッダ25bに到達して合流した冷媒は、領域L4の第4熱交換体20bbの複数の扁平管21を下降し、第2外側ヘッダ24bbに到達して合流する。 The refrigerant that has reached the second inner header 23b flows to the partition 41b provided in the second inner header 23b and turns. The area of the second inner header 23b from the position corresponding to the partition 41a provided in the second outer header 24bb to the partition 41b provided in the second inner header 23b is the area L3. The refrigerant flowing through the second inner header 23b rises in the plurality of flat pipes 21 of the third heat exchanger 20ba in the region L3 of the second inner header 23b, and gradually exchanges heat with the air on the wind generated by the fan 4. While liquefying, it reaches the second folded header 25b and joins. The area from the position corresponding to the partition 41b of the second folded header 25b to the end of the second folded header 25b is the area L4. The refrigerant that has reached the second folded header 25b and merged has descended from the plurality of flat pipes 21 of the fourth heat exchanger 20bb in the region L4, reached the second outer header 24bb, and merged.
 第2外側ヘッダ24bbに到達した冷媒は、冷媒配管27を介して第2室外熱交換器3bから流出する。また、第2外側ヘッダ24bbの領域L4を流れる一部の冷媒は、領域L4に対応する領域の第3熱交換体20ba(図3参照)の複数の扁平管21を下降し、第2内側ヘッダ23bに到達して合流する。 The refrigerant that has reached the second outer header 24bb flows out from the second outdoor heat exchanger 3b via the refrigerant pipe 27. Further, a part of the refrigerant flowing through the region L4 of the second outer header 24bb descends the plurality of flat tubes 21 of the third heat exchanger 20ba (see FIG. 3) in the region corresponding to the region L4, and the second inner header It reaches 23b and joins.
 一方、暖房運転の場合、すなわち室外熱交換器3が蒸発器として機能する場合には、冷媒が上述の凝縮器の場合の冷媒流れ方向と逆に流れる。 On the other hand, in the case of heating operation, that is, when the outdoor heat exchanger 3 functions as an evaporator, the refrigerant flows in the direction opposite to the refrigerant flow direction in the case of the above-mentioned condenser.
 なお、第1室外熱交換器3aの第1外側ヘッダ24aaと、第2室外熱交換器3bの第2外側ヘッダ24bbとは、接続配管31のみで接続されていれば良い。また、仕切りの位置及び数は、実施の形態2において説明した位置及びに限られない。 The first outer header 24aa of the first outdoor heat exchanger 3a and the second outer header 24bb of the second outdoor heat exchanger 3b may be connected only by the connection pipe 31. Further, the position and number of partitions are not limited to the positions and numbers described in the second embodiment.
 実施の形態2の空気調和装置100によれば、第2折り返しヘッダ25b及び第2外側ヘッダ24bbに仕切り41aが設けられる。また、第2内側ヘッダ23bに仕切り41bが設けられる。 According to the air conditioner 100 of the second embodiment, the partition 41a is provided in the second folded header 25b and the second outer header 24bb. Further, a partition 41b is provided on the second inner header 23b.
 第1室外熱交換器3a及び第2室外熱交換器3bが凝縮器として機能する場合、第1室外熱交換器3a及び第2室外熱交換器3bの冷媒が上昇流となる下流側の領域における複数の扁平管21の流路断面積は、上流側の領域における複数の扁平管21の冷媒流路断面積よりも小さい。従って、第1室外熱交換器3a及び第2室外熱交換器3bを凝縮器として機能させる場合、下流側の領域における冷媒流路断面積が上流側の冷媒流路断面積に比して小さいので、冷媒の圧力が増し、その結果、冷媒の流速を増加することが出来る。また、第1室外熱交換器3a及び第2室外熱交換器3bの熱交換性能を向上することが出来る。 When the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser, in the region on the downstream side where the refrigerant of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b becomes an upward flow. The flow path cross-sectional area of the plurality of flat tubes 21 is smaller than the refrigerant flow path cross-sectional area of the plurality of flat tubes 21 in the upstream region. Therefore, when the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b function as a condenser, the cross-sectional area of the refrigerant flow path in the downstream region is smaller than the cross-sectional area of the refrigerant flow path on the upstream side. , The pressure of the refrigerant increases, and as a result, the flow velocity of the refrigerant can be increased. Further, the heat exchange performance of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b can be improved.
実施の形態3.
 実施の形態1及び実施の形態2においては、第1室外熱交換器3aと第2室外熱交換器3bとの接続は、L字形状の接続配管31により接続していた。実施の形態3の空気調和装置100は、第1室外熱交換器3aと第2室外熱交換器3bとの接続は、L字形状の接続配管31が使用されない。実施の形態3においては、第1外側ヘッダ24aaが延伸される。そして、第1外側ヘッダ24aaと第2外側ヘッダ24bbとは、直線状の接続配管51により接続される。
Embodiment 3.
In the first and second embodiments, the connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b is connected by an L-shaped connection pipe 31. In the air conditioner 100 of the third embodiment, the L-shaped connection pipe 31 is not used for the connection between the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b. In the third embodiment, the first outer header 24aa is stretched. The first outer header 24aa and the second outer header 24bb are connected by a linear connecting pipe 51.
 図10は、実施の形態3に係る空気調和装置100の第1外側ヘッダ24aaと第2外側ヘッダ24bbとの接続関係を説明するための図である。 FIG. 10 is a diagram for explaining the connection relationship between the first outer header 24aa and the second outer header 24bb of the air conditioner 100 according to the third embodiment.
 図10に示すように、外側に配置された第1外側ヘッダ24aaは、第1内側ヘッダ23aaよりも長く、延伸するように形成されている。第1内側ヘッダ23aaと、第2外側ヘッダ24bbとは直線状の接続配管51により接続される。 As shown in FIG. 10, the first outer header 24aa arranged on the outer side is formed to be longer and extend than the first inner header 23aa. The first inner header 23aa and the second outer header 24bb are connected by a linear connecting pipe 51.
 実施の形態3に係る空気調和装置100によれば、第1外側ヘッダ24aaが延伸される。延伸された第1内側ヘッダ23aaと、第2外側ヘッダ24bbとは、直線状の接続配管51により接続される。 According to the air conditioner 100 according to the third embodiment, the first outer header 24aa is stretched. The extended first inner header 23aa and the second outer header 24bb are connected by a linear connecting pipe 51.
 従って、第1内側ヘッダ23aaと、第2外側ヘッダ24bbとを屈曲部31rを有する接続配管31を使用することなく、直線状の接続配管51を使用して接続することができるので、配管の位置決め性能を向上することが出来る。その結果、位置決めに用いる配管スペースを減らすことが出来、第1室外熱交換器3a及び第2室外熱交換器3bの実装面積を向上することが出来る。 Therefore, the first inner header 23aa and the second outer header 24bb can be connected by using the linear connecting pipe 51 without using the connecting pipe 31 having the bent portion 31r, so that the positioning of the pipe can be performed. Performance can be improved. As a result, the piping space used for positioning can be reduced, and the mounting area of the first outdoor heat exchanger 3a and the second outdoor heat exchanger 3b can be improved.
 実施の形態1、実施の形態2及び実施の形態3の第1室外熱交換器3aは第1熱交換器、第2室外熱交換器3bは第2熱交換器とも称する。また、第2折り返しヘッダ25bは、共通ヘッダとも称する。 The first outdoor heat exchanger 3a of the first embodiment, the second embodiment and the third embodiment is also referred to as a first heat exchanger, and the second outdoor heat exchanger 3b is also referred to as a second heat exchanger. Further, the second folded header 25b is also referred to as a common header.
 実施の形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施の形態は、その他の様々な形態で実施されることが可能であり、実施の形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行なうことが出来る。これら実施の形態及びその変形は、実施の形態の範囲及び要旨に含まれる。 The embodiment is presented as an example and is not intended to limit the scope of claims. The embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the embodiment. These embodiments and variations thereof are included in the scope and gist of the embodiments.
 1 圧縮機、2 四方弁、3 室外熱交換器、3a 第1室外熱交換器、3b 第2室外熱交換器、3c 第3室外熱交換器、3d 第4室外熱交換器、4 ファン、5 膨張弁、6 室内熱交換器、7 ファン、8 アキュムレータ、9 筐体、9a 直方体部、9b ファン収納部、10 室外機、11、12、13 室内機、20aa 第1熱交換体、20ab 第2熱交換体、20ba 第3熱交換体、20bb 第4熱交換体、21 扁平管、22 フィン、23a 第1内側ヘッダ、23b 第2内側ヘッダ、24aa 第1外側ヘッダ、24bb 第2外側ヘッダ、24a 内管、24b 外管、24c 冷媒流通孔、25a 第1折り返しヘッダ、25b 第2折り返しヘッダ、26、27 冷媒配管、31 接続配管、31r 屈曲部、41a 第1仕切り、41b 第2仕切り、51 接続配管、100 空気調和装置、A 扁平管21の1本あたりの流路断面積。 1 Compressor, 2 4-way valve, 3 Outdoor heat exchanger, 3a 1st outdoor heat exchanger, 3b 2nd outdoor heat exchanger, 3c 3rd outdoor heat exchanger, 3d 4th outdoor heat exchanger, 4 fans, 5 Expansion valve, 6 indoor heat exchanger, 7 fan, 8 accumulator, 9 housing, 9a square body, 9b fan storage, 10 outdoor unit, 11, 12, 13 indoor unit, 20aa 1st heat exchanger, 20ab second Heat exchanger, 20ba 3rd heat exchanger, 20bb 4th heat exchanger, 21 flat tube, 22 fins, 23a 1st inner header, 23b 2nd inner header, 24aa 1st outer header, 24bb 2nd outer header, 24a Inner pipe, 24b outer pipe, 24c refrigerant flow hole, 25a 1st folded header, 25b 2nd folded header, 26, 27 refrigerant pipe, 31 connection pipe, 31r bend, 41a 1st partition, 41b 2nd partition, 51 connection pipe, 100 flow path cross-sectional area per one of the air conditioner, a 1 flat tubes 21.

Claims (7)

  1.  間隔を空けて配置された複数の伝熱管を有する第1熱交換体と、前記第1熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第1内側ヘッダと、前記第1熱交換体の通風方向に設けられ、間隔を空けて配置された複数の伝熱管を有する第2熱交換体と、前記第2熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第1外側ヘッダとを含む第1熱交換器と、
     間隔を空けて配置された複数の伝熱管を有する第3熱交換体と、前記第3熱交換体の複数の伝熱管の上側又は下側の一端に設けられた第2内側ヘッダと、前記第3熱交換体との通風方向に設けられ、間隔を空けて配置された複数の伝熱管を有する第4熱交換体と、前記第4熱交換体の複数の伝熱管の前記第1外側ヘッダと同じ側の上側又は下側の一端に設けられた第2外側ヘッダとを含む第2熱交換器と、
     前記第1外側ヘッダと前記第2外側ヘッダとを接続し、屈曲部を有する接続配管と
    を具備し、
     前記第1熱交換器から前記第2熱交換器へ流れる冷媒及び前記第2熱交換器から前記第1熱交換器へ流れる冷媒は、前記接続配管のみを流れる、
    熱交換器。
    A first heat exchanger having a plurality of heat transfer tubes arranged at intervals, a first inner header provided at one upper or lower end of the plurality of heat transfer tubes of the first heat exchanger, and the first. 1 A second heat exchanger having a plurality of heat transfer tubes provided in the ventilation direction of the heat exchanger and arranged at intervals, and one end of the upper side or the lower side of the plurality of heat transfer tubes of the second heat exchanger. A first heat exchanger, including a first outer header provided, and
    A third heat exchanger having a plurality of heat transfer tubes arranged at intervals, a second inner header provided at one upper or lower end of the plurality of heat transfer tubes of the third heat exchanger, and the first. A fourth heat exchanger having a plurality of heat transfer tubes provided in the ventilation direction with the three heat exchangers and arranged at intervals, and the first outer header of the plurality of heat transfer tubes of the fourth heat exchanger. A second heat exchanger, including a second outer header provided at one end on the same side, upper or lower.
    The first outer header and the second outer header are connected to each other, and a connecting pipe having a bent portion is provided.
    The refrigerant flowing from the first heat exchanger to the second heat exchanger and the refrigerant flowing from the second heat exchanger to the first heat exchanger flow only in the connecting pipe.
    Heat exchanger.
  2.  前記第1外側ヘッダは、冷媒流通孔を有する第1内管と、前記第1内管を収容する第1外管とを有する2重構造の配管であり、
     前記第2外側ヘッダは、冷媒流通孔を有する第2内管と、前記第2内管を収容する第2外管とを有する2重構造の配管であり、
     前記接続配管は、前記第1外側ヘッダの前記第1内管と、前記第2外側ヘッダの前記第2内管とを接続する
    請求項1記載の熱交換器。
    The first outer header is a double-structured pipe having a first inner pipe having a refrigerant flow hole and a first outer pipe accommodating the first inner pipe.
    The second outer header is a double-structured pipe having a second inner pipe having a refrigerant flow hole and a second outer pipe accommodating the second inner pipe.
    The heat exchanger according to claim 1, wherein the connection pipe connects the first inner pipe of the first outer header and the second inner pipe of the second outer header.
  3.  前記第2熱交換器は、
     前記第3熱交換体の複数の伝熱管の他端側及び前記第4熱交換体の複数の伝熱管の他端側に設けられ、前記第3熱交換体と前記第4熱交換体とに共通に設けられた共通ヘッダと
    を具備し、
     前記共通ヘッダ及び前記第2外側ヘッダには、冷媒が通過するのを防止する仕切りが設けられ、
     前記熱交換器が凝縮器として機能する場合に、前記仕切りにより仕切られた前記共通ヘッダ及び前記第2外側ヘッダの領域のうち、前記冷媒が上昇流となる下流側の領域における前記第2熱交換器の複数の伝熱管の冷媒流路断面積が、前記冷媒が上昇流となる上流側の領域における前記第2熱交換器の複数の伝熱管の冷媒流路断面積よりも小さい、
    請求項1又は2に記載の熱交換器。
    The second heat exchanger is
    The third heat exchanger and the fourth heat exchanger are provided on the other end side of the plurality of heat transfer tubes of the third heat exchanger and the other end side of the plurality of heat transfer tubes of the fourth heat exchanger. Equipped with a common header provided in common,
    The common header and the second outer header are provided with a partition for preventing the refrigerant from passing through.
    When the heat exchanger functions as a condenser, the second heat exchange in the downstream region where the refrigerant flows up in the common header and the second outer header region partitioned by the partition. The cross-sectional area of the refrigerant flow paths of the plurality of heat transfer tubes of the vessel is smaller than the cross-sectional area of the refrigerant flow paths of the plurality of heat transfer tubes of the second heat exchanger in the region on the upstream side where the refrigerant is an upward flow.
    The heat exchanger according to claim 1 or 2.
  4.  前記第1熱交換器は、
     前記第1外側ヘッダは、前記第1内側ヘッダよりも長く、
     前記接続配管は、直線状である、
    請求項1~3のいずれか1項に記載の熱交換器。
    The first heat exchanger is
    The first outer header is longer than the first inner header,
    The connecting pipe is linear.
    The heat exchanger according to any one of claims 1 to 3.
  5.  前記第1熱交換器及び前記第2熱交換器の上部に配置されたファンを具備し、
     前記第2熱交換体は前記第1熱交換体よりも前記ファンから見て平面視して外側に位置し、
     前記第4熱交換体は前記第3熱交換体よりも前記ファンから見て平面視して外側に位置する
    請求項1~4のいずれか1項に記載の熱交換器。
    A fan arranged above the first heat exchanger and the second heat exchanger is provided.
    The second heat exchanger is located outside the first heat exchanger in a plan view from the fan.
    The heat exchanger according to any one of claims 1 to 4, wherein the fourth heat exchanger is located outside the third heat exchanger in a plan view from the fan.
  6.  請求項1~5のいずれか1項に記載の熱交換器を含む空気調和装置の室外機。 An outdoor unit of an air conditioner including the heat exchanger according to any one of claims 1 to 5.
  7.  請求項6記載の空気調和装置の室外機を含む空気調和装置。 An air conditioner including the outdoor unit of the air conditioner according to claim 6.
PCT/JP2020/020354 2020-05-22 2020-05-22 Heat exchanger, outdoor unit for air conditioning device, and air conditioning device WO2021234961A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022524849A JP7366255B2 (en) 2020-05-22 2020-05-22 Heat exchangers, outdoor units of air conditioners, and air conditioners
PCT/JP2020/020354 WO2021234961A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit for air conditioning device, and air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020354 WO2021234961A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit for air conditioning device, and air conditioning device

Publications (1)

Publication Number Publication Date
WO2021234961A1 true WO2021234961A1 (en) 2021-11-25

Family

ID=78708345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020354 WO2021234961A1 (en) 2020-05-22 2020-05-22 Heat exchanger, outdoor unit for air conditioning device, and air conditioning device

Country Status (2)

Country Link
JP (1) JP7366255B2 (en)
WO (1) WO2021234961A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233572A1 (en) * 2022-06-01 2023-12-07 三菱電機株式会社 Heat exchanger, and refrigeration cycle device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203250A (en) * 1999-01-19 2000-07-25 Denso Corp Heat exchanger
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2003121092A (en) * 2001-09-29 2003-04-23 Halla Aircon Co Ltd Heat exchanger
JP2007024353A (en) * 2005-07-13 2007-02-01 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioner
JP2007113904A (en) * 2005-09-20 2007-05-10 Denso Corp Cold storage tank apparatus and refrigeration cycle apparatus using the same
WO2010033082A1 (en) * 2008-09-16 2010-03-25 Grenzone Pte Ltd Radiator for a liquid cooling device
US20110226780A1 (en) * 2010-03-16 2011-09-22 Bell Independent Power Corporation Energy storage vessel, systems, and methods
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
WO2019239445A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203250A (en) * 1999-01-19 2000-07-25 Denso Corp Heat exchanger
JP2002206890A (en) * 2001-01-11 2002-07-26 Mitsubishi Electric Corp Heat exchanger, and freezing air-conditioning cycle device using it
JP2003121092A (en) * 2001-09-29 2003-04-23 Halla Aircon Co Ltd Heat exchanger
JP2007024353A (en) * 2005-07-13 2007-02-01 Mitsubishi Heavy Ind Ltd Heat exchanger and air conditioner
JP2007113904A (en) * 2005-09-20 2007-05-10 Denso Corp Cold storage tank apparatus and refrigeration cycle apparatus using the same
WO2010033082A1 (en) * 2008-09-16 2010-03-25 Grenzone Pte Ltd Radiator for a liquid cooling device
US20110226780A1 (en) * 2010-03-16 2011-09-22 Bell Independent Power Corporation Energy storage vessel, systems, and methods
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner
WO2019239446A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Air conditioner outdoor unit and air conditioner
WO2019239445A1 (en) * 2018-06-11 2019-12-19 三菱電機株式会社 Refrigerant distributor, heat exchanger, and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233572A1 (en) * 2022-06-01 2023-12-07 三菱電機株式会社 Heat exchanger, and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2021234961A1 (en) 2021-11-25
JP7366255B2 (en) 2023-10-20

Similar Documents

Publication Publication Date Title
JP6595125B1 (en) Air conditioner outdoor unit and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
WO2018116929A1 (en) Heat exchanger and air conditioner
CN104011471A (en) Air conditioner
JP2008261615A (en) Heat exchanger, heat exchange device, refrigerator and air conditioner
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
JP5975971B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2017068723A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
JP6169199B2 (en) Heat exchanger and refrigeration cycle apparatus
JP5295207B2 (en) Finned tube heat exchanger and air conditioner using the same
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2016038865A1 (en) Outdoor unit and refrigeration cycle device using same
WO2022264348A1 (en) Heat exchanger and refrigeration cycle device
JP2019128090A (en) Heat exchanger and refrigeration cycle device
JP6797304B2 (en) Heat exchanger and air conditioner
WO2020178966A1 (en) Gas header, heat exchanger, and refrigeration cycle device
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
JP7137092B2 (en) Heat exchanger
WO2021234954A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
WO2023233572A1 (en) Heat exchanger, and refrigeration cycle device
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936192

Country of ref document: EP

Kind code of ref document: A1