JP2005127611A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2005127611A
JP2005127611A JP2003363399A JP2003363399A JP2005127611A JP 2005127611 A JP2005127611 A JP 2005127611A JP 2003363399 A JP2003363399 A JP 2003363399A JP 2003363399 A JP2003363399 A JP 2003363399A JP 2005127611 A JP2005127611 A JP 2005127611A
Authority
JP
Japan
Prior art keywords
pressure side
low
heat exchanger
side refrigerant
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003363399A
Other languages
Japanese (ja)
Inventor
Tomoyasu Adachi
知康 足立
Kimiatsu Takeda
公温 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003363399A priority Critical patent/JP2005127611A/en
Publication of JP2005127611A publication Critical patent/JP2005127611A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger capable of reducing the number of components and improving its assembling workability. <P>SOLUTION: This heat exchanger 1 performs the heat exchange between a refrigerant of high temperature and high pressure and a refrigerant of low temperature and low pressure, and has a strip sheet-shaped tube 2 wherein a high-pressure side refrigerant flow channel 6 where the refrigerant of high temperature and high pressure flows and a low-pressure side refrigerant flow channel 8 where the refrigerant of low temperature and low pressure flows, are integrally formed, and headers 4a, 4b mounted on both ends of the strip sheet-shaped tube member and fixed by inserting the strip sheet-shaped tube from tube insertion grooves 14a, 14b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱交換器に係り、特に、二酸化炭素等を冷媒とする超臨界冷凍サイクルにおける車両用空調装置のインタークーラ等に使用される熱交換器に関する。   The present invention relates to a heat exchanger, and more particularly to a heat exchanger used for an intercooler of a vehicle air conditioner in a supercritical refrigeration cycle using carbon dioxide or the like as a refrigerant.

従来から、車両用空調装置の冷媒回路において二酸化炭素等の低臨界点を有する冷媒が使用された場合、放熱器の放熱能力と冷媒能力を増すために、放熱器の下流側に、例えば、特許文献1に記載されているようなインタークーラが設けられている。
このインタークーラ等に使用される従来の熱交換器を図5ないし図7により具体的に説明する。図5は、従来の熱交換器を示す分解斜視図である。図6は、図5に示す従来の熱交換器におけるC−C断面図である。図7は、図5に示す従来の熱交換器の帯板チューブ部分におけるD−D断面図である。
図5ないし図7に示すように、従来の熱交換器50は、高温高圧冷媒が流通する冷媒流路51を有する帯状の高圧帯板チューブ52と、低温低圧冷媒が流通する冷媒流路53を有する帯状の低圧帯板チューブ54とを備えている。
高圧帯板チューブ52には複数の穴52a(図7参照)が設けられ、これらの複数の穴52aは、高温高圧冷媒が流通する冷媒流路を形成している。一方、低圧帯板チューブ54にも複数の穴54a(図7参照)が設けられ、これらの複数の穴54aは、低温低圧冷媒が流通する冷媒流路を形成している。この低温帯板チューブ54に形成される冷媒通路は、流通する冷媒の圧力損失を低減させるために、この流路断面である穴54aの断面積が、高温高圧冷媒が流通する冷媒流路の流路断面積よりも大きくなっている。
高圧帯板チューブ52の両端部は、それぞれ高圧ヘッダ56の溝56aに嵌め込まれてろう付け接続され、低圧帯板チューブ54の両端部は、それぞれ低圧ヘッダ58の溝58aに嵌め込まれてろう付け接続されている。また、これら高圧帯板チューブ52と低圧帯板チューブ54は互いに平面が重なるように密着されて積層され、これらの平面間がろう付けされている。
Conventionally, when a refrigerant having a low critical point such as carbon dioxide is used in a refrigerant circuit of a vehicle air conditioner, in order to increase the heat dissipation capability and refrigerant capability of the radiator, An intercooler as described in Document 1 is provided.
A conventional heat exchanger used for the intercooler and the like will be specifically described with reference to FIGS. FIG. 5 is an exploded perspective view showing a conventional heat exchanger. 6 is a cross-sectional view taken along the line CC in the conventional heat exchanger shown in FIG. FIG. 7 is a DD cross-sectional view of the strip tube portion of the conventional heat exchanger shown in FIG.
As shown in FIGS. 5 to 7, a conventional heat exchanger 50 includes a belt-like high-pressure strip tube 52 having a refrigerant passage 51 through which a high-temperature and high-pressure refrigerant flows, and a refrigerant passage 53 through which a low-temperature and low-pressure refrigerant flows. And a belt-like low-pressure strip plate tube 54.
The high pressure strip tube 52 is provided with a plurality of holes 52a (see FIG. 7), and the plurality of holes 52a form a refrigerant flow path through which the high-temperature and high-pressure refrigerant flows. On the other hand, the low-pressure strip plate tube 54 is also provided with a plurality of holes 54a (see FIG. 7), and the plurality of holes 54a form a refrigerant flow path through which the low-temperature and low-pressure refrigerant flows. In order to reduce the pressure loss of the circulating refrigerant, the refrigerant passage formed in the low-temperature strip plate tube 54 has a cross-sectional area of the hole 54a, which is a cross section of the flow path, in the flow path of the refrigerant flow path through which the high-temperature and high-pressure refrigerant flows. It is larger than the road cross-sectional area.
Both ends of the high-pressure strip tube 52 are respectively fitted into the grooves 56a of the high-pressure header 56 and brazed, and both ends of the low-pressure strip tube 54 are respectively fitted into the grooves 58a of the low-pressure header 58 and brazed. Has been. Further, the high-pressure strip tube 52 and the low-pressure strip tube 54 are laminated so as to be overlapped with each other, and the planes are brazed.

特開2002−340485号公報(第4−8頁、第1図ないし第5図)JP 2002-340485 A (page 4-8, FIGS. 1 to 5)

しかしながら、従来の熱交換器50においては、高圧帯板チューブ52及び低圧帯板チューブ54等の部品におけるろう付け面積が大きく、ろう付け箇所の不良率が高くなる可能性があり、熱交換器の機能性も損なわれる可能性が高いという問題がある。
また、従来の熱交換器50においては、部品点数が多く、組立性が悪いため、製造コストが高くなるという問題がある。
さらに、従来の熱交換器50では、各チューブ52,54をそれぞれのヘッダ56,58に挿入する際にヘッダの中にチューブを位置決めするのが難しいという問題もある。
However, in the conventional heat exchanger 50, the brazing area in parts such as the high-pressure strip tube 52 and the low-pressure strip tube 54 is large, and there is a possibility that the defective rate of the brazed portion is high. There is a problem that the functionality is likely to be impaired.
Further, the conventional heat exchanger 50 has a problem that the number of parts is large and the assemblability is poor, so that the manufacturing cost is increased.
Further, the conventional heat exchanger 50 has a problem that it is difficult to position the tubes in the headers when the tubes 52 and 54 are inserted into the headers 56 and 58, respectively.

そこで、本発明は、上述した従来技術の問題を解決するためになされたものであり、部品点数を減らし、組立性を向上させることができる熱交換器を提供することを目的としている。
また、本発明は、部品のろう付けの箇所や面積を減らし、不良率を低減させることができる熱交換器を提供することを目的としている。
さらに、本発明は、冷媒流路を形成するチューブをヘッダに容易に位置決めすることができる熱交換器を提供することを目的としている。
また、本発明は、冷媒流路を形成するチューブ内を流れる冷媒の圧力損失を低減させることができる熱交換器を提供することを目的としている。
さらに、本発明は、超臨界流体を冷媒として、冷媒を圧縮する圧縮機、放熱器、蒸発器、及び、減圧手段により冷凍サイクルを形成し、上述した熱交換器を、放熱器と減圧手段との間の冷媒と圧縮機への吸入冷媒とを熱交換させる内部熱交換器とする蒸気圧縮式超臨界冷凍サイクル装置を提供することを目的としている。
また、本発明は、上述した蒸気圧縮式超臨界冷凍サイクル装置を用いた車両用空気調和装置を提供することを目的としている。
Accordingly, the present invention has been made to solve the above-described problems of the prior art, and an object of the present invention is to provide a heat exchanger that can reduce the number of parts and improve the assemblability.
It is another object of the present invention to provide a heat exchanger that can reduce the brazing location and area of components and reduce the defect rate.
Furthermore, an object of the present invention is to provide a heat exchanger that can easily position a tube that forms a refrigerant flow path in a header.
Another object of the present invention is to provide a heat exchanger capable of reducing the pressure loss of the refrigerant flowing in the tube forming the refrigerant flow path.
Furthermore, the present invention forms a refrigeration cycle by using a supercritical fluid as a refrigerant, a compressor that compresses the refrigerant, a radiator, an evaporator, and a depressurizing unit, and the heat exchanger described above includes a radiator and a depressurizing unit. It is an object of the present invention to provide a vapor compression supercritical refrigeration cycle apparatus using an internal heat exchanger that exchanges heat between the refrigerant between the refrigerant and the refrigerant sucked into the compressor.
Another object of the present invention is to provide a vehicle air conditioner using the above-described vapor compression supercritical refrigeration cycle apparatus.

上記の目的を達成するために、本発明の第1の発明は、高温高圧の冷媒と低温低圧の冷媒との間で熱交換を行う熱交換器であって、高温高圧の冷媒が流れる高圧側冷媒流路及び低温低圧の冷媒が流れる低圧側冷媒流路が一体的に形成された帯板状チューブ部材と、この帯板状チューブ部材の両端に設けられ、チューブ挿入溝から上記帯板状チューブ部材が挿入して固定されるヘッダ部材と、を有することを特徴としている。
このように構成された本発明においては、帯板状のチューブ部材において複数の高圧側冷媒流路と複数の低圧側冷媒流路とが一体に設けられているため、部品点数を減らすと共に、従来のチューブ部材よりもろう付け箇所を減らすことができ、熱交換器の機能面での信頼性を向上させることができる。さらに、チューブ部材の端部をヘッダ部材に取り付ける際にチューブ部材の端部をヘッダ部材の内部に容易に位置決めすることができ、組立性を向上させることができる。
In order to achieve the above object, a first invention of the present invention is a heat exchanger for exchanging heat between a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant, and the high-pressure side through which the high-temperature and high-pressure refrigerant flows. A strip plate-like tube member integrally formed with a refrigerant channel and a low-pressure side refrigerant channel through which a low-temperature and low-pressure refrigerant flows, and the strip plate-like tube provided at both ends of the strip plate-like tube member from the tube insertion groove And a header member into which the member is inserted and fixed.
In the present invention configured as described above, since the plurality of high-pressure side refrigerant flow paths and the plurality of low-pressure side refrigerant flow paths are integrally provided in the strip-like tube member, the number of parts is reduced, and the related art The number of brazing points can be reduced as compared with the tube member, and the reliability in terms of the function of the heat exchanger can be improved. Furthermore, when attaching the edge part of a tube member to a header member, the edge part of a tube member can be easily positioned inside a header member, and assembly property can be improved.

また、本発明の第1の発明において、好ましくは、帯板状チューブ部材は、複数の高圧側冷媒流路及び複数の低圧側冷媒流路を備えている。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材の高圧側冷媒流路及び低圧側冷媒流路は、それぞれの断面が円形である。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材の低圧側冷媒流路の断面は、高圧側冷媒流路の断面よりも大きく形成されている
このように構成された本発明の第1の発明によれば、低圧側冷媒流路内を流れる冷媒の流速が減少し、低圧側の冷媒の圧力損失を低減させることができる。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材の高圧側冷媒流路及び低圧側冷媒流路は、それぞれ交互に千鳥状に配置されている。
このように構成された本発明の第1の発明によれば、高温側冷媒流路と低温側冷媒流路との互いの流路間の肉厚を減少させることができ、全体重量を軽量化させることができる。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材がヘッダ部材の内部の奥行面まで挿入され、この帯板状チューブ部材により、ヘッダ部材が高圧側冷媒流路と低圧側冷媒流路とに仕切られるように構成されている。
また、本発明の第1の発明において、好ましくは、ヘッダ部材は、その内部の奥行面にチューブガイド溝が形成され、帯板状チューブ部材の端部がこのチューブガイド溝により受け入れられるように構成されている。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材のヘッダ部材に挿入される部分の側面に、帯状チューブ部材の高圧側冷媒流路とヘッダ部材の高圧側冷媒流路を連通させる高圧側連通流路及び帯状チューブ部材の低圧側冷媒流路とヘッダ部材の低圧側冷媒流路を連通させる低圧側連通流路がそれぞれ形成されている。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材のチューブ挿入溝は、ヘッダ中央部よりも高圧側冷媒流路側に形成されている。
また、本発明の第1の発明において、好ましくは、帯板状チューブ部材は、一体の押出し材による押出し加工により形成され、又は、一体の引抜き材による引抜き加工により形成されている。
さらに、本発明の第1の発明において、好ましくは、ヘッダ部材は、一体の押出し材による押出し加工により形成され、又は、一体の引抜き材による引抜き加工により形成されている。
In the first invention of the present invention, preferably, the strip-shaped tube member includes a plurality of high-pressure side refrigerant flow paths and a plurality of low-pressure side refrigerant flow paths.
In the first invention of the present invention, preferably, each of the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path of the strip plate tube member has a circular cross section.
In the first invention of the present invention, preferably, the cross section of the low-pressure side refrigerant flow path of the strip-shaped tube member is formed larger than the cross section of the high-pressure side refrigerant flow path. According to the first aspect of the invention, the flow rate of the refrigerant flowing in the low-pressure side refrigerant flow path can be reduced, and the pressure loss of the low-pressure side refrigerant can be reduced.
In the first invention of the present invention, preferably, the high-pressure side refrigerant flow paths and the low-pressure side refrigerant flow paths of the strip plate-like tube member are alternately arranged in a staggered manner.
According to the first aspect of the present invention thus configured, the wall thickness between the high-temperature side refrigerant flow path and the low-temperature side refrigerant flow path can be reduced, and the overall weight is reduced. Can be made.
In the first invention of the present invention, preferably, the strip plate-like tube member is inserted to the depth surface inside the header member, and the strip plate-like tube member allows the header member to be connected to the high-pressure side refrigerant flow path and the low-pressure side. It is comprised so that it may partition with a refrigerant flow path.
Also, in the first invention of the present invention, preferably, the header member is configured such that a tube guide groove is formed in an inner depth surface thereof, and an end portion of the strip plate-like tube member is received by the tube guide groove. Has been.
In the first invention of the present invention, preferably, the high-pressure side refrigerant flow path of the strip-shaped tube member and the high-pressure side refrigerant flow path of the header member are provided on the side surface of the portion inserted into the header member of the strip-shaped tube member. A high-pressure side communication channel that communicates, and a low-pressure side communication channel that connects the low-pressure side refrigerant channel of the strip-shaped tube member and the low-pressure side refrigerant channel of the header member are formed.
In the first invention of the present invention, preferably, the tube insertion groove of the strip-like tube member is formed closer to the high-pressure side refrigerant flow path than the header central portion.
In the first invention of the present invention, preferably, the belt-like tube member is formed by an extrusion process using an integral extrusion material, or is formed by a drawing process using an integral drawing material.
Furthermore, in the first invention of the present invention, preferably, the header member is formed by an extrusion process using an integral extrusion material, or is formed by a drawing process using an integral drawing material.

本発明の第2の発明は、超臨界流体を冷媒として、冷媒を圧縮する圧縮機、放熱器、蒸発器、及び、減圧手段により冷凍サイクルを形成する蒸気圧縮式超臨界冷凍サイクル装置であって、放熱器と減圧手段との間の高圧側冷媒と圧縮機へ吸入される低圧側冷媒との間で熱交換を行う内部熱交換器を有し、この内部熱交換器として、本発明の第1の発明の熱交換器を使用したことを特徴としている。
また、本発明の第3の発明は、本発明の第2の発明の蒸気圧縮式超臨界冷凍サイクル装置を用いた車両用空気調和装置である。
A second aspect of the present invention is a vapor compression supercritical refrigeration cycle apparatus that forms a refrigeration cycle using a supercritical fluid as a refrigerant, a compressor that compresses the refrigerant, a radiator, an evaporator, and a decompression unit. And an internal heat exchanger that exchanges heat between the high-pressure side refrigerant between the radiator and the decompression means and the low-pressure side refrigerant sucked into the compressor. The heat exchanger according to the first aspect is used.
The third aspect of the present invention is a vehicle air conditioner using the vapor compression supercritical refrigeration cycle apparatus of the second aspect of the present invention.

以上説明したように本発明の第1の発明の熱交換器によれば、部品点数を減らし、組立性を向上させることができる。また、熱交換器の関連部品に関するろう付けの箇所や面積を減らし、不良率を低減させることができる。さらに、冷媒流路を形成するチューブをヘッダに容易に位置決めすることができる。また、冷媒流路を形成するチューブ内を流れる冷媒の圧力損失を低減させることができる。
また、本発明の第2の発明の蒸気圧縮式超臨界冷凍サイクル装置、及びこの装置を用いた本発明の第3の発明の車両用空気調和装置によれば、インタークーラを容易に製造することができるため、製造コストを低減させることができる。
As described above, according to the heat exchanger of the first invention of the present invention, the number of parts can be reduced and the assemblability can be improved. Moreover, the location and area of brazing regarding related parts of the heat exchanger can be reduced, and the defect rate can be reduced. Furthermore, the tube forming the refrigerant flow path can be easily positioned on the header. Moreover, the pressure loss of the refrigerant flowing in the tube forming the refrigerant flow path can be reduced.
Moreover, according to the vapor compression supercritical refrigeration cycle apparatus of the second invention of the present invention and the vehicle air conditioner of the third invention of the present invention using this apparatus, an intercooler can be easily manufactured. Therefore, the manufacturing cost can be reduced.

以下、添付図面を参照して本発明の熱交換器の一実施形態について説明する。
図1は、本発明の実施形態の熱交換器を示す全体分解斜視図である。図2は、図1示す本発明の実施形態の熱交換器におけるA−A断面図である。図3は、図1に示す本発明の実施形態の熱交換器の帯板状チューブ部分におけるB−B断面図である。なお、図1及び図2中の破線の矢印は、冷媒の流れ方向を示している。
図1ないし図3に示すように、本発明の実施形態の熱交換器1は、冷媒の熱交換が行われる帯板状チューブ2と、この帯板状チューブ2の両端部にそれぞれ結合される一対のヘッダ4a,4bとを備えている。
帯板状チューブ2は、アルミニウム等からなる金属片またはクラッド材を押出し加工または引抜き加工することによって複数の丸孔6,8が一体成形されたものである。図1及び図2に示すように、複数の丸孔6,8は水平方向を貫いて延びている。また、図3に示すように、丸孔6と丸孔8は、垂直方向に千鳥状に配置されており、丸孔6は、高温高圧冷媒が流れる冷媒流路である高圧側冷媒流路であり、丸孔8は、低温低圧冷媒が流れる冷媒流路である低圧側冷媒流路である。
また、低圧側冷媒流路8内を流れる冷媒の圧力損失を低減させるために、丸孔8の断面積が丸孔6の断面積より大きくなるように設計されており、高圧側冷媒流路6の合計断面積と低圧側冷媒流路8の合計断面積との比が1/3以下となるのが好ましい。
ここで、本実施形態では、上述しているように丸孔8の断面積が丸孔6の断面積より大きくなるように設計されている形態を一例として説明しているが、このことに限定されず、高圧側冷媒流路6の合計断面積と低圧側冷媒流路8の合計断面積との比が1/3以下となるように、低圧側冷媒流路8の数を高圧側冷媒流路6の数よりも多くするように設計してもよい。
Hereinafter, an embodiment of a heat exchanger of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an overall exploded perspective view showing a heat exchanger according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line AA in the heat exchanger according to the embodiment of the present invention shown in FIG. FIG. 3 is a BB cross-sectional view of the strip-like tube portion of the heat exchanger according to the embodiment of the present invention shown in FIG. In addition, the arrow of the broken line in FIG.1 and FIG.2 has shown the flow direction of the refrigerant | coolant.
As shown in FIGS. 1 to 3, the heat exchanger 1 according to the embodiment of the present invention is coupled to a strip plate tube 2 in which heat exchange of refrigerant is performed, and both ends of the strip plate tube 2. A pair of headers 4a and 4b is provided.
The strip-like tube 2 is obtained by integrally forming a plurality of round holes 6 and 8 by extruding or drawing a metal piece made of aluminum or the like or a clad material. As shown in FIGS. 1 and 2, the plurality of round holes 6, 8 extend through the horizontal direction. Further, as shown in FIG. 3, the round holes 6 and the round holes 8 are arranged in a staggered manner in the vertical direction, and the round holes 6 are high-pressure side refrigerant passages that are refrigerant passages through which high-temperature and high-pressure refrigerant flows. Yes, the round hole 8 is a low-pressure side refrigerant flow path that is a refrigerant flow path through which the low-temperature low-pressure refrigerant flows.
Further, in order to reduce the pressure loss of the refrigerant flowing in the low-pressure side refrigerant flow path 8, the cross-sectional area of the round hole 8 is designed to be larger than the cross-sectional area of the round hole 6. Preferably, the ratio of the total cross-sectional area to the total cross-sectional area of the low-pressure side refrigerant flow path 8 is 1/3 or less.
Here, in the present embodiment, as described above, a mode in which the cross-sectional area of the round hole 8 is designed to be larger than the cross-sectional area of the round hole 6 is described as an example. The number of the low-pressure side refrigerant flow paths 8 is set so that the ratio of the total cross-sectional area of the high-pressure side refrigerant flow paths 6 to the total cross-sectional area of the low-pressure side refrigerant flow paths 8 is 1/3 or less. You may design so that it may increase more than the number of the paths 6. FIG.

また、帯板状チューブ2の両端面2a,2bに隣接した部分には、各丸孔6,8を垂直方向に貫いて延びる溝10a,10b,12a,12bがフライス加工等により設けられている。溝10a,10bは、丸孔6(高圧側冷媒流路6)と連通して高圧側冷媒流路として働き、高圧側冷媒流路10aに流入した高温高圧の冷媒が高圧側冷媒流路入口6aから高圧側冷媒流路6内を通過し、高圧側冷媒流路出口6bから高圧側冷媒流路10bへ流出するようになっている。
一方、溝12a,12bは、丸孔8(低圧側冷媒流路8)と連通して低圧側冷媒流路として働き、低圧側冷媒流路12aに流入した低温低圧の冷媒が低圧側冷媒流路入口8aから低圧側冷媒流路8内を通過し、低圧側冷媒流路出口8bから低圧側冷媒流路12bへ流出するようになっている。
Further, grooves 10a, 10b, 12a and 12b extending through the respective round holes 6 and 8 in the vertical direction are provided by milling or the like in portions adjacent to both end faces 2a and 2b of the strip plate tube 2. . The grooves 10a and 10b communicate with the round hole 6 (the high-pressure side refrigerant flow path 6) and function as a high-pressure side refrigerant flow path, and the high-temperature and high-pressure refrigerant that has flowed into the high-pressure side refrigerant flow path 10a flows into the high-pressure side refrigerant flow path inlet 6a. From the high pressure side refrigerant flow path 6b, and flows out from the high pressure side refrigerant flow path outlet 6b to the high pressure side refrigerant flow path 10b.
On the other hand, the grooves 12a and 12b communicate with the round hole 8 (low-pressure side refrigerant flow path 8) to function as a low-pressure side refrigerant flow path, and the low-temperature and low-pressure refrigerant flowing into the low-pressure side refrigerant flow path 12a It passes through the low pressure side refrigerant flow path 8 from the inlet 8a and flows out from the low pressure side refrigerant flow path outlet 8b to the low pressure side refrigerant flow path 12b.

つぎに、帯板状チューブ2が接続されるヘッダ4a,4bは、帯板状チューブ2と同様に、アルミニウム等からなる金属片またはクラッド材を押出し加工または引抜き加工することによって成形されたものである。
各ヘッダ4a,4bには帯板状チューブ2の端面2a,2bの形状に合わせて形成された帯板状チューブ挿入溝14a,14bが設けられ、この挿入溝14a,14bの中に帯板状チューブ2の端部を挿入することができるようになっている。
また、帯板状チューブ挿入溝14a,14bから挿入された帯板状チューブ2の端面2a,2bは、ヘッダ4a,4bの内部の奥行き面に設けられた帯板状チューブガイド溝16a,16bに案内され、ヘッダ4a,4bの内部の奥行き面と接触するまで差し込まれるようになっている。帯板状チューブ2の端面2a,2bは、ヘッダ4a,4bの内部の奥行き面と接触後、このヘッダ4a,4bの内部の奥行き面にろう付けされるようになっている。ここで、ヘッダ4a,4bにおける帯板状チューブ挿入溝14a,14b及び帯板状チューブガイド溝16a,16bの位置は、ヘッダ4a,4bの中央部よりも高圧側に位置している(図2参照)。
Next, the headers 4a and 4b to which the strip plate tube 2 is connected are formed by extruding or drawing a metal piece or a clad material made of aluminum or the like, like the strip plate tube 2. is there.
Each header 4a, 4b is provided with strip plate-like tube insertion grooves 14a, 14b formed in conformity with the shape of the end faces 2a, 2b of the strip plate tube 2, and the strip plates are formed in the insertion grooves 14a, 14b. The end of the tube 2 can be inserted.
Further, the end faces 2a and 2b of the strip plate tube 2 inserted from the strip plate tube insertion grooves 14a and 14b are formed into strip plate tube guide grooves 16a and 16b provided in the depth surface inside the headers 4a and 4b. It is guided and inserted until it contacts the depth surface inside the header 4a, 4b. The end faces 2a and 2b of the strip-like tube 2 are brazed to the depth surfaces inside the headers 4a and 4b after contacting the depth surfaces inside the headers 4a and 4b. Here, the positions of the strip plate-like tube insertion grooves 14a and 14b and the strip plate-like tube guide grooves 16a and 16b in the headers 4a and 4b are located on the higher pressure side than the central portions of the headers 4a and 4b (FIG. 2). reference).

さらに、帯板状チューブ2とヘッダ4a,4bがろう付けされて結合した状態では、帯板状チューブ2の溝10a,10b(高圧側冷媒流路10a,10b)及び溝12a,12b(低圧側冷媒流路12a,12b)がヘッダ4a,4bの内部に位置決めされるようになっている。また、これらの溝10aと溝12b、及び溝10bと溝12aは、互いの間に設けられた帯板状チューブ2の厚み13a,13bによって仕切られているため、帯板状チューブ2をヘッダ4a,4bに差し込んでろう付けした状態では、高圧側冷媒流路10a,10bと低圧側冷媒流路12a,12bの冷媒が仕切られるようになっている。
また、ヘッダ4a,4bの内部に位置決めされた帯板状チューブ2の各高圧側冷媒流路10a,10bは、ヘッダ4a,4bを垂直方向に貫いて延びるヘッダ高圧側冷媒流路18a,18bのそれぞれと連通している。熱交換器1の外部からヘッダ高圧側冷媒流路18aに流入した高温高圧の冷媒は、高圧側冷媒流路10aに流入し、高圧側冷媒流路6を通過した高圧側冷媒流路10b内の冷媒はヘッダ高圧側冷媒流路18bから熱交換器1の外部へ流出するようになっている。
一方、低圧側冷媒流路12a,12bは、ヘッダ4a,4bを垂直方向に貫いて延びるヘッダ低圧側冷媒流路20a,20bのそれぞれと連通している。熱交換器1の外部からヘッダ低圧側冷媒流路20aに流入した低温低圧の冷媒は、低圧側冷媒流路12aに流入し、低圧側流路8を通過した低圧側冷媒流路12b内の冷媒はヘッダ低圧側冷媒流路20bから熱交換器1の外部へ流出するようになっている。
Further, in a state where the strip plate tube 2 and the headers 4a and 4b are joined by brazing, the grooves 10a and 10b (high pressure side refrigerant flow paths 10a and 10b) and the grooves 12a and 12b (low pressure side) of the strip plate tube 2 are combined. The refrigerant flow paths 12a, 12b) are positioned inside the headers 4a, 4b. Moreover, since these groove | channel 10a and groove | channel 12b and the groove | channel 10b and groove | channel 12a are partitioned off by the thickness 13a, 13b of the strip | belt-plate tube 2 provided between each other, the strip | belt-plate tube 2 is made into header 4a. , 4b and brazed, the refrigerant in the high-pressure side refrigerant flow paths 10a, 10b and the low-pressure side refrigerant flow paths 12a, 12b are partitioned.
Further, the high-pressure side refrigerant flow paths 10a and 10b of the strip-like tube 2 positioned inside the headers 4a and 4b are the header high-pressure side refrigerant flow paths 18a and 18b extending through the headers 4a and 4b in the vertical direction. Communicate with each. The high-temperature and high-pressure refrigerant that has flowed into the header high-pressure side refrigerant flow path 18a from the outside of the heat exchanger 1 flows into the high-pressure side refrigerant flow path 10a and passes through the high-pressure side refrigerant flow path 6 in the high-pressure side refrigerant flow path 10b. The refrigerant flows out of the heat exchanger 1 from the header high-pressure side refrigerant flow path 18b.
On the other hand, the low-pressure side refrigerant flow paths 12a and 12b communicate with the header low-pressure side refrigerant flow paths 20a and 20b extending through the headers 4a and 4b in the vertical direction. The low-temperature and low-pressure refrigerant that has flowed into the header low-pressure side refrigerant flow path 20a from the outside of the heat exchanger 1 flows into the low-pressure side refrigerant flow path 12a and passes through the low-pressure side flow path 8 and is refrigerant in the low-pressure side refrigerant flow path 12b. Flows out of the heat exchanger 1 from the header low-pressure side refrigerant flow path 20b.

つぎに、上述した本発明の実施形態の熱交換器1の作用(動作)を説明する。
熱交換器1が完成品として組み立てられる過程においては、まず、アルミニウム等からなる金属片またはクラッド材を押出し加工または引抜き加工することによって複数の丸孔6,8が一体成形される。この際、丸孔6(高圧側冷媒流路)と丸孔8(低圧側冷媒流路)は、垂直方向に千鳥状に配置されるように、且つ丸孔8の断面積が丸孔6の断面積より大きく、好ましくは、高圧側冷媒流路6の合計断面積と低圧側冷媒流路8の合計断面積との比が1/3以下となるように成形される。
つぎに、この帯板状チューブ2について、両端面2a,2bに隣接した部分にフライス加工等によって溝10a,10b,12a,12bが成形される。この溝10a,10b,12a,12bが成形された帯板状チューブ2は、ヘッダ4a,4bの帯板状チューブ挿入溝14a,14bに挿入される。この際、帯板状チューブ2の端面2a,2bは、ヘッダ4a,4bの内部の奥行き面に設けられた帯板状チューブガイド溝16a,16bに案内され、ヘッダ4a,4bの内部の奥行き面と接触するまで差し込まれる。この後、ヘッダ4a,4bの内部の奥行き面と帯板状チューブ2の端面2a,2bがろう付けされ、帯板状チューブ2とヘッダ4a,4bが一体に組み立てられる。
Below, the effect | action (operation | movement) of the heat exchanger 1 of embodiment of this invention mentioned above is demonstrated.
In the process of assembling the heat exchanger 1 as a finished product, first, a plurality of round holes 6 and 8 are integrally formed by extruding or drawing a metal piece or clad material made of aluminum or the like. At this time, the round holes 6 (high-pressure side refrigerant flow path) and the round holes 8 (low-pressure side refrigerant flow path) are arranged in a staggered manner in the vertical direction, and the round hole 8 has a cross-sectional area of the round hole 6. More than the cross-sectional area, Preferably, it shape | molds so that ratio of the total cross-sectional area of the high-pressure side refrigerant flow path 6 and the total cross-sectional area of the low-pressure side refrigerant flow path 8 may be 1/3 or less.
Next, about this strip | belt-plate-shaped tube 2, the groove | channels 10a, 10b, 12a, and 12b are shape | molded by the milling etc. in the part adjacent to both end surfaces 2a and 2b. The strip-like tube 2 formed with the grooves 10a, 10b, 12a, 12b is inserted into the strip-like tube insertion grooves 14a, 14b of the headers 4a, 4b. At this time, the end faces 2a, 2b of the strip plate tube 2 are guided by strip plate tube guide grooves 16a, 16b provided in the depth surface inside the header 4a, 4b, and the depth surface inside the header 4a, 4b. Until it touches. Thereafter, the depth surfaces inside the headers 4a and 4b and the end surfaces 2a and 2b of the strip plate tube 2 are brazed, and the strip plate tube 2 and the headers 4a and 4b are assembled together.

上述したように、本実施形態による熱交換器1によれば、帯板状チューブ2の高圧側冷媒流路6及び低圧側冷媒流路8が押出し加工または引抜き加工によって一体成形される。この結果、従来の熱交換器では、高圧側と低圧側の2枚の帯板状チューブをろう付けしていたことに対し、本実施形態では、帯板状チューブを1枚にして、部品点数を減らすと共に、ろう付け箇所を減らすことができ、熱交換器の機能面での信頼性を向上させることができる。
また、本実施形態による熱交換器1によれば、帯板状チューブ2の高圧側冷媒流路6及び低圧側冷媒流路8が垂直方向に千鳥状に配置されるため、互いの流路間の肉厚を減少させることができ、全体重量を軽量化させることができる。
さらに、本実施形態による熱交換器1によれば、帯板状チューブ2をヘッダ4a,4bの奥まで差し込んで取り付けた際、帯板状チューブ2に設けられた各溝10a,10b,12a,12bが厚み13a,13bを隔てて冷媒流路を形成するため、帯板状チューブ2が高圧側と低圧側の仕切り壁の役割を果たすことができる。
また、本実施形態による熱交換器1によれば、ヘッダ4a,4bの内部の奥行き面に帯板状チューブガイド溝16a,16bが設けられているので、帯板状チューブ2をヘッダ4a,4bに取り付ける際、帯板状チューブ2の端部をガイド溝16a,16bに沿って差し込み、帯板状チューブ2の溝10a,10b,12a,12bをヘッダ4a,4bの内部に容易に位置決めすることができ、この結果、組立性を向上させることができる。また、帯板状チューブ2の端面2a,2bとヘッダ4a,4bの内部の奥行き面とのろう付け性を改善することができる。
さらに、本実施形態による熱交換器1によれば、低圧側の各流路断面積を高圧側の各流路断面積よりも大きく、好ましくは、高圧側冷媒流路6の合計断面積と低圧側冷媒流路8の合計断面積との比が1/3以下となるように設計されているため、低圧側冷媒流路8内を流れる冷媒の流速が減少し、低温低圧冷媒の圧力損失を低減させることができる。
As described above, according to the heat exchanger 1 according to the present embodiment, the high-pressure side refrigerant flow path 6 and the low-pressure side refrigerant flow path 8 of the strip plate tube 2 are integrally formed by extrusion or drawing. As a result, in the conventional heat exchanger, the two strip plate tubes on the high pressure side and the low pressure side are brazed, whereas in the present embodiment, the strip plate tube is used as one sheet and the number of parts is reduced. In addition, the number of brazing points can be reduced, and the functional reliability of the heat exchanger can be improved.
Further, according to the heat exchanger 1 according to the present embodiment, the high-pressure side refrigerant flow path 6 and the low-pressure side refrigerant flow path 8 of the strip plate tube 2 are arranged in a staggered manner in the vertical direction, so Can be reduced in thickness, and the overall weight can be reduced.
Furthermore, according to the heat exchanger 1 according to the present embodiment, when the strip plate tube 2 is inserted and attached to the back of the headers 4a and 4b, the grooves 10a, 10b, 12a provided in the strip plate tube 2 are attached. Since 12b forms the refrigerant | coolant flow path across thickness 13a, 13b, the strip plate-shaped tube 2 can play the role of the partition wall of a high voltage | pressure side and a low voltage | pressure side.
Moreover, according to the heat exchanger 1 by this embodiment, since the strip plate-shaped tube guide groove 16a, 16b is provided in the depth surface inside header 4a, 4b, the strip plate-shaped tube 2 is attached to header 4a, 4b. When attaching to the end, the end of the strip plate tube 2 is inserted along the guide grooves 16a and 16b, and the grooves 10a, 10b, 12a and 12b of the strip plate tube 2 are easily positioned inside the headers 4a and 4b. As a result, the assemblability can be improved. Moreover, the brazing property between the end surfaces 2a and 2b of the strip-like tube 2 and the depth surfaces inside the headers 4a and 4b can be improved.
Furthermore, according to the heat exchanger 1 according to the present embodiment, each of the low-pressure side cross-sectional areas is larger than each of the high-pressure side cross-sectional areas, and preferably the total cross-sectional area of the high-pressure side refrigerant flow path 6 and the low-pressure side Since the ratio of the total cross-sectional area of the side refrigerant flow path 8 is 1/3 or less, the flow velocity of the refrigerant flowing in the low pressure side refrigerant flow path 8 is reduced, and the pressure loss of the low temperature low pressure refrigerant is reduced. Can be reduced.

図4は、本発明の一実施形態による蒸気圧縮式超臨界冷凍サイクル装置における冷凍サイクルの回路図を示している。
ここで、冷凍サイクルに使用される冷媒としては、例えば、代替フロンR134aの臨界点よりも低い臨界点を有する二酸化炭素等の冷媒が使用される。
図4に示すように、本発明の一実施形態による蒸気圧縮式超臨界冷凍サイクル装置30は、冷媒を圧縮する圧縮機22と、放熱器24と、上述した実施形態の熱交換器1である内部熱交換器1とを備えている。圧縮機22において圧縮された冷媒は、放熱器24に吐出されて外気との間で熱交換が行われた後、放熱器24の下流に設けられた内部熱交換器1に送出されるようになっている。
この内部熱交換器1に送出された冷媒は、内部熱交換器1のヘッダ高圧側冷媒流路18aに流入し、高圧側冷媒流路10a、高圧側冷媒流路6、高圧側冷媒流路10b、ヘッダ高圧側冷媒流路18bの順に通過し、内部熱交換器1から送出されるようになっている。
FIG. 4 shows a circuit diagram of a refrigeration cycle in a vapor compression supercritical refrigeration cycle apparatus according to an embodiment of the present invention.
Here, as the refrigerant used in the refrigeration cycle, for example, a refrigerant such as carbon dioxide having a critical point lower than the critical point of the alternative Freon R134a is used.
As shown in FIG. 4, a vapor compression supercritical refrigeration cycle apparatus 30 according to an embodiment of the present invention is a compressor 22 that compresses a refrigerant, a radiator 24, and the heat exchanger 1 of the above-described embodiment. And an internal heat exchanger 1. The refrigerant compressed in the compressor 22 is discharged to the radiator 24 and exchanged heat with the outside air, and then sent to the internal heat exchanger 1 provided downstream of the radiator 24. It has become.
The refrigerant sent to the internal heat exchanger 1 flows into the header high-pressure side refrigerant flow path 18a of the internal heat exchanger 1, and the high-pressure side refrigerant flow path 10a, the high-pressure side refrigerant flow path 6, and the high-pressure side refrigerant flow path 10b. The header high-pressure-side refrigerant flow path 18b is passed through in this order and is sent out from the internal heat exchanger 1.

さらに、本発明の一実施形態による蒸気圧縮式超臨界冷凍サイクル装置30は、高圧圧力制御弁26と、蒸発器28と、低圧レシーバ29とを備え、内部熱交換器1から送出された高温高圧の冷媒は、高圧圧力制御弁26で減圧され、蒸発器28に送出されるようになっている。蒸発器28から送出された冷媒は、低圧レシーバ29によって気相と液相とに分離されて蓄えられ、低圧レシーバ29から送出される。
この低圧レシーバ29から送出される低温低圧の冷媒は、内部熱交換器1のヘッダ低圧側冷媒流路20aに流入し、低圧側冷媒流路12a、低圧側冷媒流路8、低圧側冷媒流路12b、ヘッダ低圧側冷媒流路20bの順に通過し、内部熱交換器1から送出され、圧縮機22に戻されるようになっている。
Furthermore, the vapor compression supercritical refrigeration cycle apparatus 30 according to an embodiment of the present invention includes a high-pressure control valve 26, an evaporator 28, and a low-pressure receiver 29, and a high-temperature and high-pressure sent from the internal heat exchanger 1. The refrigerant is decompressed by the high-pressure control valve 26 and sent to the evaporator 28. The refrigerant sent out from the evaporator 28 is separated into a gas phase and a liquid phase by the low-pressure receiver 29, stored, and sent out from the low-pressure receiver 29.
The low-temperature and low-pressure refrigerant sent from the low-pressure receiver 29 flows into the header low-pressure side refrigerant flow path 20a of the internal heat exchanger 1, and the low-pressure side refrigerant flow path 12a, the low-pressure side refrigerant flow path 8, and the low-pressure side refrigerant flow path. 12b and the header low-pressure side refrigerant flow path 20b pass through in this order, are sent out from the internal heat exchanger 1, and are returned to the compressor 22.

このような冷凍サイクルによって、内部熱交換器1内では、内部熱交換器1の高圧側冷媒流路を流路18a、流路10a、流路6、流路10b、流路18bの順に通過する高温高圧の冷媒と、内部熱交換器1の低圧側冷媒流路を流路20a、流路12a、流路8、流路12b、流路20bの順に通過する低温低圧の冷媒が、各流路内を互いに対して逆方向に流れることにより、両冷媒間で熱交換が行われるようになっている。
また、本実施形態の蒸気圧縮式超臨界冷凍サイクル装置30を車両用空調装置に適用する場合は、上述した内部熱交換器1をインタークーラとして使用し、蒸発器28を車室内の空気を冷却するエバポレータとして使用し、放熱器24を車室外熱交換器として使用すればよい。
By such a refrigeration cycle, the internal heat exchanger 1 passes through the high-pressure side refrigerant flow path of the internal heat exchanger 1 in the order of the flow path 18a, the flow path 10a, the flow path 6, the flow path 10b, and the flow path 18b. The high-temperature and high-pressure refrigerant and the low-temperature and low-pressure refrigerant passing through the low-pressure side refrigerant flow path of the internal heat exchanger 1 in the order of the flow path 20a, the flow path 12a, the flow path 8, the flow path 12b, and the flow path 20b By flowing in the opposite directions with respect to each other, heat exchange is performed between the two refrigerants.
Further, when the vapor compression supercritical refrigeration cycle apparatus 30 of the present embodiment is applied to a vehicle air conditioner, the internal heat exchanger 1 described above is used as an intercooler, and the evaporator 28 is used to cool the air in the vehicle interior. What is necessary is just to use the radiator 24 as a vehicle exterior heat exchanger.

上述したように、本発明の熱交換器を使用した蒸気圧縮式超臨界冷凍サイクル装置、及びこの蒸気圧縮式超臨界冷凍サイクル装置を使用した車両用空調装置によれば、インタークーラを容易に製造することができ、製造コストを低減させることができる。   As described above, according to the vapor compression supercritical refrigeration cycle apparatus using the heat exchanger of the present invention and the vehicle air conditioner using the vapor compression supercritical refrigeration cycle apparatus, an intercooler is easily manufactured. Manufacturing cost can be reduced.

本発明の実施形態による熱交換器を示す全体分解斜視図である。It is a whole exploded perspective view showing the heat exchanger by the embodiment of the present invention. 図1示す本発明の実施形態による熱交換器のA−A断面図である。It is AA sectional drawing of the heat exchanger by embodiment of this invention shown in FIG. 図1に示す本発明の実施形態による熱交換器の帯板状チューブ部分におけるB−B断面図である。It is BB sectional drawing in the strip plate-shaped tube part of the heat exchanger by embodiment of this invention shown in FIG. 蒸気圧縮式超臨界冷凍サイクル装置を用いた車両用空調装置において、本実施形態の熱交換器をインタークーラとして使用した場合の冷凍サイクル(超臨界冷凍サイクル)の例を示す。The example of the refrigerating cycle (supercritical refrigerating cycle) at the time of using the heat exchanger of this embodiment as an intercooler in the vehicle air conditioner using a vapor compression supercritical refrigerating cycle apparatus is shown. 従来の熱交換器の分解斜視図である。It is a disassembled perspective view of the conventional heat exchanger. 図5に示す従来の熱交換器におけるC−C断面図である。It is CC sectional drawing in the conventional heat exchanger shown in FIG. 図5に示す従来の熱交換器の帯板状チューブ部分におけるD−D断面図である。It is DD sectional drawing in the strip plate-shaped tube part of the conventional heat exchanger shown in FIG.

符号の説明Explanation of symbols

1 熱交換器
2 帯板状チューブ
4a,4b ヘッダ
6 高圧側冷媒流路
8 低圧側冷媒流路
10a,10b 高圧側冷媒流路
12a,12b 低圧側冷媒流路
14a,14b 帯板状チューブ挿入溝
16a,16b 帯板状チューブガイド溝
18a,18b ヘッダ高圧側冷媒流路
20a,20b ヘッダ低圧側冷媒流路
22 圧縮機
24 放熱器
26 高圧圧力制御弁
28 エバポレータ(蒸発器)
29 低圧レシーバ
30 蒸気圧縮式超臨界冷凍サイクル装置
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Band plate-like tube 4a, 4b Header 6 High pressure side refrigerant flow path 8 Low pressure side refrigerant flow path 10a, 10b High pressure side refrigerant flow path 12a, 12b Low pressure side refrigerant flow path 14a, 14b Band plate tube insertion groove 16a, 16b Strip plate-shaped tube guide grooves 18a, 18b Header high pressure side refrigerant flow path 20a, 20b Header low pressure side refrigerant flow path 22 Compressor 24 Radiator 26 High pressure control valve 28 Evaporator
29 Low pressure receiver 30 Vapor compression supercritical refrigeration cycle equipment

Claims (13)

高温高圧の冷媒と低温低圧の冷媒との間で熱交換を行う熱交換器であって、
高温高圧の冷媒が流れる高圧側冷媒流路及び低温低圧の冷媒が流れる低圧側冷媒流路が一体的に形成された帯板状チューブ部材と、
この帯板状チューブ部材の両端に設けられ、チューブ挿入溝から上記帯板状チューブ部材が挿入して固定されるヘッダ部材と、
を有することを特徴とする熱交換器。
A heat exchanger that performs heat exchange between a high-temperature and high-pressure refrigerant and a low-temperature and low-pressure refrigerant,
A strip-shaped tube member in which a high-pressure side refrigerant flow path through which a high-temperature and high-pressure refrigerant flows and a low-pressure side refrigerant flow path through which a low-temperature and low-pressure refrigerant flows are integrally formed;
A header member provided at both ends of the strip plate-shaped tube member, to which the strip plate-shaped tube member is inserted and fixed from the tube insertion groove;
The heat exchanger characterized by having.
上記帯板状チューブ部材は、複数の高圧側冷媒流路及び複数の低圧側冷媒流路を備えている請求項1記載の熱交換器。   2. The heat exchanger according to claim 1, wherein the strip-shaped tube member includes a plurality of high-pressure side refrigerant flow paths and a plurality of low-pressure side refrigerant flow paths. 上記帯板状チューブ部材の高圧側冷媒流路及び低圧側冷媒流路は、それぞれの断面が円形である請求項1又は請求項2に記載の熱交換器。   The heat exchanger according to claim 1 or 2, wherein each of the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path of the strip-like tube member has a circular cross section. 上記帯板状チューブ部材の低圧側冷媒流路の断面は、高圧側冷媒流路の断面よりも大きく形成されている請求項1乃至3の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein a cross section of the low-pressure side refrigerant flow path of the strip-shaped tube member is formed larger than a cross section of the high-pressure side refrigerant flow path. 上記帯板状チューブ部材の高圧側冷媒流路及び低圧側冷媒流路は、それぞれ交互に千鳥状に配置されている請求項2乃至4の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 2 to 4, wherein the high-pressure side refrigerant flow path and the low-pressure side refrigerant flow path of the strip plate-like tube member are alternately arranged in a staggered manner. 上記帯板状チューブ部材が上記ヘッダ部材の内部の奥行面まで挿入され、この帯板状チューブ部材により、上記ヘッダ部材が高圧側冷媒流路と低圧側冷媒流路とに仕切られるように構成されている請求項1乃至5の何れか1項に記載の熱交換器。   The strip plate-shaped tube member is inserted to the depth surface inside the header member, and the strip plate-shaped tube member is configured to partition the header member into a high-pressure side refrigerant channel and a low-pressure side refrigerant channel. The heat exchanger according to any one of claims 1 to 5. 上記ヘッダ部材は、その内部の奥行面にチューブガイド溝が形成され、上記帯板状チューブ部材の端部がこのチューブガイド溝により受け入れられるように構成されている請求項6記載の熱交換器。   The heat exchanger according to claim 6, wherein a tube guide groove is formed in a depth surface of the header member, and an end portion of the strip plate tube member is received by the tube guide groove. 上記帯板状チューブ部材の上記ヘッダ部材に挿入される部分の側面に、上記帯状チューブ部材の高圧側冷媒流路と上記ヘッダ部材の高圧側冷媒流路を連通させる高圧側連通流路及び上記帯状チューブ部材の低圧側冷媒流路と上記ヘッダ部材の低圧側冷媒流路を連通させる低圧側連通流路がそれぞれ形成されている請求項6又は請求項7に記載の熱交換器。   The high-pressure side communication flow path that connects the high-pressure side refrigerant flow path of the band-shaped tube member and the high-pressure side refrigerant flow path of the header member to the side surface of the portion that is inserted into the header member of the band plate-shaped tube member, and the band shape 8. The heat exchanger according to claim 6, wherein a low-pressure side communication channel that connects the low-pressure side refrigerant channel of the tube member and the low-pressure side refrigerant channel of the header member is formed. 上記帯板状チューブ部材の上記チューブ挿入溝は、ヘッダ中央部よりも高圧側冷媒流路側に形成されている請求項6乃至8の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 6 to 8, wherein the tube insertion groove of the strip-shaped tube member is formed on the high-pressure side refrigerant flow path side with respect to the header central portion. 上記帯板状チューブ部材は、一体の押出し材による押出し加工により形成され、又は、一体の引抜き材による引抜き加工により形成されている請求項1乃至9の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 9, wherein the strip-like tube member is formed by an extrusion process using an integral extruding material or formed by a drawing process using an integral drawing material. 上記ヘッダ部材は、一体の押出し材による押出し加工により形成され、又は、一体の引抜き材による引抜き加工により形成されている請求項1乃至10の何れか1項に記載の熱交換器。   The heat exchanger according to any one of claims 1 to 10, wherein the header member is formed by an extrusion process using an integral extrusion material, or formed by a drawing process using an integral drawing material. 超臨界流体を冷媒として、冷媒を圧縮する圧縮機、放熱器、蒸発器、及び、減圧手段により冷凍サイクルを形成する蒸気圧縮式超臨界冷凍サイクル装置であって、
上記放熱器と減圧手段との間の高圧側冷媒と上記圧縮機へ吸入される低圧側冷媒との間で熱交換を行う内部熱交換器を有し、この内部熱交換器として、請求項1乃至11の何れか1項に記載の熱交換器を使用したことを特徴とする蒸気圧縮式超臨界冷凍サイクル装置。
A vapor compression supercritical refrigeration cycle apparatus that forms a refrigeration cycle by using a supercritical fluid as a refrigerant, a compressor that compresses the refrigerant, a radiator, an evaporator, and a decompression unit,
An internal heat exchanger that exchanges heat between the high-pressure side refrigerant between the radiator and the decompression means and the low-pressure side refrigerant sucked into the compressor is provided as the internal heat exchanger. A vapor compression supercritical refrigeration cycle apparatus using the heat exchanger according to any one of items 1 to 11.
請求項12に記載の蒸気圧縮式超臨界冷凍サイクル装置を用いた車両用空気調和装置。   A vehicle air conditioner using the vapor compression supercritical refrigeration cycle apparatus according to claim 12.
JP2003363399A 2003-10-23 2003-10-23 Heat exchanger Withdrawn JP2005127611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003363399A JP2005127611A (en) 2003-10-23 2003-10-23 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003363399A JP2005127611A (en) 2003-10-23 2003-10-23 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2005127611A true JP2005127611A (en) 2005-05-19

Family

ID=34642741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003363399A Withdrawn JP2005127611A (en) 2003-10-23 2003-10-23 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2005127611A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533585A2 (en) * 2003-11-20 2005-05-25 Commissariat A L'energie Atomique Heat exchanger plate and heat exchanger
EP1736716A2 (en) * 2005-06-22 2006-12-27 Sanden Corporation air conditioning system for vehicles
KR100704638B1 (en) * 2006-05-02 2007-04-09 주식회사 두원공조 Internal heat exchanger of refrigerating system
ITMO20090290A1 (en) * 2009-12-11 2011-06-12 Highftech Engineering S R L HEAT EXCHANGER.
EP2602578A1 (en) * 2010-08-05 2013-06-12 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air conditioning device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533585A2 (en) * 2003-11-20 2005-05-25 Commissariat A L'energie Atomique Heat exchanger plate and heat exchanger
EP1533585A3 (en) * 2003-11-20 2006-04-26 Commissariat A L'energie Atomique Heat exchanger plate and heat exchanger
EP1736716A2 (en) * 2005-06-22 2006-12-27 Sanden Corporation air conditioning system for vehicles
EP1736716A3 (en) * 2005-06-22 2007-08-22 Sanden Corporation air conditioning system for vehicles
KR100704638B1 (en) * 2006-05-02 2007-04-09 주식회사 두원공조 Internal heat exchanger of refrigerating system
ITMO20090290A1 (en) * 2009-12-11 2011-06-12 Highftech Engineering S R L HEAT EXCHANGER.
EP2602578A1 (en) * 2010-08-05 2013-06-12 Mitsubishi Electric Corporation Heat exchanger and refrigeration and air conditioning device
EP2602578A4 (en) * 2010-08-05 2015-03-11 Mitsubishi Electric Corp Heat exchanger and refrigeration and air conditioning device

Similar Documents

Publication Publication Date Title
JP2002340485A (en) Heat exchanger for vehicle
JP6767637B2 (en) Heat exchanger and freezing system using it
CN109844439B (en) Heat exchanger and refrigeration system using the same
CN109564067B (en) Heat exchanger and refrigeration system using the same
JP2007032949A (en) Heat exchanger
CN109328291B (en) Heat exchanger and refrigerating apparatus using the same
JP2004077079A (en) Heat exchanger, its manufacturing method, tube connection structure of header tank for heat exchanger and refrigeration system
JP2006003071A (en) Heat exchanger
JPWO2006073134A1 (en) Tubing body and heat exchanger using the same
JP2007139288A (en) Heat exchanger and air conditioner
JP2005049049A (en) Heat exchanger
JP2005127611A (en) Heat exchanger
KR20130085864A (en) Heat exchanger
JP5540816B2 (en) Evaporator unit
CN109312993B (en) Heat exchanger and refrigerating apparatus using the same
JP6767621B2 (en) Heat exchanger and freezing system using it
JP2007040605A (en) Heat exchanger for multistage compression type refrigeration cycle device
JP6785408B2 (en) Heat exchanger and refrigeration system using it
WO2021095439A1 (en) Heat exchanger
JP2001241806A (en) Pressure-proof component, heat exchanger with pressure- proof component and freezer with pressure-proof component
JP2004162993A (en) Heat exchanger
JP2001272184A (en) Heat exchanger
JP2006284163A (en) Integrated heat exchanging device
JPWO2007123041A1 (en) Internal heat exchanger
JP2007255871A (en) Heat exchanger for vehicle air conditioner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109