WO2017068723A1 - Heat exchanger and refrigeration cycle apparatus - Google Patents

Heat exchanger and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2017068723A1
WO2017068723A1 PCT/JP2015/079994 JP2015079994W WO2017068723A1 WO 2017068723 A1 WO2017068723 A1 WO 2017068723A1 JP 2015079994 W JP2015079994 W JP 2015079994W WO 2017068723 A1 WO2017068723 A1 WO 2017068723A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
heat exchanger
flat
plate
fin
Prior art date
Application number
PCT/JP2015/079994
Other languages
French (fr)
Japanese (ja)
Inventor
石橋 晃
真哉 東井上
伊東 大輔
中村 伸
繁佳 松井
裕樹 宇賀神
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017546376A priority Critical patent/JP6425829B2/en
Priority to PCT/JP2015/079994 priority patent/WO2017068723A1/en
Publication of WO2017068723A1 publication Critical patent/WO2017068723A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus including plate-like fins and flat tubes.
  • Patent Document 1 describes a heat exchanger including a plate-like fin and a plurality of flat heat transfer tubes inserted in the plate-like fin and arranged in parallel in the step direction.
  • the plate-like fin is provided with a slit formed by cutting and raising. In this heat exchanger, heat transfer between the air is promoted by the slit, so that the heat transfer performance can be improved.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a heat exchanger and a refrigeration cycle apparatus that can further improve the heat exchanger capability.
  • the heat exchanger according to the present invention includes a plate-like fin, and a first flat tube and a second flat tube that intersect with the plate-like fin and extend in parallel with each other, and the plate-like fin In the parallel plane, the long axis of the first flat tube and the long axis of the second flat tube are parallel to each other, and the first flat tube and the second flat tube among the plate-like fins.
  • Is formed with a slit portion extending in parallel with the long axis of the first flat tube and the long axis of the second flat tube, and the length of the slit portion is The length of the long axis of one flat tube and the length of the long axis of the second flat tube are shorter than each other, and the entire slit portion is formed by the first flat tube and the second flat tube.
  • a straight line connecting one end of each major axis direction along the plate-like fin, the first flat tube, and the second flat tube A straight line connecting each of the other ends of the axial direction along the plate-like fins, in which is provided between the.
  • the refrigeration cycle apparatus according to the present invention includes the heat exchanger according to the present invention.
  • the heat exchanger capability of the heat exchanger can be further improved.
  • FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. 6. It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 5 of the present invention.
  • FIG. 1 is a top view showing the overall configuration of the heat exchanger according to the present embodiment.
  • This heat exchanger is accommodated in an outdoor unit of a refrigeration cycle apparatus such as an air conditioner, for example.
  • the heat exchanger includes a plate-like fin and a flat tube, and a refrigerant (an example of a heat medium) that flows through the flat tube and air (an example of an external fluid) that flows along the plate-like fins; It is a fin tube type heat exchanger which performs heat exchange of.
  • the relative dimensional relationship and shape of each component may be different from the actual one.
  • the heat exchanger has heat exchange portions 1a and 1b arranged in two rows along the air flow direction.
  • the heat exchange part 1a is located downstream of the heat exchange part 1b in the air flow.
  • Each of the heat exchange parts 1a and 1b includes a plate-like fin 10 and a flat tube 11 which will be described later.
  • a distribution header 30 that is a liquid-side header tank and a gas header 31 that is a gas-side header tank are disposed at one end of the heat exchange units 1a and 1b. The other ends of the heat exchange parts 1a and 1b are bent so that the heat exchange part 1a is on the inside and the heat exchange part 1b is on the outside.
  • Some flat tubes 11 of the heat exchanging section 1 a are connected to the gas header 31 via joints 18.
  • a part of the flat tube 11 of the heat exchange part 1 b is connected to the distribution header 30 via a joint 18.
  • a part of the flat tubes 11 of the heat exchange part 1 a and a part of the flat tubes 11 of the heat exchange part 1 b are connected via a joint 18 and a U bend 16. Examples of these connection relationships and the configuration of the joint 18 will be described later in a second embodiment.
  • FIG. 2 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment.
  • disconnected by the surface parallel to the plate-shaped fin 10 is shown.
  • each of the heat exchanging portions 1 a and 1 b of the heat exchanger includes a plate-like fin 10 and a plurality of flat tubes 11 that intersect with the plate-like fin 10 and extend in parallel with each other. ing.
  • the flat tube 11 is a heat transfer tube having a flat cross-sectional shape such as an ellipse, an ellipse, or a rectangle.
  • the plurality of flat tubes 11 are arranged such that their long axes in a plane parallel to the plate fins 10 are parallel to each other and parallel to the air flow direction.
  • the long axis of the flat tube 11 in a plane parallel to the plate-like fin 10 may be simply referred to as the long axis of the flat tube 11.
  • the short axis of the flat tube 11 in a plane parallel to the plate-like fin 10 may be simply referred to as the short axis of the flat tube 11.
  • the plurality of flat tubes 11 are arranged in parallel with each other through a predetermined gap in the direction of the short axis of the flat tubes 11. Inside the flat tube 11, a plurality of refrigerant flow paths partitioned by partition walls are formed.
  • the plate-like fin 10 has a rectangular flat plate shape.
  • the plate-like fins 10 are arranged so that the longitudinal direction thereof is parallel to the direction of gravity.
  • a plurality of the plate-like fins 10 are arranged in parallel in a direction orthogonal to the paper surface in FIG.
  • a plurality of notches 12 for inserting a plurality of flat tubes 11 are formed at the downstream end of the plate-like fin 10 in the air flow.
  • the flat tube 11 inserted into the notch 12 is joined to the plate fin 10 by brazing or the like.
  • a flat portion 13 extending along the longitudinal direction of the plate fin 10 is formed at the upstream end of the plate fin 10 in the air flow.
  • the flat portion 13 is a region that is formed substantially flat without the notches 12 and the later-described slit portions 14 and the like being formed in the plate-like fin 10.
  • the flat part 13 becomes a drainage channel for draining condensed water when the heat exchanger operates as an evaporator.
  • the heat exchange units 1a and 1b are arranged such that the arrangement of the plurality of flat tubes 11 in the heat exchange unit 1a and the arrangement of the plurality of flat tubes 11 in the heat exchange unit 1b are shifted from each other by a half pitch.
  • a straight slit portion 14 extending in parallel with the long axis of the flat tube 11 is formed in a region between the two adjacent flat tubes 11 in the plate-like fin 10.
  • the slit part 14 of this example is comprised by one long hole with the both ends of the extending
  • the length b in the extending direction of the slit portion 14 is shorter than the length a of the long axis of the flat tube 11 (b ⁇ a).
  • the entire slit portion 14 includes an imaginary straight line L1 that connects one end 11-1 in the major axis direction of two adjacent flat tubes 11 along the plate-like fins 10, and each of the two flat tubes 11. It is provided between an imaginary straight line L2 connecting the other ends 11-2 in the major axis direction along the plate-like fins 10.
  • one end 11-1 of the flat tube 11 is an end portion on the upstream side of the flat tube 11 in the air flow
  • the other end 11-2 of the flat tube 11 is on the downstream side of the flat tube 11 in the air flow. It is an end.
  • the slit portion 14 is provided below the center line 15 between the long axes of the two adjacent flat tubes 11. For example, the distance between the slit portion 14 and the upper surface of the flat tube 11 adjacent below the slit portion 14 is shorter than the length of the short axis of the flat tube 11.
  • the temperature of the refrigerant flowing through each flat tube 11 in the heat exchanger varies depending on the state of the refrigerant (for example, pressure and dryness). For this reason, when heat transfer occurs between the flat tubes 11 via the plate-like fins 10, heat loss occurs.
  • the length b of the slit portion 14 is shorter than the length a of the long axis of the flat tube 11, and the entire slit portion 14 is formed by the two adjacent flat tubes 11.
  • a straight line L2 connected to each other Therefore, heat loss can be reduced without greatly reducing the fin efficiency related to the heat exchange capability.
  • the entire slit portion 14 is provided between the straight line L1 and the straight line L2, the front edge portion (the upstream end portion in the air flow) of the plate-like fin 10 is provided.
  • the notch 12 and the slit part 14 are not formed. Therefore, a decrease in strength of the plate-like fin 10 can be suppressed.
  • the slit portion 14 is formed below the center line 15 between the long axes of the two adjacent flat tubes 11. For this reason, when the heat exchanger operates as an evaporator, the condensed water staying at the upper portion of the flat tube 11 can be drained to the front flat portion 13 by surface tension. Therefore, an increase in the ventilation resistance of the heat exchanger can be suppressed.
  • FIG. 3 is an explanatory diagram of the heat exchanger according to the present embodiment.
  • FIG. 3 shows ten flat tubes 11 arranged in five rows in the vertical direction and in two rows in the air flow direction.
  • the flat tubes of the heat exchange unit 1a arranged on the downstream side in the air flow may be referred to as flat tubes 11a1 to 11a5 in order from the top, and the heat exchange unit 1b arranged on the upstream side in the air flow.
  • These flat tubes may be referred to as flat tubes 11b1 to 11b5 in order from the top.
  • FIG. 3 also shows the refrigerant flow when the heat exchanger operates as a condenser.
  • a hairpin tube bent into a hairpin shape at the center in the tube axis direction is used as the flat tube 11.
  • the ends of the two flat tubes 11 (for example, the flat tube 11 a 1 and the flat tube 11 a 2) adjacent to each other in the vertical direction are integrally connected via the hairpin portion 17.
  • the two flat tubes 11 adjacent in the vertical direction may actually be constituted by one tube.
  • a plurality of refrigerant paths are constituted by a plurality of flat tubes 11 in the heat exchanger.
  • Each of the plurality of refrigerant paths circulates the refrigerant in series.
  • the plurality of refrigerant paths are connected in parallel, for example.
  • One refrigerant path includes eight flat tubes 11a1 to 11a4 and 11b1 to 11b4.
  • the front end portion of the flat tube 11a4 is connected to the gas header 31 via a refrigerant pipe (not shown) serving as an inlet portion of the refrigerant path.
  • the superheated gas refrigerant supplied from the gas header 31 flows into the flat tube 11a4 through the refrigerant pipe.
  • the end on the back side of the flat tube 11a4 and the end on the back side of the flat tube 11a3 are connected via a hairpin portion 17.
  • the end portion on the near side of the flat tube 11a3 and the end portion on the near side of the flat tube 11a2 are connected via a U-bend 16.
  • the end on the back side of the flat tube 11 a 2 and the end on the back side of the flat tube 11 a 1 are connected via a hairpin portion 17.
  • An end on the near side of the flat tube 11a1 and an end on the near side of the flat tube 11b1 are connected via a U-bend 16.
  • the end on the back side of the flat tube 11b1 and the end on the back side of the flat tube 11b2 are connected via a hairpin portion 17.
  • An end portion on the near side of the flat tube 11b2 and an end portion on the near side of the flat tube 11b3 are connected via a U-bend 16.
  • the end on the back side of the flat tube 11b3 and the end on the back side of the flat tube 11b4 are connected via a hairpin portion 17.
  • the front end of the flat tube 11b4 is connected to the distribution header 30 via a refrigerant pipe (not shown) serving as an outlet of the refrigerant path. From the flat tube 11b4, the supercooled liquid refrigerant flows out to the distribution header 30 through the refrigerant pipe.
  • the flat tubes 11a5 and 11b5 constitute a part of another refrigerant path connected in parallel with the refrigerant path.
  • the flat tube 11 adjacent to the upper side of the flat tube 11a1 is connected to a refrigerant pipe serving as an inlet portion of another refrigerant path, and the flat tube adjacent to the upper side of the flat tube 11b1.
  • 11 is connected to a refrigerant pipe serving as an outlet of the refrigerant path.
  • a circular pipe having a circular cross section is used as the refrigerant pipe connected to the inlet and outlet parts of the refrigerant path and the U bend 16. For this reason, the flat tube 11 and the refrigerant pipe or the U bend 16 are connected via the joints 18 respectively.
  • FIG. 4 is a diagram showing a configuration of the joint 18 according to the present embodiment.
  • a side view (a) and a front view (b) of the joint 18 are shown together.
  • a circular pipe portion 18 a having a circular cross-sectional shape is provided at one end portion of the joint 18.
  • the other end portion of the joint 18 is provided with a flat tube portion 18b having a flat cross-sectional shape.
  • a flow path shape conversion part 18c for converting the flow path shape is provided.
  • the circular pipe portion 18 a is connected to a circular pipe such as a refrigerant pipe or a U bend 16
  • the flat pipe portion 18 b is connected to the flat pipe 11.
  • the inner diameter of the circular pipe portion 18a is larger than the inner diameter of the flat tube portion 18b in the short axis direction and smaller than the inner diameter of the flat tube portion 18b in the long axis direction.
  • the flat tube 11 (for example, the flat tubes 11 a 4 and 11 b 4) connected to the inlet or outlet of the refrigerant path, the flat tube 11 adjacent in the vertical direction, and separate
  • the slit part 14 is formed only between the flat tubes 11 (for example, the flat tubes 11a5 and 11b5) constituting a part of the refrigerant path.
  • the slit part 14 is not formed between the flat tubes 11 other than the above.
  • the superheated gas refrigerant supplied from the gas header 31 flows into the flat tube 11a4.
  • the refrigerant that has flowed into the flat tube 11a4 as superheated gas becomes a two-phase state due to heat radiation to the air, and sequentially flows through the flat tubes 11a3, 11a2, 11a1, 11b1, 11b2, 11b3, and 11b4. From the flat tube 11 b 4, the refrigerant that has become supercooled liquid flows out to the distribution header 30.
  • the superheated gas refrigerant flows through the flat tube 11a4 connected to the inlet portion of the refrigerant path, and the supercooled liquid refrigerant flows through the flat tube 11b4 connected to the outlet portion of the refrigerant path.
  • Two-phase refrigerant mainly circulates through the other flat tubes 11a3, 11a2, 11a1, 11b1, 11b2, and 11b3.
  • two-phase refrigerant mainly circulates in the flat tubes 11a5 and 11b5 that constitute part of the middle of another refrigerant path.
  • the flat tube 11 (for example, the flat tubes 11a4 and 11b4) connected to the inlet portion or the outlet portion of the refrigerant path, the flat tube 11 adjacent to the flat tube 11 in the vertical direction, and one of the other refrigerant paths.
  • a slit portion 14 that suppresses heat transfer is formed. Therefore, according to this Embodiment, since the heat loss between adjacent refrigerant
  • the slit portion 14 is not formed between the flat tubes 11 other than the above. Therefore, according to the present embodiment, it is possible to suppress a decrease in fin efficiency and a decrease in strength of the plate-like fin 10.
  • FIG. 5 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment.
  • the slit part 14 in this Embodiment has the some slit 14a arrange
  • the plurality of slits 14a are arranged in a straight line at regular intervals.
  • Each of the slits 14a is constituted by a long hole whose both ends in the extending direction are closed.
  • the strength of the plate-like fin 10 can be improved and a decrease in fin efficiency can be suppressed. Therefore, the heat exchange capability of the heat exchanger can be further improved.
  • FIG. 6 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment.
  • 7 is a cross-sectional view showing a VII-VII cross section of FIG.
  • a cut-and-raised portion 19 in which the plate-like fins 10 in the region are cut and raised is formed in a region between the adjacent flat tubes 11 in the plate-like fin 10.
  • a heat transfer promoting slit 20 that promotes heat transfer with respect to the air flow is formed.
  • the slit portion 14 is provided below the cut and raised portion 19. That is, the slit portion 14 is provided between the cut and raised portion 19 and the flat tube 11 adjacent to the lower portion of the cut and raised portion 19.
  • the condensed water drained from the heat transfer promoting slit 20 is held in the slit portion 14 below the condensed water.
  • the condensed water held in the slit portion 14 is drained from the front flat portion 13 without staying on the upper surface of the flat tube 11 below. Therefore, according to the present embodiment, it is possible to suppress an increase in the ventilation resistance of the heat exchanger while improving the heat exchanger capability by the heat transfer promoting slit 20.
  • FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the present embodiment.
  • the refrigeration cycle apparatus includes a compressor 33, a condensation heat exchanger 34, an expansion device 35, and an evaporating heat exchanger 36.
  • the condensing heat exchanger 34 and the evaporation heat exchanger 36 are provided with a blower 37 that blows air and a blower motor 38 that rotationally drives the blower 37.
  • the refrigeration cycle apparatus may include a four-way valve that switches the flow direction of the refrigerant.
  • the heat exchanger includes the plate-like fins 10 and the first flat tubes 11 that intersect with the plate-like fins 10 and extend in parallel with each other (for example, in FIG. The flat tube 11a4) and the second flat tube 11 (for example, the flat tube 11a5 shown in FIG. 3), and the long axis of the first flat tube 11 in a plane parallel to the plate fin 10
  • the major axes of the second flat tubes 11 are parallel to each other, and the region between the first flat tube 11 and the second flat tube 11 in the plate-like fin 10 is the same as that of the first flat tube 11.
  • a slit portion 14 extending in parallel with the major axis and the major axis of the second flat tube 11 is formed, and the length b of the slit portion 14 is the length a of the major axis of the first flat tube 11 and the first axis.
  • the length of the long axis of the two flat tubes 11 is shorter than the length a, and the entire slit portion 14 is the first flat tube.
  • the other end 11-2 in the axial direction is provided between the straight line L2 connecting the plate-like fins 10 with each other.
  • the first flat tube 11 (for example, the flat tube 11a4 illustrated in FIG. 3) is the second flat tube 11 (for example, the flat tube 11a5 illustrated in FIG. 3).
  • the slit portion 14 is formed closer to the second flat tube 11 than the center line 15 between the first flat tube 11 and the second flat tube 11. May be.
  • the condensed water staying at the top of the flat tube 11 can be drained to the front flat portion 13 by surface tension. Therefore, an increase in the ventilation resistance of the heat exchanger can be suppressed.
  • the first flat tube 11 (for example, the flat tube 11a4 shown in FIG. 3) constitutes a part of the refrigerant path, and at the inlet or outlet of the refrigerant path.
  • the second flat tube 11 (for example, the flat tube 11a5 shown in FIG. 3) may constitute a part of another refrigerant path connected in parallel with the refrigerant path. .
  • the slit portion 14 may have a plurality of slits 14a arranged in a perforation.
  • the first flat tube 11 is disposed above the second flat tube 11, and the first flat tube 11 among the plate-like fins 10.
  • a cut and raised portion 19 is formed in a region between the first flat tube 11 and the second flat tube 11, and the slit portion 14 may be formed closer to the second flat tube 11 than the cut and raised portion 19. .
  • the refrigeration cycle apparatus includes the heat exchanger according to the above embodiment.
  • a refrigerant such as R410A, R32, HFO-1234yf can be used as a heat medium that circulates inside the flat tube 11.
  • air and refrigerant are exemplified as the working fluid, but the same effect can be obtained even when other gas, liquid, gas-liquid mixed fluid is used.
  • the heat exchanger accommodated in the outdoor unit is exemplified, but the same effect can be obtained even when the present invention is applied to the heat exchanger accommodated in the indoor unit.
  • a refrigerating machine oil such as a mineral oil, an alkylbenzene oil, an ester oil, an ether oil or a fluorine oil can be used. Regardless of whether or not the refrigerant and the refrigerating machine oil are compatible, the same effect can be obtained in any refrigerating machine oil used.
  • the slit part 14 was notched from the downstream edge part of the plate-like fin 10 in the flow of air, for example It may be a notch.
  • the present invention can be used in a heat pump device and the like that need to be easily manufactured, improve heat exchange capability, and improve energy saving performance.
  • 1a, 1b heat exchange section 10 plate fin, 11, 11a1, 11a2, 11a3, 11a4, 11a5, 11b1, 11b2, 11b3, 11b4, 11b5 flat tube, 11-1 one end, 11-2 other end, 12 notch , 13 flat part, 14 slit part, 14a slit, 15 center line, 16 U bend, 17 hairpin part, 18 joint, 18a circular pipe part, 18b flat pipe part, 18c flow path shape conversion part, 19 cut and raised part, 20 Slit for heat transfer, 30 distribution header, 31 gas header, 33 compressor, 34 condensing heat exchanger, 35 throttling device, 36 evaporating heat exchanger, 37 blower, 38 blower motor, L1, L2 straight line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

To provide a heat exchanger and refrigeration cycle apparatus able to further improve heat exchange performance. The heat exchanger is provided with plate fins, as well as a first flattened tube and a second flattened tube. The major axis of the first flattened tube and the major axis of the second flattened tube are parallel with each other within a plane parallel to the plate fins. A slit extending parallel to the major axis of the first flattened tube and the major axis of the second flattened tube is formed in the plate-fin region between the first flattened tube and the second flattened tube. The length of the slit is shorter than the major-axis length of the first flattened tube and the major-axis length of the second flattened tube. The entire slit is provided between a straight line linking together one major-axis-direction end of each the first flattened tube and the second flattened tube along the plate fins and a straight line linking together the other major-axis-direction end of the first flattened tube and the second flattened tube along the plate fins.

Description

熱交換器及び冷凍サイクル装置Heat exchanger and refrigeration cycle apparatus
 本発明は、板状フィンと扁平管とを備えた熱交換器及び冷凍サイクル装置に関する。 The present invention relates to a heat exchanger and a refrigeration cycle apparatus including plate-like fins and flat tubes.
 特許文献1には、板状フィンと、板状フィンに挿入され段方向に並列する複数の扁平伝熱管と、を備えた熱交換器が記載されている。板状フィンには、切り起こしにより形成されたスリットが設けられている。この熱交換器では、空気との間の伝熱がスリットによって促進されるため、伝熱性能を向上させることができる。 Patent Document 1 describes a heat exchanger including a plate-like fin and a plurality of flat heat transfer tubes inserted in the plate-like fin and arranged in parallel in the step direction. The plate-like fin is provided with a slit formed by cutting and raising. In this heat exchanger, heat transfer between the air is promoted by the slit, so that the heat transfer performance can be improved.
特開2014-1869号公報Japanese Patent Laid-Open No. 2014-1869
 しかしながら、特許文献1の熱交換器では、段方向に隣接する扁平伝熱管の間で熱ロスが発生するため、熱交換器能力を十分に向上させることができないという課題があった。 However, in the heat exchanger of Patent Document 1, heat loss occurs between the flat heat transfer tubes adjacent in the step direction, and thus there is a problem that the heat exchanger capacity cannot be sufficiently improved.
 本発明は、上述のような課題を解決するためになされたものであり、熱交換器能力をより向上できる熱交換器及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a heat exchanger and a refrigeration cycle apparatus that can further improve the heat exchanger capability.
 本発明に係る熱交換器は、板状フィンと、前記板状フィンと交差し、かつ互いに並列して延伸した第1の扁平管及び第2の扁平管と、を備え、前記板状フィンと平行な面内において、前記第1の扁平管の長軸及び前記第2の扁平管の長軸は互いに平行であり、前記板状フィンのうち前記第1の扁平管と前記第2の扁平管との間の領域には、前記第1の扁平管の長軸及び前記第2の扁平管の長軸と平行に延伸したスリット部が形成されており、前記スリット部の長さは、前記第1の扁平管の長軸の長さ及び前記第2の扁平管の長軸の長さよりも短くなっており、前記スリット部の全体は、前記第1の扁平管及び前記第2の扁平管のそれぞれの長軸方向の一端同士を前記板状フィンに沿って結ぶ直線と、前記第1の扁平管及び前記第2の扁平管のそれぞれの長軸方向の他端同士を前記板状フィンに沿って結ぶ直線と、の間に設けられているものである。 The heat exchanger according to the present invention includes a plate-like fin, and a first flat tube and a second flat tube that intersect with the plate-like fin and extend in parallel with each other, and the plate-like fin In the parallel plane, the long axis of the first flat tube and the long axis of the second flat tube are parallel to each other, and the first flat tube and the second flat tube among the plate-like fins. Is formed with a slit portion extending in parallel with the long axis of the first flat tube and the long axis of the second flat tube, and the length of the slit portion is The length of the long axis of one flat tube and the length of the long axis of the second flat tube are shorter than each other, and the entire slit portion is formed by the first flat tube and the second flat tube. A straight line connecting one end of each major axis direction along the plate-like fin, the first flat tube, and the second flat tube A straight line connecting each of the other ends of the axial direction along the plate-like fins, in which is provided between the.
 本発明に係る冷凍サイクル装置は、上記本発明に係る熱交換器を備えたものである。 The refrigeration cycle apparatus according to the present invention includes the heat exchanger according to the present invention.
 本発明によれば、隣り合う伝熱管の間での熱ロスをスリット部によって低減できるため、熱交換器の熱交換器能力をより向上できる。 According to the present invention, since the heat loss between adjacent heat transfer tubes can be reduced by the slit portion, the heat exchanger capability of the heat exchanger can be further improved.
本発明の実施の形態1に係る熱交換器の全体構成を示す上面図である。It is a top view which shows the whole structure of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の一部の構成を模式的に示す図である。It is a figure which shows typically the structure of a part of heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器の説明図である。It is explanatory drawing of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係るジョイント18の構成を示す図である。It is a figure which shows the structure of the joint 18 which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器の一部の構成を模式的に示す図である。It is a figure which shows typically the structure of a part of heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の一部の構成を模式的に示す図である。It is a figure which shows typically the structure of a part of heat exchanger which concerns on Embodiment 4 of this invention. 図6のVII-VII断面を示す断面図である。FIG. 7 is a cross-sectional view showing a VII-VII cross section of FIG. 6. 本発明の実施の形態5に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 5 of the present invention.
実施の形態1.
 本発明の実施の形態1に係る熱交換器について説明する。図1は、本実施の形態に係る熱交換器の全体構成を示す上面図である。この熱交換器は、例えば、空気調和機等の冷凍サイクル装置の室外機に収容されるものである。また、この熱交換器は、板状フィンと扁平管とを備え、扁平管の内部を流通する冷媒(熱媒体の一例)と、板状フィンに沿って流通する空気(外部流体の一例)との熱交換を行うフィンチューブ型熱交換器である。なお、図1を含む以下の図面では、各構成部材の相対的な寸法の関係や形状等が実際のものとは異なる場合がある。
Embodiment 1 FIG.
A heat exchanger according to Embodiment 1 of the present invention will be described. FIG. 1 is a top view showing the overall configuration of the heat exchanger according to the present embodiment. This heat exchanger is accommodated in an outdoor unit of a refrigeration cycle apparatus such as an air conditioner, for example. The heat exchanger includes a plate-like fin and a flat tube, and a refrigerant (an example of a heat medium) that flows through the flat tube and air (an example of an external fluid) that flows along the plate-like fins; It is a fin tube type heat exchanger which performs heat exchange of. In the following drawings including FIG. 1, the relative dimensional relationship and shape of each component may be different from the actual one.
 図1に示すように、熱交換器は、空気の流れ方向に沿って2列に配置された熱交換部1a、1bを有している。熱交換部1aは、空気の流れにおいて熱交換部1bよりも下流側に位置している。熱交換部1a、1bのそれぞれは、後述する板状フィン10及び扁平管11を備えている。熱交換部1a、1bの一端部には、液側のヘッダタンクである分配ヘッダ30と、ガス側のヘッダタンクであるガスヘッダ31と、が配置されている。熱交換部1a、1bの他端部は、熱交換部1aが内側となり熱交換部1bが外側となるように曲げられている。 As shown in FIG. 1, the heat exchanger has heat exchange portions 1a and 1b arranged in two rows along the air flow direction. The heat exchange part 1a is located downstream of the heat exchange part 1b in the air flow. Each of the heat exchange parts 1a and 1b includes a plate-like fin 10 and a flat tube 11 which will be described later. A distribution header 30 that is a liquid-side header tank and a gas header 31 that is a gas-side header tank are disposed at one end of the heat exchange units 1a and 1b. The other ends of the heat exchange parts 1a and 1b are bent so that the heat exchange part 1a is on the inside and the heat exchange part 1b is on the outside.
 熱交換部1aの一部の扁平管11は、ジョイント18を介してガスヘッダ31に接続されている。熱交換部1bの一部の扁平管11は、ジョイント18を介して分配ヘッダ30に接続されている。また、熱交換部1aの一部の扁平管11と熱交換部1bの一部の扁平管11とは、ジョイント18及びUベンド16を介して接続されている。これらの接続関係の例及びジョイント18の構成については、実施の形態2で後述する。 Some flat tubes 11 of the heat exchanging section 1 a are connected to the gas header 31 via joints 18. A part of the flat tube 11 of the heat exchange part 1 b is connected to the distribution header 30 via a joint 18. Further, a part of the flat tubes 11 of the heat exchange part 1 a and a part of the flat tubes 11 of the heat exchange part 1 b are connected via a joint 18 and a U bend 16. Examples of these connection relationships and the configuration of the joint 18 will be described later in a second embodiment.
 図2は、本実施の形態に係る熱交換器の一部の構成を模式的に示す図である。図2では、板状フィン10に平行な面で切断した熱交換器の模式的な断面構成を示している。図2に示すように、熱交換器の熱交換部1a、1bのそれぞれは、板状フィン10と、板状フィン10と交差しかつ互いに並列して延伸した複数の扁平管11と、を備えている。 FIG. 2 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment. In FIG. 2, the typical cross-sectional structure of the heat exchanger cut | disconnected by the surface parallel to the plate-shaped fin 10 is shown. As shown in FIG. 2, each of the heat exchanging portions 1 a and 1 b of the heat exchanger includes a plate-like fin 10 and a plurality of flat tubes 11 that intersect with the plate-like fin 10 and extend in parallel with each other. ing.
 扁平管11は、長円、楕円又は長方形等の扁平な断面形状を有する伝熱管である。複数の扁平管11は、板状フィン10と平行な面内におけるそれぞれの長軸が互いに平行となり、かつ空気の流れ方向に平行となるように配置されている。以下、板状フィン10と平行な面内における扁平管11の長軸のことを、単に扁平管11の長軸という場合がある。また、板状フィン10と平行な面内における扁平管11の短軸のことを、単に扁平管11の短軸という場合がある。複数の扁平管11は、扁平管11の短軸の方向に、所定の間隙を介して互いに並列している。扁平管11の内部には、隔壁によって区画された複数の冷媒流路が形成されている。 The flat tube 11 is a heat transfer tube having a flat cross-sectional shape such as an ellipse, an ellipse, or a rectangle. The plurality of flat tubes 11 are arranged such that their long axes in a plane parallel to the plate fins 10 are parallel to each other and parallel to the air flow direction. Hereinafter, the long axis of the flat tube 11 in a plane parallel to the plate-like fin 10 may be simply referred to as the long axis of the flat tube 11. In addition, the short axis of the flat tube 11 in a plane parallel to the plate-like fin 10 may be simply referred to as the short axis of the flat tube 11. The plurality of flat tubes 11 are arranged in parallel with each other through a predetermined gap in the direction of the short axis of the flat tubes 11. Inside the flat tube 11, a plurality of refrigerant flow paths partitioned by partition walls are formed.
 板状フィン10は、矩形平板状の形状を有している。板状フィン10は、その長手方向が重力方向と平行になるように配置されている。板状フィン10は、図2における紙面直交方向に、所定の間隙を介して複数並列して配置されている。空気の流れにおいて板状フィン10の下流側の端部には、複数の扁平管11を挿入するための複数の切欠き12が形成されている。切欠き12に挿入された扁平管11は、ろう付け等により板状フィン10と接合されている。空気の流れにおいて板状フィン10の上流側の端部には、板状フィン10の長手方向に沿って延びる平坦部13が形成されている。ここで、平坦部13とは、板状フィン10に切欠き12及び後述するスリット部14等が形成されておらず、概ね平坦に形成された領域のことである。平坦部13は、熱交換器が蒸発器として動作する際に凝縮水を排水する排水路となる。 The plate-like fin 10 has a rectangular flat plate shape. The plate-like fins 10 are arranged so that the longitudinal direction thereof is parallel to the direction of gravity. A plurality of the plate-like fins 10 are arranged in parallel in a direction orthogonal to the paper surface in FIG. A plurality of notches 12 for inserting a plurality of flat tubes 11 are formed at the downstream end of the plate-like fin 10 in the air flow. The flat tube 11 inserted into the notch 12 is joined to the plate fin 10 by brazing or the like. A flat portion 13 extending along the longitudinal direction of the plate fin 10 is formed at the upstream end of the plate fin 10 in the air flow. Here, the flat portion 13 is a region that is formed substantially flat without the notches 12 and the later-described slit portions 14 and the like being formed in the plate-like fin 10. The flat part 13 becomes a drainage channel for draining condensed water when the heat exchanger operates as an evaporator.
 熱交換部1a、1bは、熱交換部1aにおける複数の扁平管11の配列と熱交換部1bにおける複数の扁平管11の配列とが互いに半ピッチずれるように配置されている。 The heat exchange units 1a and 1b are arranged such that the arrangement of the plurality of flat tubes 11 in the heat exchange unit 1a and the arrangement of the plurality of flat tubes 11 in the heat exchange unit 1b are shifted from each other by a half pitch.
 板状フィン10のうち、隣り合う2つの扁平管11の間の領域には、扁平管11の長軸と平行に延伸した直線状のスリット部14が形成されている。本例のスリット部14は、延伸方向の両端が閉じた1つの長孔により構成されている。スリット部14の延伸方向の長さbは、扁平管11の長軸の長さaよりも短くなっている(b<a)。複数の扁平管11が並列する並列方向に見ると、スリット部14の全体が扁平管11と重なっている。スリット部14の全体は、隣り合う2つの扁平管11のそれぞれの長軸方向の一端11-1同士を板状フィン10に沿って結ぶ仮想の直線L1と、当該2つの扁平管11のそれぞれの長軸方向の他端11-2同士を板状フィン10に沿って結ぶ仮想の直線L2と、の間に設けられている。例えば、扁平管11の一端11-1は、空気の流れにおいて扁平管11の上流側の端部であり、扁平管11の他端11-2は、空気の流れにおいて扁平管11の下流側の端部である。また、スリット部14は、隣り合う2つの扁平管11の長軸同士の中心線15よりも下方に設けられている。例えば、スリット部14と、当該スリット部14の下方に隣接する扁平管11の上面と、の間の距離は、扁平管11の短軸の長さよりも短くなっている。 A straight slit portion 14 extending in parallel with the long axis of the flat tube 11 is formed in a region between the two adjacent flat tubes 11 in the plate-like fin 10. The slit part 14 of this example is comprised by one long hole with the both ends of the extending | stretching direction closed. The length b in the extending direction of the slit portion 14 is shorter than the length a of the long axis of the flat tube 11 (b <a). When viewed in the parallel direction in which the plurality of flat tubes 11 are arranged in parallel, the entire slit portion 14 overlaps the flat tube 11. The entire slit portion 14 includes an imaginary straight line L1 that connects one end 11-1 in the major axis direction of two adjacent flat tubes 11 along the plate-like fins 10, and each of the two flat tubes 11. It is provided between an imaginary straight line L2 connecting the other ends 11-2 in the major axis direction along the plate-like fins 10. For example, one end 11-1 of the flat tube 11 is an end portion on the upstream side of the flat tube 11 in the air flow, and the other end 11-2 of the flat tube 11 is on the downstream side of the flat tube 11 in the air flow. It is an end. Further, the slit portion 14 is provided below the center line 15 between the long axes of the two adjacent flat tubes 11. For example, the distance between the slit portion 14 and the upper surface of the flat tube 11 adjacent below the slit portion 14 is shorter than the length of the short axis of the flat tube 11.
 熱交換器において各扁平管11に流れる冷媒の温度は、冷媒の状態(例えば、圧力、乾き度)によって異なる。このため、板状フィン10を介して扁平管11の間で伝熱が生じると、熱ロスが発生してしまう。 The temperature of the refrigerant flowing through each flat tube 11 in the heat exchanger varies depending on the state of the refrigerant (for example, pressure and dryness). For this reason, when heat transfer occurs between the flat tubes 11 via the plate-like fins 10, heat loss occurs.
 これに対し、本実施の形態では、隣り合う扁平管11の間の板状フィン10にスリット部14が形成されているため、板状フィン10を介して段方向に熱が移動するのを抑制することができる。したがって、隣り合う扁平管11の間での熱ロスを低減できるため、熱交換器の熱交換器能力をより向上できる。 On the other hand, in this Embodiment, since the slit part 14 is formed in the plate-shaped fin 10 between the adjacent flat tubes 11, it suppresses that a heat | fever moves to the step direction via the plate-shaped fin 10. FIG. can do. Therefore, since the heat loss between the adjacent flat tubes 11 can be reduced, the heat exchanger capability of the heat exchanger can be further improved.
 また、本実施の形態では、スリット部14の長さbが扁平管11の長軸の長さaよりも短くなっており、かつ、スリット部14の全体が、隣り合う2つの扁平管11のそれぞれの長軸方向の一端11-1同士を板状フィン10に沿って結ぶ直線L1と、当該2つの扁平管11のそれぞれの長軸方向の他端11-2同士を板状フィン10に沿って結ぶ直線L2と、の間に設けられている。したがって、熱交換能力に関連するフィン効率を大きく低下させることなく熱ロスを低減できる。 In the present embodiment, the length b of the slit portion 14 is shorter than the length a of the long axis of the flat tube 11, and the entire slit portion 14 is formed by the two adjacent flat tubes 11. A straight line L1 that connects one end 11-1 in the major axis direction along the plate-like fin 10 and another other end 11-2 in the major axis direction of each of the two flat tubes 11 along the plate-like fin 10 And a straight line L2 connected to each other. Therefore, heat loss can be reduced without greatly reducing the fin efficiency related to the heat exchange capability.
 また、本実施の形態では、スリット部14の全体が直線L1と直線L2との間に設けられているため、板状フィン10の前縁部(空気の流れにおいて上流側の端部)には切欠き12及びスリット部14が形成されない。したがって、板状フィン10の強度の低下を抑えることができる。 Further, in the present embodiment, since the entire slit portion 14 is provided between the straight line L1 and the straight line L2, the front edge portion (the upstream end portion in the air flow) of the plate-like fin 10 is provided. The notch 12 and the slit part 14 are not formed. Therefore, a decrease in strength of the plate-like fin 10 can be suppressed.
 特に、本実施の形態の熱交換器のように熱交換部1a、1bのそれぞれに曲げが加えられる場合には、板状フィン10に荷重がかかるため、板状フィン10の座屈が生じやすくなる。しかしながら、本実施の形態では、板状フィン10の強度の低下を抑えられるため、板状フィン10の座屈を生じにくくすることができる。 In particular, when bending is applied to each of the heat exchanging portions 1a and 1b as in the heat exchanger of the present embodiment, a load is applied to the plate-like fin 10, so that the plate-like fin 10 is likely to buckle. Become. However, in the present embodiment, since the decrease in strength of the plate-like fin 10 can be suppressed, it is possible to make it difficult for the plate-like fin 10 to buckle.
 また、本実施の形態では、隣り合う2つの扁平管11の長軸同士の中心線15よりも下方にスリット部14が形成されている。このため、熱交換器が蒸発器として動作する際に、扁平管11の上部に滞留する凝縮水を、表面張力によって前方の平坦部13に排水することができる。したがって、熱交換器の通風抵抗の増加を抑えることができる。 Further, in the present embodiment, the slit portion 14 is formed below the center line 15 between the long axes of the two adjacent flat tubes 11. For this reason, when the heat exchanger operates as an evaporator, the condensed water staying at the upper portion of the flat tube 11 can be drained to the front flat portion 13 by surface tension. Therefore, an increase in the ventilation resistance of the heat exchanger can be suppressed.
実施の形態2.
 本発明の実施の形態2に係る熱交換器について説明する。図3は、本実施の形態に係る熱交換器の説明図である。図3では、上下方向に5段で空気の流れ方向に2列に配列した10本の扁平管11を示している。以下の説明では、空気の流れにおいて下流側に配置された熱交換部1aの扁平管を上方から順に扁平管11a1~11a5という場合があり、空気の流れにおいて上流側に配置された熱交換部1bの扁平管を上方から順に扁平管11b1~11b5という場合がある。また、図3では、熱交換器が凝縮器として動作する場合の冷媒の流れを併せて示している。
Embodiment 2. FIG.
A heat exchanger according to Embodiment 2 of the present invention will be described. FIG. 3 is an explanatory diagram of the heat exchanger according to the present embodiment. FIG. 3 shows ten flat tubes 11 arranged in five rows in the vertical direction and in two rows in the air flow direction. In the following description, the flat tubes of the heat exchange unit 1a arranged on the downstream side in the air flow may be referred to as flat tubes 11a1 to 11a5 in order from the top, and the heat exchange unit 1b arranged on the upstream side in the air flow. These flat tubes may be referred to as flat tubes 11b1 to 11b5 in order from the top. FIG. 3 also shows the refrigerant flow when the heat exchanger operates as a condenser.
 本例では、扁平管11として、管軸方向の中央部でヘアピン状に曲げられたヘアピン管が用いられている。このため、上下方向に隣接する2つの扁平管11(例えば、扁平管11a1及び扁平管11a2)の図中奥側の端部同士は、ヘアピン部17を介して一体的に接続されている。すなわち、上下方向に隣接する2つの扁平管11は、実際には1本の管によって構成される場合がある。 In this example, a hairpin tube bent into a hairpin shape at the center in the tube axis direction is used as the flat tube 11. For this reason, the ends of the two flat tubes 11 (for example, the flat tube 11 a 1 and the flat tube 11 a 2) adjacent to each other in the vertical direction are integrally connected via the hairpin portion 17. In other words, the two flat tubes 11 adjacent in the vertical direction may actually be constituted by one tube.
 図3に示すように、熱交換器には、それぞれ複数の扁平管11によって複数の冷媒パスが構成されている。複数の冷媒パスのそれぞれは、冷媒を直列に流通させるようになっている。また、複数の冷媒パス同士は、例えば互いに並列に接続されている。冷媒パスの1つは、8つの扁平管11a1~11a4、11b1~11b4で構成されている。 As shown in FIG. 3, a plurality of refrigerant paths are constituted by a plurality of flat tubes 11 in the heat exchanger. Each of the plurality of refrigerant paths circulates the refrigerant in series. The plurality of refrigerant paths are connected in parallel, for example. One refrigerant path includes eight flat tubes 11a1 to 11a4 and 11b1 to 11b4.
 具体的には、扁平管11a4の手前側の端部は、冷媒パスの入口部となる冷媒配管(図示せず)を介して、ガスヘッダ31に接続されている。扁平管11a4には、ガスヘッダ31から供給される過熱ガス冷媒が冷媒配管を介して流入するようになっている。扁平管11a4の奥側の端部と扁平管11a3の奥側の端部とは、ヘアピン部17を介して接続されている。扁平管11a3の手前側の端部と扁平管11a2の手前側の端部とは、Uベンド16を介して接続されている。扁平管11a2の奥側の端部と扁平管11a1の奥側の端部とは、ヘアピン部17を介して接続されている。扁平管11a1の手前側の端部と扁平管11b1の手前側の端部とは、Uベンド16を介して接続されている。扁平管11b1の奥側の端部と扁平管11b2の奥側の端部とは、ヘアピン部17を介して接続されている。扁平管11b2の手前側の端部と扁平管11b3の手前側の端部とは、Uベンド16を介して接続されている。扁平管11b3の奥側の端部と扁平管11b4の奥側の端部とは、ヘアピン部17を介して接続されている。扁平管11b4の手前側の端部は、冷媒パスの出口部となる冷媒配管(図示せず)を介して、分配ヘッダ30に接続されている。扁平管11b4からは、過冷却液冷媒が冷媒配管を介して分配ヘッダ30に流出するようになっている。 Specifically, the front end portion of the flat tube 11a4 is connected to the gas header 31 via a refrigerant pipe (not shown) serving as an inlet portion of the refrigerant path. The superheated gas refrigerant supplied from the gas header 31 flows into the flat tube 11a4 through the refrigerant pipe. The end on the back side of the flat tube 11a4 and the end on the back side of the flat tube 11a3 are connected via a hairpin portion 17. The end portion on the near side of the flat tube 11a3 and the end portion on the near side of the flat tube 11a2 are connected via a U-bend 16. The end on the back side of the flat tube 11 a 2 and the end on the back side of the flat tube 11 a 1 are connected via a hairpin portion 17. An end on the near side of the flat tube 11a1 and an end on the near side of the flat tube 11b1 are connected via a U-bend 16. The end on the back side of the flat tube 11b1 and the end on the back side of the flat tube 11b2 are connected via a hairpin portion 17. An end portion on the near side of the flat tube 11b2 and an end portion on the near side of the flat tube 11b3 are connected via a U-bend 16. The end on the back side of the flat tube 11b3 and the end on the back side of the flat tube 11b4 are connected via a hairpin portion 17. The front end of the flat tube 11b4 is connected to the distribution header 30 via a refrigerant pipe (not shown) serving as an outlet of the refrigerant path. From the flat tube 11b4, the supercooled liquid refrigerant flows out to the distribution header 30 through the refrigerant pipe.
 扁平管11a5、11b5は、上記の冷媒パスと並列に接続された別の冷媒パスの一部を構成している。また、図示していないが、扁平管11a1の上方に隣接する扁平管11には、さらに別の冷媒パスの入口部となる冷媒配管が接続されており、扁平管11b1の上方に隣接する扁平管11には、当該冷媒パスの出口部となる冷媒配管が接続されている。 The flat tubes 11a5 and 11b5 constitute a part of another refrigerant path connected in parallel with the refrigerant path. Although not shown, the flat tube 11 adjacent to the upper side of the flat tube 11a1 is connected to a refrigerant pipe serving as an inlet portion of another refrigerant path, and the flat tube adjacent to the upper side of the flat tube 11b1. 11 is connected to a refrigerant pipe serving as an outlet of the refrigerant path.
 ここで、冷媒パスの入口部及び出口部に接続される冷媒配管、並びにUベンド16としては、円形の断面を有する円管が用いられている。このため、扁平管11と上記冷媒配管又はUベンド16との間は、それぞれジョイント18を介して接続されている。 Here, a circular pipe having a circular cross section is used as the refrigerant pipe connected to the inlet and outlet parts of the refrigerant path and the U bend 16. For this reason, the flat tube 11 and the refrigerant pipe or the U bend 16 are connected via the joints 18 respectively.
 図4は、本実施の形態に係るジョイント18の構成を示す図である。図4では、ジョイント18の側面図(a)及び正面図(b)を併せて示している。図4に示すように、ジョイント18の一端部には、円形の断面形状を有する円管部18aが設けられている。ジョイント18の他端部には、扁平な断面形状を有する扁平管部18bが設けられている。円管部18aと扁平管部18bとの間には、流路形状を変換する流路形状変換部18cが設けられている。円管部18aは冷媒配管又はUベンド16等の円管に接続され、扁平管部18bは扁平管11に接続されるようになっている。例えば、円管部18aの内径は、扁平管部18bの短軸方向の内径よりも大きく、かつ扁平管部18bの長軸方向の内径よりも小さくなっている。 FIG. 4 is a diagram showing a configuration of the joint 18 according to the present embodiment. In FIG. 4, a side view (a) and a front view (b) of the joint 18 are shown together. As shown in FIG. 4, a circular pipe portion 18 a having a circular cross-sectional shape is provided at one end portion of the joint 18. The other end portion of the joint 18 is provided with a flat tube portion 18b having a flat cross-sectional shape. Between the circular pipe part 18a and the flat pipe part 18b, a flow path shape conversion part 18c for converting the flow path shape is provided. The circular pipe portion 18 a is connected to a circular pipe such as a refrigerant pipe or a U bend 16, and the flat pipe portion 18 b is connected to the flat pipe 11. For example, the inner diameter of the circular pipe portion 18a is larger than the inner diameter of the flat tube portion 18b in the short axis direction and smaller than the inner diameter of the flat tube portion 18b in the long axis direction.
 図3に戻り、本実施の形態では、冷媒パスの入口部又は出口部に接続される扁平管11(例えば、扁平管11a4、11b4)と、当該扁平管11と上下方向に隣り合い、かつ別の冷媒パスの一部を構成する扁平管11(例えば、扁平管11a5、11b5)と、の間にのみスリット部14が形成されている。上記以外の扁平管11の間には、スリット部14が形成されていない。 Returning to FIG. 3, in the present embodiment, the flat tube 11 (for example, the flat tubes 11 a 4 and 11 b 4) connected to the inlet or outlet of the refrigerant path, the flat tube 11 adjacent in the vertical direction, and separate The slit part 14 is formed only between the flat tubes 11 (for example, the flat tubes 11a5 and 11b5) constituting a part of the refrigerant path. The slit part 14 is not formed between the flat tubes 11 other than the above.
 上記構成を有する熱交換器が凝縮器として動作する場合、扁平管11a4には、ガスヘッダ31から供給される過熱ガス冷媒が流入する。扁平管11a4に過熱ガスとして流入した冷媒は、空気への放熱によって二相状態になるとともに、扁平管11a3、11a2、11a1、11b1、11b2、11b3、11b4を順次流通する。扁平管11b4からは、過冷却液となった冷媒が分配ヘッダ30に流出する。すなわち、冷媒パスの入口部に接続される扁平管11a4には過熱ガス冷媒が流通し、冷媒パスの出口部に接続される扁平管11b4には過冷却液冷媒が流通する。その他の扁平管11a3、11a2、11a1、11b1、11b2、11b3には、主に二相冷媒が流通する。同様に、別の冷媒パスの途中の一部を構成する扁平管11a5、11b5には、主に二相冷媒が流通する。これにより、それぞれ上下方向に隣り合う扁平管11a4と扁平管11a5との間、及び扁平管11b4と扁平管11b5との間には、温度差が生じる。扁平管11a4と扁平管11a5との間、又は扁平管11b4と扁平管11b5との間で伝熱が生じてしまうと、大きな熱ロスが発生する。 When the heat exchanger having the above configuration operates as a condenser, the superheated gas refrigerant supplied from the gas header 31 flows into the flat tube 11a4. The refrigerant that has flowed into the flat tube 11a4 as superheated gas becomes a two-phase state due to heat radiation to the air, and sequentially flows through the flat tubes 11a3, 11a2, 11a1, 11b1, 11b2, 11b3, and 11b4. From the flat tube 11 b 4, the refrigerant that has become supercooled liquid flows out to the distribution header 30. That is, the superheated gas refrigerant flows through the flat tube 11a4 connected to the inlet portion of the refrigerant path, and the supercooled liquid refrigerant flows through the flat tube 11b4 connected to the outlet portion of the refrigerant path. Two-phase refrigerant mainly circulates through the other flat tubes 11a3, 11a2, 11a1, 11b1, 11b2, and 11b3. Similarly, two-phase refrigerant mainly circulates in the flat tubes 11a5 and 11b5 that constitute part of the middle of another refrigerant path. Thereby, a temperature difference arises between the flat tube 11a4 and the flat tube 11a5 which are adjacent to each other in the vertical direction, and between the flat tube 11b4 and the flat tube 11b5. If heat transfer occurs between the flat tube 11a4 and the flat tube 11a5 or between the flat tube 11b4 and the flat tube 11b5, a large heat loss occurs.
 本実施の形態では、冷媒パスの入口部又は出口部に接続される扁平管11(例えば、扁平管11a4、11b4)と、当該扁平管11と上下方向に隣り合い、かつ別の冷媒パスの一部を構成する扁平管11(例えば、扁平管11a5、11b5)と、の間には、伝熱を抑制するスリット部14が形成されている。したがって、本実施の形態によれば、隣り合う冷媒パスの間での熱ロスを低減できるため、熱交換器の熱交換能力をより向上できる。 In the present embodiment, the flat tube 11 (for example, the flat tubes 11a4 and 11b4) connected to the inlet portion or the outlet portion of the refrigerant path, the flat tube 11 adjacent to the flat tube 11 in the vertical direction, and one of the other refrigerant paths. Between the flat tubes 11 (for example, the flat tubes 11a5 and 11b5) constituting the portion, a slit portion 14 that suppresses heat transfer is formed. Therefore, according to this Embodiment, since the heat loss between adjacent refrigerant | coolant paths can be reduced, the heat exchange capability of a heat exchanger can be improved more.
 また、本実施の形態では、上記以外の扁平管11の間には、スリット部14が形成されていない。したがって、本実施の形態によれば、板状フィン10のフィン効率の低下及び強度の低下を抑えることができる。 Further, in the present embodiment, the slit portion 14 is not formed between the flat tubes 11 other than the above. Therefore, according to the present embodiment, it is possible to suppress a decrease in fin efficiency and a decrease in strength of the plate-like fin 10.
実施の形態3.
 本発明の実施の形態3に係る熱交換器について説明する。図5は、本実施の形態に係る熱交換器の一部の構成を模式的に示す図である。図5に示すように、本実施の形態におけるスリット部14は、ミシン目状に配置された複数のスリット14aを有している。複数のスリット14aは、一定の間隔で直線状に一列に配置されている。スリット14aのそれぞれは、延伸方向の両端が閉じた長孔により構成されている。
Embodiment 3 FIG.
A heat exchanger according to Embodiment 3 of the present invention will be described. FIG. 5 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment. As shown in FIG. 5, the slit part 14 in this Embodiment has the some slit 14a arrange | positioned at perforation shape. The plurality of slits 14a are arranged in a straight line at regular intervals. Each of the slits 14a is constituted by a long hole whose both ends in the extending direction are closed.
 本実施の形態によれば、実施の形態1と比較して、板状フィン10の強度を向上できるとともに、フィン効率の低下を抑えることができる。したがって、熱交換器の熱交換能力をより向上できる。 According to the present embodiment, compared to the first embodiment, the strength of the plate-like fin 10 can be improved and a decrease in fin efficiency can be suppressed. Therefore, the heat exchange capability of the heat exchanger can be further improved.
実施の形態4.
 本発明の実施の形態4に係る熱交換器について説明する。図6は、本実施の形態に係る熱交換器の一部の構成を模式的に示す図である。図7は、図6のVII-VII断面を示す断面図である。図6及び図7に示すように、板状フィン10のうち隣り合う扁平管11の間の領域には、当該領域の板状フィン10が切り起こされた切り起こし部19が形成されている。切り起こし部19が形成されることにより、空気の流れに対する伝熱を促進する伝熱促進用スリット20が形成される。
Embodiment 4 FIG.
A heat exchanger according to Embodiment 4 of the present invention will be described. FIG. 6 is a diagram schematically showing a partial configuration of the heat exchanger according to the present embodiment. 7 is a cross-sectional view showing a VII-VII cross section of FIG. As shown in FIGS. 6 and 7, a cut-and-raised portion 19 in which the plate-like fins 10 in the region are cut and raised is formed in a region between the adjacent flat tubes 11 in the plate-like fin 10. By forming the cut-and-raised portion 19, a heat transfer promoting slit 20 that promotes heat transfer with respect to the air flow is formed.
 スリット部14は、切り起こし部19の下方に設けられている。すなわち、スリット部14は、切り起こし部19と、当該切り起こし部19の下方に隣接する扁平管11と、の間に設けられている。 The slit portion 14 is provided below the cut and raised portion 19. That is, the slit portion 14 is provided between the cut and raised portion 19 and the flat tube 11 adjacent to the lower portion of the cut and raised portion 19.
 本実施の形態では、熱交換器が蒸発器として動作する場合、伝熱促進用スリット20から排水される凝縮水は、その下方のスリット部14に保持される。スリット部14に保持された凝縮水は、その下方の扁平管11の上面に滞留することなく、前方の平坦部13から排水される。したがって、本実施の形態によれば、伝熱促進用スリット20によって熱交換器能力を向上させつつ、熱交換器の通風抵抗の増加を抑えることができる。 In the present embodiment, when the heat exchanger operates as an evaporator, the condensed water drained from the heat transfer promoting slit 20 is held in the slit portion 14 below the condensed water. The condensed water held in the slit portion 14 is drained from the front flat portion 13 without staying on the upper surface of the flat tube 11 below. Therefore, according to the present embodiment, it is possible to suppress an increase in the ventilation resistance of the heat exchanger while improving the heat exchanger capability by the heat transfer promoting slit 20.
実施の形態5.
 本発明の実施の形態5に係る冷凍サイクル装置について説明する。図8は、本実施の形態に係る冷凍サイクル装置の冷媒回路図である。図8に示すように、冷凍サイクル装置は、圧縮機33、凝縮熱交換器34、絞り装置35及び蒸発熱交換器36を有している。また、凝縮熱交換器34及び蒸発熱交換器36には、空気を送風する送風機37と、送風機37を回転駆動する送風機用モータ38とが設けられている。冷凍サイクル装置は、冷媒の流れ方向を切り替える四方弁を備えていてもよい。
Embodiment 5 FIG.
A refrigeration cycle apparatus according to Embodiment 5 of the present invention will be described. FIG. 8 is a refrigerant circuit diagram of the refrigeration cycle apparatus according to the present embodiment. As shown in FIG. 8, the refrigeration cycle apparatus includes a compressor 33, a condensation heat exchanger 34, an expansion device 35, and an evaporating heat exchanger 36. The condensing heat exchanger 34 and the evaporation heat exchanger 36 are provided with a blower 37 that blows air and a blower motor 38 that rotationally drives the blower 37. The refrigeration cycle apparatus may include a four-way valve that switches the flow direction of the refrigerant.
 上記実施の形態1~4のいずれかに係る熱交換器を、凝縮熱交換器34及び蒸発熱交換器36の一方又は双方に用いることにより、エネルギー効率の高い冷凍サイクル装置を実現することができる。
 ここで、エネルギー効率は、次式で表されるものである。
  暖房エネルギー効率=室内熱交換器(凝縮器)能力/全入力
  冷房エネルギー効率=室内熱交換器(蒸発器)能力/全入力
By using the heat exchanger according to any one of Embodiments 1 to 4 for one or both of the condensation heat exchanger 34 and the evaporating heat exchanger 36, a refrigeration cycle apparatus with high energy efficiency can be realized. .
Here, the energy efficiency is expressed by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / total input Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input
 以上説明したように、上記実施の形態に係る熱交換器は、板状フィン10と、板状フィン10と交差し、かつ互いに並列して延伸した第1の扁平管11(例えば、図3に示した扁平管11a4)及び第2の扁平管11(例えば、図3に示した扁平管11a5)と、を備え、板状フィン10と平行な面内において、第1の扁平管11の長軸及び第2の扁平管11の長軸は互いに平行であり、板状フィン10のうち第1の扁平管11と第2の扁平管11との間の領域には、第1の扁平管11の長軸及び第2の扁平管11の長軸と平行に延伸したスリット部14が形成されており、スリット部14の長さbは、第1の扁平管11の長軸の長さa及び第2の扁平管11の長軸の長さaよりも短くなっており、スリット部14の全体は、第1の扁平管11及び第2の扁平管11のそれぞれの長軸方向の一端11-1同士を板状フィン10に沿って結ぶ直線L1と、第1の扁平管11及び第2の扁平管11のそれぞれの長軸方向の他端11-2同士を板状フィン10に沿って結ぶ直線L2と、の間に設けられているものである。 As described above, the heat exchanger according to the above embodiment includes the plate-like fins 10 and the first flat tubes 11 that intersect with the plate-like fins 10 and extend in parallel with each other (for example, in FIG. The flat tube 11a4) and the second flat tube 11 (for example, the flat tube 11a5 shown in FIG. 3), and the long axis of the first flat tube 11 in a plane parallel to the plate fin 10 The major axes of the second flat tubes 11 are parallel to each other, and the region between the first flat tube 11 and the second flat tube 11 in the plate-like fin 10 is the same as that of the first flat tube 11. A slit portion 14 extending in parallel with the major axis and the major axis of the second flat tube 11 is formed, and the length b of the slit portion 14 is the length a of the major axis of the first flat tube 11 and the first axis. The length of the long axis of the two flat tubes 11 is shorter than the length a, and the entire slit portion 14 is the first flat tube. A straight line L1 connecting the longitudinal ends 11-1 of the first and second flat tubes 11 along the plate fins 10, and the lengths of the first flat tube 11 and the second flat tube 11, respectively. The other end 11-2 in the axial direction is provided between the straight line L2 connecting the plate-like fins 10 with each other.
 この構成によれば、隣り合う扁平管11の間での熱ロスを低減できるため、熱交換器の熱交換器能力をより向上できる。 According to this configuration, since heat loss between the adjacent flat tubes 11 can be reduced, the heat exchanger capability of the heat exchanger can be further improved.
 また、上記実施の形態に係る熱交換器において、第1の扁平管11(例えば、図3に示した扁平管11a4)は、第2の扁平管11(例えば、図3に示した扁平管11a5)よりも上方に配置されるものであり、スリット部14は、第1の扁平管11と第2の扁平管11との間の中心線15よりも第2の扁平管11寄りに形成されていてもよい。 In the heat exchanger according to the above-described embodiment, the first flat tube 11 (for example, the flat tube 11a4 illustrated in FIG. 3) is the second flat tube 11 (for example, the flat tube 11a5 illustrated in FIG. 3). The slit portion 14 is formed closer to the second flat tube 11 than the center line 15 between the first flat tube 11 and the second flat tube 11. May be.
 この構成によれば、扁平管11の上部に滞留する凝縮水を、表面張力によって前方の平坦部13に排水することができる。したがって、熱交換器の通風抵抗の増加を抑えることができる。 According to this configuration, the condensed water staying at the top of the flat tube 11 can be drained to the front flat portion 13 by surface tension. Therefore, an increase in the ventilation resistance of the heat exchanger can be suppressed.
 また、上記実施の形態に係る熱交換器において、第1の扁平管11(例えば、図3に示した扁平管11a4)は、冷媒パスの一部を構成するとともに当該冷媒パスの入口部又は出口部に接続されており、第2の扁平管11(例えば、図3に示した扁平管11a5)は、当該冷媒パスと並列に接続された別の冷媒パスの一部を構成していてもよい。 In the heat exchanger according to the above-described embodiment, the first flat tube 11 (for example, the flat tube 11a4 shown in FIG. 3) constitutes a part of the refrigerant path, and at the inlet or outlet of the refrigerant path. The second flat tube 11 (for example, the flat tube 11a5 shown in FIG. 3) may constitute a part of another refrigerant path connected in parallel with the refrigerant path. .
 この構成によれば、隣り合う冷媒パスの間での熱ロスを低減できるため、熱交換器の熱交換能力をより向上できる。 According to this configuration, since heat loss between adjacent refrigerant paths can be reduced, the heat exchange capability of the heat exchanger can be further improved.
 また、上記実施の形態に係る熱交換器において、スリット部14は、ミシン目状に配置された複数のスリット14aを有していてもよい。 In the heat exchanger according to the above embodiment, the slit portion 14 may have a plurality of slits 14a arranged in a perforation.
 この構成によれば、板状フィン10の強度を向上できるとともにフィン効率の低下を抑えることができる。 According to this configuration, it is possible to improve the strength of the plate-like fins 10 and to suppress a decrease in fin efficiency.
 また、上記実施の形態に係る熱交換器において、第1の扁平管11は、第2の扁平管11よりも上方に配置されるものであり、板状フィン10のうち第1の扁平管11と第2の扁平管11との間の領域には、切り起こし部19が形成されており、スリット部14は、切り起こし部19よりも第2の扁平管11寄りに形成されていてもよい。 In the heat exchanger according to the above-described embodiment, the first flat tube 11 is disposed above the second flat tube 11, and the first flat tube 11 among the plate-like fins 10. A cut and raised portion 19 is formed in a region between the first flat tube 11 and the second flat tube 11, and the slit portion 14 may be formed closer to the second flat tube 11 than the cut and raised portion 19. .
 この構成によれば、熱交換器能力を向上させつつ、熱交換器の通風抵抗の増加を抑えることができる。 According to this configuration, it is possible to suppress an increase in ventilation resistance of the heat exchanger while improving the heat exchanger capability.
 また、上記実施の形態に係る冷凍サイクル装置は、上記実施の形態に係る熱交換器を備えたものである。 Further, the refrigeration cycle apparatus according to the above embodiment includes the heat exchanger according to the above embodiment.
 上記実施の形態に係る熱交換器及び冷凍サイクル装置では、扁平管11の内部を流通する熱媒体として、R410A、R32、HFO-1234yf等の冷媒を用いることができる。 In the heat exchanger and the refrigeration cycle apparatus according to the above-described embodiment, a refrigerant such as R410A, R32, HFO-1234yf can be used as a heat medium that circulates inside the flat tube 11.
 また、上記実施の形態では、作動流体として空気及び冷媒を例示したが、他の気体、液体、気液混合流体を用いた場合においても同様の効果を得ることができる。 In the above embodiment, air and refrigerant are exemplified as the working fluid, but the same effect can be obtained even when other gas, liquid, gas-liquid mixed fluid is used.
 また、上記実施の形態では、室外機に収容される熱交換器を例示したが、室内機に収容される熱交換器に本発明を適用した場合においても同様の効果を得ることができる。 In the above embodiment, the heat exchanger accommodated in the outdoor unit is exemplified, but the same effect can be obtained even when the present invention is applied to the heat exchanger accommodated in the indoor unit.
 また、上記実施の形態では、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系などの冷凍機油を用いることができる。冷媒と冷凍機油とが相容するか否かに関わらず、どのような冷凍機油を用いた場合においても同様の効果を得ることができる。 Further, in the above embodiment, a refrigerating machine oil such as a mineral oil, an alkylbenzene oil, an ester oil, an ether oil or a fluorine oil can be used. Regardless of whether or not the refrigerant and the refrigerating machine oil are compatible, the same effect can be obtained in any refrigerating machine oil used.
 また、上記実施の形態では、両端が閉じた長孔状のスリット部14を例示したが、スリット部14は、例えば、空気の流れにおいて板状フィン10の下流側の端部から切り欠かれた切欠きであってもよい。 Moreover, in the said embodiment, although the long hole-shaped slit part 14 which both ends closed was illustrated, the slit part 14 was notched from the downstream edge part of the plate-like fin 10 in the flow of air, for example It may be a notch.
 本発明は、容易に製造でき、熱交換能力を向上でき、省エネルギー性能を向上できることが必要なヒートポンプ装置等に利用することができる。 The present invention can be used in a heat pump device and the like that need to be easily manufactured, improve heat exchange capability, and improve energy saving performance.
 1a、1b 熱交換部、10 板状フィン、11、11a1、11a2、11a3、11a4、11a5、11b1、11b2、11b3、11b4、11b5 扁平管、11-1 一端、11-2 他端、12 切欠き、13 平坦部、14 スリット部、14a スリット、15 中心線、16 Uベンド、17 ヘアピン部、18 ジョイント、18a 円管部、18b 扁平管部、18c 流路形状変換部、19 切り起こし部、20 伝熱促進用スリット、30 分配ヘッダ、31 ガスヘッダ、33 圧縮機、34 凝縮熱交換器、35 絞り装置、36 蒸発熱交換器、37 送風機、38 送風機用モータ、L1、L2 直線。 1a, 1b heat exchange section, 10 plate fin, 11, 11a1, 11a2, 11a3, 11a4, 11a5, 11b1, 11b2, 11b3, 11b4, 11b5 flat tube, 11-1 one end, 11-2 other end, 12 notch , 13 flat part, 14 slit part, 14a slit, 15 center line, 16 U bend, 17 hairpin part, 18 joint, 18a circular pipe part, 18b flat pipe part, 18c flow path shape conversion part, 19 cut and raised part, 20 Slit for heat transfer, 30 distribution header, 31 gas header, 33 compressor, 34 condensing heat exchanger, 35 throttling device, 36 evaporating heat exchanger, 37 blower, 38 blower motor, L1, L2 straight line.

Claims (6)

  1.  板状フィンと、
     前記板状フィンと交差し、かつ互いに並列して延伸した第1の扁平管及び第2の扁平管と、
     を備え、
     前記板状フィンと平行な面内において、前記第1の扁平管の長軸及び前記第2の扁平管の長軸は互いに平行であり、
     前記板状フィンのうち前記第1の扁平管と前記第2の扁平管との間の領域には、前記第1の扁平管の長軸及び前記第2の扁平管の長軸と平行に延伸したスリット部が形成されており、
     前記スリット部の長さは、前記第1の扁平管の長軸の長さ及び前記第2の扁平管の長軸の長さよりも短くなっており、
     前記スリット部の全体は、前記第1の扁平管及び前記第2の扁平管のそれぞれの長軸方向の一端同士を前記板状フィンに沿って結ぶ直線と、前記第1の扁平管及び前記第2の扁平管のそれぞれの長軸方向の他端同士を前記板状フィンに沿って結ぶ直線と、の間に設けられている熱交換器。
    Plate fins,
    A first flat tube and a second flat tube that intersect the plate-like fins and extend in parallel with each other;
    With
    In the plane parallel to the plate fins, the long axis of the first flat tube and the long axis of the second flat tube are parallel to each other,
    A region between the first flat tube and the second flat tube in the plate-like fin extends in parallel with the long axis of the first flat tube and the long axis of the second flat tube. Slit part is formed,
    The length of the slit portion is shorter than the length of the long axis of the first flat tube and the length of the long axis of the second flat tube,
    The entirety of the slit portion includes a straight line that connects one end of each of the first flat tube and the second flat tube along the plate fin, and the first flat tube and the second flat tube. A heat exchanger provided between the other flat tubes of the two flat tubes and the straight line connecting the other ends in the long axis direction along the plate fins.
  2.  前記第1の扁平管は、前記第2の扁平管よりも上方に配置されるものであり、
     前記スリット部は、前記第1の扁平管と前記第2の扁平管との間の中心よりも前記第2の扁平管寄りに形成されている請求項1に記載の熱交換器。
    The first flat tube is disposed above the second flat tube,
    The heat exchanger according to claim 1, wherein the slit portion is formed closer to the second flat tube than a center between the first flat tube and the second flat tube.
  3.  前記第1の扁平管は、冷媒パスの一部を構成するとともに前記冷媒パスの入口部又は出口部に接続されており、
     前記第2の扁平管は、前記冷媒パスと並列に接続された別の冷媒パスの一部を構成している請求項1又は請求項2に記載の熱交換器。
    The first flat tube constitutes a part of the refrigerant path and is connected to an inlet portion or an outlet portion of the refrigerant path,
    The heat exchanger according to claim 1 or 2, wherein the second flat tube constitutes a part of another refrigerant path connected in parallel with the refrigerant path.
  4.  前記スリット部は、ミシン目状に配置された複数のスリットを有している請求項1~請求項3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the slit portion has a plurality of slits arranged in a perforation.
  5.  前記第1の扁平管は、前記第2の扁平管よりも上方に配置されるものであり、
     前記板状フィンのうち前記第1の扁平管と前記第2の扁平管との間の領域には、切り起こし部が形成されており、
     前記スリット部は、前記切り起こし部よりも前記第2の扁平管寄りに形成されている請求項1~請求項4のいずれか一項に記載の熱交換器。
    The first flat tube is disposed above the second flat tube,
    A cut and raised portion is formed in a region between the first flat tube and the second flat tube in the plate fin,
    The heat exchanger according to any one of claims 1 to 4, wherein the slit portion is formed closer to the second flat tube than the cut and raised portion.
  6.  請求項1~請求項5のいずれか一項に記載の熱交換器を備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the heat exchanger according to any one of claims 1 to 5.
PCT/JP2015/079994 2015-10-23 2015-10-23 Heat exchanger and refrigeration cycle apparatus WO2017068723A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017546376A JP6425829B2 (en) 2015-10-23 2015-10-23 Heat exchanger and refrigeration cycle device
PCT/JP2015/079994 WO2017068723A1 (en) 2015-10-23 2015-10-23 Heat exchanger and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/079994 WO2017068723A1 (en) 2015-10-23 2015-10-23 Heat exchanger and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2017068723A1 true WO2017068723A1 (en) 2017-04-27

Family

ID=58557112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079994 WO2017068723A1 (en) 2015-10-23 2015-10-23 Heat exchanger and refrigeration cycle apparatus

Country Status (2)

Country Link
JP (1) JP6425829B2 (en)
WO (1) WO2017068723A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019008997A1 (en) * 2017-07-05 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Outdoor heat exchanger for air conditioner, and air conditioner equipped with same
WO2019009158A1 (en) * 2017-07-03 2019-01-10 ダイキン工業株式会社 Heat exchanger
JP6644194B1 (en) * 2019-01-21 2020-02-12 三菱電機株式会社 Outdoor units and air conditioners
CN113357937A (en) * 2017-12-07 2021-09-07 浙江盾安机械有限公司 Fin and heat exchanger
US12000633B2 (en) 2019-01-21 2024-06-04 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128267U (en) * 1990-03-28 1991-12-24
JP2008111624A (en) * 2006-10-31 2008-05-15 Daikin Ind Ltd Heat exchanger
JP2009006126A (en) * 2007-05-31 2009-01-15 Panasonic Corp Clothing dryer
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2015143608A (en) * 2013-12-27 2015-08-06 ダイキン工業株式会社 heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128267U (en) * 1990-03-28 1991-12-24
JP2008111624A (en) * 2006-10-31 2008-05-15 Daikin Ind Ltd Heat exchanger
JP2009006126A (en) * 2007-05-31 2009-01-15 Panasonic Corp Clothing dryer
JP2012072955A (en) * 2010-09-29 2012-04-12 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2015143608A (en) * 2013-12-27 2015-08-06 ダイキン工業株式会社 heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009158A1 (en) * 2017-07-03 2019-01-10 ダイキン工業株式会社 Heat exchanger
JP2019015410A (en) * 2017-07-03 2019-01-31 ダイキン工業株式会社 Heat exchanger
WO2019008997A1 (en) * 2017-07-05 2019-01-10 日立ジョンソンコントロールズ空調株式会社 Outdoor heat exchanger for air conditioner, and air conditioner equipped with same
CN110168294A (en) * 2017-07-05 2019-08-23 日立江森自控空调有限公司 The outdoor heat exchanger of air conditioner and the air conditioner for having the outdoor heat exchanger
JPWO2019008997A1 (en) * 2017-07-05 2019-11-07 日立ジョンソンコントロールズ空調株式会社 Outdoor heat exchanger for air conditioner and air conditioner equipped with the same
US11274838B2 (en) 2017-07-05 2022-03-15 Hitachi-Johnson Controls Air Conditioning, Inc. Air-conditioner outdoor heat exchanger and air-conditioner including the same
JP7050065B2 (en) 2017-07-05 2022-04-07 日立ジョンソンコントロールズ空調株式会社 An outdoor heat exchanger for an air conditioner and an air conditioner equipped with this
CN113357937A (en) * 2017-12-07 2021-09-07 浙江盾安机械有限公司 Fin and heat exchanger
CN113357937B (en) * 2017-12-07 2024-06-11 浙江盾安机械有限公司 Fin and heat exchanger
JP6644194B1 (en) * 2019-01-21 2020-02-12 三菱電機株式会社 Outdoor units and air conditioners
WO2020152738A1 (en) * 2019-01-21 2020-07-30 三菱電機株式会社 Heat exchanger and air conditioning device
US12000633B2 (en) 2019-01-21 2024-06-04 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus

Also Published As

Publication number Publication date
JP6425829B2 (en) 2018-11-21
JPWO2017068723A1 (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US9651317B2 (en) Heat exchanger and air conditioner
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP2012163328A5 (en)
WO2016013100A1 (en) Heat exchanger and air-conditioning and refrigerating apparatus with heat exchanger
WO2015133626A1 (en) Heat exchanger and air conditioner
JP6253814B2 (en) Heat exchanger and refrigeration cycle apparatus
JP6120978B2 (en) Heat exchanger and air conditioner using the same
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
WO2017068723A1 (en) Heat exchanger and refrigeration cycle apparatus
JP6584636B2 (en) Heat exchanger and air conditioner
JP5962033B2 (en) Heat exchanger and air conditioner equipped with the same
JP2012211735A (en) Heat exchanger and air conditioner
JP2010249374A (en) Fin tube type heat exchanger and air conditioning/refrigerating device
CN112567192A (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
WO2018185824A1 (en) Heat exchanger and refrigeration cycle device
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JPWO2017208419A1 (en) Fin tube type heat exchanger and heat pump device provided with the fin tube type heat exchanger
JP5591285B2 (en) Heat exchanger and air conditioner
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
JP7414845B2 (en) Refrigeration cycle equipment
JP5864030B1 (en) Heat exchanger and refrigeration cycle apparatus equipped with the heat exchanger
JP6582373B2 (en) Heat exchanger
JP2012154495A (en) Heat exchanger, and air conditioner
JP7006376B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546376

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906729

Country of ref document: EP

Kind code of ref document: A1