JP2016205744A - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP2016205744A
JP2016205744A JP2015089967A JP2015089967A JP2016205744A JP 2016205744 A JP2016205744 A JP 2016205744A JP 2015089967 A JP2015089967 A JP 2015089967A JP 2015089967 A JP2015089967 A JP 2015089967A JP 2016205744 A JP2016205744 A JP 2016205744A
Authority
JP
Japan
Prior art keywords
refrigerant
leeward
heat exchange
pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015089967A
Other languages
Japanese (ja)
Other versions
JP6641721B2 (en
Inventor
正憲 神藤
Masanori Shindo
正憲 神藤
好男 織谷
Yoshio Oritani
好男 織谷
俊 吉岡
Takashi Yoshioka
俊 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2015089967A priority Critical patent/JP6641721B2/en
Priority to PCT/JP2016/001959 priority patent/WO2016174830A1/en
Priority to EP16786110.3A priority patent/EP3276289B1/en
Priority to US15/566,049 priority patent/US20180135900A1/en
Priority to CN201680018478.4A priority patent/CN107429975B/en
Publication of JP2016205744A publication Critical patent/JP2016205744A/en
Application granted granted Critical
Publication of JP6641721B2 publication Critical patent/JP6641721B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • F28F9/0275Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress increase of pressure loss when a refrigerant flows in each refrigerant flow channel and to easily perform bending processing in a width direction of a flat tube, in a heat exchanger provided with a plurality of refrigerant flow channels inside of the flat tubes.SOLUTION: A plurality of row portions (30, 40) having a plurality of flat tubes (31, 41) are arranged in an air passing direction, the plurality of row portions (30, 40) are configured so that a refrigerant flows in parallel in each of the flat tubes (31, 41) respectively between the plurality of row portions (30, 40), and the flat tubes (31, 41) of the plurality of row portions (30, 40) respectively have one or more bent portions (33a, 33b, 33c) bent in a width direction of the flat tubes (31, 41) so that the flat tubes (31, 41) of the row portions (30, 40) adjacent to each other in the air passing direction, are along to each other.SELECTED DRAWING: Figure 2

Description

本発明は、熱交換器及び空気調和機に関する。     The present invention relates to a heat exchanger and an air conditioner.

従来より、平行に配列された多数の扁平管と、該扁平管に接合されるフィンとを備えた熱交換器が知られている。特許文献1(図2を参照)には、この種の熱交換器が開示されている。この熱交換器は、空気の通過方向に扁平管が1列に配置される1列構成の熱交換器である。熱交換器には、上側熱交換領域(主熱交換領域)と、下側熱交換領域(補助熱交換領域)とが形成されている。下側熱交換領域の扁平管の本数は、上側熱交換領域の扁平管の本数より少ない。     2. Description of the Related Art Conventionally, a heat exchanger including a large number of flat tubes arranged in parallel and fins joined to the flat tubes is known. Patent Document 1 (see FIG. 2) discloses this type of heat exchanger. This heat exchanger is a one-row heat exchanger in which flat tubes are arranged in one row in the air passage direction. In the heat exchanger, an upper heat exchange region (main heat exchange region) and a lower heat exchange region (auxiliary heat exchange region) are formed. The number of flat tubes in the lower heat exchange region is less than the number of flat tubes in the upper heat exchange region.

例えばこの熱交換器が蒸発器として機能する場合、飽和液状態の冷媒が、下側熱交換領域を流れ、空気から吸熱して蒸発する。この冷媒は、上側熱交換領域を流れて更に蒸発し、過熱状態となって熱交換器を流出する。     For example, when this heat exchanger functions as an evaporator, the refrigerant in the saturated liquid state flows through the lower heat exchange region, absorbs heat from the air, and evaporates. This refrigerant flows through the upper heat exchange region, further evaporates, becomes overheated, and flows out of the heat exchanger.

特開2012−163328号公報JP 2012-163328 A

ところで、特許文献1に開示のような熱交換器の能力を向上させるためには、扁平管の長さを長くし、扁平管の内部の冷媒流路の流路長を長くすることが考えられる。しかしながら、このようにして冷媒流路の全長を長くすると、冷媒が通過する際の圧力損失の増大を招いてしまう。     By the way, in order to improve the capability of the heat exchanger as disclosed in Patent Document 1, it is conceivable to increase the length of the flat tube and increase the length of the refrigerant flow channel inside the flat tube. . However, increasing the overall length of the refrigerant flow path in this way increases the pressure loss when the refrigerant passes.

更に、扁平管の内部に多数の冷媒流路を形成する熱交換器では、各冷媒流路の流路面積が比較的小さいため、各冷媒流路を流れる冷媒の流速が増大し易い。このため、各冷媒流路を流れる冷媒の圧力損失も更に大きくなってしまう。     Furthermore, in a heat exchanger that forms a large number of refrigerant flow paths inside a flat tube, the flow area of each refrigerant flow path tends to increase because the flow area of each refrigerant flow path is relatively small. For this reason, the pressure loss of the refrigerant flowing through each refrigerant flow path is further increased.

一方、このような圧力損失の増大を抑制するために、扁平管を幅方向(空気の通過方向)に長くし、冷媒流路の数を増やす構成を採用することも考えられる。しかしながら、このようにして扁平管の幅が大きくなると、扁平管を、その幅方向に屈曲させる加工が難しくなり、空気が通過する複数の側面部を有する他面式(例えば4面式)の熱交換器を製造することが困難となってしまう。     On the other hand, in order to suppress such an increase in pressure loss, it is conceivable to adopt a configuration in which the flat tube is lengthened in the width direction (air passage direction) and the number of refrigerant channels is increased. However, when the width of the flat tube is increased in this way, it becomes difficult to bend the flat tube in the width direction, and the other surface type (for example, four-surface type) heat having a plurality of side portions through which air passes. It becomes difficult to manufacture the exchanger.

本発明は、かかる点に鑑みてなされたものであり、その目的は、扁平管の内部に複数の冷媒流路が形成される熱交換器において、冷媒が各冷媒流路を流れる際の圧力損失の増大を抑制でき、且つ扁平管の幅方向の曲げ加工を容易に行えるようにすることである。     The present invention has been made in view of such a point, and an object of the present invention is to reduce pressure loss when refrigerant flows through each refrigerant flow path in a heat exchanger in which a plurality of refrigerant flow paths are formed inside a flat tube. It is possible to suppress the increase in the width of the flat tube and to easily perform bending in the width direction of the flat tube.

第1の発明は、互いに平行に配置され、それぞれに複数の冷媒流路(C)が形成される複数の扁平管(31,41)と、上記扁平管(31,41)に接合されるフィン(32,42)とを備え、上記冷媒流路(C)を流れる冷媒と空気とを熱交換させる熱交換器を対象とし、複数の上記扁平管(31,41)を有する複数の列部(30,40)が空気の通過方向に配列され、上記複数の列部(30,40)は、該複数の列部(30,40)間の各扁平管(31,41)において冷媒が並列に流れるように構成され、上記複数の列部(30,40)の扁平管(31,41)は、空気の通過方向に隣り合う該列部(30,40)の扁平管(31,41)が互いに沿うように該扁平管(31,41)の幅方向に屈曲する1つ以上の屈曲部(33a,33b,33c)をそれぞれ有していることを特徴とする。     In the first invention, a plurality of flat tubes (31, 41), which are arranged in parallel to each other and each have a plurality of refrigerant channels (C), and fins joined to the flat tubes (31, 41). (32, 42), and a plurality of row sections (a plurality of the flat tubes (31, 41)) having a plurality of the flat tubes (31, 41) for heat exchange between the refrigerant flowing through the refrigerant flow path (C) and air. 30, 40) are arranged in the air passage direction, and the plurality of rows (30, 40) are arranged in parallel in the flat tubes (31, 41) between the rows (30, 40). The flat tubes (31, 41) of the plurality of row portions (30, 40) are configured to flow, and the flat tubes (31, 41) of the row portions (30, 40) adjacent in the air passage direction are It has one or more bent portions (33a, 33b, 33c) that bend in the width direction of the flat tube (31, 41) so as to be along each other.

第1の発明では、空気の通過方向に複数の列部(30,40)が設けられ、各列部(30,40)において複数の扁平管(31,41)が平行に配列される。熱交換器を冷媒が流れる際には、各列部(30,40)の各扁平管(31,41)を冷媒が並行に流れる。例えばこのような各列部(30,40)の扁平管(31,41)を直列に繋いで冷媒を流すと、各冷媒流路(C)を流れる冷媒の流量が大きくなり、各冷媒流路(C)を流れる冷媒の流速が大きくなる。また、各冷媒流路(C)の流路長も長くなる。これに対し、本発明では、各列部(30,40)の扁平管(31,41)を冷媒が並行に流れるため、各冷媒流路(C)を流れる冷媒の流量が小さくなり、各冷媒流路(C)を流れる冷媒の流速も小さくなる。また、各冷媒流路(C)の流路長も短くなる。冷媒流路(C)を流れる冷媒の圧力損失は、冷媒の流速の2乗、及び冷媒流路(C)の長さに比例する。従って、このような構成とすることで、圧力損失を低減できる。     In the first invention, a plurality of rows (30, 40) are provided in the air passage direction, and a plurality of flat tubes (31, 41) are arranged in parallel in each row (30, 40). When the refrigerant flows through the heat exchanger, the refrigerant flows in parallel through the flat tubes (31, 41) of the rows (30, 40). For example, when the flat tubes (31, 41) of the respective rows (30, 40) are connected in series to flow the refrigerant, the flow rate of the refrigerant flowing through each refrigerant channel (C) increases, and each refrigerant channel The flow rate of the refrigerant flowing through (C) increases. Moreover, the flow path length of each refrigerant flow path (C) also becomes long. On the other hand, in the present invention, since the refrigerant flows in parallel through the flat tubes (31, 41) of the respective row portions (30, 40), the flow rate of the refrigerant flowing through each refrigerant channel (C) becomes small, and each refrigerant The flow rate of the refrigerant flowing through the channel (C) is also reduced. Further, the channel length of each refrigerant channel (C) is also shortened. The pressure loss of the refrigerant flowing through the refrigerant channel (C) is proportional to the square of the refrigerant flow velocity and the length of the refrigerant channel (C). Therefore, pressure loss can be reduced by adopting such a configuration.

また、熱交換器では、隣り合う列部(30,40)の扁平管(31,41)が互いに沿うように形成され、各扁平管(31,41)の1つ以上の屈曲部(33a,33b,33c)により折り曲げられる。このため、1列の扁平管(31,41)を幅方向に長くする構成と比較して、扁平管(31,41)の曲げ加工も容易となる。     Further, in the heat exchanger, the flat tubes (31, 41) of the adjacent row portions (30, 40) are formed along each other, and one or more bent portions (33a, 33b, 33c). For this reason, compared with the structure which lengthens the flat tube (31, 41) of 1 row in the width direction, the bending process of a flat tube (31, 41) becomes easy.

第2の発明は、第1の発明において、上記各列部(30,40)には、該列部(30,40)の扁平管(31,41)の配列方向に並んだ複数の扁平管(31,41)に対応する主熱交換領域(35,45)と、該主熱交換領域(35,45)よりも扁平管(31,41)の数が少ない扁平管(31,41)に対応する補助熱交換領域(37,47)とが形成され、上記複数の列部(30,40)は、該複数の列部(30,40)間で空気の通過方向に隣り合う各主熱交換領域(35,45)及び各補助熱交換領域(37,47)においてそれぞれ冷媒が並列に流れるように構成されることを特徴とする。     In a second aspect based on the first aspect, each of the row portions (30, 40) includes a plurality of flat tubes arranged in the arrangement direction of the flat tubes (31, 41) of the row portions (30, 40). A main heat exchange area (35,45) corresponding to (31,41) and a flat pipe (31,41) having a smaller number of flat pipes (31,41) than the main heat exchange area (35,45). Corresponding auxiliary heat exchange regions (37, 47) are formed, and the plurality of row portions (30, 40) are adjacent to each other in the air passing direction between the plurality of row portions (30, 40). The refrigerant is configured to flow in parallel in the exchange region (35, 45) and each auxiliary heat exchange region (37, 47).

第2の発明では、各列部(30,40)において主熱交換領域(35,45)と補助熱交換領域(37,47)とが形成される。冷媒は、各列部(30,40)の主熱交換領域(35,45)の各扁平管(31,41)、及び各列部(30,40)の補助熱交換領域(37,47)の各扁平管(31,41)をそれぞれ並行に流れる。これにより、各主熱交換領域(35,45)や各補助熱交換領域(37,47)を流れる冷媒の圧力損失を低減できる。     In the second invention, the main heat exchange region (35, 45) and the auxiliary heat exchange region (37, 47) are formed in each row portion (30, 40). Refrigerant includes each flat tube (31, 41) in the main heat exchange area (35, 45) of each row (30, 40), and auxiliary heat exchange area (37, 47) in each row (30, 40). Each of the flat tubes (31, 41) flows in parallel. Thereby, the pressure loss of the refrigerant | coolant which flows through each main heat exchange area | region (35,45) and each auxiliary heat exchange area | region (37,47) can be reduced.

第3の発明は、第2の発明において、複数の列部(30,40)は、空気の通過方向に隣り合う列部(30,40)間の各主熱交換領域(35,45)及び各補助熱交換領域(37,47)の扁平管(31,41)の冷媒の流れる方向が互いに同じ向きとなるように構成され、上記各列部(30,40)の上記各主熱交換領域(35,45)の各扁平管(31,41)の一端部に分岐するように連通するガス分岐管(29)と上記各列部(30,40)の上記各補助熱交換領域(37,47)の各扁平管(31,41)のうち上記ガス分岐管(29)側の一端部に分岐するように連通する液分岐管(28)と、上記各列部(30,40)の各主熱交換領域(35,45)の各扁平管(31,41)の他端部と、上記各列部(30,40)の各補助熱交換領域(37,47)の各扁平管(31,41)の他端部とを連通する連絡管(68,88)とを備えていることを特徴とする。     According to a third aspect, in the second aspect, the plurality of row portions (30, 40) include the main heat exchange regions (35, 45) between the row portions (30, 40) adjacent to each other in the air passage direction. Each auxiliary heat exchange region (37, 47) is configured so that the refrigerant flows in the flat tubes (31, 41) in the same direction, and each main heat exchange region in each row portion (30, 40). (35, 45) of each flat pipe (31, 41) and a gas branch pipe (29) communicating so as to branch to one end of the flat pipe (31, 41) and each auxiliary heat exchange region (37, 47) of each of the flat pipes (31, 41), the liquid branch pipe (28) communicating so as to branch to one end on the gas branch pipe (29) side, and each of the row sections (30, 40). The other end of each flat tube (31, 41) in the main heat exchange region (35, 45) and each flat tube (31 in each auxiliary heat exchange region (37, 47) of each row (30, 40). , 41) and a communication pipe (68, 88) communicating with the other end.

第3の発明では、隣り合う列部(30,40)の各主熱交換領域(35,45)及び各補助熱交換領域(37,47)では、各扁平管(31,41)を流れる冷媒の方向が互いに同じとなる。そして、各列部(30,40)には、連絡管(68,88)と液分岐管(28)とガス分岐管(29)とが接続される。具体的に、各列部(30,40)では、扁平管(31,41)の一端部側にガス分岐管(29)と液分岐管(28)とが設けられ、扁平管(31,41)の他端部側に連絡管(68,88)が設けられる。これにより、熱交換器では、ガス分岐管(29)と液分岐管(28)の配置スペースが集約される。     In 3rd invention, in each main heat exchange area | region (35,45) and each auxiliary heat exchange area | region (37,47) of an adjacent row | line | column part (30,40), the refrigerant | coolant which flows through each flat tube (31,41) Are in the same direction. A connecting pipe (68, 88), a liquid branch pipe (28), and a gas branch pipe (29) are connected to each row portion (30, 40). Specifically, in each row portion (30, 40), a gas branch pipe (29) and a liquid branch pipe (28) are provided on one end side of the flat pipe (31, 41), and the flat pipe (31, 41) is provided. ) Is provided with a connecting pipe (68, 88). Thereby, in a heat exchanger, arrangement space of a gas branch pipe (29) and a liquid branch pipe (28) is collected.

第4の発明は、第1又は第2の発明において、複数の列部(30,40)は、蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)の冷媒の流れる方向が互いに逆向きとなるように構成されていることを特徴とする。     According to a fourth invention, in the first or second invention, when the plurality of row portions (30, 40) function as an evaporator, the flatness between the row portions (30, 40) adjacent to each other in the air passage direction is provided. The pipes (31, 41) are configured so that the refrigerant flows in opposite directions.

第4の発明では、熱交換器が蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)の扁平管(31,41)を冷媒が並行に流れる。更に、隣り合う列部(30,40)の扁平管(31,41)では、冷媒の方向が逆向きとなる。仮に隣り合う列部(30,40)の扁平管(31,41)において、冷媒の流れる向きが同じである場合、隣り合う列部(30,40)の扁平管(31,41)では、冷媒の過熱領域が空気の通過方向に重なりやすい。一方、各列部(30,40)の扁平管(31,41)では、冷媒の過熱領域以外の部分の温度が低いため、空気中で結露した水分が扁平管(31,41)やフィン(32,42)の表面で着霜し易くなる。このような状態では、各列部(30,40)のうち過熱領域の近傍において、空気の通風抵抗が小さくなるため、この領域を空気が偏流しやすくなる。すると、熱交換器では、空気が全体を均一に流れなくなるため、熱交換効率の低下を招く。     In 4th invention, when a heat exchanger functions as an evaporator, a refrigerant | coolant flows through the flat tube (31, 41) of the row | line | column part (30, 40) adjacent to the passage direction of air in parallel. Further, in the flat tubes (31, 41) of the adjacent row portions (30, 40), the direction of the refrigerant is reversed. If the refrigerant flows in the flat tubes (31, 41) in the adjacent row portions (30, 40) in the same direction, the refrigerant in the flat tubes (31, 41) in the adjacent row portions (30, 40) The overheating region of the air tends to overlap in the air passage direction. On the other hand, in the flat tubes (31, 41) of each row (30, 40), the temperature of the portion other than the superheated region of the refrigerant is low, so that moisture condensed in the air can be removed from the flat tubes (31, 41) and fins ( It becomes easy to form frost on the surface of 32,42). In such a state, the air ventilation resistance decreases in the vicinity of the overheated region in each row portion (30, 40), so that air tends to drift in this region. As a result, in the heat exchanger, the air does not flow uniformly throughout, and the heat exchange efficiency is reduced.

これに対し、本発明では、隣り合う列部(30,40)の扁平管(31,41)を流れる冷媒の流れが逆向きとなるので、各列部(30,40)の扁平管(31,41)の過熱領域が互いに遠くなる。従って、空気の偏流を防止できる。     On the other hand, in the present invention, since the flow of the refrigerant flowing through the flat tubes (31, 41) of the adjacent row portions (30, 40) is reversed, the flat tubes (31 of each row portion (30, 40) are arranged. , 41) are distant from each other. Therefore, air drift can be prevented.

第5の発明は、第4の発明において、複数の列部(30,40)は、上記蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)を流れる冷媒の過熱領域(S1,S2)が、空気の通過方向において互いに重ならないように構成されることを特徴とする。     In a fifth aspect based on the fourth aspect, when the plurality of row portions (30, 40) function as the evaporator, the flat tube (30, 40) between the row portions (30, 40) adjacent in the air passage direction ( 31 and 41), the superheated areas (S1, S2) of the refrigerant flowing in the air passing direction are configured not to overlap each other.

第5の発明の各列部(30,40)では、隣り合う列部(30,40)の扁平管(31,41)の冷媒の方向が逆向きとなり、各列部(30,40)の扁平管(31,41)の過熱領域(S1,S2)が重ならないように構成される。各列部(30,40)の過熱領域(S1,S2)が空気の通過方向に重なると、この重複部分ばかりを空気が流れてしまう恐れがある。これに対し、本発明では、過熱領域(S1,S2)が重ならないため、空気の偏流を確実に防止できる。     In each row portion (30, 40) of the fifth invention, the direction of the refrigerant in the flat tube (31, 41) of the adjacent row portion (30, 40) is reversed, and each row portion (30, 40) The superheated area (S1, S2) of the flat tube (31, 41) is configured not to overlap. If the superheated areas (S1, S2) of the row portions (30, 40) overlap in the air passage direction, there is a possibility that the air flows only in the overlapping portions. On the other hand, in the present invention, since the overheating regions (S1, S2) do not overlap, it is possible to reliably prevent air drift.

第6の発明では、第1乃至第5のいずれか1つの発明の熱交換器(23)が、空気調和機(10)の冷媒回路(20)に設けられる。熱交換器(23)において、冷媒回路(20)を循環する冷媒は、空気から吸熱して蒸発し、又は空気へ放熱して凝縮する。     In the sixth invention, the heat exchanger (23) of any one of the first to fifth inventions is provided in the refrigerant circuit (20) of the air conditioner (10). In the heat exchanger (23), the refrigerant circulating in the refrigerant circuit (20) absorbs heat from the air and evaporates, or releases heat to the air and condenses.

本発明では、各列部(30,40)の扁平管(31,41)において冷媒を並行に流すようにしたので、各扁平管(31,41)の冷媒流路(C)を流れる冷媒の圧力損失を大幅に低減できる。この結果、圧力損失の増大に起因する動力の増大を抑制しつつ、所望の熱交換効率を得ることができる。     In the present invention, since the refrigerant is caused to flow in parallel in the flat tubes (31, 41) of the respective rows (30, 40), the refrigerant flowing through the refrigerant flow path (C) of each flat tube (31, 41) Pressure loss can be greatly reduced. As a result, desired heat exchange efficiency can be obtained while suppressing an increase in power due to an increase in pressure loss.

また、扁平管(31,41)を幅方向に長くする必要がないので、各列部(30,40)の扁平管(31,41)の曲げ加工も容易となる。これにより、各列部(30,40)の扁平管(31,41)を折り曲げて、2〜4面式の熱交換器を製造でき、熱交換器のコンパクト化を図ることができる。また、各扁平管(31,41)の幅が短くなることで、各列部(30,40)の扁平管(31,41)の間の通風抵抗を低減でき、熱透過率の減少を抑制できる。更に、扁平管(31,41)の幅が狭くなることで、扁平管(31,41)の上側に結露水が滞ることを防止できる。この結果、扁平管(31,41)の表面での着霜を防止できる。     Further, since it is not necessary to lengthen the flat tubes (31, 41) in the width direction, it is easy to bend the flat tubes (31, 41) of the row portions (30, 40). Thereby, the flat pipe | tube (31, 41) of each row | line | column part (30, 40) can be bent, a 2-4 surface type heat exchanger can be manufactured, and the heat exchanger can be made compact. In addition, by reducing the width of each flat tube (31, 41), it is possible to reduce the ventilation resistance between the flat tubes (31, 41) of each row (30, 40) and suppress the decrease in heat transmittance it can. Further, the narrow width of the flat tube (31, 41) can prevent the condensed water from staying on the upper side of the flat tube (31, 41). As a result, frost formation on the surface of the flat tube (31, 41) can be prevented.

第2の発明では、主熱交換領域(35,45)と補助熱交換領域(37,47)の双方で冷媒の圧力損失を低減できる。     In the second invention, the pressure loss of the refrigerant can be reduced in both the main heat exchange region (35, 45) and the auxiliary heat exchange region (37, 47).

第3の発明では、各列部(30,40)に冷媒を並行に流すための液分岐管(28)やガス分岐管(29)を集約して配置できる。これにより、配管のスペースをコンパクト化、あるいは配管の据え付けの容易化を図ることができる。     In the third invention, the liquid branch pipe (28) and the gas branch pipe (29) for allowing the refrigerant to flow in parallel to the respective row portions (30, 40) can be arranged in an integrated manner. Thereby, the space of piping can be made compact or the installation of piping can be facilitated.

第4及び第5の発明では、熱交換器が蒸発器として機能する際、冷媒の過熱領域(S1,S2)が重なることを防止できる。これにより、過熱領域(S1,S2)ばかりに空気が偏流してしまうことを抑制できる。この結果、過熱領域(S1,S2)以外の部分の扁平管(31,41)やフィン(32,42)の表面で着霜が生じたとしても、熱交換器の全域に空気を均一に流しやすくなり、熱交換効率、ひいては蒸発性能の向上を図ることができる。     In the 4th and 5th invention, when a heat exchanger functions as an evaporator, it can prevent that the superheat region (S1, S2) of a refrigerant overlaps. Thereby, it can suppress that air drifts only to an overheating area | region (S1, S2). As a result, even if frost formation occurs on the surface of the flat tubes (31, 41) and fins (32, 42) outside the superheated area (S1, S2), air is allowed to flow uniformly over the entire heat exchanger. It becomes easy to improve the heat exchange efficiency and consequently the evaporation performance.

図1は、実施形態1に係る空気調和機の概略構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of the air conditioner according to the first embodiment. 図2は、室外熱交換器の概略の斜視図である。FIG. 2 is a schematic perspective view of the outdoor heat exchanger. 図3は、室外熱交換器の風上列部を平面状に展開した概略の構成図であり、凝縮器として機能する際の冷媒の流れを表している。FIG. 3 is a schematic configuration diagram in which the windward row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as a condenser. 図4は、室外熱交換器の風下列部を平面状に展開した概略の構成図であり、凝縮器として機能する際の冷媒の流れを表している。FIG. 4 is a schematic configuration diagram in which the leeward row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as a condenser. 図5は、図3のAで示した部分を拡大した縦断面図である。FIG. 5 is an enlarged longitudinal sectional view of a portion indicated by A in FIG. 図6は、図3のBで示した部分を拡大した縦断面図である。FIG. 6 is an enlarged longitudinal sectional view of a portion indicated by B in FIG. 図7は、図5のVII-VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、図6のVIII-VIII線断面図である。8 is a cross-sectional view taken along line VIII-VIII in FIG. 図9は、図6のVIIII-VIIII線断面図である。9 is a sectional view taken along line VIIII-VIIII in FIG. 図10は、図5のX-X線断面図である。10 is a cross-sectional view taken along line XX in FIG. 図11は、凝縮器として機能する室外熱交換器における冷媒と空気の温度変化を示すグラフである。FIG. 11 is a graph showing temperature changes of the refrigerant and air in the outdoor heat exchanger functioning as a condenser. 図12は、室外熱交換器の風上列部を平面状に展開した概略の構成図であり、蒸発器として機能する際の冷媒の流れを表している。FIG. 12 is a schematic configuration diagram in which the upwind row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as an evaporator. 図13は、室外熱交換器の風下列部を平面状に展開した概略の構成図であり、蒸発器として機能する際の冷媒の流れを表している。FIG. 13 is a schematic configuration diagram in which the leeward row portion of the outdoor heat exchanger is developed in a planar shape, and shows the flow of the refrigerant when functioning as an evaporator. 図14は、蒸発器として機能する室外熱交換器における冷媒と空気の温度変化を示すグラフである。FIG. 14 is a graph showing temperature changes of refrigerant and air in the outdoor heat exchanger functioning as an evaporator. 図15は、実施形態2に係る室外熱交換器の図2に相当する図である。FIG. 15 is a diagram corresponding to FIG. 2 of the outdoor heat exchanger according to the second embodiment. 図16は、実施形態2に係る室外熱交換器の図3に相当する図である。FIG. 16 is a diagram corresponding to FIG. 3 of the outdoor heat exchanger according to the second embodiment. 図17は、実施形態2に係る室外熱交換器の図4に相当する図である。FIG. 17 is a diagram corresponding to FIG. 4 of the outdoor heat exchanger according to the second embodiment. 図18は、実施形態2に係る室外熱交換器の図12に相当する図である。FIG. 18 is a diagram corresponding to FIG. 12 of the outdoor heat exchanger according to the second embodiment. 図19は、実施形態2に係る室外熱交換器の図13に相当する図である。FIG. 19 is a diagram corresponding to FIG. 13 of the outdoor heat exchanger according to the second embodiment. 図20は、凝縮器として機能する室外熱交換器の概略の上面図である。FIG. 20 is a schematic top view of an outdoor heat exchanger that functions as a condenser. 図21は、その他の実施形態に係る室外熱交換器の図7に相当する図である。FIG. 21 is a view corresponding to FIG. 7 of an outdoor heat exchanger according to another embodiment.

本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する各形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Embodiments of the present invention will be described in detail with reference to the drawings. In addition, each form demonstrated below is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

《実施形態1》
本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。
Embodiment 1
The heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Below, an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.

〈空気調和機の全体構成〉
空気調和機(10)について、図1を参照しながら説明する。
<Overall configuration of air conditioner>
The air conditioner (10) will be described with reference to FIG.

空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)およびガス側連絡配管(14)が接続されることで、冷媒回路(20)が形成されている。     The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14). In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor unit (11), the indoor unit (12), the liquid side connection pipe (13) and the gas side connection pipe (14). ing.

冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、および膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。     The refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing. The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). The indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).

冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに、その吸入管が四方切換弁(22)の第2のポートに、それぞれ接続されている。冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。この冷媒回路(20)において、室外熱交換器(23)は、配管(17)を介して膨張弁(24)に接続され、配管(18)を介して四方切換弁(22)の第3のポートに接続される。     The refrigerant circuit (20) is a closed circuit filled with a refrigerant. In the refrigerant circuit (20), the compressor (21) has a discharge pipe connected to the first port of the four-way switching valve (22) and a suction pipe connected to the second port of the four-way switching valve (22). Has been. In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25) in order from the third port to the fourth port of the four-way switching valve (22). ) And are arranged. In this refrigerant circuit (20), the outdoor heat exchanger (23) is connected to the expansion valve (24) via the pipe (17), and the third of the four-way switching valve (22) via the pipe (18). Connected to the port.

圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。     The compressor (21) is a scroll type or rotary type hermetic compressor. The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve.

室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。   The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) will be described later. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.

−空気調和機の運転動作−
空気調和機(10)は、冷房運転と暖房運転を選択的に行う。
-Operation of air conditioner-
The air conditioner (10) selectively performs a cooling operation and a heating operation.

冷房運転中の冷媒回路(20)では、四方切換弁(22)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。     In the refrigerant circuit (20) during the cooling operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the first state. In this state, the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser. (25) functions as an evaporator. In the outdoor heat exchanger (23), the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).

暖房運転中の冷媒回路(20)では、四方切換弁(22)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。     In the refrigerant circuit (20) during the heating operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the second state. In this state, the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser. (23) functions as an evaporator. The refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24). The refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).

〈室外熱交換器の全体構成〉
実施形態1に係る室外熱交換器(23)について図2〜図11を適宜参照しながら説明する。なお、以下の説明に示す扁平管(31,41)の本数は、単なる一例である。
<Overall heat exchanger configuration>
The outdoor heat exchanger (23) according to Embodiment 1 will be described with reference to FIGS. Note that the number of flat tubes (31, 41) shown in the following description is merely an example.

図2に示すように、室外熱交換器(23)は、4つの側面部(23a,23b,23c,23d)を有する4面式の空気熱交換器である。具体的に、室外熱交換器(23)では、第1側面部(23a)、第2側面部(23b)、第3側面部(23c)、及び第4側面部(23d)が連続して形成される。第1側面部(23a)は図2の左下側に位置し、第2側面部(23b)は図2の左上側に位置し、第3側面部(23c)は図2の右上側に位置し、第4側面部(23d)は、図2の右下側に位置する。各側面部(23a,23b,23c,23d)の高さは概ね等しい。第1側面部(23a)及び第4側面部(23d)の各幅は、第2側面部(23b)及び第3側面部(23c)の幅より短い。     As shown in FIG. 2, the outdoor heat exchanger (23) is a four-sided air heat exchanger having four side portions (23a, 23b, 23c, 23d). Specifically, in the outdoor heat exchanger (23), the first side surface portion (23a), the second side surface portion (23b), the third side surface portion (23c), and the fourth side surface portion (23d) are continuously formed. Is done. The first side surface portion (23a) is located on the lower left side in FIG. 2, the second side surface portion (23b) is located on the upper left side in FIG. 2, and the third side surface portion (23c) is located on the upper right side in FIG. The fourth side surface portion (23d) is located on the lower right side of FIG. The height of each side part (23a, 23b, 23c, 23d) is substantially equal. The widths of the first side surface portion (23a) and the fourth side surface portion (23d) are shorter than the widths of the second side surface portion (23b) and the third side surface portion (23c).

室外熱交換器(23)では、室外ファン(15)が運転されることで、各側面部(23a,23b,23c,23d)の外側の室外空気が、各側面部(23a,23b,23c,23d)の内側へと流れる(図2の矢印を参照)。この空気は、室外ケーシング(図示省略)の上部に形成された吹出口より排出される。     In the outdoor heat exchanger (23), when the outdoor fan (15) is operated, the outdoor air outside the side surfaces (23a, 23b, 23c, 23d) is converted into the side surfaces (23a, 23b, 23c, 23d) (see arrow in FIG. 2). This air is exhausted from an air outlet formed in the upper part of an outdoor casing (not shown).

図2〜図4に示すように、室外熱交換器(23)は、扁平管(31,41)とフィン(32,42)とを有する2つの列部(30,40)を有する二列構造の熱交換器である。室外熱交換器(23)は、3つ以上の列部を有していてもよい。本実施形態の室外熱交換器(23)では、空気の通過方向の風上側の列部が風上列部(30)を構成し、風下側の列部が風下列部(40)を構成している。なお、図3及び図4では、風上列部(30)及び風下列部(40)をそれぞれ平面状に展開して模式的に表している。     As shown in FIGS. 2 to 4, the outdoor heat exchanger (23) has a two-row structure having two rows (30, 40) having flat tubes (31, 41) and fins (32, 42). It is a heat exchanger. The outdoor heat exchanger (23) may have three or more rows. In the outdoor heat exchanger (23) of the present embodiment, the windward row portion in the air passage direction constitutes the windward row portion (30), and the leeward row portion constitutes the leeward row portion (40). ing. In FIGS. 3 and 4, the windward row portion (30) and the leeward row portion (40) are each schematically developed in a planar shape.

室外熱交換器(23)は、第1ヘッダ集合管(50)、第2ヘッダ集合管(60)、第3ヘッダ集合管(70)、第4ヘッダ集合管(80)、第1分流ユニット(91)、及び第2分流ユニット(92)を有している。第1ヘッダ集合管(50)は、風上列部(30)のうち第1側面部(23a)側の一端部近傍に立設している。第2ヘッダ集合管(60)は、風上列部(30)のうち第4側面部(23d)側の他端部近傍に立設している。第3ヘッダ集合管(70)は、風下列部(40)のうち第1側面部(23a)側の一端部近傍に立設している。第4ヘッダ集合管(80)は、風下列部(40)のうち第4側面部(23d)側の他端部近傍に立設している。第1分流ユニット(91)は、第1ヘッダ集合管(50)の近傍に立設している。第2分流ユニット(92)は、第3ヘッダ集合管(70)の近傍に立設している。     The outdoor heat exchanger (23) includes a first header collecting pipe (50), a second header collecting pipe (60), a third header collecting pipe (70), a fourth header collecting pipe (80), a first shunt unit ( 91) and a second diversion unit (92). The first header collecting pipe (50) is erected in the vicinity of one end portion on the first side surface portion (23a) side of the windward row portion (30). The second header collecting pipe (60) is erected in the vicinity of the other end portion on the fourth side surface portion (23d) side of the windward row portion (30). The third header collecting pipe (70) is erected in the vicinity of one end of the leeward row portion (40) on the first side surface portion (23a) side. The fourth header collecting pipe (80) is erected in the vicinity of the other end of the leeward row portion (40) on the fourth side surface portion (23d) side. The first diversion unit (91) is erected in the vicinity of the first header collecting pipe (50). The second diversion unit (92) is erected in the vicinity of the third header collecting pipe (70).

扁平管(31,41)、フィン(32,42)、第1ヘッダ集合管(50)、第2ヘッダ集合管(60)、第3ヘッダ集合管(70)、第4ヘッダ集合管(80)、第1分流ユニット(91)、及び第2分流ユニット(92)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。     Flat tubes (31, 41), fins (32, 42), first header collecting tube (50), second header collecting tube (60), third header collecting tube (70), fourth header collecting tube (80) The first diversion unit (91) and the second diversion unit (92) are all made of an aluminum alloy and are joined to each other by brazing.

〔風上列部〕
図2、図3、図5〜図10に示すように、風上列部(30)は、多数の扁平管(31)と、多数のフィン(32)とを備えている。
(Windward section)
As shown in FIGS. 2, 3, and 5 to 10, the windward row portion (30) includes a large number of flat tubes (31) and a large number of fins (32).

扁平管(31)は、その軸直角断面の形状が扁平な略長円形となった伝熱管である(図7を参照)。複数の扁平管(31)は、上下の平坦な部分が対向する状態で配置される。つまり、複数の扁平管(31)は、互いに一定の間隔をおいて上下に並んで配列され、互いの筒軸が実質的に平行になっている。     The flat tube (31) is a heat transfer tube whose cross-section perpendicular to the axis is a flat, substantially oval shape (see FIG. 7). The plurality of flat tubes (31) are arranged with the upper and lower flat portions facing each other. In other words, the plurality of flat tubes (31) are arranged side by side at regular intervals, and the cylinder axes thereof are substantially parallel to each other.

図2に示すように、扁平管(31)は、第1側面部(23a)に沿った第1風上管部(31a)と、第2側面部(23b)に沿った第2風上管部(31b)と、第3側面部(23c)に沿った第3風上管部(31c)と、第4側面部(23d)に沿った第4風上管部(31d)とを有している。図2に示すように、扁平管(31)には、第1風上管部(31a)を第2風上管部(31b)に対して水平内向きに略直角に折り曲げる第1風上屈曲部(33a)と、第2風上管部(31b)に対して第3風上管部(31c)を水平内向きに略直角に折り曲げる第2風上屈曲部(33b)と、第3風上管部(31c)に対して第4風上管部(31d)を水平内向きに略直角に折り曲げる第3風上屈曲部(33c)とが設けられる。     As shown in FIG. 2, the flat tube (31) includes a first upwind tube portion (31a) along the first side surface portion (23a) and a second upwind tube along the second side surface portion (23b). Part (31b), a third upwind pipe part (31c) along the third side part (23c), and a fourth upwind pipe part (31d) along the fourth side part (23d) ing. As shown in FIG. 2, the first upwind bend is formed on the flat tube (31) by bending the first upwind tube portion (31a) inwardly at a substantially right angle to the second upwind tube portion (31b). A second upwind bent portion (33b) for bending the third upwind tube portion (31c) horizontally inward at a substantially right angle with respect to the portion (33a), the second upwind tube portion (31b), and a third wind A third upwind bent portion (33c) is provided that bends the fourth upwind tube portion (31d) horizontally inward at a substantially right angle with respect to the upper tube portion (31c).

各扁平管(31)は、第1風上管部(31a)の端部が第1ヘッダ集合管(50)に挿入され(図5を参照)、第4風上管部(31d)の端部が第2ヘッダ集合管(60)に挿入される(図6を参照)。     Each flat tube (31) has an end portion of the first upwind tube portion (31a) inserted into the first header collecting tube (50) (see FIG. 5), and an end portion of the fourth upwind tube portion (31d). Is inserted into the second header collecting pipe (60) (see FIG. 6).

図7に示すように、各扁平管(31)には、複数の冷媒流路(C)が形成されている。複数の冷媒流路(C)は、扁平管(31)の筒軸方向に延びる通路であり、扁平管(31)の幅方向(空気の通過方向)に一列に並んでいる。各冷媒流路(C)は、扁平管(31)の両端面に開口している。風上列部(30)へ供給された冷媒は、扁平管(31)の冷媒流路(C)を流れる間に空気と熱交換する。風上列部(30)の各扁平管(31)の複数の冷媒流路(C)は、風上冷媒流路群(C1)を構成している。     As shown in FIG. 7, a plurality of refrigerant channels (C) are formed in each flat tube (31). The plurality of refrigerant channels (C) are passages extending in the cylinder axis direction of the flat tube (31), and are arranged in a line in the width direction (air passing direction) of the flat tube (31). Each refrigerant channel (C) opens at both end faces of the flat tube (31). The refrigerant supplied to the windward row section (30) exchanges heat with air while flowing through the refrigerant flow path (C) of the flat tube (31). The plurality of refrigerant channels (C) of each flat tube (31) of the windward row section (30) constitutes an upwind refrigerant channel group (C1).

図7に示すように、フィン(32)は、金属板をプレス加工することによって形成された縦長の板状フィンである。複数のフィン(32)は、扁平管(31)の軸方向に一定の間隔をおいて配列されている。フィン(32)には、フィン(32)の外縁(即ち、風上側の縁部)からフィン(32)の幅方向に延びる細長い切り欠き部(32a)が、多数形成されている。フィン(32)では、多数の切り欠き部(32a)がフィン(32)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(32a)の風上寄りの部分は、管挿入部(32b)を構成している。扁平管(31)は、管挿入部(32b)に挿入され、管挿入部(32b)の周縁部とロウ付けによって接合される。また、フィン(32)には、伝熱を促進するためのルーバー(32c)が形成されている。     As shown in FIG. 7, the fin (32) is a vertically long plate-like fin formed by pressing a metal plate. The plurality of fins (32) are arranged at regular intervals in the axial direction of the flat tube (31). The fin (32) has a number of elongated notches (32a) extending in the width direction of the fin (32) from the outer edge of the fin (32) (that is, the windward edge). In the fin (32), a large number of notches (32a) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (32). The portion closer to the windward side of the notch (32a) constitutes the tube insertion portion (32b). The flat tube (31) is inserted into the tube insertion portion (32b) and joined to the peripheral portion of the tube insertion portion (32b) by brazing. Moreover, the louver (32c) for promoting heat transfer is formed in the fin (32).

図3に示すように、風上列部(30)には、上下に2つの熱交換領域(35,37)が形成されている。上側の熱交換領域は、風上主熱交換領域(35)を構成し、下側の熱交換領域は、風上補助熱交換領域(37)を構成する。風上補助熱交換領域(37)に対応する扁平管(31)の本数は、風上主熱交換領域(35)を構成する扁平管(31)の本数よりも少ない。     As shown in FIG. 3, two heat exchange regions (35, 37) are formed in the upper and lower rows in the windward row portion (30). The upper heat exchange area constitutes the upwind main heat exchange area (35), and the lower heat exchange area constitutes the upwind auxiliary heat exchange area (37). The number of flat tubes (31) corresponding to the upwind auxiliary heat exchange region (37) is smaller than the number of flat tubes (31) constituting the upwind main heat exchange region (35).

風上主熱交換領域(35)は、上下に並ぶ6つの風上主熱交換部(36)に区分されている。風上補助熱交換領域(37)は、上下に並ぶ6つの風上補助熱交換部(38)に区分されている。つまり、風上主熱交換領域(35)と風上補助熱交換領域(37)は、それぞれ同数の熱交換部に区分されている。なお、風上主熱交換部(36)及び風上補助熱交換部(38)の数は単なる一例であり、複数であることが好ましい。     The upwind main heat exchange area (35) is divided into six upwind main heat exchange sections (36) arranged vertically. The upwind auxiliary heat exchange region (37) is divided into six upwind auxiliary heat exchange sections (38) arranged vertically. That is, the upwind main heat exchange region (35) and the upwind auxiliary heat exchange region (37) are each divided into the same number of heat exchange units. In addition, the number of the upwind main heat exchange part (36) and the upwind auxiliary heat exchange part (38) is a mere example, and it is preferable that it is plural.

図3及び図6に示すように、各風上主熱交換部(36)には、同数(例えば6本)の扁平管(31)が設けられている。各風上主熱交換部(36)に設けられる扁平管(31)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIGS. 3 and 6, each upwind main heat exchange section (36) is provided with the same number (for example, six) of flat tubes (31). The number of flat tubes (31) provided in each upwind main heat exchange section (36) is merely an example, and may be a plurality or one.

図3及び図5に示すように、各風上補助熱交換部(38)には、同数(例えば2本)の扁平管(31)が設けられている。各風上補助熱交換部(38)に設けられる扁平管(31)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIGS. 3 and 5, each upwind auxiliary heat exchange section (38) is provided with the same number (for example, two) of flat tubes (31). The number of flat tubes (31) provided in each upwind auxiliary heat exchange section (38) is merely an example, and may be plural or one.

〔風下列部〕
図2、図4、図5〜図10に示すように、風下列部(40)は、多数の扁平管(41)と、多数のフィン(42)とを備えている。
(Leeward row)
As shown in FIGS. 2, 4, and 5 to 10, the leeward row section (40) includes a large number of flat tubes (41) and a large number of fins (42).

扁平管(41)は、その軸直角断面の形状が扁平な略長円形となった伝熱管である(図7を参照)。複数の扁平管(41)は、上下の平坦な部分が対向する状態で配置される。つまり、複数の扁平管(41)は、互いに一定の間隔をおいて上下に並んで配列され、互いの筒軸が実質的に平行になっている。     The flat tube (41) is a heat transfer tube whose cross section perpendicular to the axis is a flat, oval shape (see FIG. 7). The plurality of flat tubes (41) are arranged with the upper and lower flat portions facing each other. That is, the plurality of flat tubes (41) are arranged side by side with a certain distance from each other, and the cylinder axes thereof are substantially parallel to each other.

図2に示すように、扁平管(41)は、第1風上管部(31a)の内縁に沿った第1風下管部(41a)と、第2風上管部(31b)の内縁に沿った第2風下管部(41b)と、第3風上管部(31c)の内縁に沿った第3風下管部(41c)と、第4風上管部(31d)の内縁に沿った第4風下管部(41d)とを有している。扁平管(41)には、第1風下管部(41a)を第2風下管部(41b)に対して水平内向きに略直角に折り曲げる第1風下屈曲部(43a)と、第2風下管部(41b)に対して第3風下管部(41c)を水平内向きに略直角に折り曲げる第2風下屈曲部(43b)と、第3風下管部(41c)に対して第4風下管部(41d)を水平内向きに略直角に折り曲げる第3風下屈曲部(43c)とが設けられる。     As shown in FIG. 2, the flat tube (41) is formed on the first leeward tube portion (41a) along the inner edge of the first windward tube portion (31a) and on the inner edge of the second windward tube portion (31b). Along the second leeward pipe part (41b) along, the third leeward pipe part (41c) along the inner edge of the third upwind pipe part (31c), and along the inner edge of the fourth upwind pipe part (31d) And a fourth leeward pipe portion (41d). The flat tube (41) includes a first leeward bend portion (43a) that bends the first leeward tube portion (41a) horizontally inward at a substantially right angle with respect to the second leeward tube portion (41b), and a second leeward tube. A second leeward bent part (43b) that bends the third leeward pipe part (41c) horizontally inward at a substantially right angle with respect to the part (41b), and a fourth leeward pipe part with respect to the third leeward pipe part (41c). A third leeward bent portion (43c) that bends (41d) horizontally inward at a substantially right angle is provided.

各扁平管(41)は、第1風下管部(41a)の端部が第3ヘッダ集合管(70)に挿入され、第4風下管部(41d)の端部が第4ヘッダ集合管(80)に挿入される(図4を参照)。     In each flat tube (41), the end portion of the first leeward pipe portion (41a) is inserted into the third header collecting pipe (70), and the end portion of the fourth leeward pipe portion (41d) is inserted into the fourth header collecting pipe ( 80) (see FIG. 4).

図7〜図10に示すように、各扁平管(41)には、複数の冷媒流路(C)が形成されている。複数の冷媒流路(C)は、扁平管(41)の筒軸方向に延びる通路であり、扁平管(41)の幅方向(空気の通過方向)に一列に並んでいる。各冷媒流路(C)は、扁平管(41)の両端面に開口している。風下列部(40)へ供給された冷媒は、扁平管(41)の冷媒流路(C)を流れる間に空気と熱交換する。風下列部(40)の各扁平管(41)の複数の冷媒流路(C)は、風下冷媒流路群(C2)を構成している。     As shown in FIGS. 7 to 10, each flat tube (41) is formed with a plurality of refrigerant channels (C). The plurality of refrigerant channels (C) are passages extending in the cylinder axis direction of the flat tube (41), and are arranged in a line in the width direction (air passing direction) of the flat tube (41). Each refrigerant channel (C) opens at both end faces of the flat tube (41). The refrigerant supplied to the leeward row section (40) exchanges heat with air while flowing through the refrigerant flow path (C) of the flat tube (41). The plurality of refrigerant channels (C) of each flat tube (41) in the leeward row section (40) constitutes a leeward refrigerant channel group (C2).

図7に示すように、フィン(42)は、金属板をプレス加工することによって形成された縦長の板状フィンである。複数のフィン(42)は、扁平管(41)の軸方向に一定の間隔をおいて配列されている。フィン(42)には、フィン(42)の外縁(即ち、風上側の縁部)からフィン(42)の幅方向に延びる細長い切り欠き部(42a)が、多数形成されている。フィン(42)では、多数の切り欠き部(42a)がフィン(42)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(42a)の風上寄りの部分は、管挿入部(42b)を構成している。扁平管(41)は、管挿入部(42b)に挿入され、管挿入部(42b)の周縁部とロウ付けによって接合される。また、フィン(42)には、伝熱を促進するためのルーバー(42c)が形成されている。     As shown in FIG. 7, the fin (42) is a vertically long plate-like fin formed by pressing a metal plate. The plurality of fins (42) are arranged at regular intervals in the axial direction of the flat tube (41). The fin (42) is formed with a number of elongated notches (42a) extending in the width direction of the fin (42) from the outer edge (ie, the windward edge) of the fin (42). In the fin (42), a large number of notches (42a) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (42). A portion closer to the windward side of the notch (42a) constitutes a tube insertion portion (42b). The flat tube (41) is inserted into the tube insertion portion (42b) and joined to the peripheral portion of the tube insertion portion (42b) by brazing. In addition, a louver (42c) for promoting heat transfer is formed on the fin (42).

図4に示すように、風下列部(40)には、上下に2つの熱交換領域(45,47)が形成されている。上側の熱交換領域は、風下主熱交換領域(45)を構成し、下側の熱交換領域は、風下補助熱交換領域(47)を構成する。風下補助熱交換領域(47)に対応する扁平管(41)の本数は、風下主熱交換領域(45)を構成する扁平管(41)の本数よりも少ない。     As shown in FIG. 4, two heat exchange regions (45, 47) are formed at the top and bottom of the leeward row portion (40). The upper heat exchange area constitutes the leeward main heat exchange area (45), and the lower heat exchange area constitutes the leeward auxiliary heat exchange area (47). The number of flat tubes (41) corresponding to the leeward auxiliary heat exchange region (47) is smaller than the number of flat tubes (41) constituting the leeward main heat exchange region (45).

風下主熱交換領域(45)は、上下に並ぶ6つの風下主熱交換部(46)に区分されている。風下補助熱交換領域(47)は、上下に並ぶ6つの風下補助熱交換部(48)に区分されている。つまり、風下主熱交換領域(45)と風下補助熱交換領域(47)は、それぞれ同数の熱交換部に区分されている。なお、風下主熱交換部(46)及び風下補助熱交換部(48)の数は単なる一例であり、複数であることが好ましい。     The leeward main heat exchange region (45) is divided into six leeward main heat exchange sections (46) arranged vertically. The leeward auxiliary heat exchange region (47) is divided into six leeward auxiliary heat exchangers (48) arranged vertically. That is, the leeward main heat exchange region (45) and the leeward auxiliary heat exchange region (47) are each divided into the same number of heat exchange units. In addition, the number of the leeward main heat exchange part (46) and the leeward auxiliary heat exchange part (48) is a mere example, and it is preferable that it is plural.

図4に示すように、各風下主熱交換部(46)には、同数(例えば6本)の扁平管(41)が設けられている。各風下主熱交換部(46)に設けられる扁平管(41)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIG. 4, each leeward main heat exchange section (46) is provided with the same number (for example, six) of flat tubes (41). The number of flat tubes (41) provided in each leeward main heat exchange section (46) is merely an example, and may be a plurality or one.

図5及び図6に示すように、各風下補助熱交換部(48)には、同数(例えば2本)の扁平管(41)が設けられている。各風下補助熱交換部(48)に設けられる扁平管(41)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIG.5 and FIG.6, the same number (for example, two) flat tubes (41) are provided in each lee auxiliary heat exchange part (48). The number of flat tubes (41) provided in each lee auxiliary heat exchange section (48) is merely an example, and may be plural or one.

〔第3ヘッダ集合管〕
図2及び図4に示すように、第3ヘッダ集合管(70)は、上下の両端が閉塞された円筒状の部材である。第3ヘッダ集合管(70)の長さ(高さ)は、風上列部(30)及び風下列部(40)の高さと概ね一致している。
[Third header collecting pipe]
As shown in FIGS. 2 and 4, the third header collecting pipe (70) is a cylindrical member whose upper and lower ends are closed. The length (height) of the third header collecting pipe (70) substantially coincides with the heights of the windward row portion (30) and the leeward row portion (40).

第3ヘッダ集合管(70)の内部構造は、図5に示す第1ヘッダ集合管(50)と同様である。即ち、図4に示すように、第3ヘッダ集合管(70)の内部空間は、主仕切板(71)によって上下に仕切られている。主仕切板(71)の上側の空間は、風下主熱交換領域(45)に対応する風下上側空間(72)である。主仕切板(81)の下側の空間は、風下補助熱交換領域(47)に対応する風下下側空間(73)である。風下上側空間(72)の上下方向の中間部には、1本の第2主ガス管(72a)の一端が接続される。第2主ガス管(72a)の他端は、ガス側連絡配管(14)と連通している。     The internal structure of the third header collecting pipe (70) is the same as that of the first header collecting pipe (50) shown in FIG. That is, as shown in FIG. 4, the internal space of the third header collecting pipe (70) is partitioned vertically by the main partition plate (71). The space above the main partition (71) is the leeward upper space (72) corresponding to the leeward main heat exchange region (45). The space below the main partition plate (81) is a leeward space (73) corresponding to the leeward auxiliary heat exchange region (47). One end of one second main gas pipe (72a) is connected to an intermediate portion in the vertical direction of the leeward upper space (72). The other end of the second main gas pipe (72a) communicates with the gas side communication pipe (14).

風下下側空間(73)は、上下に等間隔置きに並んだ5枚の仕切板(74)によって6つ風下補助空間(75)に仕切られている。これらの6つの風下補助空間(75)は、6つの風下補助熱交換部(48)にそれぞれ1つずつ対応している。各風下補助空間(75)には、例えば2本の扁平管(41)の第1風下管部(41a)がそれぞれ連通している。     The leeward side space (73) is divided into six leeward auxiliary spaces (75) by five partition plates (74) arranged at equal intervals in the vertical direction. Each of these six leeward auxiliary spaces (75) corresponds to each of the six leeward auxiliary heat exchangers (48). For example, the first leeward pipe portion (41a) of two flat tubes (41) communicates with each leeward auxiliary space (75).

〔第4ヘッダ集合管〕
図2、図4、図8〜図10に示すように、第4ヘッダ集合管(80)は、上下の両端が閉塞された円筒状の部材である。第4ヘッダ集合管(80)の長さ(高さ)は、風上列部(30)及び風下列部(40)の高さと概ね一致している。
[Fourth header collecting pipe]
As shown in FIGS. 2, 4, and 8 to 10, the fourth header collecting pipe (80) is a cylindrical member whose upper and lower ends are closed. The length (height) of the fourth header collecting pipe (80) is substantially equal to the height of the windward row portion (30) and the leeward row portion (40).

第4ヘッダ集合管(80)の内部構造は、図6に示す第2ヘッダ集合管(60)と同様である。即ち、図4に示すように、第4ヘッダ集合管(80)の内部空間は、主仕切板(81)によって上下に仕切られている。主仕切板(81)の上側の空間は、風下主熱交換領域(45)に対応する風下上側空間(82)である。主仕切板(81)の下側の空間は、風下補助熱交換領域(47)に対応する風下下側空間(83)である。     The internal structure of the fourth header collecting pipe (80) is the same as that of the second header collecting pipe (60) shown in FIG. That is, as shown in FIG. 4, the internal space of the fourth header collecting pipe (80) is partitioned vertically by the main partition plate (81). The space above the main partition (81) is the leeward upper space (82) corresponding to the leeward main heat exchange region (45). The space below the main partition plate (81) is a leeward space (83) corresponding to the leeward auxiliary heat exchange region (47).

風下上側空間(82)は、上下に等間隔置きに並んだ5枚の仕切板(84)によって6つの風下主連絡空間(85)に仕切られている。これらの6つの風下主連絡空間(85)は、6つの風下主熱交換部(46)にそれぞれ1つずつ対応している。風下主連絡空間(85)には、例えば6本の扁平管(41)の第1風下管部(41a)がそれぞれ連通している。     The leeward upper space (82) is divided into six leeward main communication spaces (85) by five partition plates (84) arranged at equal intervals in the vertical direction. Each of these six leeward main communication spaces (85) corresponds to each of the six leeward main heat exchange sections (46). For example, the first leeward pipe part (41a) of six flat pipes (41) communicates with the leeward main communication space (85).

風下下側空間(83)は、上下に等間隔置きに並んだ5枚の仕切板(86)によって6つの風下補助連絡空間(87)に仕切られている。これらの6つの風下補助連絡空間(87)は、6つの風下補助熱交換部(48)にそれぞれ1つずつ対応している。各風下補助連絡空間(87)には、例えば2本の扁平管(41)の各第4風下管部(41d)がそれぞれ連通している。     The leeward side space (83) is partitioned into six leeward auxiliary communication spaces (87) by five partition plates (86) arranged at equal intervals in the vertical direction. These six leeward auxiliary communication spaces (87) correspond to the six leeward auxiliary heat exchange sections (48), respectively. For example, each fourth leeward pipe portion (41d) of two flat tubes (41) communicates with each leeward auxiliary communication space (87).

第4ヘッダ集合管(80)には、6つの風下連絡管(88)が接続されている。風下連絡管(88)は、風下列部(40)の風下主熱交換領域(45)の扁平管(41)の端部と風下補助熱交換領域(47)の扁平管(41)の端部とを繋いでいる。     Six leeward communication pipes (88) are connected to the fourth header collecting pipe (80). The leeward communication pipe (88) consists of the end of the flat pipe (41) in the leeward main heat exchange area (45) of the leeward row (40) and the end of the flat pipe (41) in the leeward auxiliary heat exchange area (47). Are connected.

具体的には、第1の風下連絡管(88)は、最上段の風下補助連絡空間(87)と最下段の風下主連絡空間(85)とを接続し、第2の風下連絡管(88)は、上から2段目の風下補助連絡空間(87)と下から2段目の風下主連絡空間(85)とを接続し、第3の風下連絡管(88)は、上から3段目の風下補助連絡空間(87)と下から3段目の風下主連絡空間(85)とを接続している。第4の風下連絡管(88)は、上から4段目の風下補助連絡空間(87)と下から4段目の風下主連絡空間(85)とを接続し、第5の風下連絡管(88)は、上から5段目の風下補助連絡空間(87)と下から5段目の風下主連絡空間(85)とを接続し、第6の風下連絡管(88)は、最下段の風下補助連絡空間(87)と最上段の風下主連絡空間(85)とを接続している。     Specifically, the first leeward communication pipe (88) connects the uppermost leeward auxiliary communication space (87) and the lowermost leeward main communication space (85), and the second leeward communication pipe (88). ) Connects the second leeward auxiliary communication space (87) from the top and the second leeward main communication space (85) from the bottom, and the third leeward communication pipe (88) has three steps from the top. The leeward auxiliary communication space (87) of the eyes is connected to the leeward main communication space (85) of the third level from the bottom. The fourth leeward communication pipe (88) connects the fourth leeward auxiliary communication space (87) from the top to the fourth leeward main communication space (85) from the bottom, and the fifth leeward communication pipe ( 88) connects the leeward auxiliary communication space (87) at the fifth level from the top to the main leeward communication space (85) at the fifth level from the bottom, and the sixth leeward communication pipe (88) is located at the bottom level. The leeward auxiliary communication space (87) is connected to the uppermost leeward main communication space (85).

〔第1分流ユニット〕
図2及び図3に示すように、第1分流ユニット(91)は、第1ヘッダ集合管(50)に取り付けられている。第1分流ユニット(91)は、円筒部(91a)と、6本の液側接続管(91b)と、1本の第1主液管(91c)とを有している。
[First shunt unit]
As shown in FIGS. 2 and 3, the first diversion unit (91) is attached to the first header collecting pipe (50). The first diversion unit (91) has a cylindrical portion (91a), six liquid side connection pipes (91b), and one first main liquid pipe (91c).

円筒部(91a)は、第1ヘッダ集合管(50)よりも低い円筒状に形成され、第1ヘッダ集合管(50)の下部に沿って起立している。6本の液側接続管(91b)は、上下に配列されて円筒部(91a)に接続されている。各液側接続管(91b)の本数は、風上補助連絡空間(67)の数と同数(本例では6つ)である。各液側接続管(91b)は、各風上補助連絡空間(67)とそれぞれ連通している。第1主液管(91c)の一端は、円筒部(91a)の下部に接続されている。第1主液管(91c)と各液側接続管(91b)とは、円筒部(91a)の内部空間を介して連通している。     The cylindrical portion (91a) is formed in a cylindrical shape lower than the first header collecting pipe (50), and stands along the lower portion of the first header collecting pipe (50). The six liquid side connection pipes (91b) are arranged vertically and connected to the cylindrical part (91a). The number of each liquid side connection pipe (91b) is the same number (six in this example) as the number of windward auxiliary communication spaces (67). Each liquid side connection pipe (91b) communicates with each upwind auxiliary communication space (67). One end of the first main liquid pipe (91c) is connected to the lower part of the cylindrical part (91a). The first main liquid pipe (91c) and each liquid side connection pipe (91b) communicate with each other through the internal space of the cylindrical portion (91a).

〔第2分流ユニット〕
図2及び図4に示すように、第2分流ユニット(92)は、第3ヘッダ集合管(70)に取り付けられている。第2分流ユニット(92)は、円筒部(92a)と、6本の液側接続管(92b)と、1本の第2主液管(92c)とを有している。
[Second shunt unit]
As shown in FIGS. 2 and 4, the second diversion unit (92) is attached to the third header collecting pipe (70). The second branch unit (92) includes a cylindrical portion (92a), six liquid side connection pipes (92b), and one second main liquid pipe (92c).

円筒部(92a)は、第3ヘッダ集合管(70)よりも低い円筒状に形成され、第3ヘッダ集合管(70)の下部に沿って起立している。6本の液側接続管(92b)は、上下に配列されて円筒部(92a)に接続されている。各液側接続管(92b)の本数は、風下補助空間(75)の数と同数(本例では6つ)である。各液側接続管(92b)は、各風下補助空間(75)とそれぞれ連通している。第2主液管(92c)の一端は、円筒部(92a)の下部に接続されている。第2主液管(92c)と各液側接続管(92b)とは、円筒部(92a)の内部空間を介して連通している。     The cylindrical portion (92a) is formed in a cylindrical shape lower than the third header collecting pipe (70), and stands up along the lower portion of the third header collecting pipe (70). The six liquid side connection pipes (92b) are arranged vertically and connected to the cylindrical part (92a). The number of each liquid side connection pipe (92b) is the same as the number of leeward auxiliary spaces (75) (six in this example). Each liquid side connection pipe (92b) communicates with each lee auxiliary space (75). One end of the second main liquid pipe (92c) is connected to the lower part of the cylindrical part (92a). The second main liquid pipe (92c) and each liquid side connection pipe (92b) communicate with each other through the internal space of the cylindrical portion (92a).

〔液分岐管〕
図2に模式的に示すように、第1分流ユニット(91)の第1主液管(91c)と第2分流ユニット(92)の第2主液管(92c)とには、液分岐管(28)が接続されている。液分岐管(28)は、二手に分岐し、各分流ユニット(91,92)及び各補助空間(55,75)と連通している。つまり、液分岐管(28)は、風上列部(30)の各扁平管(31)の他端部(第1風上管部(31a))と、風下列部(40)の各扁平管(41)の他端部(第1風下管部(41a))に分岐して連通している。
(Liquid branch pipe)
As schematically shown in FIG. 2, the first main liquid pipe (91c) of the first diversion unit (91) and the second main liquid pipe (92c) of the second diversion unit (92) include a liquid branch pipe. (28) is connected. The liquid branch pipe (28) is bifurcated and communicates with each branch unit (91, 92) and each auxiliary space (55, 75). That is, the liquid branch pipe (28) includes the other end of each flat pipe (31) (first upwind pipe section (31a)) of the upwind row section (30) and each flat of the downwind row section (40). The other end of the tube (41) (the first leeward tube (41a)) is branched and communicated.

〔ガス分岐管〕
図2に模式的に示すように、風上列部(30)の第1主ガス管(52a)と風下列部(40)の第2主ガス管(72a)とには、ガス分岐管(29)が接続されている。ガス分岐管(29)は、二手に分岐し、風上上側空間(52)及び風下上側空間(72)と連通している。つまり、ガス分岐管(29)は、風上列部(30)の他端部(第1風上管部(31a))と、風下列部(40)の他端部(第1風下管部(41a))に分岐するように連通している。
[Gas branch pipe]
As schematically shown in FIG. 2, the first main gas pipe (52a) of the leeward row portion (30) and the second main gas pipe (72a) of the leeward row portion (40) include a gas branch pipe ( 29) is connected. The gas branch pipe (29) is bifurcated and communicates with the windward upper space (52) and the windward upper space (72). That is, the gas branch pipe (29) includes the other end portion (first upwind pipe portion (31a)) of the windward row portion (30) and the other end portion (first leeward pipe portion of the leeward row portion (40). (41a)) so as to branch off.

−室外熱交換器の冷媒流れについて−
室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが並行になるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下主熱交換領域(45)の扁平管(41)とで冷媒が並行に流れ、且つ風上列部(30)の風下補助熱交換領域(47)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が並行に流れるように構成される。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに並行に流れるように構成される。
-Refrigerant flow in outdoor heat exchanger-
When the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (41 of the leeward row (40)) ) And the refrigerant flowing in parallel. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in parallel with the flat tube (41) of the leeward main heat exchange region (45) of 40), and the flat tube (31) of the leeward auxiliary heat exchange region (47) of the windward row (30), The refrigerant flows in parallel with the flat tube (41) in the leeward auxiliary heat exchange region (47) of the leeward row (40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2).

更に室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが互いに同じ方向となるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が互いに同一方向に流れる。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに同一方向に流れる。     Furthermore, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (40) of the leeward row (40) 41) and the refrigerant flowing in the same direction. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in the same direction through the flat tube (41) in the leeward auxiliary heat exchange region (47) of 40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2) flow in the same direction.

〔凝縮器の場合の冷媒の流れ〕
空気調和機(10)の冷房運転中には、室内熱交換器(25)が蒸発器として機能し、室外熱交換器(23)が凝縮器として機能する。ここでは、冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Refrigerant flow for condenser]
During the cooling operation of the air conditioner (10), the indoor heat exchanger (25) functions as an evaporator, and the outdoor heat exchanger (23) functions as a condenser. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the cooling operation will be described.

室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が、ガス分岐管(29)に流入し、第1主ガス管(52a)と第2主ガス管(72a)とに分流する。     In the outdoor heat exchanger (23), the gas refrigerant discharged from the compressor (21) flows into the gas branch pipe (29), and the first main gas pipe (52a) and the second main gas pipe (72a). Divide into and.

図3に示すように、第1主ガス管(52a)へ供給された冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)に流入し、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上補助熱交換部(38)に分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 3, the refrigerant supplied to the first main gas pipe (52a) flows into the upwind space (52) of the first header collecting pipe (50), and each upwind main heat exchange section ( 36). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind main heat exchange section (36) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each upwind main communication space (65) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60), and is distributed to each upwind auxiliary heat exchange section (38). The Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) further dissipates heat and condenses, and is in a supercooled state (ie, Liquid single phase state).

過冷却状態となった液冷媒は、第1ヘッダ集合管(50)の各風上補助空間(55)へ供給され、第1分流ユニット(91)で合流し、第1主液管(91c)を流れる。     The supercooled liquid refrigerant is supplied to each upwind auxiliary space (55) of the first header collecting pipe (50), and is merged by the first diversion unit (91), and the first main liquid pipe (91c). Flowing.

図4に示すように、第2主ガス管(72a)へ供給された冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)に流入し、風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下補助熱交換部(48)に分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 4, the refrigerant supplied to the second main gas pipe (72a) flows into the leeward upper space (72) of the third header collecting pipe (70) and enters the leeward main heat exchange section (46). Distributed. Each refrigerant passing through each leeward refrigerant flow path group (C2) of each flat tube (41) of each leeward main heat exchange section (46) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant that has flowed through each leeward communication pipe (88) is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80), and is distributed to each leeward auxiliary heat exchange section (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchanger (48) further dissipates heat to the air and condenses, and is in a supercooled state (that is, liquid unit Phase state).

過冷却状態となった液冷媒は、第3ヘッダ集合管(70)の各風下補助空間(75)へ供給され、第2分流ユニット(92)で合流し、第2主液管(92c)を流れる。     The supercooled liquid refrigerant is supplied to each leeward auxiliary space (75) of the third header collecting pipe (70), and is merged by the second diverting unit (92) to pass through the second main liquid pipe (92c). Flowing.

第1主液管(91c)を流れる冷媒と、第2主液管(92c)を流れる冷媒とは、液分岐管(28)で合流し、液側連絡配管(13)へ送られる。     The refrigerant flowing through the first main liquid pipe (91c) and the refrigerant flowing through the second main liquid pipe (92c) merge at the liquid branch pipe (28) and are sent to the liquid side connecting pipe (13).

〔凝縮器の場合の冷媒と空気の温度変化〕
凝縮器として機能する室外熱交換器(23)における空気と冷媒の温度変化の一例を、図11に示す。
[Changes in temperature of refrigerant and air in the case of a condenser]
An example of the temperature change of the air and the refrigerant in the outdoor heat exchanger (23) functioning as a condenser is shown in FIG.

風上主熱交換領域(35)の扁平管(31)には、70℃の過熱状態のガス冷媒が流入する。この冷媒は、風上主熱交換領域(35)の扁平管(31)の風上冷媒流路群(C1)の途中で50℃の飽和状態のガス冷媒となり、その後に次第に凝縮してゆく。風上主熱交換領域(35)から流出した冷媒は、風上補助熱交換領域(37)の扁平管(31)に流入する。この冷媒は、風上補助熱交換領域(37)の扁平管(31)の風上冷媒流路群(C1)で液単相状態の飽和冷媒(飽和温度50℃)となり、その後、更に放熱して過冷却状態(例えば42℃)となる。     An overheated gas refrigerant at 70 ° C. flows into the flat tube (31) in the upwind main heat exchange region (35). This refrigerant becomes a gas refrigerant in a saturated state at 50 ° C. in the middle of the upwind refrigerant flow path group (C1) of the flat tube (31) in the upwind main heat exchange region (35), and then gradually condenses. The refrigerant that has flowed out of the upwind main heat exchange region (35) flows into the flat tube (31) in the upwind auxiliary heat exchange region (37). This refrigerant becomes a liquid single-phase saturated refrigerant (saturation temperature 50 ° C.) in the upwind refrigerant flow path group (C1) of the flat tube (31) in the upwind auxiliary heat exchange region (37), and then further dissipates heat. Thus, a supercooled state (for example, 42 ° C.) is obtained.

風下主熱交換領域(45)の扁平管(41)には、70℃の過熱状態のガス冷媒が流入する。この冷媒は、風下主熱交換領域(45)の扁平管(41)の風下冷媒流路群(C2)の途中で50℃の飽和状態のガス冷媒となり、その後に次第に凝縮してゆく。風下主熱交換領域(45)から流出した冷媒は、風下補助熱交換領域(47)の扁平管(41)に流入する。この冷媒は、風下補助熱交換領域(47)の扁平管(41)の風下冷媒流路群(C2)で液単相状態の飽和冷媒(飽和温度50℃)となり、その後、更に放熱して過冷却状態(例えば47℃)となる。     An overheated gas refrigerant at 70 ° C. flows into the flat tube (41) in the leeward main heat exchange region (45). This refrigerant becomes a gas refrigerant in a saturated state at 50 ° C. in the middle of the leeward refrigerant flow path group (C2) of the flat tube (41) in the leeward main heat exchange region (45), and then gradually condenses. The refrigerant that has flowed out of the leeward main heat exchange region (45) flows into the flat tube (41) in the leeward auxiliary heat exchange region (47). This refrigerant becomes a liquid single-phase saturated refrigerant (saturation temperature of 50 ° C.) in the leeward refrigerant flow path group (C2) of the flat tube (41) in the leeward auxiliary heat exchange region (47), and then further dissipates heat. It becomes a cooling state (for example, 47 ° C.).

一方、風上主熱交換領域(35)と風下補助熱交換領域(37)には、例えば35℃の空気が流入する。風下主熱交換領域(45)には、風上主熱交換領域(35)で加熱された45℃の空気が流入し、風下補助熱交換領域(37)には、風上補助熱交換領域(35)を通過する際に加熱された40℃の空気が流入する。     On the other hand, for example, air at 35 ° C. flows into the upwind main heat exchange region (35) and the leeward auxiliary heat exchange region (37). The 45 ° C. air heated in the windward main heat exchange area (35) flows into the leeward main heat exchange area (45), and the windward auxiliary heat exchange area (37) Air heated at 40 ° C. flows through 35).

このように、室外熱交換器(23)が凝縮器として機能する場合、室外熱交換器(23)の全体において冷媒の温度が空気の温度よりも高くなり、冷媒が空気へ放出する熱量(即ち、冷媒の放熱量)が確保される。     Thus, when the outdoor heat exchanger (23) functions as a condenser, the temperature of the refrigerant in the entire outdoor heat exchanger (23) becomes higher than the temperature of air, and the amount of heat released from the refrigerant into the air (that is, The amount of heat released from the refrigerant is ensured.

〔蒸発器の場合の冷媒の流れ〕
空気調和機(10)の暖房運転中には、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。ここでは、暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Refrigerant flow in the case of an evaporator]
During the heating operation of the air conditioner (10), the indoor heat exchanger (25) functions as a condenser, and the outdoor heat exchanger (23) functions as an evaporator. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the heating operation will be described.

室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が、配管(17)を通じて供給される。この冷媒は、液分岐管(28)に流入し、第1主液管(91c)と第2主液管(92c)とに分流する。     The outdoor heat exchanger (23) is supplied with the refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24) through the pipe (17). This refrigerant flows into the liquid branch pipe (28) and is divided into the first main liquid pipe (91c) and the second main liquid pipe (92c).

図12に示すように、第1分流ユニット(91)に供給された冷媒は、各液側接続管(91b)に分流し、第1ヘッダ集合管(50)の各風上補助空間(55)より各風上補助熱交換部(38)へ分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 12, the refrigerant supplied to the first diversion unit (91) is diverted to each liquid side connection pipe (91b), and each upwind auxiliary space (55) of the first header collecting pipe (50) is obtained. Are distributed to each upwind auxiliary heat exchange section (38). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind main communication space (65) of the second header collecting pipe (60), and is distributed to each upwind main heat exchange section (36). The Each refrigerant passing through each upwind refrigerant channel group (C1) of each flat tube (31) of each upwind main heat exchange section (36) further absorbs heat from the air and evaporates, and is overheated (ie, gas Single phase state).

過熱状態となったガス冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)で合流し、第1主ガス管(52a)よりガス側連絡配管(14)へ送られる。     The superheated gas refrigerant merges in the upwind space (52) of the first header collecting pipe (50) and is sent from the first main gas pipe (52a) to the gas side connecting pipe (14).

図13に示すように、第2分流ユニット(92)に供給された冷媒は、各液側接続管(92b)に分流し、第3ヘッダ集合管(70)の各風下補助空間(75)より各風下補助熱交換部(48)へ分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 13, the refrigerant supplied to the second diversion unit (92) is diverted to each liquid side connection pipe (92b), and from each leeward auxiliary space (75) of the third header collecting pipe (70). It distributes to each leeward auxiliary heat exchanger (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchange section (48) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant flowing through each leeward communication pipe (88) is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80), and is distributed to each leeward main heat exchange section (46). Each refrigerant passing through each leeward refrigerant channel group (C2) of each flat tube (41) of each leeward main heat exchange section (46) further absorbs heat from the air and evaporates, and is in an overheated state (ie, a gas single phase). State).

過熱状態となったガス冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)で合流し、第2主ガス管(72a)を流れる。     The superheated gas refrigerant merges in the leeward upper space (72) of the third header collecting pipe (70) and flows through the second main gas pipe (72a).

第1主ガス管(52a)を流れる冷媒と、第2主ガス管(72a)を流れる冷媒とは、ガス分岐管(29)で合流し、ガス側連絡配管(14)へ送られる。     The refrigerant flowing through the first main gas pipe (52a) and the refrigerant flowing through the second main gas pipe (72a) merge at the gas branch pipe (29) and are sent to the gas side connecting pipe (14).

〔蒸発器の場合の冷媒と空気の温度変化〕
蒸発器として機能する室外熱交換器(23)における空気と冷媒の温度変化の一例を、図14を参照しながら説明する。
[Temperature change of refrigerant and air in the case of an evaporator]
An example of the temperature change of the air and the refrigerant in the outdoor heat exchanger (23) functioning as an evaporator will be described with reference to FIG.

風上補助熱交換領域(37)の扁平管(31)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風上補助熱交換領域(37)の扁平管(31)では、冷媒が風上冷媒流路群(C1)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (31) in the upwind auxiliary heat exchange region (37). In the flat tube (31) of the windward auxiliary heat exchange region (37), the refrigerant saturation temperature is about 0.5 ° C. due to the pressure loss when the refrigerant passes through the windward refrigerant channel group (C1). Gradually decreases.

風上補助熱交換領域(37)から流出した気液二相状態の冷媒は、風上主熱交換領域(35)の扁平管(41)に流入する。風上主熱交換領域(35)の扁平管(31)では、冷媒が風上冷媒流路群(C1)を通過する際の圧力損失に起因して、冷媒の飽和温度が更に低下する(例えば0℃)。この冷媒は、風上主熱交換領域(35)の扁平管(31)の途中でガス単相状態となり、その温度が1℃まで上昇した後、風上主熱交換領域(35)の扁平管(31)から流出する。     The gas-liquid two-phase refrigerant that has flowed out of the windward auxiliary heat exchange region (37) flows into the flat tube (41) of the windward main heat exchange region (35). In the flat tube (31) in the upwind main heat exchange region (35), the saturation temperature of the refrigerant further decreases due to the pressure loss when the refrigerant passes through the upwind refrigerant channel group (C1) (for example, 0 ° C). This refrigerant enters a gas single-phase state in the middle of the flat tube (31) in the upwind main heat exchange region (35), and after the temperature rises to 1 ° C., the flat tube in the upwind main heat exchange region (35) Outflow from (31).

風下補助熱交換領域(47)の扁平管(41)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風下補助熱交換領域(47)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (41) in the lee auxiliary heat exchange region (47). In the flat tube (41) in the leeward auxiliary heat exchange region (47), due to the pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2), the saturation temperature of the refrigerant gradually increases to about 0.5 ° C. descend.

風下補助熱交換領域(47)の扁平管(41)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風下補助熱交換領域(47)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (41) in the lee auxiliary heat exchange region (47). In the flat tube (41) in the leeward auxiliary heat exchange region (47), due to the pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2), the saturation temperature of the refrigerant gradually increases to about 0.5 ° C. descend.

風下補助熱交換領域(47)から流出した気液二相状態の冷媒は、風下主熱交換領域(45)の扁平管(41)に流入する。風下主熱交換領域(45)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が更に低下する(例えば約0℃)。この冷媒は、風下主熱交換領域(45)の扁平管(41)の途中でガス単相状態となり、その温度が1℃まで上昇した後、風下主熱交換領域(45)の扁平管(41)から流出する。     The gas-liquid two-phase refrigerant that has flowed out of the leeward auxiliary heat exchange region (47) flows into the flat tube (41) in the leeward main heat exchange region (45). In the flat tube (41) in the leeward main heat exchange region (45), the saturation temperature of the refrigerant further decreases (for example, about 0) due to pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2). ° C). This refrigerant enters a gas single-phase state in the middle of the flat tube (41) in the leeward main heat exchange region (45), and after the temperature rises to 1 ° C., the flat tube (41 in the leeward main heat exchange region (45) ).

一方、風上補助熱交換領域(37)と風上主熱交換領域(35)とには、例えば7℃の空気が流入する。また、風下補助熱交換領域(47)には、風上補助熱交換領域(37)を通過する際に冷却された3℃の空気が流入し、風下主熱交換領域(45)には、風上主熱交換領域(35)を通過する際に冷却された2℃の空気が流入する。     On the other hand, air at, for example, 7 ° C. flows into the windward auxiliary heat exchange region (37) and the windward main heat exchange region (35). In addition, the air of 3 ° C. cooled when passing through the windward auxiliary heat exchange region (37) flows into the leeward auxiliary heat exchange region (47), and the windward main heat exchange region (45) Cooled air flows at 2 ° C. when passing through the upper main heat exchange zone (35).

このように、室外熱交換器(23)が蒸発器として機能する場合は、室外熱交換器(23)の全体において冷媒の温度が空気の温度よりも低くなり、冷媒が空気から吸収する熱量(即ち、冷媒の吸熱量)が確保される。     Thus, when the outdoor heat exchanger (23) functions as an evaporator, the temperature of the refrigerant in the entire outdoor heat exchanger (23) is lower than the temperature of air, and the amount of heat absorbed by the refrigerant from the air ( That is, the heat absorption amount of the refrigerant) is ensured.

〔圧力損失の低減効果〕
以上のように、本実施形態では、室外熱交換器(23)が凝縮器として機能する場合と、蒸発器として機能する場合との双方において、冷媒が風上冷媒流路群(C1)と風下冷媒流路群(C2)とを並行に流れる。
[Pressure loss reduction effect]
As described above, in the present embodiment, the refrigerant is connected to the upwind refrigerant flow path group (C1) and the downwind both in the case where the outdoor heat exchanger (23) functions as a condenser and in the case where it functions as an evaporator. It flows in parallel with the refrigerant flow path group (C2).

例えば冷媒が2つの冷媒流路群(C1,C2)を直列に流れる構成(比較例)では、各扁平管(31,41)を流れる冷媒の流速は、本実施形態の2倍となり、冷媒流路(C)の全長も2倍となる。冷媒流路(C)の圧力損失は、流速の2乗に比例し、冷媒流路の全長に比例する。従って、比較例の冷媒流路(C)の圧力損失は、本実施形態の概ね8倍(=2×2)となる。即ち、本実施形態では、風上列部(30)の冷媒流路群(C1)と風上列部(40)の冷媒流路群(C2)とにそれぞれ冷媒を並列に流すことで、比較例と比べて冷媒流路(C)の圧力損失を1/8まで低減できる。 For example, in a configuration in which refrigerant flows through two refrigerant flow path groups (C1, C2) in series (comparative example), the flow velocity of the refrigerant flowing through each flat tube (31, 41) is twice that of the present embodiment, and the refrigerant flow The total length of the road (C) is also doubled. The pressure loss in the refrigerant flow path (C) is proportional to the square of the flow velocity and proportional to the total length of the refrigerant flow path. Therefore, the pressure loss of the refrigerant flow path (C) of the comparative example is approximately 8 times (= 2 × 2 2 ) of this embodiment. In other words, in the present embodiment, the refrigerant is allowed to flow in parallel through the refrigerant flow path group (C1) of the windward row section (30) and the refrigerant flow path group (C2) of the windward row section (40). Compared to the example, the pressure loss in the refrigerant channel (C) can be reduced to 1/8.

このようにして冷媒の圧力損失を低減できると、例えば蒸発器の室外熱交換器(23)において、冷媒の圧力の低下を防止できる。即ち、蒸発器の室外熱交換器(23)では、圧力損失に起因する冷媒の圧力の低下量を低減できるため、室外熱交換器(23)の入口と出口の圧力差(即ち、圧縮機(21)の吸入圧力と、室外熱交換器(23)の流入冷媒の圧力の差)を小さくできる。この結果、圧縮機(21)の吸入圧力を所定値とした場合、比較例と比べて室外熱交換器(23)に流入する冷媒の蒸発圧力、ひいては蒸発温度を低減できる。これにより、室外熱交換器(23)では、風上列部(30)の冷媒流路群(C1)を流れる冷媒と、風上列部(30)を通過する空気の温度の差を増大でき、室外熱交換器(23)の蒸発能力を向上できる。     If the pressure loss of the refrigerant can be reduced in this way, for example, in the outdoor heat exchanger (23) of the evaporator, a decrease in the pressure of the refrigerant can be prevented. That is, in the outdoor heat exchanger (23) of the evaporator, the amount of decrease in the refrigerant pressure due to pressure loss can be reduced, so the pressure difference between the inlet and outlet of the outdoor heat exchanger (23) (that is, the compressor ( The difference between the suction pressure of 21) and the pressure of the refrigerant flowing into the outdoor heat exchanger (23) can be reduced. As a result, when the suction pressure of the compressor (21) is set to a predetermined value, the evaporation pressure of the refrigerant flowing into the outdoor heat exchanger (23), and thus the evaporation temperature, can be reduced as compared with the comparative example. As a result, the outdoor heat exchanger (23) can increase the temperature difference between the refrigerant flowing through the refrigerant flow path group (C1) of the windward row portion (30) and the air passing through the windward row portion (30). The evaporation capacity of the outdoor heat exchanger (23) can be improved.

−実施形態1の効果−
実施形態1では、以下の作用及び効果を奏することができる。
-Effect of Embodiment 1-
In the first embodiment, the following actions and effects can be achieved.

各列部(30,40)の扁平管(31,41)において冷媒を並行に流すようにしたので、各扁平管(31,41)の冷媒流路(C)を流れる冷媒の圧力損失を大幅に低減できる。この結果、圧力損失の増大に起因する動力の増大を抑制しつつ、所望の熱交換効率を得ることができる。     Since the refrigerant flows in parallel in the flat tubes (31, 41) of each row (30, 40), the pressure loss of the refrigerant flowing through the refrigerant flow path (C) of each flat tube (31, 41) is greatly increased. Can be reduced. As a result, desired heat exchange efficiency can be obtained while suppressing an increase in power due to an increase in pressure loss.

扁平管(31,41)を幅方向に長くする必要がないので、各列部(30,40)の扁平管(31,41)の曲げ加工も容易となる。これにより、各列部(30,40)の扁平管(31,41)を折り曲げて、4面式の熱交換器を製造でき、熱交換器のコンパクト化を図ることができる。     Since it is not necessary to lengthen the flat tubes (31, 41) in the width direction, it is easy to bend the flat tubes (31, 41) of the row portions (30, 40). Thereby, the flat pipe | tube (31, 41) of each row | line | column part (30, 40) can be bend | folded, a 4-sided heat exchanger can be manufactured, and the heat exchanger can be made compact.

図2に示すように、各列部(30,40)に冷媒を並行に流すための液分岐管(28)やガス分岐管(29)を集約して配置できる。これにより、配管のスペースをコンパクト化、あるいは配管の据え付けの容易化を図ることができる。     As shown in FIG. 2, the liquid branch pipe (28) and the gas branch pipe (29) for allowing the refrigerant to flow in parallel to each row portion (30, 40) can be arranged in an integrated manner. Thereby, the space of piping can be made compact or the installation of piping can be facilitated.

また、各扁平管(31,41)の幅が短くなることで、各列部(30,40)の扁平管(31,41)の間の通風抵抗を低減でき、熱透過率の減少を抑制できる。更に、扁平管(31,41)の幅が狭くなることで、扁平管(31,41)の上側に結露水が滞ることを防止できる。この結果、扁平管(31,41)の表面での着霜を防止できる。   In addition, by reducing the width of each flat tube (31, 41), it is possible to reduce the ventilation resistance between the flat tubes (31, 41) of each row (30, 40) and suppress the decrease in heat transmittance it can. Further, the narrow width of the flat tube (31, 41) can prevent the condensed water from staying on the upper side of the flat tube (31, 41). As a result, frost formation on the surface of the flat tube (31, 41) can be prevented.

《実施形態2》
実施形態2の空気調和機(10)は、実施形態1と室外熱交換器(23)の構成が異なる。実施形態2の室外熱交換器(23)において、風上列部(30)の構成は実施形態1と同様である。以下には、実施形態1と異なる点について図15〜図20を参照しながら説明する。
<< Embodiment 2 >>
The air conditioner (10) of the second embodiment is different from the first embodiment in the configuration of the outdoor heat exchanger (23). In the outdoor heat exchanger (23) of the second embodiment, the configuration of the windward row section (30) is the same as that of the first embodiment. Hereinafter, differences from the first embodiment will be described with reference to FIGS.

実施形態2では、第3ヘッダ集合管(70)が、風下列部(40)のうち第4側面部(23d)側の一端部近傍に立設している。第4ヘッダ集合管(80)は、風下列部(40)のうち第1側面部(23a)側の他端部近傍に立設している。つまり、実施形態2は、実施形態1と第3ヘッダ集合管(70)と第4ヘッダ集合管(80)の位置が、扁平管(31,41)の長手方向において全く反対の位置関係となっている。第3ヘッダ集合管(70)の近傍には、実施形態1と同様、第2分流ユニット(92)の近傍に立設している。     In the second embodiment, the third header collecting pipe (70) is erected in the vicinity of one end of the leeward row portion (40) on the fourth side surface portion (23d) side. The fourth header collecting pipe (80) is erected in the vicinity of the other end of the leeward row portion (40) on the first side surface portion (23a) side. That is, in the second embodiment, the positions of the third header collecting pipe (70) and the fourth header collecting pipe (80) in the first embodiment are completely opposite to each other in the longitudinal direction of the flat pipe (31, 41). ing. In the vicinity of the third header collecting pipe (70), as in the first embodiment, it is erected in the vicinity of the second diversion unit (92).

第1主ガス管(52a)及び第2主ガス管(72a)は、分岐管(図示省略)を介してガス側連絡配管(14)と連通している。第1主液管(91c)及び第2主液管(92c)は、分岐管(図示省略)を介して液側連絡配管(13)と連通している。     The first main gas pipe (52a) and the second main gas pipe (72a) communicate with the gas side communication pipe (14) via a branch pipe (not shown). The first main liquid pipe (91c) and the second main liquid pipe (92c) communicate with the liquid side communication pipe (13) via a branch pipe (not shown).

−室外熱交換器の冷媒流れについて−
図16〜図19に示すように、室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが並行になるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下主熱交換領域(45)の扁平管(41)とで冷媒が並行に流れ、且つ風上列部(30)の風下補助熱交換領域(47)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が並行に流れるように構成される。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに並行に流れるように構成される。
-Refrigerant flow in outdoor heat exchanger-
As shown in FIGS. 16 to 19, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row section (30) and the leeward row It is comprised so that the refrigerant | coolant which flows through each flat tube (41) of a part (40) may become parallel. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in parallel with the flat tube (41) of the leeward main heat exchange region (45) of 40), and the flat tube (31) of the leeward auxiliary heat exchange region (47) of the windward row (30), The refrigerant flows in parallel with the flat tube (41) in the leeward auxiliary heat exchange region (47) of the leeward row (40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2).

更に室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが互いに逆方向となるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が互いに逆方向に流れる。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに逆方向に流れる。     Furthermore, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (40) of the leeward row (40) 41) and the refrigerant flowing in the opposite directions. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in the opposite direction to each other through the flat tube (41) in the leeward auxiliary heat exchange region (47) of 40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2) flow in opposite directions.

〔凝縮器の場合〕
空気調和機(10)の冷房運転中には、室内熱交換器(25)が蒸発器として機能し、室外熱交換器(23)が凝縮器として機能する。ここでは、冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Condenser]
During the cooling operation of the air conditioner (10), the indoor heat exchanger (25) functions as an evaporator, and the outdoor heat exchanger (23) functions as a condenser. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the cooling operation will be described.

室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が、配管(18)を通じて供給される。この冷媒は、配管(18)から第1主ガス管(52a)と第2主ガス管(82a)とに分流する。     Gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23) through the pipe (18). This refrigerant is branched from the pipe (18) into the first main gas pipe (52a) and the second main gas pipe (82a).

図16に示すように、第1主ガス管(52a)へ供給された冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)に流入し、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上補助熱交換部(38)に分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 16, the refrigerant supplied to the first main gas pipe (52a) flows into the upwind space (52) of the first header collecting pipe (50), and each upwind main heat exchange section ( 36). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind main heat exchange section (36) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each upwind main communication space (65) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60), and is distributed to each upwind auxiliary heat exchange section (38). The Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) further dissipates heat and condenses, and is in a supercooled state (ie, Liquid single phase state).

過冷却状態となった液冷媒は、第1ヘッダ集合管(50)の各風上補助空間(55)へ供給され、第1分流ユニット(91)で合流し、第1主液管(91c)より液側連絡配管(13)へ送られる。     The supercooled liquid refrigerant is supplied to each upwind auxiliary space (55) of the first header collecting pipe (50), and is merged by the first diversion unit (91), and the first main liquid pipe (91c). It is sent to the liquid side connecting pipe (13).

図17に示すように、配管(18)から第2主ガス管(72a)へ供給された冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)に流入し、風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下補助熱交換部(48)に分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 17, the refrigerant supplied from the pipe (18) to the second main gas pipe (72a) flows into the leeward upper space (72) of the third header collecting pipe (70), and leeward main heat exchange is performed. Distributed to the part (46). Each refrigerant passing through each leeward refrigerant flow path group (C2) of each flat tube (41) of each leeward main heat exchange section (46) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant that has flowed through each leeward communication pipe (88) is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80), and is distributed to each leeward auxiliary heat exchange section (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchanger (48) further dissipates heat to the air and condenses, and is in a supercooled state (that is, liquid unit Phase state).

過冷却状態となった液冷媒は、第3ヘッダ集合管(70)の各風下補助空間(75)へ供給され、第2分流ユニット(92)で合流し、第1分流ユニット(91)から流出した冷媒とともに液側連絡配管(13)へ送られる。     The supercooled liquid refrigerant is supplied to each leeward auxiliary space (75) of the third header collecting pipe (70), merges in the second diversion unit (92), and flows out from the first diversion unit (91). The refrigerant is sent to the liquid side communication pipe (13).

〔蒸発器の場合〕
空気調和機(10)の暖房運転中には、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。ここでは、暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Evaporator]
During the heating operation of the air conditioner (10), the indoor heat exchanger (25) functions as a condenser, and the outdoor heat exchanger (23) functions as an evaporator. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the heating operation will be described.

室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が、配管(17)を通じて供給される。この冷媒は、配管(17)から第1分流ユニット(91)と第2分流ユニット(92)とに分流する。     The outdoor heat exchanger (23) is supplied with the refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24) through the pipe (17). This refrigerant is branched from the pipe (17) into the first branch unit (91) and the second branch unit (92).

図18に示すように、第1分流ユニット(91)に供給された冷媒は、各液側接続管(91b)に分流し、第1ヘッダ集合管(50)の各風上補助空間(55)より各風上補助熱交換部(38)へ分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 18, the refrigerant supplied to the first diversion unit (91) is diverted to the respective liquid side connection pipes (91b), and the upwind auxiliary spaces (55) of the first header collecting pipes (50). Are distributed to each upwind auxiliary heat exchange section (38). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind main communication space (65) of the second header collecting pipe (60), and is distributed to each upwind main heat exchange section (36). The Each refrigerant passing through each upwind refrigerant channel group (C1) of each flat tube (31) of each upwind main heat exchange section (36) further absorbs heat from the air and evaporates, and is overheated (ie, gas Single phase state).

過熱状態となったガス冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)で合流し、第1主ガス管(52a)よりガス側連絡配管(14)へ送られる。     The superheated gas refrigerant merges in the upwind space (52) of the first header collecting pipe (50) and is sent from the first main gas pipe (52a) to the gas side connecting pipe (14).

図19に示すように、第2分流ユニット(92)に供給された冷媒は、各液側接続管(92b)に分流し、第3ヘッダ集合管(70)の各風下補助空間(75)より各風下補助熱交換部(48)へ分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 19, the refrigerant supplied to the second diversion unit (92) is diverted to each liquid side connection pipe (92b), and from each lee auxiliary space (75) of the third header collecting pipe (70). It distributes to each leeward auxiliary heat exchanger (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchange section (48) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant flowing through each leeward communication pipe (88) is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80), and is distributed to each leeward main heat exchange section (46). Each refrigerant passing through each leeward refrigerant channel group (C2) of each flat tube (41) of each leeward main heat exchange section (46) further absorbs heat from the air and evaporates, and is in an overheated state (ie, a gas single phase). State).

過熱状態となったガス冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)で合流し、第1主ガス管(52a)から流出した冷媒とともにガス側連絡配管(14)へ送られる。     The superheated gas refrigerant joins in the leeward upper space (72) of the third header collecting pipe (70) and is sent to the gas side connecting pipe (14) together with the refrigerant flowing out from the first main gas pipe (52a). It is done.

〈空気の偏流の抑制対策について〉
ところで、室外熱交換器(23)が蒸発器として機能する際には、従来においては、室外熱交換器(23)を流れる空気が偏流し易いという問題があった。具体的に、室外熱交換器(23)において、2つの列部(30,40)にそれぞれ冷媒流路群(C1,C2)を形成し、これらの冷媒流路群(C1,C2)に並行に冷媒を流すとする。ここで、各冷媒流路群(C1,C2)において、気液二相状態の冷媒は、空気の冷却に用いられる。このため、空気中の水分が凝縮し、扁平管(31,41)やフィン(32,42)の表面に着霜することがある。
<Measures for suppressing air drift>
By the way, when the outdoor heat exchanger (23) functions as an evaporator, conventionally, there has been a problem that air flowing through the outdoor heat exchanger (23) tends to drift. Specifically, in the outdoor heat exchanger (23), the refrigerant flow path groups (C1, C2) are formed in the two rows (30, 40), respectively, and these refrigerant flow path groups (C1, C2) are parallel to each other. Let the refrigerant flow through Here, in each refrigerant channel group (C1, C2), the gas-liquid two-phase refrigerant is used for cooling the air. For this reason, the water | moisture content in air may condense and may form frost on the surface of a flat tube (31, 41) or a fin (32, 42).

一方、各冷媒流路群(C1,C2)において、気液二相状態の冷媒が更に蒸発すると、過熱状態となって温度が上昇する。従って、各扁平管(31,41)において、過熱状態の冷媒が流れる部分では、空気中の水分が結露しにくく、各扁平管(31,41)やフィン(32,42)の表面で着霜もほぼ生じない。     On the other hand, in each refrigerant channel group (C1, C2), when the gas-liquid two-phase refrigerant further evaporates, the refrigerant becomes overheated and the temperature rises. Therefore, in each flat tube (31, 41), in the portion where the overheated refrigerant flows, moisture in the air hardly condenses, and frost forms on the surface of each flat tube (31, 41) or fin (32, 42). Almost does not occur.

このような理由から、隣り合う冷媒流路群(C1,C2)において、液状態ないし気液二相状態の冷媒が流れる部分と、過熱状態の冷媒が流れる部分とが、空気の通過方向に重なると、室外熱交換器(23)を流れる空気が偏流し易くなる、という問題が生じる。     For this reason, in the adjacent refrigerant flow path group (C1, C2), the portion where the refrigerant in the liquid state or the gas-liquid two-phase state flows and the portion where the overheated refrigerant flows overlap in the air passage direction. And the problem that the air which flows through an outdoor heat exchanger (23) becomes easy to drift will arise.

具体的には、隣り合う冷媒流路群(C1,C2)において、例えば液状態ないし気液二相状態の冷媒が流れる部分が空気の通過方向に重なると、この部分に対応する各扁平管(31,41)及び各フィン(32,42)の表面では、上述したように着霜が生じ易くなる。特に、扁平管(31,41)では、その表面に結露した水分が留まりやすいため、着霜量が大きくなる傾向になる。このような状態では、風上列部(30)と風下列部(40)の双方の扁平管(31,41)やフィン(32,42)で連続的に着霜が発生するため、この部分の通風抵抗が大きくなり易い。     Specifically, in the adjacent refrigerant flow path groups (C1, C2), for example, when a portion where a refrigerant in a liquid state or a gas-liquid two-phase state flows overlaps in the air passage direction, each flat tube ( 31,41) and the surface of each fin (32,42), frost formation is likely to occur as described above. In particular, in the flat tube (31, 41), moisture condensed on the surface tends to stay, so that the amount of frost formation tends to increase. In this state, frost formation occurs continuously in the flat tubes (31, 41) and fins (32, 42) in both the windward row (30) and the leeward row (40). Ventilation resistance is likely to increase.

一方、隣り合う冷媒流路群(C1,C2)において、過熱領域の冷媒が流れる部分が空気の通過方向に重なると、この部分に対応する各扁平管(31,41)や各フィン(32,42)の表面では、着霜がほとんど生じない。従って、このような状態では、2列に重なった過熱領域に対応する部分の通風抵抗が、他の部分よりも小さくなり、この部分に空気が偏流し易くなるという問題が生じる。     On the other hand, in the adjacent refrigerant flow path group (C1, C2), when the portion where the refrigerant in the superheated region overlaps in the air passage direction, each flat tube (31, 41) and each fin (32, On the surface of 42), there is almost no frost formation. Therefore, in such a state, the ventilation resistance of the part corresponding to the superheated region overlapped in two rows becomes smaller than the other part, and there arises a problem that air tends to drift to this part.

このようにして、空気の偏流が生じると、室外熱交換器(23)全体の扁平管(31,41)及びフィン(32,42)を冷媒と空気との伝熱に有効に利用できず、熱交換効率の低下を招いてしまう。そこで、本実施形態では、このような空気の偏流を防止するために、各列部(30,40)の過熱領域(S1,S2)が空気の通過方向に重ならないようしている。     In this way, when air drift occurs, the flat tubes (31, 41) and fins (32, 42) of the entire outdoor heat exchanger (23) cannot be effectively used for heat transfer between the refrigerant and air. The heat exchange efficiency will be reduced. Therefore, in the present embodiment, in order to prevent such a drift of air, the superheat regions (S1, S2) of the respective row portions (30, 40) are prevented from overlapping in the air passage direction.

即ち、図19〜図21に示すように、室外熱交換器(23)では、上述のように、風上冷媒流路群(C1)を流れる冷媒と、風下冷媒流路群(C2)を流れる冷媒とが互いに逆方向になっている。このため、風上列部(30)の過熱領域(S1)は、扁平管(31)の第1風上管部(31a)の端部近傍に形成され、風下列部(40)の過熱領域(S2)は、扁平管(41)の第4風下管部(41d)の端部近傍に形成される。つまり、過熱領域(S1)と過熱領域(S2)とは、各扁平管(31,41)の長手方向において最も遠くに位置している。従って、過熱領域(S1)と過熱領域(S2)とが、空気の通過方向に重なることを確実に防止でき、ひいては上述した空気の偏流を防止できる。     That is, as shown in FIGS. 19 to 21, in the outdoor heat exchanger (23), as described above, the refrigerant flows through the windward refrigerant flow path group (C1) and the leeward refrigerant flow path group (C2). The refrigerant is in opposite directions. For this reason, the superheat region (S1) of the windward row portion (30) is formed in the vicinity of the end portion of the first windward tube portion (31a) of the flat tube (31), and the superheat region of the leeward row portion (40). (S2) is formed in the vicinity of the end of the fourth leeward pipe part (41d) of the flat pipe (41). That is, the superheat region (S1) and the superheat region (S2) are located farthest in the longitudinal direction of each flat tube (31, 41). Therefore, it is possible to reliably prevent the superheat region (S1) and the superheat region (S2) from overlapping in the air passage direction, thereby preventing the above-described air drift.

室外熱交換器(23)では、過熱領域(S1)と過熱領域(S2)とを空気の通過方向に重ならないようにするために、扁平管(31,41)の本数やサイズ、各冷媒流路(C)の数やサイズ、冷媒循環量、空気の風量等の各種のパラメータが設計されている。     In the outdoor heat exchanger (23), the number and size of the flat tubes (31, 41) and the refrigerant flow are set so that the superheat region (S1) and the superheat region (S2) do not overlap in the air passage direction. Various parameters such as the number and size of the paths (C), the amount of refrigerant circulation, and the air volume are designed.

−実施形態2の効果−
実施形態2においても、実施形態1と同様にして、冷媒の圧力損失を低減できる。
-Effect of Embodiment 2-
Also in the second embodiment, the pressure loss of the refrigerant can be reduced as in the first embodiment.

図18〜図20に示すように、室外熱交換器(23)が蒸発器として機能する際、冷媒の過熱領域(S1,S2)が重なることを防止できる。これにより、過熱領域(S1,S2)ばかりに空気が偏流してしまうことを抑制できる。この結果、過熱領域(S1,S2)以外の部分の扁平管(31,41)やフィン(32,42)の表面で着霜が生じたとしても、熱交換器の全域に空気を均一に流しやすくなり、熱交換効率、ひいては蒸発性能の向上を図ることができる。     As shown in FIGS. 18-20, when an outdoor heat exchanger (23) functions as an evaporator, it can prevent that the superheat region (S1, S2) of a refrigerant | coolant overlaps. Thereby, it can suppress that air drifts only to an overheating area | region (S1, S2). As a result, even if frost formation occurs on the surface of the flat tubes (31, 41) and fins (32, 42) outside the superheated area (S1, S2), air is allowed to flow uniformly over the entire heat exchanger. It becomes easy to improve the heat exchange efficiency and consequently the evaporation performance.

《その他の実施形態》
本開示の各種の形態では、以下のような構成としてもよい。
<< Other Embodiments >>
The various configurations of the present disclosure may be configured as follows.

室外熱交換器(23)では、隣り合うヘッダ集合管(50,70)、(60,80)がそれぞれ別体に構成されているが、これらの少なくとも一組のヘッダ集合管を一体化し、その内部空間を2列に区画する構成してもよい。     In the outdoor heat exchanger (23), adjacent header collecting pipes (50, 70) and (60, 80) are configured separately, but at least one of these header collecting pipes is integrated, The internal space may be divided into two rows.

室外熱交換器(23)では、2列の扁平管(31,41)の各冷媒流路群(C1,C2)の隣り合う過熱領域(S1,S2)を互いに重ならないようにしているが、例えば3列以上の冷媒流路群(C1,C2)において、隣り合う過熱領域を重ならないようにしてもよい。     In the outdoor heat exchanger (23), adjacent superheat regions (S1, S2) of the refrigerant flow path groups (C1, C2) of the two rows of flat tubes (31, 41) are not overlapped with each other. For example, in the three or more rows of refrigerant flow path groups (C1, C2), adjacent superheat regions may not be overlapped.

室外熱交換器(23)において、補助熱交換領域(37,47)を省略した構成としてもよい。     In the outdoor heat exchanger (23), the auxiliary heat exchange region (37, 47) may be omitted.

本開示の熱交換器は、室外熱交換器(23)である。しかしながら、本開示の熱交換器を室内熱交換器(25)に適用してもよい。この場合、室内熱交換器(25)は、例えば天井埋め込み式、あるいは天井吊り下げ式の室内ユニットに搭載される4面式の熱交換器であることが好ましい。また、室外熱交換器(23)及び室内熱交換器(25)は、必ずしも4面式でなくてもよく、3面以下のものであってもよい。     The heat exchanger of the present disclosure is an outdoor heat exchanger (23). However, the heat exchanger of the present disclosure may be applied to the indoor heat exchanger (25). In this case, the indoor heat exchanger (25) is preferably a four-sided heat exchanger mounted on, for example, a ceiling-embedded or ceiling-suspended indoor unit. Moreover, the outdoor heat exchanger (23) and the indoor heat exchanger (25) are not necessarily a four-sided type, and may be those having three or less sides.

本開示の熱交換器は、例えば図7に示すように、風上列部(30)と風下列部(40)とに対応するように、風上側と風下側とにそれぞれ別体のフィン(32,42)が設けられる。しかしながら、例えば図21に示すように、扁平管(31,41)を空気の通過方向に2列に配置する一方、風上側と風下側のフィン(32,42)を風上列部(30)と風下列部(40)とに跨がるように一体化してもよい。     For example, as shown in FIG. 7, the heat exchanger of the present disclosure has separate fins (on the windward side and the leeward side, respectively) so as to correspond to the windward row portion (30) and the leeward row portion (40). 32, 42) are provided. However, as shown in FIG. 21, for example, the flat tubes (31, 41) are arranged in two rows in the air passage direction, while the windward and leeward fins (32, 42) are arranged on the windward side (30). And may be integrated so as to straddle the leeward row portion (40).

本開示の熱交換器のフィン(32,42)は、風上側の縁部に管挿入部(32b,42b)を形成し、この管挿入部(32b,42b)に扁平管(31,41)を挿入している。しかしながら、熱交換器は、フィン(32,42)の風下側の縁部に管挿入部を形成し、この管挿入部に扁平管(31,41)を挿入する構成としてもよい。また、本開示のフィン(32,42)では、伝熱促進部としてルーバ(32c,42c)を形成しているが、フィン(32,42)を厚さ方向に膨出させた膨出部(凸部)やスリット等を伝熱促進部としてもよい。     The fins (32, 42) of the heat exchanger according to the present disclosure form tube insertion portions (32b, 42b) at the windward edge, and flat tubes (31, 41) at the tube insertion portions (32b, 42b). Is inserted. However, a heat exchanger is good also as a structure which forms a pipe insertion part in the edge part of the leeward side of a fin (32, 42), and inserts a flat tube (31, 41) in this pipe insertion part. Further, in the fins (32, 42) of the present disclosure, the louvers (32c, 42c) are formed as the heat transfer promoting portions, but the bulging portions (in which the fins (32, 42) are bulged in the thickness direction ( A convex portion) or a slit may be used as the heat transfer promoting portion.

上記実施形態の2列の列部(30,40)は、互いに異なる構成であってもよい。つまり、例えば2列の扁平管(31,41)において、各扁平管(31,41)の幅、各扁平管(31,41)厚さ方向(上下方向)の間隔、各扁平管(31,41)の冷媒流路(C)の流路面積、各扁平管(31,41)の冷媒流路(C)の数等を互いに異ならす構成としてもよい。また、2列のフィン(32,42)において、フィン(32,42)の幅(空気の通過方向の長さ)、フィン(32,42)の厚さ方向のピッチ(間隔)、フィン(32.42)の形状等を互いに異なる構成としてもよい。     The two rows (30, 40) of the above embodiment may have different configurations. That is, for example, in two rows of flat tubes (31, 41), the width of each flat tube (31, 41), the interval in the thickness direction (vertical direction) of each flat tube (31, 41), each flat tube (31, 41) The refrigerant channel (C) 41), the number of refrigerant channels (C) of the flat tubes (31, 41), and the like may be different from each other. In the two rows of fins (32, 42), the width of the fins (32, 42) (the length in the air passage direction), the pitch (interval) in the thickness direction of the fins (32, 42), and the fins (32.42). ) And the like may be different from each other.

本開示の空気調和機において、複数の列部(30,40)に対応して1つずつ冷媒調整弁を設けてもよい。つまり、これらの冷媒調整弁の開度をそれぞれ個別に調節することで、各列部(30,40)に並列に流入する冷媒量を個別に調整することができる。     In the air conditioner of the present disclosure, one refrigerant adjustment valve may be provided for each of the plurality of row portions (30, 40). That is, by individually adjusting the opening degrees of these refrigerant adjustment valves, it is possible to individually adjust the refrigerant amounts flowing in parallel to the respective row portions (30, 40).

以上説明したように、本発明は、熱交換器及び空気調和機について有用である。     As described above, the present invention is useful for heat exchangers and air conditioners.

10 空気調和機
23 室外熱交換器(熱交換器)
28 液分岐管
29 ガス分岐管
30 風上列部(列部)
31 扁平管
32 フィン
33a 第1屈曲部(屈曲部)
33b 第2屈曲部(屈曲部)
33c 第3屈曲部(屈曲部)
40 風下列部(列部)
41 扁平管
42 フィン
68 風上連絡管
88 風下連絡管
C 冷媒流路
S1 過熱領域
S2 過熱領域
10 Air conditioner
23 Outdoor heat exchanger (heat exchanger)
28 liquid branch pipe
29 Gas branch pipe
30 Windward (row)
31 flat tube
32 fins
33a First bent part (bent part)
33b Second bent part (bent part)
33c 3rd bending part (bending part)
40 leeward row (row)
41 flat tube
42 fins
68 Upwind connecting pipe
88 Downward connecting pipe
C Refrigerant flow path
S1 Overheating area
S2 Overheating area

本発明は、熱交換器及び空気調和機に関する。     The present invention relates to a heat exchanger and an air conditioner.

従来より、平行に配列された多数の扁平管と、該扁平管に接合されるフィンとを備えた熱交換器が知られている。特許文献1(図2を参照)には、この種の熱交換器が開示されている。この熱交換器は、空気の通過方向に扁平管が1列に配置される1列構成の熱交換器である。熱交換器には、上側熱交換領域(主熱交換領域)と、下側熱交換領域(補助熱交換領域)とが形成されている。下側熱交換領域の扁平管の本数は、上側熱交換領域の扁平管の本数より少ない。     2. Description of the Related Art Conventionally, a heat exchanger including a large number of flat tubes arranged in parallel and fins joined to the flat tubes is known. Patent Document 1 (see FIG. 2) discloses this type of heat exchanger. This heat exchanger is a one-row heat exchanger in which flat tubes are arranged in one row in the air passage direction. In the heat exchanger, an upper heat exchange region (main heat exchange region) and a lower heat exchange region (auxiliary heat exchange region) are formed. The number of flat tubes in the lower heat exchange region is less than the number of flat tubes in the upper heat exchange region.

例えばこの熱交換器が蒸発器として機能する場合、飽和液状態の冷媒が、下側熱交換領域を流れ、空気から吸熱して蒸発する。この冷媒は、上側熱交換領域を流れて更に蒸発し、過熱状態となって熱交換器を流出する。     For example, when this heat exchanger functions as an evaporator, the refrigerant in the saturated liquid state flows through the lower heat exchange region, absorbs heat from the air, and evaporates. This refrigerant flows through the upper heat exchange region, further evaporates, becomes overheated, and flows out of the heat exchanger.

特開2012−163328号公報JP 2012-163328 A

ところで、特許文献1に開示のような熱交換器の能力を向上させるためには、扁平管の長さを長くし、扁平管の内部の冷媒流路の流路長を長くすることが考えられる。しかしながら、このようにして冷媒流路の全長を長くすると、冷媒が通過する際の圧力損失の増大を招いてしまう。     By the way, in order to improve the capability of the heat exchanger as disclosed in Patent Document 1, it is conceivable to increase the length of the flat tube and increase the length of the refrigerant flow channel inside the flat tube. . However, increasing the overall length of the refrigerant flow path in this way increases the pressure loss when the refrigerant passes.

更に、扁平管の内部に多数の冷媒流路を形成する熱交換器では、各冷媒流路の流路面積が比較的小さいため、各冷媒流路を流れる冷媒の流速が増大し易い。このため、各冷媒流路を流れる冷媒の圧力損失も更に大きくなってしまう。     Furthermore, in a heat exchanger that forms a large number of refrigerant flow paths inside a flat tube, the flow area of each refrigerant flow path tends to increase because the flow area of each refrigerant flow path is relatively small. For this reason, the pressure loss of the refrigerant flowing through each refrigerant flow path is further increased.

一方、このような圧力損失の増大を抑制するために、扁平管を幅方向(空気の通過方向)に長くし、冷媒流路の数を増やす構成を採用することも考えられる。しかしながら、このようにして扁平管の幅が大きくなると、扁平管を、その幅方向に屈曲させる加工が難しくなり、空気が通過する複数の側面部を有する他面式(例えば4面式)の熱交換器を製造することが困難となってしまう。     On the other hand, in order to suppress such an increase in pressure loss, it is conceivable to adopt a configuration in which the flat tube is lengthened in the width direction (air passage direction) and the number of refrigerant channels is increased. However, when the width of the flat tube is increased in this way, it becomes difficult to bend the flat tube in the width direction, and the other surface type (for example, four-surface type) heat having a plurality of side portions through which air passes. It becomes difficult to manufacture the exchanger.

本発明は、かかる点に鑑みてなされたものであり、その目的は、扁平管の内部に複数の冷媒流路が形成される熱交換器において、冷媒が各冷媒流路を流れる際の圧力損失の増大を抑制でき、且つ扁平管の幅方向の曲げ加工を容易に行えるようにすることである。     The present invention has been made in view of such a point, and an object of the present invention is to reduce pressure loss when refrigerant flows through each refrigerant flow path in a heat exchanger in which a plurality of refrigerant flow paths are formed inside a flat tube. It is possible to suppress the increase in the width of the flat tube and to easily perform bending in the width direction of the flat tube.

第1の発明は、互いに平行に配置され、それぞれに複数の冷媒流路(C)が形成される複数の扁平管(31,41)と、上記扁平管(31,41)に接合されるフィン(32,42)とを備え、上記冷媒流路(C)を流れる冷媒と空気とを熱交換させる熱交換器を対象とし、複数の上記扁平管(31,41)を有する複数の列部(30,40)が空気の通過方向に配列され、上記複数の列部(30,40)は、該複数の列部(30,40)において冷媒が互い並列に流れるように構成され、上記複数の列部(30,40)の扁平管(31,41)は、空気の通過方向に隣り合う該列部(30,40)の扁平管(31,41)が互いに沿うように該扁平管(31,41)の幅方向に屈曲する1つ以上の屈曲部(33a,33b,33c)をそれぞれ有していることを特徴とする。 In the first invention, a plurality of flat tubes (31, 41), which are arranged in parallel to each other and each have a plurality of refrigerant channels (C), and fins joined to the flat tubes (31, 41). (32, 42), and a plurality of row sections (a plurality of the flat tubes (31, 41)) having a plurality of the flat tubes (31, 41) for heat exchange between the refrigerant flowing through the refrigerant flow path (C) and air. 30, 40) are arranged in the air passage direction, and the plurality of rows (30, 40) are configured such that refrigerant flows in parallel to each other in the rows (30, 40). The flat tubes (31, 41) of the row portions (30, 40) are arranged so that the flat tubes (31, 41) of the row portions (30, 40) adjacent to each other in the air passage direction are along each other. , 41) each having one or more bent portions (33a, 33b, 33c) bent in the width direction.

第1の発明では、空気の通過方向に複数の列部(30,40)が設けられ、各列部(30,40)において複数の扁平管(31,41)が平行に配列される。熱交換器を冷媒が流れる際には、各列部(30,40)の各扁平管(31,41)を冷媒が並行に流れる。例えばこのような各列部(30,40)の扁平管(31,41)を直列に繋いで冷媒を流すと、各冷媒流路(C)を流れる冷媒の流量が大きくなり、各冷媒流路(C)を流れる冷媒の流速が大きくなる。また、各冷媒流路(C)の流路長も長くなる。これに対し、本発明では、各列部(30,40)の扁平管(31,41)を冷媒が並行に流れるため、各冷媒流路(C)を流れる冷媒の流量が小さくなり、各冷媒流路(C)を流れる冷媒の流速も小さくなる。また、各冷媒流路(C)の流路長も短くなる。冷媒流路(C)を流れる冷媒の圧力損失は、冷媒の流速の2乗、及び冷媒流路(C)の長さに比例する。従って、このような構成とすることで、圧力損失を低減できる。     In the first invention, a plurality of rows (30, 40) are provided in the air passage direction, and a plurality of flat tubes (31, 41) are arranged in parallel in each row (30, 40). When the refrigerant flows through the heat exchanger, the refrigerant flows in parallel through the flat tubes (31, 41) of the rows (30, 40). For example, when the flat tubes (31, 41) of the respective rows (30, 40) are connected in series to flow the refrigerant, the flow rate of the refrigerant flowing through each refrigerant channel (C) increases, and each refrigerant channel The flow rate of the refrigerant flowing through (C) increases. Moreover, the flow path length of each refrigerant flow path (C) also becomes long. On the other hand, in the present invention, since the refrigerant flows in parallel through the flat tubes (31, 41) of the respective row portions (30, 40), the flow rate of the refrigerant flowing through each refrigerant channel (C) becomes small, and each refrigerant The flow rate of the refrigerant flowing through the channel (C) is also reduced. Further, the channel length of each refrigerant channel (C) is also shortened. The pressure loss of the refrigerant flowing through the refrigerant channel (C) is proportional to the square of the refrigerant flow velocity and the length of the refrigerant channel (C). Therefore, pressure loss can be reduced by adopting such a configuration.

また、熱交換器では、隣り合う列部(30,40)の扁平管(31,41)が互いに沿うように形成され、各扁平管(31,41)の1つ以上の屈曲部(33a,33b,33c)により折り曲げられる。このため、1列の扁平管(31,41)を幅方向に長くする構成と比較して、扁平管(31,41)の曲げ加工も容易となる。     Further, in the heat exchanger, the flat tubes (31, 41) of the adjacent row portions (30, 40) are formed along each other, and one or more bent portions (33a, 33b, 33c). For this reason, compared with the structure which lengthens the flat tube (31, 41) of 1 row in the width direction, the bending process of a flat tube (31, 41) becomes easy.

第2の発明は、第1の発明において、上記各列部(30,40)には、該列部(30,40)の扁平管(31,41)の配列方向に並んだ複数の扁平管(31,41)に対応する主熱交換領域(35,45)と、該主熱交換領域(35,45)よりも扁平管(31,41)の数が少ない扁平管(31,41)に対応する補助熱交換領域(37,47)とが形成され、上記複数の列部(30,40)は、空気の通過方向に隣り合う複数の主熱交換領域(35,45)において互いに冷媒が並列に流れ、且つ空気の通過方向に隣り合う複数の補助熱交換領域(37,47)において互いに冷媒が並列に流れるように構成されることを特徴とする。 In a second aspect based on the first aspect, each of the row portions (30, 40) includes a plurality of flat tubes arranged in the arrangement direction of the flat tubes (31, 41) of the row portions (30, 40). A main heat exchange area (35,45) corresponding to (31,41) and a flat pipe (31,41) having a smaller number of flat pipes (31,41) than the main heat exchange area (35,45). Corresponding auxiliary heat exchanging regions (37, 47) are formed, and the plurality of rows (30, 40) are connected to each other in the plurality of main heat exchanging regions (35, 45) adjacent to each other in the air passage direction. It is characterized in that the refrigerant flows in parallel in a plurality of auxiliary heat exchange regions (37, 47) that flow in parallel and are adjacent in the air passage direction .

第2の発明では、各列部(30,40)において主熱交換領域(35,45)と補助熱交換領域(37,47)とが形成される。冷媒は、各列部(30,40)の主熱交換領域(35,45)の各扁平管(31,41)、及び各列部(30,40)の補助熱交換領域(37,47)の各扁平管(31,41)をそれぞれ並行に流れる。これにより、各主熱交換領域(35,45)や各補助熱交換領域(37,47)を流れる冷媒の圧力損失を低減できる。     In the second invention, the main heat exchange region (35, 45) and the auxiliary heat exchange region (37, 47) are formed in each row portion (30, 40). Refrigerant includes each flat tube (31, 41) in the main heat exchange area (35, 45) of each row (30, 40), and auxiliary heat exchange area (37, 47) in each row (30, 40). Each of the flat tubes (31, 41) flows in parallel. Thereby, the pressure loss of the refrigerant | coolant which flows through each main heat exchange area | region (35,45) and each auxiliary heat exchange area | region (37,47) can be reduced.

第3の発明は、第2の発明において、複数の列部(30,40)は、空気の通過方向に隣り合う列部(30,40)間の各主熱交換領域(35,45)及び各補助熱交換領域(37,47)の扁平管(31,41)の冷媒の流れる方向が互いに同じ向きとなるように構成され、上記各列部(30,40)の上記各主熱交換領域(35,45)の各扁平管(31,41)の一端部に分岐するように連通するガス分岐管(29)と上記各列部(30,40)の上記各補助熱交換領域(37,47)の各扁平管(31,41)のうち上記ガス分岐管(29)側の一端部に分岐するように連通する液分岐管(28)と、上記各列部(30,40)の各主熱交換領域(35,45)の各扁平管(31,41)の他端部と、上記各列部(30,40)の各補助熱交換領域(37,47)の各扁平管(31,41)の他端部とを連通する連絡管(68,88)とを備えていることを特徴とする。     According to a third aspect, in the second aspect, the plurality of row portions (30, 40) include the main heat exchange regions (35, 45) between the row portions (30, 40) adjacent to each other in the air passage direction. Each auxiliary heat exchange region (37, 47) is configured so that the refrigerant flows in the flat tubes (31, 41) in the same direction, and each main heat exchange region in each row portion (30, 40). (35, 45) of each flat pipe (31, 41) and a gas branch pipe (29) communicating so as to branch to one end of the flat pipe (31, 41) and each auxiliary heat exchange region (37, 47) of each of the flat pipes (31, 41), the liquid branch pipe (28) communicating so as to branch to one end on the gas branch pipe (29) side, and each of the row sections (30, 40). The other end of each flat tube (31, 41) in the main heat exchange region (35, 45) and each flat tube (31 in each auxiliary heat exchange region (37, 47) of each row (30, 40). , 41) and a communication pipe (68, 88) communicating with the other end.

第3の発明では、隣り合う列部(30,40)の各主熱交換領域(35,45)及び各補助熱交換領域(37,47)では、各扁平管(31,41)を流れる冷媒の方向が互いに同じとなる。そして、各列部(30,40)には、連絡管(68,88)と液分岐管(28)とガス分岐管(29)とが接続される。具体的に、各列部(30,40)では、扁平管(31,41)の一端部側にガス分岐管(29)と液分岐管(28)とが設けられ、扁平管(31,41)の他端部側に連絡管(68,88)が設けられる。これにより、熱交換器では、ガス分岐管(29)と液分岐管(28)の配置スペースが集約される。     In 3rd invention, in each main heat exchange area | region (35,45) and each auxiliary heat exchange area | region (37,47) of an adjacent row | line | column part (30,40), the refrigerant | coolant which flows through each flat tube (31,41) Are in the same direction. A connecting pipe (68, 88), a liquid branch pipe (28), and a gas branch pipe (29) are connected to each row portion (30, 40). Specifically, in each row portion (30, 40), a gas branch pipe (29) and a liquid branch pipe (28) are provided on one end side of the flat pipe (31, 41), and the flat pipe (31, 41) is provided. ) Is provided with a connecting pipe (68, 88). Thereby, in a heat exchanger, arrangement space of a gas branch pipe (29) and a liquid branch pipe (28) is collected.

第4の発明は、第1又は第2の発明において、複数の列部(30,40)は、蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)の冷媒の流れる方向が互いに逆向きとなるように構成されていることを特徴とする。     According to a fourth invention, in the first or second invention, when the plurality of row portions (30, 40) function as an evaporator, the flatness between the row portions (30, 40) adjacent to each other in the air passage direction is provided. The pipes (31, 41) are configured so that the refrigerant flows in opposite directions.

第4の発明では、熱交換器が蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)の扁平管(31,41)を冷媒が並行に流れる。更に、隣り合う列部(30,40)の扁平管(31,41)では、冷媒の方向が逆向きとなる。仮に隣り合う列部(30,40)の扁平管(31,41)において、冷媒の流れる向きが同じである場合、隣り合う列部(30,40)の扁平管(31,41)では、冷媒の過熱領域が空気の通過方向に重なりやすい。一方、各列部(30,40)の扁平管(31,41)では、冷媒の過熱領域以外の部分の温度が低いため、空気中で結露した水分が扁平管(31,41)やフィン(32,42)の表面で着霜し易くなる。このような状態では、各列部(30,40)のうち過熱領域の近傍において、空気の通風抵抗が小さくなるため、この領域を空気が偏流しやすくなる。すると、熱交換器では、空気が全体を均一に流れなくなるため、熱交換効率の低下を招く。     In 4th invention, when a heat exchanger functions as an evaporator, a refrigerant | coolant flows through the flat tube (31, 41) of the row | line | column part (30, 40) adjacent to the passage direction of air in parallel. Further, in the flat tubes (31, 41) of the adjacent row portions (30, 40), the direction of the refrigerant is reversed. If the refrigerant flows in the flat tubes (31, 41) in the adjacent row portions (30, 40) in the same direction, the refrigerant in the flat tubes (31, 41) in the adjacent row portions (30, 40) The overheating region of the air tends to overlap in the air passage direction. On the other hand, in the flat tubes (31, 41) of each row (30, 40), the temperature of the portion other than the superheated region of the refrigerant is low, so that moisture condensed in the air can be removed from the flat tubes (31, 41) and fins ( It becomes easy to form frost on the surface of 32,42). In such a state, the air ventilation resistance decreases in the vicinity of the overheated region in each row portion (30, 40), so that air tends to drift in this region. As a result, in the heat exchanger, the air does not flow uniformly throughout, and the heat exchange efficiency is reduced.

これに対し、本発明では、隣り合う列部(30,40)の扁平管(31,41)を流れる冷媒の流れが逆向きとなるので、各列部(30,40)の扁平管(31,41)の過熱領域が互いに遠くなる。従って、空気の偏流を防止できる。     On the other hand, in the present invention, since the flow of the refrigerant flowing through the flat tubes (31, 41) of the adjacent row portions (30, 40) is reversed, the flat tubes (31 of each row portion (30, 40) are arranged. , 41) are distant from each other. Therefore, air drift can be prevented.

第5の発明は、第4の発明において、複数の列部(30,40)は、上記蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)を流れる冷媒の過熱領域(S1,S2)が、空気の通過方向において互いに重ならないように構成されることを特徴とする。     In a fifth aspect based on the fourth aspect, when the plurality of row portions (30, 40) function as the evaporator, the flat tube (30, 40) between the row portions (30, 40) adjacent in the air passage direction ( 31 and 41), the superheated areas (S1, S2) of the refrigerant flowing in the air passing direction are configured not to overlap each other.

第5の発明の各列部(30,40)では、隣り合う列部(30,40)の扁平管(31,41)の冷媒の方向が逆向きとなり、各列部(30,40)の扁平管(31,41)の過熱領域(S1,S2)が重ならないように構成される。各列部(30,40)の過熱領域(S1,S2)が空気の通過方向に重なると、この重複部分ばかりを空気が流れてしまう恐れがある。これに対し、本発明では、過熱領域(S1,S2)が重ならないため、空気の偏流を確実に防止できる。     In each row portion (30, 40) of the fifth invention, the direction of the refrigerant in the flat tube (31, 41) of the adjacent row portion (30, 40) is reversed, and each row portion (30, 40) The superheated area (S1, S2) of the flat tube (31, 41) is configured not to overlap. If the superheated areas (S1, S2) of the row portions (30, 40) overlap in the air passage direction, there is a possibility that the air flows only in the overlapping portions. On the other hand, in the present invention, since the overheating regions (S1, S2) do not overlap, it is possible to reliably prevent air drift.

第6の発明では、第1乃至第5のいずれか1つの発明の熱交換器(23)が、空気調和機(10)の冷媒回路(20)に設けられる。熱交換器(23)において、冷媒回路(20)を循環する冷媒は、空気から吸熱して蒸発し、又は空気へ放熱して凝縮する。     In the sixth invention, the heat exchanger (23) of any one of the first to fifth inventions is provided in the refrigerant circuit (20) of the air conditioner (10). In the heat exchanger (23), the refrigerant circulating in the refrigerant circuit (20) absorbs heat from the air and evaporates, or releases heat to the air and condenses.

本発明では、各列部(30,40)の扁平管(31,41)において冷媒を並行に流すようにしたので、各扁平管(31,41)の冷媒流路(C)を流れる冷媒の圧力損失を大幅に低減できる。この結果、圧力損失の増大に起因する動力の増大を抑制しつつ、所望の熱交換効率を得ることができる。     In the present invention, since the refrigerant is caused to flow in parallel in the flat tubes (31, 41) of the respective rows (30, 40), the refrigerant flowing through the refrigerant flow path (C) of each flat tube (31, 41) Pressure loss can be greatly reduced. As a result, desired heat exchange efficiency can be obtained while suppressing an increase in power due to an increase in pressure loss.

また、扁平管(31,41)を幅方向に長くする必要がないので、各列部(30,40)の扁平管(31,41)の曲げ加工も容易となる。これにより、各列部(30,40)の扁平管(31,41)を折り曲げて、2〜4面式の熱交換器を製造でき、熱交換器のコンパクト化を図ることができる。また、各扁平管(31,41)の幅が短くなることで、各列部(30,40)の扁平管(31,41)の間の通風抵抗を低減でき、熱透過率の減少を抑制できる。更に、扁平管(31,41)の幅が狭くなることで、扁平管(31,41)の上側に結露水が滞ることを防止できる。この結果、扁平管(31,41)の表面での着霜を防止できる。     Further, since it is not necessary to lengthen the flat tubes (31, 41) in the width direction, it is easy to bend the flat tubes (31, 41) of the row portions (30, 40). Thereby, the flat pipe | tube (31, 41) of each row | line | column part (30, 40) can be bent, a 2-4 surface type heat exchanger can be manufactured, and the heat exchanger can be made compact. In addition, by reducing the width of each flat tube (31, 41), it is possible to reduce the ventilation resistance between the flat tubes (31, 41) of each row (30, 40) and suppress the decrease in heat transmittance it can. Further, the narrow width of the flat tube (31, 41) can prevent the condensed water from staying on the upper side of the flat tube (31, 41). As a result, frost formation on the surface of the flat tube (31, 41) can be prevented.

第2の発明では、主熱交換領域(35,45)と補助熱交換領域(37,47)の双方で冷媒の圧力損失を低減できる。     In the second invention, the pressure loss of the refrigerant can be reduced in both the main heat exchange region (35, 45) and the auxiliary heat exchange region (37, 47).

第3の発明では、各列部(30,40)に冷媒を並行に流すための液分岐管(28)やガス分岐管(29)を集約して配置できる。これにより、配管のスペースをコンパクト化、あるいは配管の据え付けの容易化を図ることができる。     In the third invention, the liquid branch pipe (28) and the gas branch pipe (29) for allowing the refrigerant to flow in parallel to the respective row portions (30, 40) can be arranged in an integrated manner. Thereby, the space of piping can be made compact or the installation of piping can be facilitated.

第4及び第5の発明では、熱交換器が蒸発器として機能する際、冷媒の過熱領域(S1,S2)が重なることを防止できる。これにより、過熱領域(S1,S2)ばかりに空気が偏流してしまうことを抑制できる。この結果、過熱領域(S1,S2)以外の部分の扁平管(31,41)やフィン(32,42)の表面で着霜が生じたとしても、熱交換器の全域に空気を均一に流しやすくなり、熱交換効率、ひいては蒸発性能の向上を図ることができる。     In the 4th and 5th invention, when a heat exchanger functions as an evaporator, it can prevent that the superheat region (S1, S2) of a refrigerant overlaps. Thereby, it can suppress that air drifts only to an overheating area | region (S1, S2). As a result, even if frost formation occurs on the surface of the flat tubes (31, 41) and fins (32, 42) outside the superheated area (S1, S2), air is allowed to flow uniformly over the entire heat exchanger. It becomes easy to improve the heat exchange efficiency and consequently the evaporation performance.

図1は、実施形態1に係る空気調和機の概略構成を示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a schematic configuration of the air conditioner according to the first embodiment. 図2は、室外熱交換器の概略の斜視図である。FIG. 2 is a schematic perspective view of the outdoor heat exchanger. 図3は、室外熱交換器の風上列部を平面状に展開した概略の構成図であり、凝縮器として機能する際の冷媒の流れを表している。FIG. 3 is a schematic configuration diagram in which the windward row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as a condenser. 図4は、室外熱交換器の風下列部を平面状に展開した概略の構成図であり、凝縮器として機能する際の冷媒の流れを表している。FIG. 4 is a schematic configuration diagram in which the leeward row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as a condenser. 図5は、図3のAで示した部分を拡大した縦断面図である。FIG. 5 is an enlarged longitudinal sectional view of a portion indicated by A in FIG. 図6は、図3のBで示した部分を拡大した縦断面図である。FIG. 6 is an enlarged longitudinal sectional view of a portion indicated by B in FIG. 図7は、図5のVII-VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、図6のVIII-VIII線断面図である。8 is a cross-sectional view taken along line VIII-VIII in FIG. 図9は、図6のVIIII-VIIII線断面図である。9 is a sectional view taken along line VIIII-VIIII in FIG. 図10は、図5のX-X線断面図である。10 is a cross-sectional view taken along line XX in FIG. 図11は、凝縮器として機能する室外熱交換器における冷媒と空気の温度変化を示すグラフである。FIG. 11 is a graph showing temperature changes of the refrigerant and air in the outdoor heat exchanger functioning as a condenser. 図12は、室外熱交換器の風上列部を平面状に展開した概略の構成図であり、蒸発器として機能する際の冷媒の流れを表している。FIG. 12 is a schematic configuration diagram in which the upwind row portion of the outdoor heat exchanger is developed in a planar shape, and represents the flow of the refrigerant when functioning as an evaporator. 図13は、室外熱交換器の風下列部を平面状に展開した概略の構成図であり、蒸発器として機能する際の冷媒の流れを表している。FIG. 13 is a schematic configuration diagram in which the leeward row portion of the outdoor heat exchanger is developed in a planar shape, and shows the flow of the refrigerant when functioning as an evaporator. 図14は、蒸発器として機能する室外熱交換器における冷媒と空気の温度変化を示すグラフである。FIG. 14 is a graph showing temperature changes of refrigerant and air in the outdoor heat exchanger functioning as an evaporator. 図15は、実施形態2に係る室外熱交換器の図2に相当する図である。FIG. 15 is a diagram corresponding to FIG. 2 of the outdoor heat exchanger according to the second embodiment. 図16は、実施形態2に係る室外熱交換器の図3に相当する図である。FIG. 16 is a diagram corresponding to FIG. 3 of the outdoor heat exchanger according to the second embodiment. 図17は、実施形態2に係る室外熱交換器の図4に相当する図である。FIG. 17 is a diagram corresponding to FIG. 4 of the outdoor heat exchanger according to the second embodiment. 図18は、実施形態2に係る室外熱交換器の図12に相当する図である。FIG. 18 is a diagram corresponding to FIG. 12 of the outdoor heat exchanger according to the second embodiment. 図19は、実施形態2に係る室外熱交換器の図13に相当する図である。FIG. 19 is a diagram corresponding to FIG. 13 of the outdoor heat exchanger according to the second embodiment. 図20は、凝縮器として機能する室外熱交換器の概略の上面図である。FIG. 20 is a schematic top view of an outdoor heat exchanger that functions as a condenser. 図21は、その他の実施形態に係る室外熱交換器の図7に相当する図である。FIG. 21 is a view corresponding to FIG. 7 of an outdoor heat exchanger according to another embodiment.

本発明の実施形態を図面に基づいて詳細に説明する。なお、以下で説明する各形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。     Embodiments of the present invention will be described in detail with reference to the drawings. In addition, each form demonstrated below is an essentially preferable illustration, Comprising: It does not intend restrict | limiting the range of this invention, its application thing, or its use.

《実施形態1》
本実施形態の熱交換器は、空気調和機(10)に設けられた室外熱交換器(23)である。以下では、先ず空気調和機(10)について説明し、その後に室外熱交換器(23)について詳細に説明する。
Embodiment 1
The heat exchanger of this embodiment is an outdoor heat exchanger (23) provided in the air conditioner (10). Below, an air conditioner (10) is demonstrated first, and the outdoor heat exchanger (23) is demonstrated in detail after that.

〈空気調和機の全体構成〉
空気調和機(10)について、図1を参照しながら説明する。
<Overall configuration of air conditioner>
The air conditioner (10) will be described with reference to FIG.

空気調和機(10)は、室外ユニット(11)および室内ユニット(12)を備えている。室外ユニット(11)と室内ユニット(12)は、液側連絡配管(13)およびガス側連絡配管(14)を介して互いに接続されている。空気調和機(10)では、室外ユニット(11)、室内ユニット(12)、液側連絡配管(13)およびガス側連絡配管(14)が接続されることで、冷媒回路(20)が形成されている。     The air conditioner (10) includes an outdoor unit (11) and an indoor unit (12). The outdoor unit (11) and the indoor unit (12) are connected to each other via a liquid side connecting pipe (13) and a gas side connecting pipe (14). In the air conditioner (10), the refrigerant circuit (20) is formed by connecting the outdoor unit (11), the indoor unit (12), the liquid side connection pipe (13) and the gas side connection pipe (14). ing.

冷媒回路(20)には、圧縮機(21)と、四方切換弁(22)と、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが設けられている。圧縮機(21)、四方切換弁(22)、室外熱交換器(23)、および膨張弁(24)は、室外ユニット(11)に収容されている。室外ユニット(11)には、室外熱交換器(23)へ室外空気を供給するための室外ファン(15)が設けられている。室内熱交換器(25)は、室内ユニット(12)に収容されている。室内ユニット(12)には、室内熱交換器(25)へ室内空気を供給するための室内ファン(16)が設けられている。     The refrigerant circuit (20) is provided with a compressor (21), a four-way switching valve (22), an outdoor heat exchanger (23), an expansion valve (24), and an indoor heat exchanger (25). ing. The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), and the expansion valve (24) are accommodated in the outdoor unit (11). The outdoor unit (11) is provided with an outdoor fan (15) for supplying outdoor air to the outdoor heat exchanger (23). The indoor heat exchanger (25) is accommodated in the indoor unit (12). The indoor unit (12) is provided with an indoor fan (16) for supplying room air to the indoor heat exchanger (25).

冷媒回路(20)は、冷媒が充填された閉回路である。冷媒回路(20)において、圧縮機(21)は、その吐出管が四方切換弁(22)の第1のポートに、その吸入管が四方切換弁(22)の第2のポートに、それぞれ接続されている。冷媒回路(20)では、四方切換弁(22)の第3のポートから第4のポートへ向かって順に、室外熱交換器(23)と、膨張弁(24)と、室内熱交換器(25)とが配置されている。この冷媒回路(20)において、室外熱交換器(23)は、配管(17)を介して膨張弁(24)に接続され、配管(18)を介して四方切換弁(22)の第3のポートに接続される。     The refrigerant circuit (20) is a closed circuit filled with a refrigerant. In the refrigerant circuit (20), the compressor (21) has a discharge pipe connected to the first port of the four-way switching valve (22) and a suction pipe connected to the second port of the four-way switching valve (22). Has been. In the refrigerant circuit (20), the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25) in order from the third port to the fourth port of the four-way switching valve (22). ) And are arranged. In this refrigerant circuit (20), the outdoor heat exchanger (23) is connected to the expansion valve (24) via the pipe (17), and the third of the four-way switching valve (22) via the pipe (18). Connected to the port.

圧縮機(21)は、スクロール型またはロータリ型の全密閉型圧縮機である。四方切換弁(22)は、第1のポートが第3のポートと連通し且つ第2のポートが第4のポートと連通する第1状態(図1に実線で示す状態)と、第1のポートが第4のポートと連通し且つ第2のポートが第3のポートと連通する第2状態(図1に破線で示す状態)とに切り換わる。膨張弁(24)は、いわゆる電子膨張弁である。     The compressor (21) is a scroll type or rotary type hermetic compressor. The four-way switching valve (22) includes a first state (state indicated by a solid line in FIG. 1) in which the first port communicates with the third port and the second port communicates with the fourth port; The port is switched to a second state (state indicated by a broken line in FIG. 1) in which the port communicates with the fourth port and the second port communicates with the third port. The expansion valve (24) is a so-called electronic expansion valve.

室外熱交換器(23)は、室外空気を冷媒と熱交換させる。室外熱交換器(23)については後述する。一方、室内熱交換器(25)は、室内空気を冷媒と熱交換させる。室内熱交換器(25)は、円管である伝熱管を備えたいわゆるクロスフィン型のフィン・アンド・チューブ熱交換器によって構成されている。   The outdoor heat exchanger (23) exchanges heat between the outdoor air and the refrigerant. The outdoor heat exchanger (23) will be described later. On the other hand, the indoor heat exchanger (25) exchanges heat between the indoor air and the refrigerant. The indoor heat exchanger (25) is constituted by a so-called cross fin type fin-and-tube heat exchanger provided with a heat transfer tube which is a circular tube.

−空気調和機の運転動作−
空気調和機(10)は、冷房運転と暖房運転を選択的に行う。
-Operation of air conditioner-
The air conditioner (10) selectively performs a cooling operation and a heating operation.

冷房運転中の冷媒回路(20)では、四方切換弁(22)を第1状態に設定した状態で、冷凍サイクルが行われる。この状態では、室外熱交換器(23)、膨張弁(24)、室内熱交換器(25)の順に冷媒が循環し、室外熱交換器(23)が凝縮器として機能し、室内熱交換器(25)が蒸発器として機能する。室外熱交換器(23)では、圧縮機(21)から流入したガス冷媒が室外空気へ放熱して凝縮し、凝縮後の冷媒が膨張弁(24)へ向けて流出してゆく。     In the refrigerant circuit (20) during the cooling operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the first state. In this state, the refrigerant circulates in the order of the outdoor heat exchanger (23), the expansion valve (24), and the indoor heat exchanger (25), and the outdoor heat exchanger (23) functions as a condenser. (25) functions as an evaporator. In the outdoor heat exchanger (23), the gas refrigerant flowing from the compressor (21) dissipates heat to the outdoor air and condenses, and the condensed refrigerant flows out toward the expansion valve (24).

暖房運転中の冷媒回路(20)では、四方切換弁(22)を第2状態に設定した状態で、冷凍サイクルが行われる。この状態では、室内熱交換器(25)、膨張弁(24)、室外熱交換器(23)の順に冷媒が循環し、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が流入する。室外熱交換器(23)へ流入した冷媒は、室外空気から吸熱して蒸発し、その後に圧縮機(21)へ向けて流出してゆく。     In the refrigerant circuit (20) during the heating operation, the refrigeration cycle is performed with the four-way switching valve (22) set to the second state. In this state, the refrigerant circulates in the order of the indoor heat exchanger (25), the expansion valve (24), and the outdoor heat exchanger (23), and the indoor heat exchanger (25) functions as a condenser. (23) functions as an evaporator. The refrigerant that has expanded into the gas-liquid two-phase state flows into the outdoor heat exchanger (23) when passing through the expansion valve (24). The refrigerant that has flowed into the outdoor heat exchanger (23) absorbs heat from the outdoor air and evaporates, and then flows out toward the compressor (21).

〈室外熱交換器の全体構成〉
実施形態1に係る室外熱交換器(23)について図2〜図11を適宜参照しながら説明する。なお、以下の説明に示す扁平管(31,41)の本数は、単なる一例である。
<Overall heat exchanger configuration>
The outdoor heat exchanger (23) according to Embodiment 1 will be described with reference to FIGS. Note that the number of flat tubes (31, 41) shown in the following description is merely an example.

図2に示すように、室外熱交換器(23)は、4つの側面部(23a,23b,23c,23d)を有する4面式の空気熱交換器である。具体的に、室外熱交換器(23)では、第1側面部(23a)、第2側面部(23b)、第3側面部(23c)、及び第4側面部(23d)が連続して形成される。第1側面部(23a)は図2の左下側に位置し、第2側面部(23b)は図2の左上側に位置し、第3側面部(23c)は図2の右上側に位置し、第4側面部(23d)は、図2の右下側に位置する。各側面部(23a,23b,23c,23d)の高さは概ね等しい。第1側面部(23a)及び第4側面部(23d)の各幅は、第2側面部(23b)及び第3側面部(23c)の幅より短い。     As shown in FIG. 2, the outdoor heat exchanger (23) is a four-sided air heat exchanger having four side portions (23a, 23b, 23c, 23d). Specifically, in the outdoor heat exchanger (23), the first side surface portion (23a), the second side surface portion (23b), the third side surface portion (23c), and the fourth side surface portion (23d) are continuously formed. Is done. The first side surface portion (23a) is located on the lower left side in FIG. 2, the second side surface portion (23b) is located on the upper left side in FIG. 2, and the third side surface portion (23c) is located on the upper right side in FIG. The fourth side surface portion (23d) is located on the lower right side of FIG. The height of each side part (23a, 23b, 23c, 23d) is substantially equal. The widths of the first side surface portion (23a) and the fourth side surface portion (23d) are shorter than the widths of the second side surface portion (23b) and the third side surface portion (23c).

室外熱交換器(23)では、室外ファン(15)が運転されることで、各側面部(23a,23b,23c,23d)の外側の室外空気が、各側面部(23a,23b,23c,23d)の内側へと流れる(図2の矢印を参照)。この空気は、室外ケーシング(図示省略)の上部に形成された吹出口より排出される。     In the outdoor heat exchanger (23), when the outdoor fan (15) is operated, the outdoor air outside the side surfaces (23a, 23b, 23c, 23d) is converted into the side surfaces (23a, 23b, 23c, 23d) (see arrow in FIG. 2). This air is exhausted from an air outlet formed in the upper part of an outdoor casing (not shown).

図2〜図4に示すように、室外熱交換器(23)は、扁平管(31,41)とフィン(32,42)とを有する2つの列部(30,40)を有する二列構造の熱交換器である。室外熱交換器(23)は、3つ以上の列部を有していてもよい。本実施形態の室外熱交換器(23)では、空気の通過方向の風上側の列部が風上列部(30)を構成し、風下側の列部が風下列部(40)を構成している。なお、図3及び図4では、風上列部(30)及び風下列部(40)をそれぞれ平面状に展開して模式的に表している。     As shown in FIGS. 2 to 4, the outdoor heat exchanger (23) has a two-row structure having two rows (30, 40) having flat tubes (31, 41) and fins (32, 42). It is a heat exchanger. The outdoor heat exchanger (23) may have three or more rows. In the outdoor heat exchanger (23) of the present embodiment, the windward row portion in the air passage direction constitutes the windward row portion (30), and the leeward row portion constitutes the leeward row portion (40). ing. In FIGS. 3 and 4, the windward row portion (30) and the leeward row portion (40) are each schematically developed in a planar shape.

室外熱交換器(23)は、第1ヘッダ集合管(50)、第2ヘッダ集合管(60)、第3ヘッダ集合管(70)、第4ヘッダ集合管(80)、第1分流ユニット(91)、及び第2分流ユニット(92)を有している。第1ヘッダ集合管(50)は、風上列部(30)のうち第1側面部(23a)側の一端部近傍に立設している。第2ヘッダ集合管(60)は、風上列部(30)のうち第4側面部(23d)側の他端部近傍に立設している。第3ヘッダ集合管(70)は、風下列部(40)のうち第1側面部(23a)側の一端部近傍に立設している。第4ヘッダ集合管(80)は、風下列部(40)のうち第4側面部(23d)側の他端部近傍に立設している。第1分流ユニット(91)は、第1ヘッダ集合管(50)の近傍に立設している。第2分流ユニット(92)は、第3ヘッダ集合管(70)の近傍に立設している。     The outdoor heat exchanger (23) includes a first header collecting pipe (50), a second header collecting pipe (60), a third header collecting pipe (70), a fourth header collecting pipe (80), a first shunt unit ( 91) and a second diversion unit (92). The first header collecting pipe (50) is erected in the vicinity of one end portion on the first side surface portion (23a) side of the windward row portion (30). The second header collecting pipe (60) is erected in the vicinity of the other end portion on the fourth side surface portion (23d) side of the windward row portion (30). The third header collecting pipe (70) is erected in the vicinity of one end of the leeward row portion (40) on the first side surface portion (23a) side. The fourth header collecting pipe (80) is erected in the vicinity of the other end of the leeward row portion (40) on the fourth side surface portion (23d) side. The first diversion unit (91) is erected in the vicinity of the first header collecting pipe (50). The second diversion unit (92) is erected in the vicinity of the third header collecting pipe (70).

扁平管(31,41)、フィン(32,42)、第1ヘッダ集合管(50)、第2ヘッダ集合管(60)、第3ヘッダ集合管(70)、第4ヘッダ集合管(80)、第1分流ユニット(91)、及び第2分流ユニット(92)は、何れもアルミニウム合金製の部材であって、互いにロウ付けによって接合されている。     Flat tubes (31, 41), fins (32, 42), first header collecting tube (50), second header collecting tube (60), third header collecting tube (70), fourth header collecting tube (80) The first diversion unit (91) and the second diversion unit (92) are all made of an aluminum alloy and are joined to each other by brazing.

〔風上列部〕
図2、図3、図5〜図10に示すように、風上列部(30)は、多数の扁平管(31)と、多数のフィン(32)とを備えている。
(Windward section)
As shown in FIGS. 2, 3, and 5 to 10, the windward row portion (30) includes a large number of flat tubes (31) and a large number of fins (32).

扁平管(31)は、その軸直角断面の形状が扁平な略長円形となった伝熱管である(図7を参照)。複数の扁平管(31)は、上下の平坦な部分が対向する状態で配置される。つまり、複数の扁平管(31)は、互いに一定の間隔をおいて上下に並んで配列され、互いの筒軸が実質的に平行になっている。     The flat tube (31) is a heat transfer tube whose cross-section perpendicular to the axis is a flat, substantially oval shape (see FIG. 7). The plurality of flat tubes (31) are arranged with the upper and lower flat portions facing each other. In other words, the plurality of flat tubes (31) are arranged side by side at regular intervals, and the cylinder axes thereof are substantially parallel to each other.

図2に示すように、扁平管(31)は、第1側面部(23a)に沿った第1風上管部(31a)と、第2側面部(23b)に沿った第2風上管部(31b)と、第3側面部(23c)に沿った第3風上管部(31c)と、第4側面部(23d)に沿った第4風上管部(31d)とを有している。図2に示すように、扁平管(31)には、第1風上管部(31a)を第2風上管部(31b)に対して水平内向きに略直角に折り曲げる第1風上屈曲部(33a)と、第2風上管部(31b)に対して第3風上管部(31c)を水平内向きに略直角に折り曲げる第2風上屈曲部(33b)と、第3風上管部(31c)に対して第4風上管部(31d)を水平内向きに略直角に折り曲げる第3風上屈曲部(33c)とが設けられる。     As shown in FIG. 2, the flat tube (31) includes a first upwind tube portion (31a) along the first side surface portion (23a) and a second upwind tube along the second side surface portion (23b). Part (31b), a third upwind pipe part (31c) along the third side part (23c), and a fourth upwind pipe part (31d) along the fourth side part (23d) ing. As shown in FIG. 2, the first upwind bend is formed on the flat tube (31) by bending the first upwind tube portion (31a) inwardly at a substantially right angle to the second upwind tube portion (31b). A second upwind bent portion (33b) for bending the third upwind tube portion (31c) horizontally inward at a substantially right angle with respect to the portion (33a), the second upwind tube portion (31b), and a third wind A third upwind bent portion (33c) is provided that bends the fourth upwind tube portion (31d) horizontally inward at a substantially right angle with respect to the upper tube portion (31c).

各扁平管(31)は、第1風上管部(31a)の端部が第1ヘッダ集合管(50)に挿入され(図5を参照)、第4風上管部(31d)の端部が第2ヘッダ集合管(60)に挿入される(図6を参照)。     Each flat tube (31) has an end portion of the first upwind tube portion (31a) inserted into the first header collecting tube (50) (see FIG. 5), and an end portion of the fourth upwind tube portion (31d). Is inserted into the second header collecting pipe (60) (see FIG. 6).

図7に示すように、各扁平管(31)には、複数の冷媒流路(C)が形成されている。複数の冷媒流路(C)は、扁平管(31)の筒軸方向に延びる通路であり、扁平管(31)の幅方向(空気の通過方向)に一列に並んでいる。各冷媒流路(C)は、扁平管(31)の両端面に開口している。風上列部(30)へ供給された冷媒は、扁平管(31)の冷媒流路(C)を流れる間に空気と熱交換する。風上列部(30)の各扁平管(31)の複数の冷媒流路(C)は、風上冷媒流路群(C1)を構成している。     As shown in FIG. 7, a plurality of refrigerant channels (C) are formed in each flat tube (31). The plurality of refrigerant channels (C) are passages extending in the cylinder axis direction of the flat tube (31), and are arranged in a line in the width direction (air passing direction) of the flat tube (31). Each refrigerant channel (C) opens at both end faces of the flat tube (31). The refrigerant supplied to the windward row section (30) exchanges heat with air while flowing through the refrigerant flow path (C) of the flat tube (31). The plurality of refrigerant channels (C) of each flat tube (31) of the windward row section (30) constitutes an upwind refrigerant channel group (C1).

図7に示すように、フィン(32)は、金属板をプレス加工することによって形成された縦長の板状フィンである。複数のフィン(32)は、扁平管(31)の軸方向に一定の間隔をおいて配列されている。フィン(32)には、フィン(32)の外縁(即ち、風上側の縁部)からフィン(32)の幅方向に延びる細長い切り欠き部(32a)が、多数形成されている。フィン(32)では、多数の切り欠き部(32a)がフィン(32)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(32a)の風上寄りの部分は、管挿入部(32b)を構成している。扁平管(31)は、管挿入部(32b)に挿入され、管挿入部(32b)の周縁部とロウ付けによって接合される。また、フィン(32)には、伝熱を促進するためのルーバー(32c)が形成されている。     As shown in FIG. 7, the fin (32) is a vertically long plate-like fin formed by pressing a metal plate. The plurality of fins (32) are arranged at regular intervals in the axial direction of the flat tube (31). The fin (32) has a number of elongated notches (32a) extending in the width direction of the fin (32) from the outer edge of the fin (32) (that is, the windward edge). In the fin (32), a large number of notches (32a) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (32). The portion closer to the windward side of the notch (32a) constitutes the tube insertion portion (32b). The flat tube (31) is inserted into the tube insertion portion (32b) and joined to the peripheral portion of the tube insertion portion (32b) by brazing. Moreover, the louver (32c) for promoting heat transfer is formed in the fin (32).

図3に示すように、風上列部(30)には、上下に2つの熱交換領域(35,37)が形成されている。上側の熱交換領域は、風上主熱交換領域(35)を構成し、下側の熱交換領域は、風上補助熱交換領域(37)を構成する。風上補助熱交換領域(37)に対応する扁平管(31)の本数は、風上主熱交換領域(35)を構成する扁平管(31)の本数よりも少ない。     As shown in FIG. 3, two heat exchange regions (35, 37) are formed in the upper and lower rows in the windward row portion (30). The upper heat exchange area constitutes the upwind main heat exchange area (35), and the lower heat exchange area constitutes the upwind auxiliary heat exchange area (37). The number of flat tubes (31) corresponding to the upwind auxiliary heat exchange region (37) is smaller than the number of flat tubes (31) constituting the upwind main heat exchange region (35).

風上主熱交換領域(35)は、上下に並ぶ6つの風上主熱交換部(36)に区分されている。風上補助熱交換領域(37)は、上下に並ぶ6つの風上補助熱交換部(38)に区分されている。つまり、風上主熱交換領域(35)と風上補助熱交換領域(37)は、それぞれ同数の熱交換部に区分されている。なお、風上主熱交換部(36)及び風上補助熱交換部(38)の数は単なる一例であり、複数であることが好ましい。     The upwind main heat exchange area (35) is divided into six upwind main heat exchange sections (36) arranged vertically. The upwind auxiliary heat exchange region (37) is divided into six upwind auxiliary heat exchange sections (38) arranged vertically. That is, the upwind main heat exchange region (35) and the upwind auxiliary heat exchange region (37) are each divided into the same number of heat exchange units. In addition, the number of the upwind main heat exchange part (36) and the upwind auxiliary heat exchange part (38) is a mere example, and it is preferable that it is plural.

図3及び図6に示すように、各風上主熱交換部(36)には、同数(例えば6本)の扁平管(31)が設けられている。各風上主熱交換部(36)に設けられる扁平管(31)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIGS. 3 and 6, each upwind main heat exchange section (36) is provided with the same number (for example, six) of flat tubes (31). The number of flat tubes (31) provided in each upwind main heat exchange section (36) is merely an example, and may be a plurality or one.

図3及び図5に示すように、各風上補助熱交換部(38)には、同数(例えば2本)の扁平管(31)が設けられている。各風上補助熱交換部(38)に設けられる扁平管(31)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIGS. 3 and 5, each upwind auxiliary heat exchange section (38) is provided with the same number (for example, two) of flat tubes (31). The number of flat tubes (31) provided in each upwind auxiliary heat exchange section (38) is merely an example, and may be plural or one.

〔風下列部〕
図2、図4、図5〜図10に示すように、風下列部(40)は、多数の扁平管(41)と、多数のフィン(42)とを備えている。
(Leeward row)
As shown in FIGS. 2, 4, and 5 to 10, the leeward row section (40) includes a large number of flat tubes (41) and a large number of fins (42).

扁平管(41)は、その軸直角断面の形状が扁平な略長円形となった伝熱管である(図7を参照)。複数の扁平管(41)は、上下の平坦な部分が対向する状態で配置される。つまり、複数の扁平管(41)は、互いに一定の間隔をおいて上下に並んで配列され、互いの筒軸が実質的に平行になっている。     The flat tube (41) is a heat transfer tube whose cross section perpendicular to the axis is a flat, oval shape (see FIG. 7). The plurality of flat tubes (41) are arranged with the upper and lower flat portions facing each other. That is, the plurality of flat tubes (41) are arranged side by side with a certain distance from each other, and the cylinder axes thereof are substantially parallel to each other.

図2に示すように、扁平管(41)は、第1風上管部(31a)の内縁に沿った第1風下管部(41a)と、第2風上管部(31b)の内縁に沿った第2風下管部(41b)と、第3風上管部(31c)の内縁に沿った第3風下管部(41c)と、第4風上管部(31d)の内縁に沿った第4風下管部(41d)とを有している。扁平管(41)には、第1風下管部(41a)を第2風下管部(41b)に対して水平内向きに略直角に折り曲げる第1風下屈曲部(43a)と、第2風下管部(41b)に対して第3風下管部(41c)を水平内向きに略直角に折り曲げる第2風下屈曲部(43b)と、第3風下管部(41c)に対して第4風下管部(41d)を水平内向きに略直角に折り曲げる第3風下屈曲部(43c)とが設けられる。     As shown in FIG. 2, the flat tube (41) is formed on the first leeward tube portion (41a) along the inner edge of the first windward tube portion (31a) and on the inner edge of the second windward tube portion (31b). Along the second leeward pipe part (41b) along, the third leeward pipe part (41c) along the inner edge of the third upwind pipe part (31c), and along the inner edge of the fourth upwind pipe part (31d) And a fourth leeward pipe portion (41d). The flat tube (41) includes a first leeward bend portion (43a) that bends the first leeward tube portion (41a) horizontally inward at a substantially right angle with respect to the second leeward tube portion (41b), and a second leeward tube. A second leeward bent part (43b) that bends the third leeward pipe part (41c) horizontally inward at a substantially right angle with respect to the part (41b), and a fourth leeward pipe part with respect to the third leeward pipe part (41c). A third leeward bent portion (43c) that bends (41d) horizontally inward at a substantially right angle is provided.

各扁平管(41)は、第1風下管部(41a)の端部が第3ヘッダ集合管(70)に挿入され、第4風下管部(41d)の端部が第4ヘッダ集合管(80)に挿入される(図4を参照)。     In each flat tube (41), the end portion of the first leeward pipe portion (41a) is inserted into the third header collecting pipe (70), and the end portion of the fourth leeward pipe portion (41d) is inserted into the fourth header collecting pipe ( 80) (see FIG. 4).

図7〜図10に示すように、各扁平管(41)には、複数の冷媒流路(C)が形成されている。複数の冷媒流路(C)は、扁平管(41)の筒軸方向に延びる通路であり、扁平管(41)の幅方向(空気の通過方向)に一列に並んでいる。各冷媒流路(C)は、扁平管(41)の両端面に開口している。風下列部(40)へ供給された冷媒は、扁平管(41)の冷媒流路(C)を流れる間に空気と熱交換する。風下列部(40)の各扁平管(41)の複数の冷媒流路(C)は、風下冷媒流路群(C2)を構成している。     As shown in FIGS. 7 to 10, each flat tube (41) is formed with a plurality of refrigerant channels (C). The plurality of refrigerant channels (C) are passages extending in the cylinder axis direction of the flat tube (41), and are arranged in a line in the width direction (air passing direction) of the flat tube (41). Each refrigerant channel (C) opens at both end faces of the flat tube (41). The refrigerant supplied to the leeward row section (40) exchanges heat with air while flowing through the refrigerant flow path (C) of the flat tube (41). The plurality of refrigerant channels (C) of each flat tube (41) in the leeward row section (40) constitutes a leeward refrigerant channel group (C2).

図7に示すように、フィン(42)は、金属板をプレス加工することによって形成された縦長の板状フィンである。複数のフィン(42)は、扁平管(41)の軸方向に一定の間隔をおいて配列されている。フィン(42)には、フィン(42)の外縁(即ち、風上側の縁部)からフィン(42)の幅方向に延びる細長い切り欠き部(42a)が、多数形成されている。フィン(42)では、多数の切り欠き部(42a)がフィン(42)の長手方向(上下方向)に一定の間隔で形成されている。切り欠き部(42a)の風上寄りの部分は、管挿入部(42b)を構成している。扁平管(41)は、管挿入部(42b)に挿入され、管挿入部(42b)の周縁部とロウ付けによって接合される。また、フィン(42)には、伝熱を促進するためのルーバー(42c)が形成されている。     As shown in FIG. 7, the fin (42) is a vertically long plate-like fin formed by pressing a metal plate. The plurality of fins (42) are arranged at regular intervals in the axial direction of the flat tube (41). The fin (42) is formed with a number of elongated notches (42a) extending in the width direction of the fin (42) from the outer edge (ie, the windward edge) of the fin (42). In the fin (42), a large number of notches (42a) are formed at regular intervals in the longitudinal direction (vertical direction) of the fin (42). A portion closer to the windward side of the notch (42a) constitutes a tube insertion portion (42b). The flat tube (41) is inserted into the tube insertion portion (42b) and joined to the peripheral portion of the tube insertion portion (42b) by brazing. In addition, a louver (42c) for promoting heat transfer is formed on the fin (42).

図4に示すように、風下列部(40)には、上下に2つの熱交換領域(45,47)が形成されている。上側の熱交換領域は、風下主熱交換領域(45)を構成し、下側の熱交換領域は、風下補助熱交換領域(47)を構成する。風下補助熱交換領域(47)に対応する扁平管(41)の本数は、風下主熱交換領域(45)を構成する扁平管(41)の本数よりも少ない。     As shown in FIG. 4, two heat exchange regions (45, 47) are formed at the top and bottom of the leeward row portion (40). The upper heat exchange area constitutes the leeward main heat exchange area (45), and the lower heat exchange area constitutes the leeward auxiliary heat exchange area (47). The number of flat tubes (41) corresponding to the leeward auxiliary heat exchange region (47) is smaller than the number of flat tubes (41) constituting the leeward main heat exchange region (45).

風下主熱交換領域(45)は、上下に並ぶ6つの風下主熱交換部(46)に区分されている。風下補助熱交換領域(47)は、上下に並ぶ6つの風下補助熱交換部(48)に区分されている。つまり、風下主熱交換領域(45)と風下補助熱交換領域(47)は、それぞれ同数の熱交換部に区分されている。なお、風下主熱交換部(46)及び風下補助熱交換部(48)の数は単なる一例であり、複数であることが好ましい。     The leeward main heat exchange region (45) is divided into six leeward main heat exchange sections (46) arranged vertically. The leeward auxiliary heat exchange region (47) is divided into six leeward auxiliary heat exchangers (48) arranged vertically. That is, the leeward main heat exchange region (45) and the leeward auxiliary heat exchange region (47) are each divided into the same number of heat exchange units. In addition, the number of the leeward main heat exchange part (46) and the leeward auxiliary heat exchange part (48) is a mere example, and it is preferable that it is plural.

図4に示すように、各風下主熱交換部(46)には、同数(例えば6本)の扁平管(41)が設けられている。各風下主熱交換部(46)に設けられる扁平管(41)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIG. 4, each leeward main heat exchange section (46) is provided with the same number (for example, six) of flat tubes (41). The number of flat tubes (41) provided in each leeward main heat exchange section (46) is merely an example, and may be a plurality or one.

図5及び図6に示すように、各風下補助熱交換部(48)には、同数(例えば2本)の扁平管(41)が設けられている。各風下補助熱交換部(48)に設けられる扁平管(41)の数は単なる例示であり、複数本又は1本であってもよい。     As shown in FIG.5 and FIG.6, the same number (for example, two) flat tubes (41) are provided in each lee auxiliary heat exchange part (48). The number of flat tubes (41) provided in each lee auxiliary heat exchange section (48) is merely an example, and may be plural or one.

〔第3ヘッダ集合管〕
図2及び図4に示すように、第3ヘッダ集合管(70)は、上下の両端が閉塞された円筒状の部材である。第3ヘッダ集合管(70)の長さ(高さ)は、風上列部(30)及び風下列部(40)の高さと概ね一致している。
[Third header collecting pipe]
As shown in FIGS. 2 and 4, the third header collecting pipe (70) is a cylindrical member whose upper and lower ends are closed. The length (height) of the third header collecting pipe (70) substantially coincides with the heights of the windward row portion (30) and the leeward row portion (40).

第3ヘッダ集合管(70)の内部構造は、図5に示す第1ヘッダ集合管(50)と同様である。即ち、図4に示すように、第3ヘッダ集合管(70)の内部空間は、主仕切板(71)によって上下に仕切られている。主仕切板(71)の上側の空間は、風下主熱交換領域(45)に対応する風下上側空間(72)である。主仕切板(81)の下側の空間は、風下補助熱交換領域(47)に対応する風下下側空間(73)である。風下上側空間(72)の上下方向の中間部には、1本の第2主ガス管(72a)の一端が接続される。第2主ガス管(72a)の他端は、ガス側連絡配管(14)と連通している。     The internal structure of the third header collecting pipe (70) is the same as that of the first header collecting pipe (50) shown in FIG. That is, as shown in FIG. 4, the internal space of the third header collecting pipe (70) is partitioned vertically by the main partition plate (71). The space above the main partition (71) is the leeward upper space (72) corresponding to the leeward main heat exchange region (45). The space below the main partition plate (81) is a leeward space (73) corresponding to the leeward auxiliary heat exchange region (47). One end of one second main gas pipe (72a) is connected to an intermediate portion in the vertical direction of the leeward upper space (72). The other end of the second main gas pipe (72a) communicates with the gas side communication pipe (14).

風下下側空間(73)は、上下に等間隔置きに並んだ5枚の仕切板(74)によって6つ風下補助空間(75)に仕切られている。これらの6つの風下補助空間(75)は、6つの風下補助熱交換部(48)にそれぞれ1つずつ対応している。各風下補助空間(75)には、例えば2本の扁平管(41)の第1風下管部(41a)がそれぞれ連通している。     The leeward side space (73) is divided into six leeward auxiliary spaces (75) by five partition plates (74) arranged at equal intervals in the vertical direction. Each of these six leeward auxiliary spaces (75) corresponds to each of the six leeward auxiliary heat exchangers (48). For example, the first leeward pipe portion (41a) of two flat tubes (41) communicates with each leeward auxiliary space (75).

〔第4ヘッダ集合管〕
図2、図4、図8〜図10に示すように、第4ヘッダ集合管(80)は、上下の両端が閉塞された円筒状の部材である。第4ヘッダ集合管(80)の長さ(高さ)は、風上列部(30)及び風下列部(40)の高さと概ね一致している。
[Fourth header collecting pipe]
As shown in FIGS. 2, 4, and 8 to 10, the fourth header collecting pipe (80) is a cylindrical member whose upper and lower ends are closed. The length (height) of the fourth header collecting pipe (80) is substantially equal to the height of the windward row portion (30) and the leeward row portion (40).

第4ヘッダ集合管(80)の内部構造は、図6に示す第2ヘッダ集合管(60)と同様である。即ち、図4に示すように、第4ヘッダ集合管(80)の内部空間は、主仕切板(81)によって上下に仕切られている。主仕切板(81)の上側の空間は、風下主熱交換領域(45)に対応する風下上側空間(82)である。主仕切板(81)の下側の空間は、風下補助熱交換領域(47)に対応する風下下側空間(83)である。     The internal structure of the fourth header collecting pipe (80) is the same as that of the second header collecting pipe (60) shown in FIG. That is, as shown in FIG. 4, the internal space of the fourth header collecting pipe (80) is partitioned vertically by the main partition plate (81). The space above the main partition (81) is the leeward upper space (82) corresponding to the leeward main heat exchange region (45). The space below the main partition plate (81) is a leeward space (83) corresponding to the leeward auxiliary heat exchange region (47).

風下上側空間(82)は、上下に等間隔置きに並んだ5枚の仕切板(84)によって6つの風下主連絡空間(85)に仕切られている。これらの6つの風下主連絡空間(85)は、6つの風下主熱交換部(46)にそれぞれ1つずつ対応している。風下主連絡空間(85)には、例えば6本の扁平管(41)の第1風下管部(41a)がそれぞれ連通している。     The leeward upper space (82) is divided into six leeward main communication spaces (85) by five partition plates (84) arranged at equal intervals in the vertical direction. Each of these six leeward main communication spaces (85) corresponds to each of the six leeward main heat exchange sections (46). For example, the first leeward pipe part (41a) of six flat pipes (41) communicates with the leeward main communication space (85).

風下下側空間(83)は、上下に等間隔置きに並んだ5枚の仕切板(86)によって6つの風下補助連絡空間(87)に仕切られている。これらの6つの風下補助連絡空間(87)は、6つの風下補助熱交換部(48)にそれぞれ1つずつ対応している。各風下補助連絡空間(87)には、例えば2本の扁平管(41)の各第4風下管部(41d)がそれぞれ連通している。     The leeward side space (83) is partitioned into six leeward auxiliary communication spaces (87) by five partition plates (86) arranged at equal intervals in the vertical direction. These six leeward auxiliary communication spaces (87) correspond to the six leeward auxiliary heat exchange sections (48), respectively. For example, each fourth leeward pipe portion (41d) of two flat tubes (41) communicates with each leeward auxiliary communication space (87).

第4ヘッダ集合管(80)には、6つの風下連絡管(88)が接続されている。風下連絡管(88)は、風下列部(40)の風下主熱交換領域(45)の扁平管(41)の端部と風下補助熱交換領域(47)の扁平管(41)の端部とを繋いでいる。     Six leeward communication pipes (88) are connected to the fourth header collecting pipe (80). The leeward communication pipe (88) consists of the end of the flat pipe (41) in the leeward main heat exchange area (45) of the leeward row (40) and the end of the flat pipe (41) in the leeward auxiliary heat exchange area (47). Are connected.

具体的には、第1の風下連絡管(88)は、最上段の風下補助連絡空間(87)と最下段の風下主連絡空間(85)とを接続し、第2の風下連絡管(88)は、上から2段目の風下補助連絡空間(87)と下から2段目の風下主連絡空間(85)とを接続し、第3の風下連絡管(88)は、上から3段目の風下補助連絡空間(87)と下から3段目の風下主連絡空間(85)とを接続している。第4の風下連絡管(88)は、上から4段目の風下補助連絡空間(87)と下から4段目の風下主連絡空間(85)とを接続し、第5の風下連絡管(88)は、上から5段目の風下補助連絡空間(87)と下から5段目の風下主連絡空間(85)とを接続し、第6の風下連絡管(88)は、最下段の風下補助連絡空間(87)と最上段の風下主連絡空間(85)とを接続している。     Specifically, the first leeward communication pipe (88) connects the uppermost leeward auxiliary communication space (87) and the lowermost leeward main communication space (85), and the second leeward communication pipe (88). ) Connects the second leeward auxiliary communication space (87) from the top and the second leeward main communication space (85) from the bottom, and the third leeward communication pipe (88) has three steps from the top. The leeward auxiliary communication space (87) of the eyes is connected to the leeward main communication space (85) of the third level from the bottom. The fourth leeward communication pipe (88) connects the fourth leeward auxiliary communication space (87) from the top to the fourth leeward main communication space (85) from the bottom, and the fifth leeward communication pipe ( 88) connects the leeward auxiliary communication space (87) at the fifth level from the top to the main leeward communication space (85) at the fifth level from the bottom, and the sixth leeward communication pipe (88) is located at the bottom level. The leeward auxiliary communication space (87) is connected to the uppermost leeward main communication space (85).

〔第1分流ユニット〕
図2及び図3に示すように、第1分流ユニット(91)は、第1ヘッダ集合管(50)に取り付けられている。第1分流ユニット(91)は、円筒部(91a)と、6本の液側接続管(91b)と、1本の第1主液管(91c)とを有している。
[First shunt unit]
As shown in FIGS. 2 and 3, the first diversion unit (91) is attached to the first header collecting pipe (50). The first diversion unit (91) has a cylindrical portion (91a), six liquid side connection pipes (91b), and one first main liquid pipe (91c).

円筒部(91a)は、第1ヘッダ集合管(50)よりも低い円筒状に形成され、第1ヘッダ集合管(50)の下部に沿って起立している。6本の液側接続管(91b)は、上下に配列されて円筒部(91a)に接続されている。各液側接続管(91b)の本数は、風上補助連絡空間(67)の数と同数(本例では6つ)である。各液側接続管(91b)は、各風上補助連絡空間(67)とそれぞれ連通している。第1主液管(91c)の一端は、円筒部(91a)の下部に接続されている。第1主液管(91c)と各液側接続管(91b)とは、円筒部(91a)の内部空間を介して連通している。     The cylindrical portion (91a) is formed in a cylindrical shape lower than the first header collecting pipe (50), and stands along the lower portion of the first header collecting pipe (50). The six liquid side connection pipes (91b) are arranged vertically and connected to the cylindrical part (91a). The number of each liquid side connection pipe (91b) is the same number (six in this example) as the number of windward auxiliary communication spaces (67). Each liquid side connection pipe (91b) communicates with each upwind auxiliary communication space (67). One end of the first main liquid pipe (91c) is connected to the lower part of the cylindrical part (91a). The first main liquid pipe (91c) and each liquid side connection pipe (91b) communicate with each other through the internal space of the cylindrical portion (91a).

〔第2分流ユニット〕
図2及び図4に示すように、第2分流ユニット(92)は、第3ヘッダ集合管(70)に取り付けられている。第2分流ユニット(92)は、円筒部(92a)と、6本の液側接続管(92b)と、1本の第2主液管(92c)とを有している。
[Second shunt unit]
As shown in FIGS. 2 and 4, the second diversion unit (92) is attached to the third header collecting pipe (70). The second branch unit (92) includes a cylindrical portion (92a), six liquid side connection pipes (92b), and one second main liquid pipe (92c).

円筒部(92a)は、第3ヘッダ集合管(70)よりも低い円筒状に形成され、第3ヘッダ集合管(70)の下部に沿って起立している。6本の液側接続管(92b)は、上下に配列されて円筒部(92a)に接続されている。各液側接続管(92b)の本数は、風下補助空間(75)の数と同数(本例では6つ)である。各液側接続管(92b)は、各風下補助空間(75)とそれぞれ連通している。第2主液管(92c)の一端は、円筒部(92a)の下部に接続されている。第2主液管(92c)と各液側接続管(92b)とは、円筒部(92a)の内部空間を介して連通している。     The cylindrical portion (92a) is formed in a cylindrical shape lower than the third header collecting pipe (70), and stands up along the lower portion of the third header collecting pipe (70). The six liquid side connection pipes (92b) are arranged vertically and connected to the cylindrical part (92a). The number of each liquid side connection pipe (92b) is the same as the number of leeward auxiliary spaces (75) (six in this example). Each liquid side connection pipe (92b) communicates with each lee auxiliary space (75). One end of the second main liquid pipe (92c) is connected to the lower part of the cylindrical part (92a). The second main liquid pipe (92c) and each liquid side connection pipe (92b) communicate with each other through the internal space of the cylindrical portion (92a).

〔液分岐管〕
図2に模式的に示すように、第1分流ユニット(91)の第1主液管(91c)と第2分流ユニット(92)の第2主液管(92c)とには、液分岐管(28)が接続されている。液分岐管(28)は、二手に分岐し、各分流ユニット(91,92)及び各補助空間(55,75)と連通している。つまり、液分岐管(28)は、風上列部(30)の各扁平管(31)の他端部(第1風上管部(31a))と、風下列部(40)の各扁平管(41)の他端部(第1風下管部(41a))に分岐して連通している。
(Liquid branch pipe)
As schematically shown in FIG. 2, the first main liquid pipe (91c) of the first diversion unit (91) and the second main liquid pipe (92c) of the second diversion unit (92) include a liquid branch pipe. (28) is connected. The liquid branch pipe (28) is bifurcated and communicates with each branch unit (91, 92) and each auxiliary space (55, 75). That is, the liquid branch pipe (28) includes the other end of each flat pipe (31) (first upwind pipe section (31a)) of the upwind row section (30) and each flat of the downwind row section (40). The other end of the tube (41) (the first leeward tube (41a)) is branched and communicated.

〔ガス分岐管〕
図2に模式的に示すように、風上列部(30)の第1主ガス管(52a)と風下列部(40)の第2主ガス管(72a)とには、ガス分岐管(29)が接続されている。ガス分岐管(29)は、二手に分岐し、風上上側空間(52)及び風下上側空間(72)と連通している。つまり、ガス分岐管(29)は、風上列部(30)の他端部(第1風上管部(31a))と、風下列部(40)の他端部(第1風下管部(41a))に分岐するように連通している。
[Gas branch pipe]
As schematically shown in FIG. 2, the first main gas pipe (52a) of the leeward row portion (30) and the second main gas pipe (72a) of the leeward row portion (40) include a gas branch pipe ( 29) is connected. The gas branch pipe (29) is bifurcated and communicates with the windward upper space (52) and the windward upper space (72). That is, the gas branch pipe (29) includes the other end portion (first upwind pipe portion (31a)) of the windward row portion (30) and the other end portion (first leeward pipe portion of the leeward row portion (40). (41a)) so as to branch off.

−室外熱交換器の冷媒流れについて−
室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが並行になるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下主熱交換領域(45)の扁平管(41)とで冷媒が並行に流れ、且つ風上列部(30)の風下補助熱交換領域(47)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が並行に流れるように構成される。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに並行に流れるように構成される。
-Refrigerant flow in outdoor heat exchanger-
When the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (41 of the leeward row (40)) ) And the refrigerant flowing in parallel. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in parallel with the flat tube (41) of the leeward main heat exchange region (45) of 40), and the flat tube (31) of the leeward auxiliary heat exchange region (47) of the windward row (30), The refrigerant flows in parallel with the flat tube (41) in the leeward auxiliary heat exchange region (47) of the leeward row (40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2).

更に室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが互いに同じ方向となるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が互いに同一方向に流れる。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに同一方向に流れる。     Furthermore, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (40) of the leeward row (40) 41) and the refrigerant flowing in the same direction. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in the same direction through the flat tube (41) in the leeward auxiliary heat exchange region (47) of 40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2) flow in the same direction.

〔凝縮器の場合の冷媒の流れ〕
空気調和機(10)の冷房運転中には、室内熱交換器(25)が蒸発器として機能し、室外熱交換器(23)が凝縮器として機能する。ここでは、冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Refrigerant flow for condenser]
During the cooling operation of the air conditioner (10), the indoor heat exchanger (25) functions as an evaporator, and the outdoor heat exchanger (23) functions as a condenser. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the cooling operation will be described.

室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が、ガス分岐管(29)に流入し、第1主ガス管(52a)と第2主ガス管(72a)とに分流する。     In the outdoor heat exchanger (23), the gas refrigerant discharged from the compressor (21) flows into the gas branch pipe (29), and the first main gas pipe (52a) and the second main gas pipe (72a). Divide into and.

図3に示すように、第1主ガス管(52a)へ供給された冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)に流入し、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上補助熱交換部(38)に分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 3, the refrigerant supplied to the first main gas pipe (52a) flows into the upwind space (52) of the first header collecting pipe (50), and each upwind main heat exchange section ( 36). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind main heat exchange section (36) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each upwind main communication space (65) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60), and is distributed to each upwind auxiliary heat exchange section (38). The Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) further dissipates heat and condenses, and is in a supercooled state (ie, Liquid single phase state).

過冷却状態となった液冷媒は、第1ヘッダ集合管(50)の各風上補助空間(55)へ供給され、第1分流ユニット(91)で合流し、第1主液管(91c)を流れる。     The supercooled liquid refrigerant is supplied to each upwind auxiliary space (55) of the first header collecting pipe (50), and is merged by the first diversion unit (91), and the first main liquid pipe (91c). Flowing.

図4に示すように、第2主ガス管(72a)へ供給された冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)に流入し、風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下補助熱交換部(48)に分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 4, the refrigerant supplied to the second main gas pipe (72a) flows into the leeward upper space (72) of the third header collecting pipe (70) and enters the leeward main heat exchange section (46). Distributed. Each refrigerant passing through each leeward refrigerant flow path group (C2) of each flat tube (41) of each leeward main heat exchange section (46) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant that has flowed through each leeward communication pipe (88) is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80), and is distributed to each leeward auxiliary heat exchange section (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchanger (48) further dissipates heat to the air and condenses, and is in a supercooled state (that is, liquid unit Phase state).

過冷却状態となった液冷媒は、第3ヘッダ集合管(70)の各風下補助空間(75)へ供給され、第2分流ユニット(92)で合流し、第2主液管(92c)を流れる。     The supercooled liquid refrigerant is supplied to each leeward auxiliary space (75) of the third header collecting pipe (70), and is merged by the second diverting unit (92) to pass through the second main liquid pipe (92c). Flowing.

第1主液管(91c)を流れる冷媒と、第2主液管(92c)を流れる冷媒とは、液分岐管(28)で合流し、液側連絡配管(13)へ送られる。     The refrigerant flowing through the first main liquid pipe (91c) and the refrigerant flowing through the second main liquid pipe (92c) merge at the liquid branch pipe (28) and are sent to the liquid side connecting pipe (13).

〔凝縮器の場合の冷媒と空気の温度変化〕
凝縮器として機能する室外熱交換器(23)における空気と冷媒の温度変化の一例を、図11に示す。
[Changes in temperature of refrigerant and air in the case of a condenser]
An example of the temperature change of the air and the refrigerant in the outdoor heat exchanger (23) functioning as a condenser is shown in FIG.

風上主熱交換領域(35)の扁平管(31)には、70℃の過熱状態のガス冷媒が流入する。この冷媒は、風上主熱交換領域(35)の扁平管(31)の風上冷媒流路群(C1)の途中で50℃の飽和状態のガス冷媒となり、その後に次第に凝縮してゆく。風上主熱交換領域(35)から流出した冷媒は、風上補助熱交換領域(37)の扁平管(31)に流入する。この冷媒は、風上補助熱交換領域(37)の扁平管(31)の風上冷媒流路群(C1)で液単相状態の飽和冷媒(飽和温度50℃)となり、その後、更に放熱して過冷却状態(例えば42℃)となる。     An overheated gas refrigerant at 70 ° C. flows into the flat tube (31) in the upwind main heat exchange region (35). This refrigerant becomes a gas refrigerant in a saturated state at 50 ° C. in the middle of the upwind refrigerant flow path group (C1) of the flat tube (31) in the upwind main heat exchange region (35), and then gradually condenses. The refrigerant that has flowed out of the upwind main heat exchange region (35) flows into the flat tube (31) in the upwind auxiliary heat exchange region (37). This refrigerant becomes a liquid single-phase saturated refrigerant (saturation temperature 50 ° C.) in the upwind refrigerant flow path group (C1) of the flat tube (31) in the upwind auxiliary heat exchange region (37), and then further dissipates heat. Thus, a supercooled state (for example, 42 ° C.) is obtained.

風下主熱交換領域(45)の扁平管(41)には、70℃の過熱状態のガス冷媒が流入する。この冷媒は、風下主熱交換領域(45)の扁平管(41)の風下冷媒流路群(C2)の途中で50℃の飽和状態のガス冷媒となり、その後に次第に凝縮してゆく。風下主熱交換領域(45)から流出した冷媒は、風下補助熱交換領域(47)の扁平管(41)に流入する。この冷媒は、風下補助熱交換領域(47)の扁平管(41)の風下冷媒流路群(C2)で液単相状態の飽和冷媒(飽和温度50℃)となり、その後、更に放熱して過冷却状態(例えば47℃)となる。     An overheated gas refrigerant at 70 ° C. flows into the flat tube (41) in the leeward main heat exchange region (45). This refrigerant becomes a gas refrigerant in a saturated state at 50 ° C. in the middle of the leeward refrigerant flow path group (C2) of the flat tube (41) in the leeward main heat exchange region (45), and then gradually condenses. The refrigerant that has flowed out of the leeward main heat exchange region (45) flows into the flat tube (41) in the leeward auxiliary heat exchange region (47). This refrigerant becomes a liquid single-phase saturated refrigerant (saturation temperature of 50 ° C.) in the leeward refrigerant flow path group (C2) of the flat tube (41) in the leeward auxiliary heat exchange region (47), and then further dissipates heat. It becomes a cooling state (for example, 47 ° C.).

一方、風上主熱交換領域(35)と風下補助熱交換領域(37)には、例えば35℃の空気が流入する。風下主熱交換領域(45)には、風上主熱交換領域(35)で加熱された45℃の空気が流入し、風下補助熱交換領域(37)には、風上補助熱交換領域(35)を通過する際に加熱された40℃の空気が流入する。     On the other hand, for example, air at 35 ° C. flows into the upwind main heat exchange region (35) and the leeward auxiliary heat exchange region (37). The 45 ° C. air heated in the windward main heat exchange area (35) flows into the leeward main heat exchange area (45), and the windward auxiliary heat exchange area (37) Air heated at 40 ° C. flows through 35).

このように、室外熱交換器(23)が凝縮器として機能する場合、室外熱交換器(23)の全体において冷媒の温度が空気の温度よりも高くなり、冷媒が空気へ放出する熱量(即ち、冷媒の放熱量)が確保される。     Thus, when the outdoor heat exchanger (23) functions as a condenser, the temperature of the refrigerant in the entire outdoor heat exchanger (23) becomes higher than the temperature of air, and the amount of heat released from the refrigerant into the air (that is, The amount of heat released from the refrigerant is ensured.

〔蒸発器の場合の冷媒の流れ〕
空気調和機(10)の暖房運転中には、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。ここでは、暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Refrigerant flow in the case of an evaporator]
During the heating operation of the air conditioner (10), the indoor heat exchanger (25) functions as a condenser, and the outdoor heat exchanger (23) functions as an evaporator. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the heating operation will be described.

室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が、配管(17)を通じて供給される。この冷媒は、液分岐管(28)に流入し、第1主液管(91c)と第2主液管(92c)とに分流する。     The outdoor heat exchanger (23) is supplied with the refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24) through the pipe (17). This refrigerant flows into the liquid branch pipe (28) and is divided into the first main liquid pipe (91c) and the second main liquid pipe (92c).

図12に示すように、第1分流ユニット(91)に供給された冷媒は、各液側接続管(91b)に分流し、第1ヘッダ集合管(50)の各風上補助空間(55)より各風上補助熱交換部(38)へ分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 12, the refrigerant supplied to the first diversion unit (91) is diverted to each liquid side connection pipe (91b), and each upwind auxiliary space (55) of the first header collecting pipe (50) is obtained. Are distributed to each upwind auxiliary heat exchange section (38). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind main communication space (65) of the second header collecting pipe (60), and is distributed to each upwind main heat exchange section (36). The Each refrigerant passing through each upwind refrigerant channel group (C1) of each flat tube (31) of each upwind main heat exchange section (36) further absorbs heat from the air and evaporates, and is overheated (ie, gas Single phase state).

過熱状態となったガス冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)で合流し、第1主ガス管(52a)よりガス側連絡配管(14)へ送られる。     The superheated gas refrigerant merges in the upwind space (52) of the first header collecting pipe (50) and is sent from the first main gas pipe (52a) to the gas side connecting pipe (14).

図13に示すように、第2分流ユニット(92)に供給された冷媒は、各液側接続管(92b)に分流し、第3ヘッダ集合管(70)の各風下補助空間(75)より各風下補助熱交換部(48)へ分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 13, the refrigerant supplied to the second diversion unit (92) is diverted to each liquid side connection pipe (92b), and from each leeward auxiliary space (75) of the third header collecting pipe (70). It distributes to each leeward auxiliary heat exchanger (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchange section (48) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant flowing through each leeward communication pipe (88) is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80), and is distributed to each leeward main heat exchange section (46). Each refrigerant passing through each leeward refrigerant channel group (C2) of each flat tube (41) of each leeward main heat exchange section (46) further absorbs heat from the air and evaporates, and is in an overheated state (ie, a gas single phase). State).

過熱状態となったガス冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)で合流し、第2主ガス管(72a)を流れる。     The superheated gas refrigerant merges in the leeward upper space (72) of the third header collecting pipe (70) and flows through the second main gas pipe (72a).

第1主ガス管(52a)を流れる冷媒と、第2主ガス管(72a)を流れる冷媒とは、ガス分岐管(29)で合流し、ガス側連絡配管(14)へ送られる。     The refrigerant flowing through the first main gas pipe (52a) and the refrigerant flowing through the second main gas pipe (72a) merge at the gas branch pipe (29) and are sent to the gas side connecting pipe (14).

〔蒸発器の場合の冷媒と空気の温度変化〕
蒸発器として機能する室外熱交換器(23)における空気と冷媒の温度変化の一例を、図14を参照しながら説明する。
[Temperature change of refrigerant and air in the case of an evaporator]
An example of the temperature change of the air and the refrigerant in the outdoor heat exchanger (23) functioning as an evaporator will be described with reference to FIG.

風上補助熱交換領域(37)の扁平管(31)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風上補助熱交換領域(37)の扁平管(31)では、冷媒が風上冷媒流路群(C1)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (31) in the upwind auxiliary heat exchange region (37). In the flat tube (31) of the windward auxiliary heat exchange region (37), the refrigerant saturation temperature is about 0.5 ° C. due to the pressure loss when the refrigerant passes through the windward refrigerant channel group (C1). Gradually decreases.

風上補助熱交換領域(37)から流出した気液二相状態の冷媒は、風上主熱交換領域(35)の扁平管(41)に流入する。風上主熱交換領域(35)の扁平管(31)では、冷媒が風上冷媒流路群(C1)を通過する際の圧力損失に起因して、冷媒の飽和温度が更に低下する(例えば0℃)。この冷媒は、風上主熱交換領域(35)の扁平管(31)の途中でガス単相状態となり、その温度が1℃まで上昇した後、風上主熱交換領域(35)の扁平管(31)から流出する。     The gas-liquid two-phase refrigerant that has flowed out of the windward auxiliary heat exchange region (37) flows into the flat tube (41) of the windward main heat exchange region (35). In the flat tube (31) in the upwind main heat exchange region (35), the saturation temperature of the refrigerant further decreases due to the pressure loss when the refrigerant passes through the upwind refrigerant channel group (C1) (for example, 0 ° C). This refrigerant enters a gas single-phase state in the middle of the flat tube (31) in the upwind main heat exchange region (35), and after the temperature rises to 1 ° C., the flat tube in the upwind main heat exchange region (35) Outflow from (31).

風下補助熱交換領域(47)の扁平管(41)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風下補助熱交換領域(47)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (41) in the lee auxiliary heat exchange region (47). In the flat tube (41) in the leeward auxiliary heat exchange region (47), due to the pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2), the saturation temperature of the refrigerant gradually increases to about 0.5 ° C. descend.

風下補助熱交換領域(47)の扁平管(41)には、飽和温度1.5℃の気液二相状態の冷媒が流入する。風下補助熱交換領域(47)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が約0.5℃まで次第に低下する。     A gas-liquid two-phase refrigerant having a saturation temperature of 1.5 ° C. flows into the flat tube (41) in the lee auxiliary heat exchange region (47). In the flat tube (41) in the leeward auxiliary heat exchange region (47), due to the pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2), the saturation temperature of the refrigerant gradually increases to about 0.5 ° C. descend.

風下補助熱交換領域(47)から流出した気液二相状態の冷媒は、風下主熱交換領域(45)の扁平管(41)に流入する。風下主熱交換領域(45)の扁平管(41)では、冷媒が風下冷媒流路群(C2)を通過する際の圧力損失に起因して、冷媒の飽和温度が更に低下する(例えば約0℃)。この冷媒は、風下主熱交換領域(45)の扁平管(41)の途中でガス単相状態となり、その温度が1℃まで上昇した後、風下主熱交換領域(45)の扁平管(41)から流出する。     The gas-liquid two-phase refrigerant that has flowed out of the leeward auxiliary heat exchange region (47) flows into the flat tube (41) in the leeward main heat exchange region (45). In the flat tube (41) in the leeward main heat exchange region (45), the saturation temperature of the refrigerant further decreases (for example, about 0) due to pressure loss when the refrigerant passes through the leeward refrigerant flow path group (C2). ° C). This refrigerant enters a gas single-phase state in the middle of the flat tube (41) in the leeward main heat exchange region (45), and after the temperature rises to 1 ° C., the flat tube (41 in the leeward main heat exchange region (45) ).

一方、風上補助熱交換領域(37)と風上主熱交換領域(35)とには、例えば7℃の空気が流入する。また、風下補助熱交換領域(47)には、風上補助熱交換領域(37)を通過する際に冷却された3℃の空気が流入し、風下主熱交換領域(45)には、風上主熱交換領域(35)を通過する際に冷却された2℃の空気が流入する。     On the other hand, air at, for example, 7 ° C. flows into the windward auxiliary heat exchange region (37) and the windward main heat exchange region (35). In addition, the air of 3 ° C. cooled when passing through the windward auxiliary heat exchange region (37) flows into the leeward auxiliary heat exchange region (47), and the windward main heat exchange region (45) Cooled air flows at 2 ° C. when passing through the upper main heat exchange zone (35).

このように、室外熱交換器(23)が蒸発器として機能する場合は、室外熱交換器(23)の全体において冷媒の温度が空気の温度よりも低くなり、冷媒が空気から吸収する熱量(即ち、冷媒の吸熱量)が確保される。     Thus, when the outdoor heat exchanger (23) functions as an evaporator, the temperature of the refrigerant in the entire outdoor heat exchanger (23) is lower than the temperature of air, and the amount of heat absorbed by the refrigerant from the air ( That is, the heat absorption amount of the refrigerant) is ensured.

〔圧力損失の低減効果〕
以上のように、本実施形態では、室外熱交換器(23)が凝縮器として機能する場合と、蒸発器として機能する場合との双方において、冷媒が風上冷媒流路群(C1)と風下冷媒流路群(C2)とを並行に流れる。
[Pressure loss reduction effect]
As described above, in the present embodiment, the refrigerant is connected to the upwind refrigerant flow path group (C1) and the downwind both in the case where the outdoor heat exchanger (23) functions as a condenser and in the case where it functions as an evaporator. It flows in parallel with the refrigerant flow path group (C2).

例えば冷媒が2つの冷媒流路群(C1,C2)を直列に流れる構成(比較例)では、各扁平管(31,41)を流れる冷媒の流速は、本実施形態の2倍となり、冷媒流路(C)の全長も2倍となる。冷媒流路(C)の圧力損失は、流速の2乗に比例し、冷媒流路の全長に比例する。従って、比較例の冷媒流路(C)の圧力損失は、本実施形態の概ね8倍(=2×2)となる。即ち、本実施形態では、風上列部(30)の冷媒流路群(C1)と風上列部(40)の冷媒流路群(C2)とにそれぞれ冷媒を並列に流すことで、比較例と比べて冷媒流路(C)の圧力損失を1/8まで低減できる。 For example, in a configuration in which refrigerant flows through two refrigerant flow path groups (C1, C2) in series (comparative example), the flow velocity of the refrigerant flowing through each flat tube (31, 41) is twice that of the present embodiment, and the refrigerant flow The total length of the road (C) is also doubled. The pressure loss in the refrigerant flow path (C) is proportional to the square of the flow velocity and proportional to the total length of the refrigerant flow path. Therefore, the pressure loss of the refrigerant flow path (C) of the comparative example is approximately 8 times (= 2 × 2 2 ) of this embodiment. In other words, in the present embodiment, the refrigerant is allowed to flow in parallel through the refrigerant flow path group (C1) of the windward row section (30) and the refrigerant flow path group (C2) of the windward row section (40). Compared to the example, the pressure loss in the refrigerant channel (C) can be reduced to 1/8.

このようにして冷媒の圧力損失を低減できると、例えば蒸発器の室外熱交換器(23)において、冷媒の圧力の低下を防止できる。即ち、蒸発器の室外熱交換器(23)では、圧力損失に起因する冷媒の圧力の低下量を低減できるため、室外熱交換器(23)の入口と出口の圧力差(即ち、圧縮機(21)の吸入圧力と、室外熱交換器(23)の流入冷媒の圧力の差)を小さくできる。この結果、圧縮機(21)の吸入圧力を所定値とした場合、比較例と比べて室外熱交換器(23)に流入する冷媒の蒸発圧力、ひいては蒸発温度を低減できる。これにより、室外熱交換器(23)では、風上列部(30)の冷媒流路群(C1)を流れる冷媒と、風上列部(30)を通過する空気の温度の差を増大でき、室外熱交換器(23)の蒸発能力を向上できる。     If the pressure loss of the refrigerant can be reduced in this way, for example, in the outdoor heat exchanger (23) of the evaporator, a decrease in the pressure of the refrigerant can be prevented. That is, in the outdoor heat exchanger (23) of the evaporator, the amount of decrease in the refrigerant pressure due to pressure loss can be reduced, so the pressure difference between the inlet and outlet of the outdoor heat exchanger (23) (that is, the compressor ( The difference between the suction pressure of 21) and the pressure of the refrigerant flowing into the outdoor heat exchanger (23) can be reduced. As a result, when the suction pressure of the compressor (21) is set to a predetermined value, the evaporation pressure of the refrigerant flowing into the outdoor heat exchanger (23), and thus the evaporation temperature, can be reduced as compared with the comparative example. As a result, the outdoor heat exchanger (23) can increase the temperature difference between the refrigerant flowing through the refrigerant flow path group (C1) of the windward row portion (30) and the air passing through the windward row portion (30). The evaporation capacity of the outdoor heat exchanger (23) can be improved.

−実施形態1の効果−
実施形態1では、以下の作用及び効果を奏することができる。
-Effect of Embodiment 1-
In the first embodiment, the following actions and effects can be achieved.

各列部(30,40)の扁平管(31,41)において冷媒を並行に流すようにしたので、各扁平管(31,41)の冷媒流路(C)を流れる冷媒の圧力損失を大幅に低減できる。この結果、圧力損失の増大に起因する動力の増大を抑制しつつ、所望の熱交換効率を得ることができる。     Since the refrigerant flows in parallel in the flat tubes (31, 41) of each row (30, 40), the pressure loss of the refrigerant flowing through the refrigerant flow path (C) of each flat tube (31, 41) is greatly increased. Can be reduced. As a result, desired heat exchange efficiency can be obtained while suppressing an increase in power due to an increase in pressure loss.

扁平管(31,41)を幅方向に長くする必要がないので、各列部(30,40)の扁平管(31,41)の曲げ加工も容易となる。これにより、各列部(30,40)の扁平管(31,41)を折り曲げて、4面式の熱交換器を製造でき、熱交換器のコンパクト化を図ることができる。     Since it is not necessary to lengthen the flat tubes (31, 41) in the width direction, it is easy to bend the flat tubes (31, 41) of the row portions (30, 40). Thereby, the flat pipe | tube (31, 41) of each row | line | column part (30, 40) can be bend | folded, a 4-sided heat exchanger can be manufactured, and the heat exchanger can be made compact.

図2に示すように、各列部(30,40)に冷媒を並行に流すための液分岐管(28)やガス分岐管(29)を集約して配置できる。これにより、配管のスペースをコンパクト化、あるいは配管の据え付けの容易化を図ることができる。     As shown in FIG. 2, the liquid branch pipe (28) and the gas branch pipe (29) for allowing the refrigerant to flow in parallel to each row portion (30, 40) can be arranged in an integrated manner. Thereby, the space of piping can be made compact or the installation of piping can be facilitated.

また、各扁平管(31,41)の幅が短くなることで、各列部(30,40)の扁平管(31,41)の間の通風抵抗を低減でき、熱透過率の減少を抑制できる。更に、扁平管(31,41)の幅が狭くなることで、扁平管(31,41)の上側に結露水が滞ることを防止できる。この結果、扁平管(31,41)の表面での着霜を防止できる。   In addition, by reducing the width of each flat tube (31, 41), it is possible to reduce the ventilation resistance between the flat tubes (31, 41) of each row (30, 40) and suppress the decrease in heat transmittance it can. Further, the narrow width of the flat tube (31, 41) can prevent the condensed water from staying on the upper side of the flat tube (31, 41). As a result, frost formation on the surface of the flat tube (31, 41) can be prevented.

《実施形態2》
実施形態2の空気調和機(10)は、実施形態1と室外熱交換器(23)の構成が異なる。実施形態2の室外熱交換器(23)において、風上列部(30)の構成は実施形態1と同様である。以下には、実施形態1と異なる点について図15〜図20を参照しながら説明する。
<< Embodiment 2 >>
The air conditioner (10) of the second embodiment is different from the first embodiment in the configuration of the outdoor heat exchanger (23). In the outdoor heat exchanger (23) of the second embodiment, the configuration of the windward row section (30) is the same as that of the first embodiment. Hereinafter, differences from the first embodiment will be described with reference to FIGS.

実施形態2では、第3ヘッダ集合管(70)が、風下列部(40)のうち第4側面部(23d)側の一端部近傍に立設している。第4ヘッダ集合管(80)は、風下列部(40)のうち第1側面部(23a)側の他端部近傍に立設している。つまり、実施形態2は、実施形態1と第3ヘッダ集合管(70)と第4ヘッダ集合管(80)の位置が、扁平管(31,41)の長手方向において全く反対の位置関係となっている。第3ヘッダ集合管(70)の近傍には、実施形態1と同様、第2分流ユニット(92)の近傍に立設している。     In the second embodiment, the third header collecting pipe (70) is erected in the vicinity of one end of the leeward row portion (40) on the fourth side surface portion (23d) side. The fourth header collecting pipe (80) is erected in the vicinity of the other end of the leeward row portion (40) on the first side surface portion (23a) side. That is, in the second embodiment, the positions of the third header collecting pipe (70) and the fourth header collecting pipe (80) in the first embodiment are completely opposite to each other in the longitudinal direction of the flat pipe (31, 41). ing. In the vicinity of the third header collecting pipe (70), as in the first embodiment, it is erected in the vicinity of the second diversion unit (92).

第1主ガス管(52a)及び第2主ガス管(72a)は、分岐管(図示省略)を介してガス側連絡配管(14)と連通している。第1主液管(91c)及び第2主液管(92c)は、分岐管(図示省略)を介して液側連絡配管(13)と連通している。     The first main gas pipe (52a) and the second main gas pipe (72a) communicate with the gas side communication pipe (14) via a branch pipe (not shown). The first main liquid pipe (91c) and the second main liquid pipe (92c) communicate with the liquid side communication pipe (13) via a branch pipe (not shown).

−室外熱交換器の冷媒流れについて−
図16〜図19に示すように、室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが並行になるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下主熱交換領域(45)の扁平管(41)とで冷媒が並行に流れ、且つ風上列部(30)の風下補助熱交換領域(47)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が並行に流れるように構成される。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに並行に流れるように構成される。
-Refrigerant flow in outdoor heat exchanger-
As shown in FIGS. 16 to 19, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row section (30) and the leeward row It is comprised so that the refrigerant | coolant which flows through each flat tube (41) of a part (40) may become parallel. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in parallel with the flat tube (41) of the leeward main heat exchange region (45) of 40), and the flat tube (31) of the leeward auxiliary heat exchange region (47) of the windward row (30), The refrigerant flows in parallel with the flat tube (41) in the leeward auxiliary heat exchange region (47) of the leeward row (40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2).

更に室外熱交換器(23)は、凝縮器及び蒸発器として機能する際、風上列部(30)の各扁平管(31)を流れる冷媒と、風下列部(40)の各扁平管(41)を流れる冷媒とが互いに逆方向となるように構成される。具体的に、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上列部(30)の風上主熱交換領域(35)の扁平管(31)と、風下列部(40)の風下補助熱交換領域(47)の扁平管(41)とで冷媒が互いに逆方向に流れる。つまり、凝縮器及び蒸発器として機能する室外熱交換器(23)は、風上主熱交換領域(35)の風上冷媒流路群(C1)を流れる冷媒と、風下主熱交換領域(45)の風下冷媒流路群(C2)を流れる冷媒とが互いに逆方向に流れる。     Furthermore, when the outdoor heat exchanger (23) functions as a condenser and an evaporator, the refrigerant flowing through the flat tubes (31) of the windward row (30) and the flat tubes (40) of the leeward row (40) 41) and the refrigerant flowing in the opposite directions. Specifically, the outdoor heat exchanger (23) functioning as a condenser and an evaporator includes a flat tube (31) in the windward main heat exchange area (35) of the windward row (30) and a leeward row ( The refrigerant flows in the opposite direction to each other through the flat tube (41) in the leeward auxiliary heat exchange region (47) of 40). That is, the outdoor heat exchanger (23) functioning as a condenser and an evaporator is connected to the refrigerant flowing through the windward refrigerant flow path group (C1) in the windward main heat exchange area (35) and the leeward main heat exchange area (45 ) And the refrigerant flowing through the leeward refrigerant flow path group (C2) flow in opposite directions.

〔凝縮器の場合〕
空気調和機(10)の冷房運転中には、室内熱交換器(25)が蒸発器として機能し、室外熱交換器(23)が凝縮器として機能する。ここでは、冷房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Condenser]
During the cooling operation of the air conditioner (10), the indoor heat exchanger (25) functions as an evaporator, and the outdoor heat exchanger (23) functions as a condenser. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the cooling operation will be described.

室外熱交換器(23)には、圧縮機(21)から吐出されたガス冷媒が、配管(18)を通じて供給される。この冷媒は、配管(18)から第1主ガス管(52a)と第2主ガス管(82a)とに分流する。     Gas refrigerant discharged from the compressor (21) is supplied to the outdoor heat exchanger (23) through the pipe (18). This refrigerant is branched from the pipe (18) into the first main gas pipe (52a) and the second main gas pipe (82a).

図16に示すように、第1主ガス管(52a)へ供給された冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)に流入し、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上補助熱交換部(38)に分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 16, the refrigerant supplied to the first main gas pipe (52a) flows into the upwind space (52) of the first header collecting pipe (50), and each upwind main heat exchange section ( 36). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind main heat exchange section (36) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each upwind main communication space (65) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60), and is distributed to each upwind auxiliary heat exchange section (38). The Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) further dissipates heat and condenses, and is in a supercooled state (ie, Liquid single phase state).

過冷却状態となった液冷媒は、第1ヘッダ集合管(50)の各風上補助空間(55)へ供給され、第1分流ユニット(91)で合流し、第1主液管(91c)より液側連絡配管(13)へ送られる。     The supercooled liquid refrigerant is supplied to each upwind auxiliary space (55) of the first header collecting pipe (50), and is merged by the first diversion unit (91), and the first main liquid pipe (91c). It is sent to the liquid side connecting pipe (13).

図17に示すように、配管(18)から第2主ガス管(72a)へ供給された冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)に流入し、風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ放熱して凝縮していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下補助熱交換部(48)に分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気へ更に放熱して凝縮し、過冷却状態(即ち、液単相状態)となる。     As shown in FIG. 17, the refrigerant supplied from the pipe (18) to the second main gas pipe (72a) flows into the leeward upper space (72) of the third header collecting pipe (70), and leeward main heat exchange is performed. Distributed to the part (46). Each refrigerant passing through each leeward refrigerant flow path group (C2) of each flat tube (41) of each leeward main heat exchange section (46) dissipates heat to the air and condenses. Thereafter, each refrigerant is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant that has flowed through each leeward communication pipe (88) is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80), and is distributed to each leeward auxiliary heat exchange section (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchanger (48) further dissipates heat to the air and condenses, and is in a supercooled state (that is, liquid unit Phase state).

過冷却状態となった液冷媒は、第3ヘッダ集合管(70)の各風下補助空間(75)へ供給され、第2分流ユニット(92)で合流し、第1分流ユニット(91)から流出した冷媒とともに液側連絡配管(13)へ送られる。     The supercooled liquid refrigerant is supplied to each leeward auxiliary space (75) of the third header collecting pipe (70), merges in the second diversion unit (92), and flows out from the first diversion unit (91). The refrigerant is sent to the liquid side communication pipe (13).

〔蒸発器の場合〕
空気調和機(10)の暖房運転中には、室内熱交換器(25)が凝縮器として機能し、室外熱交換器(23)が蒸発器として機能する。ここでは、暖房運転中における室外熱交換器(23)での冷媒の流れを説明する。
[Evaporator]
During the heating operation of the air conditioner (10), the indoor heat exchanger (25) functions as a condenser, and the outdoor heat exchanger (23) functions as an evaporator. Here, the flow of the refrigerant in the outdoor heat exchanger (23) during the heating operation will be described.

室外熱交換器(23)には、膨張弁(24)を通過する際に膨張して気液二相状態となった冷媒が、配管(17)を通じて供給される。この冷媒は、配管(17)から第1分流ユニット(91)と第2分流ユニット(92)とに分流する。     The outdoor heat exchanger (23) is supplied with the refrigerant that has expanded into a gas-liquid two-phase state when passing through the expansion valve (24) through the pipe (17). This refrigerant is branched from the pipe (17) into the first branch unit (91) and the second branch unit (92).

図18に示すように、第1分流ユニット(91)に供給された冷媒は、各液側接続管(91b)に分流し、第1ヘッダ集合管(50)の各風上補助空間(55)より各風上補助熱交換部(38)へ分配される。各風上補助熱交換部(38)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第2ヘッダ集合管(60)の各風上補助連絡空間(67)へ供給され、各風上連絡管(68)に流入する。各風上連絡管(68)を流れた各冷媒は、第2ヘッダ集合管(60)の各風上主連絡空間(65)へ供給され、各風上主熱交換部(36)に分配される。各風上主熱交換部(36)の各扁平管(31)の各風上冷媒流路群(C1)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 18, the refrigerant supplied to the first diversion unit (91) is diverted to the respective liquid side connection pipes (91b), and the upwind auxiliary spaces (55) of the first header collecting pipes (50). Are distributed to each upwind auxiliary heat exchange section (38). Each refrigerant passing through each upwind refrigerant flow path group (C1) of each flat tube (31) of each upwind auxiliary heat exchange section (38) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each upwind auxiliary communication space (67) of the second header collecting pipe (60) and flows into each upwind communication pipe (68). Each refrigerant that has flowed through each upwind communication pipe (68) is supplied to each upwind main communication space (65) of the second header collecting pipe (60), and is distributed to each upwind main heat exchange section (36). The Each refrigerant passing through each upwind refrigerant channel group (C1) of each flat tube (31) of each upwind main heat exchange section (36) further absorbs heat from the air and evaporates, and is overheated (ie, gas Single phase state).

過熱状態となったガス冷媒は、第1ヘッダ集合管(50)の風上上側空間(52)で合流し、第1主ガス管(52a)よりガス側連絡配管(14)へ送られる。     The superheated gas refrigerant merges in the upwind space (52) of the first header collecting pipe (50) and is sent from the first main gas pipe (52a) to the gas side connecting pipe (14).

図19に示すように、第2分流ユニット(92)に供給された冷媒は、各液側接続管(92b)に分流し、第3ヘッダ集合管(70)の各風下補助空間(75)より各風下補助熱交換部(48)へ分配される。各風下補助熱交換部(48)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から吸熱して蒸発していく。その後、各冷媒は、第4ヘッダ集合管(80)の各風下補助連絡空間(87)へ供給され、各風下連絡管(88)に流入する。各風下連絡管(88)を流れた各冷媒は、第4ヘッダ集合管(80)の各風下主連絡空間(85)へ供給され、各風下主熱交換部(46)に分配される。各風下主熱交換部(46)の各扁平管(41)の各風下冷媒流路群(C2)を通過する各冷媒は、空気から更に吸熱して蒸発し、過熱状態(即ち、ガス単相状態)となる。     As shown in FIG. 19, the refrigerant supplied to the second diversion unit (92) is diverted to each liquid side connection pipe (92b), and from each lee auxiliary space (75) of the third header collecting pipe (70). It distributes to each leeward auxiliary heat exchanger (48). Each refrigerant passing through each lee refrigerant channel group (C2) of each flat tube (41) of each lee auxiliary heat exchange section (48) absorbs heat from the air and evaporates. Thereafter, each refrigerant is supplied to each leeward auxiliary communication space (87) of the fourth header collecting pipe (80) and flows into each leeward communication pipe (88). Each refrigerant flowing through each leeward communication pipe (88) is supplied to each leeward main communication space (85) of the fourth header collecting pipe (80), and is distributed to each leeward main heat exchange section (46). Each refrigerant passing through each leeward refrigerant channel group (C2) of each flat tube (41) of each leeward main heat exchange section (46) further absorbs heat from the air and evaporates, and is in an overheated state (ie, a gas single phase). State).

過熱状態となったガス冷媒は、第3ヘッダ集合管(70)の風下上側空間(72)で合流し、第1主ガス管(52a)から流出した冷媒とともにガス側連絡配管(14)へ送られる。     The superheated gas refrigerant joins in the leeward upper space (72) of the third header collecting pipe (70) and is sent to the gas side connecting pipe (14) together with the refrigerant flowing out from the first main gas pipe (52a). It is done.

〈空気の偏流の抑制対策について〉
ところで、室外熱交換器(23)が蒸発器として機能する際には、従来においては、室外熱交換器(23)を流れる空気が偏流し易いという問題があった。具体的に、室外熱交換器(23)において、2つの列部(30,40)にそれぞれ冷媒流路群(C1,C2)を形成し、これらの冷媒流路群(C1,C2)に並行に冷媒を流すとする。ここで、各冷媒流路群(C1,C2)において、気液二相状態の冷媒は、空気の冷却に用いられる。このため、空気中の水分が凝縮し、扁平管(31,41)やフィン(32,42)の表面に着霜することがある。
<Measures for suppressing air drift>
By the way, when the outdoor heat exchanger (23) functions as an evaporator, conventionally, there has been a problem that air flowing through the outdoor heat exchanger (23) tends to drift. Specifically, in the outdoor heat exchanger (23), the refrigerant flow path groups (C1, C2) are formed in the two rows (30, 40), respectively, and these refrigerant flow path groups (C1, C2) are parallel to each other. Let the refrigerant flow through Here, in each refrigerant channel group (C1, C2), the gas-liquid two-phase refrigerant is used for cooling the air. For this reason, the water | moisture content in air may condense and may form frost on the surface of a flat tube (31, 41) or a fin (32, 42).

一方、各冷媒流路群(C1,C2)において、気液二相状態の冷媒が更に蒸発すると、過熱状態となって温度が上昇する。従って、各扁平管(31,41)において、過熱状態の冷媒が流れる部分では、空気中の水分が結露しにくく、各扁平管(31,41)やフィン(32,42)の表面で着霜もほぼ生じない。     On the other hand, in each refrigerant channel group (C1, C2), when the gas-liquid two-phase refrigerant further evaporates, the refrigerant becomes overheated and the temperature rises. Therefore, in each flat tube (31, 41), in the portion where the overheated refrigerant flows, moisture in the air hardly condenses, and frost forms on the surface of each flat tube (31, 41) or fin (32, 42). Almost does not occur.

このような理由から、隣り合う冷媒流路群(C1,C2)において、液状態ないし気液二相状態の冷媒が流れる部分と、過熱状態の冷媒が流れる部分とが、空気の通過方向に重なると、室外熱交換器(23)を流れる空気が偏流し易くなる、という問題が生じる。     For this reason, in the adjacent refrigerant flow path group (C1, C2), the portion where the refrigerant in the liquid state or the gas-liquid two-phase state flows and the portion where the overheated refrigerant flows overlap in the air passage direction. And the problem that the air which flows through an outdoor heat exchanger (23) becomes easy to drift will arise.

具体的には、隣り合う冷媒流路群(C1,C2)において、例えば液状態ないし気液二相状態の冷媒が流れる部分が空気の通過方向に重なると、この部分に対応する各扁平管(31,41)及び各フィン(32,42)の表面では、上述したように着霜が生じ易くなる。特に、扁平管(31,41)では、その表面に結露した水分が留まりやすいため、着霜量が大きくなる傾向になる。このような状態では、風上列部(30)と風下列部(40)の双方の扁平管(31,41)やフィン(32,42)で連続的に着霜が発生するため、この部分の通風抵抗が大きくなり易い。     Specifically, in the adjacent refrigerant flow path groups (C1, C2), for example, when a portion where a refrigerant in a liquid state or a gas-liquid two-phase state flows overlaps in the air passage direction, each flat tube ( 31,41) and the surface of each fin (32,42), frost formation is likely to occur as described above. In particular, in the flat tube (31, 41), moisture condensed on the surface tends to stay, so that the amount of frost formation tends to increase. In this state, frost formation occurs continuously in the flat tubes (31, 41) and fins (32, 42) in both the windward row (30) and the leeward row (40). Ventilation resistance is likely to increase.

一方、隣り合う冷媒流路群(C1,C2)において、過熱領域の冷媒が流れる部分が空気の通過方向に重なると、この部分に対応する各扁平管(31,41)や各フィン(32,42)の表面では、着霜がほとんど生じない。従って、このような状態では、2列に重なった過熱領域に対応する部分の通風抵抗が、他の部分よりも小さくなり、この部分に空気が偏流し易くなるという問題が生じる。     On the other hand, in the adjacent refrigerant flow path group (C1, C2), when the portion where the refrigerant in the superheated region overlaps in the air passage direction, each flat tube (31, 41) and each fin (32, On the surface of 42), there is almost no frost formation. Therefore, in such a state, the ventilation resistance of the part corresponding to the superheated region overlapped in two rows becomes smaller than the other part, and there arises a problem that air tends to drift to this part.

このようにして、空気の偏流が生じると、室外熱交換器(23)全体の扁平管(31,41)及びフィン(32,42)を冷媒と空気との伝熱に有効に利用できず、熱交換効率の低下を招いてしまう。そこで、本実施形態では、このような空気の偏流を防止するために、各列部(30,40)の過熱領域(S1,S2)が空気の通過方向に重ならないようしている。     In this way, when air drift occurs, the flat tubes (31, 41) and fins (32, 42) of the entire outdoor heat exchanger (23) cannot be effectively used for heat transfer between the refrigerant and air. The heat exchange efficiency will be reduced. Therefore, in the present embodiment, in order to prevent such a drift of air, the superheat regions (S1, S2) of the respective row portions (30, 40) are prevented from overlapping in the air passage direction.

即ち、図19〜図21に示すように、室外熱交換器(23)では、上述のように、風上冷媒流路群(C1)を流れる冷媒と、風下冷媒流路群(C2)を流れる冷媒とが互いに逆方向になっている。このため、風上列部(30)の過熱領域(S1)は、扁平管(31)の第1風上管部(31a)の端部近傍に形成され、風下列部(40)の過熱領域(S2)は、扁平管(41)の第4風下管部(41d)の端部近傍に形成される。つまり、過熱領域(S1)と過熱領域(S2)とは、各扁平管(31,41)の長手方向において最も遠くに位置している。従って、過熱領域(S1)と過熱領域(S2)とが、空気の通過方向に重なることを確実に防止でき、ひいては上述した空気の偏流を防止できる。     That is, as shown in FIGS. 19 to 21, in the outdoor heat exchanger (23), as described above, the refrigerant flows through the windward refrigerant flow path group (C1) and the leeward refrigerant flow path group (C2). The refrigerant is in opposite directions. For this reason, the superheat region (S1) of the windward row portion (30) is formed in the vicinity of the end portion of the first windward tube portion (31a) of the flat tube (31), and the superheat region of the leeward row portion (40). (S2) is formed in the vicinity of the end of the fourth leeward pipe part (41d) of the flat pipe (41). That is, the superheat region (S1) and the superheat region (S2) are located farthest in the longitudinal direction of each flat tube (31, 41). Therefore, it is possible to reliably prevent the superheat region (S1) and the superheat region (S2) from overlapping in the air passage direction, thereby preventing the above-described air drift.

室外熱交換器(23)では、過熱領域(S1)と過熱領域(S2)とを空気の通過方向に重ならないようにするために、扁平管(31,41)の本数やサイズ、各冷媒流路(C)の数やサイズ、冷媒循環量、空気の風量等の各種のパラメータが設計されている。     In the outdoor heat exchanger (23), the number and size of the flat tubes (31, 41) and the refrigerant flow are set so that the superheat region (S1) and the superheat region (S2) do not overlap in the air passage direction. Various parameters such as the number and size of the paths (C), the amount of refrigerant circulation, and the air volume are designed.

−実施形態2の効果−
実施形態2においても、実施形態1と同様にして、冷媒の圧力損失を低減できる。
-Effect of Embodiment 2-
Also in the second embodiment, the pressure loss of the refrigerant can be reduced as in the first embodiment.

図18〜図20に示すように、室外熱交換器(23)が蒸発器として機能する際、冷媒の過熱領域(S1,S2)が重なることを防止できる。これにより、過熱領域(S1,S2)ばかりに空気が偏流してしまうことを抑制できる。この結果、過熱領域(S1,S2)以外の部分の扁平管(31,41)やフィン(32,42)の表面で着霜が生じたとしても、熱交換器の全域に空気を均一に流しやすくなり、熱交換効率、ひいては蒸発性能の向上を図ることができる。     As shown in FIGS. 18-20, when an outdoor heat exchanger (23) functions as an evaporator, it can prevent that the superheat region (S1, S2) of a refrigerant | coolant overlaps. Thereby, it can suppress that air drifts only to an overheating area | region (S1, S2). As a result, even if frost formation occurs on the surface of the flat tubes (31, 41) and fins (32, 42) outside the superheated area (S1, S2), air is allowed to flow uniformly over the entire heat exchanger. It becomes easy to improve the heat exchange efficiency and consequently the evaporation performance.

《その他の実施形態》
本開示の各種の形態では、以下のような構成としてもよい。
<< Other Embodiments >>
The various configurations of the present disclosure may be configured as follows.

室外熱交換器(23)では、隣り合うヘッダ集合管(50,70)、(60,80)がそれぞれ別体に構成されているが、これらの少なくとも一組のヘッダ集合管を一体化し、その内部空間を2列に区画する構成してもよい。     In the outdoor heat exchanger (23), adjacent header collecting pipes (50, 70) and (60, 80) are configured separately, but at least one of these header collecting pipes is integrated, The internal space may be divided into two rows.

室外熱交換器(23)では、2列の扁平管(31,41)の各冷媒流路群(C1,C2)の隣り合う過熱領域(S1,S2)を互いに重ならないようにしているが、例えば3列以上の冷媒流路群(C1,C2)において、隣り合う過熱領域を重ならないようにしてもよい。     In the outdoor heat exchanger (23), adjacent superheat regions (S1, S2) of the refrigerant flow path groups (C1, C2) of the two rows of flat tubes (31, 41) are not overlapped with each other. For example, in the three or more rows of refrigerant flow path groups (C1, C2), adjacent superheat regions may not be overlapped.

室外熱交換器(23)において、補助熱交換領域(37,47)を省略した構成としてもよい。     In the outdoor heat exchanger (23), the auxiliary heat exchange region (37, 47) may be omitted.

本開示の熱交換器は、室外熱交換器(23)である。しかしながら、本開示の熱交換器を室内熱交換器(25)に適用してもよい。この場合、室内熱交換器(25)は、例えば天井埋め込み式、あるいは天井吊り下げ式の室内ユニットに搭載される4面式の熱交換器であることが好ましい。また、室外熱交換器(23)及び室内熱交換器(25)は、必ずしも4面式でなくてもよく、3面以下のものであってもよい。     The heat exchanger of the present disclosure is an outdoor heat exchanger (23). However, the heat exchanger of the present disclosure may be applied to the indoor heat exchanger (25). In this case, the indoor heat exchanger (25) is preferably a four-sided heat exchanger mounted on, for example, a ceiling-embedded or ceiling-suspended indoor unit. Moreover, the outdoor heat exchanger (23) and the indoor heat exchanger (25) are not necessarily a four-sided type, and may be those having three or less sides.

本開示の熱交換器は、例えば図7に示すように、風上列部(30)と風下列部(40)とに対応するように、風上側と風下側とにそれぞれ別体のフィン(32,42)が設けられる。しかしながら、例えば図21に示すように、扁平管(31,41)を空気の通過方向に2列に配置する一方、風上側と風下側のフィン(32,42)を風上列部(30)と風下列部(40)とに跨がるように一体化してもよい。     For example, as shown in FIG. 7, the heat exchanger of the present disclosure has separate fins (on the windward side and the leeward side, respectively) so as to correspond to the windward row portion (30) and the leeward row portion (40). 32, 42) are provided. However, as shown in FIG. 21, for example, the flat tubes (31, 41) are arranged in two rows in the air passage direction, while the windward and leeward fins (32, 42) are arranged on the windward side (30). And may be integrated so as to straddle the leeward row portion (40).

本開示の熱交換器のフィン(32,42)は、風上側の縁部に管挿入部(32b,42b)を形成し、この管挿入部(32b,42b)に扁平管(31,41)を挿入している。しかしながら、熱交換器は、フィン(32,42)の風下側の縁部に管挿入部を形成し、この管挿入部に扁平管(31,41)を挿入する構成としてもよい。また、本開示のフィン(32,42)では、伝熱促進部としてルーバ(32c,42c)を形成しているが、フィン(32,42)を厚さ方向に膨出させた膨出部(凸部)やスリット等を伝熱促進部としてもよい。     The fins (32, 42) of the heat exchanger according to the present disclosure form tube insertion portions (32b, 42b) at the windward edge, and flat tubes (31, 41) at the tube insertion portions (32b, 42b). Is inserted. However, a heat exchanger is good also as a structure which forms a pipe insertion part in the edge part of the leeward side of a fin (32, 42), and inserts a flat tube (31, 41) in this pipe insertion part. Further, in the fins (32, 42) of the present disclosure, the louvers (32c, 42c) are formed as the heat transfer promoting portions, but the bulging portions (in which the fins (32, 42) are bulged in the thickness direction ( A convex portion) or a slit may be used as the heat transfer promoting portion.

上記実施形態の2列の列部(30,40)は、互いに異なる構成であってもよい。つまり、例えば2列の扁平管(31,41)において、各扁平管(31,41)の幅、各扁平管(31,41)厚さ方向(上下方向)の間隔、各扁平管(31,41)の冷媒流路(C)の流路面積、各扁平管(31,41)の冷媒流路(C)の数等を互いに異ならす構成としてもよい。また、2列のフィン(32,42)において、フィン(32,42)の幅(空気の通過方向の長さ)、フィン(32,42)の厚さ方向のピッチ(間隔)、フィン(32.42)の形状等を互いに異なる構成としてもよい。     The two rows (30, 40) of the above embodiment may have different configurations. That is, for example, in two rows of flat tubes (31, 41), the width of each flat tube (31, 41), the interval in the thickness direction (vertical direction) of each flat tube (31, 41), each flat tube (31, 41) The refrigerant channel (C) 41), the number of refrigerant channels (C) of the flat tubes (31, 41), and the like may be different from each other. In the two rows of fins (32, 42), the width of the fins (32, 42) (the length in the air passage direction), the pitch (interval) in the thickness direction of the fins (32, 42), and the fins (32.42). ) And the like may be different from each other.

本開示の空気調和機において、複数の列部(30,40)に対応して1つずつ冷媒調整弁を設けてもよい。つまり、これらの冷媒調整弁の開度をそれぞれ個別に調節することで、各列部(30,40)に並列に流入する冷媒量を個別に調整することができる。     In the air conditioner of the present disclosure, one refrigerant adjustment valve may be provided for each of the plurality of row portions (30, 40). That is, by individually adjusting the opening degrees of these refrigerant adjustment valves, it is possible to individually adjust the refrigerant amounts flowing in parallel to the respective row portions (30, 40).

以上説明したように、本発明は、熱交換器及び空気調和機について有用である。     As described above, the present invention is useful for heat exchangers and air conditioners.

10 空気調和機
23 室外熱交換器(熱交換器)
28 液分岐管
29 ガス分岐管
30 風上列部(列部)
31 扁平管
32 フィン
33a 第1屈曲部(屈曲部)
33b 第2屈曲部(屈曲部)
33c 第3屈曲部(屈曲部)
40 風下列部(列部)
41 扁平管
42 フィン
68 風上連絡管
88 風下連絡管
C 冷媒流路
S1 過熱領域
S2 過熱領域
10 Air conditioner
23 Outdoor heat exchanger (heat exchanger)
28 liquid branch pipe
29 Gas branch pipe
30 Windward (row)
31 flat tube
32 fins
33a First bent part (bent part)
33b Second bent part (bent part)
33c 3rd bending part (bending part)
40 leeward row (row)
41 flat tube
42 fins
68 Upwind connecting pipe
88 Downward connecting pipe
C Refrigerant flow path
S1 Overheating area
S2 Overheating area

Claims (6)

互いに平行に配置され、それぞれに複数の冷媒流路(C)が形成される複数の扁平管(31,41)と、上記扁平管(31,41)に接合されるフィン(32,42)とを備え、上記冷媒流路(C)を流れる冷媒と空気とを熱交換させる熱交換器であって、
複数の上記扁平管(31,41)を有する複数の列部(30,40)が空気の通過方向に配列され、
上記複数の列部(30,40)は、該複数の列部(30,40)間の各扁平管(31,41)において冷媒が並列に流れるように構成され、
上記複数の列部(30,40)の扁平管(31,41)は、空気の通過方向に隣り合う該列部(30,40)の扁平管(31,41)が互いに沿うように該扁平管(31,41)の幅方向に屈曲する1つ以上の屈曲部(33a,33b,33c)をそれぞれ有している
ことを特徴とする熱交換器。
A plurality of flat tubes (31, 41) which are arranged in parallel to each other and each have a plurality of refrigerant channels (C), and fins (32, 42) joined to the flat tubes (31, 41). A heat exchanger for exchanging heat between the refrigerant flowing through the refrigerant flow path (C) and the air,
A plurality of rows (30, 40) having a plurality of the flat tubes (31, 41) are arranged in the air passage direction,
The plurality of rows (30, 40) are configured such that the refrigerant flows in parallel in each flat tube (31, 41) between the rows (30, 40).
The flat tubes (31, 41) of the plurality of row portions (30, 40) are arranged so that the flat tubes (31, 41) of the row portions (30, 40) adjacent to each other in the air passage direction are along each other. A heat exchanger characterized by having one or more bent portions (33a, 33b, 33c) bent in the width direction of the pipe (31, 41).
請求項1において、
上記各列部(30,40)には、該列部(30,40)の扁平管(31,41)の配列方向に並んだ複数の扁平管(31,41)に対応する主熱交換領域(35,45)と、該主熱交換領域(35,45)よりも扁平管(31,41)の数が少ない扁平管(31,41)に対応する補助熱交換領域(37,47)とが形成され、
上記複数の列部(30,40)は、該複数の列部(30,40)間で空気の通過方向に隣り合う各主熱交換領域(35,45)及び各補助熱交換領域(37,47)においてそれぞれ冷媒が並列に流れるように構成される
ことを特徴とする熱交換器。
In claim 1,
Each of the row portions (30, 40) has a main heat exchange region corresponding to a plurality of flat tubes (31, 41) arranged in the arrangement direction of the flat tubes (31, 41) of the row portions (30, 40). (35,45) and an auxiliary heat exchange region (37,47) corresponding to a flat tube (31,41) having a smaller number of flat tubes (31,41) than the main heat exchange region (35,45) Formed,
The plurality of row portions (30, 40) include the main heat exchange regions (35, 45) and the auxiliary heat exchange regions (37, 40) adjacent to each other in the air passage direction between the plurality of row portions (30, 40). 47) A heat exchanger characterized in that in each case, the refrigerant flows in parallel.
請求項2において、
複数の列部(30,40)は、空気の通過方向に隣り合う列部(30,40)間の各主熱交換領域(35,45)及び各補助熱交換領域(37,47)の扁平管(31,41)の冷媒の流れる方向が互いに同じ向きとなるように構成され、
上記各列部(30,40)の上記各主熱交換領域(35,45)の各扁平管(31,41)の一端部に分岐するように連通するガス分岐管(29)と
上記各列部(30,40)の上記各補助熱交換領域(37,47)の各扁平管(31,41)のうち上記ガス分岐管(29)側の一端部に分岐するように連通する液分岐管(28)と、
上記各列部(30,40)の各主熱交換領域(35,45)の各扁平管(31,41)の他端部と、上記各列部(30,40)の各補助熱交換領域(37,47)の各扁平管(31,41)の他端部とを連通する連絡管(68,88)と
を備えている
ことを特徴とする熱交換器。
In claim 2,
The plurality of rows (30, 40) are flattened in the main heat exchange areas (35, 45) and the auxiliary heat exchange areas (37, 47) between the rows (30, 40) adjacent in the air passage direction. The pipes (31, 41) are configured such that the refrigerant flows in the same direction.
A gas branch pipe (29) communicating with one end of each flat pipe (31, 41) of each main heat exchange region (35, 45) of each row section (30, 40); Liquid branch pipe that communicates so as to branch to one end on the gas branch pipe (29) side among the flat pipes (31, 41) of the auxiliary heat exchange regions (37, 47) of the section (30, 40) (28)
The other end of each flat tube (31, 41) in each main heat exchange region (35, 45) of each row (30, 40) and each auxiliary heat exchange region of each row (30, 40) And a communication pipe (68, 88) communicating with the other end of each flat pipe (31, 41) of (37, 47).
請求項1又は2において、
複数の列部(30,40)は、蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)の冷媒の流れる方向が互いに逆向きとなるように構成されている
ことを特徴とする熱交換器。
In claim 1 or 2,
When the plurality of rows (30, 40) function as an evaporator, the flow directions of the refrigerant in the flat tubes (31, 41) between the rows (30, 40) adjacent to each other in the air passage direction are opposite to each other. It is comprised so that it may become. The heat exchanger characterized by the above-mentioned.
請求項4において、
複数の列部(30,40)は、上記蒸発器として機能する際、空気の通過方向に隣り合う列部(30,40)間の扁平管(31,41)を流れる冷媒の過熱領域(S1,S2)が、空気の通過方向において互いに重ならないように構成される
ことを特徴とする熱交換器。
In claim 4,
When the plurality of rows (30, 40) function as the evaporator, the superheated region (S1) of the refrigerant flowing in the flat tubes (31, 41) between the rows (30, 40) adjacent in the air passage direction (S1) , S2) are configured so as not to overlap each other in the air passage direction.
請求項1乃至5の何れか1つに記載の熱交換器(23)が設けられて冷凍サイクルを行う冷媒回路(20)を備え、
上記熱交換器(23)が蒸発器として機能する運転と、上記熱交換器(23)が凝縮器として機能する運転とを切り換えて行うように構成されている
ことを特徴とする空気調和機。
A heat exchanger (23) according to any one of claims 1 to 5, further comprising a refrigerant circuit (20) for performing a refrigeration cycle,
An air conditioner configured to switch between an operation in which the heat exchanger (23) functions as an evaporator and an operation in which the heat exchanger (23) functions as a condenser.
JP2015089967A 2015-04-27 2015-04-27 Heat exchangers and air conditioners Active JP6641721B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015089967A JP6641721B2 (en) 2015-04-27 2015-04-27 Heat exchangers and air conditioners
PCT/JP2016/001959 WO2016174830A1 (en) 2015-04-27 2016-04-08 Heat exchanger and air conditioner
EP16786110.3A EP3276289B1 (en) 2015-04-27 2016-04-08 Heat exchanger and air conditioner
US15/566,049 US20180135900A1 (en) 2015-04-27 2016-04-08 Heat exchanger and air conditioner
CN201680018478.4A CN107429975B (en) 2015-04-27 2016-04-08 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089967A JP6641721B2 (en) 2015-04-27 2015-04-27 Heat exchangers and air conditioners

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019201266A Division JP6881550B2 (en) 2019-11-06 2019-11-06 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2016205744A true JP2016205744A (en) 2016-12-08
JP6641721B2 JP6641721B2 (en) 2020-02-05

Family

ID=57198249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089967A Active JP6641721B2 (en) 2015-04-27 2015-04-27 Heat exchangers and air conditioners

Country Status (5)

Country Link
US (1) US20180135900A1 (en)
EP (1) EP3276289B1 (en)
JP (1) JP6641721B2 (en)
CN (1) CN107429975B (en)
WO (1) WO2016174830A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018162934A (en) * 2017-03-27 2018-10-18 ダイキン工業株式会社 Heat exchanger unit
JP2019113288A (en) * 2017-12-26 2019-07-11 ダイキン工業株式会社 Heat exchanger and freezing unit
JP2019132516A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2020017036A1 (en) 2018-07-20 2020-01-23 三菱電機株式会社 Refrigeration cycle device
JPWO2020194442A1 (en) * 2019-03-25 2021-10-21 三菱電機株式会社 Heat exchanger unit and refrigeration cycle equipment
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
WO2023190890A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
JP7399286B2 (en) 2020-06-04 2023-12-15 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529604B2 (en) * 2015-12-01 2019-06-12 三菱電機株式会社 Refrigeration cycle device
JP6414167B2 (en) * 2016-09-23 2018-10-31 ダイキン工業株式会社 Heat exchanger and outdoor unit equipped with the same
US10317150B2 (en) * 2016-11-21 2019-06-11 United Technologies Corporation Staged high temperature heat exchanger
JP2018162964A (en) * 2017-03-27 2018-10-18 ダイキン工業株式会社 Heat exchanger unit
EP3604974A4 (en) 2017-03-27 2020-04-22 Daikin Industries, Ltd. Heat exchanger and refrigeration device
JP6766722B2 (en) * 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
EP3604969A4 (en) * 2017-03-27 2020-04-01 Daikin Industries, Ltd. Air-conditioning indoor unit
JP6766723B2 (en) * 2017-03-27 2020-10-14 ダイキン工業株式会社 Heat exchanger or refrigeration equipment
JP6631608B2 (en) * 2017-09-25 2020-01-15 ダイキン工業株式会社 Air conditioner
EP3734190B1 (en) * 2017-12-25 2024-02-21 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle device
EP3805651B1 (en) 2018-06-11 2023-11-22 Mitsubishi Electric Corporation Air conditioner outdoor unit and air conditioner
JP7227457B2 (en) * 2018-11-07 2023-02-22 ダイキン工業株式会社 heat exchangers and air conditioners
JP2022503407A (en) * 2018-11-12 2022-01-12 キャリア コーポレイション Compact heat exchanger assembly for freezing systems
KR20200078936A (en) * 2018-12-24 2020-07-02 삼성전자주식회사 Heat exchanger
WO2020255187A1 (en) 2019-06-17 2020-12-24 三菱電機株式会社 Air conditioner
US11262112B2 (en) * 2019-12-02 2022-03-01 Johnson Controls Technology Company Condenser coil arrangement
CN114777324B (en) * 2022-04-12 2023-12-26 安徽美博新能源科技有限公司 Auxiliary installation device of air conditioner condenser pipe

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JPH04116385A (en) * 1990-09-07 1992-04-16 Showa Alum Corp Bent heat exchanger
JPH06123587A (en) * 1992-10-12 1994-05-06 Toshiba Corp Heat exchanger
JP2006284134A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008261552A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Heat source unit
JP2010261642A (en) * 2009-05-01 2010-11-18 S−Spec株式会社 Condenser and air conditioning device having the same
JP2011102650A (en) * 2009-11-10 2011-05-26 Sharp Corp Heat exchanger and air conditioner loading the same
KR20120024276A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Air conditioner for vehicle
JP2012163328A (en) * 2011-01-21 2012-08-30 Daikin Industries Ltd Heat exchanger, and air conditioner
WO2013098872A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Outdoor unit and air conditioner
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
WO2013160951A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, method for manufacturing heat exchanger, and air conditioner
CN203274572U (en) * 2013-03-11 2013-11-06 三花控股集团有限公司 Flat pipe suitable for bending and heat exchanger provided with same
WO2014091782A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
JP2014211292A (en) * 2013-04-19 2014-11-13 ダイキン工業株式会社 Refrigerator
WO2014196569A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Outdoor unit for air conditioner
WO2015025702A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle device, and method for producing heat exchanger
WO2015037240A1 (en) * 2013-09-11 2015-03-19 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2015097761A1 (en) * 2013-12-24 2015-07-02 三菱電機株式会社 Heat exchanger and outdoor unit provided with this heat exchanger
JP2016038192A (en) * 2014-08-11 2016-03-22 東芝キヤリア株式会社 Parallel flow type heat exchanger and air conditioner
WO2016121119A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2016121115A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2016174802A1 (en) * 2015-04-27 2016-11-03 ダイキン工業株式会社 Heat exchanger and air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
US6964296B2 (en) * 2001-02-07 2005-11-15 Modine Manufacturing Company Heat exchanger
US20090084131A1 (en) * 2007-10-01 2009-04-02 Nordyne Inc. Air Conditioning Units with Modular Heat Exchangers, Inventories, Buildings, and Methods
US20100006276A1 (en) * 2008-07-11 2010-01-14 Johnson Controls Technology Company Multichannel Heat Exchanger
WO2011005986A2 (en) * 2009-07-10 2011-01-13 Johnson Controls Technology Company Multichannel heat exchanger with differing fin spacing
US20130284416A1 (en) * 2011-01-21 2013-10-31 Daikin Industries, Ltd. Heat exchanger and air conditioner
JP5464207B2 (en) * 2011-12-28 2014-04-09 ダイキン工業株式会社 Refrigeration unit outdoor unit
KR20130092249A (en) * 2012-02-10 2013-08-20 엘지전자 주식회사 Heat pump

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384395A (en) * 1989-08-23 1991-04-09 Showa Alum Corp Duplex heat exchanger
JPH04116385A (en) * 1990-09-07 1992-04-16 Showa Alum Corp Bent heat exchanger
JPH06123587A (en) * 1992-10-12 1994-05-06 Toshiba Corp Heat exchanger
JP2006284134A (en) * 2005-04-04 2006-10-19 Matsushita Electric Ind Co Ltd Heat exchanger
JP2008261552A (en) * 2007-04-12 2008-10-30 Daikin Ind Ltd Heat source unit
JP2010261642A (en) * 2009-05-01 2010-11-18 S−Spec株式会社 Condenser and air conditioning device having the same
JP2011102650A (en) * 2009-11-10 2011-05-26 Sharp Corp Heat exchanger and air conditioner loading the same
KR20120024276A (en) * 2010-09-06 2012-03-14 한라공조주식회사 Air conditioner for vehicle
JP2012163328A (en) * 2011-01-21 2012-08-30 Daikin Industries Ltd Heat exchanger, and air conditioner
WO2013098872A1 (en) * 2011-12-26 2013-07-04 三菱電機株式会社 Outdoor unit and air conditioner
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
WO2013160951A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, method for manufacturing heat exchanger, and air conditioner
WO2014091782A1 (en) * 2012-12-10 2014-06-19 三菱電機株式会社 Flat tube heat exchange apparatus, and outdoor unit for air conditioner provided with same
CN203274572U (en) * 2013-03-11 2013-11-06 三花控股集团有限公司 Flat pipe suitable for bending and heat exchanger provided with same
JP2014211292A (en) * 2013-04-19 2014-11-13 ダイキン工業株式会社 Refrigerator
WO2014196569A1 (en) * 2013-06-04 2014-12-11 三菱電機株式会社 Outdoor unit for air conditioner
WO2015025702A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, refrigeration cycle device, and method for producing heat exchanger
WO2015025365A1 (en) * 2013-08-20 2015-02-26 三菱電機株式会社 Heat exchanger, air conditioner, and refrigeration cycle device
WO2015037240A1 (en) * 2013-09-11 2015-03-19 ダイキン工業株式会社 Heat exchanger and air conditioner
WO2015097761A1 (en) * 2013-12-24 2015-07-02 三菱電機株式会社 Heat exchanger and outdoor unit provided with this heat exchanger
JP2016038192A (en) * 2014-08-11 2016-03-22 東芝キヤリア株式会社 Parallel flow type heat exchanger and air conditioner
WO2016121119A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2016121115A1 (en) * 2015-01-30 2016-08-04 三菱電機株式会社 Heat exchanger and refrigeration cycle device
WO2016174802A1 (en) * 2015-04-27 2016-11-03 ダイキン工業株式会社 Heat exchanger and air conditioner

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11428446B2 (en) 2017-03-27 2022-08-30 Daikin Industries, Ltd. Heat exchanger unit
JP2018162934A (en) * 2017-03-27 2018-10-18 ダイキン工業株式会社 Heat exchanger unit
US11415371B2 (en) 2017-03-27 2022-08-16 Daikin Industries, Ltd. Heat exchanger and refrigeration apparatus
JP2019113288A (en) * 2017-12-26 2019-07-11 ダイキン工業株式会社 Heat exchanger and freezing unit
JP2019132516A (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2019150864A1 (en) * 2018-01-31 2019-08-08 ダイキン工業株式会社 Refrigeration device
WO2020017036A1 (en) 2018-07-20 2020-01-23 三菱電機株式会社 Refrigeration cycle device
US11802719B2 (en) 2018-07-20 2023-10-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP7080395B2 (en) 2019-03-25 2022-06-03 三菱電機株式会社 Heat exchanger unit and refrigeration cycle device
JPWO2020194442A1 (en) * 2019-03-25 2021-10-21 三菱電機株式会社 Heat exchanger unit and refrigeration cycle equipment
JP7399286B2 (en) 2020-06-04 2023-12-15 三菱電機株式会社 Heat exchanger and refrigeration cycle equipment
WO2023190890A1 (en) * 2022-03-31 2023-10-05 ダイキン工業株式会社 Air conditioner
JP2023151215A (en) * 2022-03-31 2023-10-16 ダイキン工業株式会社 air conditioner
JP7401803B2 (en) 2022-03-31 2023-12-20 ダイキン工業株式会社 air conditioner

Also Published As

Publication number Publication date
WO2016174830A1 (en) 2016-11-03
US20180135900A1 (en) 2018-05-17
CN107429975B (en) 2020-04-24
EP3276289B1 (en) 2024-03-06
JP6641721B2 (en) 2020-02-05
CN107429975A (en) 2017-12-01
EP3276289A1 (en) 2018-01-31
EP3276289A4 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
WO2016174830A1 (en) Heat exchanger and air conditioner
US9651317B2 (en) Heat exchanger and air conditioner
US10309701B2 (en) Heat exchanger and air conditioner
JP5163763B2 (en) Air conditioner heat exchanger
JP2012163328A5 (en)
US10041710B2 (en) Heat exchanger and air conditioner
WO2016174802A1 (en) Heat exchanger and air conditioner
JP2013083419A (en) Heat exchanger and air conditioner
JP2014137177A (en) Heat exchanger and refrigerator
JP5404571B2 (en) Heat exchanger and equipment
JP6881550B2 (en) Heat exchanger
JP7414845B2 (en) Refrigeration cycle equipment
JP2014137172A (en) Heat exchanger and refrigerator
JP2015031484A (en) Heat exchanger and air conditioner including the same
JP2013083420A (en) Heat exchanger and air conditioner
JP5664272B2 (en) Heat exchanger and air conditioner
JP6698196B2 (en) Air conditioner
JP2015055407A (en) Heat exchanger and air conditioner
JP2014137173A (en) Heat exchanger and refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160420

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R151 Written notification of patent or utility model registration

Ref document number: 6641721

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151