WO2015136981A1 - Compressor and refrigeration cycle system - Google Patents

Compressor and refrigeration cycle system Download PDF

Info

Publication number
WO2015136981A1
WO2015136981A1 PCT/JP2015/051129 JP2015051129W WO2015136981A1 WO 2015136981 A1 WO2015136981 A1 WO 2015136981A1 JP 2015051129 W JP2015051129 W JP 2015051129W WO 2015136981 A1 WO2015136981 A1 WO 2015136981A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flame retardant
compressor
compression element
electric element
Prior art date
Application number
PCT/JP2015/051129
Other languages
French (fr)
Japanese (ja)
Inventor
英明 前山
訓明 松永
外山 悟
岳春 景山
Original Assignee
三菱電機株式会社
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 旭硝子株式会社 filed Critical 三菱電機株式会社
Priority to JP2016507386A priority Critical patent/JP6293262B2/en
Priority to CN201580013279.XA priority patent/CN106103992B/en
Publication of WO2015136981A1 publication Critical patent/WO2015136981A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0005Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 adaptations of pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0215Lubrication characterised by the use of a special lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/322Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the outer member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a

Definitions

  • the present invention relates to a compressor and a refrigeration cycle apparatus.
  • the present invention relates to a compressor using, for example, an ethylene-based fluorinated hydrocarbon or a mixture containing an ethylene-based fluorinated hydrocarbon as a refrigerant.
  • R1234yf 2,3,3,3-tetrafluoropropene
  • GWP global warming potential refrigerant
  • propylene-based fluorinated hydrocarbons are characterized by being easily decomposed and polymerized due to the presence of double bonds in the composition.
  • Tetrafluoroethylene is useful as a monomer for producing fluororesins and fluorine-containing elastomers having excellent heat resistance and chemical resistance, but is a substance that is extremely easily polymerized.
  • a polymerization inhibitor to tetrafluoroethylene from the time of purification (see, for example, Patent Document 2).
  • JP 2009-299649 A Japanese Patent Laid-Open No. 11-246447
  • R410A used as a refrigerant in a stationary air conditioner has a standard boiling point of ⁇ 51 ° C.
  • R1234yf which is a propylene-based fluorinated hydrocarbon
  • the R1234yf refrigerant has a lower operating pressure and a lower refrigeration capacity per suction volume than the R410A refrigerant.
  • the volume flow rate of the refrigerant must be increased in order to obtain a refrigerating capacity equivalent to that of the R410A refrigerant. Therefore, problems such as an increase in the displacement of the compressor, an increase in pressure loss, and a decrease in efficiency occur.
  • a refrigerant having a low standard boiling point is appropriate.
  • a refrigerant having a small number of carbons tends to have a low boiling point.
  • ethylene-based fluorinated hydrocarbons are more reactive than propylene-based fluorinated hydrocarbons, are thermally and chemically unstable, and are susceptible to decomposition and polymerization. It is difficult to suppress decomposition and polymerization only by the method disclosed in Patent Document 1.
  • the refrigerant circulates in the refrigerant circuit while repeating the phase change from liquid to gas and from gas to liquid, and is vaporized at the sliding portion of the compression element and the winding portion of the electric element.
  • the polymerization inhibitor added to the refrigerant is carried out of the compressor by the vaporized refrigerant. For this reason, the polymerization inhibitor does not reach the sliding portion of the compression element and the winding portion of the electric element, and cannot sufficiently exhibit the effect of preventing decomposition and polymerization.
  • ethylene-based fluorohydrocarbons cause an explosive decomposition reaction triggered by heat generated by the polymerization reaction. Therefore, when ethylene-based fluorohydrocarbon is used as the refrigerant, if the decomposition and polymerization of the refrigerant cannot be sufficiently suppressed, the refrigerant circuit or the compressor may be damaged due to the explosion.
  • R1123 1,1,2-trifluoroethylene (R1123) as one of ethylene fluorocarbons.
  • R1123 has a problem that explosion occurs when ignition energy is applied in a high temperature and high pressure state (see, for example, Non-Patent Document 1).
  • the disproportionation reaction is caused by the generation of ignition energy (high temperature part)
  • a refrigeration cycle apparatus such as an air conditioner
  • the sliding part of the compression element that becomes high temperature or the winding of the electric element. Explosion due to disproportionation reaction tends to occur at the line part.
  • An object of the present invention is to prevent explosion due to a chemical reaction of a refrigerant in a compressor using a refrigerant containing, for example, an ethylene-based fluorohydrocarbon.
  • a compressor includes: A compression element for compressing a refrigerant containing an ethylene-based fluorohydrocarbon; An electric element for driving the compression element; A container for storing refrigerating machine oil for storing the compression element and the electric element and lubricating a sliding portion of the compression element; A flame retardant is contained in at least one of the sliding portion of the compression element, the winding portion of the electric element, and the refrigerating machine oil.
  • a compressor using a refrigerant containing an ethylene-based fluorohydrocarbon contains a flame retardant in at least one of the sliding portion of the compression element, the winding portion of the electric element, and the refrigerator oil. Therefore, it is possible to prevent an explosion due to a chemical reaction of the refrigerant at the sliding portion of the compression element or the winding portion of the electric element that becomes high temperature.
  • FIG. 1 and 2 are circuit diagrams of a refrigeration cycle apparatus 10 according to the present embodiment.
  • FIG. 1 shows the refrigerant circuit 11a during cooling.
  • FIG. 2 shows the refrigerant circuit 11b during heating.
  • the refrigeration cycle apparatus 10 is an air conditioner. Note that this embodiment can be applied even if the refrigeration cycle apparatus 10 is a device other than an air conditioner (for example, a heat pump cycle apparatus).
  • the refrigeration cycle apparatus 10 includes refrigerant circuits 11a and 11b through which refrigerant circulates.
  • a compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, and an indoor heat exchanger 16 are connected to the refrigerant circuits 11a and 11b.
  • the compressor 12 compresses the refrigerant.
  • the four-way valve 13 switches the direction of refrigerant flow between cooling and heating.
  • the outdoor heat exchanger 14 is an example of a first heat exchanger.
  • the outdoor heat exchanger 14 operates as a condenser during cooling, and dissipates the refrigerant compressed by the compressor 12.
  • the outdoor heat exchanger 14 operates as an evaporator during heating, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion valve 15.
  • the expansion valve 15 is an example of an expansion mechanism.
  • the expansion valve 15 expands the refrigerant radiated by the condenser.
  • the indoor heat exchanger 16 is an example of a second heat exchanger.
  • the indoor heat exchanger 16 operates as a condenser during heating, and dissipates the refrigerant compressed by the compressor 12.
  • the indoor heat exchanger 16 operates as an evaporator during cooling, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion valve 15.
  • the refrigeration cycle apparatus 10 further includes a control device 17.
  • the control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in the figure, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuits 11a and 11b. The control device 17 monitors and controls the state of each element.
  • a refrigerant containing ethylene-based fluorohydrocarbon is used as the refrigerant circulating in the refrigerant circuits 11a and 11b.
  • This refrigerant may be a single type of ethylene-based fluorohydrocarbon alone, a mixture of two or more types of ethylene-based fluorohydrocarbons, or one type or two or more types of ethylene-based fluorocarbons. It may be a mixture containing activated hydrocarbons.
  • the refrigerant used in the refrigeration cycle apparatus 10 contains 1 to 100% of ethylene-based fluorohydrocarbon, this embodiment can be applied and the effects described later can be obtained.
  • a mixture of 1,1,2-trifluoroethylene (R1123) and difluoromethane (R32) can be used.
  • R1123 1,1,2-trifluoroethylene
  • R32 difluoromethane
  • a mixture containing 40 wt% R1123 and 60 wt% R32 can be used. Either one or both of R1123 and R32 in this mixture may be replaced with another substance.
  • R1123 may be replaced with another ethylene-based fluorohydrocarbon or a mixture of R1123 and another ethylene-based fluorohydrocarbon.
  • ethylene-based fluorohydrocarbons include, for example, fluoroethylene (R1141), 1,1-difluoroethylene (R1132a), trans-1,2-difluoroethylene (R1132 (E)), cis-1,2- Difluoroethylene (R1132 (Z)) can be used.
  • R32 is, for example, 2,3,3,3-tetrafluoropropene (R1234yf), trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), cis-1,3,3,3- Tetrafluoropropene (R1234ze (Z)), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1,2,2-pentafluoroethane (R125) may be substituted. .
  • R32 may be replaced with a mixture of any two or more of R32, R1234yf, R1234ze (E), R1234ze (Z), R134a, and R125, for example.
  • R1123 alone (that is, a refrigerant containing 100 wt% R1123) may be used. Similarly to the above mixture, R1123 may be replaced with another ethylene-based fluorohydrocarbon or a mixture of R1123 and another ethylene-based fluorohydrocarbon.
  • FIG. 3 is a longitudinal sectional view of the compressor 12. 4 is a cross-sectional view taken along the line AA in FIG. In FIG. 3, hatching representing a cross section is omitted.
  • the compressor 12 is a one-cylinder rotary compressor. Note that the present embodiment can be applied even when the compressor 12 is a multi-cylinder rotary compressor or a scroll compressor.
  • the compressor 12 includes a sealed container 20, a compression element 30, an electric element 40, and a crankshaft 50.
  • the sealed container 20 is an example of a container.
  • a suction pipe 21 for sucking the refrigerant and a discharge pipe 22 for discharging the refrigerant are attached to the sealed container 20.
  • the compression element 30 is stored in the sealed container 20. Specifically, the compression element 30 is installed in the lower part inside the sealed container 20. The compression element 30 compresses the refrigerant sucked into the suction pipe 21.
  • the electric element 40 is also accommodated in the sealed container 20. Specifically, the electric element 40 is installed at a position in the sealed container 20 where the refrigerant compressed by the compression element 30 passes before being discharged from the discharge pipe 22. That is, the electric element 40 is installed above the compression element 30 inside the sealed container 20. The electric element 40 drives the compression element 30.
  • the electric element 40 is a concentrated winding motor. The present embodiment can be applied even if the electric element 40 is a distributed winding motor.
  • Refrigerator oil 25 for lubricating the sliding portion of the compression element 30 is stored at the bottom of the sealed container 20.
  • the refrigerating machine oil 25 for example, POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) which are synthetic oils are used.
  • the refrigerating machine oil 25 is selected to have a viscosity that can sufficiently lubricate the compressor 12 even if the refrigerant is dissolved in the oil and that does not reduce the efficiency of the compressor 12.
  • the kinematic viscosity of the base oil at 40 ° C. is about 5 to 300 cSt.
  • the refrigerating machine oil 25 contains a flame retardant.
  • the compression element 30 includes a cylinder 31, a rolling piston 32, a vane 36, a main bearing 33, and a sub bearing 34.
  • the outer periphery of the cylinder 31 is substantially circular in plan view.
  • a cylinder chamber 62 that is a substantially circular space in plan view is formed inside the cylinder 31.
  • the cylinder 31 is open at both axial ends.
  • the cylinder 31 is provided with a vane groove 61 that communicates with the cylinder chamber 62 and extends in the radial direction.
  • a back pressure chamber 63 which is a substantially circular space in plan view, communicated with the vane groove 61 is formed outside the vane groove 61.
  • the cylinder 31 is provided with a suction port (not shown) through which gas refrigerant is sucked from the refrigerant circuits 11a and 11b.
  • the suction port passes through the cylinder chamber 62 from the outer peripheral surface of the cylinder 31.
  • the cylinder 31 is provided with a discharge port (not shown) through which the compressed refrigerant is discharged from the cylinder chamber 62.
  • the discharge port is formed by cutting out the upper end surface of the cylinder 31.
  • the rolling piston 32 has a ring shape.
  • the rolling piston 32 moves eccentrically in the cylinder chamber 62.
  • the rolling piston 32 is slidably fitted to the eccentric shaft portion 51 of the crankshaft 50.
  • the shape of the vane 36 is a flat, substantially rectangular parallelepiped.
  • the vane 36 is installed in the vane groove 61 of the cylinder 31.
  • the vane 36 is always pressed against the rolling piston 32 by a vane spring 37 provided in the back pressure chamber 63. Since the inside of the sealed container 20 is at a high pressure, when the operation of the compressor 12 is started, the pressure in the sealed container 20 and the pressure in the cylinder chamber 62 on the back surface of the vane 36 (that is, the surface on the back pressure chamber 63 side). Force due to the difference acts.
  • the vane spring 37 is mainly used for the purpose of pressing the vane 36 against the rolling piston 32 when the compressor 12 is started (when there is no difference in the pressure in the sealed container 20 and the cylinder chamber 62).
  • the main bearing 33 has a substantially inverted T shape when viewed from the side.
  • the main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the crankshaft 50.
  • the main bearing 33 closes the cylinder chamber 62 and the vane groove 61 of the cylinder 31.
  • the auxiliary bearing 34 is substantially T-shaped when viewed from the side.
  • the auxiliary bearing 34 is slidably fitted to the auxiliary shaft portion 53 that is a portion below the eccentric shaft portion 51 of the crankshaft 50.
  • the auxiliary bearing 34 closes the cylinder chamber 62 and the lower side of the vane groove 61 of the cylinder 31.
  • the main bearing 33 includes a discharge valve (not shown).
  • a discharge muffler 35 is attached to the outside of the main bearing 33.
  • the high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20.
  • the discharge valve and the discharge muffler 35 may be provided in the auxiliary bearing 34 or in both the main bearing 33 and the auxiliary bearing 34.
  • the material of the cylinder 31, the main bearing 33, and the auxiliary bearing 34 is gray cast iron, sintered steel, carbon steel, or the like.
  • the material of the rolling piston 32 is, for example, alloy steel containing chromium or the like.
  • the material of the vane 36 is, for example, high speed tool steel.
  • a suction muffler 23 is provided beside the sealed container 20.
  • the suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuits 11a and 11b.
  • the suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber 62 of the cylinder 31 when the liquid refrigerant returns.
  • the suction muffler 23 is connected to the suction port of the cylinder 31 via the suction pipe 21.
  • the main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
  • the electric element 40 is a brushless DC (Direct Current) motor.
  • the present embodiment can be applied even if the electric element 40 is a motor (for example, an induction motor) other than the brushless DC motor.
  • the electric element 40 includes a stator 41 and a rotor 42.
  • the stator 41 is fixed in contact with the inner peripheral surface of the sealed container 20.
  • the rotor 42 is installed inside the stator 41 with a gap of about 0.3 to 1 mm.
  • the stator 41 includes a stator core 43 and a winding portion 44.
  • the stator core 43 is manufactured by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding.
  • the winding portion 44 is configured by winding a three-phase winding (that is, a conductor wire) in a concentrated manner on a plurality of teeth (not shown) formed on the stator core 43 via an insulating member 47.
  • the winding is composed of a core wire and at least one layer of a coating covering the core wire.
  • the material of the core wire is, for example, copper.
  • the material of the film is, for example, AI (amidoimide) / EI (ester imide).
  • the material of the insulating member 47 is, for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • PPS polyphenylene sulfide
  • a lead wire 45 is connected to the winding portion 44.
  • a plurality of notches are formed on the outer periphery of the stator core 43 at substantially equal intervals in the circumferential direction.
  • Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20.
  • Each notch also serves as a passage for the refrigerating machine oil 25 that returns from the top of the electric element 40 to the bottom of the sealed container 20.
  • the rotor 42 includes a rotor core 46 and a permanent magnet (not shown).
  • the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, stacking them in the axial direction, and fixing them by caulking or welding. Produced.
  • the permanent magnet is inserted into a plurality of insertion holes formed in the rotor core 46.
  • a ferrite magnet or a rare earth magnet is used as the permanent magnet.
  • an upper end plate 48 and a lower end plate 49 are respectively provided at the upper end and the lower end of the rotor 42 (that is, both axial ends).
  • the upper end plate 48 and the lower end plate 49 also serve as a rotation balancer.
  • the upper end plate 48 and the lower end plate 49 are fixed to the rotor core 46 by a plurality of fixing rivets (not shown).
  • the rotor core 46 is formed with a plurality of through holes penetrating substantially in the axial direction. Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20, similarly to the cutout of the stator core 43.
  • the electric element 40 When the electric element 40 is configured as an induction motor (not shown), a plurality of slots formed in the rotor core 46 are filled or inserted with a conductor formed of aluminum, copper, or the like. Then, a squirrel-cage winding in which both ends of the conductor are short-circuited by end rings is formed.
  • a terminal 24 (for example, a glass terminal) connected to an external power source is attached to the top of the sealed container 20.
  • the terminal 24 is fixed to the sealed container 20 by welding, for example.
  • a lead wire 45 from the electric element 40 is connected to the terminal 24.
  • a discharge pipe 22 having both axial ends opened is attached at the top of the sealed container 20.
  • the gas refrigerant discharged from the compression element 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuits 11a and 11b.
  • Electric power is supplied from the terminal 24 to the stator 41 of the electric element 40 via the lead wire 45.
  • the rotor 42 of the electric element 40 rotates.
  • the crankshaft 50 fixed to the rotor 42 rotates.
  • the rolling piston 32 of the compression element 30 rotates eccentrically in the cylinder chamber 62 of the cylinder 31 of the compression element 30.
  • the space between the cylinder 31 and the rolling piston 32 is divided into two by the vane 36 of the compression element 30.
  • the crankshaft 50 rotates, the volumes of these two spaces change. In one space, the refrigerant is sucked from the suction muffler 23 by gradually increasing the volume.
  • the volume of the gas refrigerant is gradually reduced to compress the gas refrigerant therein.
  • the compressed gas refrigerant is discharged once from the discharge muffler 35 to the space in the sealed container 20.
  • the discharged gas refrigerant passes through the electric element 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20.
  • the gas refrigerant passing through the electric element 40 is not only a plurality of through holes formed in the rotor core 46 and a plurality of notches formed in the stator core 43, but also the stator core 43. , It goes through a gap including a slot formed between adjacent teeth. The refrigerant passing through the slot passes near the winding portion 44.
  • the compression element 30 has a plurality of sliding portions as described below.
  • First sliding part outer peripheral part 71 of rolling piston 32 and tip 81 of vane 36
  • Second sliding portion vane groove 61 of cylinder 31 and side surface portion 82 of vane 36
  • Third sliding part inner peripheral part 72 of rolling piston 32 and eccentric shaft part 51 of crankshaft 50
  • Fourth sliding portion inner peripheral portion of main bearing 33 and main shaft portion 52 of crankshaft 50
  • Fifth sliding part the inner peripheral part of the auxiliary bearing 34 and the auxiliary shaft part 53 of the crankshaft 50
  • the sliding portion is constituted by a combination of two of the cylinder 31, the rolling piston 32, the vane 36, the main bearing 33, the auxiliary bearing 34, and the crankshaft 50.
  • the vane 36 is provided integrally with the rolling piston 32, and when the crankshaft 50 is driven, the rolling piston It moves in and out along the receiving groove of the support body rotatably attached to 32.
  • the vane 36 moves in the radial direction while swinging according to the rotation of the rolling piston 32, thereby dividing the inside of the cylinder chamber 62 into a compression chamber and a suction chamber.
  • the side surface portion 82 of the vane 36 and the receiving groove of the support form a sliding portion.
  • the support is composed of two columnar members having a semicircular cross section.
  • the support body is rotatably fitted in a circular holding hole formed in an intermediate portion between the suction port and the discharge port of the cylinder 31. Therefore, the outer peripheral part of the support and the inner peripheral part of the holding hole of the cylinder 31 form another sliding part.
  • a refrigerant containing ethylene-based fluorinated hydrocarbon is used.
  • This refrigerant is thermally and chemically unstable. Therefore, decomposition and polymerization due to a chemical reaction are likely to occur. In particular, the chemical reaction of the refrigerant is accelerated and the decomposition is likely to occur at a portion where the temperature is high.
  • the sliding portion of the compression element 30 and the winding portion 44 of the electric element 40 are portions that become high temperature when the compressor 12 is operating.
  • the sliding part of the compression element 30 generates heat when the parts slide.
  • the winding portion 44 of the electric element 40 generates heat when a current for rotating the rotor 42 flows through the winding.
  • Ethylene-based fluorohydrocarbons are highly reactive and cause decomposition and polymerization even when stored at room temperature.
  • the decomposition of the refrigerant proceeds due to the sliding of the metals, and the decomposition products are easily polymerized.
  • a polymerization inhibitor is added to the ethylene-based fluorohydrocarbon, the refrigerant vaporizes into the gas at the sliding portion of the compression element 30 and the winding portion 44 of the electric element 40 that have become high in temperature.
  • the polymerization inhibitor is carried away with the refrigerant. Therefore, the polymerization inhibitor does not remain in the sliding portion of the compression element 30 and the winding portion 44 of the electric element 40, and a sufficient effect cannot be exhibited.
  • the heat generated by the polymerization of the refrigerant may cause an explosive decomposition reaction, which may damage the refrigerant circuits 11a and 11b or the compressor 12.
  • the refrigerating machine oil 25 contains a flame retardant in order to suppress the chemical reaction of the refrigerant.
  • the flame retardant contained in the refrigerator oil 25 for example, a halogen flame retardant, a phosphorus flame retardant, or a combination thereof is used.
  • flame retardants are used to make organic materials such as plastic, rubber, wood, and fiber difficult to burn.
  • a halogen flame retardant when a halogen flame retardant decomposes at a high temperature, a halogen atom is generated.
  • the halogen atom extracts a hydrogen atom from a hydrocarbon or the like to generate a hydrogen halide.
  • the hydrogen halide reacts with the active radicals in the combustion gas to inactivate it.
  • the halogen atom is regenerated, and the regenerated halogen atom further deactivates the active radical.
  • the halogen-based flame retardant effectively suppresses the combustion reaction by the catalytic mechanism that is key to the generation of halogen atoms.
  • Phosphorus flame retardants also exhibit the same effects as halogen flame retardants when radical species generated by decomposition in combustion gas inactivate active radicals.
  • ethylene-based fluorocarbon used as a refrigerant starts an explosive decomposition reaction due to active radicals generated by heat generation or the like.
  • the disproportionation reaction proceeds explosively as active radicals generated by exothermic reactions react with R1123 molecules and the generation of active radicals is linked. Therefore, if the refrigerating machine oil 25 contains a flame retardant, hydrogen halide that inactivates active radicals is generated from the flame retardant at high temperatures, and an explosive decomposition reaction can be effectively suppressed.
  • a refrigeration for lubricating a sliding portion of the compression element 30 that becomes a high temperature in a compressor is generally used as a flame retardant that is used to make the organic material flame retardant.
  • Mixed with machine oil 25 thereby, in the compressor 12 using the refrigerant containing the ethylene-based fluorohydrocarbon, explosion due to the chemical reaction of the refrigerant at the sliding portion of the compression element 30 can be prevented.
  • the refrigeration oil 25 also reaches the winding portion 44 of the electric element 40, explosion due to a chemical reaction of the refrigerant in the winding portion 44 of the electric element 40 can be prevented.
  • Tetrabromobisphenol A can be used as a flame retardant.
  • the refrigerating machine oil 25 preferably contains 0.1% to 5% TBBA.
  • the refrigerating machine oil 25 containing TBBA is used, even when an active radical that triggers the decomposition reaction of the refrigerant is generated due to heat generation or the like, the active radical is effectively inactivated and the decomposition reaction is effectively suppressed. it can. Therefore, the reliability of the compressor 12 can be sufficiently maintained even when a refrigerant that easily generates a decomposition reaction is used in the compressor 12.
  • Flame retardants are not limited to TBBA, but include TBBA carbonate oligomer, TBBA epoxy oligomer, decabromodiphenyl ether, hexabromocyclododecane, bis (pentabromophenyl) ethane, bis (tetrabromophthalimide) ethane, brominated polystyrene, dechlorane, chlorende
  • TBBA carbonate oligomer TBBA epoxy oligomer
  • decabromodiphenyl ether hexabromocyclododecane
  • bis (pentabromophenyl) ethane bis (tetrabromophthalimide) ethane
  • brominated polystyrene brominated polystyrene
  • dechlorane chlorende
  • Other types of halogenated flame retardants such as acid and chlorendic anhydride may be used.
  • triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), tris ( Phosphorus flame retardants such as dichloropropyl) phosphate, tris ( ⁇ -chloropropyl) phosphate, 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate) and red phosphorus may be used. Absent.
  • an antimony compound may be added to the flame retardant contained in the refrigerator oil 25.
  • the effect of the halogen flame retardant can be enhanced by adding an antimony compound to the halogen flame retardant.
  • the antimony compound alone has almost no flame retardant effect, it reacts stepwise with a halogen-based flame retardant to produce halogenated antimony, and this acts as a radical trap to exert the flame retardant effect. Therefore, if an antimony compound is added to the flame retardant contained in the refrigerator oil 25, the decomposition reaction of the refrigerant can be more effectively suppressed.
  • antimony compound for example, antimony trioxide and antimony pentoxide can be used.
  • Embodiment 2 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • the configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS.
  • the configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
  • the refrigerating machine oil 25 contains a flame retardant for suppressing the chemical reaction of the refrigerant.
  • a similar flame retardant is contained in the sliding portion of the compression element 30. Has been.
  • the refrigerating machine oil 25 may not contain a flame retardant.
  • At least one part among the parts constituting the sliding portion of the compression element 30 is made of a porous body.
  • the pores of this porous body contain the same flame retardant as in the first embodiment.
  • the cylinder 31, the main bearing 33, and the auxiliary bearing 34 can be formed as sintered parts that are porous bodies. These sintered parts are preliminarily impregnated with a flame retardant or a refrigerating machine oil 25 containing a flame retardant, and then the compressor 12 is assembled. Thereby, in the sliding part of the compression element 30 which becomes high temperature easily at the time of operation
  • the sliding portion of the compression element 30 contains a flame retardant, so that the decomposition reaction of the refrigerant is effectively suppressed. be able to.
  • an antimony compound may be added to the flame retardant contained in the sliding portion of the compression element 30 as in the first embodiment.
  • the effect of the halogen-based flame retardant can be enhanced. Therefore, if an antimony compound is added to the flame retardant contained in the sliding portion of the compression element 30, the decomposition reaction of the refrigerant can be more effectively suppressed.
  • a flame retardant may be contained in the sliding portion of the compression element 30 as in the second embodiment.
  • Embodiment 3 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • the configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS.
  • the configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
  • the refrigerating machine oil 25 contains a flame retardant for suppressing the chemical reaction of the refrigerant.
  • the chemical reaction of the refrigerant is applied to the winding portion 44 of the electric element 40. Contains a flame retardant to suppress.
  • the refrigerating machine oil 25 may not contain a flame retardant.
  • the same flame retardant as in the first embodiment is contained in the gap between the windings (that is, the conductor wires) constituting the winding portion 44 of the electric element 40.
  • a gap is generated between adjacent windings.
  • This gap can contain a flame retardant or refrigerating machine oil 25 containing a flame retardant, similar to the pores formed in the sintered part in the second embodiment.
  • a flame retardant is mixed in advance with the processing oil used in the winding process, or the winding is wound around each tooth of the stator core 43 after the winding is preliminarily immersed in the flame retardant. .
  • the winding portion 44 of the electric element 40 even if the refrigerating machine oil 25 is not sufficiently spread to the winding portion 44 of the electric element 40, the winding portion 44 itself contains a flame retardant, so that the decomposition reaction of the refrigerant is effectively performed. Can be suppressed.
  • an antimony compound may be added to the flame retardant contained in the winding portion 44 of the electric element 40.
  • the effect of the halogen flame retardant can be enhanced. Therefore, if an antimony compound is added to the flame retardant contained in the winding portion 44, the decomposition reaction of the refrigerant can be more effectively suppressed.
  • Embodiment 4 FIG. In the present embodiment, differences from the first embodiment will be mainly described.
  • the configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS.
  • the configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
  • the refrigerator oil 25 contains an antiwear agent.
  • the antiwear agent decomposes itself to prevent wear of the sliding portion of the compression element 30.
  • the decomposition product of the antiwear agent may react with the decomposition product of the refrigerant containing the ethylene-based fluorocarbon which is easily decomposed to generate a solid.
  • This solid matter accumulates in a narrow flow path such as the expansion valve 15 of the refrigeration cycle apparatus 10 (the same applies when a capillary tube is used in place of the expansion valve 15), which may cause clogging and cause poor cooling. There is.
  • the refrigerator oil 25 does not contain an antiwear agent. For this reason, a solid substance is not produced

Abstract

 A compressor (12) is provided with a sealed container (20), a compression element (30), and an electric element (40). The compression element (30) is housed within the sealed container (20). The compression element (30) compresses a refrigerant containing ethylene-based fluorohydrocarbons. The electric element (40) is also housed within the sealed container (20). The electric element (40) drives the compression element (30). Refrigerator oil (25) for lubricating sliding parts of the compression element (30) is stored in the bottom of the sealed container (20). The refrigerator oil (25) contains a flame retardant for suppressing chemical reactions of the refrigerant.

Description

圧縮機及び冷凍サイクル装置Compressor and refrigeration cycle apparatus
 本発明は、圧縮機及び冷凍サイクル装置に関するものである。本発明は、例えば、冷媒として、エチレン系フッ化炭化水素、又は、エチレン系フッ化炭化水素を含有する混合物を用いた圧縮機に関するものである。 The present invention relates to a compressor and a refrigeration cycle apparatus. The present invention relates to a compressor using, for example, an ethylene-based fluorinated hydrocarbon or a mixture containing an ethylene-based fluorinated hydrocarbon as a refrigerant.
 車両用の空気調和機の分野において、低GWP(地球温暖化係数)冷媒として、プロピレン系フッ化炭化水素である2,3,3,3-テトラフルオロプロペン(R1234yf)がある。一般的に、プロピレン系フッ化炭化水素は、組成中の二重結合の存在により、分解及び重合が発生しやすいという特徴を有する。 In the field of air conditioners for vehicles, 2,3,3,3-tetrafluoropropene (R1234yf), which is a propylene-based fluorinated hydrocarbon, is a low GWP (global warming potential) refrigerant. In general, propylene-based fluorinated hydrocarbons are characterized by being easily decomposed and polymerized due to the presence of double bonds in the composition.
 圧縮機の中で、高温となる摺動部の表面では、プロピレン系フッ化炭化水素の分解及び重合が発生しやすい。従来、この摺動部の表面部分を非金属部品で構成することで、冷媒の分解及び重合を抑制する方法がある(例えば、特許文献1参照)。 In the compressor, the surface of the sliding part that becomes high temperature tends to cause decomposition and polymerization of the propylene-based fluorohydrocarbon. Conventionally, there is a method of suppressing the decomposition and polymerization of the refrigerant by configuring the surface portion of the sliding portion with a non-metallic component (see, for example, Patent Document 1).
 テトラフルオロエチレンは、耐熱性、耐薬品性等の優れたフッ素樹脂、含フッ素エラストマー製造用のモノマーとして有用であるが、極めて重合しやすい物質である。従来、その重合を抑制するために、テトラフルオロエチレンに精製時から重合禁止剤を加える方法がある(例えば、特許文献2参照)。 Tetrafluoroethylene is useful as a monomer for producing fluororesins and fluorine-containing elastomers having excellent heat resistance and chemical resistance, but is a substance that is extremely easily polymerized. Conventionally, in order to suppress the polymerization, there is a method of adding a polymerization inhibitor to tetrafluoroethylene from the time of purification (see, for example, Patent Document 2).
特開2009-299649号公報JP 2009-299649 A 特開平11-246447号公報Japanese Patent Laid-Open No. 11-246447
 従来、定置式の空気調和機に冷媒として用いられていたR410Aは、標準沸点が-51℃である。これに対し、プロピレン系フッ化炭化水素であるR1234yfは、標準沸点が-29℃と高い。よって、R1234yf冷媒は、R410A冷媒に比べて、動作圧力が低く、吸入容積当たりの冷凍能力が小さい。定置式の空気調和機にR1234yf冷媒を使用する場合、R410A冷媒と同等の冷凍能力を得るには、冷媒の体積流量を増大しなければならない。そのため、圧縮機の押しのけ量の増大、圧力損失の増加、効率の低下といった課題が生じる。 Conventionally, R410A used as a refrigerant in a stationary air conditioner has a standard boiling point of −51 ° C. In contrast, R1234yf, which is a propylene-based fluorinated hydrocarbon, has a high normal boiling point of -29 ° C. Therefore, the R1234yf refrigerant has a lower operating pressure and a lower refrigeration capacity per suction volume than the R410A refrigerant. When the R1234yf refrigerant is used in a stationary air conditioner, the volume flow rate of the refrigerant must be increased in order to obtain a refrigerating capacity equivalent to that of the R410A refrigerant. Therefore, problems such as an increase in the displacement of the compressor, an increase in pressure loss, and a decrease in efficiency occur.
 したがって、定置式の空気調和機に低GWP冷媒を適用する場合には、標準沸点の低い冷媒が適当である。一般的に、炭素数が少ない冷媒が低沸点となる傾向がある。例えば、炭素数3のプロピレン系フッ化炭化水素よりも炭素数2のエチレン系フッ化炭化水素を用いた方が低沸点の冷媒を得やすい。 Therefore, when applying a low GWP refrigerant to a stationary air conditioner, a refrigerant having a low standard boiling point is appropriate. Generally, a refrigerant having a small number of carbons tends to have a low boiling point. For example, it is easier to obtain a refrigerant having a low boiling point than using an ethylene fluorocarbon having 2 carbon atoms than a propylene fluorocarbon having 3 carbon atoms.
 しかし、エチレン系フッ化炭化水素は、プロピレン系フッ化炭化水素に比べて反応性が高く、熱的及び化学的に不安定で分解及び重合が発生しやすい。特許文献1に示された方法だけでは、分解及び重合を抑制することは難しい。 However, ethylene-based fluorinated hydrocarbons are more reactive than propylene-based fluorinated hydrocarbons, are thermally and chemically unstable, and are susceptible to decomposition and polymerization. It is difficult to suppress decomposition and polymerization only by the method disclosed in Patent Document 1.
 エチレン系フッ化炭化水素を冷媒として用いる場合、冷媒の生成直後から分解及び重合が発生しやすい。冷媒の保管時であっても、分解及び重合が発生する。分解及び重合を抑制するために、冷媒に生成時から特許文献2に示されたような重合禁止剤を添加したとしても、分解及び重合を十分に抑制することはできない。即ち、圧縮機の中で、高温となる圧縮要素の摺動部、及び、電動要素の巻線部では、冷媒の分解及び重合が発生しやすい。冷媒は、冷媒回路内で液体から気体へ、気体から液体へと相変化を繰り返しながら循環し、圧縮要素の摺動部、及び、電動要素の巻線部では気化する。冷媒に添加された重合禁止剤は、気化した冷媒によって圧縮機の外に運び出される。そのため、重合禁止剤は、圧縮要素の摺動部、及び、電動要素の巻線部に行き渡らず、分解及び重合を防止する効果を十分に発揮できない。 When ethylene-based fluorohydrocarbon is used as a refrigerant, decomposition and polymerization are likely to occur immediately after the generation of the refrigerant. Even when the refrigerant is stored, decomposition and polymerization occur. In order to suppress decomposition and polymerization, even if a polymerization inhibitor as shown in Patent Document 2 is added to the refrigerant from the time of generation, the decomposition and polymerization cannot be sufficiently suppressed. That is, in the compressor, the refrigerant is likely to be decomposed and polymerized at the sliding portion of the compression element and the winding portion of the electric element that become high temperature. The refrigerant circulates in the refrigerant circuit while repeating the phase change from liquid to gas and from gas to liquid, and is vaporized at the sliding portion of the compression element and the winding portion of the electric element. The polymerization inhibitor added to the refrigerant is carried out of the compressor by the vaporized refrigerant. For this reason, the polymerization inhibitor does not reach the sliding portion of the compression element and the winding portion of the electric element, and cannot sufficiently exhibit the effect of preventing decomposition and polymerization.
 エチレン系フッ化炭化水素の中には、重合反応による発熱等をきっかけとして爆発的な分解反応を起こすものがある。よって、エチレン系フッ化炭化水素を冷媒として用いる場合、冷媒の分解及び重合を十分に抑制できなければ、爆発の発生により冷媒回路或いは圧縮機に破損が生じるおそれがある。 Some ethylene-based fluorohydrocarbons cause an explosive decomposition reaction triggered by heat generated by the polymerization reaction. Therefore, when ethylene-based fluorohydrocarbon is used as the refrigerant, if the decomposition and polymerization of the refrigerant cannot be sufficiently suppressed, the refrigerant circuit or the compressor may be damaged due to the explosion.
 例えば、エチレン系フッ化炭化水素の1つとして、1,1,2-トリフルオロエチレン(R1123)がある。R1123には、高温かつ高圧の状態において、着火エネルギーが加わると、爆発が発生するという課題がある(例えば、非特許文献1参照)。この課題については、不均化反応の連鎖によって爆発が発生することが明らかになった。不均化反応は、着火エネルギー(高温部)の発生に起因するため、R1123を空気調和機等の冷凍サイクル装置に適用した場合、高温となる圧縮要素の摺動部、或いは、電動要素の巻線部では、不均化反応による爆発が発生しやすい。 For example, there is 1,1,2-trifluoroethylene (R1123) as one of ethylene fluorocarbons. R1123 has a problem that explosion occurs when ignition energy is applied in a high temperature and high pressure state (see, for example, Non-Patent Document 1). As for this problem, it became clear that explosion occurred due to the chain of disproportionation reaction. Since the disproportionation reaction is caused by the generation of ignition energy (high temperature part), when R1123 is applied to a refrigeration cycle apparatus such as an air conditioner, the sliding part of the compression element that becomes high temperature or the winding of the electric element. Explosion due to disproportionation reaction tends to occur at the line part.
 本発明は、例えば、エチレン系フッ化炭化水素を含有する冷媒を用いる圧縮機において、冷媒の化学反応による爆発を防止することを目的とする。 An object of the present invention is to prevent explosion due to a chemical reaction of a refrigerant in a compressor using a refrigerant containing, for example, an ethylene-based fluorohydrocarbon.
 本発明の一の態様に係る圧縮機は、
 エチレン系フッ化炭化水素を含有する冷媒を圧縮する圧縮要素と、
 前記圧縮要素を駆動する電動要素と、
 前記圧縮要素と前記電動要素とを収納するとともに、前記圧縮要素の摺動部を潤滑するための冷凍機油を貯留する容器とを備え、
 前記圧縮要素の摺動部と前記電動要素の巻線部と前記冷凍機油とのうち少なくとも1つに難燃剤を含有する。
A compressor according to an aspect of the present invention includes:
A compression element for compressing a refrigerant containing an ethylene-based fluorohydrocarbon;
An electric element for driving the compression element;
A container for storing refrigerating machine oil for storing the compression element and the electric element and lubricating a sliding portion of the compression element;
A flame retardant is contained in at least one of the sliding portion of the compression element, the winding portion of the electric element, and the refrigerating machine oil.
 本発明では、エチレン系フッ化炭化水素を含有する冷媒を用いる圧縮機が、圧縮要素の摺動部と電動要素の巻線部と冷凍機油とのうち少なくとも1つに難燃剤を含有する。そのため、高温となる圧縮要素の摺動部、或いは、電動要素の巻線部での冷媒の化学反応による爆発を防止することができる。 In the present invention, a compressor using a refrigerant containing an ethylene-based fluorohydrocarbon contains a flame retardant in at least one of the sliding portion of the compression element, the winding portion of the electric element, and the refrigerator oil. Therefore, it is possible to prevent an explosion due to a chemical reaction of the refrigerant at the sliding portion of the compression element or the winding portion of the electric element that becomes high temperature.
本発明の実施の形態に係る冷凍サイクル装置(冷房時)の回路図。The circuit diagram of the refrigerating-cycle apparatus (at the time of cooling) which concerns on embodiment of this invention. 本発明の実施の形態に係る冷凍サイクル装置(暖房時)の回路図。The circuit diagram of the refrigerating-cycle apparatus (at the time of heating) which concerns on embodiment of this invention. 本発明の実施の形態に係る圧縮機の縦断面図。The longitudinal cross-sectional view of the compressor which concerns on embodiment of this invention. 図3のA-A断面図。AA sectional view of FIG.
 以下、本発明の実施の形態について、図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 実施の形態1.
 図1及び図2は、本実施の形態に係る冷凍サイクル装置10の回路図である。図1は、冷房時の冷媒回路11aを示している。図2は、暖房時の冷媒回路11bを示している。
Embodiment 1 FIG.
1 and 2 are circuit diagrams of a refrigeration cycle apparatus 10 according to the present embodiment. FIG. 1 shows the refrigerant circuit 11a during cooling. FIG. 2 shows the refrigerant circuit 11b during heating.
 本実施の形態において、冷凍サイクル装置10は、空気調和機である。なお、冷凍サイクル装置10が空気調和機以外の機器(例えば、ヒートポンプサイクル装置)であっても、本実施の形態を適用することができる。 In the present embodiment, the refrigeration cycle apparatus 10 is an air conditioner. Note that this embodiment can be applied even if the refrigeration cycle apparatus 10 is a device other than an air conditioner (for example, a heat pump cycle apparatus).
 図1及び図2において、冷凍サイクル装置10は、冷媒が循環する冷媒回路11a,11bを備える。 1 and 2, the refrigeration cycle apparatus 10 includes refrigerant circuits 11a and 11b through which refrigerant circulates.
 冷媒回路11a,11bには、圧縮機12と、四方弁13と、室外熱交換器14と、膨張弁15と、室内熱交換器16とが接続されている。圧縮機12は、冷媒を圧縮する。四方弁13は、冷房時と暖房時とで冷媒の流れる方向を切り換える。室外熱交換器14は、第1熱交換器の例である。室外熱交換器14は、冷房時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。室外熱交換器14は、暖房時には蒸発器として動作し、室外空気と膨張弁15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。膨張弁15は、膨張機構の例である。膨張弁15は、凝縮器で放熱した冷媒を膨張させる。室内熱交換器16は、第2熱交換器の例である。室内熱交換器16は、暖房時には凝縮器として動作し、圧縮機12により圧縮された冷媒を放熱させる。室内熱交換器16は、冷房時には蒸発器として動作し、室内空気と膨張弁15で膨張した冷媒との間で熱交換を行って冷媒を加熱する。 A compressor 12, a four-way valve 13, an outdoor heat exchanger 14, an expansion valve 15, and an indoor heat exchanger 16 are connected to the refrigerant circuits 11a and 11b. The compressor 12 compresses the refrigerant. The four-way valve 13 switches the direction of refrigerant flow between cooling and heating. The outdoor heat exchanger 14 is an example of a first heat exchanger. The outdoor heat exchanger 14 operates as a condenser during cooling, and dissipates the refrigerant compressed by the compressor 12. The outdoor heat exchanger 14 operates as an evaporator during heating, and heats the refrigerant by exchanging heat between the outdoor air and the refrigerant expanded by the expansion valve 15. The expansion valve 15 is an example of an expansion mechanism. The expansion valve 15 expands the refrigerant radiated by the condenser. The indoor heat exchanger 16 is an example of a second heat exchanger. The indoor heat exchanger 16 operates as a condenser during heating, and dissipates the refrigerant compressed by the compressor 12. The indoor heat exchanger 16 operates as an evaporator during cooling, and heats the refrigerant by exchanging heat between the indoor air and the refrigerant expanded by the expansion valve 15.
 冷凍サイクル装置10は、さらに、制御装置17を備える。 The refrigeration cycle apparatus 10 further includes a control device 17.
 制御装置17は、例えば、マイクロコンピュータである。図では、制御装置17と圧縮機12との接続しか示していないが、制御装置17は、圧縮機12だけでなく、冷媒回路11a,11bに接続された各要素に接続されている。制御装置17は、各要素の状態を監視したり、制御したりする。 The control device 17 is, for example, a microcomputer. Although only the connection between the control device 17 and the compressor 12 is shown in the figure, the control device 17 is connected not only to the compressor 12 but also to each element connected to the refrigerant circuits 11a and 11b. The control device 17 monitors and controls the state of each element.
 本実施の形態において、冷媒回路11a,11bを循環する冷媒としては、エチレン系フッ化炭化水素を含有する冷媒が使用される。この冷媒は、1種類のエチレン系フッ化炭化水素単体であってもよいし、2種類以上のエチレン系フッ化炭化水素の混合物であってもよいし、1種類又は2種類以上のエチレン系フッ化炭化水素を含有する混合物であってもよい。即ち、冷凍サイクル装置10に使用される冷媒がエチレン系フッ化炭化水素を1~100%含有していれば、本実施の形態を適用することができ、後述する効果を得ることができる。 In the present embodiment, a refrigerant containing ethylene-based fluorohydrocarbon is used as the refrigerant circulating in the refrigerant circuits 11a and 11b. This refrigerant may be a single type of ethylene-based fluorohydrocarbon alone, a mixture of two or more types of ethylene-based fluorohydrocarbons, or one type or two or more types of ethylene-based fluorocarbons. It may be a mixture containing activated hydrocarbons. In other words, if the refrigerant used in the refrigeration cycle apparatus 10 contains 1 to 100% of ethylene-based fluorohydrocarbon, this embodiment can be applied and the effects described later can be obtained.
 好適な冷媒として、1,1,2-トリフルオロエチレン(R1123)とジフルオロメタン(R32)との混合物を使用することができる。例えば、R1123を40wt%、R32を60wt%含有する混合物を使用することができる。この混合物のR1123とR32とのいずれか一方又は両方を別の物質に置き換えても構わない。R1123は、他のエチレン系フッ化炭化水素、或いは、R1123と他のエチレン系フッ化炭化水素との混合物に置き換えても構わない。他のエチレン系フッ化炭化水素としては、例えば、フルオロエチレン(R1141)、1,1-ジフルオロエチレン(R1132a)、トランス-1,2-ジフルオロエチレン(R1132(E))、シス-1,2-ジフルオロエチレン(R1132(Z))を使用することができる。R32は、例えば、2,3,3,3-テトラフルオロプロペン(R1234yf)、トランス-1,3,3,3-テトラフルオロプロペン(R1234ze(E))、シス-1,3,3,3-テトラフルオロプロペン(R1234ze(Z))、1,1,1,2-テトラフルオロエタン(R134a)、1,1,1,2,2-ペンタフルオロエタン(R125)のいずれかに置き換えても構わない。或いは、R32は、例えば、R32、R1234yf、R1234ze(E)、R1234ze(Z)、R134a、R125のうち、いずれか2種類以上からなる混合物に置き換えても構わない。 As a suitable refrigerant, a mixture of 1,1,2-trifluoroethylene (R1123) and difluoromethane (R32) can be used. For example, a mixture containing 40 wt% R1123 and 60 wt% R32 can be used. Either one or both of R1123 and R32 in this mixture may be replaced with another substance. R1123 may be replaced with another ethylene-based fluorohydrocarbon or a mixture of R1123 and another ethylene-based fluorohydrocarbon. Other ethylene-based fluorohydrocarbons include, for example, fluoroethylene (R1141), 1,1-difluoroethylene (R1132a), trans-1,2-difluoroethylene (R1132 (E)), cis-1,2- Difluoroethylene (R1132 (Z)) can be used. R32 is, for example, 2,3,3,3-tetrafluoropropene (R1234yf), trans-1,3,3,3-tetrafluoropropene (R1234ze (E)), cis-1,3,3,3- Tetrafluoropropene (R1234ze (Z)), 1,1,1,2-tetrafluoroethane (R134a), 1,1,1,2,2-pentafluoroethane (R125) may be substituted. . Alternatively, R32 may be replaced with a mixture of any two or more of R32, R1234yf, R1234ze (E), R1234ze (Z), R134a, and R125, for example.
 冷媒として、R1123単体(即ち、R1123を100wt%含有する冷媒)を使用してもよい。上記の混合物と同様に、R1123は、他のエチレン系フッ化炭化水素、或いは、R1123と他のエチレン系フッ化炭化水素との混合物に置き換えても構わない。 As the refrigerant, R1123 alone (that is, a refrigerant containing 100 wt% R1123) may be used. Similarly to the above mixture, R1123 may be replaced with another ethylene-based fluorohydrocarbon or a mixture of R1123 and another ethylene-based fluorohydrocarbon.
 図3は、圧縮機12の縦断面図である。図4は、図3のA-A断面図である。なお、図3では、断面を表すハッチングを省略している。 FIG. 3 is a longitudinal sectional view of the compressor 12. 4 is a cross-sectional view taken along the line AA in FIG. In FIG. 3, hatching representing a cross section is omitted.
 本実施の形態において、圧縮機12は、1気筒のロータリ圧縮機である。なお、圧縮機12が多気筒のロータリ圧縮機、或いは、スクロール圧縮機であっても、本実施の形態を適用することができる。 In the present embodiment, the compressor 12 is a one-cylinder rotary compressor. Note that the present embodiment can be applied even when the compressor 12 is a multi-cylinder rotary compressor or a scroll compressor.
 図3において、圧縮機12は、密閉容器20と、圧縮要素30と、電動要素40と、クランク軸50とを備える。 3, the compressor 12 includes a sealed container 20, a compression element 30, an electric element 40, and a crankshaft 50.
 密閉容器20は、容器の例である。密閉容器20には、冷媒を吸入するための吸入管21と、冷媒を吐出するための吐出管22とが取り付けられている。 The sealed container 20 is an example of a container. A suction pipe 21 for sucking the refrigerant and a discharge pipe 22 for discharging the refrigerant are attached to the sealed container 20.
 圧縮要素30は、密閉容器20の中に収納される。具体的には、圧縮要素30は、密閉容器20の内側下部に設置される。圧縮要素30は、吸入管21に吸入された冷媒を圧縮する。 The compression element 30 is stored in the sealed container 20. Specifically, the compression element 30 is installed in the lower part inside the sealed container 20. The compression element 30 compresses the refrigerant sucked into the suction pipe 21.
 電動要素40も、密閉容器20の中に収納される。具体的には、電動要素40は、密閉容器20の中で、圧縮要素30により圧縮された冷媒が吐出管22から吐出される前に通過する位置に設置される。即ち、電動要素40は、密閉容器20の内側で、圧縮要素30の上方に設置される。電動要素40は、圧縮要素30を駆動する。電動要素40は、集中巻のモータである。なお、電動要素40が分布巻のモータであっても、本実施の形態を適用することができる。 The electric element 40 is also accommodated in the sealed container 20. Specifically, the electric element 40 is installed at a position in the sealed container 20 where the refrigerant compressed by the compression element 30 passes before being discharged from the discharge pipe 22. That is, the electric element 40 is installed above the compression element 30 inside the sealed container 20. The electric element 40 drives the compression element 30. The electric element 40 is a concentrated winding motor. The present embodiment can be applied even if the electric element 40 is a distributed winding motor.
 密閉容器20の底部には、圧縮要素30の摺動部を潤滑するための冷凍機油25が貯留されている。冷凍機油25としては、例えば、合成油であるPOE(ポリオールエステル)、PVE(ポリビニルエーテル)、AB(アルキルベンゼン)が使用される。冷凍機油25としては、油中へ冷媒が溶け込んでも圧縮機12を十分に潤滑でき、かつ、圧縮機12の効率を低減させないような粘度をもつものが選ばれる。例えば、40℃における基油の動粘度は、5~300cSt程度である。後述するように、冷凍機油25には、難燃剤が含有されている。 Refrigerator oil 25 for lubricating the sliding portion of the compression element 30 is stored at the bottom of the sealed container 20. As the refrigerating machine oil 25, for example, POE (polyol ester), PVE (polyvinyl ether), and AB (alkylbenzene) which are synthetic oils are used. The refrigerating machine oil 25 is selected to have a viscosity that can sufficiently lubricate the compressor 12 even if the refrigerant is dissolved in the oil and that does not reduce the efficiency of the compressor 12. For example, the kinematic viscosity of the base oil at 40 ° C. is about 5 to 300 cSt. As will be described later, the refrigerating machine oil 25 contains a flame retardant.
 以下では、圧縮要素30の詳細について説明する。 Hereinafter, details of the compression element 30 will be described.
 圧縮要素30は、シリンダ31と、ローリングピストン32と、ベーン36と、主軸受33と、副軸受34とを備える。 The compression element 30 includes a cylinder 31, a rolling piston 32, a vane 36, a main bearing 33, and a sub bearing 34.
 シリンダ31の外周は、平面視略円形である。シリンダ31の内部には、平面視略円形の空間であるシリンダ室62が形成される。シリンダ31は、軸方向両端が開口している。 The outer periphery of the cylinder 31 is substantially circular in plan view. A cylinder chamber 62 that is a substantially circular space in plan view is formed inside the cylinder 31. The cylinder 31 is open at both axial ends.
 シリンダ31には、シリンダ室62に連通し、半径方向に延びるベーン溝61が設けられる。ベーン溝61の外側には、ベーン溝61に連通する平面視略円形の空間である背圧室63が形成される。 The cylinder 31 is provided with a vane groove 61 that communicates with the cylinder chamber 62 and extends in the radial direction. A back pressure chamber 63, which is a substantially circular space in plan view, communicated with the vane groove 61 is formed outside the vane groove 61.
 シリンダ31には、冷媒回路11a,11bからガス冷媒が吸入される吸入ポート(図示していない)が設けられる。吸入ポートは、シリンダ31の外周面からシリンダ室62に貫通している。 The cylinder 31 is provided with a suction port (not shown) through which gas refrigerant is sucked from the refrigerant circuits 11a and 11b. The suction port passes through the cylinder chamber 62 from the outer peripheral surface of the cylinder 31.
 シリンダ31には、シリンダ室62から圧縮された冷媒が吐出される吐出ポート(図示していない)が設けられる。吐出ポートは、シリンダ31の上端面を切り欠いて形成されている。 The cylinder 31 is provided with a discharge port (not shown) through which the compressed refrigerant is discharged from the cylinder chamber 62. The discharge port is formed by cutting out the upper end surface of the cylinder 31.
 ローリングピストン32は、リング状である。ローリングピストン32は、シリンダ室62内で偏心運動する。ローリングピストン32は、クランク軸50の偏心軸部51に摺動自在に嵌合する。 The rolling piston 32 has a ring shape. The rolling piston 32 moves eccentrically in the cylinder chamber 62. The rolling piston 32 is slidably fitted to the eccentric shaft portion 51 of the crankshaft 50.
 ベーン36の形状は、平坦な略直方体である。ベーン36は、シリンダ31のベーン溝61内に設置される。ベーン36は、背圧室63に設けられるベーンスプリング37によって常にローリングピストン32に押し付けられている。密閉容器20内が高圧であるため、圧縮機12の運転が開始すると、ベーン36の背面(即ち、背圧室63側の面)に密閉容器20内の圧力とシリンダ室62内の圧力との差による力が作用する。このため、ベーンスプリング37は、主に圧縮機12の起動時(密閉容器20内とシリンダ室62内の圧力に差がないとき)に、ベーン36をローリングピストン32に押し付ける目的で使用される。 The shape of the vane 36 is a flat, substantially rectangular parallelepiped. The vane 36 is installed in the vane groove 61 of the cylinder 31. The vane 36 is always pressed against the rolling piston 32 by a vane spring 37 provided in the back pressure chamber 63. Since the inside of the sealed container 20 is at a high pressure, when the operation of the compressor 12 is started, the pressure in the sealed container 20 and the pressure in the cylinder chamber 62 on the back surface of the vane 36 (that is, the surface on the back pressure chamber 63 side). Force due to the difference acts. For this reason, the vane spring 37 is mainly used for the purpose of pressing the vane 36 against the rolling piston 32 when the compressor 12 is started (when there is no difference in the pressure in the sealed container 20 and the cylinder chamber 62).
 主軸受33は、側面視略逆T字状である。主軸受33は、クランク軸50の偏心軸部51よりも上の部分である主軸部52に摺動自在に嵌合する。主軸受33は、シリンダ31のシリンダ室62及びベーン溝61の上側を閉塞する。 The main bearing 33 has a substantially inverted T shape when viewed from the side. The main bearing 33 is slidably fitted to a main shaft portion 52 that is a portion above the eccentric shaft portion 51 of the crankshaft 50. The main bearing 33 closes the cylinder chamber 62 and the vane groove 61 of the cylinder 31.
 副軸受34は、側面視略T字状である。副軸受34は、クランク軸50の偏心軸部51よりも下の部分である副軸部53に摺動自在に嵌合する。副軸受34は、シリンダ31のシリンダ室62及びベーン溝61の下側を閉塞する。 The auxiliary bearing 34 is substantially T-shaped when viewed from the side. The auxiliary bearing 34 is slidably fitted to the auxiliary shaft portion 53 that is a portion below the eccentric shaft portion 51 of the crankshaft 50. The auxiliary bearing 34 closes the cylinder chamber 62 and the lower side of the vane groove 61 of the cylinder 31.
 主軸受33は、吐出弁(図示していない)を備える。主軸受33の外側には、吐出マフラ35が取り付けられる。吐出弁を介して吐出される高温かつ高圧のガス冷媒は、一旦吐出マフラ35に入り、その後吐出マフラ35から密閉容器20内の空間に放出される。なお、吐出弁及び吐出マフラ35は、副軸受34、或いは、主軸受33と副軸受34との両方に設けられてもよい。 The main bearing 33 includes a discharge valve (not shown). A discharge muffler 35 is attached to the outside of the main bearing 33. The high-temperature and high-pressure gas refrigerant discharged through the discharge valve once enters the discharge muffler 35 and is then discharged from the discharge muffler 35 into the space in the sealed container 20. Note that the discharge valve and the discharge muffler 35 may be provided in the auxiliary bearing 34 or in both the main bearing 33 and the auxiliary bearing 34.
 シリンダ31、主軸受33、副軸受34の材質は、ねずみ鋳鉄、焼結鋼、炭素鋼等である。ローリングピストン32の材質は、例えば、クロム等を含有する合金鋼である。ベーン36の材質は、例えば、高速度工具鋼である。 The material of the cylinder 31, the main bearing 33, and the auxiliary bearing 34 is gray cast iron, sintered steel, carbon steel, or the like. The material of the rolling piston 32 is, for example, alloy steel containing chromium or the like. The material of the vane 36 is, for example, high speed tool steel.
 密閉容器20の横には、吸入マフラ23が設けられる。吸入マフラ23は、冷媒回路11a,11bから低圧のガス冷媒を吸入する。吸入マフラ23は、液冷媒が戻る場合に液冷媒が直接シリンダ31のシリンダ室62に入り込むことを抑制する。吸入マフラ23は、シリンダ31の吸入ポートに吸入管21を介して接続される。吸入マフラ23の本体は、溶接等により密閉容器20の側面に固定される。 A suction muffler 23 is provided beside the sealed container 20. The suction muffler 23 sucks low-pressure gas refrigerant from the refrigerant circuits 11a and 11b. The suction muffler 23 prevents the liquid refrigerant from directly entering the cylinder chamber 62 of the cylinder 31 when the liquid refrigerant returns. The suction muffler 23 is connected to the suction port of the cylinder 31 via the suction pipe 21. The main body of the suction muffler 23 is fixed to the side surface of the sealed container 20 by welding or the like.
 以下では、電動要素40の詳細について説明する。 Hereinafter, details of the electric element 40 will be described.
 本実施の形態において、電動要素40は、ブラシレスDC(Direct・Current)モータである。なお、電動要素40がブラシレスDCモータ以外のモータ(例えば、誘導電動機)であっても、本実施の形態を適用することができる。 In the present embodiment, the electric element 40 is a brushless DC (Direct Current) motor. The present embodiment can be applied even if the electric element 40 is a motor (for example, an induction motor) other than the brushless DC motor.
 電動要素40は、固定子41と、回転子42とを備える。 The electric element 40 includes a stator 41 and a rotor 42.
 固定子41は、密閉容器20の内周面に当接して固定される。回転子42は、固定子41の内側に0.3~1mm程度の空隙を介して設置される。 The stator 41 is fixed in contact with the inner peripheral surface of the sealed container 20. The rotor 42 is installed inside the stator 41 with a gap of about 0.3 to 1 mm.
 固定子41は、固定子鉄心43と、巻線部44とを備える。固定子鉄心43は、厚さが0.1~1.5mmの複数枚の電磁鋼板を所定の形状に打ち抜き、軸方向に積層し、カシメや溶接等により固定して製作される。巻線部44は、固定子鉄心43に形成された複数のティース(図示していない)に絶縁部材47を介して3相の巻線(即ち、導体線)が集中巻で巻かれて構成される。巻線は、芯線と、芯線を覆う少なくとも1層の被膜とからなる。芯線の材質は、例えば、銅である。被膜の材質は、例えば、AI(アミドイミド)/EI(エステルイミド)である。絶縁部材47の材質は、例えば、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、PTFE(ポリテトラフルオロエチレン)、LCP(液晶ポリマー)、PPS(ポリフェニレンサルファイド)、フェノール樹脂である。巻線部44には、リード線45が接続されている。 The stator 41 includes a stator core 43 and a winding portion 44. The stator core 43 is manufactured by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, laminating them in the axial direction, and fixing them by caulking or welding. The winding portion 44 is configured by winding a three-phase winding (that is, a conductor wire) in a concentrated manner on a plurality of teeth (not shown) formed on the stator core 43 via an insulating member 47. The The winding is composed of a core wire and at least one layer of a coating covering the core wire. The material of the core wire is, for example, copper. The material of the film is, for example, AI (amidoimide) / EI (ester imide). The material of the insulating member 47 is, for example, PET (polyethylene terephthalate), PBT (polybutylene terephthalate), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer). PTFE (polytetrafluoroethylene), LCP (liquid crystal polymer), PPS (polyphenylene sulfide), and phenol resin. A lead wire 45 is connected to the winding portion 44.
 固定子鉄心43の外周には、周方向に略等間隔に複数の切欠が形成されている。それぞれの切欠は、吐出マフラ35から密閉容器20内の空間へ放出されるガス冷媒の通路の1つとなる。それぞれの切欠は、電動要素40の上から密閉容器20の底部に戻る冷凍機油25の通路にもなる。 A plurality of notches are formed on the outer periphery of the stator core 43 at substantially equal intervals in the circumferential direction. Each notch becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20. Each notch also serves as a passage for the refrigerating machine oil 25 that returns from the top of the electric element 40 to the bottom of the sealed container 20.
 回転子42は、回転子鉄心46と、永久磁石(図示していない)とを備える。回転子鉄心46は、固定子鉄心43と同様に、厚さが0.1~1.5mmの複数枚の電磁鋼板を所定の形状に打ち抜き、軸方向に積層し、カシメや溶接等により固定して製作される。永久磁石は、回転子鉄心46に形成される複数の挿入孔に挿入される。永久磁石としては、例えば、フェライト磁石、希土類磁石が使用される。 The rotor 42 includes a rotor core 46 and a permanent magnet (not shown). As with the stator core 43, the rotor core 46 is formed by punching a plurality of electromagnetic steel sheets having a thickness of 0.1 to 1.5 mm into a predetermined shape, stacking them in the axial direction, and fixing them by caulking or welding. Produced. The permanent magnet is inserted into a plurality of insertion holes formed in the rotor core 46. For example, a ferrite magnet or a rare earth magnet is used as the permanent magnet.
 永久磁石が軸方向に抜けないようにするために、回転子42の上端及び下端(即ち、軸方向両端)には、それぞれ上端板48及び下端板49が設けられる。上端板48及び下端板49は、回転バランサを兼ねる。上端板48及び下端板49は、複数の固定用リベット(図示していない)等により回転子鉄心46に固定されている。 In order to prevent the permanent magnet from coming off in the axial direction, an upper end plate 48 and a lower end plate 49 are respectively provided at the upper end and the lower end of the rotor 42 (that is, both axial ends). The upper end plate 48 and the lower end plate 49 also serve as a rotation balancer. The upper end plate 48 and the lower end plate 49 are fixed to the rotor core 46 by a plurality of fixing rivets (not shown).
 回転子鉄心46には、略軸方向に貫通する複数の貫通孔が形成されている。それぞれの貫通孔は、固定子鉄心43の切欠と同様に、吐出マフラ35から密閉容器20内の空間へ放出されるガス冷媒の通路の1つとなる。 The rotor core 46 is formed with a plurality of through holes penetrating substantially in the axial direction. Each through hole becomes one of the passages of the gas refrigerant discharged from the discharge muffler 35 to the space in the sealed container 20, similarly to the cutout of the stator core 43.
 なお、電動要素40が誘導電動機として構成される場合(図示していない)には、回転子鉄心46に形成される複数のスロットにアルミニウムや銅等で形成される導体が充填又は挿入される。そして、導体の両端をエンドリングで短絡したかご形巻線が形成される。 When the electric element 40 is configured as an induction motor (not shown), a plurality of slots formed in the rotor core 46 are filled or inserted with a conductor formed of aluminum, copper, or the like. Then, a squirrel-cage winding in which both ends of the conductor are short-circuited by end rings is formed.
 密閉容器20の頂部には、外部電源と接続する端子24(例えば、ガラス端子)が取り付けられている。端子24は、例えば、溶接により密閉容器20に固定されている。端子24には、電動要素40からのリード線45が接続される。 A terminal 24 (for example, a glass terminal) connected to an external power source is attached to the top of the sealed container 20. The terminal 24 is fixed to the sealed container 20 by welding, for example. A lead wire 45 from the electric element 40 is connected to the terminal 24.
 密閉容器20の頂部には、軸方向両端が開口した吐出管22が取り付けられている。圧縮要素30から吐出されるガス冷媒は、密閉容器20内の空間から吐出管22を通って外部の冷媒回路11a,11bへ吐出される。 At the top of the sealed container 20, a discharge pipe 22 having both axial ends opened is attached. The gas refrigerant discharged from the compression element 30 is discharged from the space in the sealed container 20 through the discharge pipe 22 to the external refrigerant circuits 11a and 11b.
 以下では、圧縮機12の動作について説明する。 Hereinafter, the operation of the compressor 12 will be described.
 端子24からリード線45を介して電動要素40の固定子41に電力が供給される。これにより、電動要素40の回転子42が回転する。回転子42の回転によって、回転子42に固定されたクランク軸50が回転する。クランク軸50の回転に伴い、圧縮要素30のローリングピストン32が圧縮要素30のシリンダ31のシリンダ室62内で偏心回転する。シリンダ31とローリングピストン32との間の空間は、圧縮要素30のベーン36によって2つに分割されている。クランク軸50の回転に伴い、それらの2つの空間の容積が変化する。一方の空間では、徐々に容積が拡大することにより、吸入マフラ23から冷媒が吸入される。他方の空間では、徐々に容積が縮小することにより、中のガス冷媒が圧縮される。圧縮されたガス冷媒は、吐出マフラ35から密閉容器20内の空間に一度吐出される。吐出されたガス冷媒は、電動要素40を通過して密閉容器20の頂部にある吐出管22から密閉容器20の外へ吐出される。 Electric power is supplied from the terminal 24 to the stator 41 of the electric element 40 via the lead wire 45. Thereby, the rotor 42 of the electric element 40 rotates. As the rotor 42 rotates, the crankshaft 50 fixed to the rotor 42 rotates. As the crankshaft 50 rotates, the rolling piston 32 of the compression element 30 rotates eccentrically in the cylinder chamber 62 of the cylinder 31 of the compression element 30. The space between the cylinder 31 and the rolling piston 32 is divided into two by the vane 36 of the compression element 30. As the crankshaft 50 rotates, the volumes of these two spaces change. In one space, the refrigerant is sucked from the suction muffler 23 by gradually increasing the volume. In the other space, the volume of the gas refrigerant is gradually reduced to compress the gas refrigerant therein. The compressed gas refrigerant is discharged once from the discharge muffler 35 to the space in the sealed container 20. The discharged gas refrigerant passes through the electric element 40 and is discharged out of the sealed container 20 from the discharge pipe 22 at the top of the sealed container 20.
 圧縮機12の動作時に、電動要素40を通過するガス冷媒は、回転子鉄心46に形成された複数の貫通孔、固定子鉄心43に形成された複数の切欠だけでなく、固定子鉄心43の、隣接するティースの間に形成されるスロットを含む隙間を抜けていく。スロットを抜ける冷媒は、巻線部44の近傍を通過することになる。 During the operation of the compressor 12, the gas refrigerant passing through the electric element 40 is not only a plurality of through holes formed in the rotor core 46 and a plurality of notches formed in the stator core 43, but also the stator core 43. , It goes through a gap including a slot formed between adjacent teeth. The refrigerant passing through the slot passes near the winding portion 44.
 圧縮機12の動作時には、圧縮要素30の摺動部を構成する2つの部品の一方が他方に摺動する。圧縮要素30には、以下に示すように複数の摺動部がある。
(1)第1の摺動部:ローリングピストン32の外周部71とベーン36の先端81
(2)第2の摺動部:シリンダ31のベーン溝61とベーン36の側面部82
(3)第3の摺動部:ローリングピストン32の内周部72とクランク軸50の偏心軸部51
(4)第4の摺動部:主軸受33の内周部とクランク軸50の主軸部52
(5)第5の摺動部:副軸受34の内周部とクランク軸50の副軸部53
During operation of the compressor 12, one of the two parts constituting the sliding portion of the compression element 30 slides on the other. The compression element 30 has a plurality of sliding portions as described below.
(1) First sliding part: outer peripheral part 71 of rolling piston 32 and tip 81 of vane 36
(2) Second sliding portion: vane groove 61 of cylinder 31 and side surface portion 82 of vane 36
(3) Third sliding part: inner peripheral part 72 of rolling piston 32 and eccentric shaft part 51 of crankshaft 50
(4) Fourth sliding portion: inner peripheral portion of main bearing 33 and main shaft portion 52 of crankshaft 50
(5) Fifth sliding part: the inner peripheral part of the auxiliary bearing 34 and the auxiliary shaft part 53 of the crankshaft 50
 このように、圧縮要素30において、摺動部は、シリンダ31、ローリングピストン32、ベーン36、主軸受33、副軸受34、クランク軸50のうち、所定の2つの組み合わせによって構成される。 Thus, in the compression element 30, the sliding portion is constituted by a combination of two of the cylinder 31, the rolling piston 32, the vane 36, the main bearing 33, the auxiliary bearing 34, and the crankshaft 50.
 なお、圧縮機12がスイング式のロータリ圧縮機として構成される場合(図示していない)には、ベーン36が、ローリングピストン32と一体に設けられ、クランク軸50が駆動されると、ローリングピストン32に回転自在に取り付けられた支持体の受入溝に沿って出入する。ベーン36は、ローリングピストン32の回転に従って揺動しながら半径方向へ進退することによって、シリンダ室62の内部を圧縮室と吸入室とに区画する。この場合、ベーン36の側面部82と支持体の受入溝とが摺動部を形成する。 When the compressor 12 is configured as a swing type rotary compressor (not shown), the vane 36 is provided integrally with the rolling piston 32, and when the crankshaft 50 is driven, the rolling piston It moves in and out along the receiving groove of the support body rotatably attached to 32. The vane 36 moves in the radial direction while swinging according to the rotation of the rolling piston 32, thereby dividing the inside of the cylinder chamber 62 into a compression chamber and a suction chamber. In this case, the side surface portion 82 of the vane 36 and the receiving groove of the support form a sliding portion.
 支持体は、横断面が半円形状の2つの柱状部材で構成される。支持体は、シリンダ31の吸入口と吐出口との中間部に形成された円形状の保持孔に回転自在に嵌められる。そのため、支持体の外周部とシリンダ31の保持孔の内周部とが他の摺動部を形成する。 The support is composed of two columnar members having a semicircular cross section. The support body is rotatably fitted in a circular holding hole formed in an intermediate portion between the suction port and the discharge port of the cylinder 31. Therefore, the outer peripheral part of the support and the inner peripheral part of the holding hole of the cylinder 31 form another sliding part.
 前述したように、本実施の形態では、エチレン系フッ化炭化水素を含有する冷媒を使用する。この冷媒は、熱的及び化学的に不安定である。そのため、化学反応による分解及び重合が発生しやすい。特に高温となる部分では、冷媒の化学反応が促進され、分解が発生しやすい。 As described above, in the present embodiment, a refrigerant containing ethylene-based fluorinated hydrocarbon is used. This refrigerant is thermally and chemically unstable. Therefore, decomposition and polymerization due to a chemical reaction are likely to occur. In particular, the chemical reaction of the refrigerant is accelerated and the decomposition is likely to occur at a portion where the temperature is high.
 圧縮要素30の摺動部、及び、電動要素40の巻線部44は、圧縮機12の動作時に高温となる部分である。圧縮要素30の摺動部は、部品同士が摺動することで発熱する。電動要素40の巻線部44は、回転子42を回転させるための電流が巻線に流れることで発熱する。 The sliding portion of the compression element 30 and the winding portion 44 of the electric element 40 are portions that become high temperature when the compressor 12 is operating. The sliding part of the compression element 30 generates heat when the parts slide. The winding portion 44 of the electric element 40 generates heat when a current for rotating the rotor 42 flows through the winding.
 エチレン系フッ化炭化水素は、反応性が高く、常温で保管されていても、分解及び重合を起こす。圧縮機12内では金属同士の摺動によって冷媒の分解が進み、分解物が重合しやすい。エチレン系フッ化炭化水素に重合禁止剤が添加されていたとしても、高温となった圧縮要素30の摺動部、及び、電動要素40の巻線部44では、冷媒が気化し、気体となった冷媒とともに重合禁止剤が運び出されてしまう。そのため、重合禁止剤が圧縮要素30の摺動部、及び、電動要素40の巻線部44に残らず、十分な効果を発揮できない。結果として、冷媒の重合による発熱等がきっかけとなって爆発的な分解反応が生じ、冷媒回路11a,11b或いは圧縮機12が破損するおそれがある。 Ethylene-based fluorohydrocarbons are highly reactive and cause decomposition and polymerization even when stored at room temperature. In the compressor 12, the decomposition of the refrigerant proceeds due to the sliding of the metals, and the decomposition products are easily polymerized. Even if a polymerization inhibitor is added to the ethylene-based fluorohydrocarbon, the refrigerant vaporizes into the gas at the sliding portion of the compression element 30 and the winding portion 44 of the electric element 40 that have become high in temperature. The polymerization inhibitor is carried away with the refrigerant. Therefore, the polymerization inhibitor does not remain in the sliding portion of the compression element 30 and the winding portion 44 of the electric element 40, and a sufficient effect cannot be exhibited. As a result, the heat generated by the polymerization of the refrigerant may cause an explosive decomposition reaction, which may damage the refrigerant circuits 11a and 11b or the compressor 12.
 本実施の形態では、冷媒の化学反応を抑制するために、冷凍機油25に難燃剤が含有されている。 In the present embodiment, the refrigerating machine oil 25 contains a flame retardant in order to suppress the chemical reaction of the refrigerant.
 本実施の形態において、冷凍機油25に含有される難燃剤としては、例えば、ハロゲン系難燃剤、リン系難燃剤、又は、これらの組み合わせが使用される。 In the present embodiment, as the flame retardant contained in the refrigerator oil 25, for example, a halogen flame retardant, a phosphorus flame retardant, or a combination thereof is used.
 一般的に、難燃剤は、プラスチック、ゴム、木材、繊維等の有機材料を燃えにくくするために使用されている。 Generally, flame retardants are used to make organic materials such as plastic, rubber, wood, and fiber difficult to burn.
 例えば、ハロゲン系難燃剤が高温下で分解すると、ハロゲン原子が発生する。ハロゲン原子は炭化水素等から水素原子を引き抜いてハロゲン化水素を生じさせる。ハロゲン化水素は燃焼ガス中の活性ラジカルと反応してこれを不活性化する。このとき同時にハロゲン原子が再生し、この再生したハロゲン原子がさらに活性ラジカルを不活性化する。このように、ハロゲン系難燃剤は、ハロゲン原子の生成を鍵とした触媒機構により、燃焼反応を効果的に抑制する。 For example, when a halogen flame retardant decomposes at a high temperature, a halogen atom is generated. The halogen atom extracts a hydrogen atom from a hydrocarbon or the like to generate a hydrogen halide. The hydrogen halide reacts with the active radicals in the combustion gas to inactivate it. At the same time, the halogen atom is regenerated, and the regenerated halogen atom further deactivates the active radical. As described above, the halogen-based flame retardant effectively suppresses the combustion reaction by the catalytic mechanism that is key to the generation of halogen atoms.
 リン系難燃剤も、燃焼ガス中での分解により生じたラジカル種が活性ラジカルを不活性化することにより、ハロゲン系難燃剤と同様の効果を発揮する。 Phosphorus flame retardants also exhibit the same effects as halogen flame retardants when radical species generated by decomposition in combustion gas inactivate active radicals.
 本実施の形態において、冷媒に使用されるエチレン系フッ化炭素水素は、発熱等により生じた活性ラジカルにより爆発的な分解反応を開始する。例えば、R1123は、発熱等の刺激をきっかけとして、CF=CHF(g)→1/2CF(g)+2/3C(amorphous)+HF+44.7kcal/molという不均化反応を起こす場合がある。不均化反応は、発熱等により生じた活性ラジカルがR1123分子と反応して活性ラジカルの生成が連鎖することで、爆発的に進行する。したがって、冷凍機油25に難燃剤を含有させておけば、高温下では、活性ラジカルを不活性化するハロゲン化水素が難燃剤から発生し、爆発的な分解反応を効果的に抑制できる。 In the present embodiment, ethylene-based fluorocarbon used as a refrigerant starts an explosive decomposition reaction due to active radicals generated by heat generation or the like. For example, R1123 may cause a disproportionation reaction of CF 2 = CHF (g) → 1 / 2CF 4 (g) + 2 / 3C (amorphous) + HF + 44.7 kcal / mol triggered by stimulation such as fever. The disproportionation reaction proceeds explosively as active radicals generated by exothermic reactions react with R1123 molecules and the generation of active radicals is linked. Therefore, if the refrigerating machine oil 25 contains a flame retardant, hydrogen halide that inactivates active radicals is generated from the flame retardant at high temperatures, and an explosive decomposition reaction can be effectively suppressed.
 つまり、本実施の形態では、一般的には有機材料の難燃化のために使用される難燃剤を、圧縮機の中で、高温となる圧縮要素30の摺動部を潤滑するための冷凍機油25に混合している。これにより、エチレン系フッ化炭化水素を含有する冷媒を用いる圧縮機12において、圧縮要素30の摺動部での冷媒の化学反応による爆発を防止することができる。また、冷凍機油25は、電動要素40の巻線部44にも到達するため、電動要素40の巻線部44での冷媒の化学反応による爆発も防止することができる。 That is, in the present embodiment, a refrigeration for lubricating a sliding portion of the compression element 30 that becomes a high temperature in a compressor is generally used as a flame retardant that is used to make the organic material flame retardant. Mixed with machine oil 25. Thereby, in the compressor 12 using the refrigerant containing the ethylene-based fluorohydrocarbon, explosion due to the chemical reaction of the refrigerant at the sliding portion of the compression element 30 can be prevented. Moreover, since the refrigeration oil 25 also reaches the winding portion 44 of the electric element 40, explosion due to a chemical reaction of the refrigerant in the winding portion 44 of the electric element 40 can be prevented.
 難燃剤として、テトラブロモビスフェノールA(TBBA)を使用することができる。例えば、冷凍機油25には、TBBAが0.1%~5%含有されることが望ましい。TBBAを含有する冷凍機油25を用いると、発熱等により冷媒の分解反応のきっかけとなる活性ラジカルが発生した場合でも、活性ラジカルを効果的に不活性化し、分解反応を効果的に抑制することができる。したがって、圧縮機12に分解反応が発生しやすい冷媒を用いても、圧縮機12の信頼性を十分に維持することができる。 Tetrabromobisphenol A (TBBA) can be used as a flame retardant. For example, the refrigerating machine oil 25 preferably contains 0.1% to 5% TBBA. When the refrigerating machine oil 25 containing TBBA is used, even when an active radical that triggers the decomposition reaction of the refrigerant is generated due to heat generation or the like, the active radical is effectively inactivated and the decomposition reaction is effectively suppressed. it can. Therefore, the reliability of the compressor 12 can be sufficiently maintained even when a refrigerant that easily generates a decomposition reaction is used in the compressor 12.
 難燃剤としては、TBBAに限らず、TBBAカーボネートオリゴマー、TBBAエポキシオリゴマー、デカブロモジフェニルエーテル、ヘキサブロモシクロドデカン、ビス(ペンタブロモフェニル)エタン、ビス(テトラブロモフタルイミド)エタン、臭素化ポリスチレン、デクロラン、クロレンド酸、無水クロレンド酸等、他の種類のハロゲン系難燃剤を使用しても構わない。或いは、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、1,3-フェニレンビス(ジフェニルホスフェート)、1,3-フェニレンビス(ジキシレニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、トリス(ジクロロプロピル)ホスフェート、トリス(β-クロロプロピル)ホスフェート、2,2-ビス(クロロメチル)トリメチレンビス(ビス(2-クロロエチル)ホスフェート)、赤リン等のリン系難燃剤を使用しても構わない。 Flame retardants are not limited to TBBA, but include TBBA carbonate oligomer, TBBA epoxy oligomer, decabromodiphenyl ether, hexabromocyclododecane, bis (pentabromophenyl) ethane, bis (tetrabromophthalimide) ethane, brominated polystyrene, dechlorane, chlorende Other types of halogenated flame retardants such as acid and chlorendic anhydride may be used. Alternatively, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, 1,3-phenylene bis (diphenyl phosphate), 1,3-phenylene bis (dixylenyl phosphate), bisphenol A bis (diphenyl phosphate), tris ( Phosphorus flame retardants such as dichloropropyl) phosphate, tris (β-chloropropyl) phosphate, 2,2-bis (chloromethyl) trimethylenebis (bis (2-chloroethyl) phosphate) and red phosphorus may be used. Absent.
 本実施の形態において、冷凍機油25に含有される難燃剤には、アンチモン化合物が添加されていてもよい。 In the present embodiment, an antimony compound may be added to the flame retardant contained in the refrigerator oil 25.
 ハロゲン系難燃剤にアンチモン化合物を添加することにより、ハロゲン系難燃剤の効果を増強することができる。アンチモン化合物は、単独での難燃効果はほとんどないものの、ハロゲン系難燃剤と段階的に反応してハロゲン化アンチモンを生成し、これがラジカルトラップとして作用することで難燃効果を発揮する。したがって、冷凍機油25に含有される難燃剤にアンチモン化合物を添加しておけば、冷媒の分解反応をより一層効果的に抑制できる。 The effect of the halogen flame retardant can be enhanced by adding an antimony compound to the halogen flame retardant. Although the antimony compound alone has almost no flame retardant effect, it reacts stepwise with a halogen-based flame retardant to produce halogenated antimony, and this acts as a radical trap to exert the flame retardant effect. Therefore, if an antimony compound is added to the flame retardant contained in the refrigerator oil 25, the decomposition reaction of the refrigerant can be more effectively suppressed.
 アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモンを使用することができる。 As the antimony compound, for example, antimony trioxide and antimony pentoxide can be used.
 実施の形態2.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 2. FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 本実施の形態に係る冷凍サイクル装置10の構成は、図1及び図2に示した実施の形態1のものと同様である。圧縮機12の構成も、図3及び図4に示した実施の形態1のものと同様である。 The configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS. The configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
 実施の形態1では、冷凍機油25に、冷媒の化学反応を抑制するための難燃剤が含有されているが、本実施の形態では、圧縮要素30の摺動部に、同様の難燃剤が含有されている。なお、本実施の形態において、冷凍機油25には難燃剤が含有されていなくてもよい。 In the first embodiment, the refrigerating machine oil 25 contains a flame retardant for suppressing the chemical reaction of the refrigerant. In the present embodiment, a similar flame retardant is contained in the sliding portion of the compression element 30. Has been. In the present embodiment, the refrigerating machine oil 25 may not contain a flame retardant.
 本実施の形態において、圧縮要素30の摺動部を構成する部品のうち、少なくとも1つの部品は、多孔質体からなる。この多孔質体の気孔内には、実施の形態1と同様の難燃剤が含有されている。 In the present embodiment, at least one part among the parts constituting the sliding portion of the compression element 30 is made of a porous body. The pores of this porous body contain the same flame retardant as in the first embodiment.
 例えば、シリンダ31、主軸受33、副軸受34は、多孔質体である焼結部品として形成することができる。これらの焼結部品に予め難燃剤又は難燃剤を含有する冷凍機油25を含浸させておいてから圧縮機12を組み立てる。これにより、圧縮機12の動作時に高温となりやすい圧縮要素30の摺動部において、焼結部品から難燃剤が染み出して冷媒の分解反応を抑制することができる。 For example, the cylinder 31, the main bearing 33, and the auxiliary bearing 34 can be formed as sintered parts that are porous bodies. These sintered parts are preliminarily impregnated with a flame retardant or a refrigerating machine oil 25 containing a flame retardant, and then the compressor 12 is assembled. Thereby, in the sliding part of the compression element 30 which becomes high temperature easily at the time of operation | movement of the compressor 12, a flame retardant oozes out from sintered components and can suppress the decomposition reaction of a refrigerant | coolant.
 本実施の形態では、圧縮要素30の摺動部へ冷凍機油25が十分に行き渡っていなくても、摺動部自体に難燃剤が含有されているため、冷媒の分解反応を効果的に抑制することができる。 In the present embodiment, even if the refrigerating machine oil 25 is not sufficiently distributed to the sliding portion of the compression element 30, the sliding portion itself contains a flame retardant, so that the decomposition reaction of the refrigerant is effectively suppressed. be able to.
 本実施の形態においても、実施の形態1と同様に、圧縮要素30の摺動部に含有される難燃剤にアンチモン化合物が添加されていてもよい。 Also in the present embodiment, an antimony compound may be added to the flame retardant contained in the sliding portion of the compression element 30 as in the first embodiment.
 焼結部品にアンチモン化合物を含有させておくことにより、ハロゲン系難燃剤の効果を増強することができる。したがって、圧縮要素30の摺動部に含有される難燃剤にアンチモン化合物を添加しておけば、冷媒の分解反応をより一層効果的に抑制できる。 By adding an antimony compound to the sintered part, the effect of the halogen-based flame retardant can be enhanced. Therefore, if an antimony compound is added to the flame retardant contained in the sliding portion of the compression element 30, the decomposition reaction of the refrigerant can be more effectively suppressed.
 また、本実施の形態においても、実施の形態2と同様に、圧縮要素30の摺動部に難燃剤が含有されていてもよい。 Also in the present embodiment, a flame retardant may be contained in the sliding portion of the compression element 30 as in the second embodiment.
 実施の形態3.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 3 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 本実施の形態に係る冷凍サイクル装置10の構成は、図1及び図2に示した実施の形態1のものと同様である。圧縮機12の構成も、図3及び図4に示した実施の形態1のものと同様である。 The configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS. The configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
 実施の形態1では、冷凍機油25に、冷媒の化学反応を抑制するための難燃剤が含有されているが、本実施の形態では、電動要素40の巻線部44に、冷媒の化学反応を抑制するための難燃剤が含有されている。なお、本実施の形態において、冷凍機油25には難燃剤が含有されていなくてもよい。 In the first embodiment, the refrigerating machine oil 25 contains a flame retardant for suppressing the chemical reaction of the refrigerant. However, in the present embodiment, the chemical reaction of the refrigerant is applied to the winding portion 44 of the electric element 40. Contains a flame retardant to suppress. In the present embodiment, the refrigerating machine oil 25 may not contain a flame retardant.
 本実施の形態において、電動要素40の巻線部44を構成する巻線(即ち、導体線)間の隙間には、実施の形態1と同様の難燃剤が含有されている。 In the present embodiment, the same flame retardant as in the first embodiment is contained in the gap between the windings (that is, the conductor wires) constituting the winding portion 44 of the electric element 40.
 例えば、電動要素40の巻線部44において、断面が円形の巻線を使用すると、隣接する巻線の間に隙間が生じる。この隙間には、実施の形態2における焼結部品に形成される気孔と同様に、難燃剤又は難燃剤を含有する冷凍機油25を含有させることができる。例えば、巻線を巻く工程で使用する加工油に予め難燃剤を混合しておくか、或いは、巻線を難燃剤に予め浸漬させておいてから固定子鉄心43の各ティースに巻線を巻く。これにより、圧縮機12の動作時にジュール熱で高温となりやすい電動要素40の巻線部44において、巻線間の隙間にある難燃剤により冷媒の分解反応を抑制することができる。 For example, when a winding having a circular cross section is used in the winding portion 44 of the electric element 40, a gap is generated between adjacent windings. This gap can contain a flame retardant or refrigerating machine oil 25 containing a flame retardant, similar to the pores formed in the sintered part in the second embodiment. For example, a flame retardant is mixed in advance with the processing oil used in the winding process, or the winding is wound around each tooth of the stator core 43 after the winding is preliminarily immersed in the flame retardant. . Thereby, in the winding part 44 of the electric element 40 which is likely to become high temperature due to Joule heat during the operation of the compressor 12, the decomposition reaction of the refrigerant can be suppressed by the flame retardant in the gap between the windings.
 本実施の形態では、電動要素40の巻線部44へ冷凍機油25が十分に行き渡っていなくても、巻線部44自体に難燃剤が含有されているため、冷媒の分解反応を効果的に抑制することができる。 In the present embodiment, even if the refrigerating machine oil 25 is not sufficiently spread to the winding portion 44 of the electric element 40, the winding portion 44 itself contains a flame retardant, so that the decomposition reaction of the refrigerant is effectively performed. Can be suppressed.
 本実施の形態においても、実施の形態1と同様に、電動要素40の巻線部44に含有される難燃剤にアンチモン化合物が添加されていてもよい。 Also in the present embodiment, as in the first embodiment, an antimony compound may be added to the flame retardant contained in the winding portion 44 of the electric element 40.
 巻線部44にアンチモン化合物を含有させておくことにより、ハロゲン系難燃剤の効果を増強することができる。したがって、巻線部44に含有される難燃剤にアンチモン化合物を添加しておけば、冷媒の分解反応をより一層効果的に抑制できる。 By including an antimony compound in the winding portion 44, the effect of the halogen flame retardant can be enhanced. Therefore, if an antimony compound is added to the flame retardant contained in the winding portion 44, the decomposition reaction of the refrigerant can be more effectively suppressed.
 実施の形態4.
 本実施の形態について、主に実施の形態1との差異を説明する。
Embodiment 4 FIG.
In the present embodiment, differences from the first embodiment will be mainly described.
 本実施の形態に係る冷凍サイクル装置10の構成は、図1及び図2に示した実施の形態1のものと同様である。圧縮機12の構成も、図3及び図4に示した実施の形態1のものと同様である。 The configuration of the refrigeration cycle apparatus 10 according to the present embodiment is the same as that of the first embodiment shown in FIGS. The configuration of the compressor 12 is the same as that of the first embodiment shown in FIGS. 3 and 4.
 通常、冷凍機油25の中には、摩耗防止剤が含有されている。摩耗防止剤は、それ自体が分解することで圧縮要素30の摺動部の摩耗を防止する。しかし、摩耗防止剤の分解物は、分解しやすいエチレン系フッ化炭化水素を含有する冷媒の分解物と反応し、固形物を生成することがある。この固形物は、冷凍サイクル装置10の膨張弁15(膨張弁15の代わりにキャピラリーチューブを使用する場合も同様)等の径の細い流路に堆積して詰まりを生じさせ、冷却不良を引き起こすおそれがある。 Usually, the refrigerator oil 25 contains an antiwear agent. The antiwear agent decomposes itself to prevent wear of the sliding portion of the compression element 30. However, the decomposition product of the antiwear agent may react with the decomposition product of the refrigerant containing the ethylene-based fluorocarbon which is easily decomposed to generate a solid. This solid matter accumulates in a narrow flow path such as the expansion valve 15 of the refrigeration cycle apparatus 10 (the same applies when a capillary tube is used in place of the expansion valve 15), which may cause clogging and cause poor cooling. There is.
 本実施の形態では、冷凍機油25に摩耗防止剤が含有されていない。このため、摩耗防止剤の分解物とエチレン系フッ化炭化水素を含有する冷媒の分解物との反応によって固形物が生成されることがない。したがって、冷媒回路11a,11bに詰まりが生じず、長期にわたって良好な性能を保つことのできる冷凍サイクル装置10を提供することができる。 In the present embodiment, the refrigerator oil 25 does not contain an antiwear agent. For this reason, a solid substance is not produced | generated by reaction with the decomposition product of a wear inhibitor and the decomposition product of the refrigerant | coolant containing ethylene-type fluorocarbon. Therefore, the refrigerant circuit 11a, 11b is not clogged, and the refrigeration cycle apparatus 10 that can maintain good performance over a long period can be provided.
 以上、本発明の実施の形態について説明したが、これらの実施の形態のうち、いくつかを組み合わせて実施しても構わない。或いは、これらの実施の形態のうち、いずれか1つ又はいくつかを部分的に実施しても構わない。例えば、これらの実施の形態の説明において「部」として説明するもののうち、いずれか1つのみを採用してもよいし、いくつかの任意の組み合わせを採用してもよい。なお、本発明は、これらの実施の形態に限定されるものではなく、必要に応じて種々の変更が可能である。 As mentioned above, although embodiment of this invention was described, you may implement combining some of these embodiment. Alternatively, any one or some of these embodiments may be partially implemented. For example, only one of those described as “parts” in the description of these embodiments may be employed, or some arbitrary combinations may be employed. In addition, this invention is not limited to these embodiment, A various change is possible as needed.
 10 冷凍サイクル装置、11a,11b 冷媒回路、12 圧縮機、13 四方弁、14 室外熱交換器、15 膨張弁、16 室内熱交換器、17 制御装置、20 密閉容器、21 吸入管、22 吐出管、23 吸入マフラ、24 端子、25 冷凍機油、30 圧縮要素、31 シリンダ、32 ローリングピストン、33 主軸受、34 副軸受、35 吐出マフラ、36 ベーン、37 ベーンスプリング、40 電動要素、41 固定子、42 回転子、43 固定子鉄心、44 巻線部、45 リード線、46 回転子鉄心、47 絶縁部材、48 上端板、49 下端板、50 クランク軸、51 偏心軸部、52 主軸部、53 副軸部、61 ベーン溝、62 シリンダ室、63 背圧室、71 外周部、72 内周部、81 先端、82 側面部。 10 refrigeration cycle apparatus, 11a, 11b refrigerant circuit, 12 compressor, 13 four-way valve, 14 outdoor heat exchanger, 15 expansion valve, 16 indoor heat exchanger, 17 control device, 20 sealed container, 21 suction pipe, 22 discharge pipe , 23 Suction muffler, 24 terminal, 25 refrigeration oil, 30 compression element, 31 cylinder, 32 rolling piston, 33 main bearing, 34 secondary bearing, 35 discharge muffler, 36 vane, 37 vane spring, 40 electric element, 41 stator, 42 rotor, 43 stator core, 44 winding part, 45 lead wire, 46 rotor core, 47 insulation member, 48 upper end plate, 49 upper end plate, 50 crankshaft, 51 eccentric shaft part, 52 main shaft part, 53 sub Shaft, 61 vane groove, 62 cylinder chamber, 63 back pressure chamber, 71 outer periphery, 72 Periphery, 81 tip 82 side portion.

Claims (8)

  1.  エチレン系フッ化炭化水素を含有する冷媒を圧縮する圧縮要素と、
     前記圧縮要素を駆動する電動要素と、
     前記圧縮要素と前記電動要素とを収納するとともに、前記圧縮要素の摺動部を潤滑するための冷凍機油を貯留する容器と
    を備え、
     前記圧縮要素の摺動部と前記電動要素の巻線部と前記冷凍機油とのうち少なくとも1つに難燃剤を含有することを特徴とする圧縮機。
    A compression element for compressing a refrigerant containing an ethylene-based fluorohydrocarbon;
    An electric element for driving the compression element;
    A container for storing refrigerating machine oil for storing the compression element and the electric element and lubricating a sliding portion of the compression element;
    A compressor comprising a flame retardant in at least one of the sliding portion of the compression element, the winding portion of the electric element, and the refrigerating machine oil.
  2.  前記圧縮要素の摺動部は、一方の部品が他方の部品に摺動し、少なくとも1つの部品が多孔質体からなる2つの部品で構成され、前記多孔質体の気孔内に前記難燃剤を含有することを特徴とする請求項1の圧縮機。 The sliding portion of the compression element is composed of two parts in which one part slides on the other part and at least one part is made of a porous body, and the flame retardant is placed in the pores of the porous body. The compressor according to claim 1, wherein the compressor is contained.
  3.  前記電動要素の巻線部は、固定子鉄心に導体線が巻かれて構成され、前記導体線間の隙間に前記難燃剤を含有することを特徴とする請求項1又は2の圧縮機。 The compressor according to claim 1 or 2, wherein the winding portion of the electric element is formed by winding a conductor wire around a stator core, and the flame retardant is contained in a gap between the conductor wires.
  4.  前記冷凍機油は、摩耗防止剤を含有せず、前記難燃剤を含有することを特徴とする請求項1から3のいずれかの圧縮機。 The compressor according to any one of claims 1 to 3, wherein the refrigerating machine oil does not contain an antiwear agent but contains the flame retardant.
  5.  前記難燃剤がハロゲン系難燃剤とリン系難燃剤とのうち少なくとも1つであることを特徴とする請求項1から4のいずれかの圧縮機。 The compressor according to any one of claims 1 to 4, wherein the flame retardant is at least one of a halogen flame retardant and a phosphorus flame retardant.
  6.  前記難燃剤にアンチモン化合物が添加されていることを特徴とする請求項5の圧縮機。 The compressor according to claim 5, wherein an antimony compound is added to the flame retardant.
  7.  前記冷媒に含有されるエチレン系フッ化炭化水素が1,1,2-トリフルオロエチレンと、フルオロエチレンと、1,1-ジフルオロエチレンと、トランス-1,2-ジフルオロエチレンと、シス-1,2-ジフルオロエチレンとのうち少なくとも1つであることを特徴とする請求項1から6のいずれかの圧縮機。 The ethylene-based fluorinated hydrocarbon contained in the refrigerant is 1,1,2-trifluoroethylene, fluoroethylene, 1,1-difluoroethylene, trans-1,2-difluoroethylene, cis-1, The compressor according to any one of claims 1 to 6, wherein the compressor is at least one of 2-difluoroethylene.
  8.  請求項1から7のいずれかの圧縮機が接続され、エチレン系フッ化炭化水素を含有する冷媒が循環する冷媒回路を備えることを特徴とする冷凍サイクル装置。 A refrigeration cycle apparatus comprising a refrigerant circuit to which the compressor according to any one of claims 1 to 7 is connected and in which a refrigerant containing an ethylene-based fluorohydrocarbon circulates.
PCT/JP2015/051129 2014-03-14 2015-01-16 Compressor and refrigeration cycle system WO2015136981A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016507386A JP6293262B2 (en) 2014-03-14 2015-01-16 Compressor and refrigeration cycle apparatus
CN201580013279.XA CN106103992B (en) 2014-03-14 2015-01-16 Compressor and refrigerating circulatory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014052483 2014-03-14
JP2014-052483 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015136981A1 true WO2015136981A1 (en) 2015-09-17

Family

ID=54071435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051129 WO2015136981A1 (en) 2014-03-14 2015-01-16 Compressor and refrigeration cycle system

Country Status (3)

Country Link
JP (1) JP6293262B2 (en)
CN (1) CN106103992B (en)
WO (1) WO2015136981A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080612A (en) * 2016-11-15 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
CN108885039A (en) * 2016-01-29 2018-11-23 Agc株式会社 Refrigerating circulatory device
JP2019032108A (en) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device
WO2019124398A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Compression machine
JP2020056572A (en) * 2019-12-24 2020-04-09 三菱電機株式会社 Air conditioner
JPWO2019124398A1 (en) * 2017-12-18 2021-01-14 ダイキン工業株式会社 Compressor
JP2021055957A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Evaporator, and refrigeration cycle device including the same
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device
CN114574275A (en) * 2022-03-09 2022-06-03 天津大学 Mixture of refrigerator oil and fire retardant suitable for refrigerating system
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
WO2022181125A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle device
WO2022181124A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Usage as refrigerant in compressor, compressor, and refrigeration cycle device
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
WO2023012852A1 (en) * 2021-08-02 2023-02-09 三菱電機株式会社 Hermetic compressor and refrigeration cycle device
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018123691A (en) * 2017-01-30 2018-08-09 ダイキン工業株式会社 Compressor
JP6897119B2 (en) * 2017-01-30 2021-06-30 ダイキン工業株式会社 Refrigerator
CN114111079A (en) * 2021-11-23 2022-03-01 衢州荣强化工有限公司 Refrigerant capable of reducing flammability

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102137A (en) * 1993-09-30 1995-04-18 Dai Ichi Kogyo Seiyaku Co Ltd Flame-retradant styrenic resin composition
JP2000104085A (en) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimetyl ether as refrigerant
JP2002310080A (en) * 2001-04-17 2002-10-23 Mitsubishi Electric Corp Rotary compressor
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2014005419A (en) * 2012-06-27 2014-01-16 Central Glass Co Ltd Heat transfer actuation medium containing fluorination ether

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4911997A (en) * 1996-10-22 1998-05-15 Fmc Corporation Flame resistant polyolefin compositions
JP2002266762A (en) * 2001-03-07 2002-09-18 Matsushita Electric Ind Co Ltd Refrigerating cycle device
EP2455439A3 (en) * 2003-11-13 2014-02-19 E. I. du Pont de Nemours and Company Compositions and methods for reducing fire hazard of flammable refrigerants
KR101141510B1 (en) * 2008-03-07 2012-05-24 알케마 인코포레이티드 Stable formulated systems with chloro-3,3,3-trifluoropropene
CA2745518A1 (en) * 2008-12-02 2010-06-10 Mexichem Amanco Holding S.A. De C.V. Heat transfer compositions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102137A (en) * 1993-09-30 1995-04-18 Dai Ichi Kogyo Seiyaku Co Ltd Flame-retradant styrenic resin composition
JP2000104085A (en) * 1998-09-29 2000-04-11 Nippon Mitsubishi Oil Corp Lubricating oil for refrigerator using dimetyl ether as refrigerant
JP2002310080A (en) * 2001-04-17 2002-10-23 Mitsubishi Electric Corp Rotary compressor
WO2012157763A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2014005419A (en) * 2012-06-27 2014-01-16 Central Glass Co Ltd Heat transfer actuation medium containing fluorination ether

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410041A4 (en) * 2016-01-29 2019-09-11 Agc Inc. Refrigeration cycle device
CN108885039A (en) * 2016-01-29 2018-11-23 Agc株式会社 Refrigerating circulatory device
JP2018080612A (en) * 2016-11-15 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
JP2019032108A (en) * 2017-08-08 2019-02-28 パナソニックIpマネジメント株式会社 Refrigeration cycle device
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
WO2019124398A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Compression machine
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
JPWO2019124398A1 (en) * 2017-12-18 2021-01-14 ダイキン工業株式会社 Compressor
US11492527B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
WO2019124399A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Compression machine
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11535781B2 (en) 2017-12-18 2022-12-27 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
JP7425282B2 (en) 2019-09-30 2024-01-31 ダイキン工業株式会社 Evaporator and refrigeration cycle equipment equipped with it
WO2021065913A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Evaporator and refrigeration cycle device equipped with same
JP2021055957A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Evaporator, and refrigeration cycle device including the same
JP2020056572A (en) * 2019-12-24 2020-04-09 三菱電機株式会社 Air conditioner
JP7377838B2 (en) 2020-07-03 2023-11-10 ダイキン工業株式会社 Use as refrigerant in compressors, compressors, and refrigeration cycle equipment
JP2022013931A (en) * 2020-07-03 2022-01-18 ダイキン工業株式会社 Use of refrigerant in compressor, compressor, and refrigeration cycle system
WO2022004896A1 (en) * 2020-07-03 2022-01-06 ダイキン工業株式会社 Use as coolant in compressor, compressor, and refrigeration cycle device
WO2022014415A1 (en) * 2020-07-15 2022-01-20 ダイキン工業株式会社 Use as refrigerant for compressor, compressor, and refrigeration cycle device
JP7316324B2 (en) 2020-07-15 2023-07-27 ダイキン工業株式会社 Use as refrigerant in compressor, compressor and refrigeration cycle device
JP2022019597A (en) * 2020-07-15 2022-01-27 ダイキン工業株式会社 Use as refrigerant for compressor, compressor and refrigerant cycle device
JP2022132095A (en) * 2021-02-26 2022-09-07 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle device
JP2022132096A (en) * 2021-02-26 2022-09-07 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle device
JP7212297B2 (en) 2021-02-26 2023-01-25 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle device
WO2022181124A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Usage as refrigerant in compressor, compressor, and refrigeration cycle device
WO2022181125A1 (en) * 2021-02-26 2022-09-01 ダイキン工業株式会社 Use as refrigerant in compressor, compressor, and refrigeration cycle device
WO2023012852A1 (en) * 2021-08-02 2023-02-09 三菱電機株式会社 Hermetic compressor and refrigeration cycle device
CN114574275A (en) * 2022-03-09 2022-06-03 天津大学 Mixture of refrigerator oil and fire retardant suitable for refrigerating system

Also Published As

Publication number Publication date
CN106103992B (en) 2018-05-11
JPWO2015136981A1 (en) 2017-04-06
CN106103992A (en) 2016-11-09
JP6293262B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6293262B2 (en) Compressor and refrigeration cycle apparatus
JP6105511B2 (en) Heat pump equipment
JP6089912B2 (en) Refrigerant compressor
JP6815351B2 (en) Refrigeration cycle equipment
JP6180619B2 (en) Compressor and refrigeration cycle apparatus
JP6192851B2 (en) Refrigeration cycle equipment
JP6089913B2 (en) Refrigerant compressor
WO2015136980A1 (en) Refrigeration cycle device
KR101908875B1 (en) Refrigeration cycle device
JP6775542B2 (en) Refrigeration cycle equipment
JP2017133827A (en) Heat pump device
JP4932793B2 (en) Refrigeration cycle equipment
JP2010002099A (en) Refrigerating cycle device
WO2023182442A1 (en) Refrigeration cycle device
WO2023182443A1 (en) Refrigeration cycle device
JP2012007883A (en) Refrigerating cycle device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761299

Country of ref document: EP

Kind code of ref document: A1