JP2008111624A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2008111624A
JP2008111624A JP2006295834A JP2006295834A JP2008111624A JP 2008111624 A JP2008111624 A JP 2008111624A JP 2006295834 A JP2006295834 A JP 2006295834A JP 2006295834 A JP2006295834 A JP 2006295834A JP 2008111624 A JP2008111624 A JP 2008111624A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
refrigerant
transfer tube
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006295834A
Other languages
Japanese (ja)
Inventor
Genei Kin
鉉永 金
Kazunari Kasai
一成 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006295834A priority Critical patent/JP2008111624A/en
Publication of JP2008111624A publication Critical patent/JP2008111624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent degradation of heat exchanging performance of a heat exchanger caused by heat conduction by preventing heat conduction between heat transfer tubes 4 adjacent to each other, in the heat exchanger 1 of a refrigerant circuit in which a refrigerant, changing its temperature in a heat radiation stroke, flows. <P>SOLUTION: Heat transfer fins 5a respectively between the heat transfer tube 4 of a high temperature-side path h1 and the heat transfer tube 4 of a low temperature-side path h2 adjacent to each other, is divided. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、冷媒回路に設けられる熱交換器に関し、特に、放熱行程で温度変化をする冷媒が流れる冷媒回路に設けられる熱交換器の伝熱フィンの形状に関するものである。   The present invention relates to a heat exchanger provided in a refrigerant circuit, and more particularly to the shape of heat transfer fins of a heat exchanger provided in a refrigerant circuit through which a refrigerant that changes in temperature in a heat release stroke flows.

従来より、複数の伝熱管が配列された伝熱管群を備えるとともに、該伝熱管群の両端にそれぞれ冷媒ヘッダを設けた熱交換器が知られている。そして、上記伝熱管群を冷媒が両冷媒ヘッダ間で往き来する複数の冷媒通路(以下、パスと言う。ここで、伝熱管群を冷媒が一往復する場合、該伝熱管群は、往路及び復路の2パスに分割されている。)に分割するとともに、伝熱管群内の隣り合う伝熱管の間に複数の伝熱フィンを設けたものがある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there has been known a heat exchanger that includes a heat transfer tube group in which a plurality of heat transfer tubes are arranged, and has refrigerant headers at both ends of the heat transfer tube group. A plurality of refrigerant passages (hereinafter referred to as paths) through which the refrigerant travels between the refrigerant headers in the heat transfer tube group. When the refrigerant reciprocates once through the heat transfer tube group, the heat transfer tube group includes: There are some which are divided into two paths on the return path) and provided with a plurality of heat transfer fins between adjacent heat transfer tubes in the heat transfer tube group (for example, see Patent Document 1).

具体的に、上記伝熱管群を複数のパスに分割するために、少なくとも一方の冷媒ヘッダの管内を長さ方向に分割する仕切板が、その一方の冷媒ヘッダ内に設けられている。ここで、この仕切板で冷媒ヘッダを分割することにより、各パス同士が互いに隣接するように配置されるので、蛇行するような冷媒経路が形成される。これにより、該熱交換器をコンパクトに構成することができる。   Specifically, in order to divide the heat transfer tube group into a plurality of paths, a partition plate that divides the inside of at least one refrigerant header in the length direction is provided in the one refrigerant header. Here, by dividing the refrigerant header by this partition plate, the paths are arranged so as to be adjacent to each other, so that a meandering refrigerant path is formed. Thereby, this heat exchanger can be comprised compactly.

上記伝熱フィンは、各伝熱管の管壁の外側に複数設けられている。そして、該伝熱フィンの先端は、隣り合う伝熱管の管壁にまで達している。このように構成することにより、フィンの面積をできるだけ広くして、より伝熱促進効果を高めることができる。   A plurality of the heat transfer fins are provided outside the tube wall of each heat transfer tube. And the front-end | tip of this heat-transfer fin has reached even the tube wall of the adjacent heat-transfer tube. By comprising in this way, the area of a fin can be enlarged as much as possible and the heat-transfer promotion effect can be heightened more.

ところで、上記蒸気圧縮式の冷凍サイクルを行う冷媒回路において、冷媒として二酸化炭素を用いた場合には、図6における太線に示すように、一般に、超臨界での放熱行程(b−c間)と、臨界温度未満での吸熱行程(d−a間)とを備えた冷凍サイクル(a−b−c−d)が構成される。図6からわかるように、上記吸熱行程の場合、二酸化炭素は相変化を伴いながら吸熱するので、吸熱中における冷媒温度は一定である。一方、上記放熱行程の場合、二酸化炭素が臨界温度(e)を超える部分を含むため、二酸化炭素は相変化を伴わずに放熱する。その放熱中において、上記吸熱行程に比べて、大きく冷媒温度が変化する(図6の例では、温度差ΔT≒50℃である)。そして、この放熱行程を行うために、上述した熱交換器を用いることは可能である。
特開2006−105415号公報
By the way, in the refrigerant circuit that performs the above-described vapor compression refrigeration cycle, when carbon dioxide is used as the refrigerant, generally, as shown by the thick line in FIG. And a refrigeration cycle (abcd) having an endothermic process (between da) below the critical temperature. As can be seen from FIG. 6, in the case of the endothermic process, carbon dioxide absorbs heat while undergoing a phase change, so that the refrigerant temperature during the endotherm is constant. On the other hand, in the case of the heat dissipation process, since carbon dioxide includes a portion exceeding the critical temperature (e), the carbon dioxide dissipates heat without causing a phase change. During the heat radiation, the refrigerant temperature changes greatly compared to the above-described heat absorption process (in the example of FIG. 6, the temperature difference ΔT≈50 ° C.). And in order to perform this heat radiation process, it is possible to use the heat exchanger mentioned above.
JP 2006-105415 A

しかしながら、上記放熱行程を行うために上記熱交換器を用いた場合には、該熱交換器の熱交換能力が低下してしまうという問題がある。   However, when the heat exchanger is used to perform the heat dissipation process, there is a problem that the heat exchange capability of the heat exchanger is reduced.

つまり、上記熱交換器の管内側を流れる二酸化炭素は、放熱とともに冷媒温度が変化するために、該伝熱管群に形成された複数のパスの間には温度差が生じ、高温側パスと低温側パスとが形成される。ここで、上記熱交換器は、パス同士が隣り合うように配置されるとともに、隣り合う伝熱管の間には複数の伝熱フィンが設置されている。このため、高温側パスと低温側パスとが形成されると、高温側パスの伝熱管と低温側パスの伝熱管との間に設けられた伝熱フィンを介して、該高温側パスの伝熱管から該低温側パスの伝熱管へ熱伝導による熱移動が生じてしまう。その結果、低温側パスの伝熱管が加熱されてしまい、該低温側パスの伝熱管の冷媒温度が下がりにくくなる。つまり、熱交換能力が低下する。   That is, the carbon dioxide flowing inside the pipe of the heat exchanger changes the refrigerant temperature as the heat is radiated, so that a temperature difference occurs between the plurality of paths formed in the heat transfer pipe group, and the high temperature side path and the low temperature A side path is formed. Here, the heat exchanger is disposed so that the paths are adjacent to each other, and a plurality of heat transfer fins are installed between the adjacent heat transfer tubes. For this reason, when the high temperature side path and the low temperature side path are formed, the transfer of the high temperature side path is performed via the heat transfer fins provided between the heat transfer tube of the high temperature side path and the heat transfer pipe of the low temperature side path. Heat transfer due to heat conduction occurs from the heat pipe to the heat transfer pipe of the low-temperature side path. As a result, the heat transfer tube of the low temperature side path is heated, and the refrigerant temperature of the heat transfer tube of the low temperature side path is hardly lowered. That is, the heat exchange capability is reduced.

本発明は、かかる点に鑑みてなされたものであり、その目的は、放熱行程で温度変化をする冷媒が流れる冷媒回路の熱交換器において、隣り合う伝熱管の間に生じる熱伝導を抑えて、該熱伝導に起因する熱交換器の熱交換能力の低下を抑制することにある。   This invention is made | formed in view of this point, The objective is suppressing the heat conduction which arises between adjacent heat exchanger tubes in the heat exchanger of the refrigerant circuit through which the refrigerant | coolant which changes temperature in a heat radiation process flows. It is to suppress a decrease in heat exchange capacity of the heat exchanger due to the heat conduction.

第1の発明は、複数の伝熱管(4)が配列された伝熱管群(h)と、該伝熱管群(h)の一端側に設けられた第1冷媒ヘッダ(2)と、該伝熱管群(h)の他端側に設けられた第2冷媒ヘッダ(3)と、該伝熱管群(h)内の隣り合う伝熱管(4)の間に設けられた伝熱フィン(5)とを備え、上記伝熱管群(h)が高温側パス(h1)と低温側パス(h2)とに分けられるように、少なくとも一方の冷媒ヘッダ(2,3)の管内を長さ方向に分割する仕切部材(8)が設けられる一方、上記伝熱管(4)の管内側を流れる冷媒が温度変化をする熱交換器を前提としている。その冷媒として、超臨界の二酸化炭素などを挙げることができる。   The first invention provides a heat transfer tube group (h) in which a plurality of heat transfer tubes (4) are arranged, a first refrigerant header (2) provided on one end side of the heat transfer tube group (h), and the heat transfer tube. Heat transfer fin (5) provided between the second refrigerant header (3) provided on the other end side of the heat tube group (h) and the adjacent heat transfer tube (4) in the heat transfer tube group (h) And the inside of the pipe of at least one refrigerant header (2, 3) is divided in the length direction so that the heat transfer pipe group (h) is divided into a high temperature side path (h1) and a low temperature side path (h2). On the other hand, it is premised on a heat exchanger in which the partition member (8) is provided and the refrigerant flowing inside the heat transfer tube (4) changes its temperature. Examples of the refrigerant include supercritical carbon dioxide.

そして、上記熱交換器の伝熱フィン(5)には、少なくとも隣り合う上記高温側パス(h1)の伝熱管(4)と上記低温側パス(h2)の伝熱管(4)との間の熱伝導を妨げる熱伝導阻害手段が設けられていることを特徴としている。   The heat transfer fin (5) of the heat exchanger is at least between the heat transfer tube (4) of the high temperature side path (h1) adjacent to the heat transfer tube (4) of the low temperature side path (h2). It is characterized in that a heat conduction inhibiting means for preventing heat conduction is provided.

第1の発明では、隣り合う上記高温側パス(h1)の伝熱管(4)と上記低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)に熱伝導阻害手段を設けることにより、上記高温側パス(h1)の伝熱管(4)から上記低温側パス(h2)の伝熱管(4)への熱伝導を妨げることができる。これにより、高温側パス(h1)の伝熱管(4)によって、低温側パス(h2)の伝熱管(4)が加熱されるのを防止することができる。   In the first invention, heat conduction is inhibited in the heat transfer fin (5a) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2). By providing the means, heat conduction from the heat transfer tube (4) of the high temperature side path (h1) to the heat transfer tube (4) of the low temperature side path (h2) can be prevented. Thereby, it can prevent that the heat exchanger tube (4) of a low temperature side path (h2) is heated by the heat exchanger tube (4) of a high temperature side path (h1).

第2の発明は、第1の発明において、上記伝熱フィン(5)には、隣り合う全ての伝熱管(4)の間の熱伝導を妨げる熱伝導阻害手段が設けられていることを特徴としている。   According to a second invention, in the first invention, the heat transfer fin (5) is provided with a heat conduction inhibiting means for preventing heat conduction between all adjacent heat transfer tubes (4). It is said.

第2の発明では、第1の発明とは違い、隣り合う高温側パス(h1)の伝熱管(4)と低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)だけに熱伝導阻害手段を設けるのではなく、隣り合う全ての伝熱管(4)の間にある伝熱フィン(5)に熱伝導阻害手段を設けることにより、熱交換器(1)の全ての伝熱フィン(5)を同一形状のフィンで構成することができる。   In the second invention, unlike the first invention, the heat transfer fin (4) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2) Rather than providing heat conduction inhibition means only in 5a), by providing heat conduction inhibition means on the heat transfer fins (5) between all adjacent heat transfer tubes (4), the heat exchanger (1) All the heat transfer fins (5) can be configured with fins having the same shape.

第3の発明は、第1又は第2の発明において、上記熱伝導阻害手段が、上記隣り合う伝熱管(4)の間の伝熱フィン(5)を全体的に分断する切断面(10)により構成されていることを特徴としている。   According to a third aspect of the present invention, in the first or second aspect, the heat conduction inhibiting means cuts the heat transfer fin (5) between the adjacent heat transfer tubes (4) as a whole (10) It is characterized by comprising.

第3の発明では、上記伝熱フィン(5)を全体的に分断し、隣り合う伝熱管(4)同士を切り離すことにより、隣り合う伝熱管(4)の間の熱伝導を妨げることができる。   In 3rd invention, the said heat-transfer fin (5) is divided | segmented entirely and the heat conduction between adjacent heat-transfer tubes (4) can be prevented by isolate | separating adjacent heat-transfer tubes (4). .

第4の発明は、第1又は第2の発明において、上記熱伝導阻害手段が、上記隣り合う伝熱管(4)の間の伝熱フィン(5)を部分的に分断する切断面(20)により構成されていることを特徴としている。   According to a fourth aspect of the present invention, in the first or second aspect, the heat conduction-inhibiting means partially cuts the heat transfer fin (5) between the adjacent heat transfer tubes (4) (20) It is characterized by comprising.

第4の発明では、第3の発明とは違い、上記伝熱フィン(5)を全体的に分断するのではなく、部分的に分断している。ここで、部分的に分断する構成としては、例えば、両端を残してスリット状の切れ目を入れる構成を挙げられる。これにより、隣り合う伝熱管(4)同士が完全に切り離されることなく、隣り合う伝熱管(4)の間の熱伝導を妨げることができる。   In the fourth invention, unlike the third invention, the heat transfer fin (5) is not divided entirely but partially. Here, as a structure which partly divides | segments, the structure which leaves a slit-shaped cut | interruption leaving both ends, for example is mentioned. Thereby, the heat conduction between the adjacent heat transfer tubes (4) can be prevented without completely separating the adjacent heat transfer tubes (4).

第5の発明は、第1又は第2の発明において、上記熱伝導阻害手段は、上記伝熱フィン(5)より低い熱伝導率を有する材料(30)で構成されていることを特徴としている。   A fifth invention is characterized in that, in the first or second invention, the heat conduction inhibiting means is made of a material (30) having a lower thermal conductivity than the heat transfer fin (5). .

第5の発明では、第3又は第4の発明とは違い、上記伝熱フィン(5)を全体的又は部分的に分断するのではなく、該伝熱フィン(5)より低い熱伝導率を有する材料(30)を伝熱フィン(5)の中間部分に設けることにより、隣り合う伝熱管(4)の間の熱伝導を妨げることができる。これにより、上記伝熱フィン(5)が全体的又は部分的に分断されることなく、隣り合う伝熱管(4)の間の熱伝導を妨げることができる。   In the fifth invention, unlike the third or fourth invention, the heat transfer fin (5) is not divided entirely or partially but has a lower thermal conductivity than the heat transfer fin (5). By providing the material (30) having the intermediate portion of the heat transfer fin (5), heat conduction between the adjacent heat transfer tubes (4) can be prevented. Thereby, the heat conduction between the adjacent heat transfer tubes (4) can be prevented without the heat transfer fins (5) being partially or partially divided.

本発明によれば、隣り合う高温側パス(h1)の伝熱管(4)と低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)に熱伝導阻害手段を設けることにより、高温側パス(h1)の伝熱管(4)によって低温側パス(h2)の伝熱管(4)が加熱されるのを防止することができるので、上記熱交換器(1)における熱交換能力の低下を抑制することができる。ここで、隣り合う高温側パス(h1)の伝熱管(4)と低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)に限定して上記熱伝導阻害手段を設けた理由は、該伝熱フィン(5a)が上記熱交換器(1)の伝熱フィン(5)の中で、両端部分の温度差が最も大きく、熱伝導による熱移動が大きいと考えられるからである。そして、この伝熱フィン(5a)に熱伝導阻害手段を設けることにより、より効果的に上記熱交換器(1)における熱交換能力の低下を抑制することができる。   According to the present invention, heat conduction inhibiting means is provided on the heat transfer fin (5a) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2). By providing, it is possible to prevent the heat transfer tube (4) of the low temperature side path (h2) from being heated by the heat transfer tube (4) of the high temperature side path (h1), so in the heat exchanger (1) A decrease in heat exchange capability can be suppressed. Here, the heat conduction inhibiting means is limited to the heat transfer fin (5a) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2). The reason is that the heat transfer fin (5a) has the largest temperature difference at both ends of the heat transfer fin (5) of the heat exchanger (1), and the heat transfer due to heat conduction is large. Because it is. Then, by providing the heat transfer fin (5a) with the heat conduction inhibiting means, it is possible to more effectively suppress a decrease in the heat exchange capability in the heat exchanger (1).

第2の発明によれば、隣り合う高温側パス(h1)の伝熱管(4)と低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)だけを分断するのではなく、同一パス(h1,h2)内の隣り合う伝熱管(4)の間にある伝熱フィン(5)も全て分断する。つまり、上記熱交換器(1)を構成する伝熱フィン(5)は全て同一形状となる。これにより、上記熱交換器(1)を製造する際に、伝熱フィン(5)を選択する必要がないので、その製造行程を簡略化することができ、該熱交換器(1)の低コスト化を図ることができる。   According to the second invention, only the heat transfer fin (5a) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2) is divided. Instead, all heat transfer fins (5) between adjacent heat transfer tubes (4) in the same path (h1, h2) are also divided. That is, the heat transfer fins (5) constituting the heat exchanger (1) all have the same shape. Thereby, when manufacturing the heat exchanger (1), it is not necessary to select the heat transfer fin (5), so that the manufacturing process can be simplified, and the heat exchanger (1) can be reduced. Cost can be reduced.

第3の発明によれば、上記伝熱フィン(5)を全体的に分断し、隣り合う伝熱管(4)同士を切り離すことにより、隣り合う伝熱管(4)の間の熱伝導を妨げることができるので、上記熱交換器(1)における熱交換能力の低下を確実に抑制することができる。   According to 3rd invention, the said heat-transfer fin (5) is divided | segmented entirely, and heat conduction between adjacent heat-transfer tubes (4) is prevented by isolate | separating adjacent heat-transfer tubes (4). Therefore, it is possible to reliably suppress a decrease in heat exchange capacity in the heat exchanger (1).

第4の発明によれば、上記伝熱フィン(5)を部分的に分断することにより、隣り合う伝熱管(4)の間の熱伝導を妨げることができるので、上記熱交換器(1)における熱交換能力が低下するのを抑制することができる。その上、上記伝熱フィン(5)を部分的に分断するので、上記伝熱フィン(5)と伝熱管(4)との間には連通部分が残り、上記伝熱フィン(5)を全体的に分断する場合に比べて、上記熱交換器(1)の強度の低下を防ぐことができる。   According to the fourth invention, since the heat transfer between the adjacent heat transfer tubes (4) can be prevented by partially dividing the heat transfer fin (5), the heat exchanger (1) It can suppress that the heat exchange capability in falls. In addition, since the heat transfer fin (5) is partially divided, a communication portion remains between the heat transfer fin (5) and the heat transfer tube (4), and the heat transfer fin (5) is entirely removed. Compared with the case where it divides automatically, the strength reduction of the heat exchanger (1) can be prevented.

第5の発明によれば、上記伝熱フィン(5)の中間部分に該伝熱フィン(5)より低い熱伝導率を有する材料(30)を設けることにより、隣り合う伝熱管(4)の間の熱伝導を妨げることができるので、上記熱交換器(1)における熱交換能力が低下するのを抑制することができる。又、上記伝熱フィン(5)が全体的にも、部分的にも分断されることがないので、さらに上記熱交換器(1)の強度の低下を防ぐことができる。   According to 5th invention, by providing the material (30) which has lower heat conductivity than this heat-transfer fin (5) in the intermediate part of the said heat-transfer fin (5), adjacent heat-transfer pipe | tube (4) Therefore, it is possible to prevent the heat exchange capability of the heat exchanger (1) from decreasing. Further, since the heat transfer fin (5) is not divided in whole or in part, the strength of the heat exchanger (1) can be further prevented from being lowered.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施形態の熱交換器(1)は、二酸化炭素を冷媒とする蒸気圧縮式の冷凍サイクルを行う冷媒回路に接続されており、該冷媒回路内の超臨界圧に圧縮された二酸化炭素と空気とを熱交換させて、該二酸化炭素を冷却するものである。   The heat exchanger (1) of this embodiment is connected to a refrigerant circuit that performs a vapor compression refrigeration cycle using carbon dioxide as a refrigerant, and carbon dioxide and air compressed to a supercritical pressure in the refrigerant circuit. And the carbon dioxide is cooled.

−熱交換器の構成−
図1は、上記熱交換器(1)の外観形状を概念的に示す斜視図である。該熱交換器(1)は、図示するように、複数の伝熱管(4)が配列された伝熱管群(h)と、該伝熱管群(h)の両端にそれぞれ設けられた冷媒ヘッダ(2,3)と、該伝熱管群(h)内の隣り合う伝熱管(4)の間であって、該伝熱管(4)の管軸方向に並べられた複数の伝熱フィン(5)とを備えている。
-Heat exchanger configuration-
FIG. 1 is a perspective view conceptually showing the external shape of the heat exchanger (1). As shown in the figure, the heat exchanger (1) includes a heat transfer tube group (h) in which a plurality of heat transfer tubes (4) are arranged, and refrigerant headers provided at both ends of the heat transfer tube group (h) ( 2, 3) and a plurality of heat transfer fins (5) arranged between the adjacent heat transfer tubes (4) in the heat transfer tube group (h) and arranged in the tube axis direction of the heat transfer tubes (4) And.

〈伝熱管群〉
上記伝熱管群(h)は、図1に示すように、各伝熱管(4)の管軸方向を平行にするとともに、各伝熱管(4)を所定間隔あけて、上下方向に1列に並べることにより構成されている。ここで、各伝熱管(4)の間に所定間隔が設けられるのは、管外側を空気がスムーズに流れるようにするためである。又、上記伝熱管(4)は、図2における図1のA部の拡大断面図に示すように、管断面が扁平形状であり、管内には二酸化炭素が流れるための複数の矩形状の小孔(4a)が設けられている。
<Heat transfer tube group>
As shown in FIG. 1, the heat transfer tube group (h) has the tube axis directions of the heat transfer tubes (4) parallel to each other, and the heat transfer tubes (4) are arranged in a line in the vertical direction at a predetermined interval. It is configured by arranging. Here, the reason why the predetermined interval is provided between the heat transfer tubes (4) is to allow air to smoothly flow outside the tubes. Further, the heat transfer tube (4) has a flat cross section as shown in an enlarged cross-sectional view of part A of FIG. 1 in FIG. 2, and a plurality of rectangular small tubes for allowing carbon dioxide to flow in the tube. A hole (4a) is provided.

〈冷媒ヘッダ〉
上記冷媒ヘッダ(2,3)は、上記伝熱管群(h)の一端側(図の右側)に接続された第1冷媒ヘッダ(2)と、該伝熱管群(h)の他端側(図の左側)に接続された第2冷媒ヘッダ(3)とで構成されている。又、上記第1冷媒ヘッダ(2)の上下面には開口部が設けられている。そして、上面の開口部には冷媒入口ポート(6)が、下面の開口部には冷媒出口ポート(7)がそれぞれ接続されている。さらに、上記第1冷媒ヘッダ(2)を上下に分割する仕切板(仕切部材)(8)が、該第1冷媒ヘッダ(2)の管内の中間位置に設けられている。このように、第1、第2冷媒ヘッダ(2,3)を構成することにより、上記伝熱管群(h)が、上記仕切板(8)の位置を境として、その両側に隣り合うように第1パス(高温側パス)(h1)及び第2パス(低温側パス)(h2)に分けられて、冷媒が一往復する2パスの冷媒流路が形成される。
<Refrigerant header>
The refrigerant header (2, 3) includes a first refrigerant header (2) connected to one end side (right side in the figure) of the heat transfer tube group (h), and the other end side of the heat transfer tube group (h) ( It is comprised with the 2nd refrigerant | coolant header (3) connected to the left side of the figure. In addition, openings are provided on the upper and lower surfaces of the first refrigerant header (2). A refrigerant inlet port (6) is connected to the opening on the upper surface, and a refrigerant outlet port (7) is connected to the opening on the lower surface. Furthermore, a partition plate (partition member) (8) that divides the first refrigerant header (2) up and down is provided at an intermediate position in the pipe of the first refrigerant header (2). In this way, by configuring the first and second refrigerant headers (2, 3), the heat transfer tube group (h) is adjacent to both sides of the partition plate (8) as a boundary. Divided into a first path (high temperature side path) (h1) and a second path (low temperature side path) (h2), a two-pass refrigerant flow path in which the refrigerant reciprocates once is formed.

〈伝熱フィン〉
上記伝熱フィン(5)は、図1に示すように、該伝熱フィン(5)の両端が、両側の伝熱管(4)の管壁にそれぞれ接触するように設けられている。又、伝熱管群(h)における隣り合う伝熱管(4)の間の長方形状の空間が、連続する複数の三角状の小空間に分割されるように、上記伝熱フィン(5)は互いに傾斜して配列されている。
<Heat transfer fin>
As shown in FIG. 1, the heat transfer fin (5) is provided such that both ends of the heat transfer fin (5) are in contact with the tube walls of the heat transfer tubes (4) on both sides. Further, the heat transfer fins (5) are arranged so that the rectangular space between adjacent heat transfer tubes (4) in the heat transfer tube group (h) is divided into a plurality of continuous triangular small spaces. It is arranged at an angle.

さらに、該伝熱フィン(5)は、図2に示すように、長方形の板状のフィン(5)であり、その中間部分が長手方向に分断されている。この分断箇所が本発明の熱伝導阻害手段を構成している。又、短手方向に複数のスリット(9)も設けられている。   Further, as shown in FIG. 2, the heat transfer fin (5) is a rectangular plate-like fin (5), and an intermediate portion thereof is divided in the longitudinal direction. This divided part constitutes the heat conduction inhibiting means of the present invention. A plurality of slits (9) are also provided in the short direction.

−熱交換器の動作−
上記熱交換器(1)は、二酸化炭素を冷媒とする蒸気圧縮式の冷凍サイクルを行う冷媒回路に用いられるものであり、上記冷凍サイクルの放熱行程(図6のb−c間)を行うように構成されている。
-Heat exchanger operation-
The heat exchanger (1) is used in a refrigerant circuit that performs a vapor compression refrigeration cycle using carbon dioxide as a refrigerant, and performs a heat radiation process (between bc in FIG. 6) of the refrigeration cycle. It is configured.

まず、上記熱交換器(1)における二酸化炭素の流れについて説明する。尚、図1の矢印は二酸化炭素の流れを示している。上記冷媒回路に設けられた圧縮機(図示せず)により、超臨界圧に圧縮された高温の二酸化炭素は、上記冷媒入口ポート(6)より熱交換器(1)の第1冷媒ヘッダ(2)の上部(2a)に流入する。第1冷媒ヘッダ(2)の上部(2a)に流入した二酸化炭素は、その一部が該第1冷媒ヘッダ(2)に設けられた仕切板(8)に衝突しつつ、全ての二酸化炭素は、上記伝熱管群(h)の第1パス(h1)の各伝熱管(4)に分流して流れ込む。   First, the flow of carbon dioxide in the heat exchanger (1) will be described. In addition, the arrow of FIG. 1 has shown the flow of the carbon dioxide. High-temperature carbon dioxide compressed to a supercritical pressure by a compressor (not shown) provided in the refrigerant circuit passes through the first refrigerant header (2) of the heat exchanger (1) from the refrigerant inlet port (6). ) Flows into the upper part (2a). A part of the carbon dioxide flowing into the upper part (2a) of the first refrigerant header (2) collides with the partition plate (8) provided in the first refrigerant header (2), and all the carbon dioxide The heat transfer tube group (h) is divided into each heat transfer tube (4) in the first path (h1).

上記第1パス(h1)の各伝熱管(4)に流れ込んだ二酸化炭素は、管外を流れる空気と熱交換を行い、該空気に放熱しつつ、二酸化炭素自体の温度は降下していく。そして、二酸化炭素は、放熱を伴いながら上記第1パス(h1)を通過した後、上記第2冷媒ヘッダ(3)に流れ込んで合流する。上記第2冷媒ヘッダ(3)の上方で合流した二酸化炭素は、上記第2冷媒ヘッダ(3)の下方で再び分流して、上記第2パス(h2)の各伝熱管(4)に流れ込む。第2パス(h2)の各伝熱管(4)に流れ込んだ二酸化炭素は、再度、管外を流れる空気と熱交換を行い、該空気に放熱しつつ、二酸化炭素自体の温度もまた降下していく。そして、二酸化炭素は、放熱を伴いながら上記第2パス(h2)を通過した後、第1冷媒ヘッダ(2)の下部(2b)に流れ込んで合流するとともに、冷媒出口ポート(7)から流出する。   The carbon dioxide flowing into each heat transfer tube (4) of the first path (h1) exchanges heat with the air flowing outside the tube, radiates heat to the air, and the temperature of the carbon dioxide itself decreases. Carbon dioxide passes through the first path (h1) with heat dissipation, and then flows into and merges with the second refrigerant header (3). The carbon dioxide merged above the second refrigerant header (3) is diverted again below the second refrigerant header (3) and flows into the heat transfer tubes (4) of the second path (h2). The carbon dioxide flowing into each heat transfer tube (4) in the second path (h2) again exchanges heat with the air flowing outside the tube, radiating heat to the air, and the temperature of the carbon dioxide itself also drops. Go. Then, after passing through the second path (h2) with heat dissipation, the carbon dioxide flows into the lower part (2b) of the first refrigerant header (2), joins, and flows out from the refrigerant outlet port (7). .

一方、上記熱交換器(1)における空気の流れは、上記伝熱管群(h)の隣り合う伝熱管(4)の間に設けられた、連続する複数の三角状の小空間内を通過する流れとなる。そして、この小空間を通過する際に、管内側を流れる二酸化炭素と熱交換を行い、該空気は加熱される。ここで、上記伝熱フィン(5)には、短手方向に複数のスリット(第1スリット)(9)が設けられているので、小空間を流れる空気は該スリット(9)により、二次流れを起こし、空気側の伝熱が促進される。   On the other hand, the air flow in the heat exchanger (1) passes through a plurality of continuous triangular small spaces provided between adjacent heat transfer tubes (4) of the heat transfer tube group (h). Become a flow. And when passing through this small space, heat exchange is performed with carbon dioxide flowing inside the tube, and the air is heated. Here, since the heat transfer fin (5) is provided with a plurality of slits (first slits) (9) in the short direction, the air flowing through the small space is secondary by the slit (9). This causes a flow and promotes heat transfer on the air side.

−実施形態の効果−
この実施形態において、隣り合う高温側パス(h1)の伝熱管(4)と低温側パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)を分断することにより、高温側パス(h1)の伝熱管(4)によって該低温側パス(h2)の伝熱管(4)が加熱されるのを防止することができる。これにより、上記熱交換器(1)における熱交換能力の低下を抑制することができる。
-Effect of the embodiment-
In this embodiment, by dividing the heat transfer fin (5a) between the heat transfer tube (4) of the adjacent high temperature side path (h1) and the heat transfer tube (4) of the low temperature side path (h2), It is possible to prevent the heat transfer tube (4) of the low-temperature side path (h2) from being heated by the heat transfer tube (4) of the side path (h1). Thereby, the fall of the heat exchange capability in the said heat exchanger (1) can be suppressed.

−実施形態の変形例1−
実施形態の変形例1では、第1パス(h1)の伝熱管(4)と第2パス(h2)の伝熱管(4)との間にある伝熱フィン(5a)だけを分断するのではなく、図3に示すように、同一パス(h1,h2)内の隣り合う伝熱管(4)の間にある伝熱フィン(5)も全て分断する。つまり、上記熱交換器(1)を構成する伝熱フィン(5)は全て同一形状となる。これにより、上記熱交換器(1)を製造する際に、伝熱フィン(5)を選択する必要がないので、その製造行程を簡略化することができ、該熱交換器(1)の低コスト化を図ることができる。
-Modification 1 of embodiment-
In the first modification of the embodiment, only the heat transfer fin (5a) between the heat transfer tube (4) of the first pass (h1) and the heat transfer tube (4) of the second pass (h2) is cut off. Instead, as shown in FIG. 3, all the heat transfer fins (5) between adjacent heat transfer tubes (4) in the same path (h1, h2) are also divided. That is, the heat transfer fins (5) constituting the heat exchanger (1) all have the same shape. Thereby, when manufacturing the heat exchanger (1), it is not necessary to select the heat transfer fin (5), so that the manufacturing process can be simplified, and the heat exchanger (1) can be reduced. Cost can be reduced.

−実施形態の変形例2−
実施形態の変形例2では、伝熱フィン(5)を全体的に分断するのではなく、図4に示すように、両端部分以外に第2スリット(20)を設ける。これにより、上記伝熱フィン(5)の両端部分と上記伝熱管(4)との間には連通部分が残るので、上記伝熱フィン(5)を全体的に分断する場合と比べて、上記熱交換器(1)の強度の低下を防ぎつつ、隣り合う伝熱管(4)の間の熱伝導を抑えることができる。又、上記第2スリット(20)が設けられることにより、管外側を流れる空気に二次流れを起こすことができるので、空気側の伝熱を促進させることもできる。
-Modification 2 of embodiment-
In the second modification of the embodiment, the heat transfer fin (5) is not divided as a whole, but the second slit (20) is provided in addition to both end portions as shown in FIG. Thereby, since a communication part remains between the both ends of the heat transfer fin (5) and the heat transfer tube (4), compared to the case where the heat transfer fin (5) is entirely divided, Heat conduction between adjacent heat transfer tubes (4) can be suppressed while preventing a decrease in strength of the heat exchanger (1). Further, since the second slit (20) is provided, a secondary flow can be caused in the air flowing outside the tube, so that heat transfer on the air side can be promoted.

−実施形態の変形例3−
実施形態の変形例3では、伝熱フィン(5)に第2スリット(20)を設けるのではなく、図5に示すように、該伝熱フィン(5)より熱伝導率が低い低熱伝導部材(30)を介在させる。これにより、上記伝熱フィン(5)を切断しなくてもよいので、さらに、上記熱交換器(1)の強度の低下を防ぎつつ、隣り合う伝熱管(4)の間の熱伝導を妨げることができる。
Modification 3 of Embodiment—
In the third modification of the embodiment, the heat transfer fin (5) is not provided with the second slit (20), but as shown in FIG. 5, a low heat conductive member having a lower thermal conductivity than the heat transfer fin (5). (30) is interposed. Thereby, since it is not necessary to cut | disconnect the said heat-transfer fin (5), the heat conduction between adjacent heat-transfer tubes (4) is prevented, further preventing the fall of the intensity | strength of the said heat exchanger (1). be able to.

《その他の実施形態》
上記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
About the said embodiment, it is good also as the following structures.

上記実施形態では、上記熱交換器(1)の伝熱管(4)を、管断面が扁平形状であり、管内には複数の矩形状の小孔(4a)が設けられている伝熱管(4)で構成したが、扁平形状の伝熱管(4)にする必要はなく、円管であってもよい。   In the above embodiment, the heat transfer tube (4) of the heat exchanger (1) has a flat cross section, and a plurality of small rectangular holes (4a) are provided in the tube (4 However, it is not necessary to use the flat heat transfer tube (4), and it may be a circular tube.

又、上記実施形態の熱交換器(1)は、2パスの熱交換器(1)で構成したが、必ずしも2パスにする必要はなく、3パス以上であってもよい。ここで、3パスの場合、第2冷媒ヘッダ(3)内にも仕切板を設け、二酸化炭素が両冷媒ヘッダ(2,3)の間で往路−復路−往路を通って、第2冷媒ヘッダ(3)から流出する構成となる。   Moreover, although the heat exchanger (1) of the said embodiment was comprised with the heat exchanger (1) of 2 passes, it does not necessarily need to be 2 passes and may be 3 passes or more. Here, in the case of three passes, a partition plate is also provided in the second refrigerant header (3), and carbon dioxide passes between the two refrigerant headers (2, 3) through the forward path, the backward path, and the forward path. (3) will flow out.

なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。   In addition, the above embodiment is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

以上説明したように、本発明は、放熱行程で温度変化をする冷媒が流れる冷媒回路に用いるのに好適な熱交換器の伝熱フィンの形状ついて有用である。   As described above, the present invention is useful for the shape of the heat transfer fins of a heat exchanger suitable for use in a refrigerant circuit in which a refrigerant that changes in temperature during a heat release stroke flows.

本発明の実施形態における熱交換器の外観形状を示した斜視図である。It is the perspective view which showed the external appearance shape of the heat exchanger in embodiment of this invention. 図1におけるA部の拡大断面図である。It is an expanded sectional view of the A section in FIG. 本発明の実施形態の変形例1における熱交換器の一部を拡大した断面図である。It is sectional drawing to which some heat exchangers in the modification 1 of embodiment of this invention were expanded. 本発明の実施形態の変形例2における熱交換器の一部を拡大した断面図である。It is sectional drawing which expanded a part of heat exchanger in the modification 2 of embodiment of this invention. 本発明の実施形態の変形例3における熱交換器の一部を拡大した断面図である。It is sectional drawing to which some heat exchangers in the modification 3 of embodiment of this invention were expanded. 二酸化炭素のT−S線図上に冷凍サイクルを表した図である。It is the figure which represented the refrigerating cycle on the TS diagram of a carbon dioxide.

符号の説明Explanation of symbols

1 熱交換器
2 第1冷媒ヘッダ
3 第2冷媒ヘッダ
4 伝熱管
5 伝熱フィン
6 冷媒入口ポート
7 冷媒出口ポート
8 仕切板(仕切部材)
10 分断部
20 第2スリット
30 低熱伝導部材
h 伝熱管群
h1 第1パス(高温側パス)
h2 第2パス(低温側パス)
1 Heat exchanger
2 First refrigerant header
3 Second refrigerant header
4 Heat transfer tube
5 Heat transfer fin
6 Refrigerant inlet port
7 Refrigerant outlet port
8 Partition plate (partition member)
10 Dividing part
20 Second slit
30 Low thermal conductivity member
h Heat transfer tube group
h1 1st pass (High temperature side pass)
h2 Second pass (low temperature side pass)

Claims (5)

複数の伝熱管(4)が配列された伝熱管群(h)と、該伝熱管群(h)の一端側に設けられた第1冷媒ヘッダ(2)と、該伝熱管群(h)の他端側に設けられた第2冷媒ヘッダ(3)と、該伝熱管群(h)内の隣り合う伝熱管(4)の間に設けられた伝熱フィン(5)とを備え、
上記伝熱管群(h)が高温側パス(h1)と低温側パス(h2)とに分けられるように、少なくとも一方の冷媒ヘッダ(2,3)の管内を長さ方向に分割する仕切部材(8)が設けられる一方、上記伝熱管(4)の管内側を流れる冷媒が温度変化をする熱交換器であって、
上記伝熱フィン(5)には、少なくとも隣り合う上記高温側パス(h1)の伝熱管(4)と上記低温側パス(h2)の伝熱管(4)との間の熱伝導を妨げる熱伝導阻害手段が設けられていることを特徴とする熱交換器。
A heat transfer tube group (h) in which a plurality of heat transfer tubes (4) are arranged, a first refrigerant header (2) provided on one end side of the heat transfer tube group (h), and the heat transfer tube group (h) A second refrigerant header (3) provided on the other end side, and a heat transfer fin (5) provided between adjacent heat transfer tubes (4) in the heat transfer tube group (h),
A partition member that divides the pipe of at least one refrigerant header (2, 3) in the length direction so that the heat transfer pipe group (h) is divided into a high temperature side path (h1) and a low temperature side path (h2). 8) is a heat exchanger in which the refrigerant flowing inside the heat transfer tube (4) changes its temperature,
The heat transfer fin (5) has heat conduction that hinders heat conduction between at least the heat transfer tube (4) in the high-temperature side path (h1) and the heat transfer tube (4) in the low-temperature side path (h2). A heat exchanger characterized in that an obstruction means is provided.
請求項1において、
上記伝熱フィン(5)には、隣り合う全ての伝熱管(4)の間の熱伝導を妨げる熱伝導阻害手段が設けられていることを特徴とする熱交換器。
In claim 1,
The heat exchanger, wherein the heat transfer fin (5) is provided with heat conduction inhibiting means for preventing heat conduction between all adjacent heat transfer tubes (4).
請求項1又は2において、
上記熱伝導阻害手段は、上記隣り合う伝熱管(4)の間の伝熱フィン(5)を全体的に分断する切断面(10)により構成されていることを特徴とする熱交換器。
In claim 1 or 2,
The heat exchanger is characterized by comprising a cut surface (10) that divides the heat transfer fin (5) between the adjacent heat transfer tubes (4) as a whole.
請求項1又は2において、
上記熱伝導阻害手段は、上記隣り合う伝熱管(4)の間の伝熱フィン(5)を部分的に分断する切断面(20)により構成されていることを特徴とする熱交換器。
In claim 1 or 2,
The heat conduction inhibiting means comprises a cut surface (20) that partially divides the heat transfer fin (5) between the adjacent heat transfer tubes (4).
請求項1又は2において、
上記熱伝導阻害手段は、上記伝熱フィン(5)より低い熱伝導率を有する材料(30)で構成されていることを特徴とする熱交換器。
In claim 1 or 2,
The heat exchanger is characterized by comprising a material (30) having a lower thermal conductivity than the heat transfer fin (5).
JP2006295834A 2006-10-31 2006-10-31 Heat exchanger Pending JP2008111624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006295834A JP2008111624A (en) 2006-10-31 2006-10-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006295834A JP2008111624A (en) 2006-10-31 2006-10-31 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2008111624A true JP2008111624A (en) 2008-05-15

Family

ID=39444222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006295834A Pending JP2008111624A (en) 2006-10-31 2006-10-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2008111624A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223492A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Water heat exchanger and heat pump type water heater
JP2012193872A (en) * 2011-03-15 2012-10-11 Daikin Industries Ltd Heat exchanger and air conditioner
EP3139122A1 (en) * 2015-09-07 2017-03-08 Lg Electronics Inc. Micro channel type heat exchanger
WO2017068723A1 (en) * 2015-10-23 2017-04-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP2019015432A (en) * 2017-07-05 2019-01-31 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and heat exchange unit
WO2019198638A1 (en) * 2018-04-13 2019-10-17 ダイキン工業株式会社 Heat pump system
CN113960727A (en) * 2021-09-13 2022-01-21 江苏奥雷光电有限公司 Optical device with temperature rising function
WO2024014740A1 (en) * 2022-07-15 2024-01-18 한온시스템 주식회사 Manifold fluid module
WO2024014739A1 (en) * 2022-07-15 2024-01-18 한온시스템 주식회사 Manifold fluid module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160378A (en) * 1996-11-28 1998-06-19 Matsushita Refrig Co Ltd Heat exchanger and method of manufacturing fins for heat exchanger
JPH11325775A (en) * 1998-05-20 1999-11-26 Fujitsu General Ltd Heat exchanger
JP2002228380A (en) * 2001-02-05 2002-08-14 Matsushita Electric Ind Co Ltd Heat exchanger and cooling apparatus
JP2004218983A (en) * 2003-01-16 2004-08-05 Japan Climate Systems Corp Heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160378A (en) * 1996-11-28 1998-06-19 Matsushita Refrig Co Ltd Heat exchanger and method of manufacturing fins for heat exchanger
JPH11325775A (en) * 1998-05-20 1999-11-26 Fujitsu General Ltd Heat exchanger
JP2002228380A (en) * 2001-02-05 2002-08-14 Matsushita Electric Ind Co Ltd Heat exchanger and cooling apparatus
JP2004218983A (en) * 2003-01-16 2004-08-05 Japan Climate Systems Corp Heat exchanger

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223492A (en) * 2009-03-23 2010-10-07 Toshiba Carrier Corp Water heat exchanger and heat pump type water heater
JP2012193872A (en) * 2011-03-15 2012-10-11 Daikin Industries Ltd Heat exchanger and air conditioner
US10670343B2 (en) 2015-09-07 2020-06-02 Lg Electronics Inc. Micro channel type heat exchanger
EP3139122A1 (en) * 2015-09-07 2017-03-08 Lg Electronics Inc. Micro channel type heat exchanger
WO2017068723A1 (en) * 2015-10-23 2017-04-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JPWO2017068723A1 (en) * 2015-10-23 2018-05-10 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
JP2019015432A (en) * 2017-07-05 2019-01-31 日立ジョンソンコントロールズ空調株式会社 Heat exchanger and heat exchange unit
WO2019198638A1 (en) * 2018-04-13 2019-10-17 ダイキン工業株式会社 Heat pump system
JP2019184193A (en) * 2018-04-13 2019-10-24 ダイキン工業株式会社 Heat pump system
EP3779325A4 (en) * 2018-04-13 2021-06-09 Daikin Industries, Ltd. Heat pump system
JP7092997B2 (en) 2018-04-13 2022-06-29 ダイキン工業株式会社 Heat pump system
CN113960727A (en) * 2021-09-13 2022-01-21 江苏奥雷光电有限公司 Optical device with temperature rising function
WO2024014740A1 (en) * 2022-07-15 2024-01-18 한온시스템 주식회사 Manifold fluid module
WO2024014739A1 (en) * 2022-07-15 2024-01-18 한온시스템 주식회사 Manifold fluid module

Similar Documents

Publication Publication Date Title
JP2008111624A (en) Heat exchanger
JP5071597B2 (en) Heat exchanger and air conditioner
US10962307B2 (en) Stacked heat exchanger
JP2012163328A5 (en)
US10041710B2 (en) Heat exchanger and air conditioner
JP2008111622A (en) Heat exchanger and outdoor unit of air conditioner using the same
JP2016095094A (en) Heat exchanger and refrigeration cycle device
JP2006284133A (en) Heat exchanger
WO2015045105A1 (en) Heat exchanger and air conditioner using same
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2004218983A (en) Heat exchanger
JPWO2017208558A1 (en) Heat exchanger
JP2005106329A (en) Subcool type condenser
KR20080022324A (en) A heat exchanger having double row
JP2000304472A (en) Freezing cycle heat exchanger
WO2019031155A1 (en) Heat exchanger
JP2008121932A (en) Heat exchanger
JP2008111618A (en) Heat exchanger
JP2012229897A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP4762266B2 (en) Heat exchanger and refrigerator-freezer equipped with this heat exchanger
KR101186552B1 (en) A heat exchanger
JP4355604B2 (en) Heat exchange system
EP4431856A1 (en) Micro-channel heat exchanger and heat pump system having the same
JP7150215B1 (en) refrigeration cycle equipment
KR20080019953A (en) Double low heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Effective date: 20110722

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110726

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129