WO2021065913A1 - Evaporator and refrigeration cycle device equipped with same - Google Patents

Evaporator and refrigeration cycle device equipped with same Download PDF

Info

Publication number
WO2021065913A1
WO2021065913A1 PCT/JP2020/036920 JP2020036920W WO2021065913A1 WO 2021065913 A1 WO2021065913 A1 WO 2021065913A1 JP 2020036920 W JP2020036920 W JP 2020036920W WO 2021065913 A1 WO2021065913 A1 WO 2021065913A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
evaporator
refrigerant
heat transfer
exchange unit
Prior art date
Application number
PCT/JP2020/036920
Other languages
French (fr)
Japanese (ja)
Inventor
熊倉 英二
岩田 育弘
山田 拓郎
隆平 加治
智己 廣川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP20871516.9A priority Critical patent/EP4040084A4/en
Priority to CN202080067949.7A priority patent/CN114450546B/en
Publication of WO2021065913A1 publication Critical patent/WO2021065913A1/en
Priority to US17/705,356 priority patent/US20220214085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • F25B2400/121Inflammable refrigerants using R1234
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/12Fins with U-shaped slots for laterally inserting conduits

Definitions

  • evaporator of a refrigeration cycle device there is a form in which the distribution of a plurality of heat transfer tubes is largely biased to either the windward side or the leeward side with respect to the center of the heat transfer fins.
  • evaporator described in Patent Document 1 WO2017 / 183180
  • elongated holes having a major axis extending in the width direction of the fins are provided at predetermined intervals in a direction orthogonal to the width direction and the thickness direction of the fins.
  • a laminated heat exchanger in which a flat tube is inserted in an elongated hole.
  • the composition differs between the liquid phase and the gas phase, so in the evaporator, the refrigerant temperature at the inlet is lower than that at the outlet, and if the flat tube is biased to the wind side, frost is likely to occur.
  • Patent Document 1 the distance between the flat tube and the wind-up edge of the fin is examined from the viewpoint of drainage of condensed water and molten water, but the refrigerant flowing in the evaporator is specified as a non-azeotropic mixed refrigerant.
  • the case has not been investigated in terms of frost resistance (ability to suppress frost formation) and / or heat exchange performance.
  • the evaporator according to the first aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes.
  • the plurality of fins are arranged at predetermined intervals in the plate thickness direction.
  • the plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction.
  • a first heat exchange section is formed in the evaporator. In the first heat exchange section, when a plurality of heat transfer tubes are viewed from the fin plate thickness direction as a heat transfer tube group, the distribution center of the heat transfer tube group in the air flow direction is leeward of the fin center in the air flow direction. Located in.
  • the refrigerant temperature at the inlet of the evaporator is lower than that at the outlet, and frost is likely to occur.
  • the distribution center of the heat transfer tube group is located leeward of the center of the fin in the air flow direction, so that the distribution center of the heat transfer tube group is the center of the fin. It is less likely to frost than when it is located upwind.
  • the evaporator according to the second viewpoint is the evaporator according to the first viewpoint, and the second heat exchange portion is further formed.
  • the distribution center of the heat transfer tube group is located on the windward side of the center of the fin in the air flow direction.
  • the temperature of the non-co-boiling mixed refrigerant rises from the inlet to the outlet of the evaporator. Therefore, on the outlet side, the heat exchange performance is more important than the frost resistance, and the distribution center of the heat transfer tube group. Is preferably located upwind of the center of the fin in the direction of air flow.
  • the second heat exchange section in which the distribution center of the heat transfer tube group is located on the windward side of the fin center in the air flow direction is formed.
  • the first heat exchange unit can be arranged on the inlet side of the evaporator, and the second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
  • the evaporator according to the third aspect is the evaporator according to the second aspect, and the third heat exchange portion is further formed.
  • the distribution center of the heat transfer tube group substantially coincides with the center of the fin in the air flow direction.
  • the first heat exchange section is on the inlet side of the evaporator
  • the second heat exchange section is on the outlet side of the evaporator
  • the third heat exchange section is between the first heat exchange section and the second heat exchange section.
  • the part can be arranged. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
  • the evaporator according to the fourth aspect is the evaporator according to the second aspect, and the first heat exchange section and the second heat exchange section are integrated.
  • the evaporator according to the fifth aspect is the evaporator according to the third aspect, and the first heat exchange section and at least one of the second heat exchange section and the third heat exchange section are integrated. ..
  • the evaporator according to the sixth aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes.
  • the plurality of fins are arranged at predetermined intervals in the plate thickness direction.
  • the plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction.
  • the evaporator is formed with a first heat exchange section and a second heat exchange section. In the first heat exchange section, the distance from the windward end of the heat transfer tube located on the windward side in the air flow direction to the windward end of the fin is the first dimension.
  • the second heat exchange section has a second dimension in which the distance from the windward end of the heat transfer tube located most upwind in the air flow direction to the windward end of the fin is smaller than the first dimension.
  • the first heat exchange unit can be arranged on the inlet side of the evaporator, and the second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try a combination suitable for the refrigerant temperature in the evaporator.
  • the evaporator according to the seventh aspect is the evaporator according to the sixth aspect, and the third heat exchange portion is further formed.
  • the first heat exchange section is on the inlet side of the evaporator
  • the second heat exchange section is on the outlet side of the evaporator
  • the third heat exchange section is between the first heat exchange section and the second heat exchange section.
  • the part can be arranged. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
  • the evaporator according to the eighth aspect is the evaporator according to the sixth aspect, and the first heat exchange part and the second heat exchange part are integrated.
  • the evaporator according to the ninth aspect is the evaporator according to the seventh aspect, and the first heat exchange section and at least one of the second heat exchange section and the third heat exchange section are integrated. ..
  • the evaporator according to the tenth aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes.
  • the plurality of fins are arranged at predetermined intervals in the plate thickness direction.
  • the plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction.
  • the fin has a plurality of notches. The notches are aligned in a direction orthogonal to both the air flow direction and the plate thickness direction.
  • the heat transfer tube is a flat multi-hole tube that is inserted into the notch.
  • a first heat exchange section is formed in the evaporator. In the first heat exchange section, the opening side of the notch is located leeward in the air flow direction.
  • the frost bearing capacity is increased by setting at least the inlet side of the evaporator as the first heat exchange section. be able to.
  • the evaporator according to the eleventh viewpoint is the evaporator according to the tenth viewpoint, and the second heat exchange portion is further formed.
  • the opening side of the notch is located upwind in the air flow direction.
  • a first heat exchange unit can be arranged on the inlet side of the evaporator and a second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try a combination suitable for the refrigerant temperature in the evaporator.
  • the evaporator according to the twelfth viewpoint is the evaporator according to the eleventh viewpoint, and the first heat exchange part and the second heat exchange part are integrated.
  • the refrigeration cycle device is a refrigeration cycle device provided with an evaporator according to any one of the first to the twelfth viewpoints.
  • the non-azeotropic mixed refrigerant contains any of HFC refrigerants, HFO refrigerants, CF3I, and natural refrigerants.
  • the refrigeration cycle device according to the 14th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints.
  • the non-azeotropic mixed refrigerant contains any of R32, R1132 (E), R1234yf, R1234ze, CF3I and CO2.
  • the refrigeration cycle device is a refrigeration cycle device provided with an evaporator according to any one of the first to twelfth viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R1132 (E), R32 and R1234yf.
  • the refrigeration cycle device according to the 16th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R1132 (E), R1123 and R1234yf.
  • the refrigeration cycle device according to the 17th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R1132 (E) and R1234yf.
  • the refrigeration cycle device according to the 18th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R32, R1234yf, and at least one of R1132a and R1114.
  • the refrigeration cycle device according to the 19th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R32, CO2, R125, R134a, and R1234yf.
  • the refrigeration cycle device is a refrigeration cycle device provided with an evaporator according to any one of the first to twelfth viewpoints.
  • the non-azeotropic mixed refrigerant contains at least R1132 (Z) and R1234yf.
  • FIG. 6 is a schematic configuration diagram of an air conditioner as a refrigerating device according to an embodiment of the present disclosure.
  • the perspective view of the 2nd heat exchange part of the outdoor heat exchanger which concerns on 1st Embodiment.
  • the schematic perspective view of the outdoor heat exchanger which used the 1st heat exchange part and the 2nd heat exchange part together.
  • FIG. 1 is a schematic configuration diagram of an air conditioning device 1 according to an embodiment of the present disclosure.
  • the air conditioner 1 is a refrigerating device that performs a cooling operation and a heating operation by a vapor compression refrigeration cycle.
  • the refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the liquid refrigerant connecting pipe 5 and the gas refrigerant connecting pipe 6.
  • the refrigerant sealed in the refrigerant circuit 10 is a non-azeotropic mixed refrigerant.
  • the non-azeotropic mixed refrigerant contains any of HFC refrigerants, HFO refrigerants, CF3I, and natural refrigerants.
  • the indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10.
  • the indoor unit 4 includes an indoor heat exchanger 41, an indoor fan 42, and an indoor control unit 44.
  • the indoor heat exchanger 41 functions as a refrigerant evaporator during the cooling operation to cool the indoor air. Further, the indoor heat exchanger 41 functions as a radiator of the refrigerant during the heating operation to heat the indoor air.
  • the inlet side of the refrigerant of the indoor heat exchanger 41 during the cooling operation is connected to the liquid refrigerant connecting pipe 5, and the outlet side of the refrigerant is connected to the gas refrigerant connecting pipe 6.
  • FIG. 2 is a front view of the indoor heat exchanger 41.
  • the indoor heat exchanger 41 is a cross-fin type heat exchanger.
  • the indoor heat exchanger has a heat transfer fin 412 and a heat transfer tube 411.
  • the heat transfer fin 412 is a flat plate made of thin aluminum. A plurality of through holes are formed in the heat transfer fin 412.
  • the heat transfer tube 411 has a straight tube 411a inserted into the through hole of the heat transfer fin 412, and a U-shaped tube 411b, 411c that connects the ends of the adjacent straight tubes 411a.
  • the straight tube 411a comes into close contact with the heat transfer fin 412 by being inserted into the through hole of the heat transfer fin 412 and then expanded.
  • the straight pipe 411a and the first U-shaped pipe 411b are integrally formed.
  • the second U-shaped pipe 411c is connected to the end of the straight pipe 411a by welding, brazing, or the like after the straight pipe 411a is inserted into the through hole of the heat transfer fin 412 and expanded.
  • the indoor fan 42 sucks indoor air into the indoor unit 4, exchanges heat with the refrigerant in the indoor heat exchanger 41, and then supplies the air to the room.
  • a centrifugal fan, a multi-blade fan, or the like is adopted as the indoor fan 42.
  • the indoor fan 42 is driven by the indoor fan motor 43.
  • the indoor control unit 44 controls the operation of each unit constituting the indoor unit 4.
  • the indoor control unit 44 has a microcomputer and a memory for controlling the indoor unit 4.
  • the indoor control unit 44 transmits and receives control signals and the like to and from a remote controller (not shown). Further, the indoor control unit 44 transmits and receives a control signal and the like via the transmission line 8a to and from the outdoor control unit 38 of the outdoor unit 2.
  • Outdoor unit 2 The outdoor unit 2 is installed outdoors and constitutes a part of the refrigerant circuit 10.
  • the outdoor unit 2 includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 26, a liquid side closing valve 27, and a gas side closing valve 28.
  • the compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle.
  • the compressor 21 rotates and drives a positive displacement compression element (not shown) such as a rotary type or a scroll type by a compressor motor 21a.
  • the suction pipe 31 is connected to the suction side, and the discharge pipe 32 is connected to the discharge side.
  • the suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the four-way switching valve 22.
  • the discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the four-way switching valve 22.
  • the accumulator 29 is connected to the suction pipe 31.
  • the accumulator 29 separates the inflowing refrigerant into a liquid refrigerant and a gas refrigerant, and causes only the gas refrigerant to flow to the suction side of the compressor 21.
  • the four-way switching valve 22 switches the direction of the refrigerant flow in the refrigerant circuit 10.
  • the four-way switching valve 22 causes the outdoor heat exchanger 23 to function as a refrigerant radiator and the indoor heat exchanger 41 to function as a refrigerant evaporator during cooling operation.
  • the four-way switching valve 22 connects the discharge pipe 32 of the compressor 21 and the first gas refrigerant pipe 33 of the outdoor heat exchanger 23 during the cooling operation, and further connects the suction pipe 31 of the compressor 21 and the second gas refrigerant. It is connected to the pipe 34 (see the solid line of the four-way switching valve 22 in FIG. 1).
  • the four-way switching valve 22 switches to a heating cycle state in which the outdoor heat exchanger 23 functions as a refrigerant evaporator and the indoor heat exchanger 41 functions as a refrigerant radiator during the heating operation. ..
  • the four-way switching valve 22 connects the discharge pipe 32 of the compressor 21 and the second gas refrigerant pipe 34 during the heating operation, and further connects the suction pipe 31 of the compressor 21 and the first gas refrigerant of the outdoor heat exchanger 23. It is connected to the pipe 33 (see the broken line of the four-way switching valve 22 in FIG. 1).
  • the first gas refrigerant pipe 33 is a refrigerant pipe that connects the four-way switching valve 22 and the refrigerant inlet during the cooling operation of the outdoor heat exchanger 23.
  • the second gas refrigerant pipe 34 is a refrigerant pipe that connects the four-way switching valve 22 and the gas side closing valve 28.
  • Outdoor heat exchanger 23 functions as a radiator of the refrigerant during the cooling operation. Further, the outdoor heat exchanger 23 functions as a refrigerant evaporator during the heating operation. One end of the liquid refrigerant pipe 35 is connected to the refrigerant outlet during the cooling operation of the outdoor heat exchanger 23. The other end of the liquid refrigerant pipe 35 is connected to the expansion valve 26.
  • the expansion valve 26 is an electric expansion valve.
  • the expansion valve 26 decompresses the high-pressure refrigerant sent from the outdoor heat exchanger 23 to a low pressure during the cooling operation. Further, the expansion valve 26 reduces the high-pressure refrigerant sent from the indoor heat exchanger 41 to a low pressure during the heating operation.
  • liquid side closing valve 27 (1-2-5) Liquid side closing valve 27 and gas side closing valve 28
  • the liquid side closing valve 27 is connected to the liquid refrigerant connecting pipe 5.
  • the gas side closing valve 28 is connected to the gas refrigerant connecting pipe 6.
  • the liquid side closing valve 27 is located downstream of the expansion valve 26 in the refrigerant circulation direction during the cooling operation.
  • the gas side closing valve 28 is located upstream of the four-way switching valve 22 in the refrigerant circulation direction during cooling operation.
  • Outdoor fan The outdoor unit 2 includes an outdoor fan 36.
  • the outdoor fan 36 sucks outdoor air into the outdoor unit 2, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then discharges the air to the outside.
  • a propeller fan or the like is adopted as the outdoor fan 36.
  • the outdoor fan 36 is driven by the outdoor fan motor 37.
  • Outdoor control unit 38 The outdoor control unit 38 controls the operation of each unit constituting the outdoor unit 2.
  • the outdoor control unit 38 has a microcomputer and a memory for controlling the outdoor unit 2.
  • the outdoor control unit 38 transmits and receives a control signal and the like via the transmission line 8a to and from the indoor control unit 44 of the indoor unit 4.
  • the refrigerant connecting pipes 5 and 6 are refrigerant pipes to be installed on-site when the air conditioner 1 is installed at an installation location such as a building.
  • the refrigerant connecting pipes 5 and 6 pipes having an appropriate length and diameter are adopted according to the installation location and the installation conditions such as the combination of the outdoor unit 2 and the indoor unit 4.
  • the air conditioner 1 can perform a cooling operation and a heating operation as basic operations.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 via the four-way switching valve 22.
  • the high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied from the outdoor fan 36 in the outdoor heat exchanger 23 that functions as a radiator to dissipate heat, and is a high-pressure liquid refrigerant. become.
  • the high-pressure liquid refrigerant is sent to the expansion valve 26.
  • the high-pressure liquid refrigerant sent to the expansion valve 26 is depressurized to the low pressure of the refrigeration cycle by the expansion valve 26 to become a low-pressure gas-liquid two-phase state refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 26 is sent to the indoor heat exchanger 41 via the liquid-side closing valve 27 and the liquid-refrigerant connecting pipe 5.
  • the low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 41 evaporates by exchanging heat with the indoor air supplied from the indoor fan 42 in the indoor heat exchanger 41. As a result, the indoor air is cooled, and then the cooled air is supplied to the room to cool the room.
  • the low-pressure gas refrigerant evaporated in the indoor heat exchanger 41 is sucked into the compressor 21 again via the gas refrigerant connecting pipe 6, the gas side closing valve 28, and the four-way switching valve 22.
  • the high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 via the four-way switching valve 22, the gas side closing valve 28, and the gas refrigerant connecting pipe 6.
  • the high-pressure gas refrigerant sent to the indoor heat exchanger 41 exchanges heat with the indoor air supplied from the indoor fan 42 in the indoor heat exchanger 41 to dissipate heat, and becomes a high-pressure liquid refrigerant. As a result, the room air is heated, and then the heated air is supplied to the room to heat the room.
  • the high-pressure liquid refrigerant radiated by the indoor heat exchanger 41 is sent to the expansion valve 26 via the liquid refrigerant connecting pipe 5 and the liquid side closing valve 27.
  • the high-pressure liquid refrigerant sent to the expansion valve 26 is depressurized to the low pressure of the refrigeration cycle by the expansion valve 26 to become a low-pressure gas-liquid two-phase state refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 26 is sent to the outdoor heat exchanger 23.
  • the low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied from the outdoor fan 36 in the outdoor heat exchanger 23 to evaporate, and is a low-pressure gas refrigerant. become.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the four-way switching valve 22.
  • FIG. 3 is an external perspective view of the outdoor heat exchanger 23.
  • the outdoor heat exchanger 23 is a laminated heat exchanger.
  • the outdoor heat exchanger 23 includes a plurality of flat tubes 231 and a plurality of heat transfer fins 232.
  • the flat tube 231 is a multi-hole tube.
  • the flat tube 231 is formed of aluminum or an aluminum alloy, and has a flat surface portion 231a serving as a heat transfer surface and a plurality of internal flow paths 231b through which a refrigerant flows.
  • the flat pipes 231 are arranged in a plurality of stages so as to be stacked with a space (ventilation space) in a state where the flat surface portion 231a is directed vertically.
  • the heat transfer fin 232 is a fin made of aluminum or an aluminum alloy.
  • the heat transfer fins 232 are arranged in a ventilation space sandwiched between vertically adjacent flat tubes 231 and are in contact with the flat surface portion 231 a of the flat tubes 231.
  • the heat transfer fin 232 is formed with a notch 232c (see FIGS. 5A and 5B) into which the flat tube 231 is inserted. After the flat tube 231 is inserted into the notch 232c of the heat transfer fin 232, the heat transfer fin 232 and the flat surface portion 231a of the flat tube 231 are joined by brazing or the like.
  • the headers 233a and 233b are connected to both ends of the flat tubes 231 arranged in a plurality of stages in the vertical direction.
  • the headers 233a and 233b have a function of supporting the flat pipe 231, a function of guiding the refrigerant to the internal flow path of the flat pipe 231, and a function of collecting the refrigerant coming out of the internal flow path.
  • the refrigerant flows into the first header 233a.
  • the refrigerant that has flowed into the first header 233a is distributed substantially evenly to each internal flow path of the flat pipe 231 of each stage, and flows toward the second header 233b.
  • the refrigerant flowing through each internal flow path of the flat pipe 231 at each stage absorbs heat from the air flow flowing through the ventilation space via the heat transfer fins 232.
  • the refrigerant flowing through each internal flow path of the flat pipe 231 of each stage collects at the second header 233b and flows out from the second header 233b.
  • the refrigerant flows into the second header 233b.
  • the refrigerant that has flowed into the second header 233b is distributed substantially evenly to each internal flow path of the flat pipe 231 of each stage, and flows toward the first header 233a.
  • the refrigerant flowing through each internal flow path of the flat tube 231 of each stage dissipates heat to the air flow flowing through the ventilation space via the heat transfer fins 232.
  • the refrigerant flowing through each internal flow path of the flat pipe 231 of each stage collects in the first header 233a and flows out from the first header 233a.
  • FIG. 4 is a PH diagram of a non-azeotropic mixed refrigerant.
  • the refrigerant temperature rises toward the evaporator outlet. Since the non-cobo-boiling mixed refrigerant has different compositions in the liquid phase and the vapor phase, there is a "temperature gradient" in which the evaporation start temperature and the end temperature in the evaporator are different. Due to this temperature gradient, the inlet temperature of the evaporator tends to drop, and frost tends to form during the heating operation.
  • FIG. 5A is a perspective view of the first heat exchange section 23a of the outdoor heat exchanger 23 according to the first embodiment.
  • the opening side of the notch 232c is located leeward in the air flow direction.
  • FIG. 5B is a perspective view of the second heat exchange section 23b of the outdoor heat exchanger 23 according to the first embodiment.
  • the opening side of the notch 232c is located upwind in the air flow direction.
  • the first heat exchange portion 23a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
  • the first heat exchange unit 23a and the second heat exchange unit 23b are used in combination to suppress frost formation and improve the heat exchange performance.
  • FIG. 6A is a schematic perspective view of the outdoor heat exchanger 23 in which the first heat exchange unit 23a and the second heat exchange unit 23b are used in combination. Further, FIG. 6B is a schematic perspective view of another outdoor heat exchanger 23'using the first heat exchange unit 23a'and the second heat exchange unit 23b' in combination.
  • the refrigerant flowing into the first header 233a is distributed substantially evenly to each internal flow path 231b of the flat pipe 231 of each stage. It flows toward the second header 233b.
  • the non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange section 23a to suppress frost formation.
  • the portion between the first heat exchange section 23a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 23b.
  • the refrigerant that has reached the lower stage of the second header 233b' collects once, passes through the bent pipe 234, and flows into the upper stage of the second header 233b'. After that, the refrigerant is distributed substantially evenly to each internal flow path 231b of the flat pipe 231 in each upper stage, and flows toward the second header 233b'.
  • the non-azeotropic mixed refrigerant tends to lower the temperature at the evaporator inlet and easily frost. Therefore, the section from the lower part of the first header 233a'to the lower part of the second header 233b' is composed of the first heat exchange section 23a'to suppress frost formation.
  • the second heat is formed in the section from the upper stage of the first header 233b'to the upper stage of the first header 233a' in order to improve the heat exchange performance. It is composed of a replacement unit 23b'.
  • the heat exchange performance is improved while suppressing frost formation. be able to.
  • the opening side of the notch 232c of the heat transfer fin 232 is located leeward in the air flow direction.
  • the frost formation resistance (ability to suppress frost formation) is increased by arranging the non-azeotropic mixed refrigerant so that the inlet side becomes the first heat exchange portion 23a. Can be done.
  • the first heat exchange section 23a is arranged on the inlet side of the non-co-boiling mixed refrigerant, and the second heat exchange section 23b in which the opening of the notch 232c is located on the windward side in the air flow direction is arranged on the outlet side.
  • the first heat exchange section 23a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange section 23b is placed on the outlet side, and the first heat exchange section 23a and the first A third heat exchange unit 23c may be arranged between the two heat exchange units 23b.
  • the distribution center of the flat tube 231 in the width direction coincides with the center of the heat transfer fin 232 in the air flow direction.
  • first heat exchange unit 23a and at least one of the second heat exchange unit 23b and the third heat exchange unit 23c may be integrated.
  • FIG. 7A is a perspective view of the first heat exchange section 123a of the outdoor heat exchanger 23 according to the second embodiment.
  • the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is the first dimension D1. is there.
  • FIG. 7B is a perspective view of the second heat exchange unit 123b of the outdoor heat exchanger 23 according to the second embodiment.
  • the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is from the first dimension D1. Is also a small second dimension D2.
  • the second heat exchange portion 123b shown in FIG. 7B is the distance from the wind-up end of the flat tube 231M located on the most upwind side in the air flow direction to the wind-up end of the heat transfer fin 232M (second dimension D2). However, since it is smaller than the distance (first dimension D1) in the first heat exchange section 123a, the temperature difference between the air temperature and the surface of the heat exchanger is large, and the heat exchange performance is improved, but frost is easily formed. have.
  • the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is the second heat. Since it is larger than the distance (second dimension D2) in the exchange unit 123b, the temperature difference between the air temperature and the heat exchanger surface is smaller than that in the second heat exchange unit 123b, and frost formation is suppressed.
  • the first heat exchange section 123a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
  • the first heat exchange unit 123a and the second heat exchange unit 123b are used in combination to suppress frost formation and improve the heat exchange performance.
  • the first heat exchange unit 23a of the first embodiment is replaced with the “first heat exchange unit 123a”
  • the second heat exchange unit 23b of the first embodiment is replaced with the “second heat exchange unit 123b”.
  • the refrigerant flowing into the first header 233a is distributed substantially evenly to each internal flow path of the flat pipe of each stage, and the second It flows toward the header 233b.
  • the non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange unit 123a to suppress frost formation.
  • the portion between the first heat exchange section 123a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 123b.
  • the first heat exchange unit 123a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, and the second heat exchange unit 123b is arranged on the outlet side, which is a combination suitable for the refrigerant temperature in the evaporator. Can be tried.
  • the first heat exchange unit 123a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange unit 123b is arranged on the outlet side, and the first heat exchange unit 123a and the first heat exchanger unit 123a are arranged.
  • a third heat exchange unit may be arranged between the two heat exchange units 123b.
  • FIG. 7C is a perspective view of the third heat exchange unit 123c of the outdoor heat exchanger 23 according to the modified example of the second embodiment.
  • the third heat exchange unit 123c has a distance D3 from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M, and the air flow.
  • the distance from the leeward end of the flat tube 231M located most leeward in the direction to the leeward end of the heat transfer fin 232M is equal.
  • first heat exchange unit 123a and at least one of the second heat exchange unit 123b and the third heat exchange unit 123c may be integrated.
  • a laminated heat exchanger was adopted as the outdoor heat exchanger 23.
  • a cross fin type heat exchanger is adopted as the outdoor heat exchanger 23.
  • FIG. 8A is a perspective view of the first heat exchange section 223a of the outdoor heat exchanger 23 according to the third embodiment.
  • the distribution center of the heat transfer tube group in the air flow direction is the air. It is located leeward of the center of the heat transfer fin 232N in the flow direction.
  • FIG. 8B is a perspective view of the second heat exchange section 223b of the outdoor heat exchanger 23 according to the third embodiment.
  • the distribution center of the heat transfer tube group in the air flow direction is located on the windward side of the center of the heat transfer fin 232N in the air flow direction.
  • the distribution center of the heat transfer tube group is located on the windward side of the center of the heat transfer fin 232N in the air flow direction, it is the most upwind in the air flow direction.
  • the distance from the wind-up end of the located heat transfer tube 231N to the wind-up end of the heat transfer fins 232N is smaller than the distance at the first heat exchange section 223a, resulting in air temperature and heat exchanger surface.
  • the heat exchange performance is improved due to the large temperature difference between the air and the air, but it has the characteristic of being easily frosted.
  • the air The distance from the wind-up end of the heat transfer tube 231N located most upwind in the flow direction to the wind-up end of the heat transfer fins 232N is larger than the distance in the second heat exchange section 223b, and as a result, the first 2 Compared with the heat exchange unit 223b, the temperature difference between the air temperature and the surface of the heat exchanger is small, and frost formation is suppressed.
  • the first heat exchange section 223a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
  • the first heat exchange unit 223a and the second heat exchange unit 223b are used in combination to suppress frost formation and perform heat exchange performance. We are trying to improve.
  • the first heat exchange unit 23a of the first embodiment is replaced with the “first heat exchange unit 223a”
  • the second heat exchange unit 23b of the first embodiment is replaced with the “second heat exchange unit 223b”. By substituting with, it is also applied in the third embodiment.
  • the refrigerant flowing into the first header 233a is distributed substantially evenly to the heat transfer tubes of each stage and toward the second header 233b. It flows.
  • the non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange section 223a to suppress frost formation.
  • the portion between the first heat exchange section 223a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 223b.
  • the first heat exchange unit 223a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, and the second heat exchange unit 223b is arranged on the outlet side, which is a combination suitable for the refrigerant temperature in the evaporator. Can be tried.
  • the first heat exchange unit 23a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange unit 23b is arranged on the outlet side, and the first heat exchange units 223a and the first A third heat exchange unit may be arranged between the two heat exchange units 223b.
  • FIG. 8C is a perspective view of the third heat exchange section 223c of the outdoor heat exchanger 23 according to the modified example of the third embodiment.
  • the distribution center of the heat transfer tube group in the air flow direction coincides with the center of the fin in the air flow direction.
  • first heat exchange unit 223a and at least one of the second heat exchange unit 223b and the third heat exchange unit 223c may be integrated.
  • the non-azeotropic mixed refrigerant contains any one of HFC refrigerant, HFO refrigerant, CF3I, and natural refrigerant, but more specifically, the following (A) to (G) A non-azeotropic mixed refrigerant corresponding to any of them is desirable.
  • (E) A non-azeotropic mixed refrigerant containing at least R32, R1234yf, and at least one of R1132a and R1114.
  • the present disclosure is widely applicable to a refrigerating apparatus capable of performing a cooling operation and a heating operation.

Abstract

The present invention provides an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, such that the frost resistance and heat exchange performance can be improved. If the notch opening side is upwind of the air flow, since the difference in temperature between the air and the evaporator surface can be increased, the heat exchange performance is improved but frost is easily formed. If the notch opening side is located downwind, the frost resistance is increased but the heat exchange performance is decreased. In particular, since the refrigerant used is a non-azeotropic mixed refrigerant, the temperature of the refrigerant tends to drop on the inlet side of the evaporator due to the temperature gradient, and frost is likely to occur. However, since a first heat exchange unit (23a) is formed with the notch opening side being located downwind in the air flow direction, the frost resistance can be increased by using at least the inlet side of the evaporator as the first heat exchange unit (23a).

Description

蒸発器、およびそれを備えた冷凍サイクル装置Evaporator and refrigeration cycle equipment equipped with it
 非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器に関する。 Regarding the evaporator of the refrigeration cycle device in which the non-azeotropic mixed refrigerant is sealed.
 冷凍サイクル装置の蒸発器として、複数の伝熱管の分布を伝熱フィンの中心に対して風上側および風下側のいずれか一方に多く偏らせた形態のものが存在する。例えば、特許文献1(WO2017/183180号)に記載の蒸発器は、フィンの幅方向に延びる長径を有する長孔が、フィンの幅方向および厚み方向と直交する方向に所定間隔で設けられ、各長孔に扁平管が挿入されている、積層型熱交換器である。 As an evaporator of a refrigeration cycle device, there is a form in which the distribution of a plurality of heat transfer tubes is largely biased to either the windward side or the leeward side with respect to the center of the heat transfer fins. For example, in the evaporator described in Patent Document 1 (WO2017 / 183180), elongated holes having a major axis extending in the width direction of the fins are provided at predetermined intervals in a direction orthogonal to the width direction and the thickness direction of the fins. A laminated heat exchanger in which a flat tube is inserted in an elongated hole.
 上記のような蒸発器において、扁平管群全体の幅方向の中心をフィンの幅方向の中心に対して空気の風上側へ配置すると空気温度と熱交換器表面の温度差を大きくとれるため、熱交換性能は良くなるが着霜しやすくなる。逆に、扁平管群全体の幅方向の中心をフィンの幅方向の中心に対して風下側に配置すると着霜耐力(着霜を抑制する能力)は上がるが熱交換性能は低下する、という傾向がある。 In an evaporator as described above, if the center in the width direction of the entire flat tube group is arranged on the wind side of the air with respect to the center in the width direction of the fins, the temperature difference between the air temperature and the surface of the heat exchanger can be large. The replacement performance is improved, but frost is easily formed. Conversely, if the center of the entire flat tube group in the width direction is placed on the leeward side of the center of the fin in the width direction, the frost bearing capacity (ability to suppress frost formation) increases, but the heat exchange performance tends to decrease. There is.
 特に、非共沸混合冷媒では、液相、気相で組成が異なるため、蒸発器では入口の冷媒温度が出口に比べて低く、扁平管が風上側に偏ると着霜しやすくなる。 In particular, in the non-co-boiling mixed refrigerant, the composition differs between the liquid phase and the gas phase, so in the evaporator, the refrigerant temperature at the inlet is lower than that at the outlet, and if the flat tube is biased to the wind side, frost is likely to occur.
 特許文献1では、扁平管とフィンの風上側縁部との距離を、凝縮水および融解水の排水性という観点から検討しているが、蒸発器に流れる冷媒を非共沸混合冷媒に特定した場合の着霜耐力(着霜を抑制する能力)および/又は熱交換性能の観点では検討されていない。 In Patent Document 1, the distance between the flat tube and the wind-up edge of the fin is examined from the viewpoint of drainage of condensed water and molten water, but the refrigerant flowing in the evaporator is specified as a non-azeotropic mixed refrigerant. The case has not been investigated in terms of frost resistance (ability to suppress frost formation) and / or heat exchange performance.
 それゆえ、非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器において、着霜耐力および/又は熱交換性能の向上を図った蒸発器を提供する、という課題がある。 Therefore, there is a problem of providing an evaporator having improved frost resistance and / or heat exchange performance in an evaporator of a refrigeration cycle apparatus in which a non-azeotropic mixed refrigerant is sealed.
 第1観点に係る蒸発器は、非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、複数のフィンと、複数の伝熱管とを備えている。複数のフィンは、板厚方向に所定間隔で並んでいる。複数の伝熱管は、複数のフィンを板厚方向に貫通している。蒸発器には、第1熱交換部が形成されている。第1熱交換部は、複数の伝熱管を伝熱管群としてフィンの板厚方向から視たとき、空気の流れ方向における伝熱管群の分布中心が、空気の流れ方向におけるフィンの中心よりも風下に位置する。 The evaporator according to the first aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes. The plurality of fins are arranged at predetermined intervals in the plate thickness direction. The plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction. A first heat exchange section is formed in the evaporator. In the first heat exchange section, when a plurality of heat transfer tubes are viewed from the fin plate thickness direction as a heat transfer tube group, the distribution center of the heat transfer tube group in the air flow direction is leeward of the fin center in the air flow direction. Located in.
 この蒸発器では、封入冷媒が非共沸混合冷媒であるため、蒸発器入口の冷媒温度が出口に比べて低く着霜しやすい。しかしながら、例えば、冷媒入口側を第1熱交換部とすれば、伝熱管群の分布中心が空気の流れ方向におけるフィンの中心よりも風下に位置するので、伝熱管群の分布中心がフィンの中心よりも風上に位置する場合よりも着霜しにくくなる。 In this evaporator, since the enclosed refrigerant is a non-azeotropic mixed refrigerant, the refrigerant temperature at the inlet of the evaporator is lower than that at the outlet, and frost is likely to occur. However, for example, if the refrigerant inlet side is the first heat exchange section, the distribution center of the heat transfer tube group is located leeward of the center of the fin in the air flow direction, so that the distribution center of the heat transfer tube group is the center of the fin. It is less likely to frost than when it is located upwind.
 第2観点に係る蒸発器は、第1観点に係る蒸発器であって、第2熱交換部がさらに形成されている。第2熱交換部は、伝熱管群の分布中心が、空気の流れ方向におけるフィンの中心よりも風上に位置する。 The evaporator according to the second viewpoint is the evaporator according to the first viewpoint, and the second heat exchange portion is further formed. In the second heat exchange section, the distribution center of the heat transfer tube group is located on the windward side of the center of the fin in the air flow direction.
 この蒸発器では、非共沸混合冷媒は、蒸発器の入口から出口に向かって温度上昇するので、出口側では、むしろ、着霜耐力よりも熱交換性能を重視し、伝熱管群の分布中心が空気の流れ方向におけるフィンの中心よりも風上に位置することが好ましい。 In this evaporator, the temperature of the non-co-boiling mixed refrigerant rises from the inlet to the outlet of the evaporator. Therefore, on the outlet side, the heat exchange performance is more important than the frost resistance, and the distribution center of the heat transfer tube group. Is preferably located upwind of the center of the fin in the direction of air flow.
 それゆえ、第1観点の第1熱交換部に加えて、伝熱管群の分布中心が空気の流れ方向におけるフィンの中心よりも風上に位置する第2熱交換部が形成されることによって、例えば、蒸発器入口側に第1熱交換部を、蒸発器出口側に第2熱交換部を配置することができる。このように、蒸発器における冷媒温度に適した熱交換部の組合せを試みることができる。 Therefore, in addition to the first heat exchange section of the first aspect, the second heat exchange section in which the distribution center of the heat transfer tube group is located on the windward side of the fin center in the air flow direction is formed. For example, the first heat exchange unit can be arranged on the inlet side of the evaporator, and the second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
 第3観点に係る蒸発器は、第2観点に係る蒸発器であって、第3熱交換部がさらに形成されている。第3熱交換部は、伝熱管群の分布中心が、前記空気の流れ方向におけるフィンの中心とほぼ一致する。 The evaporator according to the third aspect is the evaporator according to the second aspect, and the third heat exchange portion is further formed. In the third heat exchange section, the distribution center of the heat transfer tube group substantially coincides with the center of the fin in the air flow direction.
 この蒸発器では、例えば、蒸発器入口側に第1熱交換部を、蒸発器出口側に第2熱交換部を、第1熱交換部と第2熱交換部との間に第3熱交換部を配置することができる。このように、蒸発器における冷媒温度に適した熱交換部の組合せを試みることができる。 In this evaporator, for example, the first heat exchange section is on the inlet side of the evaporator, the second heat exchange section is on the outlet side of the evaporator, and the third heat exchange section is between the first heat exchange section and the second heat exchange section. The part can be arranged. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
 第4観点に係る蒸発器は、第2観点に係る蒸発器であって、第1熱交換部と、第2熱交換部とが一体化されている。 The evaporator according to the fourth aspect is the evaporator according to the second aspect, and the first heat exchange section and the second heat exchange section are integrated.
 第5観点に係る蒸発器は、第3観点に係る蒸発器であって、第1熱交換部と、第2熱交換部および第3熱交換部の少なくともいずれか一方とが一体化されている。 The evaporator according to the fifth aspect is the evaporator according to the third aspect, and the first heat exchange section and at least one of the second heat exchange section and the third heat exchange section are integrated. ..
 第6観点に係る蒸発器は、非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、複数のフィンと、複数の伝熱管とを備えている。複数のフィンは、板厚方向に所定間隔で並んでいる。複数の伝熱管は、複数のフィンを板厚方向に貫通する。蒸発器には、第1熱交換部と、第2熱交換部とが形成されている。第1熱交換部では、空気の流れ方向の最も風上に位置する伝熱管の風上側端部からフィンの風上側端部までの距離が第1寸法である。第2熱交換部では、空気の流れ方向の最も風上に位置する伝熱管の風上側端部からフィンの風上側端部までの距離が第1寸法よりも小さい第2寸法である。 The evaporator according to the sixth aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes. The plurality of fins are arranged at predetermined intervals in the plate thickness direction. The plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction. The evaporator is formed with a first heat exchange section and a second heat exchange section. In the first heat exchange section, the distance from the windward end of the heat transfer tube located on the windward side in the air flow direction to the windward end of the fin is the first dimension. The second heat exchange section has a second dimension in which the distance from the windward end of the heat transfer tube located most upwind in the air flow direction to the windward end of the fin is smaller than the first dimension.
 この蒸発器では、非共沸混合冷媒は、蒸発器の入口から出口に向かって温度上昇するので、入口側では着霜耐力を重視し、出口側では熱交換性能を重視することが好ましい。 In this evaporator, since the temperature of the non-azeotropic mixed refrigerant rises from the inlet to the outlet of the evaporator, it is preferable to emphasize the frost resistance on the inlet side and the heat exchange performance on the outlet side.
 例えば、蒸発器入口側に第1熱交換部を、蒸発器出口側に第2熱交換部を配置することができる。このように、蒸発器における冷媒温度に適した組合せを試みることができる。 For example, the first heat exchange unit can be arranged on the inlet side of the evaporator, and the second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try a combination suitable for the refrigerant temperature in the evaporator.
 第7観点に係る蒸発器は、第6観点に係る蒸発器であって、第3熱交換部がさらに形成されている。第3熱交換部では、空気の流れ方向の最も風上に位置する伝熱管の風上側端部からフィンの風上側端部までの距離と、空気の流れ方向の最も風下に位置する伝熱管の風下側端部からフィンの風下側端部までの距離とが等しい。 The evaporator according to the seventh aspect is the evaporator according to the sixth aspect, and the third heat exchange portion is further formed. In the third heat exchange section, the distance from the windward end of the heat transfer tube located on the windward side in the air flow direction to the windward end of the fin, and the heat transfer tube located on the windward side in the air flow direction. The distance from the leeward end to the leeward end of the fin is equal.
 この蒸発器では、例えば、蒸発器入口側に第1熱交換部を、蒸発器出口側に第2熱交換部を、第1熱交換部と第2熱交換部との間に第3熱交換部を配置することができる。このように、蒸発器における冷媒温度に適した熱交換部の組合せを試みることができる。 In this evaporator, for example, the first heat exchange section is on the inlet side of the evaporator, the second heat exchange section is on the outlet side of the evaporator, and the third heat exchange section is between the first heat exchange section and the second heat exchange section. The part can be arranged. In this way, it is possible to try to combine heat exchange units suitable for the temperature of the refrigerant in the evaporator.
 第8観点に係る蒸発器は、第6観点に係る蒸発器であって、第1熱交換部と、第2熱交換部とが一体化されている。 The evaporator according to the eighth aspect is the evaporator according to the sixth aspect, and the first heat exchange part and the second heat exchange part are integrated.
 第9観点に係る蒸発器は、第7観点に係る蒸発器であって、第1熱交換部と、第2熱交換部および第3熱交換部の少なくともいずれか一方とが一体化されている。 The evaporator according to the ninth aspect is the evaporator according to the seventh aspect, and the first heat exchange section and at least one of the second heat exchange section and the third heat exchange section are integrated. ..
 第10観点に係る蒸発器は、非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、複数のフィンと、複数の伝熱管とを備えている。複数のフィンは、板厚方向に所定間隔で並んでいる。複数の伝熱管は、複数のフィンを板厚方向に貫通する。フィンは、複数の切り欠きを有している。複数の切り欠きは、空気の流れ方向および板厚方向の双方と直交する方向に並んでいる。伝熱管は、切り欠きに差し込まれる扁平多穴管である。蒸発器には、第1熱交換部が形成されている。第1熱交換部では、切り欠きの開口側が空気の流れ方向の風下に位置している。 The evaporator according to the tenth aspect is an evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed, and includes a plurality of fins and a plurality of heat transfer tubes. The plurality of fins are arranged at predetermined intervals in the plate thickness direction. The plurality of heat transfer tubes penetrate the plurality of fins in the plate thickness direction. The fin has a plurality of notches. The notches are aligned in a direction orthogonal to both the air flow direction and the plate thickness direction. The heat transfer tube is a flat multi-hole tube that is inserted into the notch. A first heat exchange section is formed in the evaporator. In the first heat exchange section, the opening side of the notch is located leeward in the air flow direction.
 この蒸発器では、切り欠きの開口側が空気流れの風上にある場合、空気温度と蒸発器表面の温度差を大きくとれるため、熱交性能は良くなるが着霜しやすくなる。逆に、切り欠きの開口側が風下にある場合、着霜耐力は上がるが熱交性能は低下する。特に、使用冷媒が非共沸混合冷媒であるので、温度勾配により蒸発器の入口側で冷媒温度が下がる傾向にあり着霜しやすい。 In this evaporator, when the opening side of the notch is on the windward side of the air flow, the temperature difference between the air temperature and the surface of the evaporator can be large, so that the heat exchange performance is improved but frost is easily formed. On the contrary, when the opening side of the notch is leeward, the frost bearing capacity increases but the heat exchange performance decreases. In particular, since the refrigerant used is a non-azeotropic mixed refrigerant, the temperature of the refrigerant tends to decrease on the inlet side of the evaporator due to the temperature gradient, and frost is likely to occur.
 しかし、切り欠きの開口側が空気の流れ方向の風下に位置する第1熱交換部が形成されているので、少なくとも蒸発器の入口側を第1熱交換部とすることによって、着霜耐力を上げることができる。 However, since the first heat exchange section is formed in which the opening side of the notch is located leeward in the air flow direction, the frost bearing capacity is increased by setting at least the inlet side of the evaporator as the first heat exchange section. be able to.
 第11観点に係る蒸発器は、第10観点に係る蒸発器であって、第2熱交換部がさらに形成されている。第2熱交換部では、切り欠きの開口側が空気の流れ方向の風上に位置している。 The evaporator according to the eleventh viewpoint is the evaporator according to the tenth viewpoint, and the second heat exchange portion is further formed. In the second heat exchange section, the opening side of the notch is located upwind in the air flow direction.
 この蒸発器では、例えば、蒸発器入口側に第1熱交換部を、蒸発器出口側に第2熱交換部を配置することができる。このように、蒸発器における冷媒温度に適した組合せを試みることができる。 In this evaporator, for example, a first heat exchange unit can be arranged on the inlet side of the evaporator and a second heat exchange unit can be arranged on the outlet side of the evaporator. In this way, it is possible to try a combination suitable for the refrigerant temperature in the evaporator.
 第12観点に係る蒸発器は、第11観点に係る蒸発器であって、第1熱交換部と第2熱交換部とが一体化されている。 The evaporator according to the twelfth viewpoint is the evaporator according to the eleventh viewpoint, and the first heat exchange part and the second heat exchange part are integrated.
 第13観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、HFC冷媒、HFO冷媒、CF3I、および自然冷媒のいずれかを含んでいる。 The refrigeration cycle device according to the thirteenth viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the first to the twelfth viewpoints. The non-azeotropic mixed refrigerant contains any of HFC refrigerants, HFO refrigerants, CF3I, and natural refrigerants.
 第14観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、R32、R1132(E)、R1234yf、R1234ze、CF3IおよびCO2のいずれかを含んでいる。 The refrigeration cycle device according to the 14th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints. The non-azeotropic mixed refrigerant contains any of R32, R1132 (E), R1234yf, R1234ze, CF3I and CO2.
 第15観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR1132(E)、R32、R1234yfを含んでいる。 The refrigeration cycle device according to the fifteenth viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the first to twelfth viewpoints. The non-azeotropic mixed refrigerant contains at least R1132 (E), R32 and R1234yf.
 第16観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR1132(E)、R1123およびR1234yfを含んでいる。 The refrigeration cycle device according to the 16th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints. The non-azeotropic mixed refrigerant contains at least R1132 (E), R1123 and R1234yf.
 第17観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR1132(E)およびR1234yfを含んでいる。 The refrigeration cycle device according to the 17th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints. The non-azeotropic mixed refrigerant contains at least R1132 (E) and R1234yf.
 第18観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR32、R1234yf、並びに、R1132aおよびR1114の少なくとも一種を含んでいる。 The refrigeration cycle device according to the 18th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints. The non-azeotropic mixed refrigerant contains at least R32, R1234yf, and at least one of R1132a and R1114.
 第19観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR32、CO2、R125、R134a、およびR1234yfを含んでいる。 The refrigeration cycle device according to the 19th viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the 1st to 12th viewpoints. The non-azeotropic mixed refrigerant contains at least R32, CO2, R125, R134a, and R1234yf.
 第20観点に係る冷凍サイクル装置は、第1観点から第12観点のいずれか1つに係る蒸発器を備えた冷凍サイクル装置である。非共沸混合冷媒は、少なくともR1132(Z)およびR1234yfを含んでいる。 The refrigeration cycle device according to the twentieth viewpoint is a refrigeration cycle device provided with an evaporator according to any one of the first to twelfth viewpoints. The non-azeotropic mixed refrigerant contains at least R1132 (Z) and R1234yf.
本開示の一実施形態にかかる冷凍装置としての空気調和装置の概略構成図。FIG. 6 is a schematic configuration diagram of an air conditioner as a refrigerating device according to an embodiment of the present disclosure. 室内熱交換器の概略正面図。Schematic front view of the indoor heat exchanger. 室外熱交換器の外観斜視図。External perspective view of the outdoor heat exchanger. 非共沸混合冷媒のPH線図。PH diagram of non-azeotropic mixed refrigerant. 第1実施形態に係る室外熱交換器の第1熱交換部の斜視図。The perspective view of the 1st heat exchange part of the outdoor heat exchanger which concerns on 1st Embodiment. 第1実施形態に係る室外熱交換器の第2熱交換部の斜視図。The perspective view of the 2nd heat exchange part of the outdoor heat exchanger which concerns on 1st Embodiment. 第1熱交換部と第2熱交換部とを併用した室外熱交換器の概略斜視図。The schematic perspective view of the outdoor heat exchanger which used the 1st heat exchange part and the 2nd heat exchange part together. 第1熱交換部と第2熱交換部とを併用した他の室外熱交換器の概略斜視図。The schematic perspective view of another outdoor heat exchanger which used the 1st heat exchange part and the 2nd heat exchange part together. 第2実施形態に係る室外熱交換器の第1熱交換部の斜視図。The perspective view of the 1st heat exchange part of the outdoor heat exchanger which concerns on 2nd Embodiment. 第2実施形態に係る室外熱交換器の第2熱交換部の斜視図。The perspective view of the 2nd heat exchange part of the outdoor heat exchanger which concerns on 2nd Embodiment. 第2実施形態の変形例に係る室外熱交換器の第3熱交換部の斜視図。The perspective view of the 3rd heat exchange part of the outdoor heat exchanger which concerns on the modification of 2nd Embodiment. 第3実施形態に係る室外熱交換器の第1熱交換部の斜視図。The perspective view of the 1st heat exchange part of the outdoor heat exchanger which concerns on 3rd Embodiment. 第3実施形態に係る室外熱交換器の第2熱交換部の斜視図。The perspective view of the 2nd heat exchange part of the outdoor heat exchanger which concerns on 3rd Embodiment. 第3実施形態の変形例に係る室外熱交換器の第3熱交換部の斜視図。The perspective view of the 3rd heat exchange part of the outdoor heat exchanger which concerns on the modification of 3rd Embodiment.
 <第1実施形態>
 (1)空気調和装置1の構成
 図1は、本開示の一実施形態に係る空気調和装置1の概略構成図である。図1において、空気調和装置1は、蒸気圧縮式の冷凍サイクルによって、冷房運転及び暖房運転を行う冷凍装置である。
<First Embodiment>
(1) Configuration of Air Conditioning Device 1 FIG. 1 is a schematic configuration diagram of an air conditioning device 1 according to an embodiment of the present disclosure. In FIG. 1, the air conditioner 1 is a refrigerating device that performs a cooling operation and a heating operation by a vapor compression refrigeration cycle.
 空気調和装置1の冷媒回路10は、室外ユニット2と、室内ユニット4とが液冷媒連絡管5及びガス冷媒連絡管6を介して接続されることによって構成されている。 The refrigerant circuit 10 of the air conditioner 1 is configured by connecting the outdoor unit 2 and the indoor unit 4 via the liquid refrigerant connecting pipe 5 and the gas refrigerant connecting pipe 6.
 冷媒回路10に封入されている冷媒は、非共沸混合冷媒である。非共沸混合冷媒は、HFC冷媒、HFO冷媒、CF3I、および自然冷媒のいずれかを含んでいる。 The refrigerant sealed in the refrigerant circuit 10 is a non-azeotropic mixed refrigerant. The non-azeotropic mixed refrigerant contains any of HFC refrigerants, HFO refrigerants, CF3I, and natural refrigerants.
 (1-1)室内ユニット4
 室内ユニット4は、室内に設置されており、冷媒回路10の一部を構成している。室内ユニット4は、室内熱交換器41、室内ファン42、および室内側制御部44を含んでいる。
(1-1) Indoor unit 4
The indoor unit 4 is installed indoors and constitutes a part of the refrigerant circuit 10. The indoor unit 4 includes an indoor heat exchanger 41, an indoor fan 42, and an indoor control unit 44.
 (1-1-1)室内熱交換器41
 室内熱交換器41は、冷房運転時には冷媒の蒸発器として機能して室内空気を冷却する。また、室内熱交換器41は、暖房運転時には冷媒の放熱器として機能して室内空気を加熱する。冷房運転時における室内熱交換器41の冷媒の入口側は液冷媒連絡管5と接続されており、冷媒の出口側はガス冷媒連絡管6と接続されている。
(1-1-1) Indoor heat exchanger 41
The indoor heat exchanger 41 functions as a refrigerant evaporator during the cooling operation to cool the indoor air. Further, the indoor heat exchanger 41 functions as a radiator of the refrigerant during the heating operation to heat the indoor air. The inlet side of the refrigerant of the indoor heat exchanger 41 during the cooling operation is connected to the liquid refrigerant connecting pipe 5, and the outlet side of the refrigerant is connected to the gas refrigerant connecting pipe 6.
 図2は、室内熱交換器41の正面図である。図2において、室内熱交換器41はクロスフィン型熱交換器である。室内熱交換器は、伝熱フィン412と、伝熱管411とを有している。 FIG. 2 is a front view of the indoor heat exchanger 41. In FIG. 2, the indoor heat exchanger 41 is a cross-fin type heat exchanger. The indoor heat exchanger has a heat transfer fin 412 and a heat transfer tube 411.
 伝熱フィン412は、薄いアルミニウム製の平板である。伝熱フィン412には、複数の貫通孔が形成されている。伝熱管411は、伝熱フィン412の貫通孔に挿入される直管411aと、隣り合う直管411aの端部同士を連結するU字管411b、411cとを有している。 The heat transfer fin 412 is a flat plate made of thin aluminum. A plurality of through holes are formed in the heat transfer fin 412. The heat transfer tube 411 has a straight tube 411a inserted into the through hole of the heat transfer fin 412, and a U-shaped tube 411b, 411c that connects the ends of the adjacent straight tubes 411a.
 直管411aは、伝熱フィン412の貫通孔に挿入された後に拡管加工されることによって、伝熱フィン412と密着する。直管411aと第1U字管411bとは一体に形成されている。第2U字管411cは、直管411aが伝熱フィン412の貫通孔に挿入され拡管加工された後に、溶接やろう付け等によって直管411aの端部に連結される。 The straight tube 411a comes into close contact with the heat transfer fin 412 by being inserted into the through hole of the heat transfer fin 412 and then expanded. The straight pipe 411a and the first U-shaped pipe 411b are integrally formed. The second U-shaped pipe 411c is connected to the end of the straight pipe 411a by welding, brazing, or the like after the straight pipe 411a is inserted into the through hole of the heat transfer fin 412 and expanded.
 (1-1-2)室内ファン42
 室内ファン42は、室内ユニット4内に室内空気を吸入して、室内熱交換器41において冷媒と熱交換させた後に、その空気を室内に供給する。室内ファン42として、遠心ファンや多翼ファン等が採用される。室内ファン42は、室内ファンモータ43によって駆動される。
(1-1-2) Indoor fan 42
The indoor fan 42 sucks indoor air into the indoor unit 4, exchanges heat with the refrigerant in the indoor heat exchanger 41, and then supplies the air to the room. As the indoor fan 42, a centrifugal fan, a multi-blade fan, or the like is adopted. The indoor fan 42 is driven by the indoor fan motor 43.
 (1-1-3)室内側制御部44
 室内側制御部44は、室内ユニット4を構成する各部の動作を制御する。室内側制御部44は、室内ユニット4の制御を行うためのマイクロコンピュータおよびメモリを有している。
(1-1-3) Indoor control unit 44
The indoor control unit 44 controls the operation of each unit constituting the indoor unit 4. The indoor control unit 44 has a microcomputer and a memory for controlling the indoor unit 4.
 室内側制御部44は、リモートコントローラ(図示せず)との間で制御信号等の送受信を行う。また、室内側制御部44は、室外ユニット2の室外側制御部38との間で伝送線8aを介した制御信号等の送受信を行う。 The indoor control unit 44 transmits and receives control signals and the like to and from a remote controller (not shown). Further, the indoor control unit 44 transmits and receives a control signal and the like via the transmission line 8a to and from the outdoor control unit 38 of the outdoor unit 2.
 (1-2)室外ユニット2
 室外ユニット2は、室外に設置されており、冷媒回路10の一部を構成している。室外ユニット2は、圧縮機21、四路切換弁22、室外熱交換器23、膨張弁26、液側閉鎖弁27、およびガス側閉鎖弁28を含んでいる。
(1-2) Outdoor unit 2
The outdoor unit 2 is installed outdoors and constitutes a part of the refrigerant circuit 10. The outdoor unit 2 includes a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an expansion valve 26, a liquid side closing valve 27, and a gas side closing valve 28.
 (1-2-1)圧縮機21
 圧縮機21は、冷凍サイクルの低圧の冷媒を圧縮する機器である。圧縮機21は、ロータリ式、スクロール式等の容積式の圧縮要素(図示せず)を圧縮機用モータ21aによって回転駆動する。
(1-2-1) Compressor 21
The compressor 21 is a device that compresses the low-pressure refrigerant in the refrigeration cycle. The compressor 21 rotates and drives a positive displacement compression element (not shown) such as a rotary type or a scroll type by a compressor motor 21a.
 圧縮機21は、吸入側に吸入管31が接続されており、吐出側に吐出管32が接続されている。吸入管31は、圧縮機21の吸入側と四路切換弁22とを接続する冷媒管である。吐出管32は、圧縮機21の吐出側と四路切換弁22とを接続する冷媒管である。 In the compressor 21, the suction pipe 31 is connected to the suction side, and the discharge pipe 32 is connected to the discharge side. The suction pipe 31 is a refrigerant pipe that connects the suction side of the compressor 21 and the four-way switching valve 22. The discharge pipe 32 is a refrigerant pipe that connects the discharge side of the compressor 21 and the four-way switching valve 22.
 吸入管31には、アキュムレータ29が接続されている。アキュムレータ29は、流入した冷媒を液冷媒とガス冷媒とに分離し、ガス冷媒のみを圧縮機21の吸入側へ流す。 The accumulator 29 is connected to the suction pipe 31. The accumulator 29 separates the inflowing refrigerant into a liquid refrigerant and a gas refrigerant, and causes only the gas refrigerant to flow to the suction side of the compressor 21.
 (1-2-2)四路切換弁22
 四路切換弁22は、冷媒回路10における冷媒の流れの方向を切り換える。四路切換弁22は、冷房運転時には、室外熱交換器23を冷媒の放熱器として機能させ、かつ、室内熱交換器41を冷媒の蒸発器として機能させる。
(1-2-2) Four-way switching valve 22
The four-way switching valve 22 switches the direction of the refrigerant flow in the refrigerant circuit 10. The four-way switching valve 22 causes the outdoor heat exchanger 23 to function as a refrigerant radiator and the indoor heat exchanger 41 to function as a refrigerant evaporator during cooling operation.
 四路切換弁22は、冷房運転時には、圧縮機21の吐出管32と室外熱交換器23の第1ガス冷媒管33とを接続し、さらに、圧縮機21の吸入管31と第2ガス冷媒管34とを接続する(図1の四路切換弁22の実線を参照)。 The four-way switching valve 22 connects the discharge pipe 32 of the compressor 21 and the first gas refrigerant pipe 33 of the outdoor heat exchanger 23 during the cooling operation, and further connects the suction pipe 31 of the compressor 21 and the second gas refrigerant. It is connected to the pipe 34 (see the solid line of the four-way switching valve 22 in FIG. 1).
 また、四路切換弁22は、暖房運転時には、室外熱交換器23を冷媒の蒸発器として機能させ、かつ、室内熱交換器41を冷媒の放熱器として機能させる暖房サイクル状態への切り換えを行う。 Further, the four-way switching valve 22 switches to a heating cycle state in which the outdoor heat exchanger 23 functions as a refrigerant evaporator and the indoor heat exchanger 41 functions as a refrigerant radiator during the heating operation. ..
 四路切換弁22は、暖房運転時には、圧縮機21の吐出管32と第2ガス冷媒管34とを接続し、さらに、圧縮機21の吸入管31と室外熱交換器23の第1ガス冷媒管33とを接続する(図1の四路切換弁22の破線を参照)。 The four-way switching valve 22 connects the discharge pipe 32 of the compressor 21 and the second gas refrigerant pipe 34 during the heating operation, and further connects the suction pipe 31 of the compressor 21 and the first gas refrigerant of the outdoor heat exchanger 23. It is connected to the pipe 33 (see the broken line of the four-way switching valve 22 in FIG. 1).
 ここで、第1ガス冷媒管33は、四路切換弁22と、室外熱交換器23の冷房運転時における冷媒入口とを接続する冷媒管である。また、第2ガス冷媒管34は、四路切換弁22とガス側閉鎖弁28とを接続する冷媒管である。 Here, the first gas refrigerant pipe 33 is a refrigerant pipe that connects the four-way switching valve 22 and the refrigerant inlet during the cooling operation of the outdoor heat exchanger 23. The second gas refrigerant pipe 34 is a refrigerant pipe that connects the four-way switching valve 22 and the gas side closing valve 28.
 (1-2-3)室外熱交換器23
 室外熱交換器23は、冷房運転時には冷媒の放熱器として機能する。また、室外熱交換器23は、暖房運転時には冷媒の蒸発器として機能する。室外熱交換器23の冷房運転時における冷媒出口には、液冷媒管35の一端が接続されている。液冷媒管35の他端は、膨張弁26に接続されている。
(1-2-3) Outdoor heat exchanger 23
The outdoor heat exchanger 23 functions as a radiator of the refrigerant during the cooling operation. Further, the outdoor heat exchanger 23 functions as a refrigerant evaporator during the heating operation. One end of the liquid refrigerant pipe 35 is connected to the refrigerant outlet during the cooling operation of the outdoor heat exchanger 23. The other end of the liquid refrigerant pipe 35 is connected to the expansion valve 26.
 室外熱交換器23については、[(3)室外熱交換器23の詳細構造]の章で詳細を説明する。 The details of the outdoor heat exchanger 23 will be described in the chapter [(3) Detailed structure of the outdoor heat exchanger 23].
 (1-2-4)膨張弁26
 膨張弁26は、電動膨張弁である。膨張弁26は、冷房運転時には、室外熱交換器23から送られてくる高圧の冷媒を低圧まで減圧する。また、膨張弁26は、暖房運転時には、室内熱交換器41から送られてくる高圧の冷媒を低圧まで減圧する。
(1-2-4) Expansion valve 26
The expansion valve 26 is an electric expansion valve. The expansion valve 26 decompresses the high-pressure refrigerant sent from the outdoor heat exchanger 23 to a low pressure during the cooling operation. Further, the expansion valve 26 reduces the high-pressure refrigerant sent from the indoor heat exchanger 41 to a low pressure during the heating operation.
 (1-2-5)液側閉鎖弁27及びガス側閉鎖弁28
 液側閉鎖弁27は、液冷媒連絡管5と接続される。ガス側閉鎖弁28は、ガス冷媒連絡管6と接続される。液側閉鎖弁27は、冷房運転時の冷媒循環方向における膨張弁26の下流に位置する。ガス側閉鎖弁28は、冷房運転時の冷媒循環方向における四路切換弁22の上流に位置する。
(1-2-5) Liquid side closing valve 27 and gas side closing valve 28
The liquid side closing valve 27 is connected to the liquid refrigerant connecting pipe 5. The gas side closing valve 28 is connected to the gas refrigerant connecting pipe 6. The liquid side closing valve 27 is located downstream of the expansion valve 26 in the refrigerant circulation direction during the cooling operation. The gas side closing valve 28 is located upstream of the four-way switching valve 22 in the refrigerant circulation direction during cooling operation.
 (1-2-6)室外ファン
 室外ユニット2は、室外ファン36を含んでいる。室外ファン36は、室外ユニット2内に室外空気を吸入して、室外熱交換器23において冷媒と熱交換させた後に、その空気を外部に排出する。室外ファン36として、プロペラファン等が採用される。室外ファン36は、室外ファン用モータ37によって駆動される。
(1-2-6) Outdoor fan The outdoor unit 2 includes an outdoor fan 36. The outdoor fan 36 sucks outdoor air into the outdoor unit 2, exchanges heat with the refrigerant in the outdoor heat exchanger 23, and then discharges the air to the outside. A propeller fan or the like is adopted as the outdoor fan 36. The outdoor fan 36 is driven by the outdoor fan motor 37.
 (1-2-7)室外側制御部38
 室外側制御部38は、室外ユニット2を構成する各部の動作を制御する。室外側制御部38は、室外ユニット2の制御を行うためのマイクロコンピュータおよびメモリを有している。
(1-2-7) Outdoor control unit 38
The outdoor control unit 38 controls the operation of each unit constituting the outdoor unit 2. The outdoor control unit 38 has a microcomputer and a memory for controlling the outdoor unit 2.
 室外側制御部38は、室内ユニット4の室内側制御部44との間で伝送線8aを介した制御信号等の送受信を行う。 The outdoor control unit 38 transmits and receives a control signal and the like via the transmission line 8a to and from the indoor control unit 44 of the indoor unit 4.
 (1-3)冷媒連絡管5、6
 冷媒連絡管5、6は、空気調和装置1を建物等の設置場所に設置する際に、現地にて施工される冷媒管である。冷媒連絡管5、6は、設置場所や室外ユニット2と室内ユニット4との組み合わせ等の設置条件に応じて、適切な長さおよび径の管が採用される。
(1-3) Refrigerant connecting pipes 5 and 6
The refrigerant connecting pipes 5 and 6 are refrigerant pipes to be installed on-site when the air conditioner 1 is installed at an installation location such as a building. As the refrigerant connecting pipes 5 and 6, pipes having an appropriate length and diameter are adopted according to the installation location and the installation conditions such as the combination of the outdoor unit 2 and the indoor unit 4.
 (2)空気調和装置の基本動作
 次に、図1を用いて、空気調和装置1の基本動作について説明する。空気調和装置1は、基本動作として、冷房運転及び暖房運転を行うことができる。
(2) Basic operation of the air conditioner Next, the basic operation of the air conditioner 1 will be described with reference to FIG. The air conditioner 1 can perform a cooling operation and a heating operation as basic operations.
 (2-1)冷房運転
 冷房運転時には、四路切換弁22が冷房サイクル状態(図1の実線で示される状態)に切り換えられる。冷媒回路10において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、圧縮された後に吐出される。
(2-1) Cooling operation During the cooling operation, the four-way switching valve 22 is switched to the cooling cycle state (the state shown by the solid line in FIG. 1). In the refrigerant circuit 10, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed, and then discharged.
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22を介して、室外熱交換器23に送られる。 The high-pressure gas refrigerant discharged from the compressor 21 is sent to the outdoor heat exchanger 23 via the four-way switching valve 22.
 室外熱交換器23に送られた高圧のガス冷媒は、放熱器として機能する室外熱交換器23において、室外ファン36から供給される室外空気と熱交換を行って放熱して、高圧の液冷媒になる。高圧の液冷媒は、膨張弁26に送られる。 The high-pressure gas refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied from the outdoor fan 36 in the outdoor heat exchanger 23 that functions as a radiator to dissipate heat, and is a high-pressure liquid refrigerant. become. The high-pressure liquid refrigerant is sent to the expansion valve 26.
 膨張弁26に送られた高圧の液冷媒は、膨張弁26によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。膨張弁26で減圧された低圧の気液二相状態の冷媒は、液側閉鎖弁27及び液冷媒連絡管5を介して、室内熱交換器41に送られる。 The high-pressure liquid refrigerant sent to the expansion valve 26 is depressurized to the low pressure of the refrigeration cycle by the expansion valve 26 to become a low-pressure gas-liquid two-phase state refrigerant. The low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 26 is sent to the indoor heat exchanger 41 via the liquid-side closing valve 27 and the liquid-refrigerant connecting pipe 5.
 室内熱交換器41に送られた低圧の気液二相状態の冷媒は、室内熱交換器41において、室内ファン42から供給される室内空気と熱交換を行って蒸発する。これにより、室内空気は冷却され、その後に、その冷却された空気が室内に供給されることによって室内の冷房が行われる。 The low-pressure gas-liquid two-phase refrigerant sent to the indoor heat exchanger 41 evaporates by exchanging heat with the indoor air supplied from the indoor fan 42 in the indoor heat exchanger 41. As a result, the indoor air is cooled, and then the cooled air is supplied to the room to cool the room.
 室内熱交換器41において蒸発した低圧のガス冷媒は、ガス冷媒連絡管6、ガス側閉鎖弁28及び四路切換弁22を介して、再び、圧縮機21に吸入される。 The low-pressure gas refrigerant evaporated in the indoor heat exchanger 41 is sucked into the compressor 21 again via the gas refrigerant connecting pipe 6, the gas side closing valve 28, and the four-way switching valve 22.
 (2-2)暖房運転
 暖房運転時には、四路切換弁22が暖房サイクル状態(図1の破線で示される状態)に切り換えられる。冷媒回路10において、冷凍サイクルの低圧のガス冷媒は、圧縮機21に吸入され、圧縮された後に吐出される。
(2-2) Heating operation During the heating operation, the four-way switching valve 22 is switched to the heating cycle state (the state shown by the broken line in FIG. 1). In the refrigerant circuit 10, the low-pressure gas refrigerant in the refrigeration cycle is sucked into the compressor 21, compressed, and then discharged.
 圧縮機21から吐出された高圧のガス冷媒は、四路切換弁22、ガス側閉鎖弁28及びガス冷媒連絡管6を介して、室内熱交換器41に送られる。 The high-pressure gas refrigerant discharged from the compressor 21 is sent to the indoor heat exchanger 41 via the four-way switching valve 22, the gas side closing valve 28, and the gas refrigerant connecting pipe 6.
 室内熱交換器41に送られた高圧のガス冷媒は、室内熱交換器41において、室内ファン42から供給される室内空気と熱交換を行って放熱して、高圧の液冷媒になる。これにより、室内空気は加熱され、その後に、その加熱された空気が室内に供給されることによって室内の暖房が行われる。 The high-pressure gas refrigerant sent to the indoor heat exchanger 41 exchanges heat with the indoor air supplied from the indoor fan 42 in the indoor heat exchanger 41 to dissipate heat, and becomes a high-pressure liquid refrigerant. As a result, the room air is heated, and then the heated air is supplied to the room to heat the room.
 室内熱交換器41で放熱した高圧の液冷媒は、液冷媒連絡管5及び液側閉鎖弁27を介して、膨張弁26に送られる。 The high-pressure liquid refrigerant radiated by the indoor heat exchanger 41 is sent to the expansion valve 26 via the liquid refrigerant connecting pipe 5 and the liquid side closing valve 27.
 膨張弁26に送られた高圧の液冷媒は、膨張弁26によって冷凍サイクルの低圧まで減圧されて、低圧の気液二相状態の冷媒になる。膨張弁26で減圧された低圧の気液二相状態の冷媒は、室外熱交換器23に送られる。 The high-pressure liquid refrigerant sent to the expansion valve 26 is depressurized to the low pressure of the refrigeration cycle by the expansion valve 26 to become a low-pressure gas-liquid two-phase state refrigerant. The low-pressure gas-liquid two-phase refrigerant decompressed by the expansion valve 26 is sent to the outdoor heat exchanger 23.
 室外熱交換器23に送られた低圧の気液二相状態の冷媒は、室外熱交換器23において、室外ファン36から供給される室外空気と熱交換を行って蒸発して、低圧のガス冷媒になる。 The low-pressure gas-liquid two-phase refrigerant sent to the outdoor heat exchanger 23 exchanges heat with the outdoor air supplied from the outdoor fan 36 in the outdoor heat exchanger 23 to evaporate, and is a low-pressure gas refrigerant. become.
 室外熱交換器23で蒸発した低圧の冷媒は、四路切換弁22を通じて、再び、圧縮機21に吸入される。 The low-pressure refrigerant evaporated in the outdoor heat exchanger 23 is sucked into the compressor 21 again through the four-way switching valve 22.
 (3)室外熱交換器23の詳細説明
 (3-1)構造
 図3は、室外熱交換器23の外観斜視図である。図3において、室外熱交換器23は、積層型熱交換器である。室外熱交換器23は、複数の扁平管231と複数の伝熱フィン232とを含んでいる。
(3) Detailed Description of Outdoor Heat Exchanger 23 (3-1) Structure FIG. 3 is an external perspective view of the outdoor heat exchanger 23. In FIG. 3, the outdoor heat exchanger 23 is a laminated heat exchanger. The outdoor heat exchanger 23 includes a plurality of flat tubes 231 and a plurality of heat transfer fins 232.
 (3-1-1)扁平管231
 扁平管231は、多穴管である。扁平管231は、アルミニウムまたはアルミニウム合金で成形されており、伝熱面となる平面部231aと、冷媒が流れる複数の内部流路231bを有している。
(3-1-1) Flat tube 231
The flat tube 231 is a multi-hole tube. The flat tube 231 is formed of aluminum or an aluminum alloy, and has a flat surface portion 231a serving as a heat transfer surface and a plurality of internal flow paths 231b through which a refrigerant flows.
 扁平管231は、平面部231aを上下に向けた状態で間隔(通風空間)を空けて積み重なるように複数段配列されている。 The flat pipes 231 are arranged in a plurality of stages so as to be stacked with a space (ventilation space) in a state where the flat surface portion 231a is directed vertically.
 (3-1-2)伝熱フィン232
 伝熱フィン232は、アルミニウム製またはアルミニウム合金製のフィンである。伝熱フィン232は、上下に隣接する扁平管231に挟まれた通風空間に配置され、扁平管231の平面部231aと接触している。
(3-1-2) Heat transfer fin 232
The heat transfer fin 232 is a fin made of aluminum or an aluminum alloy. The heat transfer fins 232 are arranged in a ventilation space sandwiched between vertically adjacent flat tubes 231 and are in contact with the flat surface portion 231 a of the flat tubes 231.
 伝熱フィン232は、扁平管231が差し込まれる切り欠き232c(図5Aおよび図5B参照)が形成されている。扁平管231は、伝熱フィン232の切り欠き232cに差し込まれた後、伝熱フィン232と扁平管231の平面部231aとがロウ付け等によって接合されている。 The heat transfer fin 232 is formed with a notch 232c (see FIGS. 5A and 5B) into which the flat tube 231 is inserted. After the flat tube 231 is inserted into the notch 232c of the heat transfer fin 232, the heat transfer fin 232 and the flat surface portion 231a of the flat tube 231 are joined by brazing or the like.
 (3-1-3)ヘッダ233a、233b
 ヘッダ233a、233bは、上下方向に複数段配列された扁平管231の両端に連結されている。ヘッダ233a、233bは、扁平管231を支持する機能と、冷媒を扁平管231の内部流路に導く機能と、内部流路から出てきた冷媒を集合させる機能とを有している。
(3-1-3) Header 233a, 233b
The headers 233a and 233b are connected to both ends of the flat tubes 231 arranged in a plurality of stages in the vertical direction. The headers 233a and 233b have a function of supporting the flat pipe 231, a function of guiding the refrigerant to the internal flow path of the flat pipe 231, and a function of collecting the refrigerant coming out of the internal flow path.
 室外熱交換器23が冷媒の蒸発器として機能する場合、冷媒は第1ヘッダ233aに流入する。第1ヘッダ233aに流入した冷媒は、各段の扁平管231の各内部流路へほぼ均等に分配され、第2ヘッダ233bに向って流れる。各段の扁平管231の各内部流路を流れる冷媒は、伝熱フィン232を介して通風空間を流れる空気流から吸熱する。各段の扁平管231の各内部流路を流れた冷媒は、第2ヘッダ233bで集合し、第2ヘッダ233bから流出する。 When the outdoor heat exchanger 23 functions as an evaporator of the refrigerant, the refrigerant flows into the first header 233a. The refrigerant that has flowed into the first header 233a is distributed substantially evenly to each internal flow path of the flat pipe 231 of each stage, and flows toward the second header 233b. The refrigerant flowing through each internal flow path of the flat pipe 231 at each stage absorbs heat from the air flow flowing through the ventilation space via the heat transfer fins 232. The refrigerant flowing through each internal flow path of the flat pipe 231 of each stage collects at the second header 233b and flows out from the second header 233b.
 室外熱交換器23が冷媒の放熱器として機能する場合、冷媒は第2ヘッダ233bに流入する。第2ヘッダ233bに流入した冷媒は、各段の扁平管231の各内部流路へほぼ均等に分配され、第1ヘッダ233aに向って流れる。各段の扁平管231の各内部流路を流れる冷媒は、伝熱フィン232を介して通風空間を流れる空気流に放熱する。各段の扁平管231の各内部流路を流れた冷媒は、第1ヘッダ233aで集合し、第1ヘッダ233aから流出する。 When the outdoor heat exchanger 23 functions as a radiator of the refrigerant, the refrigerant flows into the second header 233b. The refrigerant that has flowed into the second header 233b is distributed substantially evenly to each internal flow path of the flat pipe 231 of each stage, and flows toward the first header 233a. The refrigerant flowing through each internal flow path of the flat tube 231 of each stage dissipates heat to the air flow flowing through the ventilation space via the heat transfer fins 232. The refrigerant flowing through each internal flow path of the flat pipe 231 of each stage collects in the first header 233a and flows out from the first header 233a.
 (3-2)着霜の抑制
 図4は、非共沸混合冷媒のPH線図である。図4において、蒸発器出口に向かって冷媒温度が上昇している。非共沸混合冷媒は、液相、気相では組成が異なるため、蒸発器での蒸発開始温度と終了温度が異なるという「温度勾配」がある。この温度勾配により、蒸発器では入口温度が下がりやすく、暖房運転時に着霜しやすい。
(3-2) Suppression of frost formation FIG. 4 is a PH diagram of a non-azeotropic mixed refrigerant. In FIG. 4, the refrigerant temperature rises toward the evaporator outlet. Since the non-cobo-boiling mixed refrigerant has different compositions in the liquid phase and the vapor phase, there is a "temperature gradient" in which the evaporation start temperature and the end temperature in the evaporator are different. Due to this temperature gradient, the inlet temperature of the evaporator tends to drop, and frost tends to form during the heating operation.
 図5Aは、第1実施形態に係る室外熱交換器23の第1熱交換部23aの斜視図である。図5Aにおいて、第1熱交換部23aでは、切り欠き232cの開口側が空気の流れ方向の風下に位置している。 FIG. 5A is a perspective view of the first heat exchange section 23a of the outdoor heat exchanger 23 according to the first embodiment. In FIG. 5A, in the first heat exchange portion 23a, the opening side of the notch 232c is located leeward in the air flow direction.
 図5Bは、第1実施形態に係る室外熱交換器23の第2熱交換部23bの斜視図である。図5Bにおいて、切り欠き232cの開口側が空気の流れ方向の風上に位置している。 FIG. 5B is a perspective view of the second heat exchange section 23b of the outdoor heat exchanger 23 according to the first embodiment. In FIG. 5B, the opening side of the notch 232c is located upwind in the air flow direction.
 図5Bに示す第2熱交換部23bは、切り欠き232cの開口が空気の流れ方向の風上に位置しているので、空気温度と熱交換器表面との温度差が大きく、熱交換性能は向上するが、着霜しやすいという特徴を有している。 In the second heat exchange section 23b shown in FIG. 5B, since the opening of the notch 232c is located on the windward side in the air flow direction, the temperature difference between the air temperature and the surface of the heat exchanger is large, and the heat exchange performance is high. Although it improves, it has the characteristic of being easily frosted.
 一方、図5Aに示す第1熱交換部23aは、切り欠き232cの開口が空気の流れ方向の風下に位置しているので、第2熱交換部23bと比べて、空気温度と熱交換器表面との温度差が小さいので、着霜が抑制される。 On the other hand, in the first heat exchange section 23a shown in FIG. 5A, since the opening of the notch 232c is located leeward in the air flow direction, the air temperature and the surface of the heat exchanger are compared with those of the second heat exchange section 23b. Since the temperature difference with is small, frost formation is suppressed.
 それゆえ、本実施形態では、蒸発器として機能する室外熱交換器23の入口側に第1熱交換部23aが形成されている。 Therefore, in the present embodiment, the first heat exchange portion 23a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
 (3-3)熱交換性能の向上
 上記の通り、第1熱交換部23aでは、第2熱交換部23bと比べて、空気温度と熱交換器表面との温度差が小さいので、熱交換性能は低下する。それゆえ、室外熱交換器23の全体を第1熱交換部23aで構成することは、性能上、好ましくない。
(3-3) Improvement of heat exchange performance As described above, in the first heat exchange unit 23a, the temperature difference between the air temperature and the surface of the heat exchanger is smaller than that in the second heat exchange unit 23b, so that the heat exchange performance Decreases. Therefore, it is not preferable in terms of performance that the entire outdoor heat exchanger 23 is composed of the first heat exchanger 23a.
 そこで、本実施形態では、第1熱交換部23aと第2熱交換部23bとを併用して、着霜を抑制しつつ、熱交換性能の向上を図っている。 Therefore, in the present embodiment, the first heat exchange unit 23a and the second heat exchange unit 23b are used in combination to suppress frost formation and improve the heat exchange performance.
 図6Aは、第1熱交換部23aと第2熱交換部23bとを併用した室外熱交換器23の概略斜視図である。また、図6Bは、第1熱交換部23a’と第2熱交換部23b’とを併用した他の室外熱交換器23’の概略斜視図である。 FIG. 6A is a schematic perspective view of the outdoor heat exchanger 23 in which the first heat exchange unit 23a and the second heat exchange unit 23b are used in combination. Further, FIG. 6B is a schematic perspective view of another outdoor heat exchanger 23'using the first heat exchange unit 23a'and the second heat exchange unit 23b' in combination.
 図6Aにおいて、室外熱交換器23が冷媒の蒸発器として機能しているとき、第1ヘッダ233aに流入した冷媒は、各段の扁平管231の各内部流路231bへほぼ均等に分配され、第2ヘッダ233bに向って流れる。非共沸混合冷媒は、蒸発器入口における温度が低下しやすく、着霜しやすい。それゆえ、第1ヘッダ233aから第2ヘッダ233bへ向かう一定区間は、第1熱交換部23aで構成し、着霜を抑制している。 In FIG. 6A, when the outdoor heat exchanger 23 functions as an evaporator of the refrigerant, the refrigerant flowing into the first header 233a is distributed substantially evenly to each internal flow path 231b of the flat pipe 231 of each stage. It flows toward the second header 233b. The non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange section 23a to suppress frost formation.
 一方、非共沸混合冷媒は、蒸発器出口に向かって温度が上昇するので、熱交換性能を高めるため、第1熱交換部23aと第2ヘッダ233bとの間の部分を第2熱交換部23bで構成する。 On the other hand, since the temperature of the non-co-boiling mixed refrigerant rises toward the evaporator outlet, the portion between the first heat exchange section 23a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 23b.
 このように、蒸発器入口側に第1熱交換部23aを、蒸発器出口側に第2熱交換部23bを配置することによって、着霜を抑制しつつ、熱交換性能の向上を図ることができる。 By arranging the first heat exchange unit 23a on the inlet side of the evaporator and the second heat exchange unit 23b on the outlet side of the evaporator in this way, it is possible to improve the heat exchange performance while suppressing frost formation. it can.
 また、図6Bにおいては、室外熱交換器23’が冷媒の蒸発器として機能しているとき、第1ヘッダ233a’の下段に流入した冷媒は、下段各段の扁平管231の各内部流路231b’へほぼ均等に分配され、第2ヘッダ233b’に向って流れる。 Further, in FIG. 6B, when the outdoor heat exchanger 23'functions as an evaporator of the refrigerant, the refrigerant flowing into the lower stage of the first header 233a' flows into each internal flow path of the flat pipe 231 in each lower stage. It is distributed almost evenly to 231b'and flows toward the second header 233b'.
 第2ヘッダ233b’の下段に到達した冷媒は、一旦は集合し、曲がり管234を経て、第2ヘッダ233b’の上段に流入する。その後、冷媒は上段各段の扁平管231の各内部流路231bへほぼ均等に分配され、第2ヘッダ233b’に向って流れる。 The refrigerant that has reached the lower stage of the second header 233b'collects once, passes through the bent pipe 234, and flows into the upper stage of the second header 233b'. After that, the refrigerant is distributed substantially evenly to each internal flow path 231b of the flat pipe 231 in each upper stage, and flows toward the second header 233b'.
 非共沸混合冷媒は、蒸発器入口における温度が低下しやすく、着霜しやすい。それゆえ、第1ヘッダ233a’の下段から第2ヘッダ233b’の下段へ向かう区間は、第1熱交換部23a’で構成し、着霜を抑制している。 The non-azeotropic mixed refrigerant tends to lower the temperature at the evaporator inlet and easily frost. Therefore, the section from the lower part of the first header 233a'to the lower part of the second header 233b' is composed of the first heat exchange section 23a'to suppress frost formation.
 一方、非共沸混合冷媒は、蒸発器出口に向かって温度が上昇するので、熱交換性能を高めるため、第1ヘッダ233b’の上段から第1ヘッダ233a’の上段へ向かう区間を第2熱交換部23b’で構成する。 On the other hand, since the temperature of the non-co-boiling mixed refrigerant rises toward the evaporator outlet, the second heat is formed in the section from the upper stage of the first header 233b'to the upper stage of the first header 233a' in order to improve the heat exchange performance. It is composed of a replacement unit 23b'.
 このように、蒸発器入口側に第1熱交換部23a’を、蒸発器出口側に第2熱交換部23b’を配置することによって、着霜を抑制しつつ、熱交換性能の向上を図ることができる。 By arranging the first heat exchange unit 23a'on the evaporator inlet side and the second heat exchange unit 23b' on the evaporator outlet side in this way, the heat exchange performance is improved while suppressing frost formation. be able to.
 (4)特徴
 (4-1)
 室外熱交換器23の第1熱交換部23aでは、伝熱フィン232の切り欠き232cの開口側が空気の流れ方向の風下に位置している。室外熱交換器23が蒸発器として機能する際、非共沸混合冷媒の入口側が第1熱交換部23aとなるように配置することによって、着霜耐力(着霜を抑制する能力)を上げることができる。
(4) Features (4-1)
In the first heat exchange section 23a of the outdoor heat exchanger 23, the opening side of the notch 232c of the heat transfer fin 232 is located leeward in the air flow direction. When the outdoor heat exchanger 23 functions as an evaporator, the frost formation resistance (ability to suppress frost formation) is increased by arranging the non-azeotropic mixed refrigerant so that the inlet side becomes the first heat exchange portion 23a. Can be done.
 (4-2)
 また、非共沸混合冷媒の入口側に第1熱交換部23aを配置し、切り欠き232cの開口が空気の流れ方向の風上に位置している第2熱交換部23bを出口側に配置することによって、着霜を抑制しつつ、熱交換性能の向上を図ることができる。
(4-2)
Further, the first heat exchange section 23a is arranged on the inlet side of the non-co-boiling mixed refrigerant, and the second heat exchange section 23b in which the opening of the notch 232c is located on the windward side in the air flow direction is arranged on the outlet side. By doing so, it is possible to improve the heat exchange performance while suppressing frost formation.
 (4-3)
 第1熱交換部23aと、第2熱交換部23bとが一体化されている。
(4-3)
The first heat exchange unit 23a and the second heat exchange unit 23b are integrated.
 (5)変形例
 蒸発器として機能する室外熱交換器23の入口側に第1熱交換部23aを配置し、出口側に第2熱交換部23bを配置し、第1熱交換部23aと第2熱交換部23bとの間に第3熱交換部23cを配置してもよい。
(5) Modification Example The first heat exchange section 23a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange section 23b is placed on the outlet side, and the first heat exchange section 23a and the first A third heat exchange unit 23c may be arranged between the two heat exchange units 23b.
 第3熱交換部23cは、扁平管231の幅方向の分布中心が、空気の流れ方向における伝熱フィン232の中心と一致している。 In the third heat exchange unit 23c, the distribution center of the flat tube 231 in the width direction coincides with the center of the heat transfer fin 232 in the air flow direction.
 この変形例の技術的意義は、蒸発器として機能する室外熱交換器23における冷媒温度に適した熱交換部の組合せを試みることができることであり、その結果として着霜を抑制しつつ、熱交換性能の向上を図ることができる。 The technical significance of this modification is that it is possible to attempt a combination of heat exchange units suitable for the refrigerant temperature in the outdoor heat exchanger 23 that functions as an evaporator, and as a result, heat exchange is performed while suppressing frost formation. Performance can be improved.
 なお、第1熱交換部23aと、第2熱交換部23bおよび第3熱交換部23cの少なくともいずれか一方とが一体化されてもよい。 Note that the first heat exchange unit 23a and at least one of the second heat exchange unit 23b and the third heat exchange unit 23c may be integrated.
 <第2実施形態>
 第1実施形態では、室外熱交換器23として、伝熱フィン232に設けられた切り欠き232cに扁平管231が差し込まれた積層型熱交換器を採用した。
<Second Embodiment>
In the first embodiment, as the outdoor heat exchanger 23, a laminated heat exchanger in which the flat tube 231 is inserted into the notch 232c provided in the heat transfer fin 232 is adopted.
 第2実施形態では、室外熱交換器23として、伝熱フィンに設けられた長穴に扁平管を貫通させた積層型熱交換器を採用する。 In the second embodiment, as the outdoor heat exchanger 23, a laminated heat exchanger in which a flat tube is penetrated through an elongated hole provided in a heat transfer fin is adopted.
 (1)着霜の抑制
 図7Aは、第2実施形態に係る室外熱交換器23の第1熱交換部123aの斜視図である。図7Aにおいて、第1熱交換部123aでは、空気の流れ方向の最も風上に位置する扁平管231Mの風上側端部から伝熱フィン232Mの風上側端部までの距離が第1寸法D1である。
(1) Suppression of Frost Formation FIG. 7A is a perspective view of the first heat exchange section 123a of the outdoor heat exchanger 23 according to the second embodiment. In FIG. 7A, in the first heat exchange portion 123a, the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is the first dimension D1. is there.
 図7Bは、第2実施形態に係る室外熱交換器23の第2熱交換部123bの斜視図である。図7Bにおいて、第2熱交換部123bでは、空気の流れ方向の最も風上に位置する扁平管231Mの風上側端部から伝熱フィン232Mの風上側端部までの距離が第1寸法D1よりも小さい第2寸法D2である。 FIG. 7B is a perspective view of the second heat exchange unit 123b of the outdoor heat exchanger 23 according to the second embodiment. In FIG. 7B, in the second heat exchange unit 123b, the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is from the first dimension D1. Is also a small second dimension D2.
 図7Bに示す第2熱交換部123bは、空気の流れ方向の最も風上に位置する扁平管231Mの風上側端部から伝熱フィン232Mの風上側端部までの距離(第2寸法D2)が、第1熱交換部123aにおける当該距離(第1寸法D1)よりも小さいので、空気温度と熱交換器表面との温度差が大きく、熱交換性能は向上するが、着霜しやすいという特徴を有している。 The second heat exchange portion 123b shown in FIG. 7B is the distance from the wind-up end of the flat tube 231M located on the most upwind side in the air flow direction to the wind-up end of the heat transfer fin 232M (second dimension D2). However, since it is smaller than the distance (first dimension D1) in the first heat exchange section 123a, the temperature difference between the air temperature and the surface of the heat exchanger is large, and the heat exchange performance is improved, but frost is easily formed. have.
 一方、図7Aに示す第1熱交換部123aは、空気の流れ方向の最も風上に位置する扁平管231Mの風上側端部から伝熱フィン232Mの風上側端部までの距離が第2熱交換部123bにおける当該距離(第2寸法D2)よりも大きいので、第2熱交換部123bと比べて、空気温度と熱交換器表面との温度差が小さく、着霜が抑制される。 On the other hand, in the first heat exchange portion 123a shown in FIG. 7A, the distance from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M is the second heat. Since it is larger than the distance (second dimension D2) in the exchange unit 123b, the temperature difference between the air temperature and the heat exchanger surface is smaller than that in the second heat exchange unit 123b, and frost formation is suppressed.
 それゆえ、第2実施形態では、蒸発器として機能する室外熱交換器23の入口側に第1熱交換部123aが形成されている。 Therefore, in the second embodiment, the first heat exchange section 123a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
 (2)熱交換性能の向上
 上記の通り、第1熱交換部123aでは、第2熱交換部123bと比べて、空気温度と熱交換器表面との温度差が小さいので、熱交換性能は低下する。それゆえ、室外熱交換器23の全体を第1熱交換部123aで構成することは、性能上、好ましくない。
(2) Improvement of heat exchange performance As described above, in the first heat exchange unit 123a, the temperature difference between the air temperature and the surface of the heat exchanger is smaller than that in the second heat exchange unit 123b, so that the heat exchange performance is deteriorated. To do. Therefore, it is not preferable in terms of performance that the entire outdoor heat exchanger 23 is composed of the first heat exchanger 123a.
 そこで、第2実施形態では、第1実施形態と同様に、第1熱交換部123aと第2熱交換部123bとを併用して、着霜を抑制しつつ、熱交換性能の向上を図っている。図6Aおよび図6Bは、第1実施形態の第1熱交換部23aを「第1熱交換部123a」に置き換え、第1実施形態の第2熱交換部23bを「第2熱交換部123b」に置き換えることによって、第2実施形態でも適用される。 Therefore, in the second embodiment, similarly to the first embodiment, the first heat exchange unit 123a and the second heat exchange unit 123b are used in combination to suppress frost formation and improve the heat exchange performance. There is. In FIGS. 6A and 6B, the first heat exchange unit 23a of the first embodiment is replaced with the “first heat exchange unit 123a”, and the second heat exchange unit 23b of the first embodiment is replaced with the “second heat exchange unit 123b”. By substituting with, it is also applied in the second embodiment.
 図6Aにおいて、室外熱交換器23が冷媒の蒸発器として機能しているとき、第1ヘッダ233aに流入した冷媒は、各段の扁平管の各内部流路へほぼ均等に分配され、第2ヘッダ233bに向って流れる。非共沸混合冷媒は、蒸発器入口における温度が低下しやすく、着霜しやすい。それゆえ、第1ヘッダ233aから第2ヘッダ233bへ向かう一定区間は、第1熱交換部123aで構成し、着霜を抑制する。 In FIG. 6A, when the outdoor heat exchanger 23 functions as an evaporator of the refrigerant, the refrigerant flowing into the first header 233a is distributed substantially evenly to each internal flow path of the flat pipe of each stage, and the second It flows toward the header 233b. The non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange unit 123a to suppress frost formation.
 一方、非共沸混合冷媒は、蒸発器出口に向かって温度が上昇するので、熱交換性能を高めるため、第1熱交換部123aと第2ヘッダ233bとの間の部分を第2熱交換部123bで構成する。 On the other hand, since the temperature of the non-co-boiling mixed refrigerant rises toward the evaporator outlet, the portion between the first heat exchange section 123a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 123b.
 このように、蒸発器入口側に第1熱交換部123aを、蒸発器出口側に第2熱交換部123bを配置することによって、着霜を抑制しつつ、熱交換性能の向上を図ることができる。 By arranging the first heat exchange unit 123a on the inlet side of the evaporator and the second heat exchange unit 123b on the outlet side of the evaporator in this way, it is possible to improve the heat exchange performance while suppressing frost formation. it can.
 (3)第2実施形態の特徴
 (3-1)
 非共沸混合冷媒は、蒸発器の入口から出口に向かって温度上昇するので、入口側では着霜耐力(着霜を抑制する能力)を重視し、出口側では熱交換性能を重視することが好ましい。
(3) Features of the second embodiment (3-1)
Since the temperature of the non-azeotropic mixed refrigerant rises from the inlet to the outlet of the evaporator, it is necessary to emphasize the frost bearing capacity (ability to suppress frost formation) on the inlet side and the heat exchange performance on the outlet side. preferable.
 それゆえ、蒸発器として機能する室外熱交換器23の入口側に第1熱交換部123aを配置し、出口側に第2熱交換部123bを配置するという、蒸発器における冷媒温度に適した組合せを試みることができる。 Therefore, the first heat exchange unit 123a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, and the second heat exchange unit 123b is arranged on the outlet side, which is a combination suitable for the refrigerant temperature in the evaporator. Can be tried.
 (3-2)
 第1熱交換部123aと、第2熱交換部123bとが一体化されている。
(3-2)
The first heat exchange unit 123a and the second heat exchange unit 123b are integrated.
 (4)変形例
 蒸発器として機能する室外熱交換器23の入口側に第1熱交換部123aを配置し、出口側に第2熱交換部123bを配置し、第1熱交換部123aと第2熱交換部123bとの間に第3熱交換部を配置してもよい。
(4) Modification Example The first heat exchange unit 123a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange unit 123b is arranged on the outlet side, and the first heat exchange unit 123a and the first heat exchanger unit 123a are arranged. A third heat exchange unit may be arranged between the two heat exchange units 123b.
 図7Cは、第2実施形態の変形例に係る室外熱交換器23の第3熱交換部123cの斜視図である。図7Cにおいて、第3熱交換部123cは、空気の流れ方向の最も風上に位置する扁平管231Mの風上側端部から伝熱フィン232Mの風上側端部までの距離D3と、空気の流れ方向の最も風下に位置する扁平管231Mの風下側端部から伝熱フィン232Mの風下側端部までの距離とが等しい。 FIG. 7C is a perspective view of the third heat exchange unit 123c of the outdoor heat exchanger 23 according to the modified example of the second embodiment. In FIG. 7C, the third heat exchange unit 123c has a distance D3 from the windward end of the flat tube 231M located on the windward side of the air flow direction to the windward end of the heat transfer fin 232M, and the air flow. The distance from the leeward end of the flat tube 231M located most leeward in the direction to the leeward end of the heat transfer fin 232M is equal.
 この変形例の技術的意義は、蒸発器として機能する室外熱交換器23における冷媒温度に適した熱交換部の組合せを試みることができることであり、その結果として着霜を抑制しつつ、熱交換性能の向上を図ることができる。 The technical significance of this modification is that it is possible to attempt a combination of heat exchange units suitable for the refrigerant temperature in the outdoor heat exchanger 23 that functions as an evaporator, and as a result, heat exchange is performed while suppressing frost formation. Performance can be improved.
 なお、第1熱交換部123aと、第2熱交換部123bおよび第3熱交換部123cの少なくともいずれか一方とが一体化されてもよい。 Note that the first heat exchange unit 123a and at least one of the second heat exchange unit 123b and the third heat exchange unit 123c may be integrated.
 <第3実施形態>
 第1実施形態および第2実施形態では、室外熱交換器23として、積層型熱交換器を採用した。第3実施形態では、室外熱交換器23として、クロスフィン型熱交換器を採用する。
<Third Embodiment>
In the first embodiment and the second embodiment, a laminated heat exchanger was adopted as the outdoor heat exchanger 23. In the third embodiment, a cross fin type heat exchanger is adopted as the outdoor heat exchanger 23.
 (1)着霜の抑制
 図8Aは、第3実施形態に係る室外熱交換器23の第1熱交換部223aの斜視図である。図8Aにおいて、第1熱交換部223aでは、複数の伝熱管231Nを伝熱管群として伝熱フィン232Nの板厚方向から視たとき、空気の流れ方向における伝熱管群の分布中心が、空気の流れ方向における伝熱フィン232Nの中心よりも風下に位置している。
(1) Suppression of Frost Frost FIG. 8A is a perspective view of the first heat exchange section 223a of the outdoor heat exchanger 23 according to the third embodiment. In FIG. 8A, in the first heat exchange unit 223a, when a plurality of heat transfer tubes 231N are viewed from the plate thickness direction of the heat transfer fins 232N as a heat transfer tube group, the distribution center of the heat transfer tube group in the air flow direction is the air. It is located leeward of the center of the heat transfer fin 232N in the flow direction.
 図8Bは、第3実施形態に係る室外熱交換器23の第2熱交換部223bの斜視図である。図8Bにおいて、第2熱交換部223bでは、空気の流れ方向における伝熱管群の分布中心が、空気の流れ方向における伝熱フィン232Nの中心よりも風上に位置している。 FIG. 8B is a perspective view of the second heat exchange section 223b of the outdoor heat exchanger 23 according to the third embodiment. In FIG. 8B, in the second heat exchange section 223b, the distribution center of the heat transfer tube group in the air flow direction is located on the windward side of the center of the heat transfer fin 232N in the air flow direction.
 図8Bに示す第2熱交換部223bは、伝熱管群の分布中心が空気の流れ方向における伝熱フィン232Nの中心よりも風上に位置しているので、空気の流れ方向の最も風上に位置する伝熱管231Nの風上側端部から伝熱フィン232Nの風上側端部までの距離が、第1熱交換部223aにおける当該距離よりも小さくなり、その結果として、空気温度と熱交換器表面との温度差が大きく、熱交換性能は向上するが、着霜しやすいという特徴を有している。 In the second heat exchange section 223b shown in FIG. 8B, since the distribution center of the heat transfer tube group is located on the windward side of the center of the heat transfer fin 232N in the air flow direction, it is the most upwind in the air flow direction. The distance from the wind-up end of the located heat transfer tube 231N to the wind-up end of the heat transfer fins 232N is smaller than the distance at the first heat exchange section 223a, resulting in air temperature and heat exchanger surface. The heat exchange performance is improved due to the large temperature difference between the air and the air, but it has the characteristic of being easily frosted.
 一方、図8Aに示す第1熱交換部223aは、空気の流れ方向における伝熱管群の分布中心が、空気の流れ方向における伝熱フィン232Nの中心よりも風下に位置しているので、空気の流れ方向の最も風上に位置する伝熱管231Nの風上側端部から伝熱フィン232Nの風上側端部までの距離が第2熱交換部223bにおける当該距離よりも大きくなり、その結果として、第2熱交換部223bと比べて、空気温度と熱交換器表面との温度差が小さく、着霜が抑制される。 On the other hand, in the first heat exchange unit 223a shown in FIG. 8A, since the distribution center of the heat transfer tube group in the air flow direction is located leeward of the center of the heat transfer fin 232N in the air flow direction, the air The distance from the wind-up end of the heat transfer tube 231N located most upwind in the flow direction to the wind-up end of the heat transfer fins 232N is larger than the distance in the second heat exchange section 223b, and as a result, the first 2 Compared with the heat exchange unit 223b, the temperature difference between the air temperature and the surface of the heat exchanger is small, and frost formation is suppressed.
 それゆえ、第3実施形態では、蒸発器として機能する室外熱交換器23の入口側に第1熱交換部223aが形成されている。 Therefore, in the third embodiment, the first heat exchange section 223a is formed on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator.
 (2)熱交換性能の向上
 上記の通り、第1熱交換部223aでは、第2熱交換部223bと比べて、空気温度と熱交換器表面との温度差が小さいので、熱交換性能は低下する。それゆえ、室外熱交換器23の全体を第1熱交換部223aで構成することは、性能上、好ましくない。
(2) Improvement of heat exchange performance As described above, in the first heat exchange unit 223a, the temperature difference between the air temperature and the surface of the heat exchanger is smaller than that in the second heat exchange unit 223b, so that the heat exchange performance is deteriorated. To do. Therefore, it is not preferable in terms of performance that the entire outdoor heat exchanger 23 is composed of the first heat exchanger 223a.
 そこで、第3実施形態では、第1実施形態および第2実施形態と同様に、第1熱交換部223aと第2熱交換部223bとを併用して、着霜を抑制しつつ、熱交換性能の向上を図っている。図6Aおよび図6Bは、第1実施形態の第1熱交換部23aを「第1熱交換部223a」に置き換え、第1実施形態の第2熱交換部23bを「第2熱交換部223b」に置き換えることによって、第3実施形態でも適用される。 Therefore, in the third embodiment, similarly to the first embodiment and the second embodiment, the first heat exchange unit 223a and the second heat exchange unit 223b are used in combination to suppress frost formation and perform heat exchange performance. We are trying to improve. In FIGS. 6A and 6B, the first heat exchange unit 23a of the first embodiment is replaced with the “first heat exchange unit 223a”, and the second heat exchange unit 23b of the first embodiment is replaced with the “second heat exchange unit 223b”. By substituting with, it is also applied in the third embodiment.
 図6Aにおいて、室外熱交換器23が冷媒の蒸発器として機能しているとき、第1ヘッダ233aに流入した冷媒は、各段の伝熱管へほぼ均等に分配され、第2ヘッダ233bに向って流れる。非共沸混合冷媒は、蒸発器入口における温度が低下しやすく、着霜しやすい。それゆえ、第1ヘッダ233aから第2ヘッダ233bへ向かう一定区間は、第1熱交換部223aで構成し、着霜を抑制する。 In FIG. 6A, when the outdoor heat exchanger 23 functions as an evaporator of the refrigerant, the refrigerant flowing into the first header 233a is distributed substantially evenly to the heat transfer tubes of each stage and toward the second header 233b. It flows. The non-azeotropic mixed refrigerant tends to lower the temperature at the inlet of the evaporator and easily frost. Therefore, a certain section from the first header 233a to the second header 233b is composed of the first heat exchange section 223a to suppress frost formation.
 一方、非共沸混合冷媒は、蒸発器出口に向かって温度が上昇するので、熱交換性能を高めるため、第1熱交換部223aと第2ヘッダ233bとの間の部分を第2熱交換部223bで構成する。 On the other hand, since the temperature of the non-co-boiling mixed refrigerant rises toward the evaporator outlet, the portion between the first heat exchange section 223a and the second header 233b is the second heat exchange section in order to improve the heat exchange performance. It is composed of 223b.
 このように、蒸発器入口側に第1熱交換部223aを、蒸発器出口側に第2熱交換部223bを配置することによって、着霜を抑制しつつ、熱交換性能の向上を図ることができる。 By arranging the first heat exchange unit 223a on the evaporator inlet side and the second heat exchange unit 223b on the evaporator outlet side in this way, it is possible to improve the heat exchange performance while suppressing frost formation. it can.
 (3)第3実施形態の特徴
 (3-1)
 非共沸混合冷媒は、蒸発器の入口から出口に向かって温度上昇するので、入口側では着霜耐力(着霜を抑制する能力)を重視し、出口側では熱交換性能を重視することが好ましい。
(3) Features of the third embodiment (3-1)
Since the temperature of the non-azeotropic mixed refrigerant rises from the inlet to the outlet of the evaporator, it is necessary to emphasize the frost bearing capacity (ability to suppress frost formation) on the inlet side and the heat exchange performance on the outlet side. preferable.
 それゆえ、蒸発器として機能する室外熱交換器23の入口側に第1熱交換部223aを配置し、出口側に第2熱交換部223bを配置するという、蒸発器における冷媒温度に適した組合せを試みることができる。 Therefore, the first heat exchange unit 223a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, and the second heat exchange unit 223b is arranged on the outlet side, which is a combination suitable for the refrigerant temperature in the evaporator. Can be tried.
 (3-2)
 第1熱交換部223aと、第2熱交換部223bとが一体化されている。
(3-2)
The first heat exchange unit 223a and the second heat exchange unit 223b are integrated.
 (4)変形例
 蒸発器として機能する室外熱交換器23の入口側に第1熱交換部23aを配置し、出口側に第2熱交換部23bを配置し、第1熱交換部223aと第2熱交換部223bとの間に第3熱交換部を配置してもよい。
(4) Modification example The first heat exchange unit 23a is arranged on the inlet side of the outdoor heat exchanger 23 that functions as an evaporator, the second heat exchange unit 23b is arranged on the outlet side, and the first heat exchange units 223a and the first A third heat exchange unit may be arranged between the two heat exchange units 223b.
 図8Cは、第3実施形態の変形例に係る室外熱交換器23の第3熱交換部223cの斜視図である。図8Cにおいて、第3熱交換部223cは、空気の流れ方向における伝熱管群の分布中心が空気の流れ方向における前記フィンの中心と一致する。 FIG. 8C is a perspective view of the third heat exchange section 223c of the outdoor heat exchanger 23 according to the modified example of the third embodiment. In FIG. 8C, in the third heat exchange unit 223c, the distribution center of the heat transfer tube group in the air flow direction coincides with the center of the fin in the air flow direction.
 この変形例の技術的意義は、蒸発器として機能する室外熱交換器23における冷媒温度に適した熱交換部の組合せを試みることができることであり、その結果として着霜を抑制しつつ、熱交換性能の向上を図ることができる。 The technical significance of this modification is that it is possible to attempt a combination of heat exchange units suitable for the refrigerant temperature in the outdoor heat exchanger 23 that functions as an evaporator, and as a result, heat exchange is performed while suppressing frost formation. Performance can be improved.
 なお、第1熱交換部223aと、第2熱交換部223bおよび第3熱交換部223cの少なくともいずれか一方とが一体化されてもよい。 Note that the first heat exchange unit 223a and at least one of the second heat exchange unit 223b and the third heat exchange unit 223c may be integrated.
 <その他>
 上記の各実施形態では、非共沸混合冷媒はHFC冷媒、HFO冷媒、CF3I、および自然冷媒のいずれかを含むと述べたが、より詳細に言えば、以下の(A)~(G)のいずれかに該当する非共沸混合冷媒が望ましい。
<Others>
In each of the above embodiments, it is stated that the non-azeotropic mixed refrigerant contains any one of HFC refrigerant, HFO refrigerant, CF3I, and natural refrigerant, but more specifically, the following (A) to (G) A non-azeotropic mixed refrigerant corresponding to any of them is desirable.
 (A)
 R32、R1132(E)、R1234yf、R1234ze、CF3IおよびCO2のいずれかを含む非共沸混合冷媒。
(A)
A non-azeotropic mixed refrigerant containing any of R32, R1132 (E), R1234yf, R1234ze, CF3I and CO2.
 (B)
 少なくともR1132(E)、R32、R1234yfを含む非共沸混合冷媒。
(B)
A non-azeotropic mixed refrigerant containing at least R1132 (E), R32, and R1234yf.
 (C)
 少なくともR1132(E)、R1123およびR1234yfを含む非共沸混合冷媒。
(C)
A non-azeotropic mixed refrigerant containing at least R1132 (E), R1123 and R1234yf.
 (D)
 少なくともR1132(E)およびR1234yfを含む非共沸混合冷媒。
(D)
A non-azeotropic mixed refrigerant containing at least R1132 (E) and R1234yf.
 (E)
 少なくともR32、R1234yf、並びに、R1132aおよびR1114の少なくとも一種を含む非共沸混合冷媒。
(E)
A non-azeotropic mixed refrigerant containing at least R32, R1234yf, and at least one of R1132a and R1114.
 (F)
 少なくともR32、CO2、R125、R134a、およびR1234yfを含む非共沸混合冷媒。
(F)
A non-azeotropic mixed refrigerant containing at least R32, CO2, R125, R134a, and R1234yf.
 (G)
 少なくともR1132(Z)およびR1234yfを含む非共沸混合冷媒。
(G)
A non-azeotropic mixed refrigerant containing at least R1132 (Z) and R1234yf.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various modifications of the forms and details are possible without departing from the purpose and scope of the present disclosure described in the claims. ..
 本開示は、冷却運転及び加熱運転を行うことが可能な冷凍装置に対して、広く適用可能である。 The present disclosure is widely applicable to a refrigerating apparatus capable of performing a cooling operation and a heating operation.
 1     空気調和装置(冷凍装置)
 23    室外熱交換器(蒸発器)
 23a   第1熱交換部
 23b   第2熱交換部
 23c   第3熱交換部
 123a   第1熱交換部
 123b   第2熱交換部
 123c   第3熱交換部
 223a   第1熱交換部
 223b   第2熱交換部
 223c   第3熱交換部
 231   扁平管(伝熱管)
 231M  扁平管(伝熱管)
 231N  伝熱管
 232   伝熱フィン
 232c  切り欠き
 232M  伝熱フィン
 232N  伝熱フィン
1 Air conditioner (refrigerator)
23 Outdoor heat exchanger (evaporator)
23a 1st heat exchange part 23b 2nd heat exchange part 23c 3rd heat exchange part 123a 1st heat exchange part 123b 2nd heat exchange part 123c 3rd heat exchange part 223a 1st heat exchange part 223b 2nd heat exchange part 223c 3 Heat exchange section 231 Flat tube (heat transfer tube)
231M flat tube (heat transfer tube)
231N Heat Transfer Tube 232 Heat Transfer Fin 232c Notch 232M Heat Transfer Fin 232N Heat Transfer Fin
WO2017/183180号WO2017 / 183180

Claims (20)

  1.  非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、
     板厚方向に所定間隔で並ぶ複数のフィン(232)と、
     前記複数のフィンを板厚方向に貫通する複数の伝熱管(231)と、
    を備え、
     前記複数の伝熱管を伝熱管群として前記フィンの板厚方向から視たとき、空気の流れ方向における前記伝熱管群の分布中心が、前記空気の流れ方向における前記フィンの中心よりも風下に位置する、第1熱交換部(23a)が形成されている、
    蒸発器。
    An evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed.
    Multiple fins (232) lined up at predetermined intervals in the plate thickness direction,
    A plurality of heat transfer tubes (231) penetrating the plurality of fins in the plate thickness direction,
    With
    When the plurality of heat transfer tubes are viewed from the thickness direction of the fins as a heat transfer tube group, the distribution center of the heat transfer tube group in the air flow direction is located leeward of the center of the fins in the air flow direction. The first heat exchange section (23a) is formed.
    Evaporator.
  2.  前記伝熱管群の分布中心が、前記空気の流れ方向における前記フィンの中心よりも風上に位置する、第2熱交換部(23b)がさらに形成されている、
    請求項1に記載の蒸発器。
    A second heat exchange portion (23b) is further formed in which the distribution center of the heat transfer tube group is located on the windward side of the center of the fin in the air flow direction.
    The evaporator according to claim 1.
  3.  前記伝熱管群の分布中心が、前記空気の流れ方向における前記フィンの中心と一致するする、第3熱交換部がさらに形成されている、
    請求項2に記載の蒸発器。
    A third heat exchange portion is further formed in which the distribution center of the heat transfer tube group coincides with the center of the fin in the air flow direction.
    The evaporator according to claim 2.
  4.  前記第1熱交換部と、前記第2熱交換部とが一体化されている、
    請求項2に記載の蒸発器。
    The first heat exchange unit and the second heat exchange unit are integrated.
    The evaporator according to claim 2.
  5.  前記第1熱交換部と、前記第2熱交換部および前記第3熱交換部の少なくともいずれか一方とが一体化されている。
    請求項3に記載の蒸発器。
    The first heat exchange unit, at least one of the second heat exchange unit and the third heat exchange unit is integrated.
    The evaporator according to claim 3.
  6.  非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、
     板厚方向に所定間隔で並ぶ複数のフィン(232)と、
     前記複数のフィンを板厚方向に貫通する複数の伝熱管(231)と、
    を備え、
     空気の流れ方向の最も風上に位置する前記伝熱管の風上側端部から前記フィンの風上側端部までの距離が第1寸法である第1熱交換部(23a)と、
     空気の流れ方向の最も風上に位置する前記伝熱管の風上側端部から前記フィンの風上側端部までの距離が第1寸法よりも小さい第2寸法である第2熱交換部(23b)と、
    が形成されている、
    蒸発器。
    An evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed.
    Multiple fins (232) lined up at predetermined intervals in the plate thickness direction,
    A plurality of heat transfer tubes (231) penetrating the plurality of fins in the plate thickness direction,
    With
    The first heat exchange section (23a), in which the distance from the windward end of the heat transfer tube located most upwind in the air flow direction to the windward end of the fin is the first dimension,
    The second heat exchange section (23b), which is the second dimension in which the distance from the windward end of the heat transfer tube located most upwind in the air flow direction to the windward end of the fin is smaller than the first dimension. When,
    Is formed,
    Evaporator.
  7.  空気の流れ方向の最も風上に位置する前記伝熱管の風上側端部から前記フィンの風上側端部までの距離と、
     空気の流れ方向の最も風下に位置する前記伝熱管の風下側端部から前記フィンの風下側端部までの距離と、
    が等しい、第3熱交換部がさらに形成されている、
    請求項6に記載の蒸発器。
    The distance from the windward end of the heat transfer tube located most upwind in the air flow direction to the windward end of the fin,
    The distance from the leeward end of the heat transfer tube located on the leeward side of the air flow direction to the leeward end of the fin,
    Are equal, a third heat exchange is further formed,
    The evaporator according to claim 6.
  8.  前記第1熱交換部と、前記第2熱交換部とが一体化されている、
    請求項6に記載の蒸発器。
    The first heat exchange unit and the second heat exchange unit are integrated.
    The evaporator according to claim 6.
  9.  前記第1熱交換部と、前記第2熱交換部および前記第3熱交換部の少なくともいずれか一方とが一体化されている。
    請求項7に記載の蒸発器。
    The first heat exchange unit, at least one of the second heat exchange unit and the third heat exchange unit is integrated.
    The evaporator according to claim 7.
  10.  非共沸混合冷媒が封入される冷凍サイクル装置の蒸発器であって、
     板厚方向に所定間隔で並ぶ複数のフィン(232)と、
     前記複数のフィンを板厚方向に貫通する複数の伝熱管(231)と、
    を備え、
     前記フィンは、空気の流れ方向および前記板厚方向の双方と直交する方向に並ぶ複数の切り欠き(232c)を有し、
     前記伝熱管は、前記切り欠きに差し込まれる扁平多穴管であり、
     前記切り欠きの開口側が前記空気の流れ方向の風下に位置する、第1熱交換部(23a)が形成されている、
    蒸発器。
    An evaporator of a refrigeration cycle device in which a non-azeotropic mixed refrigerant is sealed.
    Multiple fins (232) lined up at predetermined intervals in the plate thickness direction,
    A plurality of heat transfer tubes (231) penetrating the plurality of fins in the plate thickness direction,
    With
    The fin has a plurality of notches (232c) arranged in a direction orthogonal to both the air flow direction and the plate thickness direction.
    The heat transfer tube is a flat multi-hole tube that is inserted into the notch.
    A first heat exchange portion (23a) is formed, in which the opening side of the notch is located leeward in the air flow direction.
    Evaporator.
  11.  前記切り欠きの開口側が前記空気の流れ方向の風上に位置する、第2熱交換部(23b)がさらに形成されている、
    請求項10に記載の蒸発器。
    A second heat exchange portion (23b) is further formed, in which the opening side of the notch is located upwind of the air flow direction.
    The evaporator according to claim 10.
  12.  前記第1熱交換部と、前記第2熱交換部とが一体化されている、
    請求項11に記載の蒸発器。
    The first heat exchange unit and the second heat exchange unit are integrated.
    The evaporator according to claim 11.
  13.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、HFC冷媒、HFO冷媒、CF3I、および自然冷媒のいずれかを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains any of an HFC refrigerant, an HFO refrigerant, CF3I, and a natural refrigerant.
    Refrigeration cycle equipment.
  14.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、R32、R1132(E)、R1234yf、R1234ze、CF3IおよびCO2のいずれかを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains any of R32, R1132 (E), R1234yf, R1234ze, CF3I and CO2.
    Refrigeration cycle equipment.
  15.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR1132(E)、R32、R1234yfを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains at least R1132 (E), R32, and R1234yf.
    Refrigeration cycle equipment.
  16.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR1132(E)、R1123およびR1234yfを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains at least R1132 (E), R1123 and R1234yf.
    Refrigeration cycle equipment.
  17.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR1132(E)およびR1234yfを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains at least R1132 (E) and R1234yf.
    Refrigeration cycle equipment.
  18.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR32、R1234yf、並びに、R1132aおよびR1114の少なくとも一種を含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant comprises at least R32, R1234yf, and at least one of R1132a and R1114.
    Refrigeration cycle equipment.
  19.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR32、CO2、R125、R134a、およびR1234yfを含む、
    冷凍サイクル装置。
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains at least R32, CO2, R125, R134a, and R1234yf.
    Refrigeration cycle equipment.
  20.  請求項1から請求項12のいずれか1項に記載の蒸発器を備え、
     前記非共沸混合冷媒は、少なくともR1132(Z)およびR1234yfを含む、
    冷凍サイクル装置。
     
    The evaporator according to any one of claims 1 to 12 is provided.
    The non-azeotropic mixed refrigerant contains at least R1132 (Z) and R1234yf.
    Refrigeration cycle equipment.
PCT/JP2020/036920 2019-09-30 2020-09-29 Evaporator and refrigeration cycle device equipped with same WO2021065913A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20871516.9A EP4040084A4 (en) 2019-09-30 2020-09-29 Evaporator and refrigeration cycle device equipped with same
CN202080067949.7A CN114450546B (en) 2019-09-30 2020-09-29 Evaporator and refrigeration cycle device having the same
US17/705,356 US20220214085A1 (en) 2019-09-30 2022-03-27 Evaporator and refrigeration cycle apparatus including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-180813 2019-09-30
JP2019180813A JP7425282B2 (en) 2019-09-30 2019-09-30 Evaporator and refrigeration cycle equipment equipped with it

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/705,356 Continuation US20220214085A1 (en) 2019-09-30 2022-03-27 Evaporator and refrigeration cycle apparatus including the same

Publications (1)

Publication Number Publication Date
WO2021065913A1 true WO2021065913A1 (en) 2021-04-08

Family

ID=75270580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036920 WO2021065913A1 (en) 2019-09-30 2020-09-29 Evaporator and refrigeration cycle device equipped with same

Country Status (5)

Country Link
US (1) US20220214085A1 (en)
EP (1) EP4040084A4 (en)
JP (1) JP7425282B2 (en)
CN (1) CN114450546B (en)
WO (1) WO2021065913A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11906207B2 (en) * 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
KR20230085672A (en) * 2021-12-07 2023-06-14 와이엠레미 주식회사 Refrigerant Composition For Air Conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165586A (en) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device equipped with the heat exchanger
JP2004218945A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and method of manufacturing the same
WO2015136981A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Compressor and refrigeration cycle system
JP2015216728A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Compressor motor, compressor, refrigeration cycle device, and manufacturing method of compressor motor
WO2017183180A1 (en) 2016-04-22 2017-10-26 三菱電機株式会社 Heat exchanger
JP2019089084A (en) * 2017-11-13 2019-06-13 三菱電機株式会社 Pipe insertion device and pipe insertion method
JP2019104814A (en) * 2017-12-12 2019-06-27 ダイキン工業株式会社 Coolant containing hydrocarbon fluoride and carbon dioxide, use thereof, refrigerating machine having the same, and operation method of refrigeration machine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0854149A (en) * 1994-08-11 1996-02-27 Matsushita Electric Ind Co Ltd Refrigerating device
JP2012154500A (en) * 2011-01-21 2012-08-16 Daikin Industries Ltd Heat exchanger and air conditioner
WO2013160950A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
EP3029395A4 (en) * 2013-07-29 2017-03-08 Mitsubishi Electric Corporation Heat pump device
JP6657957B2 (en) * 2014-01-31 2020-03-04 Agc株式会社 Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JPWO2017221400A1 (en) * 2016-06-24 2019-02-28 三菱電機株式会社 Refrigeration cycle equipment
WO2018078800A1 (en) * 2016-10-28 2018-05-03 三菱電機株式会社 Heat exchanger and refrigeration cycle device
JP2019011923A (en) * 2017-06-30 2019-01-24 ダイキン工業株式会社 Heat exchanger

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001165586A (en) * 1999-12-07 2001-06-22 Mitsubishi Electric Corp Heat exchanger and air-conditioning refrigerating device equipped with the heat exchanger
JP2004218945A (en) * 2003-01-15 2004-08-05 Matsushita Electric Ind Co Ltd Heat exchanger and method of manufacturing the same
WO2015136981A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Compressor and refrigeration cycle system
JP2015216728A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Compressor motor, compressor, refrigeration cycle device, and manufacturing method of compressor motor
WO2017183180A1 (en) 2016-04-22 2017-10-26 三菱電機株式会社 Heat exchanger
JP2019089084A (en) * 2017-11-13 2019-06-13 三菱電機株式会社 Pipe insertion device and pipe insertion method
JP2019104814A (en) * 2017-12-12 2019-06-27 ダイキン工業株式会社 Coolant containing hydrocarbon fluoride and carbon dioxide, use thereof, refrigerating machine having the same, and operation method of refrigeration machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040084A4

Also Published As

Publication number Publication date
CN114450546A (en) 2022-05-06
EP4040084A1 (en) 2022-08-10
CN114450546B (en) 2024-01-16
JP7425282B2 (en) 2024-01-31
JP2021055957A (en) 2021-04-08
US20220214085A1 (en) 2022-07-07
EP4040084A4 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2021065913A1 (en) Evaporator and refrigeration cycle device equipped with same
WO2018047330A1 (en) Air conditioner
US10386081B2 (en) Air-conditioning device
JP4922669B2 (en) Air conditioner and heat exchanger for air conditioner
WO2013160957A1 (en) Heat exchanger, indoor unit, and refrigeration cycle device
EP2759785A1 (en) Refrigeration device
WO2014119430A1 (en) Outdoor unit and refrigeration cycle device
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
JPH10176867A (en) Air conditioner
WO2018138770A1 (en) Heat source-side unit and refrigeration cycle device
KR100883600B1 (en) Air conditioner
JPH11257800A (en) Heat exchanger and air conditioner with exchanger
WO2021065914A1 (en) Freezing apparatus
WO2022014515A1 (en) Heat exchanger
WO2016075851A1 (en) Heat pump apparatus
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2020235030A1 (en) Heat exchanger and refrigeration cycle device using same
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
EP3770535A1 (en) Heat exchanger, refrigeration cycle device, and air conditioning device
JP6621928B2 (en) Heat exchanger and air conditioner
JP7357137B1 (en) air conditioner
WO2023188421A1 (en) Outdoor unit and air conditioner equipped with same
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
WO2022102077A1 (en) Refrigeration cycle device
EP4166858A1 (en) Outdoor unit for air conditioning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20871516

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020871516

Country of ref document: EP

Effective date: 20220502