JP6698196B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6698196B2
JP6698196B2 JP2019091581A JP2019091581A JP6698196B2 JP 6698196 B2 JP6698196 B2 JP 6698196B2 JP 2019091581 A JP2019091581 A JP 2019091581A JP 2019091581 A JP2019091581 A JP 2019091581A JP 6698196 B2 JP6698196 B2 JP 6698196B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
row
indoor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019091581A
Other languages
Japanese (ja)
Other versions
JP2019148416A (en
Inventor
横関 敦彦
敦彦 横関
修平 多田
修平 多田
坪江 宏明
宏明 坪江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2019091581A priority Critical patent/JP6698196B2/en
Publication of JP2019148416A publication Critical patent/JP2019148416A/en
Application granted granted Critical
Publication of JP6698196B2 publication Critical patent/JP6698196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Description

本発明は、高効率な熱交換器を備えた空気調和機に関する。   The present invention relates to an air conditioner equipped with a highly efficient heat exchanger.

空気調和機の熱交換器においては、伝熱管内の冷媒流速を最適化することで、冷媒側の圧力損失と熱伝達率のバランスを適正化させ、熱交換器の性能を高めている。つまり、熱交換器性能の発揮のために、伝熱管の流路内径と、冷媒流路数とを考慮した設計が行われている。   In the heat exchanger of the air conditioner, the flow velocity of the refrigerant in the heat transfer tube is optimized to optimize the balance between the pressure loss on the refrigerant side and the heat transfer coefficient, thereby enhancing the performance of the heat exchanger. That is, in order to exert the heat exchanger performance, the design is performed in consideration of the flow passage inner diameter of the heat transfer tube and the number of refrigerant flow passages.

3列の伝熱管が配置された熱交換器において、最も風上側の伝熱管径D1を最も細径にするとともにD1=3〜4mmの範囲とすると共に、真中の伝熱管径D2、風下側伝熱関係D3との関係をD1<D2=D3であり、4mm≦D3≦10mmとし、0.6≦D1/D2<1とすることが提案されている(例えば、特許文献1参照)。この構成により、圧力損失の増大を抑制しつつ熱交換性能を向上させている。   In a heat exchanger in which three rows of heat transfer tubes are arranged, the heat transfer tube diameter D1 on the most windward side is made the smallest and D1=3 to 4 mm, and the heat transfer tube diameter D2 in the middle and leeward. It has been proposed that the relationship with the side heat transfer relationship D3 is D1<D2=D3, 4 mm≦D3≦10 mm, and 0.6≦D1/D2<1 (see, for example, Patent Document 1). With this configuration, the heat exchange performance is improved while suppressing an increase in pressure loss.

また、液側分配器またはガス側分配器に接続するフィンの伝熱管が1往復で、隣接するフィンの2本の伝熱管に分岐して接続し、伝熱管の1パスが2往復で構成することも提案されている(例えば、特許文献2参照)。この構成により、液側の流速を増加させることにより、伝熱管内の圧力損失が増大する一方、表面熱伝達率が向上する。   Further, the heat transfer tube of the fin connected to the liquid side distributor or the gas side distributor is reciprocated once, and the heat transfer tube is branched and connected to two heat transfer tubes of adjacent fins, and one path of the heat transfer tube is constituted by two reciprocations. It has also been proposed (see, for example, Patent Document 2). With this configuration, by increasing the flow velocity on the liquid side, the pressure loss in the heat transfer tube increases, while the surface heat transfer coefficient improves.

特開2011−122819号公報JP, 2011-122819, A 特開2010−78287号公報JP, 2010-78287, A

しかし、特許文献1に記載の構成では、伝熱管径違い毎の製造装置が必要であるので、熱交換器の製造工数が増大する。更に、細径の伝熱管を配置した風上側の列においては伝熱管内側の伝熱面積が少なくなり、総合的な熱交換器の性能が低下する。   However, the configuration described in Patent Document 1 requires a manufacturing apparatus for each different diameter of the heat transfer tube, so that the number of manufacturing steps of the heat exchanger increases. Furthermore, in the row on the windward side where the heat transfer tubes of small diameter are arranged, the heat transfer area inside the heat transfer tubes is reduced, and the overall performance of the heat exchanger is reduced.

また、特許文献2に開示された熱交換器を凝縮器で作用した際には、過冷却域の温度変化に伴って、上下に隣接する伝熱管の間にフィンを通した熱伝導が影響して、内部熱交換が生じることにより、過冷却域の熱ロスを生じる。   Further, when the heat exchanger disclosed in Patent Document 2 acts as a condenser, heat conduction through fins between vertically adjacent heat transfer tubes influences the temperature change in the supercooling region. The internal heat exchange causes heat loss in the supercooled region.

本発明は、上述の課題に鑑みてなされたもので、その目的は、高性能な熱交換器を備える空気調和機を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide an air conditioner including a high-performance heat exchanger.

上記課題を解決すべく、本発明の一態様である空気調和機は、冷媒が流れる複数本の伝熱管を有し空気との間で熱交換を行う熱交換器を備えた空気調和機であって、前記熱交換器は、一端部と他端部とを有し、前記複数本の伝熱管は、空気が流れる方向に交差する方向に並んだ状態で前記一端部と前記他端部とを往復するように配設され、前記交差する方向に並んだ前記複数本の伝熱管の列は、前記空気が流れる方向に沿って少なくとも2列並ぶように構成され、前記2列は、前記空気が流れる方向の最上流に位置する第1列と、前記空気が流れる方向において前記第1列の隣に位置する第2列とを有し、前記複数本の伝熱管は、前記第2列において互いに隣り合う第1の伝熱管および第2の伝熱管を備え、前記第1の伝熱管および前記第2の伝熱管は、それぞれ前記第2列を前記他端部から前記一端部まで延び、前記一端部において結合して第1の結合管となり、前記第1の結合管は、前記最上列において、前記一端部と前記他端部との間を一往復するように構成され、前記複数本の伝熱管は、前記第2列において互いに隣り合う第3の伝熱管および第4の伝熱管をさらに備え、前記第3の伝熱管および前記第4の伝熱管は、前記第1の伝熱管および前記第2の伝熱管に隣接して配置され、それぞれ前記第2列を前記他端部から前記一端部まで延び、前記一端部において結合して第2の結合管となり、前記第2の結合管は、前記最上列において、前記一端部と前記他端部との間を一往復するように構成され、前記第1の結合管のうち前記他端部から前記一端部へ延びる部分と、前記第2の結合管のうち前記他端部から前記一端部へ延びる部分とは、互いに隣り合うように配置されている。   In order to solve the above problems, an air conditioner according to an aspect of the present invention is an air conditioner including a heat exchanger that has a plurality of heat transfer tubes through which a refrigerant flows and exchanges heat with air. The heat exchanger has one end and the other end, and the plurality of heat transfer tubes have the one end and the other end in a state of being aligned in a direction intersecting with a direction in which air flows. The rows of the plurality of heat transfer tubes that are arranged so as to reciprocate and are arranged in the intersecting direction are configured to be arranged in at least two rows along the direction in which the air flows, and the two rows have the air It has a first row located at the most upstream in the flowing direction and a second row located next to the first row in the direction in which the air flows, and the plurality of heat transfer tubes are mutually arranged in the second row. An adjacent first heat transfer tube and a second heat transfer tube are provided, and the first heat transfer tube and the second heat transfer tube respectively extend from the other end to the one end, and the one end Are joined together to form a first joint pipe, and the first joint pipe is configured to make one round trip between the one end portion and the other end portion in the uppermost row, and the first joint pipe is connected to the plurality of transmission pipes. The heat pipe further includes a third heat transfer pipe and a fourth heat transfer pipe that are adjacent to each other in the second row, and the third heat transfer pipe and the fourth heat transfer pipe include the first heat transfer pipe and the first heat transfer pipe. 2 is arranged adjacent to the heat transfer tube, extends the second row from the other end portion to the one end portion, respectively, and is joined at the one end portion to form a second joining pipe, wherein the second joining pipe is A portion of the uppermost row configured to reciprocate between the one end portion and the other end portion, and a portion of the first coupling pipe extending from the other end portion to the one end portion, and the second portion. A portion of the coupling pipe that extends from the other end to the one end is arranged so as to be adjacent to each other.

上記課題を解決すべく、本発明の一態様である空気調和機は、冷媒が流れる複数本の伝熱管を有し空気との間で熱交換を行う熱交換器を備えた空気調和機であって、前記熱交換器は、一端部と他端部とを有し、前記複数本の伝熱管は、空気が流れる方向に交差する方向に並んだ状態で前記一端部と前記他端部とを往復するように配設され、前記交差する方向に並んだ前記複数本の伝熱管の列は、前記空気が流れる方向に沿って少なくとも2列並ぶように構成され、前記2列は、前記空気が流れる方向の最上流に位置する第1列と、前記空気が流れる方向において前記第1列の隣に位置する第2列とを有し、前記複数本の伝熱管は、前記第2列において互いに隣り合う第1の伝熱管および第2の伝熱管を備え、前記第1の伝熱管および前記第2の伝熱管は、それぞれ前記第2列を前記他端部から前記一端部まで延び、前記一端部において結合して一本の伝熱管となり、前記一本の伝熱管は、前記第1列において、前記一端部と前記他端部との間を一往復するように構成され、前記冷媒は、R32、または、R32を70重量%以上含む冷媒である。   In order to solve the above problems, an air conditioner according to an aspect of the present invention is an air conditioner including a heat exchanger that has a plurality of heat transfer tubes through which a refrigerant flows and exchanges heat with air. The heat exchanger has one end and the other end, and the plurality of heat transfer tubes have the one end and the other end in a state of being aligned in a direction intersecting with a direction in which air flows. The rows of the plurality of heat transfer tubes that are arranged so as to reciprocate and are arranged in the intersecting direction are configured to be arranged in at least two rows along the direction in which the air flows, and the two rows have the air It has a first row located at the most upstream in the flowing direction and a second row located next to the first row in the direction in which the air flows, and the plurality of heat transfer tubes are mutually arranged in the second row. An adjacent first heat transfer tube and a second heat transfer tube are provided, and the first heat transfer tube and the second heat transfer tube respectively extend from the other end to the one end, and the one end And a single heat transfer tube, the one heat transfer tube is configured to make one round trip between the one end and the other end in the first row, and the refrigerant is R32 or a refrigerant containing 70% by weight or more of R32.

本発明によれば、高性能な熱交換器を備える空気調和機を提供することができる。   According to the present invention, it is possible to provide an air conditioner including a high-performance heat exchanger.

本発明に係る空気調和機の冷凍サイクルを示す。1 shows a refrigeration cycle of an air conditioner according to the present invention. R410Aを冷媒として用いたとき、および、R32を冷媒として用いたときにおける暖房運転時の冷凍サイクルをモリエル線図上に示した図である。It is the figure which showed the refrigeration cycle at the time of heating operation when R410A was used as a refrigerant and when R32 was used as a refrigerant on the Mollier diagram. 冷媒循環量の伝熱管の圧力損失に対する影響を示す図である。It is a figure which shows the influence on the pressure loss of a heat transfer tube of a refrigerant|coolant circulation amount. 冷媒循環量の伝熱管の表面熱伝達率に対する影響を示す図である。It is a figure which shows the influence of the circulating amount of a refrigerant|coolant on the surface heat transfer coefficient of a heat transfer tube. 天井埋込型の室内機の横断面図である。It is a cross-sectional view of a ceiling-embedded indoor unit. 天井埋込型の室内機の縦断面図である。It is a longitudinal cross-sectional view of a ceiling-embedded indoor unit. 室内熱交換器の伝熱管およびフィンの構成を示す図である。It is a figure which shows the structure of the heat transfer tube and fin of an indoor heat exchanger. 室内熱交換器の縦断面図である。It is a longitudinal cross-sectional view of an indoor heat exchanger. 図8のIX−IX線に沿った断面図である。FIG. 9 is a sectional view taken along line IX-IX in FIG. 8. 従来の室内熱交換器の伝熱管およびフィンの構成を示す図である。It is a figure which shows the structure of the heat transfer tube and the fin of the conventional indoor heat exchanger. 暖房運転時の室内熱交換器の過冷却度とCOPとの関係を示す図である。It is a figure which shows the relationship between the subcooling degree of an indoor heat exchanger at the time of heating operation, and COP. 冷媒にR32を使用した空気調和機において暖房運転時の過冷却度のCOPに対する影響を示す図である。It is a figure which shows the influence on the COP of the subcooling degree at the time of heating operation in the air conditioner which used R32 for a refrigerant. 冷媒にR410Aを使用した空気調和機において暖房運転時の過冷却度のCOPに対する影響を示す図である。It is a figure which shows the influence on the COP of the subcooling degree at the time of heating operation in the air conditioner which used R410A as a refrigerant. 冷媒にR32を使用した空気調和機において冷房運転時の冷媒循環量のCOPに対する影響を示す図である。It is a figure which shows the influence on the COP of the amount of refrigerant circulation at the time of cooling operation in the air conditioner which uses R32 as a refrigerant. 冷媒にR410Aを使用した空気調和機において冷房運転時の冷媒循環量のCOPに対する影響を示す図である。It is a figure which shows the influence on the COP of the refrigerant|coolant circulation amount at the time of cooling operation in the air conditioner which uses R410A as a refrigerant. 蒸発時の質量流束と管内熱伝達率および圧力損失との関係を示す図である。It is a figure which shows the relationship between the mass flux at the time of evaporation, the heat transfer coefficient in a pipe, and a pressure loss. 凝縮時の質量流束と管内熱伝達率および圧力損失との関係を示す図である。It is a figure which shows the relationship between the mass flux at the time of condensation, a heat transfer coefficient in a pipe, and a pressure loss. 伝熱管外径による空気調和機の性能影響の説明図である。It is explanatory drawing of the performance influence of an air conditioner by a heat transfer tube outer diameter. 熱交換器の伝熱管の上下ピッチによる空気調和機の性能影響の説明図である。It is explanatory drawing of the performance influence of the air conditioner by the up-down pitch of the heat transfer tubes of a heat exchanger. 熱交換器の伝熱管の横ピッチによる空気調和機の性能影響の説明図である。It is explanatory drawing of the performance influence of the air conditioner by the horizontal pitch of the heat exchanger tubes of a heat exchanger. 熱交換器のフィン板厚tとフィンピッチPfによる空気調和機の性能影響の説明図である。It is explanatory drawing of the performance influence of the air conditioner by fin plate thickness t of a heat exchanger, and fin pitch Pf. 室内熱交換器の伝熱管の列構成の変形例を示す図である。It is a figure which shows the modification of the row structure of the heat transfer tube of an indoor heat exchanger. 三又ベントを示す外観図である。It is an external view which shows a three-pronged vent. 室内熱交換器の伝熱管の列構成の他の変更例を示す図である。It is a figure which shows the other example of a change of the row structure of the heat transfer tube of an indoor heat exchanger. 室内熱交換器の伝熱管の列構成が2列の場合を示す図である。It is a figure which shows the case where the row structure of the heat transfer tube of an indoor heat exchanger is two rows. 室内熱交換器の伝熱管の列構成が4列の場合を示す図である。It is a figure which shows the case where the row configuration of the heat transfer tubes of an indoor heat exchanger is 4 rows.

以下、本発明の実施形態に係る空気調和機について、図面に基づいて説明する。図1は、本発明の実施形態に係る空気調和機1の冷凍サイクルを示す。   Hereinafter, an air conditioner according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigeration cycle of an air conditioner 1 according to an embodiment of the present invention.

空気調和機1は、室外機10と室内機20とを備えている。室外機10と室内機20とは、ガス接続配管2および液接続配管3により接続される。本実施の形態では、室外機10と室内機20とを1対1で接続しているが、一台の室内機に対し複数台の室外機を接続しても良いし、一台の室外機に対し複数台の室内機を接続しても良い。   The air conditioner 1 includes an outdoor unit 10 and an indoor unit 20. The outdoor unit 10 and the indoor unit 20 are connected by the gas connection pipe 2 and the liquid connection pipe 3. In the present embodiment, the outdoor unit 10 and the indoor unit 20 are connected in a one-to-one manner, but a plurality of outdoor units may be connected to one indoor unit, or one outdoor unit. Alternatively, a plurality of indoor units may be connected.

室外機10は、圧縮機11と、四方弁12と、室外熱交換器13と、室外ファン14と、室外膨張弁15と、アキュムレータ16とを有している。また、室外熱交換器13には、室外ガス側冷媒分配器17と、室外液側冷媒分配器18とが設けられている。   The outdoor unit 10 includes a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an outdoor fan 14, an outdoor expansion valve 15, and an accumulator 16. Further, the outdoor heat exchanger 13 is provided with an outdoor gas side refrigerant distributor 17 and an outdoor liquid side refrigerant distributor 18.

圧縮機11は、冷媒を圧縮して配管に吐出する。四方弁12を切り替えることで、冷媒の流れが変化し、冷房運転と暖房運転が切り替わる。室外熱交換器13は、冷媒と外気の間で熱交換させる。室外ファン14は、室外熱交換器13に対し外気を供給する。室外膨張弁15は、冷媒を減圧して低温にする。アキュムレータ16は、過渡時の液戻りを貯留するために設けられており、冷媒を適度な乾き度に調整する。   The compressor 11 compresses the refrigerant and discharges it into the pipe. By switching the four-way valve 12, the flow of the refrigerant changes, and the cooling operation and the heating operation are switched. The outdoor heat exchanger 13 exchanges heat between the refrigerant and the outside air. The outdoor fan 14 supplies outside air to the outdoor heat exchanger 13. The outdoor expansion valve 15 reduces the pressure of the refrigerant to a low temperature. The accumulator 16 is provided to store the liquid return during the transition and adjusts the refrigerant to an appropriate dryness.

室内機20は、室内熱交換器21と、室内ファン22と、室内膨張弁23とを備える。室内熱交換器21は、冷媒と内気の間で熱交換させる。室内ファン22は、室外熱交換器21に対し外気を供給する。室内膨張弁23は、その絞り量を変化させることにより室内熱交換器21を流れる冷媒の流量を変化させることが可能である。また、室内熱交換器21には、室内ガス側冷媒分配器24と、室内液側冷媒分配器25とが設けられている。   The indoor unit 20 includes an indoor heat exchanger 21, an indoor fan 22, and an indoor expansion valve 23. The indoor heat exchanger 21 exchanges heat between the refrigerant and the inside air. The indoor fan 22 supplies outside air to the outdoor heat exchanger 21. The indoor expansion valve 23 can change the flow rate of the refrigerant flowing through the indoor heat exchanger 21 by changing the throttle amount. Further, the indoor heat exchanger 21 is provided with an indoor gas side refrigerant distributor 24 and an indoor liquid side refrigerant distributor 25.

本実施形態における空気調和機1では、冷凍サイクル内に封入されて、冷房運転時および暖房運転時に熱エネルギーを運搬する作用をなす冷媒として、R32を単独(100重量%)、または、R32を70重量%以上含む混合冷媒が用いている。   In the air conditioner 1 according to the present embodiment, R32 is used alone (100% by weight) or R32 is 70 as a refrigerant that is enclosed in the refrigeration cycle and has a function of carrying thermal energy during the cooling operation and the heating operation. A mixed refrigerant containing more than wt% is used.

次に、空気調和機1の冷凍サイクルの動作について説明する。   Next, the operation of the refrigeration cycle of the air conditioner 1 will be described.

まず、空気調和機1における冷房運転について説明する。冷房運転において、四方弁12は、実線で示すように、圧縮機11の吐出側と室外熱交換器13とを連通させ、圧縮機11の吸入側とガス接続配管2とを連通させる。   First, the cooling operation in the air conditioner 1 will be described. In the cooling operation, the four-way valve 12 connects the discharge side of the compressor 11 and the outdoor heat exchanger 13 and connects the suction side of the compressor 11 and the gas connection pipe 2 as shown by the solid line.

圧縮機11から吐出された高温高圧のガス冷媒は、四方弁12を通って、室外熱交換器13に流入する。室外熱交換器13へ入った高温のガス冷媒は、室外ファン14により供給される室外空気と熱交換して凝縮され、液冷媒となる。この液冷媒は、室外膨張弁15および液接続配管3を通過して、室内機20に流入する。室内機20に流入した液冷媒は、室内膨張弁22により減圧されて、低温低圧のガス液混合冷媒となる。この低温低圧の冷媒は、室内熱交換器21に流入して、室内ファン22により供給される室内空気と熱交換されて蒸発し、ガス冷媒となる。この際、室内空気は、冷媒の蒸発潜熱により冷却され、冷風が室内に送られる。その後、ガス冷媒は、ガス接続配管2を通って、室外機10に戻される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 passes through the four-way valve 12 and flows into the outdoor heat exchanger 13. The high-temperature gas refrigerant that has entered the outdoor heat exchanger 13 exchanges heat with the outdoor air supplied by the outdoor fan 14 and is condensed to become a liquid refrigerant. The liquid refrigerant passes through the outdoor expansion valve 15 and the liquid connection pipe 3 and flows into the indoor unit 20. The liquid refrigerant that has flowed into the indoor unit 20 is decompressed by the indoor expansion valve 22 and becomes a low-temperature low-pressure gas-liquid mixed refrigerant. The low-temperature low-pressure refrigerant flows into the indoor heat exchanger 21, is heat-exchanged with the indoor air supplied by the indoor fan 22, and is evaporated to become a gas refrigerant. At this time, the indoor air is cooled by the latent heat of vaporization of the refrigerant, and cold air is sent indoors. After that, the gas refrigerant is returned to the outdoor unit 10 through the gas connection pipe 2.

室外機10に戻ったガス冷媒は、四方弁12およびアキュムレータ16を通過し、圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。   The gas refrigerant returned to the outdoor unit 10 passes through the four-way valve 12 and the accumulator 16, is sucked into the compressor 11, and is compressed by the compressor 11 again, thereby forming a series of refrigeration cycles.

次に、空気調和機1における暖房運転について説明する。暖房運転において、切換え弁12は、点線で示すように、圧縮機11の吐出側とガス接続配管2とを連通させ、圧縮機11の吸入側と室外熱交換器13とを連通させる。   Next, the heating operation in the air conditioner 1 will be described. In the heating operation, the switching valve 12 makes the discharge side of the compressor 11 communicate with the gas connection pipe 2 and the suction side of the compressor 11 communicates with the outdoor heat exchanger 13 as shown by the dotted line.

圧縮機11から吐出される高温高圧のガス冷媒は、四方弁12を通って、ガス接続配管2へ送られ、室内機20の室内熱交換器21に流入する。室内熱交換器21に流入した高温高圧のガス冷媒は、室内ファン23により供給される室内空気と熱交換して凝縮し、高圧の液冷媒となる。この際、室内空気は、冷媒によって加熱され、温風が室内に送られる。その後、液化した冷媒は、室内膨張弁22、および液接続配管3を通過して、室内機10へと戻される。   The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is sent to the gas connection pipe 2 through the four-way valve 12 and flows into the indoor heat exchanger 21 of the indoor unit 20. The high-temperature and high-pressure gas refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the indoor air supplied by the indoor fan 23 and condenses to become a high-pressure liquid refrigerant. At this time, the indoor air is heated by the refrigerant, and warm air is sent indoors. After that, the liquefied refrigerant passes through the indoor expansion valve 22 and the liquid connection pipe 3 and is returned to the indoor unit 10.

室外機10へ戻った液冷媒は、室外膨張弁15により減圧されて、低温低圧のガス液混合冷媒となる。減圧された冷媒は、室外熱交換器13に流入して、室外ファン14により供給される外気と熱交換し、蒸発され、低圧のガス冷媒となる。室外熱交換器13から流出したガス冷媒は、およびアキュムレータ16を通過し、圧縮機11に吸入され、再度圧縮機11で圧縮されることにより、一連の冷凍サイクルが形成される。   The liquid refrigerant that has returned to the outdoor unit 10 is decompressed by the outdoor expansion valve 15 and becomes a low-temperature low-pressure gas-liquid mixed refrigerant. The depressurized refrigerant flows into the outdoor heat exchanger 13, exchanges heat with the outside air supplied by the outdoor fan 14, is evaporated, and becomes a low-pressure gas refrigerant. The gas refrigerant flowing out of the outdoor heat exchanger 13 passes through the accumulator 16 and is sucked into the compressor 11 and compressed by the compressor 11 again to form a series of refrigeration cycles.

次に、本実施形態の空気調和機1で使用するR32の特性について説明する。具体的には、R32とR410Aとの冷媒物性の違いにより、これらの冷媒を使用した時の違いについて説明する。図2は、R410A(破線)を冷媒として用いたとき、および、R32(実線)を冷媒として用いたときにおける暖房運転時の冷凍サイクルをモリエル線図上に示した図である。なお、R410Aは、従来より用いられる冷媒であり、R32と比較してGWP(地球温暖化係数)が高い冷媒である。   Next, the characteristics of R32 used in the air conditioner 1 of the present embodiment will be described. Specifically, the difference in the use of these refrigerants due to the difference in the refrigerant physical properties between R32 and R410A will be described. FIG. 2 is a diagram showing on the Mollier diagram the refrigeration cycle during the heating operation when R410A (broken line) is used as the refrigerant and when R32 (solid line) is used as the refrigerant. Note that R410A is a refrigerant that has been used conventionally, and has a higher GWP (Global Warming Potential) than R32.

R32は、R410Aに比べて蒸発潜熱が大きい特性があるので、R32のΔhe_R32、Δhc_R32で示される蒸発器あるいは凝縮器における比エンタルピ差は、R410AのΔhe_R410A、Δhc_R410Aよりも大きくなる。よって、R32は、同一能力発生に必要な冷媒循環量をR410Aより少なくすることができる。   Since R32 has a characteristic that the latent heat of vaporization is larger than that of R410A, the specific enthalpy difference in the evaporator or condenser indicated by Δhe_R32 and Δhc_R32 of R32 is larger than Δhe_R410A and Δhc_R410A of R410A. Therefore, R32 can reduce the refrigerant circulation amount required to generate the same capacity as R410A.

ここで、Δheは蒸発器での比エンタルピ差、Δhcは凝縮器での比エンタルピ差を示しており、添え字の_R410A、_R32はそれぞれ、冷媒R410A、R32での状態を示している。   Here, Δhe represents a specific enthalpy difference in the evaporator, Δhc represents a specific enthalpy difference in the condenser, and subscripts _R410A and _R32 represent the states of the refrigerants R410A and R32.

R32を冷媒として用いたときは冷媒循環量を少なくすることができるので、熱交換器13、21の流路を冷媒が通過する際の圧力損失は減少して高圧と低圧の差圧が小さくなる。よって、圧縮機11における必要な圧縮動力を減少させることができ、空気調和機1のCOP(Coefficient of Performance:成績係数)向上効果がある。この一方で、熱交換器13、21の伝熱管内における冷媒流速の減少により、冷媒側の表面熱伝達率の低下が生じて熱交換器13、21の効率低下が生じる場合がある。   When R32 is used as the refrigerant, the refrigerant circulation amount can be reduced, so that the pressure loss when the refrigerant passes through the flow paths of the heat exchangers 13 and 21 is reduced, and the differential pressure between the high pressure and the low pressure is reduced. .. Therefore, the required compression power in the compressor 11 can be reduced, and there is an effect of improving the COP (Coefficient of Performance) of the air conditioner 1. On the other hand, due to the decrease in the refrigerant flow velocity in the heat transfer tubes of the heat exchangers 13 and 21, the surface heat transfer coefficient on the refrigerant side may decrease, and the efficiency of the heat exchangers 13 and 21 may decrease.

図3は、冷媒循環量の伝熱管の圧力損失に対する影響を示す図であり、図4は、冷媒循環量の伝熱管の表面熱伝達率に対する影響を示す図である。   FIG. 3 is a diagram showing the influence of the refrigerant circulation amount on the pressure loss of the heat transfer pipe, and FIG. 4 is a diagram showing the influence of the refrigerant circulation amount on the surface heat transfer coefficient of the heat transfer pipe.

図3と図4に示すように、R32を蒸発器よりも凝縮器で使用したときの方が、相対的に圧力損失が小さくなり、表面熱伝達率が小さくなる。このため、冷房と暖房を切り替えて使用する空気調和機1においては、熱交換器13、21の一流路(一本の伝熱管26(図7))あたりの冷媒循環量を冷房と暖房の双方でバランスが良い流量に設定する必要がある。   As shown in FIGS. 3 and 4, when R32 is used in the condenser rather than in the evaporator, the pressure loss becomes relatively smaller and the surface heat transfer coefficient becomes smaller. Therefore, in the air conditioner 1 that switches between cooling and heating to be used, the refrigerant circulation amount per one flow path (one heat transfer pipe 26 (FIG. 7)) of the heat exchangers 13 and 21 is set for both cooling and heating. It is necessary to set the flow rate with good balance.

熱交換器13、21の一流路あたりの冷媒循環量を調整するために、例えば、室内熱交換器21の冷媒入口において室内ガス側冷媒分配器24および室内液側冷媒分配器25(図7)が使用されている。当該分配器24、25から、複数の流路(複数の伝熱管26)に分岐されて冷媒が室内熱交換器21内を流通するように構成されている。   In order to adjust the refrigerant circulation amount per flow path of the heat exchangers 13 and 21, for example, at the refrigerant inlet of the indoor heat exchanger 21, the indoor gas side refrigerant distributor 24 and the indoor liquid side refrigerant distributor 25 (FIG. 7). Is used. The distributors 24 and 25 are branched into a plurality of flow paths (a plurality of heat transfer tubes 26) so that the refrigerant flows in the indoor heat exchanger 21.

次に、本実施形態における天井埋込型4方向吹出の室内機20の構成について詳細に説明する。図5は、空気調和機1の室内機20の横断面、図6は、室内機20の縦断面を示している。   Next, the configuration of the ceiling-embedded 4-way blowout indoor unit 20 according to the present embodiment will be described in detail. FIG. 5 shows a horizontal cross section of the indoor unit 20 of the air conditioner 1, and FIG. 6 shows a vertical cross section of the indoor unit 20.

図5、6に示すように、室内機20の筐体28内に室内熱交換器21および室内ファン22が収容され、室内ファン22の周りを囲むように室内熱交換器21が配置されている。このように本実施形態における室内機20は、天井埋込型4方向吹出の室内機である。   As shown in FIGS. 5 and 6, the indoor heat exchanger 21 and the indoor fan 22 are housed in the housing 28 of the indoor unit 20, and the indoor heat exchanger 21 is arranged so as to surround the indoor fan 22. . As described above, the indoor unit 20 in the present embodiment is a ceiling-embedded four-way blowout indoor unit.

図5に示すように、室内熱交換器21は、室内ファン22の周りを略一周して取り囲む形(略ロ字状)であり、一端部21Aと他端部21Bとを有する。よって、室内熱交換器21の長さが長くなるので、室内熱交換器21を複数の流路に分ける際には、室内熱交換器21の両端においてのみ分岐、集合が可能であるため、流路分割には制約が多い形態である。また、室内熱交換器21の一端部21Aには、室内ガス側冷媒分配器24および室内液側冷媒分配器25が接続されている。   As shown in FIG. 5, the indoor heat exchanger 21 has a shape that substantially surrounds the indoor fan 22 and surrounds it (a substantially square shape), and has one end 21A and the other end 21B. Therefore, since the length of the indoor heat exchanger 21 becomes long, when the indoor heat exchanger 21 is divided into a plurality of flow paths, branching and gathering are possible only at both ends of the indoor heat exchanger 21, so There are many restrictions on road division. An indoor gas side refrigerant distributor 24 and an indoor liquid side refrigerant distributor 25 are connected to one end 21A of the indoor heat exchanger 21.

また、図6に示すように、室内ファン22により室内から導入された空気が室内熱交換機21において熱交換を行い、吹出し口より室内に送られるように構成されている。   Further, as shown in FIG. 6, the air introduced from the room by the indoor fan 22 exchanges heat in the indoor heat exchanger 21 and is sent to the room through the outlet.

図7は、本実施形態における室内熱交換器21の伝熱管26およびフィン27の構成を示している。図7における矢印は暖房運転時に伝熱管26を流れる冷媒の流れを示している。図7に示すように、複数本の伝熱管26は、金属製の板状の複数のフィン27に挿通されている。複数本の伝熱管26は、室内ファン22による室内空気の気流方向Fに交差する方向に複数本が並んで形成される列を気流方向Fに沿って3列含む列構成を有している。   FIG. 7 shows the configuration of the heat transfer tubes 26 and the fins 27 of the indoor heat exchanger 21 in this embodiment. The arrow in FIG. 7 indicates the flow of the refrigerant flowing through the heat transfer tube 26 during the heating operation. As shown in FIG. 7, the plurality of heat transfer tubes 26 are inserted into a plurality of metal plate-shaped fins 27. The plurality of heat transfer tubes 26 has a row configuration including three rows formed along the airflow direction F in which a plurality of heat transfer tubes 26 are formed side by side in a direction intersecting the airflow direction F of the indoor air.

3列で構成していることにより、凝縮器として作用する際に、空気の流れに対して対向する方向に冷媒通路を構成した場合に、吸込空気との温度差を比較的均等に保つことが出来、空気流に対して1列目、2列目、3列目でほぼ過冷却域、飽和域、過熱域と冷媒温度レベルが異なる毎に熱交換器のフィンが分断でき、伝熱性能で優位である。更に通風抵抗や搭載スペース面でも優位である。   With the three-row configuration, when acting as a condenser, the temperature difference between the suction air and the suction air can be kept relatively uniform when the refrigerant passage is formed in the direction opposite to the air flow. Yes, the fins of the heat exchanger can be divided every time the refrigerant temperature level in the first, second, and third rows is different from the air flow in the subcooling area, saturation area, and superheating area. Have an advantage. Furthermore, it is superior in terms of ventilation resistance and mounting space.

当該列構成は、気流方向Fの最上流に位置する最上列(第1列)L1と、気流方向Fの最下流に位置する最下列(第3列)L3と、最上列L1と最下列L3との間に位置する中間列(第2列)L2とからなる。ここで、最下列L3を構成する伝熱管を伝熱管26aとし、中間列L2を構成する伝熱管を伝熱管26bとし、最上列L1を構成する伝熱管を伝熱管26cとする。なお、各列L1〜L3において、伝熱管26は上下方向において一列に並んでいる。   The row configuration includes an uppermost row (first row) L1 located at the uppermost stream in the airflow direction F, a lowermost row (third row) L3 located at the most downstream in the airflow direction F, an uppermost row L1 and a lowermost row L3. And an intermediate row (second row) L2 located between and. Here, the heat transfer tubes forming the bottom row L3 are referred to as heat transfer tubes 26a, the heat transfer tubes forming the middle row L2 are referred to as heat transfer tubes 26b, and the heat transfer tubes forming the top row L1 are referred to as heat transfer tubes 26c. In addition, in each of the rows L1 to L3, the heat transfer tubes 26 are arranged in a row in the vertical direction.

最上列L1を構成する伝熱管26cは、室内液側冷媒分配器25と接続され、最下列L3を構成する伝熱管26aは、室内ガス側冷媒分配器24と接続されている。そして、最下列L3の伝熱管26aは、室内熱交換器21の一端部21Aから他端部21Bまで延び、他端部21BにおいてUターンして、中間列L2において、室内熱交換器21の一端部21Aまで戻ってくる。そして、室内熱交換器21の一端部21Aにおいて、中間列L2において互いに隣り合う2本の伝熱管26bが結合し、結合して1本となった伝熱管26cが、最上列L1において、一端部21Aと他端部21Bとの間を一往復するように延び、一端部21Aまで戻ってきた伝熱管26cは、室内液側冷媒分配器25に接続される。   The heat transfer tubes 26c forming the uppermost row L1 are connected to the indoor liquid side refrigerant distributor 25, and the heat transfer tubes 26a forming the lowermost row L3 are connected to the indoor gas side refrigerant distributor 24. The heat transfer tubes 26a in the lowermost row L3 extend from one end 21A of the indoor heat exchanger 21 to the other end 21B, make a U-turn at the other end 21B, and in the middle row L2, one end of the indoor heat exchanger 21. Return to section 21A. Then, in the one end 21A of the indoor heat exchanger 21, two heat transfer tubes 26b adjacent to each other in the intermediate row L2 are joined, and the joined heat transfer tube 26c is one end in the uppermost row L1. The heat transfer tube 26c that extends back and forth between 21A and the other end 21B and returns to the one end 21A is connected to the indoor liquid-side refrigerant distributor 25.

換言すると、伝熱管26(第1の伝熱管)は、最下列(第3列)L3において室内熱交換器21の一端部21Aから他端部21Bへ延び、中間列(第2列)L2において、室内熱交換器21の他端部21Bから一端部21Aへ延び、一端部21Aにおいて上下で互いに隣り合う他の伝熱管26(第2の伝熱管)と結合して、結合した一本の伝熱管26が、最上列(第1列)L1において室内熱交換器21の一端部21Aと他端部21Bとを一往復するように構成されている。また、中間列L2の2本の伝熱管26bと、最上列L1の伝熱管26cとを連結する三又ベンド28は、2本の伝熱管26bの上下方向の略中間において伝熱管26cが連結される形状をなしている。すなわち、気流方向Fから見たときに、三又ベント28に接続された伝熱管26cは、2本の伝熱管26bの間に位置している。   In other words, the heat transfer tubes 26 (first heat transfer tubes) extend from one end 21A of the indoor heat exchanger 21 to the other end 21B in the bottom row (third row) L3, and in the middle row (second row) L2. , One end of the indoor heat exchanger 21 that extends from the other end 21B to the one end 21A and is coupled to another heat transfer pipe 26 (second heat transfer pipe) vertically adjacent to each other at the one end 21A. The heat pipe 26 is configured to reciprocate once between the one end 21A and the other end 21B of the indoor heat exchanger 21 in the uppermost row (first row) L1. Further, the three-pronged bend 28 that connects the two heat transfer tubes 26b in the middle row L2 and the heat transfer tubes 26c in the uppermost row L1 is connected with the heat transfer tubes 26c approximately in the vertical direction between the two heat transfer tubes 26b. It has a curved shape. That is, when viewed from the airflow direction F, the heat transfer tube 26c connected to the trifurcated vent 28 is located between the two heat transfer tubes 26b.

室内熱交換器21の伝熱管26は、上記のような構成なので、暖房運転時に凝縮器として機能する場合には、R32である冷媒は、図7の矢印で示すように、室内ガス側冷媒分配器24から複数の伝熱管26に流入し、最下列L3および中間列L2を通って合流し、合流した冷媒が、最上列L1において一往復して室内液側冷媒分配器25に排出される。   Since the heat transfer tube 26 of the indoor heat exchanger 21 has the above-described configuration, when it functions as a condenser during the heating operation, the refrigerant R32 is an indoor gas side refrigerant distribution as shown by the arrow in FIG. From the container 24, the refrigerant flows into the plurality of heat transfer tubes 26, merges through the lowermost row L3 and the intermediate row L2, and the combined refrigerant makes one round trip in the uppermost row L1 and is discharged to the indoor liquid side refrigerant distributor 25.

図8は、室内熱交換器21の縦断面図を示している。図8に示すように、伝熱管26の径Dは、4≦D≦6mmであり、上下において隣り合う伝熱管26の上下ピッチPt(伝熱管26の中心間の距離)は、11≦Pt≦17mmであり、伝熱管26の横ピッチPL(各列を構成する伝熱管26の中心を通る直線間の距離)は、7≦PL≦11mmである。   FIG. 8 shows a vertical sectional view of the indoor heat exchanger 21. As shown in FIG. 8, the diameter D of the heat transfer tube 26 is 4≦D≦6 mm, and the vertical pitch Pt (the distance between the centers of the heat transfer tubes 26) of the heat transfer tubes 26 that are vertically adjacent to each other is 11≦Pt≦ It is 17 mm, and the lateral pitch PL of the heat transfer tubes 26 (distance between straight lines passing through the centers of the heat transfer tubes 26 forming each row) is 7≦PL≦11 mm.

図9は、図8のIX−IX線に沿った断面図である。図8に示すように、フィン27には、スリット27A、27Bが設けられている。フィン27の板厚t[mm]と、隣り合うフィン27のピッチPf[mm]とは、0.06≦t/Pf≦0.12に構成されている。また、スリット切起し幅Hs1、Hs2[mm]は、伝熱性能および通風抵抗を考慮し、例えば、それぞれPf/3に対して若干の差を設けた1.2≦Hs1/Hs2≦1.6 に構成されている。   9 is a sectional view taken along line IX-IX in FIG. As shown in FIG. 8, the fin 27 is provided with slits 27A and 27B. The plate thickness t [mm] of the fins 27 and the pitch Pf [mm] of the adjacent fins 27 are set to 0.06≦t/Pf≦0.12. Further, the slit cut-and-raised widths Hs1 and Hs2 [mm] are, for example, 1.2≦Hs1/Hs2≦1., which are slightly different from Pf/3 in consideration of heat transfer performance and ventilation resistance. 6 are configured.

上記のように、伝熱管26は、最下列L3において室内熱交換器21の一端部21Aから他端部21Bへ延び、中間列L2において、室内熱交換器21の他端部21Bから一端部21Aへ延び、一端部21Aにおいて上下で互いに隣り合う他の伝熱管26と結合して、結合した一本の伝熱管26が、最上列L1において室内熱交換器21の一端部21Aと他端部21Bとを一往復するように構成されている。   As described above, the heat transfer tube 26 extends from the one end 21A of the indoor heat exchanger 21 to the other end 21B in the bottom row L3, and from the other end 21B to the one end 21A of the indoor heat exchanger 21 in the middle row L2. And the one heat transfer pipe 26 that is connected to the other heat transfer pipes 26 that are vertically adjacent to each other at one end 21A, and the combined one heat transfer pipe 26 has one end 21A and the other end 21B of the indoor heat exchanger 21 in the uppermost row L1. It is configured to make one round trip between and.

よって、2本の伝熱管26を流れる冷媒を合流させて1本の伝熱管26に流すようにすることにより、冷媒の流速を増加させることができ、表面熱伝達率を高くすることができる。   Therefore, the flow velocity of the refrigerant can be increased and the surface heat transfer coefficient can be increased by merging the refrigerants flowing through the two heat transfer tubes 26 so as to flow through the one heat transfer tube 26.

また、本実施の形態では、冷媒にR32を用いているので、使用する冷媒循環量を減少させることができる。よって、上記のように冷媒の流速を合流させたとしても、冷媒流速は比較的小さい為、圧力損失を抑えることができる。   Further, in the present embodiment, since R32 is used as the refrigerant, it is possible to reduce the amount of refrigerant circulation used. Therefore, even if the flow velocity of the refrigerant is merged as described above, the flow velocity of the refrigerant is relatively small, and thus the pressure loss can be suppressed.

一方、図10に示す従来の熱交換器121の構成では、室内ガス側冷媒分配器24に接続された伝熱管126は、列L1〜L3を合計1.5往復して、室内液側冷媒分配器25に接続されるように構成されている。この場合には、熱交換器121を凝縮器として使用する際に、室内ガス側冷媒分配器24から流出する冷媒流路数と、室内液側冷媒分配器25に流入する冷媒流路数が同一となる。   On the other hand, in the configuration of the conventional heat exchanger 121 shown in FIG. 10, the heat transfer tube 126 connected to the indoor gas side refrigerant distributor 24 makes a total of 1.5 reciprocations in the rows L1 to L3 to distribute the indoor liquid side refrigerant. It is configured to be connected to the container 25. In this case, when the heat exchanger 121 is used as a condenser, the number of refrigerant passages flowing out from the indoor gas side refrigerant distributor 24 and the number of refrigerant passages flowing into the indoor liquid side refrigerant distributor 25 are the same. Becomes

よって、冷媒流路数を減少させるには、熱交換器121の伝熱管126の本数を減少させる必要があり、伝熱管126の本数を減少させると、管内伝熱面積の減少してしまう。これでは、熱交換器121の性能向上につながらない。   Therefore, in order to reduce the number of refrigerant flow paths, it is necessary to reduce the number of heat transfer tubes 126 of the heat exchanger 121, and if the number of heat transfer tubes 126 is reduced, the heat transfer area inside the tubes will decrease. This does not lead to improvement in the performance of the heat exchanger 121.

また、凝縮過程の進行に伴って最下列L3から中間列L2、最上列L1と進むにしたがって、冷媒の密度が上昇し、伝熱管126内の冷媒流速が減少することにより、伝熱管126内の表面熱伝達率は悪化していくため、熱交換器121の効率を最大限に高めることができない。   Further, as the condensation process progresses from the bottom row L3 to the middle row L2 and the top row L1, the density of the refrigerant increases and the refrigerant flow velocity in the heat transfer tube 126 decreases, so that Since the surface heat transfer coefficient deteriorates, the efficiency of the heat exchanger 121 cannot be maximized.

次に、R32を用いた空気調和機1における、暖房運転時に凝縮器として機能する室内熱交換器21の過冷却度とCOPとの関係について図11に基づき説明する。R32の比較として、空気調和機1の冷媒にR410Aを使用した場合における室内熱交換器21の過冷却度とCOPとの関係も示している。R410AとR32を使用したいずれの場合においても、過冷却度に対してCOPが、最大となるピークが存在することが分かる。そして、R410AのCOPのピークP1よりも、R32の方が過冷却度の小さいときにCOPがピークP2を示す。   Next, the relationship between the degree of supercooling of the indoor heat exchanger 21 that functions as a condenser during heating operation and the COP in the air conditioner 1 using R32 will be described with reference to FIG. 11. For comparison with R32, the relationship between the degree of supercooling of the indoor heat exchanger 21 and COP when R410A is used as the refrigerant of the air conditioner 1 is also shown. It can be seen that in both cases of using R410A and R32, there is a peak in which COP becomes maximum with respect to the degree of supercooling. Then, when the degree of supercooling of R32 is smaller than the peak P1 of COP of R410A, the COP shows peak P2.

この理由には、図2のモリエル線図上の冷凍サイクルで示したように、R32の方が比エンタルピ差が大きくなることが関係している。   The reason for this is that R32 has a larger specific enthalpy difference, as shown in the refrigeration cycle on the Mollier diagram of FIG.

凝縮器の出口の過冷却度の能力に対する寄与は、図2のΔhsc_R410AとΔhsc_R32で示した比エンタルピ差の増分である。R32は元々の凝縮器での比エンタルピ差Δhc_R32が大きいため、過冷却分Δhsc_R32による能力増加率はR410Aのそれと比べて小さくなる傾向がある。   The contribution of the condenser outlet supercooling capacity to the capacity is the increment of the specific enthalpy difference indicated by Δhsc_R410A and Δhsc_R32 in FIG. Since R32 has a large specific enthalpy difference Δhc_R32 in the original condenser, the capacity increase rate due to the subcooling Δhsc_R32 tends to be smaller than that of R410A.

また、過冷却度増加による能力増加に対して、凝縮圧力の増加により圧縮動力を増加させる必要があるので、COP低下が上回る点が存在する。よって、R32の方が過冷却度の小さい点で暖房時のCOPが最大となる。   Further, there is a point where the COP decrease exceeds the compression power because it is necessary to increase the compression power by increasing the condensing pressure with respect to the capacity increase by increasing the supercooling degree. Therefore, R32 has the largest COP during heating in that the degree of supercooling is smaller.

このことは、図7に示した本実施形態の室内熱交換器21の構成において、R32を使用したことにより、特別な効果を発揮することができる。つまり、凝縮器の出口の過冷却度を小さくすることにより、室内熱交換器21において液冷媒が流れる最上列L1において隣り合う伝熱管26での温度差を小さくすることができる。つまり、隣接した伝熱管26同士の熱ロスを抑えることが可能となり、表面熱伝達率を向上させることができ、室内熱交換器21の性能を向上させることができる。   This can exhibit a special effect by using R32 in the configuration of the indoor heat exchanger 21 of the present embodiment shown in FIG. That is, by reducing the degree of supercooling at the outlet of the condenser, it is possible to reduce the temperature difference between the heat transfer tubes 26 adjacent to each other in the uppermost row L1 in which the liquid refrigerant flows in the indoor heat exchanger 21. That is, it is possible to suppress the heat loss between the adjacent heat transfer tubes 26, improve the surface heat transfer coefficient, and improve the performance of the indoor heat exchanger 21.

また、図11に示すように、R410Aを使用した時よりも、R32を使用したときの方が、より大きいCOPを得ることができる。   Further, as shown in FIG. 11, a larger COP can be obtained when R32 is used than when R410A is used.

図12および図13は上記の効果を検証した結果であり、図12には冷媒にR32を、図13には冷媒にR410Aを使用した空気調和機において暖房運転時の過冷却度のCOPに対する影響を示したものである。図12および図13におけるC1、C3は、図7に示した本実施形態の室内熱交換器21を備える空気調和機1にR32、R410Aを使用した場合における過冷却度のCOPに対する影響を示し、C2、C4は、図10に示した室内熱交換器121を備える空気調和機にR32、R410Aを使用した場合における過冷却度のCOPに対する影響を示している。   12 and 13 show the results of verifying the above effects. In FIG. 12, the effect of subcooling on COP during heating operation in the air conditioner using R32 as the refrigerant and FIG. 13 using R410A as the refrigerant is shown. Is shown. C1 and C3 in FIGS. 12 and 13 show the influence of the degree of supercooling on COP when R32 and R410A are used in the air conditioner 1 including the indoor heat exchanger 21 of the present embodiment shown in FIG. 7, C2 and C4 show the influence of the degree of supercooling on COP when R32 and R410A are used for the air conditioner including the indoor heat exchanger 121 shown in FIG.

図12に示すように、C1のCOPが高くなるのは上記の効果のためである。一方、図13に示すようにR410Aを本実施形態の空気調和機1に冷媒として用いた場合では、C3に示すように性能(COP)が低下する。   As shown in FIG. 12, the COP of C1 is high because of the above effect. On the other hand, when R410A is used as the refrigerant in the air conditioner 1 of the present embodiment as shown in FIG. 13, the performance (COP) deteriorates as shown by C3.

図14および図15は、冷媒にR32またはR410Aを使用した空気調和機において冷房運転時の冷媒循環量のCOPに対する影響を示したものである。図14および図15におけるC5、C7は、図7に示した本実施形態の室内熱交換器21を備える空気調和機1にR32、R410Aを使用した場合における冷媒循環量のCOPに対する影響を示し、C6、C8は、図10に示した室内熱交換器121を備える空気調和機にR32、R410Aを使用した場合における冷媒循環量のCOPに対する影響を示している。   14 and 15 show the influence of the refrigerant circulation amount on the COP during the cooling operation in the air conditioner using R32 or R410A as the refrigerant. C5 and C7 in FIGS. 14 and 15 show the influence of the refrigerant circulation amount on the COP when R32 and R410A are used in the air conditioner 1 including the indoor heat exchanger 21 of the present embodiment shown in FIG. C6 and C8 indicate the influence of the refrigerant circulation amount on the COP when R32 and R410A are used in the air conditioner including the indoor heat exchanger 121 shown in FIG.

冷房運転時には過冷却域の熱ロス影響は無いため、冷媒流速による影響が支配的である。よって、R410AとR32の物性違いによって、本実施形態の室内熱交換器21を備える空気調和機1にR32、R410Aを使用したC5、C7のほうが特に冷房中間能力域でCOPが高くなることが分かる。   Since there is no heat loss effect in the supercooling region during cooling operation, the effect of the refrigerant flow velocity is dominant. Therefore, due to the difference in the physical properties of R410A and R32, it can be seen that COP is higher in C5 and C7 using R32 and R410A in the air conditioner 1 including the indoor heat exchanger 21 of the present embodiment, particularly in the cooling intermediate capacity range. .

これを詳細に説明する為に、蒸発時の質量流束と管内熱伝達率および圧力損失との関係を図16に示している。なお、質量流束ならびに管内熱伝達率、圧力損失はそれぞれ、全長における平均値で示している。   In order to explain this in detail, the relationship between the mass flux at the time of evaporation, the heat transfer coefficient in the tube, and the pressure loss is shown in FIG. The mass flux, the heat transfer coefficient in the tube, and the pressure loss are shown as average values over the entire length.

図16には、冷房中間能力時における運転状態を示しており、蒸発時の質量流束による管内熱伝達率および圧力損失をR32とR410Aの比較で示している。具体的には、R32とR410Aの双方において、図10で示した従来の熱交換器121における伝熱管126の配列(以下、従来配列とする)と、図7に示した本実施形態の熱交換器21における伝熱管26の配列(以下、本願配列とする)での運転状態をそれぞれ点で示している。   FIG. 16 shows the operating state at the time of intermediate cooling capacity, and shows the pipe heat transfer coefficient and pressure loss due to the mass flux at the time of evaporation by comparing R32 and R410A. Specifically, in both R32 and R410A, the arrangement of the heat transfer tubes 126 in the conventional heat exchanger 121 shown in FIG. 10 (hereinafter referred to as the conventional arrangement) and the heat exchange of the present embodiment shown in FIG. The operating states of the arrangement of the heat transfer tubes 26 in the vessel 21 (hereinafter referred to as the arrangement of the present application) are indicated by dots.

R410Aで従来配列から本願配列に変更した場合には,圧力損失の増加が大きい割に熱伝達率の増加率が少ないが、R32では同一能力発生時の圧力損失が小さいため、本願配列へ変更した場合においても圧力損失の増加率が少なく、熱伝達率増加率が大きくなる。したがって、R32の冷房時の性能向上にはより有効であると言える。   When the conventional arrangement is changed to the arrangement of the present invention in R410A, the increase of the pressure loss is large, but the increase rate of the heat transfer coefficient is small. However, in R32, the pressure loss when the same capacity is generated is small, so the arrangement of the present invention is changed. Even in such cases, the rate of increase in pressure loss is small and the rate of increase in heat transfer rate is large. Therefore, it can be said that it is more effective in improving the performance of R32 during cooling.

なお,図17には凝縮時の質量流束による管内熱伝達率および圧力損失をR32とR410Aの比較で示している。凝縮時においても質量流束の変化による影響度は、絶対値が異なるが、蒸発時と同様であり、つまり、本願配列をR32に用いることは暖房時の性能向上により効果的であるといえる。   In addition, in FIG. 17, the heat transfer coefficient and pressure loss in the tube due to the mass flux at the time of condensation are shown by comparison between R32 and R410A. Although the absolute value of the degree of influence of the change in mass flux during condensation is the same as that during evaporation, it can be said that using the array of the present invention for R32 is more effective in improving the performance during heating.

また、上記のように、伝熱管26の外径Dは、4≦D≦6mmであるので、図18に示されるように、通風抵抗の増加を抑えて伝熱管ピッチ(Pt,PL)を小さくできるため、空気調和機1の効率(APF:Annual Performance Factor 通年エネルギー効率)を向上することができる。つまり、APFのピークからの低下を3%以内に抑えることができる。   Further, as described above, since the outer diameter D of the heat transfer tube 26 is 4≦D≦6 mm, as shown in FIG. 18, the increase in ventilation resistance is suppressed and the heat transfer tube pitch (Pt, PL) is reduced. Therefore, the efficiency of the air conditioner 1 (APF: Annual Performance Factor year-round energy efficiency) can be improved. That is, the decrease from the peak of APF can be suppressed within 3%.

また、上下において隣り合う伝熱管26の上下ピッチPtは、11≦Pt≦17mmである。この範囲であれば、図19に示すようにフィンの熱伝導による上下伝熱管の熱ロス影響を減縮させつつ、空気調和機1の効率を向上させることができる。   Further, the vertical pitch Pt of the heat transfer tubes 26 that are vertically adjacent to each other is 11≦Pt≦17 mm. Within this range, the efficiency of the air conditioner 1 can be improved while reducing the heat loss effect of the upper and lower heat transfer tubes due to the heat conduction of the fins as shown in FIG.

つまり、上下ピッチPtが小さいほどフィンの熱伝導によるロスが大きくなる。図19には、上下ピッチがAPFに及ぼす影響を示しており、上下ピッチが11mm以下ではフィンを通した熱伝導影響が大きくなるためAPFが低下し、逆に上下ピッチが17mm以上では、伝熱管26の搭載本数の減少により管内伝熱面積およびフィン効率が減少し、APFの低下が生じる。したがって、APFのピークから3%以内の低下率を確保できる上下ピッチPtの範囲として11mm≦Pt≦17mmとすることが望ましい。   That is, the smaller the upper and lower pitch Pt, the larger the loss due to heat conduction of the fins. FIG. 19 shows the effect of the vertical pitch on the APF. When the vertical pitch is 11 mm or less, the effect of heat conduction through the fins is large, so the APF decreases, and conversely, when the vertical pitch is 17 mm or more, the heat transfer tube The reduction in the number of 26 mounted reduces the heat transfer area in the pipe and the fin efficiency, resulting in a decrease in APF. Therefore, it is desirable that the range of the vertical pitch Pt that can secure the reduction rate within 3% from the peak of APF is 11 mm≦Pt≦17 mm.

また、伝熱管26の横ピッチPLは、7≦PL≦11mmであるので、図20に示すように伝熱面積と通風抵抗のバランスを最適化して、空気調和機1の効率を向上させることができる。つまり、APFのピークからの低下を3%以内に抑えることができる。   Moreover, since the lateral pitch PL of the heat transfer tubes 26 is 7≦PL≦11 mm, the efficiency of the air conditioner 1 can be improved by optimizing the balance between the heat transfer area and the ventilation resistance as shown in FIG. it can. That is, the decrease from the peak of APF can be suppressed within 3%.

また、フィン27の板厚t[mm]、フィンピッチPf[mm]の関係は0.06≦t/Pf≦0.12であるので、図21に示すように過冷却領域における熱ロス低減効果を得つつ、空調調和機1のAPFを高くすることができる。つまり、フィン27の板厚が厚く、フィン枚数が多いほど、フィン27を通した熱伝導影響による隣接した伝熱管26への熱ロスの影響が出やすくなるが、R32を使用した場合はその熱ロス影響が緩和される。この影響を考慮した場合に、フィンピッチPfが一定のときにt/Pfが小さいと、フィン効率の低下による性能低下し、t/Pfが大きいと熱ロスの影響が大きくなる。よって、空調調和機1のAPFがピークから3%以内の性能にある範囲として0.06≦t/Pf≦0.12に設定することが望ましい。 Further, the thickness t of the fin 27 [mm], since the relation between the fin pitch Pf [mm] is 0.06 ≦ t / Pf ≦ 0.12, the reduction of heat loss in the supercooling region, as shown in FIG. 21 The APF of the air conditioner 1 can be increased while obtaining the effect. That is, as the fins 27 are thicker and the number of fins is larger, the heat loss effect on the adjacent heat transfer tubes 26 due to the heat conduction effect through the fins 27 is more likely to occur. Loss effect is mitigated. In consideration of this effect, if t/Pf is small when the fin pitch Pf is constant, performance is deteriorated due to a decrease in fin efficiency, and if t/Pf is large, the effect of heat loss is large. Therefore, it is desirable to set 0.06≦t/Pf≦0.12 as a range in which the APF of the air conditioner 1 is within 3% from the peak.

また、フィン27にはスリット27A、27Bを設けているので、表面熱伝達率が高くなり、フィン効率が比較的低くなることから、隣接した伝熱管26への熱伝導影響を抑えることができる。   Further, since the fins 27 are provided with the slits 27A and 27B, the surface heat transfer coefficient becomes high and the fin efficiency becomes relatively low, so that the heat conduction effect to the adjacent heat transfer tubes 26 can be suppressed.

なお、本発明は、上述した実施例に限定されない。当業者であれば、本発明の範囲内で、種々の追加や変更等を行うことができる。   The present invention is not limited to the above embodiment. Those skilled in the art can make various additions and changes within the scope of the present invention.

例えば、室内熱交換器21の伝熱管26のパスによる効果は、暖房での過冷却域影響が大きいことおよび、伝熱管26の配列の自由度の関係から、天井埋込型室内機20で特に大きい。つまり、天上埋込型室内機においては、図5、6に示されるように送風機(室内ファン22)の回りに室内熱交換器21が略一周取り囲む形で配置されており、室内熱交換器21の奥行き、高さに制限がある。したがって、伝熱管26の高密度配置による室内熱交換器21の性能の向上が有効であり、冷媒分配器24、25の搭載スペース小さくすることが出来る本実施形態の冷媒通路に加えて、伝熱管径、上下ピッチ、横ピッチを前記範囲とすることにより、R32の特性を最大限に生かした高性能な空気調和機1を実現することが出来る。   For example, the effect of the path of the heat transfer tubes 26 of the indoor heat exchanger 21 is particularly large in the ceiling-embedded indoor unit 20 because of the large influence of the supercooling region in heating and the degree of freedom of arrangement of the heat transfer tubes 26. large. That is, in the ceiling-embedded indoor unit, as shown in FIGS. 5 and 6, the indoor heat exchanger 21 is arranged around the blower (indoor fan 22) so as to surround the indoor heat exchanger 21 substantially once. There is a limit in depth and height. Therefore, it is effective to improve the performance of the indoor heat exchanger 21 by arranging the heat transfer tubes 26 at a high density, and in addition to the refrigerant passage of the present embodiment that can reduce the mounting space of the refrigerant distributors 24 and 25, By setting the pipe diameter, the vertical pitch, and the lateral pitch within the above ranges, it is possible to realize the high-performance air conditioner 1 that maximizes the characteristics of R32.

ただし、他の室内形態や、室外機10に用いられた際にも効果が発揮でき、形態を制限するものではない。よって、伝熱管26のパスの構成は、他の室内形態や、室外機10の室外熱交換器13に用いても良い。   However, the effect can be exhibited even when used in other indoor forms or the outdoor unit 10, and the form is not limited. Therefore, the configuration of the path of the heat transfer tube 26 may be used for other indoor forms or the outdoor heat exchanger 13 of the outdoor unit 10.

また、フィン27にスリット27A、27Bを設けたが、ルーバーを設けても良い。また、上記の実施形態では、冷媒にR32を単独で使用した場合について説明したが、R32を70重量%以上を含む混合冷媒を使用しても同様の効果を得ることができる。   Further, although the fins 27 are provided with the slits 27A and 27B, louvers may be provided. Further, in the above embodiment, the case where R32 is used alone as the refrigerant has been described, but the same effect can be obtained by using a mixed refrigerant containing 70% by weight or more of R32.

また、室内熱交換器の伝熱管の列構成は、図22に示した伝熱管26の列構成であっても良い。すなわち、図22に示すように、中間列L2の2本の伝熱管26b1、26b2と、伝熱管26b1よりも上側に位置する最上列L1の伝熱管26c1とを接続するように構成しても良い。そして、2本の伝熱管26b1、26b2に隣接する2本の伝熱管26b3、26b4と、最上列L1の伝熱管26c3とは、上記の実施形態と同様に接続されている。ここで、2本の伝熱管26b1、26b2と伝熱管26c1とを接続する三又ベント128は、図23に示すように、最上列L1の伝熱管26c1と接続される位置を、中間列L2の2本の伝熱管26bと接続される位置よりも上側になるように構成されている。また、三又ベント128は、冷房運手時には分岐する部分で冷媒が衝突して分岐し、気液二相流がほぼ等分配になるように構成されている。   Further, the row configuration of the heat transfer tubes of the indoor heat exchanger may be the row configuration of the heat transfer tubes 26 shown in FIG. That is, as shown in FIG. 22, two heat transfer tubes 26b1 and 26b2 in the middle row L2 and the heat transfer tubes 26c1 in the uppermost row L1 located above the heat transfer tubes 26b1 may be connected. .. The two heat transfer tubes 26b3, 26b4 adjacent to the two heat transfer tubes 26b1, 26b2 and the heat transfer tube 26c3 in the uppermost row L1 are connected in the same manner as in the above-described embodiment. Here, the three-pronged vent 128 connecting the two heat transfer tubes 26b1 and 26b2 and the heat transfer tube 26c1 has the position connected to the heat transfer tube 26c1 in the uppermost row L1 at the middle row L2 as shown in FIG. It is configured to be above the position where it is connected to the two heat transfer tubes 26b. Further, the three-pronged vent 128 is configured such that the refrigerant collides with the branch portion at the branch portion during the air conditioning transporter and is branched, so that the gas-liquid two-phase flow is substantially evenly distributed.

そして、2本の伝熱管26b1、26b2が結合した伝熱管(第一の結合管)26c1、26c2は、伝熱管26c1が一端部21A(図5)から他端部21B(図5)まで延び、伝熱管26c1の下側を伝熱管26c2が他端部21Bから一端部21Aまで延びるように配置されている。また、2本の伝熱管26b3、26b4が結合した伝熱管(第2の結合管)26c3、26c4は、伝熱管26c3が一端部21Aから他端部21Bまで延び、伝熱管26c3の上側を伝熱管26c4が他端部21Bから一端部21Aまで延びるように配置されている。よって、他端部21Bから一端部21Aへ延びる伝熱管26b2および伝熱管26b4は、互いに隣り合うように配置されている。   In the heat transfer tubes (first coupling tubes) 26c1 and 26c2 in which the two heat transfer tubes 26b1 and 26b2 are connected, the heat transfer tube 26c1 extends from one end 21A (FIG. 5) to the other end 21B (FIG. 5). A heat transfer tube 26c2 is arranged below the heat transfer tube 26c1 so as to extend from the other end 21B to the one end 21A. Further, the heat transfer tubes (second coupling tubes) 26c3, 26c4 in which the two heat transfer tubes 26b3, 26b4 are connected are such that the heat transfer tube 26c3 extends from one end 21A to the other end 21B, and the heat transfer tube 26c3 is above the heat transfer tube. 26c4 is arranged so as to extend from the other end 21B to one end 21A. Therefore, the heat transfer tube 26b2 and the heat transfer tube 26b4 extending from the other end portion 21B to the one end portion 21A are arranged so as to be adjacent to each other.

従って、図22に示した伝熱管26の列構成では、他端部21Bから一端部21Aへ延びる伝熱管26b2および伝熱管26b4は、互いに隣り合うように配置されているので、過冷却された冷媒が上下に連続することから近い温度同士では、熱ロスが生じにくくなる。これにより、熱ロスを更に半減する効果があり、空気調和機1のAPFをよりいっそう高めることができる。   Therefore, in the row configuration of the heat transfer tubes 26 shown in FIG. 22, since the heat transfer tubes 26b2 and 26b4 extending from the other end 21B to the one end 21A are arranged adjacent to each other, the supercooled refrigerant is Since is continuous up and down, heat loss is less likely to occur at temperatures close to each other. This has the effect of further halving the heat loss, and the APF of the air conditioner 1 can be further increased.

また、室内熱交換器の伝熱管の列構成は、図24に示した伝熱管26の列構成であっても良い。図24に示すように、中間列L2の複数組の2本の伝熱管26bがそれぞれ結合した伝熱管26c5、26c6において、一端部21A(図5)から他端部21B(図5)まで延びる伝熱管26c5を上側に集めて配置し、他端部21Bから一端部21Aまで延びる伝熱管26c6を下側に集めて配置している。換言すれば、一端部21Aから他端部21Bまで延びる伝熱管26c5を互いに隣り合うように配置し、他端部21Bから一端部21Aまで延びる伝熱管26c6を互いに隣り合うように配置している。   The row configuration of the heat transfer tubes of the indoor heat exchanger may be the row configuration of the heat transfer tubes 26 shown in FIG. As shown in FIG. 24, in the heat transfer tubes 26c5 and 26c6 to which the plural sets of two heat transfer tubes 26b of the intermediate row L2 are respectively coupled, the heat transfer extending from one end 21A (FIG. 5) to the other end 21B (FIG. 5). The heat pipes 26c5 are gathered and arranged on the upper side, and the heat transfer pipes 26c6 extending from the other end 21B to the one end 21A are gathered and arranged on the lower side. In other words, the heat transfer tubes 26c5 extending from the one end 21A to the other end 21B are arranged adjacent to each other, and the heat transfer tubes 26c6 extending from the other end 21B to the end 21A are arranged adjacent to each other.

本構成によれば、図22で示した伝熱管26の列構成に対して更に、凝縮器として作用する際の過冷却域での上下方向に隣の伝熱管26同士の熱ロスを減少することが可能であり、更に高効率な室内熱交換器21を提供することができ、空気調和機1のAPFを高めることが可能となる。   According to this configuration, in addition to the row configuration of the heat transfer tubes 26 shown in FIG. 22, it is possible to further reduce the heat loss between the heat transfer tubes 26 adjacent to each other in the vertical direction in the supercooling region when acting as a condenser. The indoor heat exchanger 21 having higher efficiency can be provided, and the APF of the air conditioner 1 can be increased.

上記の実施形態では、室内熱交換器の伝熱管の列構成を、3列で構成した場合について、説明を行なってきたが、図25に示すように、気流方向Fの最上列(第1列)L1と中間列(第2列)L2の伝熱管26b、26cのみからなる2列の構成であっても、凝縮器として作用する場合の過冷却域熱ロス影響低減および、液側での流速増加による熱伝達率向上という、本実施形態の効果を発揮することができる。すなわち、最下列L3をなくして、最上列L1および中間列L2のみの列構成であっても良い。この場合、室内ガス側冷媒分配器24は、室内熱交換器21の他端側21Aに設けられることとなる。また、2列では比較的能力の小さい空気調和機で、性能とコストのバランスを最適化することができる。   In the above embodiment, the case where the row configuration of the heat transfer tubes of the indoor heat exchanger is configured in three rows has been described. However, as shown in FIG. 25, the uppermost row in the air flow direction F (first row) ) Even with a two-row configuration consisting of only the heat transfer tubes 26b and 26c of L1 and the intermediate row (second row) L2, the effect of reducing heat loss in the supercooling region when acting as a condenser and the flow velocity on the liquid side The effect of this embodiment that the heat transfer coefficient is improved by the increase can be exhibited. That is, the bottom row L3 may be omitted and only the top row L1 and the middle row L2 may be arranged. In this case, the indoor gas side refrigerant distributor 24 is provided on the other end side 21A of the indoor heat exchanger 21. Further, in the two-row air conditioner, which has a relatively small capacity, the balance between performance and cost can be optimized.

更に、図26に示すように、室内熱交換器の伝熱管の列構成を4列で構成しても良い。すなわち、最下列L3よりも気流方向Fの下流側に追加列L4を設けても良い。そして、追加列L4を構成する伝熱管26dは、それぞれ室内液側冷媒分配器25と接続され、追加列L4を室内熱交換器21の他端部21Bから一端部21Aまで延び、一端部21Aにおいて、最下列L3を構成する伝熱管26aに接続されている。かかる構成によっても、凝縮器として作用する場合の過冷却域熱ロス影響低減および、液側での流速増加による熱伝達率向上という、本実施形態の効果を発揮することができる。なお、伝熱管26が4列以上の構成においては、伝熱面積を増加できることから、更なる性能向上を実現することができる。   Further, as shown in FIG. 26, the heat transfer tubes of the indoor heat exchanger may be arranged in four rows. That is, the additional row L4 may be provided downstream of the lowermost row L3 in the airflow direction F. The heat transfer tubes 26d that form the additional row L4 are connected to the indoor liquid-side refrigerant distributor 25, respectively, and extend in the additional row L4 from the other end 21B of the indoor heat exchanger 21 to the one end 21A. , And is connected to the heat transfer tube 26a forming the lowermost row L3. With such a configuration as well, it is possible to achieve the effects of the present embodiment that the influence of heat loss in the supercooling region when acting as a condenser is reduced and the heat transfer coefficient is improved by increasing the flow velocity on the liquid side. When the heat transfer tubes 26 are arranged in four rows or more, the heat transfer area can be increased, so that further performance improvement can be realized.

1:空気調和機、 20:室内機、 21:室内熱交換器、 21A:一端部、 21B:他端部、 26:伝熱管、 27:フィン、 27A、27B:スリット、 L1:最上列、 L2:中間列、 L3:最下列 1: Air conditioner, 20: Indoor unit, 21: Indoor heat exchanger, 21A: One end, 21B: The other end, 26: Heat transfer tube, 27: Fin, 27A, 27B: Slit, L1: Top row, L2 : Middle row, L3: Bottom row

Claims (4)

風路に交差する方向に伝熱管が並んで配設されてなる第1列と、該第1列よりも前記風路の下流側において、前記風路に交差する方向に伝熱管が並んで配設されてなる第2列と、を有し、前記伝熱管を接続して形成される流路に冷媒を流すことで、前記冷媒と空気と熱交換させる熱交換器を備え、
前記第2列において互いに隣り合う第1の伝熱管および第2の伝熱管は、一端部において前記第1列の一本の伝熱管に接続し、前記一本の伝熱管に流入した冷媒が、前記第1列において、前記一端部と他端部との間を一往復するように構成されており、
前記冷媒は、R32であり、
前記熱交換器は、凝縮器として作用する場合、冷媒にR410Aを用いた場合の過冷却度とCOP(Coefficient of Performance)との関係においてCOPがピークを示す時の過冷却度よりも小さい過冷却度で運転される空気調和機。
A first row in which heat transfer tubes are arranged side by side in a direction intersecting the air passage, and a heat transfer tube is arranged in a direction intersecting the air passage on a downstream side of the air passage from the first row. A second row that is provided, and includes a heat exchanger that exchanges heat with the refrigerant by causing a refrigerant to flow in a flow path formed by connecting the heat transfer tubes,
The first heat transfer tube and the second heat transfer tube adjacent to each other in the second row,The refrigerant that has been connected to the one heat transfer tube in the first row at one end and has flowed into the one heat transfer tube isIn the first row, with the one endThe other endIt is configured to make one round trip to and from
  The refrigerant is, R32,
When the heat exchanger acts as a condenser, the subcooling degree is smaller than that at the time when the COP shows a peak in the relationship between the subcooling degree when R410A is used as a refrigerant and the COP (Coefficient of Performance). Driven byAir conditioner.
天井埋込カセット型の室内機を有し、
前記熱交換器は、前記室内機において使用される請求項1に記載の空気調和機。
It has a ceiling-embedded cassette type indoor unit,
The air conditioner according to claim 1, wherein the heat exchanger is used in the indoor unit.
各列において前記交差する方向において隣り合う前記伝熱管の中心間の距離は、11mm以上かつ17mm以下である請求項1または請求項2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein a distance between centers of the heat transfer tubes adjacent to each other in the intersecting direction in each row is 11 mm or more and 17 mm or less. 各列を構成する前記伝熱管の中心を通る直線間の距離は、7mm以上かつ11mm以下である請求項1から請求項3のいずれか一項に記載の空気調和機。   The air conditioner according to any one of claims 1 to 3, wherein a distance between straight lines passing through the centers of the heat transfer tubes forming each row is 7 mm or more and 11 mm or less.
JP2019091581A 2019-05-14 2019-05-14 Air conditioner Active JP6698196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019091581A JP6698196B2 (en) 2019-05-14 2019-05-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091581A JP6698196B2 (en) 2019-05-14 2019-05-14 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017138763A Division JP6533257B2 (en) 2017-07-18 2017-07-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019148416A JP2019148416A (en) 2019-09-05
JP6698196B2 true JP6698196B2 (en) 2020-05-27

Family

ID=67848777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091581A Active JP6698196B2 (en) 2019-05-14 2019-05-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP6698196B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3726541B2 (en) * 1999-03-25 2005-12-14 三菱電機株式会社 Refrigeration air conditioner
JP2001248922A (en) * 1999-12-28 2001-09-14 Daikin Ind Ltd Refrigeration unit
KR100656083B1 (en) * 2005-01-31 2006-12-11 엘지전자 주식회사 Heat exchanger in an air harmonizing system
JP4610626B2 (en) * 2008-02-20 2011-01-12 三菱電機株式会社 Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
JP2010078287A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Air conditioner

Also Published As

Publication number Publication date
JP2019148416A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6180338B2 (en) Air conditioner
US20180135900A1 (en) Heat exchanger and air conditioner
US10386081B2 (en) Air-conditioning device
US10309701B2 (en) Heat exchanger and air conditioner
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
US10544969B2 (en) Heat exchanger and air conditioner
JP6533257B2 (en) Air conditioner
JP5608478B2 (en) Heat exchanger and air conditioner using the same
EP3825628B1 (en) Refrigeration cycle device
CN111512099B (en) Heat exchanger and refrigeration cycle device
JP6698196B2 (en) Air conditioner
JP7414845B2 (en) Refrigeration cycle equipment
JP6596541B2 (en) Air conditioner
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
JP7374321B2 (en) Outdoor unit of air conditioner
JP6303872B2 (en) Air conditioning system
WO2023281655A1 (en) Heat exchanger and refrigeration cycle device
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JP2020020574A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6698196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150