WO2023012852A1 - Hermetic compressor and refrigeration cycle device - Google Patents

Hermetic compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2023012852A1
WO2023012852A1 PCT/JP2021/028556 JP2021028556W WO2023012852A1 WO 2023012852 A1 WO2023012852 A1 WO 2023012852A1 JP 2021028556 W JP2021028556 W JP 2021028556W WO 2023012852 A1 WO2023012852 A1 WO 2023012852A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
hermetic compressor
pressure side
spring
cylinder
Prior art date
Application number
PCT/JP2021/028556
Other languages
French (fr)
Japanese (ja)
Inventor
拓真 塚本
友宏 井柳
宏樹 長澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180100918.1A priority Critical patent/CN117716130A/en
Priority to PCT/JP2021/028556 priority patent/WO2023012852A1/en
Priority to JP2023539225A priority patent/JPWO2023012852A1/ja
Publication of WO2023012852A1 publication Critical patent/WO2023012852A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present disclosure relates to a hermetic compressor and a refrigeration cycle device.
  • a rotary compressor is generally composed of a sealed container, a compression mechanism section disposed inside the container, and an electric motor (see Patent Document 1, for example).
  • the compression mechanism includes a hollow cylindrical cylinder, a shaft rotatable around a central axis, a rolling piston that performs eccentric rotational motion inside the cylinder as the shaft rotates, and a cylinder that eccentrically rotates as the rolling piston rotates. and a spring mechanism such as a coil spring provided on the back surface of the vane for pressing the tip of the vane against the rolling piston.
  • a rolling piston performs an eccentric rotational movement in a cylinder housed in a closed container, and vanes pressed against the rolling piston by the biasing force of a spring mechanism partition the space inside the cylinder. This compresses the refrigerant.
  • a load is applied in the direction from the high-pressure space side to the low-pressure space side on the tip side of the vane that contacts the rolling piston. This load causes a moment in the vane, causing the vane to tilt.
  • the reciprocating motion of the vane in an inclined state increases the frictional force between the vane and the vane groove of the cylinder. There was a problem of reduced reliability or abnormal noise due to collision of parts.
  • the present disclosure has been made in order to solve the above problems, and suppresses the generation of abnormal noise when the vanes reciprocate inside the vane grooves, and has a highly reliable hermetic compressor and refrigeration cycle.
  • the purpose is to provide a device.
  • a hermetic compressor includes a hermetic container that forms an outer shell, and a compression mechanism that is housed in the hermetic container.
  • a refrigeration cycle apparatus includes the hermetic compressor, the outdoor heat exchanger, the expansion device, and the indoor heat exchanger.
  • the center position of the load by the vane spring is closer to the low pressure side than the center position of the vane. Therefore, rather than making the load center position of the vane spring the center position of the vane, which is the normal load center position, the moment generated by the load applied to the tip side of the vane should be alleviated. can be done. As a result, the inclination of the vane is suppressed, so that the generation of abnormal noise when the vane reciprocates inside the vane groove can be suppressed, and collision of parts is suppressed, so that high reliability can be obtained. can be done.
  • FIG. 1 is a cross-sectional view of a hermetic compressor according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of a compression mechanism portion of the hermetic compressor according to Embodiment 1.
  • FIG. FIG. 4 is a cross-sectional view of a groove fixing structure of a vane spring to a cylinder-side spring mounting hole of the hermetic compressor according to Embodiment 1, viewed from above.
  • FIG. 4 is a plan view of a structure for press-fitting and fixing a vane spring into a cylinder-side spring mounting hole of the hermetic compressor according to Embodiment 1;
  • 1 is a schematic configuration diagram of a refrigeration cycle apparatus including a hermetic compressor according to Embodiment 1;
  • FIG. 2 is a schematic cross-sectional view of the electric motor of the hermetic compressor according to Embodiment 1.
  • FIG. 4 is a cross-sectional force diagram around vanes of the hermetic compressor according to Embodiment 1.
  • FIG. FIG. 4 is a cross-sectional view showing a vane pressing structure of the hermetic compressor according to Embodiment 1;
  • FIG. 7 is a cross-sectional view showing a first modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 1; 8 is a cross-sectional view showing a second modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 1.
  • FIG. 10 is a cross-sectional force diagram around the vane of the hermetic compressor according to Embodiment 2;
  • FIG. 7 is a diagram showing the shape of vanes of a hermetic compressor according to Embodiment 2;
  • FIG. 8 is a cross-sectional view showing a vane pressing structure of a hermetic compressor according to Embodiment 2;
  • FIG. 8 is a cross-sectional view showing a first modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 2;
  • a hermetic compressor 100 and a refrigeration cycle device 200 will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size. Also, in the following description, terms representing directions (for example, “up”, “down”, “right”, “left”, “front”, “back”, etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean directions when the hermetic compressor 100 is viewed from the front side (front side). Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
  • FIG. 1 is a cross-sectional view of a hermetic compressor 100 according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of the compression mechanism portion 20 of the hermetic compressor 100 according to Embodiment 1.
  • FIG. 2 is a cross-sectional view of the compression mechanism 20 taken along line AA of FIG. 1 and viewed from above.
  • the hermetic compressor 100 is, for example, a one-cylinder rotary compressor, and has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state.
  • this hermetic compressor 100 includes a hermetic container 10 forming an outer shell.
  • This sealed container 10 is composed of an upper container 11 and a lower container 12 .
  • a discharge pipe 102 is fixed through the upper surface of the upper container 11 of the closed container 10 .
  • the discharge pipe 102 discharges high-pressure refrigerant gas to the outside of the sealed container 10 .
  • the fixed portion between the discharge pipe 102 and the upper container 11 is joined by welding or the like, for example.
  • a compression mechanism 20, an electric motor 30, a crankshaft 40, and other components are housed inside the sealed container 10.
  • the compression mechanism section 20 is housed below the sealed container 10
  • the electric motor 30 is housed above the sealed container 10 .
  • the compression mechanism portion 20 and the electric motor 30 are connected by a crankshaft 40 .
  • the crankshaft 40 transmits the rotational motion of the electric motor 30 to the compression mechanism section 20
  • the compression mechanism section 20 compresses the refrigerant gas by the transmitted rotational force. discharged inside.
  • the closed container 10 is filled with compressed high-temperature, high-pressure refrigerant gas, and refrigerating machine oil is stored below the closed container 10 , i.e., at the bottom thereof, to lubricate the compression mechanism 20 .
  • An oil pump (not shown) is provided below the crankshaft 40. As the crankshaft 40 rotates, the oil pump pumps up the refrigerating machine oil stored in the bottom of the sealed container 10, Lubricate moving parts. Thereby, the mechanical lubricating action of the compression mechanism portion 20 is ensured.
  • the crankshaft 40 is composed of a main shaft portion 41, an eccentric shaft portion 42, and a sub shaft portion 43, which are formed in order of the main shaft portion 41, the eccentric shaft portion 42, and the sub shaft portion 43 in the axial direction.
  • the electric motor 30 is shrink-fitted or press-fitted to the main shaft portion 41 and fixed, and the cylindrical rolling piston 22 is slidably fitted to the eccentric shaft portion 42 .
  • the compression mechanism section 20 compresses the low-pressure refrigerant gas sucked into the sealed container 10 into a high-pressure refrigerant gas by the rotational driving force supplied from the electric motor 30, and compresses the compressed high-pressure refrigerant gas into the compression mechanism section 20. is ejected upward.
  • the compression mechanism section 20 includes a rolling piston 22, a cylinder 23, an upper bearing 24, a lower bearing 25, and vanes 26, as shown in FIGS.
  • the cylinder 23 is internally provided with a cylindrical space, ie, a cylinder chamber 23a, which is open at both ends in the axial direction.
  • a cylinder chamber 23a In the cylinder chamber 23a, there are provided an eccentric shaft portion 42 of a crankshaft 40 that performs eccentric motion in the cylinder chamber 23a, a rolling piston 22 fitted to the eccentric shaft portion 42, an inner periphery of the cylinder chamber 23a and the rolling piston.
  • a vane 26 that partitions the space formed by the outer periphery of 22 is housed.
  • the cylinder 23 has a back pressure chamber 23b which communicates with the space outside the cylinder 23 within the sealed container 10, and a vane groove 23c which extends in the radial direction of the cylinder 23 and communicates the cylinder chamber 23a and the back pressure chamber 23b. have.
  • a substantially rectangular parallelepiped vane 26 is accommodated in the vane groove 23c. The vanes 26 reciprocate in the radial direction while sliding inside the vane grooves 23c.
  • FIG. 3 is a cross-sectional view of the groove fixing structure of the vane spring 28 in the cylinder-side spring mounting hole 29 of the hermetic compressor 100 according to the first embodiment.
  • FIG. 4 is a plan view of a structure for press-fitting and fixing the vane spring 28 into the cylinder-side spring mounting hole 29 of the hermetic compressor 100 according to the first embodiment.
  • 3 and 4 are plan views of cross sections taken along arrow C in FIG.
  • the back pressure chamber 23b of the cylinder 23 has a vane spring 28 that biases the vane 26 to abut against the rolling piston 22, and a cylinder-side spring mounting hole 29 that accommodates the vane spring 28. is provided.
  • An end portion 28a of the vane spring 28 opposite to the vane 26 is fixed by a groove fixing structure.
  • the end portion 28a of the vane spring 28 is attached to the enlarged inner diameter portion 29a formed by enlarging the inner diameter of the cylinder-side spring mounting hole 29 according to the enlarged outer diameter of the end portion 28a of the vane spring 28. It is a structure that is fixed by storing.
  • the structure for fixing the end portion 28a of the vane spring 28 opposite to the vane 26 to the cylinder 23 may be a press-fit fixing structure instead of the groove fixing structure. That is, as shown in FIG. 4 , the press-fit fixing structure increases the outer diameter of the end portion 28 a of the vane spring 28 , so that only between the end portion 28 a of the vane spring 28 and the cylinder-side spring mounting hole 29 is the cylinder. It is a structure that generates tension in the radial direction of the side spring mounting hole 29 and fixes the vane spring 28 to the cylinder side spring mounting hole 29 by frictional force.
  • the high-pressure refrigerant gas in the closed container 10 flows into the back pressure chamber 23b, and the pressure difference between the pressure of the refrigerant gas in the back pressure chamber 23b and the pressure of the refrigerant gas in the cylinder chamber 23a causes the refrigerant gas to move to the center of the cylinder chamber 23a. It creates a force that moves the vanes 26 radially toward them.
  • the vane 26 is radially moved toward the center of the cylinder chamber 23a by the force due to the differential pressure between the back pressure chamber 23b and the cylinder chamber 23a and the radial pressing force of the vane spring 28.
  • the force that moves the vane 26 in the radial direction causes the end of the vane 26 on the side of the cylinder chamber 23 a , ie, the tip of the vane 26 , to contact the cylindrical outer periphery of the rolling piston 22 .
  • the space formed by the inner periphery of the cylinder 23 and the outer periphery of the rolling piston 22 can be partitioned.
  • the differential pressure between the pressure of the refrigerant gas in the back pressure chamber 23b and the pressure of the refrigerant gas in the cylinder chamber 23a presses the vane 26 against the outer circumference of the rolling piston 22. As shown in FIG.
  • the force of the vane spring 28 can press the tip of the vane 26 against the outer circumference of the rolling piston 22 .
  • the tip of the vane 26 may be temporarily separated from the outer circumference of the rolling piston 22, it can be brought into contact with the outer circumference of the rolling piston 22 again.
  • an upper bearing 24 that supports the main shaft portion 41 of the crankshaft 40 is arranged on the upper hollow disk surface of the cylinder 23 .
  • a lower bearing 25 that supports the sub shaft portion 43 of the crankshaft 40 is arranged on the hollow disk surface on the lower side of the cylinder 23 .
  • the upper bearing 24 and the lower bearing 25 slidably support the crankshaft 40 .
  • the upper bearing 24 is fitted to the main shaft portion 41 of the crankshaft 40 to rotatably support the main shaft portion 41, and closes one axial opening of the cylinder chamber 23a.
  • the lower bearing 25 is fitted to the secondary shaft portion 43 of the crankshaft 40 to rotatably support the secondary shaft portion 43, and closes one axial opening of the cylinder chamber 23a.
  • the cylinder 23 is provided with a suction port (not shown) for sucking the refrigerant gas into the cylinder chamber 23a from the outside of the sealed container 10, and the upper bearing 24 discharges the compressed refrigerant gas to the outside of the cylinder chamber 23a.
  • a discharge port (not shown) is provided.
  • the upper bearing 24 has an approximately inverted T shape when viewed from the side
  • the lower bearing 25 has an approximately T shape when viewed from the side.
  • a discharge valve (not shown) is provided at the discharge port of the upper bearing 24 to control the discharge timing of the high-temperature, high-pressure refrigerant gas discharged from the cylinder 23 through the discharge port. That is, the discharge valve closes until the refrigerant gas compressed in the cylinder chamber 23a of the cylinder 23 reaches a predetermined pressure, and opens when the pressure exceeds the predetermined pressure to discharge the high-temperature, high-pressure refrigerant gas out of the cylinder chamber 23a.
  • a discharge muffler 27 is attached to the outside of the upper bearing 24, that is, on the motor 30 side so as to cover the upper bearing 24. As shown in FIG.
  • the discharge muffler 27 is provided with a discharge hole (not shown) that communicates the space formed by the discharge muffler 27 and the upper bearing 24 with the inside of the sealed container 10 . Refrigerant gas discharged from the cylinder 23 through the discharge port is once discharged into the space formed by the discharge muffler 27 and the upper bearing 24, and then discharged into the sealed container 10 through the discharge hole.
  • a suction muffler 101 is provided on the side of the sealed container 10 to prevent the liquid refrigerant from being directly sucked into the cylinder chamber 23a of the cylinder 23.
  • This suction muffler 101 is fixed to the side surface of the sealed container 10 by welding or the like.
  • the hermetic compressor 100 receives a mixture of low-pressure refrigerant gas and liquid refrigerant from an external refrigerant circuit to which the hermetic compressor 100 is connected. If the liquid refrigerant flows into the cylinder 23 and is compressed by the compression mechanism 20, the compression mechanism 20 will malfunction. send.
  • the suction muffler 101 is connected to the suction port of the cylinder 23 by a suction connecting pipe 21, and the low-pressure refrigerant gas sent from the suction muffler 101 is sucked into the cylinder chamber 23a through the suction connecting pipe 21.
  • the compression mechanism portion 20 according to Embodiment 1 is configured as described above, and the rotational motion of the crankshaft 40 causes the eccentric shaft portion 42 of the crankshaft 40 to rotate within the cylinder chamber 23 a of the cylinder 23 .
  • a space (hereinafter referred to as a working chamber) partitioned by the inner periphery of the cylinder chamber 23a, the outer periphery of the rolling piston 22 fitted to the eccentric shaft portion 42, and the vane 26 increases and decreases in volume as the crankshaft 40 rotates. do.
  • the working chamber communicates with the intake port, and the low-pressure refrigerant gas sent from the intake muffler 101 is sucked into the working chamber.
  • communication of the suction port is closed, and the refrigerant gas in the working chamber is compressed along with the volume reduction of the working chamber.
  • the working chamber communicates with the discharge port, and after the refrigerant gas in the working chamber reaches a predetermined pressure, the discharge valve provided at the discharge port opens, and the refrigerant gas is compressed outside the working chamber, i.e., outside the cylinder chamber 23a, to a high pressure. The high temperature refrigerant gas is discharged.
  • the high-pressure and high-temperature refrigerant gas discharged into the closed container 10 from the cylinder chamber 23a through the discharge muffler 27 passes through the electric motor 30, rises in the closed container 10, and reaches the discharge port provided at the top of the closed container 10. It is discharged to the outside of the sealed container 10 from the pipe 102 .
  • a refrigerant circuit through which refrigerant flows is formed outside the sealed container 10 , and the discharged refrigerant circulates through the refrigerant circuit and returns to the suction muffler 101 again.
  • FIG. 5 is a schematic configuration diagram of a refrigeration cycle device 200 including the hermetic compressor 100 according to Embodiment 1.
  • FIG. 5 is a schematic configuration diagram of a refrigeration cycle device 200 including the hermetic compressor 100 according to Embodiment 1.
  • Refrigeration cycle device 200 as shown in FIG.
  • a channel switching valve 103 for switching the flow of refrigerant from the machine 100, an outdoor heat exchanger 104, an expansion device 105 such as an electric expansion device, and an indoor heat exchanger 106 are connected by a refrigerant pipe 201 to circulate the refrigerant. It has a refrigerant circuit that As the refrigerant circulating in the refrigerant circuit, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is generally used.
  • the indoor heat exchanger 106 is an indoor device, and the remaining hermetic compressor 100, flow path switching valve 103, outdoor heat exchanger 104, and throttle device 105 are outdoors. installed in the device.
  • the refrigeration cycle device 200 according to the embodiment is assumed to be applied to an air conditioner capable of cooling and heating operations.
  • the channel switching valve 103 is connected to the solid line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows into the indoor-side heat exchanger 106, where it is condensed and liquefied, and then throttled by the expansion device 105 into a low-temperature, low-pressure two-phase state.
  • the low-temperature, low-pressure two-phase refrigerant flows to the outdoor heat exchanger 104 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, the refrigerant circulates as indicated by solid line arrows in FIG.
  • the outdoor heat exchanger 104 which is an evaporator, exchanges heat with the outside air, and the refrigerant sent to the outdoor heat exchanger 104 absorbs heat. It is sent to the vessel 106 and exchanges heat with the air in the room to warm the air in the room.
  • the flow path switching valve 103 is connected to the dashed line side in FIG.
  • the high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows to the outdoor heat exchanger 104, where it is condensed and liquefied, and then throttled by the expansion device 105 to become a low-temperature, low-pressure two-phase state.
  • the low-temperature, low-pressure two-phase refrigerant flows to the indoor heat exchanger 106 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 .
  • the indoor heat exchanger 106 changes from a condenser to an evaporator
  • the outdoor heat exchanger 104 changes from an evaporator to a condenser. Therefore, the coolant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the indoor heat exchanger 106, which is an evaporator, exchanges heat with the indoor air, and absorbs heat from the indoor air, that is, cools the indoor air. 104, heat is exchanged with the outside air, and the heat is released to the outside air.
  • FIG. 6 is a schematic cross-sectional view of the electric motor 30 of the hermetic compressor 100 according to Embodiment 1.
  • FIG. FIG. 6 is a cross-sectional view of the electric motor 30 cut along BB in FIG. 1 and viewed from above.
  • the electric motor 30 uses electric power supplied from an external power source to generate rotational driving force, and transmits the rotational driving force to the compression mechanism section 20 via the crankshaft 40 .
  • the electric motor 30 includes a hollow cylindrical stator 32 fixed to the inner circumference of the closed container 10 and a cylindrical rotating rotor rotatably arranged inside the inner circumference of the stator 32 . child 31;
  • the stator 32 includes a stator core 32a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40, stator windings 37 wound around the stator core 32a, the stator core 32a and the stator windings. and an insulating member (not shown) that insulates the wire 37 .
  • the rotor 31 is composed of a rotor core 31a formed by stacking core sheets punched from thin electromagnetic steel sheets.
  • the electromagnetic steel sheets forming the rotor core 31a are formed by punching electromagnetic steel sheets into a predetermined shape, stacking multiple sheets in the axial direction of the crankshaft 40, and fixing the stacked electromagnetic steel sheets to each other by caulking or welding.
  • the configuration of the rotor 31 includes those using permanent magnets, such as brushless DC motors, and those using secondary windings, such as induction motors.
  • permanent magnets such as brushless DC motors
  • secondary windings such as induction motors.
  • magnet insertion holes 31c are provided in the axial direction of the rotor core 31a.
  • Permanent magnets 33 such as ferrite magnets or rare earth magnets are inserted into the magnet insertion holes 31c, and the permanent magnets 33 form magnetic poles on the rotor 31.
  • the rotor 31 is rotated by the action of the magnetic flux produced by the magnetic poles on the rotor 31 and the magnetic flux produced by the stator windings 37 of the stator 32 .
  • the rotor 31 is an induction motor (not shown)
  • the rotor core 31a is provided with a secondary winding instead of a permanent magnet, and the stator winding 37 of the stator 32 is on the rotor side.
  • a magnetic flux is induced in the secondary winding to generate a rotational force to rotate the rotor 31 .
  • a shaft hole 31b penetrating in the axial direction is provided at the center of the rotor core 31a.
  • a main shaft portion 41 of the crankshaft 40 is inserted into the shaft hole 31b, and the rotary motion of the rotor 31 is transmitted to the crankshaft 40 by fixing the main shaft portion 41 to the rotor 31 by shrink fitting or the like. be done.
  • An air hole 35 is provided around the shaft hole 31 b , and the high-pressure, high-temperature refrigerant compressed by the compression mechanism 20 below the electric motor 30 passes through the air hole 35 .
  • the refrigerant compressed by the compression mechanism 20 passes through the air gap between the rotor 31 and the stator 32 or the gap between the stator windings 37 in addition to the air holes 35 .
  • FIG. 7 is a sectional force diagram around the vane 26 of the hermetic compressor 100 according to Embodiment 1.
  • FIG. FIG. 8 is a cross-sectional view showing a pressing structure for vanes 26 of hermetic compressor 100 according to the first embodiment.
  • 7 is a view of vanes 26 and their surroundings as seen from above
  • FIG. 8 is a view of vanes 26 as seen from the outer peripheral side of cylinder 23.
  • the one-dot chain line indicates the lateral center position of the vane 26, and the two-dot chain line indicates the lateral center position of the vane spring 28 and the lateral center position of the load from the vane spring 28, respectively.
  • dotted lines indicate the vertical center position of the vane 26, the vertical center position of the vane spring 28, and the vertical center position of the load by the vane spring 28.
  • FIG. 8 is a cross-sectional view showing a pressing structure for vanes 26 of hermetic compressor 100 according to the first embodiment.
  • 7 is a view of vanes 26 and their
  • a load F1 is applied by the vane spring 28 in the reciprocating direction of the vane 26 to the rear side of the vane 26 (hereinafter also referred to as the outer peripheral side of the cylinder 23).
  • the tip end side of the vane 26 (hereinafter also referred to as the inner peripheral side of the cylinder 23)
  • the discharge pressure side (hereinafter referred to as the high pressure side) side) toward the suction pressure side (hereinafter also referred to as low pressure side).
  • the load center position Osf of the vane springs 28 is set to be greater than the center position Ov of the vanes 26, as shown in FIGS. It has a structure that is close to the low pressure side.
  • the load center position Osf by the vane spring 28 is the center position where the load F1 by the vane spring 28 is applied to the back side of the vane 26 .
  • FIG. 9 is a cross-sectional view showing a first modification of the pressing structure of the vanes 26 of the hermetic compressor 100 according to Embodiment 1.
  • FIG. 10 is a cross-sectional view showing a second modification of the pressing structure for vanes 26 of hermetic compressor 100 according to the first embodiment.
  • 9 and 10 are views of the vane 26 viewed from the outer peripheral side of the cylinder 23.
  • the one-dot chain line indicates the lateral center position of the vane 26, and the two-dot chain line indicates the lateral center position of the sum of the loads of the vane springs 28, respectively.
  • the dotted line indicates the vertical center position of the vane 26 and the vertical center position of the sum of the loads of the vane springs 28.
  • FIG. 9 is a cross-sectional view showing a first modification of the pressing structure of the vanes 26 of the hermetic compressor 100 according to Embodiment 1.
  • FIG. 10 is a cross-sectional view showing a second modification of the pressing structure for vanes
  • the hermetic compressor 100 according to Embodiment 1 has a structure in which one vane spring 28 is provided for one vane 26, but the structure is not limited to this. As shown in FIG. 9, a structure in which a plurality of vane springs 28 are provided for one vane 26 may be employed. In this case, the central position of the sum of the loads F1 by the plurality of vane springs 28 (hereinafter also referred to as the combined load central position Osfs) is located on the low pressure side of the vane 26 with respect to the back side of the vane 26 with respect to the central position Ov. The structure should be close to each other.
  • the structure is such that the combined load center position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the center position Ov of the vanes 26 .
  • the combined load center position Osfs of the plurality of vane springs 28 rather than setting the combined load center position Osfs of the plurality of vane springs 28 to the center position Ov of the vane 26, which is the normal combined load center position, the sum of the loads F1 in the direction of the moment generated by the load F2 Moments can be relaxed.
  • the hermetic compressor 100 according to the first embodiment shown in FIG. is closer to the low pressure side, but is not limited thereto.
  • a structure in which the central position Os of the vane spring 28 is the same as the central position Ov of the vane 26 and is not located on the low pressure side may be employed.
  • the low-pressure side width Ll of the vane spring 28 is larger than the high-pressure side width Lh (that is, Ll>Lh).
  • the wire diameter is smaller than the wire diameter on the high pressure side.
  • the hermetic compressor 100 includes the hermetic container 10 forming the outer shell and the compression mechanism section 20 housed in the hermetic container 10 .
  • the compression mechanism 20 includes a hollow cylindrical cylinder 23 having vane grooves 23c provided in the radial direction, a rolling piston 22 that rotates eccentrically along the inner peripheral surface of the cylinder 23, and the inside of the vane grooves 23c.
  • a vane 26 that reciprocates and divides the space between the inner peripheral surface of the cylinder 23 and the rolling piston 22 into a high pressure side and a low pressure side, and a vane spring 28 that urges the vane 26 to abut against the rolling piston 22.
  • the load center position Osf of the vane spring 28 is closer to the low pressure side than the center position Ov of the vane 26 .
  • the load center position Osf of the vane spring 28 is closer to the low pressure side than the center position Ov of the vane 26 . Therefore, rather than setting the load center position Osf of the vane spring 28 to the center position Ov of the vane 26, which is the normal load center position, the moment caused by the load F1 in the direction of the moment generated by the load F2 can be reduced. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
  • the hermetic compressor 100 according to Embodiment 1 includes a plurality of vane springs 28, and the combined load central position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the central position Ov of the vanes 26.
  • the combined load central position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the central position Ov of the vanes 26 . Therefore, rather than setting the combined load center position Osfs of the plurality of vane springs 28 to the center position Ov of the vane 26, which is the normal combined load center position, the moment generated by the load F2 in the direction of the moment caused by the sum of the loads F1 is relaxed. can do. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
  • the vane spring 28 has a shape in which the outer diameter on the low pressure side is larger than the outer diameter on the high pressure side, or the wire diameter on the low pressure side is the wire diameter on the high pressure side. The shape is smaller than the diameter.
  • the load center position Osf of the vane spring 28 is set to the center position Ov of the vane 26 .
  • the low pressure side can be shifted to the low pressure side. Therefore, rather than setting the load center position Osf of the vane spring 28 to the center position Ov of the vane 26, which is the normal load center position, the moment caused by the load F1 in the direction of the moment generated by the load F2 can be reduced.
  • the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
  • the refrigeration cycle apparatus 200 includes the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106. .
  • the same effect as the hermetic compressor 100 described above can be obtained.
  • Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
  • FIG. 11 is a sectional force diagram around the vane 26 of the hermetic compressor 100 according to the second embodiment.
  • FIG. 12 is a diagram showing the shape of vane 26 of hermetic compressor 100 according to the second embodiment.
  • FIG. 11 is a top view of the vane 26 and its surroundings. 12(a) is a plan view of the vane 26, and FIG. 12(b) is a side view of the vane 26 as viewed in the direction of the arrow in FIG. 12(a). Further, in FIG. 11 , the dashed-dotted line indicates the lateral center position of the vane 26 .
  • the vane spring 28 is arranged so that the end on the vane 26 side with respect to the reciprocating direction of the vane 26 is on the low pressure side and on the opposite side to the vane 26 . It has a structure in which the end portion 28a is inclined so as to be on the high pressure side. That is, the end 28a of the vane spring 28 opposite to the vane 26 is closer to the high pressure side than the vane 26, and the vane spring 28 extends toward the vane 26 from the high pressure side to the low pressure side. Thus, the vane spring 28 is inclined with respect to the reciprocating direction of the vane 26 .
  • a load F3 is generated on the back side of the vane 26 in the direction from the high pressure side to the low pressure side. Since the load F3 is a component that cancels the moment generated in the vane 26 by the load F2, the moment can be suppressed by the load F3.
  • the cylinder-side spring mounting hole 29 of the cylinder 23 is inclined with respect to the reciprocating direction of the vane 26.
  • Another method is to incline the vane spring seating surface 26b of the notch 26a.
  • the vane spring seating surface 26b is a surface to which the vane 26 side end of the vane spring 28 is fixed.
  • the vane spring seating surface 26b is inclined toward the distal end side with respect to the thickness direction of the vane 26 (horizontal direction in the plan view of FIG. 12).
  • FIG. 13 is a cross-sectional view showing the pressing structure of the vane 26 of the hermetic compressor 100 according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing a first modification of the pressing structure of vanes 26 of hermetic compressor 100 according to the second embodiment.
  • a mounting hole 26c may be provided instead of forming the vane spring seating surface 26b on the back side of the vane 26 as described above and tilting the vane spring seating surface 26b, as shown in FIG.
  • a mounting hole 26c may be provided instead of forming the vane spring seating surface 26b on the back side of the vane 26.
  • the vane side spring mounting hole 26c may be provided.
  • the width of the vane 26 is required to correspond to the tilt of the vane spring 28. Therefore, the width of the vane 26 on the back side is made larger than the width on the tip side. It is better to have a structure that
  • the vane-side spring mounting hole 26c is provided on the back side of the vane 26, the machining accuracy of the vane spring seating surface 26b is not required.
  • a structure for fixing to the spring mounting hole 26c a groove fixing structure or a press-fit fixing structure may be used.
  • the enlarged inner diameter portion is formed by enlarging the inner diameter of the vane-side spring mounting hole 26c in accordance with the outer diameter of the enlarged end of the vane spring 28 on the vane 26 side.
  • the structure is such that the end portion of the vane spring 28 on the vane 26 side is housed in (not shown) to be fixed.
  • the hermetic compressor 100 includes the hermetic container 10 forming the outer shell and the compression mechanism section 20 housed in the hermetic container 10 .
  • the compression mechanism 20 includes a hollow cylindrical cylinder 23 having vane grooves 23c provided in the radial direction, a rolling piston 22 that rotates eccentrically along the inner peripheral surface of the cylinder 23, and the inside of the vane grooves 23c.
  • a vane 26 that reciprocates and divides the space between the inner peripheral surface of the cylinder 23 and the rolling piston 22 into a high pressure side and a low pressure side, and a vane spring 28 that urges the vane 26 to abut against the rolling piston 22.
  • the vane spring 28 is provided so as to apply a load to the rear side of the vane 26 in the direction from the high pressure side to the low pressure side.
  • the vane spring 28 is inclined so that the end on the vane 26 side is on the low pressure side and the end 28a on the side opposite to the vane 26 is on the high pressure side.
  • a load F3 is generated on the back side of the vane 26 in the direction from the high pressure side to the low pressure side. Since the load F3 is a component that cancels the moment generated in the vane 26 by the load F2, the moment can be suppressed by the load F3. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
  • a vane-side spring mounting hole 26c for fixing the vane spring 28 is provided on the back side of the vane 26 .
  • the end of the vane spring 28 on the vane 26 side can be fixed to the vane 26 without forming the vane spring seating surface 26b on the back side of the vane 26. can be done.
  • the refrigeration cycle apparatus 200 includes the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106. .
  • the same effect as the hermetic compressor 100 described above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

This hermetic compressor is provided with a hermetic container constituting an outer hull and a compression mechanism part accommodated in the hermetic container. The compression mechanism part is provided with a hollow cylindrical cylinder having a vane groove provided in a radial direction, a rolling piston eccentrically rotating along an inner peripheral surface of the cylinder, a partitioning vane reciprocating inside the vane groove and partitioning a space between the inner peripheral surface of the cylinder and the rolling piston into a high-pressure side and a low-pressure side, and a vane spring urging the vane to be brought into contact with the rolling piston. A load center position due to the vane spring gets closer to the low-pressure side than a center position of the vane.

Description

密閉型圧縮機および冷凍サイクル装置Hermetic compressor and refrigeration cycle equipment
 本開示は、密閉型圧縮機および冷凍サイクル装置に関するものである。 The present disclosure relates to a hermetic compressor and a refrigeration cycle device.
 一般的にロータリ圧縮機は、密閉容器と、その内部に配置された圧縮機構部と、電動機とから構成されている(例えば、特許文献1参照)。圧縮機構部は、中空円筒状のシリンダと、中心軸を中心に回転可能なシャフトと、シャフトの回転に伴いシリンダの内部で偏心回転運動を行うローリングピストンと、ローリングピストンの偏心回転運動に伴いシリンダに設けられたベーン溝の内部を往復運動するベーンと、ベーンの背面に設けられベーンの先端をローリングピストンに押圧するコイルばねなどのばね機構とを備えている。 A rotary compressor is generally composed of a sealed container, a compression mechanism section disposed inside the container, and an electric motor (see Patent Document 1, for example). The compression mechanism includes a hollow cylindrical cylinder, a shaft rotatable around a central axis, a rolling piston that performs eccentric rotational motion inside the cylinder as the shaft rotates, and a cylinder that eccentrically rotates as the rolling piston rotates. and a spring mechanism such as a coil spring provided on the back surface of the vane for pressing the tip of the vane against the rolling piston.
国際公開第2004/053335号WO2004/053335
 特許文献1に記載のロータリ圧縮機は、密閉容器に収納されたシリンダ内でローリングピストンが偏心回転運動するとともに、ばね機構の付勢力でローリングピストンに押圧されたベーンがシリンダの内部の空間を仕切ることで冷媒を圧縮している。この時、ベーンを境界として高圧空間と低圧空間とに分かれるため、ローリングピストンと接触するベーンの先端側には、高圧空間側から低圧空間側に向かう方向に荷重が加わる。そして、この荷重によってベーンにモーメントが生じ、ベーンが傾く。そして、ベーンが傾いた状態のまま往復運動し、ベーンとシリンダのベーン溝との摩擦力が大きくなることでベーンの先端とローリングピストンの外径部とが一旦離れてしまい、再度接触するときの部品衝突による信頼性低下あるいは異音が発生する課題があった。 In the rotary compressor described in Patent Document 1, a rolling piston performs an eccentric rotational movement in a cylinder housed in a closed container, and vanes pressed against the rolling piston by the biasing force of a spring mechanism partition the space inside the cylinder. This compresses the refrigerant. At this time, since the high-pressure space and the low-pressure space are separated by the vane as a boundary, a load is applied in the direction from the high-pressure space side to the low-pressure space side on the tip side of the vane that contacts the rolling piston. This load causes a moment in the vane, causing the vane to tilt. Then, the reciprocating motion of the vane in an inclined state increases the frictional force between the vane and the vane groove of the cylinder. There was a problem of reduced reliability or abnormal noise due to collision of parts.
 本開示は、以上のような課題を解決するためになされたもので、ベーンがベーン溝の内部を往復運動する際の異音の発生を抑制し、信頼性の高い密閉型圧縮機および冷凍サイクル装置を提供することを目的としている。 The present disclosure has been made in order to solve the above problems, and suppresses the generation of abnormal noise when the vanes reciprocate inside the vane grooves, and has a highly reliable hermetic compressor and refrigeration cycle. The purpose is to provide a device.
 本開示に係る密閉型圧縮機は、外郭を構成する密閉容器と、前記密閉容器に収納される圧縮機構部と、を備え、前記圧縮機構部は、径方向に設けられたベーン溝を有する中空円筒状のシリンダと、前記シリンダの内周面に沿って偏心回転するローリングピストンと、前記ベーン溝の内部を往復運動し、前記シリンダの前記内周面と前記ローリングピストンとの間の空間を高圧側と低圧側とに仕切るベーンと、前記ベーンを付勢して前記ローリングピストンに当接させるベーンスプリングと、を備え、前記ベーンスプリングによる荷重中心位置が前記ベーンの中心位置よりも低圧側に寄っている。 A hermetic compressor according to the present disclosure includes a hermetic container that forms an outer shell, and a compression mechanism that is housed in the hermetic container. A cylindrical cylinder, a rolling piston that rotates eccentrically along the inner peripheral surface of the cylinder, and a rolling piston that reciprocates inside the vane groove to pressurize the space between the inner peripheral surface of the cylinder and the rolling piston under high pressure. and a vane spring that urges the vane to contact the rolling piston, and the center position of the load by the vane spring is closer to the low pressure side than the center position of the vane. ing.
 本開示に係る冷凍サイクル装置は、上記の密閉型圧縮機と、室外側熱交換器と、絞り装置と、室内側熱交換器と、を備えたものである。 A refrigeration cycle apparatus according to the present disclosure includes the hermetic compressor, the outdoor heat exchanger, the expansion device, and the indoor heat exchanger.
 本開示に係る密閉型圧縮機および冷凍サイクル装置によれば、ベーンスプリングによる荷重中心位置がベーンの中心位置よりも低圧側に寄っている。そのため、ベーンスプリングによる荷重中心位置を通常の荷重中心位置であるベーンの中心位置とするよりも、ベーンの先端側に加わった荷重により発生するモーメント方向における、ベーンスプリングの荷重によるモーメントを緩和することができる。その結果、ベーンの傾きが抑制されるので、ベーンがベーン溝の内部を往復運動する際の異音の発生を抑制することができ、また、部品衝突が抑制されるので高い信頼性を得ることができる。 According to the hermetic compressor and refrigeration cycle device according to the present disclosure, the center position of the load by the vane spring is closer to the low pressure side than the center position of the vane. Therefore, rather than making the load center position of the vane spring the center position of the vane, which is the normal load center position, the moment generated by the load applied to the tip side of the vane should be alleviated. can be done. As a result, the inclination of the vane is suppressed, so that the generation of abnormal noise when the vane reciprocates inside the vane groove can be suppressed, and collision of parts is suppressed, so that high reliability can be obtained. can be done.
実施の形態1に係る密閉型圧縮機の断面図である。1 is a cross-sectional view of a hermetic compressor according to Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機の圧縮機構部の断面図である。2 is a cross-sectional view of a compression mechanism portion of the hermetic compressor according to Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機のシリンダ側スプリング取付穴へのベーンスプリングの溝固定構造を平面視した断面図である。FIG. 4 is a cross-sectional view of a groove fixing structure of a vane spring to a cylinder-side spring mounting hole of the hermetic compressor according to Embodiment 1, viewed from above. 実施の形態1に係る密閉型圧縮機のシリンダ側スプリング取付穴へのベーンスプリングの圧入固定構造を平面視した断面図である。FIG. 4 is a plan view of a structure for press-fitting and fixing a vane spring into a cylinder-side spring mounting hole of the hermetic compressor according to Embodiment 1; 実施の形態1に係る密閉型圧縮機を備えた冷凍サイクル装置の概略構成図である。1 is a schematic configuration diagram of a refrigeration cycle apparatus including a hermetic compressor according to Embodiment 1; FIG. 実施の形態1に係る密閉型圧縮機の電動機の断面概略図である。2 is a schematic cross-sectional view of the electric motor of the hermetic compressor according to Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機のベーンまわりの断面力図である。4 is a cross-sectional force diagram around vanes of the hermetic compressor according to Embodiment 1. FIG. 実施の形態1に係る密閉型圧縮機のベーンの押圧構造を示す断面図である。FIG. 4 is a cross-sectional view showing a vane pressing structure of the hermetic compressor according to Embodiment 1; 実施の形態1に係る密閉型圧縮機のベーンの押圧構造の第1変形例を示す断面図である。FIG. 7 is a cross-sectional view showing a first modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 1; 実施の形態1に係る密閉型圧縮機のベーンの押圧構造の第2変形例を示す断面図である。8 is a cross-sectional view showing a second modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 1. FIG. 実施の形態2に係る密閉型圧縮機のベーンまわりの断面力図である。FIG. 10 is a cross-sectional force diagram around the vane of the hermetic compressor according to Embodiment 2; 実施の形態2に係る密閉型圧縮機のベーンの形状を示す図である。FIG. 7 is a diagram showing the shape of vanes of a hermetic compressor according to Embodiment 2; 実施の形態2に係る密閉型圧縮機のベーンの押圧構造を示す断面図である。FIG. 8 is a cross-sectional view showing a vane pressing structure of a hermetic compressor according to Embodiment 2; 実施の形態2に係る密閉型圧縮機のベーンの押圧構造の第1変形例を示す断面図である。FIG. 8 is a cross-sectional view showing a first modification of the pressing structure of the vanes of the hermetic compressor according to Embodiment 2;
 以下、実施の形態に係る密閉型圧縮機100および冷凍サイクル装置200について図面を参照しながら説明する。なお、以下に説明する実施の形態によって本開示が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、これは説明のためのものであって、これらの用語は本開示を限定するものではない。これらの方向を示す用語は、特に明示しない限り、密閉型圧縮機100を前面側(正面側)から見た場合の方向を意味している。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。 A hermetic compressor 100 and a refrigeration cycle device 200 according to an embodiment will be described below with reference to the drawings. It should be noted that the present disclosure is not limited by the embodiments described below. Also, in the following drawings, the size relationship of each component may differ from the actual size. Also, in the following description, terms representing directions (for example, "up", "down", "right", "left", "front", "back", etc.) are used as appropriate for ease of understanding. For the purpose of description, these terms are not intended to limit this disclosure. Unless otherwise specified, these directional terms mean directions when the hermetic compressor 100 is viewed from the front side (front side). Also, in each figure, the same reference numerals denote the same or corresponding parts, which are common throughout the specification.
 実施の形態1.
 図1は、実施の形態1に係る密閉型圧縮機100の断面図である。図2は、実施の形態1に係る密閉型圧縮機100の圧縮機構部20の断面図である。なお、図2は、図1のA-Aにて圧縮機構部20を切断し上方から見た断面図である。
Embodiment 1.
FIG. 1 is a cross-sectional view of a hermetic compressor 100 according to Embodiment 1. FIG. FIG. 2 is a cross-sectional view of the compression mechanism portion 20 of the hermetic compressor 100 according to Embodiment 1. FIG. 2 is a cross-sectional view of the compression mechanism 20 taken along line AA of FIG. 1 and viewed from above.
 実施の形態1に係る密閉型圧縮機100は、例えば1シリンダ型ロータリ圧縮機であり、冷媒などの流体を吸入し、圧縮して高温高圧の状態として吐出させる機能を有している。この密閉型圧縮機100は、図1に示すように、外郭を構成する密閉容器10を備えている。この密閉容器10は、上部容器11と下部容器12とで構成されている。 The hermetic compressor 100 according to Embodiment 1 is, for example, a one-cylinder rotary compressor, and has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it in a high-temperature, high-pressure state. As shown in FIG. 1, this hermetic compressor 100 includes a hermetic container 10 forming an outer shell. This sealed container 10 is composed of an upper container 11 and a lower container 12 .
 密閉容器10の上部容器11の上面には、吐出管102が貫通して固定されている。吐出管102は、高圧の冷媒ガスを密閉容器10の外部に吐出させるものである。吐出管102と上部容器11との固定部分は、例えば溶接などによって接合されている。 A discharge pipe 102 is fixed through the upper surface of the upper container 11 of the closed container 10 . The discharge pipe 102 discharges high-pressure refrigerant gas to the outside of the sealed container 10 . The fixed portion between the discharge pipe 102 and the upper container 11 is joined by welding or the like, for example.
 密閉容器10の内部には、圧縮機構部20、電動機30、クランクシャフト40、および、その他の構成部品が収納されている。圧縮機構部20は密閉容器10の下方に収納されており、電動機30は密閉容器10の上方に収納されている。圧縮機構部20と電動機30とは、クランクシャフト40で連結されている。クランクシャフト40は、電動機30の回転運動を圧縮機構部20に伝達し、圧縮機構部20は、伝達された回転力によって冷媒ガスを圧縮し、圧縮された高温高圧の冷媒ガスは、密閉容器10内に吐出される。密閉容器10内は、圧縮された高温高圧の冷媒ガスによって満たされているとともに、密閉容器10の下方すなわち底部には圧縮機構部20の潤滑のため冷凍機油が貯留されている。クランクシャフト40の下部にはオイルポンプ(図示せず)が設けられており、オイルポンプはクランクシャフト40の回転とともに密閉容器10の底部に貯留された冷凍機油を汲み上げ、圧縮機構部20の各摺動部へ給油する。これにより、圧縮機構部20の機械的潤滑作用が確保される。 A compression mechanism 20, an electric motor 30, a crankshaft 40, and other components are housed inside the sealed container 10. The compression mechanism section 20 is housed below the sealed container 10 , and the electric motor 30 is housed above the sealed container 10 . The compression mechanism portion 20 and the electric motor 30 are connected by a crankshaft 40 . The crankshaft 40 transmits the rotational motion of the electric motor 30 to the compression mechanism section 20 , and the compression mechanism section 20 compresses the refrigerant gas by the transmitted rotational force. discharged inside. The closed container 10 is filled with compressed high-temperature, high-pressure refrigerant gas, and refrigerating machine oil is stored below the closed container 10 , i.e., at the bottom thereof, to lubricate the compression mechanism 20 . An oil pump (not shown) is provided below the crankshaft 40. As the crankshaft 40 rotates, the oil pump pumps up the refrigerating machine oil stored in the bottom of the sealed container 10, Lubricate moving parts. Thereby, the mechanical lubricating action of the compression mechanism portion 20 is ensured.
 クランクシャフト40は、主軸部41、偏心軸部42、および、副軸部43から構成され、軸方向に主軸部41、偏心軸部42、副軸部43の順に形成されている。主軸部41には電動機30が焼嵌または圧入されて固定されており、偏心軸部42には円筒状のローリングピストン22が摺動自在に嵌合されている。 The crankshaft 40 is composed of a main shaft portion 41, an eccentric shaft portion 42, and a sub shaft portion 43, which are formed in order of the main shaft portion 41, the eccentric shaft portion 42, and the sub shaft portion 43 in the axial direction. The electric motor 30 is shrink-fitted or press-fitted to the main shaft portion 41 and fixed, and the cylindrical rolling piston 22 is slidably fitted to the eccentric shaft portion 42 .
 圧縮機構部20は、電動機30から供給された回転駆動力により、密閉容器10の内部に吸入された低圧の冷媒ガスを高圧の冷媒ガスに圧縮し、圧縮した高圧の冷媒ガスを圧縮機構部20の上方に吐出するものである。 The compression mechanism section 20 compresses the low-pressure refrigerant gas sucked into the sealed container 10 into a high-pressure refrigerant gas by the rotational driving force supplied from the electric motor 30, and compresses the compressed high-pressure refrigerant gas into the compression mechanism section 20. is ejected upward.
 圧縮機構部20は、図1および図2に示すように、ローリングピストン22と、シリンダ23と、上軸受24と、下軸受25と、ベーン26とを備えている。シリンダ23には、軸方向の両端が開口された円筒状の空間すなわちシリンダ室23aが内部に設けられている。そして、シリンダ室23a内には、シリンダ室23a内で偏心運動を行うクランクシャフト40の偏心軸部42と、偏心軸部42に嵌合したローリングピストン22と、シリンダ室23aの内周とローリングピストン22の外周にて形成される空間を仕切るベーン26と、が収納されている。 The compression mechanism section 20 includes a rolling piston 22, a cylinder 23, an upper bearing 24, a lower bearing 25, and vanes 26, as shown in FIGS. The cylinder 23 is internally provided with a cylindrical space, ie, a cylinder chamber 23a, which is open at both ends in the axial direction. In the cylinder chamber 23a, there are provided an eccentric shaft portion 42 of a crankshaft 40 that performs eccentric motion in the cylinder chamber 23a, a rolling piston 22 fitted to the eccentric shaft portion 42, an inner periphery of the cylinder chamber 23a and the rolling piston. A vane 26 that partitions the space formed by the outer periphery of 22 is housed.
 シリンダ23は、密閉容器10内であってシリンダ23の外部の空間と連通した背圧室23bと、シリンダ23の径方向に延び、シリンダ室23aと背圧室23bとを連通させるベーン溝23cとを有している。ベーン溝23cには、ほぼ直方体形状のベーン26が収納されている。ベーン26は、ベーン溝23cの内部を摺動しながら径方向に往復運動する。 The cylinder 23 has a back pressure chamber 23b which communicates with the space outside the cylinder 23 within the sealed container 10, and a vane groove 23c which extends in the radial direction of the cylinder 23 and communicates the cylinder chamber 23a and the back pressure chamber 23b. have. A substantially rectangular parallelepiped vane 26 is accommodated in the vane groove 23c. The vanes 26 reciprocate in the radial direction while sliding inside the vane grooves 23c.
 図3は、実施の形態1に係る密閉型圧縮機100のシリンダ側スプリング取付穴29へのベーンスプリング28の溝固定構造を平面視した断面図である。図4は、実施の形態1に係る密閉型圧縮機100のシリンダ側スプリング取付穴29へのベーンスプリング28の圧入固定構造を平面視した断面図である。なお、図3および図4は、図2のC矢視部の横断面を平面視した図である。 FIG. 3 is a cross-sectional view of the groove fixing structure of the vane spring 28 in the cylinder-side spring mounting hole 29 of the hermetic compressor 100 according to the first embodiment. FIG. 4 is a plan view of a structure for press-fitting and fixing the vane spring 28 into the cylinder-side spring mounting hole 29 of the hermetic compressor 100 according to the first embodiment. 3 and 4 are plan views of cross sections taken along arrow C in FIG.
 シリンダ23の背圧室23bには、図3に示すように、ベーン26を付勢してローリングピストン22に当接させるベーンスプリング28と、ベーンスプリング28を収納するシリンダ側スプリング取付穴29とが設けられている。ベーンスプリング28におけるベーン26とは反対側の端部28aは、溝固定構造により固定されている。溝固定構造は、拡大させたベーンスプリング28の端部28aの外径に合わせてシリンダ側スプリング取付穴29の内径を拡大させることにより形成された内径拡大部29aにベーンスプリング28の端部28aを収納することで固定する構造である。 As shown in FIG. 3, the back pressure chamber 23b of the cylinder 23 has a vane spring 28 that biases the vane 26 to abut against the rolling piston 22, and a cylinder-side spring mounting hole 29 that accommodates the vane spring 28. is provided. An end portion 28a of the vane spring 28 opposite to the vane 26 is fixed by a groove fixing structure. In the groove fixing structure, the end portion 28a of the vane spring 28 is attached to the enlarged inner diameter portion 29a formed by enlarging the inner diameter of the cylinder-side spring mounting hole 29 according to the enlarged outer diameter of the end portion 28a of the vane spring 28. It is a structure that is fixed by storing.
 なお、ベーンスプリング28におけるベーン26とは反対側の端部28aをシリンダ23に固定する構造として、溝固定構造ではなく圧入固定構造でもよい。すなわち、図4に示すように、圧入固定構造は、ベーンスプリング28の端部28aの外径を大きくすることで、ベーンスプリング28の端部28aとシリンダ側スプリング取付穴29との間のみにシリンダ側スプリング取付穴29の径方向の張力を発生させ、摩擦力によりベーンスプリング28をシリンダ側スプリング取付穴29に固定する構造である。 The structure for fixing the end portion 28a of the vane spring 28 opposite to the vane 26 to the cylinder 23 may be a press-fit fixing structure instead of the groove fixing structure. That is, as shown in FIG. 4 , the press-fit fixing structure increases the outer diameter of the end portion 28 a of the vane spring 28 , so that only between the end portion 28 a of the vane spring 28 and the cylinder-side spring mounting hole 29 is the cylinder. It is a structure that generates tension in the radial direction of the side spring mounting hole 29 and fixes the vane spring 28 to the cylinder side spring mounting hole 29 by frictional force.
 通常は、密閉容器10内の高圧の冷媒ガスが背圧室23bに流入し、背圧室23bの冷媒ガスの圧力とシリンダ室23aの冷媒ガスの圧力との差圧によりシリンダ室23aの中心に向って径方向にベーン26を動かす力を作り出す。実施の形態1では、この背圧室23bとシリンダ室23aとの差圧による力とベーンスプリング28が径方向に押圧する力とによって、ベーン26はシリンダ室23aの中心に向って径方向に動かされる。ベーン26を径方向に動かす力は、ベーン26のシリンダ室23a側の端部すなわちベーン26の先端をローリングピストン22の円筒状の外周に当接させる。これによって、シリンダ23の内周とローリングピストン22の外周とで形成される空間を仕切ることができる。背圧室23bの冷媒ガスの圧力とシリンダ室23a内の冷媒ガスの圧力との差圧がベーン26をローリングピストン22の外周に押圧する。そのため、十分な圧力ではない場合でも、ベーンスプリング28の力でベーン26の先端をローリングピストン22の外周に押圧することができる。そして、ベーン26の先端は、一時的にローリングピストン22の外周と離れることがあるが、再びローリングピストン22の外周に当接させることができる。 Normally, the high-pressure refrigerant gas in the closed container 10 flows into the back pressure chamber 23b, and the pressure difference between the pressure of the refrigerant gas in the back pressure chamber 23b and the pressure of the refrigerant gas in the cylinder chamber 23a causes the refrigerant gas to move to the center of the cylinder chamber 23a. It creates a force that moves the vanes 26 radially toward them. In the first embodiment, the vane 26 is radially moved toward the center of the cylinder chamber 23a by the force due to the differential pressure between the back pressure chamber 23b and the cylinder chamber 23a and the radial pressing force of the vane spring 28. be The force that moves the vane 26 in the radial direction causes the end of the vane 26 on the side of the cylinder chamber 23 a , ie, the tip of the vane 26 , to contact the cylindrical outer periphery of the rolling piston 22 . Thereby, the space formed by the inner periphery of the cylinder 23 and the outer periphery of the rolling piston 22 can be partitioned. The differential pressure between the pressure of the refrigerant gas in the back pressure chamber 23b and the pressure of the refrigerant gas in the cylinder chamber 23a presses the vane 26 against the outer circumference of the rolling piston 22. As shown in FIG. Therefore, even if the pressure is not sufficient, the force of the vane spring 28 can press the tip of the vane 26 against the outer circumference of the rolling piston 22 . Although the tip of the vane 26 may be temporarily separated from the outer circumference of the rolling piston 22, it can be brought into contact with the outer circumference of the rolling piston 22 again.
 図1に示すように、シリンダ23の上側の中空円板面には、クランクシャフト40の主軸部41を支持す上軸受24が配置されている。また、シリンダ23の下側の中空円板面には、クランクシャフト40の副軸部43を支持する下軸受25が配置されている。そして、上軸受24および下軸受25は、クランクシャフト40を摺動自在に支持する。 As shown in FIG. 1 , an upper bearing 24 that supports the main shaft portion 41 of the crankshaft 40 is arranged on the upper hollow disk surface of the cylinder 23 . A lower bearing 25 that supports the sub shaft portion 43 of the crankshaft 40 is arranged on the hollow disk surface on the lower side of the cylinder 23 . The upper bearing 24 and the lower bearing 25 slidably support the crankshaft 40 .
 上軸受24は、クランクシャフト40の主軸部41に嵌合され主軸部41を回転自在に支持するとともに、シリンダ室23aの軸方向の一方の開口部を閉塞している。同様に、下軸受25は、クランクシャフト40の副軸部43に嵌合され副軸部43を回転自在に支持するとともに、シリンダ室23aの軸方向の一方の開口部を閉塞している。シリンダ23には密閉容器10の外部から冷媒ガスをシリンダ室23a内に吸入する吸入ポート(図示せず)が設けられており、上軸受24には圧縮した冷媒ガスをシリンダ室23a外に吐出する吐出ポート(図示せず)が設けられている。上軸受24は、側面視でほぼ逆T字形状であり、下軸受25は、側面視でほぼT字形状である。 The upper bearing 24 is fitted to the main shaft portion 41 of the crankshaft 40 to rotatably support the main shaft portion 41, and closes one axial opening of the cylinder chamber 23a. Similarly, the lower bearing 25 is fitted to the secondary shaft portion 43 of the crankshaft 40 to rotatably support the secondary shaft portion 43, and closes one axial opening of the cylinder chamber 23a. The cylinder 23 is provided with a suction port (not shown) for sucking the refrigerant gas into the cylinder chamber 23a from the outside of the sealed container 10, and the upper bearing 24 discharges the compressed refrigerant gas to the outside of the cylinder chamber 23a. A discharge port (not shown) is provided. The upper bearing 24 has an approximately inverted T shape when viewed from the side, and the lower bearing 25 has an approximately T shape when viewed from the side.
 上軸受24の吐出ポートには、吐出弁(図示せず)が設けられており、シリンダ23から吐出ポートを介して吐出される高温高圧の冷媒ガスの吐出タイミングを制御する。すなわち、吐出弁は、シリンダ23のシリンダ室23a内で圧縮される冷媒ガスが所定の圧力になるまで閉塞し、所定の圧力以上となると開口して高温高圧の冷媒ガスをシリンダ室23a外へ吐出させる。 A discharge valve (not shown) is provided at the discharge port of the upper bearing 24 to control the discharge timing of the high-temperature, high-pressure refrigerant gas discharged from the cylinder 23 through the discharge port. That is, the discharge valve closes until the refrigerant gas compressed in the cylinder chamber 23a of the cylinder 23 reaches a predetermined pressure, and opens when the pressure exceeds the predetermined pressure to discharge the high-temperature, high-pressure refrigerant gas out of the cylinder chamber 23a. Let
 シリンダ室23a内では吸入、圧縮、吐出の動作を繰り返しているため、吐出ポートから吐出される冷媒ガスは間欠的に吐出され脈動音などの騒音となる。これを低減するため、上軸受24の外側すなわち電動機30側には上軸受24を覆うように吐出マフラ27が取付けられている。吐出マフラ27には、吐出マフラ27および上軸受24で形成される空間と密閉容器10内とを連通する吐出穴(図示せず)が設けられている。シリンダ23から吐出ポートを介して吐出される冷媒ガスは、吐出マフラ27および上軸受24で形成される空間に一旦吐出され、その後、吐出穴から密閉容器10内へ吐出される。 In the cylinder chamber 23a, the operations of suction, compression, and discharge are repeated, so the refrigerant gas discharged from the discharge port is intermittently discharged, resulting in noise such as pulsating noise. In order to reduce this, a discharge muffler 27 is attached to the outside of the upper bearing 24, that is, on the motor 30 side so as to cover the upper bearing 24. As shown in FIG. The discharge muffler 27 is provided with a discharge hole (not shown) that communicates the space formed by the discharge muffler 27 and the upper bearing 24 with the inside of the sealed container 10 . Refrigerant gas discharged from the cylinder 23 through the discharge port is once discharged into the space formed by the discharge muffler 27 and the upper bearing 24, and then discharged into the sealed container 10 through the discharge hole.
 密閉容器10の側方には、液冷媒が直接シリンダ23のシリンダ室23aに吸入されることを抑制する吸入マフラ101が設けられている。この吸入マフラ101は、溶接などにより密閉容器10の側面に固定されている。一般的に、密閉型圧縮機100は密閉型圧縮機100が接続された外部の冷媒回路から、低圧の冷媒ガスと液冷媒とが混在して送られてくる。液冷媒がシリンダ23に流入し圧縮機構部20で圧縮されると圧縮機構部20の故障となるため、吸入マフラ101では、液冷媒と冷媒ガスとを分離し、冷媒ガスのみをシリンダ室23aに送る。吸入マフラ101は、シリンダ23の吸入ポートと吸入連結管21にて接続され、吸入マフラ101から送られた低圧の冷媒ガスは吸入連結管21を介してシリンダ室23aに吸入される。 A suction muffler 101 is provided on the side of the sealed container 10 to prevent the liquid refrigerant from being directly sucked into the cylinder chamber 23a of the cylinder 23. This suction muffler 101 is fixed to the side surface of the sealed container 10 by welding or the like. In general, the hermetic compressor 100 receives a mixture of low-pressure refrigerant gas and liquid refrigerant from an external refrigerant circuit to which the hermetic compressor 100 is connected. If the liquid refrigerant flows into the cylinder 23 and is compressed by the compression mechanism 20, the compression mechanism 20 will malfunction. send. The suction muffler 101 is connected to the suction port of the cylinder 23 by a suction connecting pipe 21, and the low-pressure refrigerant gas sent from the suction muffler 101 is sucked into the cylinder chamber 23a through the suction connecting pipe 21.
 実施の形態1に係る圧縮機構部20は上述の通り構成されており、クランクシャフト40の回転運動により、シリンダ23のシリンダ室23a内でクランクシャフト40の偏心軸部42が回転する。シリンダ室23aの内周と偏心軸部42に嵌合されたローリングピストン22の外周とベーン26とによって仕切られた空間(以下、作動室と称する)は、クランクシャフト40の回転とともに、容積が増減する。 The compression mechanism portion 20 according to Embodiment 1 is configured as described above, and the rotational motion of the crankshaft 40 causes the eccentric shaft portion 42 of the crankshaft 40 to rotate within the cylinder chamber 23 a of the cylinder 23 . A space (hereinafter referred to as a working chamber) partitioned by the inner periphery of the cylinder chamber 23a, the outer periphery of the rolling piston 22 fitted to the eccentric shaft portion 42, and the vane 26 increases and decreases in volume as the crankshaft 40 rotates. do.
 先ず初めに、この作動室と吸入ポートとが連通し、吸入マフラ101から送られた低圧の冷媒ガスが作動室内に吸入される。次に、吸入ポートの連通が閉鎖され、作動室の容積減少とともに、作動室内の冷媒ガスが圧縮される。最後に、作動室と吐出ポートとが連通し、作動室内の冷媒ガスが所定の圧力に達した後、吐出ポートに設けられた吐出弁が開き、作動室外すなわちシリンダ室23aの外へ圧縮され高圧高温となった冷媒ガスが吐出される。シリンダ室23aから吐出マフラ27を介し、密閉容器10内に吐出された高圧高温の冷媒ガスは、電動機30内を通過し、密閉容器10内を上昇し、密閉容器10の上部に設けられた吐出管102から、密閉容器10の外部へ吐出される。密閉容器10の外部には冷媒が流れる冷媒回路が構成されており、吐出された冷媒は冷媒回路を循環して、再び吸入マフラ101に戻ってくる。 First, the working chamber communicates with the intake port, and the low-pressure refrigerant gas sent from the intake muffler 101 is sucked into the working chamber. Next, communication of the suction port is closed, and the refrigerant gas in the working chamber is compressed along with the volume reduction of the working chamber. Finally, the working chamber communicates with the discharge port, and after the refrigerant gas in the working chamber reaches a predetermined pressure, the discharge valve provided at the discharge port opens, and the refrigerant gas is compressed outside the working chamber, i.e., outside the cylinder chamber 23a, to a high pressure. The high temperature refrigerant gas is discharged. The high-pressure and high-temperature refrigerant gas discharged into the closed container 10 from the cylinder chamber 23a through the discharge muffler 27 passes through the electric motor 30, rises in the closed container 10, and reaches the discharge port provided at the top of the closed container 10. It is discharged to the outside of the sealed container 10 from the pipe 102 . A refrigerant circuit through which refrigerant flows is formed outside the sealed container 10 , and the discharged refrigerant circulates through the refrigerant circuit and returns to the suction muffler 101 again.
 図5は、実施の形態1に係る密閉型圧縮機100を備えた冷凍サイクル装置200の概略構成図である。 FIG. 5 is a schematic configuration diagram of a refrigeration cycle device 200 including the hermetic compressor 100 according to Embodiment 1. FIG.
 冷凍サイクル装置200は、図5に示すように、密閉型圧縮機100の吸入側に接続された密閉型圧縮機100の吸入マフラ101、密閉型圧縮機100の吐出側に接続され、密閉型圧縮機100からの冷媒の流れを切換える流路切換弁103、室外側熱交換器104、電動膨張などの絞り装置105、および、室内側熱交換器106、が冷媒配管201により接続され、冷媒が循環する冷媒回路を備えている。なお、冷媒回路を循環する冷媒には、一般的にR407C冷媒、R410A冷媒、あるいはR32冷媒などが使われる。また、一般的に冷凍サイクル装置200では、室内側熱交換器106は屋内の装置に、残る密閉型圧縮機100、流路切換弁103、室外側熱交換器104、および、絞り装置105は屋外の装置に搭載されている。また、実施の形態に係る冷凍サイクル装置200は、冷暖房運転が可能な空気調和機に適用されているものとする。 Refrigeration cycle device 200, as shown in FIG. A channel switching valve 103 for switching the flow of refrigerant from the machine 100, an outdoor heat exchanger 104, an expansion device 105 such as an electric expansion device, and an indoor heat exchanger 106 are connected by a refrigerant pipe 201 to circulate the refrigerant. It has a refrigerant circuit that As the refrigerant circulating in the refrigerant circuit, R407C refrigerant, R410A refrigerant, R32 refrigerant, or the like is generally used. In general, in the refrigeration cycle device 200, the indoor heat exchanger 106 is an indoor device, and the remaining hermetic compressor 100, flow path switching valve 103, outdoor heat exchanger 104, and throttle device 105 are outdoors. installed in the device. Also, the refrigeration cycle device 200 according to the embodiment is assumed to be applied to an air conditioner capable of cooling and heating operations.
 例えば、冷凍サイクル装置200の暖房運転では、流路切換弁103は図5の実線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は、室内側熱交換器106に流れ、凝縮し、液化した後、絞り装置105で絞られ、低温低圧の二相状態となる。低温低圧の二相状態となった冷媒は、室外側熱交換器104へ流れ、蒸発し、ガス化して流路切換弁103を通って再び密閉型圧縮機100に戻る。すなわち、図5の実線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室外側熱交換器104では外気と熱交換して、室外側熱交換器104に送られてきた冷媒が吸熱し、吸熱した冷媒は凝縮器である室内側熱交換器106に送られ、室内の空気と熱交換を行い、室内の空気を温める。 For example, in the heating operation of the refrigeration cycle device 200, the channel switching valve 103 is connected to the solid line side in FIG. The high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows into the indoor-side heat exchanger 106, where it is condensed and liquefied, and then throttled by the expansion device 105 into a low-temperature, low-pressure two-phase state. The low-temperature, low-pressure two-phase refrigerant flows to the outdoor heat exchanger 104 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, the refrigerant circulates as indicated by solid line arrows in FIG. Due to this circulation, the outdoor heat exchanger 104, which is an evaporator, exchanges heat with the outside air, and the refrigerant sent to the outdoor heat exchanger 104 absorbs heat. It is sent to the vessel 106 and exchanges heat with the air in the room to warm the air in the room.
 また、冷凍サイクル装置200の冷房運転では、流路切換弁103は図5の破線側に接続される。密閉型圧縮機100で圧縮された高温高圧の冷媒は室外側熱交換器104に流れ、凝縮し、液化した後、絞り装置105で絞られ、低温低圧の二相状態となる。低温低圧の二相状態となった冷媒は、室内側熱交換器106へ流れ、蒸発し、ガス化して流路切換弁103を通って再び密閉型圧縮機100に戻る。すなわち、暖房運転から冷房運転に変わると、室内側熱交換器106が凝縮器から蒸発器に変わり、室外側熱交換器104が蒸発器から凝縮器に変わる。よって、図5の破線矢印に示すように冷媒は循環する。この循環によって、蒸発器である室内側熱交換器106では室内の空気と熱交換を行い、室内の空気から吸熱すなわち室内の空気を冷却し、吸熱した冷媒は凝縮器である室外側熱交換器104に送られ、外気と熱交換を行い、外気に放熱する。 Also, in the cooling operation of the refrigeration cycle device 200, the flow path switching valve 103 is connected to the dashed line side in FIG. The high-temperature, high-pressure refrigerant compressed by the hermetic compressor 100 flows to the outdoor heat exchanger 104, where it is condensed and liquefied, and then throttled by the expansion device 105 to become a low-temperature, low-pressure two-phase state. The low-temperature, low-pressure two-phase refrigerant flows to the indoor heat exchanger 106 , evaporates, gasifies, and returns to the hermetic compressor 100 through the flow path switching valve 103 . That is, when the heating operation changes to the cooling operation, the indoor heat exchanger 106 changes from a condenser to an evaporator, and the outdoor heat exchanger 104 changes from an evaporator to a condenser. Therefore, the coolant circulates as indicated by the dashed arrows in FIG. Due to this circulation, the indoor heat exchanger 106, which is an evaporator, exchanges heat with the indoor air, and absorbs heat from the indoor air, that is, cools the indoor air. 104, heat is exchanged with the outside air, and the heat is released to the outside air.
 図6は、実施の形態1に係る密閉型圧縮機100の電動機30の断面概略図である。図6は、図1のB-Bにて電動機30を切断し上方から見た断面図である。 FIG. 6 is a schematic cross-sectional view of the electric motor 30 of the hermetic compressor 100 according to Embodiment 1. FIG. FIG. 6 is a cross-sectional view of the electric motor 30 cut along BB in FIG. 1 and viewed from above.
 電動機30は、外部電源から供給された電力を用いて回転駆動力を発生させ、クランクシャフト40を介して圧縮機構部20に回転駆動力を伝達するものである。電動機30は、図6に示すように、密閉容器10の内周に固定される中空円筒状の固定子32と、固定子32の内周面の内側に回転自在に配置された円柱状の回転子31とを備えている。 The electric motor 30 uses electric power supplied from an external power source to generate rotational driving force, and transmits the rotational driving force to the compression mechanism section 20 via the crankshaft 40 . As shown in FIG. 6 , the electric motor 30 includes a hollow cylindrical stator 32 fixed to the inner circumference of the closed container 10 and a cylindrical rotating rotor rotatably arranged inside the inner circumference of the stator 32 . child 31;
 固定子32は、薄板状の電磁鋼板をクランクシャフト40の軸方向に積み重ねた固定子鉄心32aと、固定子鉄心32aに巻き回される固定子巻線37と、固定子鉄心32aと固定子巻線37とを絶縁する絶縁部材(図示せず)と、から構成されている。 The stator 32 includes a stator core 32a in which thin electromagnetic steel plates are stacked in the axial direction of the crankshaft 40, stator windings 37 wound around the stator core 32a, the stator core 32a and the stator windings. and an insulating member (not shown) that insulates the wire 37 .
 回転子31は、薄板電磁鋼板を打抜いた鉄心シートを積層し形成された回転子鉄心31aで構成されている。回転子鉄心31aを構成する電磁鋼板は、電磁鋼板を一定の形状に打ち抜き、複数枚、クランクシャフト40の軸方向に積み重ね、積み重ねた電磁鋼板同士が、かしめまたは溶接により固定されている。 The rotor 31 is composed of a rotor core 31a formed by stacking core sheets punched from thin electromagnetic steel sheets. The electromagnetic steel sheets forming the rotor core 31a are formed by punching electromagnetic steel sheets into a predetermined shape, stacking multiple sheets in the axial direction of the crankshaft 40, and fixing the stacked electromagnetic steel sheets to each other by caulking or welding.
 回転子31の構成には、ブラシレスDCモータのような永久磁石を用いるものと、誘導電動機のように二次巻線を使用するものとがある。回転子31が、例えば図6に示すようなブラシレスDCモータの場合は、回転子鉄心31aの軸方向に磁石挿入孔31cが設けられている。その磁石挿入孔31cにはフェライト磁石あるいは希土類磁石などの永久磁石33が挿入されており、その永久磁石33によって回転子31上の磁極を形成している。そして、回転子31上の磁極が作る磁束と固定子32の固定子巻線37が作る磁束との作用によって、回転子31を回転させる。 The configuration of the rotor 31 includes those using permanent magnets, such as brushless DC motors, and those using secondary windings, such as induction motors. When the rotor 31 is, for example, a brushless DC motor as shown in FIG. 6, magnet insertion holes 31c are provided in the axial direction of the rotor core 31a. Permanent magnets 33 such as ferrite magnets or rare earth magnets are inserted into the magnet insertion holes 31c, and the permanent magnets 33 form magnetic poles on the rotor 31. As shown in FIG. The rotor 31 is rotated by the action of the magnetic flux produced by the magnetic poles on the rotor 31 and the magnetic flux produced by the stator windings 37 of the stator 32 .
 また、回転子31が、図示しない誘導電動機の場合には、回転子鉄心31aに永久磁石の代わりに二次巻線が設けられており、固定子32の固定子巻線37が回転子側の二次巻線に磁束を誘導して回転力を発生させ、回転子31を回転させる。 If the rotor 31 is an induction motor (not shown), the rotor core 31a is provided with a secondary winding instead of a permanent magnet, and the stator winding 37 of the stator 32 is on the rotor side. A magnetic flux is induced in the secondary winding to generate a rotational force to rotate the rotor 31 .
 回転子鉄心31aの中心には、軸方向に貫通するシャフト穴31bが設けられている。このシャフト穴31bには、クランクシャフト40の主軸部41が挿入されており、主軸部41が焼嵌などにより回転子31に固定されることで、回転子31の回転運動がクランクシャフト40に伝達される。シャフト穴31bの周囲には、風穴35が設けられており、電動機30の下方にある圧縮機構部20にて圧縮された高圧高温の冷媒が、風穴35を通過する。なお、圧縮機構部20にて圧縮された冷媒は、風穴35以外にも、回転子31と固定子32との間のエアギャップあるいは固定子巻線37の間隙も通過する。 A shaft hole 31b penetrating in the axial direction is provided at the center of the rotor core 31a. A main shaft portion 41 of the crankshaft 40 is inserted into the shaft hole 31b, and the rotary motion of the rotor 31 is transmitted to the crankshaft 40 by fixing the main shaft portion 41 to the rotor 31 by shrink fitting or the like. be done. An air hole 35 is provided around the shaft hole 31 b , and the high-pressure, high-temperature refrigerant compressed by the compression mechanism 20 below the electric motor 30 passes through the air hole 35 . The refrigerant compressed by the compression mechanism 20 passes through the air gap between the rotor 31 and the stator 32 or the gap between the stator windings 37 in addition to the air holes 35 .
 図7は、実施の形態1に係る密閉型圧縮機100のベーン26まわりの断面力図である。図8は、実施の形態1に係る密閉型圧縮機100のベーン26の押圧構造を示す断面図である。図7は、ベーン26まわりを上方から見た図であり、図8は、ベーン26をシリンダ23の外周側から見た図である。また、図7および図8において、一点鎖線はベーン26の左右中心位置を、二点鎖線はベーンスプリング28の左右中心位置およびベーンスプリング28による荷重の左右中心位置をそれぞれ示している。また、図8において、点線はベーン26の上下中心位置、ベーンスプリング28の上下中心位置、および、ベーンスプリング28による荷重の上下中心位置を示している。 FIG. 7 is a sectional force diagram around the vane 26 of the hermetic compressor 100 according to Embodiment 1. FIG. FIG. 8 is a cross-sectional view showing a pressing structure for vanes 26 of hermetic compressor 100 according to the first embodiment. 7 is a view of vanes 26 and their surroundings as seen from above, and FIG. 8 is a view of vanes 26 as seen from the outer peripheral side of cylinder 23. FIG. 7 and 8, the one-dot chain line indicates the lateral center position of the vane 26, and the two-dot chain line indicates the lateral center position of the vane spring 28 and the lateral center position of the load from the vane spring 28, respectively. 8, dotted lines indicate the vertical center position of the vane 26, the vertical center position of the vane spring 28, and the vertical center position of the load by the vane spring 28. As shown in FIG.
 図7に示すように、ベーン26の背面側(以下、シリンダ23の外周側とも称する)には、ベーン26の往復方向にベーンスプリング28による荷重F1が加わる。また、ベーン26の先端側(以下、シリンダ23の内周側とも称する)には、高圧空間と低圧空間との差圧によって、ベーン26の往復方向に対する直交方向、つまり吐出圧力側(以下、高圧側とも称する)から吸入圧力側(以下、低圧側とも称する)に向かう方向に荷重F2が加わる。そして、荷重F2によってベーン26にモーメントが生じ、密閉型圧縮機100の運転中、ベーン26はその先端側が高圧側から低圧側に傾きながら回転する。このベーン26の傾きを緩和するため、実施の形態1に係る密閉型圧縮機100では、図7および図8に示すように、ベーンスプリング28による荷重中心位置Osfをベーン26の中心位置Ovよりも低圧側に寄せた構造となっている。ここで、ベーンスプリング28による荷重中心位置Osfとは、ベーン26の背面側に対して、ベーンスプリング28による荷重F1が加わる中心位置である。このように、ベーンスプリング28による荷重中心位置Osfをベーン26の中心位置Ovよりも低圧側に寄せた構造、つまり、ベーンスプリング28の中心軸が、シリンダ23におけるベーン溝23cの中心よりも低圧側に寄っている構造とする。そうすることで、ベーンスプリング28による荷重中心位置Osfを通常の荷重中心位置であるベーン26の中心位置Ovとするよりも、荷重F2により発生するモーメント方向における、荷重F1によるモーメントを緩和することができる。なお、図8に示すように、ベーンスプリング28による荷重中心位置Osfは、ベーンスプリング28の中心位置Osと同じ位置である。 As shown in FIG. 7, a load F1 is applied by the vane spring 28 in the reciprocating direction of the vane 26 to the rear side of the vane 26 (hereinafter also referred to as the outer peripheral side of the cylinder 23). In addition, on the tip end side of the vane 26 (hereinafter also referred to as the inner peripheral side of the cylinder 23), due to the pressure difference between the high pressure space and the low pressure space, the direction perpendicular to the reciprocating direction of the vane 26, that is, the discharge pressure side (hereinafter referred to as the high pressure side) side) toward the suction pressure side (hereinafter also referred to as low pressure side). A moment is generated in the vane 26 by the load F2, and the vane 26 rotates while the tip side of the vane 26 tilts from the high pressure side to the low pressure side during operation of the hermetic compressor 100 . In order to alleviate this inclination of the vanes 26, in the hermetic compressor 100 according to the first embodiment, the load center position Osf of the vane springs 28 is set to be greater than the center position Ov of the vanes 26, as shown in FIGS. It has a structure that is close to the low pressure side. Here, the load center position Osf by the vane spring 28 is the center position where the load F1 by the vane spring 28 is applied to the back side of the vane 26 . In this way, a structure in which the load center position Osf of the vane spring 28 is closer to the low pressure side than the center position Ov of the vane 26, that is, the center axis of the vane spring 28 is located on the low pressure side of the center of the vane groove 23c in the cylinder 23. The structure is close to By doing so, the moment caused by the load F1 in the direction of the moment generated by the load F2 can be alleviated rather than the center position Ov of the vane 26, which is the normal load center position, as the load center position Osf of the vane spring 28. can. Note that the center position Osf of the load applied by the vane spring 28 is the same as the center position Os of the vane spring 28, as shown in FIG.
 図9は、実施の形態1に係る密閉型圧縮機100のベーン26の押圧構造の第1変形例を示す断面図である。図10は、実施の形態1に係る密閉型圧縮機100のベーン26の押圧構造の第2変形例を示す断面図である。図9および図10は、ベーン26をシリンダ23の外周側から見た図である。また、図9および図10において、一点鎖線はベーン26の左右中心位置を、二点鎖線は複数のベーンスプリング28による荷重の和の左右中心位置をそれぞれ示している。また、図9および図10において、点線はベーン26の上下中心位置および複数のベーンスプリング28による荷重の和の上下中心位置を示している。 FIG. 9 is a cross-sectional view showing a first modification of the pressing structure of the vanes 26 of the hermetic compressor 100 according to Embodiment 1. As shown in FIG. FIG. 10 is a cross-sectional view showing a second modification of the pressing structure for vanes 26 of hermetic compressor 100 according to the first embodiment. 9 and 10 are views of the vane 26 viewed from the outer peripheral side of the cylinder 23. FIG. 9 and 10, the one-dot chain line indicates the lateral center position of the vane 26, and the two-dot chain line indicates the lateral center position of the sum of the loads of the vane springs 28, respectively. 9 and 10, the dotted line indicates the vertical center position of the vane 26 and the vertical center position of the sum of the loads of the vane springs 28. As shown in FIG.
 実施の形態1に係る密閉型圧縮機100では、ベーンスプリング28が1つのベーン26に対し1つ設けられた構造であるが、それに限定されない。図9に示すように、ベーンスプリング28が1つのベーン26に対し複数設けられた構造でもよい。この場合は、ベーン26の背面側に対して、複数のベーンスプリング28による荷重F1の和の中心位置(以下、合成荷重中心位置Osfsとも称する)が、ベーン26の中心位置Ovよりも低圧側に寄っている構造とする。このように、複数のベーンスプリング28による合成荷重中心位置Osfsをベーン26の中心位置Ovよりも低圧側に寄せた構造とする。そうすることで、複数のベーンスプリング28による合成荷重中心位置Osfsを通常の合成荷重中心位置であるベーン26の中心位置Ovとするよりも、荷重F2により発生するモーメント方向における、荷重F1の和によるモーメントを緩和することができる。 The hermetic compressor 100 according to Embodiment 1 has a structure in which one vane spring 28 is provided for one vane 26, but the structure is not limited to this. As shown in FIG. 9, a structure in which a plurality of vane springs 28 are provided for one vane 26 may be employed. In this case, the central position of the sum of the loads F1 by the plurality of vane springs 28 (hereinafter also referred to as the combined load central position Osfs) is located on the low pressure side of the vane 26 with respect to the back side of the vane 26 with respect to the central position Ov. The structure should be close to each other. In this way, the structure is such that the combined load center position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the center position Ov of the vanes 26 . By doing so, rather than setting the combined load center position Osfs of the plurality of vane springs 28 to the center position Ov of the vane 26, which is the normal combined load center position, the sum of the loads F1 in the direction of the moment generated by the load F2 Moments can be relaxed.
 また、図8に示した実施の形態1に係る密閉型圧縮機100では、ベーンスプリング28の中心位置Osとベーンスプリング28による荷重中心位置Osfとが同じ位置であり、ベーンスプリング28の中心位置Osが低圧側に寄っている構造であるが、それに限定されない。図10に示すように、ベーンスプリング28の中心位置Osがベーン26の中心位置Ovと同じ位置であり、低圧側に寄っていない構造でもよい。この場合は、図10に示すようにベーンスプリング28の低圧側の巾Llが高圧側の巾Lhよりも大きい形状とする(つまり、Ll>Lh)、あるいは図示しないがベーンスプリング28の低圧側の線径が高圧側の線径よりも小さい形状とする。そうすることで、ベーンスプリング28による荷重中心位置Osfをベーン26の中心位置Ovから低圧側にずらすことができる。 Further, in the hermetic compressor 100 according to the first embodiment shown in FIG. is closer to the low pressure side, but is not limited thereto. As shown in FIG. 10, a structure in which the central position Os of the vane spring 28 is the same as the central position Ov of the vane 26 and is not located on the low pressure side may be employed. In this case, as shown in FIG. 10, the low-pressure side width Ll of the vane spring 28 is larger than the high-pressure side width Lh (that is, Ll>Lh). The wire diameter is smaller than the wire diameter on the high pressure side. By doing so, the load center position Osf of the vane spring 28 can be shifted from the center position Ov of the vane 26 to the low pressure side.
 以上、実施の形態1に係る密閉型圧縮機100は、外郭を構成する密閉容器10と、密閉容器10に収納される圧縮機構部20と、を備えている。また、圧縮機構部20は、径方向に設けられたベーン溝23cを有する中空円筒状のシリンダ23と、シリンダ23の内周面に沿って偏心回転するローリングピストン22と、ベーン溝23cの内部を往復運動し、シリンダ23の内周面とローリングピストン22との間の空間を高圧側と低圧側とに仕切るベーン26と、ベーン26を付勢してローリングピストン22に当接させるベーンスプリング28と、を備えている。そして、ベーンスプリング28による荷重中心位置Osfがベーン26の中心位置Ovよりも低圧側に寄っている。 As described above, the hermetic compressor 100 according to Embodiment 1 includes the hermetic container 10 forming the outer shell and the compression mechanism section 20 housed in the hermetic container 10 . The compression mechanism 20 includes a hollow cylindrical cylinder 23 having vane grooves 23c provided in the radial direction, a rolling piston 22 that rotates eccentrically along the inner peripheral surface of the cylinder 23, and the inside of the vane grooves 23c. A vane 26 that reciprocates and divides the space between the inner peripheral surface of the cylinder 23 and the rolling piston 22 into a high pressure side and a low pressure side, and a vane spring 28 that urges the vane 26 to abut against the rolling piston 22. , is equipped with The load center position Osf of the vane spring 28 is closer to the low pressure side than the center position Ov of the vane 26 .
 実施の形態1に係る密閉型圧縮機100によれば、ベーンスプリング28による荷重中心位置Osfがベーン26の中心位置Ovよりも低圧側に寄っている。そのため、ベーンスプリング28による荷重中心位置Osfを通常の荷重中心位置であるベーン26の中心位置Ovとするよりも、荷重F2により発生するモーメント方向における、荷重F1によるモーメントを緩和することができる。その結果、ベーン26の傾きが抑制されるので、ベーン26がベーン溝23cの内部を往復運動する際の異音の発生を抑制することができ、また、部品衝突が抑制されるので高い信頼性を得ることができる。 According to the hermetic compressor 100 according to Embodiment 1, the load center position Osf of the vane spring 28 is closer to the low pressure side than the center position Ov of the vane 26 . Therefore, rather than setting the load center position Osf of the vane spring 28 to the center position Ov of the vane 26, which is the normal load center position, the moment caused by the load F1 in the direction of the moment generated by the load F2 can be reduced. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
 また、実施の形態1に係る密閉型圧縮機100は、複数のベーンスプリング28を備え、複数のベーンスプリング28による合成荷重中心位置Osfsがベーン26の中心位置Ovよりも低圧側に寄っている。 Further, the hermetic compressor 100 according to Embodiment 1 includes a plurality of vane springs 28, and the combined load central position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the central position Ov of the vanes 26.
 実施の形態1に係る密閉型圧縮機100によれば、複数のベーンスプリング28による合成荷重中心位置Osfsがベーン26の中心位置Ovよりも低圧側に寄っている。そのため、複数のベーンスプリング28による合成荷重中心位置Osfsを通常の合成荷重中心位置であるベーン26の中心位置Ovとするよりも、荷重F2により発生するモーメント方向における、荷重F1の和によるモーメントを緩和することができる。その結果、ベーン26の傾きが抑制されるので、ベーン26がベーン溝23cの内部を往復運動する際の異音の発生を抑制することができ、また、部品衝突が抑制されるので高い信頼性を得ることができる。 According to the hermetic compressor 100 according to Embodiment 1, the combined load central position Osfs of the plurality of vane springs 28 is closer to the low pressure side than the central position Ov of the vanes 26 . Therefore, rather than setting the combined load center position Osfs of the plurality of vane springs 28 to the center position Ov of the vane 26, which is the normal combined load center position, the moment generated by the load F2 in the direction of the moment caused by the sum of the loads F1 is relaxed. can do. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
 また、実施の形態1に係る密閉型圧縮機100において、ベーンスプリング28は、低圧側の外径が高圧側の外径よりも大きい形状である、あるいは、低圧側の線径が高圧側の線径よりも小さい形状である。 In the hermetic compressor 100 according to Embodiment 1, the vane spring 28 has a shape in which the outer diameter on the low pressure side is larger than the outer diameter on the high pressure side, or the wire diameter on the low pressure side is the wire diameter on the high pressure side. The shape is smaller than the diameter.
 実施の形態1に係る密閉型圧縮機100によれば、ベーンスプリング28の中心位置Osが低圧側に寄っていない構造であっても、ベーンスプリング28による荷重中心位置Osfをベーン26の中心位置Ovから低圧側にずらすことができる。そのため、ベーンスプリング28による荷重中心位置Osfを通常の荷重中心位置であるベーン26の中心位置Ovとするよりも、荷重F2により発生するモーメント方向における、荷重F1によるモーメントを緩和することができる。その結果、ベーン26の傾きが抑制されるので、ベーン26がベーン溝23cの内部を往復運動する際の異音の発生を抑制することができ、また、部品衝突が抑制されるので高い信頼性を得ることができる。 According to the hermetic compressor 100 according to Embodiment 1, even in a structure in which the center position Os of the vane spring 28 is not shifted to the low pressure side, the load center position Osf of the vane spring 28 is set to the center position Ov of the vane 26 . can be shifted to the low pressure side. Therefore, rather than setting the load center position Osf of the vane spring 28 to the center position Ov of the vane 26, which is the normal load center position, the moment caused by the load F1 in the direction of the moment generated by the load F2 can be reduced. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
 また、実施の形態1に係る冷凍サイクル装置200は、上記の密閉型圧縮機100と、室外側熱交換器104と、絞り装置105と、室内側熱交換器106と、を備えたものである。 Further, the refrigeration cycle apparatus 200 according to Embodiment 1 includes the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106. .
 実施の形態1に係る密閉型圧縮機100によれば、上記の密閉型圧縮機100と同様の効果を得ることができる。 According to the hermetic compressor 100 according to Embodiment 1, the same effect as the hermetic compressor 100 described above can be obtained.
 実施の形態2.
 以下、実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
Embodiment 2.
Embodiment 2 will be described below, but descriptions of parts that overlap with those of Embodiment 1 will be omitted, and parts that are the same as or correspond to those of Embodiment 1 will be given the same reference numerals.
 図11は、実施の形態2に係る密閉型圧縮機100のベーン26まわりの断面力図である。図12は、実施の形態2に係る密閉型圧縮機100のベーン26の形状を示す図である。図11は、ベーン26まわりを上方から見た図である。図12(a)は、ベーン26の平面図であり、図12(b)は、図12(a)の矢視方向に見たベーン26の側面図である。また、図11において、一点鎖線はベーン26の左右中心位置を示している。 FIG. 11 is a sectional force diagram around the vane 26 of the hermetic compressor 100 according to the second embodiment. FIG. 12 is a diagram showing the shape of vane 26 of hermetic compressor 100 according to the second embodiment. FIG. 11 is a top view of the vane 26 and its surroundings. 12(a) is a plan view of the vane 26, and FIG. 12(b) is a side view of the vane 26 as viewed in the direction of the arrow in FIG. 12(a). Further, in FIG. 11 , the dashed-dotted line indicates the lateral center position of the vane 26 .
 実施の形態2に係る密閉型圧縮機100では、図11に示すように、ベーンスプリング28を、ベーン26の往復方向に対してベーン26側の端部が低圧側でベーン26とは反対側の端部28aが高圧側となるように傾斜させた構造となっている。すなわち、ベーンスプリング28におけるベーン26とは反対側の端部28aは、ベーン26よりも高圧側に寄っていて、ベーンスプリング28はベーン26に向かって高圧側から低圧側に向かって延びている。このようにベーンスプリング28は、ベーン26の往復方向に対して傾斜している。このようにすることで、ベーン26の背面側に対して、高圧側から低圧側に向かう方向に荷重F3が発生する。そして、荷重F3は、荷重F2によってベーン26に生じたモーメントを打ち消す方向の成分であるため、荷重F3によって、モーメントを抑制することが可能となる。 In the hermetic compressor 100 according to Embodiment 2, as shown in FIG. 11 , the vane spring 28 is arranged so that the end on the vane 26 side with respect to the reciprocating direction of the vane 26 is on the low pressure side and on the opposite side to the vane 26 . It has a structure in which the end portion 28a is inclined so as to be on the high pressure side. That is, the end 28a of the vane spring 28 opposite to the vane 26 is closer to the high pressure side than the vane 26, and the vane spring 28 extends toward the vane 26 from the high pressure side to the low pressure side. Thus, the vane spring 28 is inclined with respect to the reciprocating direction of the vane 26 . By doing so, a load F3 is generated on the back side of the vane 26 in the direction from the high pressure side to the low pressure side. Since the load F3 is a component that cancels the moment generated in the vane 26 by the load F2, the moment can be suppressed by the load F3.
 ベーンスプリング28の傾け方としては、図11に示すように、シリンダ23のシリンダ側スプリング取付穴29をベーン26の往復方向に対して傾け、図12に示すようにベーン26の背面側に形成された切り欠き部26aのベーンスプリング着座面26bを傾斜させる手法がある。なお、ベーンスプリング着座面26bは、ベーンスプリング28におけるベーン26側の端部が固定される面である。ここで、ベーンスプリング着座面26bは、ベーン26の厚み方向(図12の平面図の左右方向)に対して先端側に傾斜している。 11, the cylinder-side spring mounting hole 29 of the cylinder 23 is inclined with respect to the reciprocating direction of the vane 26. Another method is to incline the vane spring seating surface 26b of the notch 26a. The vane spring seating surface 26b is a surface to which the vane 26 side end of the vane spring 28 is fixed. Here, the vane spring seating surface 26b is inclined toward the distal end side with respect to the thickness direction of the vane 26 (horizontal direction in the plan view of FIG. 12).
 図13は、実施の形態2に係る密閉型圧縮機100のベーン26の押圧構造を示す断面図である。図14は、実施の形態2に係る密閉型圧縮機100のベーン26の押圧構造の第1変形例を示す断面図である。 FIG. 13 is a cross-sectional view showing the pressing structure of the vane 26 of the hermetic compressor 100 according to the second embodiment. FIG. 14 is a cross-sectional view showing a first modification of the pressing structure of vanes 26 of hermetic compressor 100 according to the second embodiment.
 なお、上記のようにベーン26の背面側にベーンスプリング着座面26bを形成し、そのベーンスプリング着座面26bを傾斜させる手法ではなく、図13に示すように、ベーン26の背面側にベーン側スプリング取付穴26cを設けてもよい。つまり、ベーン26の背面側にベーンスプリング着座面26bを形成する代わりに、ベーン側スプリング取付穴26cを設けてもよい。なお、ベーン26にベーン側スプリング取付穴26cを設ける場合には、ベーンスプリング28を傾けた分だけベーン26の巾が必要になるため、ベーン26の先端側の巾よりも背面側の巾を大きくした構造にするとよい。 Instead of forming the vane spring seating surface 26b on the back side of the vane 26 as described above and tilting the vane spring seating surface 26b, as shown in FIG. A mounting hole 26c may be provided. That is, instead of forming the vane spring seating surface 26b on the back side of the vane 26, the vane side spring mounting hole 26c may be provided. When the vane 26 is provided with the vane-side spring mounting hole 26c, the width of the vane 26 is required to correspond to the tilt of the vane spring 28. Therefore, the width of the vane 26 on the back side is made larger than the width on the tip side. It is better to have a structure that
 また、ベーン26の背面側にベーン側スプリング取付穴26cを設ける場合には、ベーンスプリング着座面26bの加工精度を不要とするため、ベーンスプリング28におけるベーン26側の端部をベーン26のベーン側スプリング取付穴26cに固定する構造としては、溝固定構造でもよいし、圧入固定構造でもよい。溝固定構造では、図14に示すように、拡大させたベーンスプリング28におけるベーン26側の端部の外径に合わせてベーン側スプリング取付穴26cの内径を拡大させることにより形成された内径拡大部(図示せず)にベーンスプリング28におけるベーン26側の端部を収納することで固定する構造である。圧入固定構造では、ベーンスプリング28におけるベーン26側の端部の外径を大きくすることで、ベーンスプリング28におけるベーン26側の端部の外径とベーン側スプリング取付穴26cの径方向の張力を発生させ、摩擦力によりベーンスプリング28をベーン側スプリング取付穴26cに固定する構造である。 Further, when the vane-side spring mounting hole 26c is provided on the back side of the vane 26, the machining accuracy of the vane spring seating surface 26b is not required. As a structure for fixing to the spring mounting hole 26c, a groove fixing structure or a press-fit fixing structure may be used. In the groove fixing structure, as shown in FIG. 14, the enlarged inner diameter portion is formed by enlarging the inner diameter of the vane-side spring mounting hole 26c in accordance with the outer diameter of the enlarged end of the vane spring 28 on the vane 26 side. The structure is such that the end portion of the vane spring 28 on the vane 26 side is housed in (not shown) to be fixed. In the press-fit fixing structure, by increasing the outer diameter of the end of the vane spring 28 on the vane 26 side, the outer diameter of the end of the vane spring 28 on the vane 26 side and the radial tension of the vane-side spring mounting hole 26c are reduced. Frictional force is generated to fix the vane spring 28 to the vane-side spring mounting hole 26c.
 以上、実施の形態2に係る密閉型圧縮機100は、外郭を構成する密閉容器10と、密閉容器10に収納される圧縮機構部20と、を備えている。また、圧縮機構部20は、径方向に設けられたベーン溝23cを有する中空円筒状のシリンダ23と、シリンダ23の内周面に沿って偏心回転するローリングピストン22と、ベーン溝23cの内部を往復運動し、シリンダ23の内周面とローリングピストン22との間の空間を高圧側と低圧側とに仕切るベーン26と、ベーン26を付勢してローリングピストン22に当接させるベーンスプリング28と、を備えている。そして、ベーンスプリング28は、ベーン26の背面側に対して高圧側から低圧側に向かう方向に荷重がかかるように設けられている。 As described above, the hermetic compressor 100 according to the second embodiment includes the hermetic container 10 forming the outer shell and the compression mechanism section 20 housed in the hermetic container 10 . The compression mechanism 20 includes a hollow cylindrical cylinder 23 having vane grooves 23c provided in the radial direction, a rolling piston 22 that rotates eccentrically along the inner peripheral surface of the cylinder 23, and the inside of the vane grooves 23c. A vane 26 that reciprocates and divides the space between the inner peripheral surface of the cylinder 23 and the rolling piston 22 into a high pressure side and a low pressure side, and a vane spring 28 that urges the vane 26 to abut against the rolling piston 22. , is equipped with The vane spring 28 is provided so as to apply a load to the rear side of the vane 26 in the direction from the high pressure side to the low pressure side.
 また、実施の形態2に係る密閉型圧縮機100において、ベーンスプリング28は、ベーン26側の端部が低圧側でベーン26とは反対側の端部28aが高圧側となるように傾斜している。 In the hermetic compressor 100 according to the second embodiment, the vane spring 28 is inclined so that the end on the vane 26 side is on the low pressure side and the end 28a on the side opposite to the vane 26 is on the high pressure side. there is
 実施の形態2に係る密閉型圧縮機100によれば、ベーン26の背面側に対して、高圧側から低圧側に向かう方向に荷重F3が発生する。そして、荷重F3は、荷重F2によってベーン26に生じたモーメントを打ち消す方向の成分であるため、荷重F3によって、モーメントを抑制することが可能となる。その結果、ベーン26の傾きが抑制されるので、ベーン26がベーン溝23cの内部を往復運動する際の異音の発生を抑制することができ、また、部品衝突が抑制されるので高い信頼性を得ることができる。 According to the hermetic compressor 100 according to Embodiment 2, a load F3 is generated on the back side of the vane 26 in the direction from the high pressure side to the low pressure side. Since the load F3 is a component that cancels the moment generated in the vane 26 by the load F2, the moment can be suppressed by the load F3. As a result, the inclination of the vane 26 is suppressed, so that the generation of abnormal noise when the vane 26 reciprocates inside the vane groove 23c can be suppressed. can be obtained.
 また、実施の形態2に係る密閉型圧縮機100において、ベーン26の背面側には、ベーンスプリング28を固定するベーン側スプリング取付穴26cが設けられている。 Further, in the hermetic compressor 100 according to Embodiment 2, a vane-side spring mounting hole 26c for fixing the vane spring 28 is provided on the back side of the vane 26 .
 実施の形態2に係る密閉型圧縮機100によれば、ベーン26の背面側にベーンスプリング着座面26bを形成しなくても、ベーンスプリング28におけるベーン26側の端部をベーン26に固定することができる。 According to the hermetic compressor 100 according to the second embodiment, the end of the vane spring 28 on the vane 26 side can be fixed to the vane 26 without forming the vane spring seating surface 26b on the back side of the vane 26. can be done.
 また、実施の形態2に係る冷凍サイクル装置200は、上記の密閉型圧縮機100と、室外側熱交換器104と、絞り装置105と、室内側熱交換器106と、を備えたものである。 Further, the refrigeration cycle apparatus 200 according to Embodiment 2 includes the hermetic compressor 100, the outdoor heat exchanger 104, the expansion device 105, and the indoor heat exchanger 106. .
 実施の形態2に係る密閉型圧縮機100によれば、上記の密閉型圧縮機100と同様の効果を得ることができる。 According to the hermetic compressor 100 according to Embodiment 2, the same effect as the hermetic compressor 100 described above can be obtained.
 10 密閉容器、11 上部容器、12 下部容器、20 圧縮機構部、21 吸入連結管、22 ローリングピストン、23 シリンダ、23a シリンダ室、23b 背圧室、23c ベーン溝、24 上軸受、25 下軸受、26 ベーン、26a 切り欠き部、26b ベーンスプリング着座面、26c ベーン側スプリング取付穴、27 吐出マフラ、28 ベーンスプリング、28a 端部、29 シリンダ側スプリング取付穴、29a 内径拡大部、30 電動機、31 回転子、31a 回転子鉄心、31b シャフト穴、31c 磁石挿入孔、32 固定子、32a 固定子鉄心、33 永久磁石、35 風穴、37 固定子巻線、40 クランクシャフト、41 主軸部、42 偏心軸部、43 副軸部、100 密閉型圧縮機、101 吸入マフラ、102 吐出管、103 流路切換弁、104 室外側熱交換器、105 絞り装置、106 室内側熱交換器、200 冷凍サイクル装置、201 冷媒配管。 10 closed container, 11 upper container, 12 lower container, 20 compression mechanism, 21 suction connecting pipe, 22 rolling piston, 23 cylinder, 23a cylinder chamber, 23b back pressure chamber, 23c vane groove, 24 upper bearing, 25 lower bearing, 26 vane, 26a notch, 26b vane spring seating surface, 26c vane side spring mounting hole, 27 discharge muffler, 28 vane spring, 28a end, 29 cylinder side spring mounting hole, 29a inner diameter enlarged portion, 30 electric motor, 31 rotations child, 31a rotor core, 31b shaft hole, 31c magnet insertion hole, 32 stator, 32a stator core, 33 permanent magnet, 35 air hole, 37 stator winding, 40 crankshaft, 41 main shaft, 42 eccentric shaft , 43 auxiliary shaft portion, 100 hermetic compressor, 101 suction muffler, 102 discharge pipe, 103 flow path switching valve, 104 outdoor heat exchanger, 105 throttle device, 106 indoor heat exchanger, 200 refrigeration cycle device, 201 Refrigerant piping.

Claims (11)

  1.  外郭を構成する密閉容器と、
     前記密閉容器に収納される圧縮機構部と、を備え、
     前記圧縮機構部は、
     径方向に設けられたベーン溝を有する中空円筒状のシリンダと、
     前記シリンダの内周面に沿って偏心回転するローリングピストンと、
     前記ベーン溝の内部を往復運動し、前記シリンダの前記内周面と前記ローリングピストンとの間の空間を高圧側と低圧側とに仕切るベーンと、
     前記ベーンを付勢して前記ローリングピストンに当接させるベーンスプリングと、を備え、
     前記ベーンスプリングによる荷重中心位置が前記ベーンの中心位置よりも低圧側に寄っている
     密閉型圧縮機。
    a closed container forming an outer shell;
    and a compression mechanism housed in the sealed container,
    The compression mechanism section is
    a hollow cylindrical cylinder having radial vane grooves;
    a rolling piston that rotates eccentrically along the inner peripheral surface of the cylinder;
    a vane that reciprocates inside the vane groove and divides the space between the inner peripheral surface of the cylinder and the rolling piston into a high pressure side and a low pressure side;
    a vane spring that biases the vane to abut against the rolling piston;
    A hermetic compressor, wherein the load center position of the vane spring is closer to the low pressure side than the center position of the vane.
  2.  複数の前記ベーンスプリングを備え、
     複数の前記ベーンスプリングによる合成荷重中心位置が前記ベーンの中心位置よりも低圧側に寄っている
     請求項1に記載の密閉型圧縮機。
    comprising a plurality of said vane springs,
    2. The hermetic compressor according to claim 1, wherein a center position of combined load by said plurality of vane springs is closer to a low pressure side than a center position of said vane.
  3.  前記ベーンスプリングは、
     低圧側の巾が高圧側の巾よりも大きい形状である
     請求項1に記載の密閉型圧縮機。
    The vane spring is
    The hermetic compressor according to claim 1, wherein the width of the low pressure side is wider than the width of the high pressure side.
  4.  前記ベーンスプリングは、
     低圧側の線径が高圧側の線径よりも小さい形状である
     請求項1に記載の密閉型圧縮機。
    The vane spring is
    The hermetic compressor according to claim 1, wherein the wire diameter on the low pressure side is smaller than the wire diameter on the high pressure side.
  5.  外郭を構成する密閉容器と、
     前記密閉容器に収納される圧縮機構部と、を備え、
     前記圧縮機構部は、
     径方向に設けられたベーン溝を有する中空円筒状のシリンダと、
     前記シリンダの内周面に沿って偏心回転するローリングピストンと、
     前記ベーン溝の内部を往復運動し、前記シリンダの前記内周面と前記ローリングピストンとの間の空間を高圧側と低圧側とに仕切るベーンと、
     前記ベーンを付勢して前記ローリングピストンに当接させるベーンスプリングと、を備え、
     前記ベーンスプリングは、前記ベーンの背面側に対して高圧側から低圧側に向かう方向に荷重がかかるように設けられている
     密閉型圧縮機。
    a closed container forming an outer shell;
    and a compression mechanism housed in the sealed container,
    The compression mechanism section is
    a hollow cylindrical cylinder having radial vane grooves;
    a rolling piston that rotates eccentrically along the inner peripheral surface of the cylinder;
    a vane that reciprocates inside the vane groove and divides the space between the inner peripheral surface of the cylinder and the rolling piston into a high pressure side and a low pressure side;
    a vane spring that biases the vane to abut against the rolling piston;
    The hermetic compressor, wherein the vane spring is provided so as to apply a load to the rear side of the vane in a direction from a high pressure side to a low pressure side.
  6.  前記ベーンスプリングは、
     前記ベーン側の端部が低圧側で前記ベーンとは反対側の端部が高圧側となるように傾斜している
     請求項5に記載の密閉型圧縮機。
    The vane spring is
    6. The hermetic compressor according to claim 5, wherein the vane-side end is inclined to the low pressure side and the end opposite to the vane is inclined to the high pressure side.
  7.  前記ベーンの背面側には、
     前記ベーンスプリングを固定するベーン側スプリング取付穴が設けられている
     請求項1~6のいずれか一項に記載の密閉型圧縮機。
    On the back side of the vane,
    The hermetic compressor according to any one of claims 1 to 6, further comprising a vane-side spring mounting hole for fixing the vane spring.
  8.  前記ベーンは、
     背面側の巾が先端側の巾よりも大きい
     請求項7に記載の密閉型圧縮機。
    The vane is
    8. The hermetic compressor according to claim 7, wherein the width on the back side is larger than the width on the tip side.
  9.  圧入固定構造により前記ベーンは前記ベーン側スプリング取付穴に固定されている
     請求項7または8に記載の密閉型圧縮機。
    The hermetic compressor according to claim 7 or 8, wherein the vane is fixed to the vane-side spring mounting hole by a press-fit fixing structure.
  10.  溝固定構造により前記ベーンは前記ベーン側スプリング取付穴に固定されている
     請求項7または8に記載の密閉型圧縮機。
    The hermetic compressor according to claim 7 or 8, wherein the vane is fixed to the vane-side spring mounting hole by a groove fixing structure.
  11.  請求項1~10のいずれか一項に記載の密閉型圧縮機と、
     室外側熱交換器と、
     絞り装置と、
     室内側熱交換器と、を備えた
     冷凍サイクル装置。
    A hermetic compressor according to any one of claims 1 to 10;
    an outdoor heat exchanger;
    a diaphragm device;
    A refrigeration cycle device comprising: an indoor heat exchanger.
PCT/JP2021/028556 2021-08-02 2021-08-02 Hermetic compressor and refrigeration cycle device WO2023012852A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180100918.1A CN117716130A (en) 2021-08-02 2021-08-02 Hermetic compressor and refrigeration cycle device
PCT/JP2021/028556 WO2023012852A1 (en) 2021-08-02 2021-08-02 Hermetic compressor and refrigeration cycle device
JP2023539225A JPWO2023012852A1 (en) 2021-08-02 2021-08-02

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028556 WO2023012852A1 (en) 2021-08-02 2021-08-02 Hermetic compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023012852A1 true WO2023012852A1 (en) 2023-02-09

Family

ID=85155399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028556 WO2023012852A1 (en) 2021-08-02 2021-08-02 Hermetic compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2023012852A1 (en)
CN (1) CN117716130A (en)
WO (1) WO2023012852A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51159010U (en) * 1975-06-12 1976-12-17
JPS52104113U (en) * 1976-02-05 1977-08-08
JPS58127188U (en) * 1982-02-23 1983-08-29 松下冷機株式会社 rotary compressor
JPS6229788A (en) * 1985-07-30 1987-02-07 Mitsubishi Electric Corp Multi-cylinder rotary type compressor
WO2015136981A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Compressor and refrigeration cycle system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51159010U (en) * 1975-06-12 1976-12-17
JPS52104113U (en) * 1976-02-05 1977-08-08
JPS58127188U (en) * 1982-02-23 1983-08-29 松下冷機株式会社 rotary compressor
JPS6229788A (en) * 1985-07-30 1987-02-07 Mitsubishi Electric Corp Multi-cylinder rotary type compressor
WO2015136981A1 (en) * 2014-03-14 2015-09-17 三菱電機株式会社 Compressor and refrigeration cycle system

Also Published As

Publication number Publication date
CN117716130A (en) 2024-03-15
JPWO2023012852A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP5445550B2 (en) Vane rotary compressor
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
JP6680779B2 (en) Compressor and refrigeration cycle device
JP2010279126A (en) Stator core of electric motor, electric motor, sealed compressor, and refrigeration cycle device
JP2011241750A (en) Hermetic compressor
JP5459375B1 (en) Rotary compressor
EP2090780A1 (en) Compressor
KR101001837B1 (en) Compressor motor and compressor
WO2023012852A1 (en) Hermetic compressor and refrigeration cycle device
JP6297220B2 (en) Electric motor for compressor, compressor, and refrigeration cycle apparatus
US11473571B2 (en) Sealed refrigerant compressor and refrigeration device
WO2023084722A1 (en) Compressor and refrigeration cycle device
WO2023187909A1 (en) Hermetic compressor and refrigeration cycle device
JP6556342B2 (en) Stator, motor, compressor and refrigeration cycle equipment
EP4261412A2 (en) Driving unit and linear compressor including the same
WO2023170869A1 (en) Compressor and refrigeration cycle device
WO2021106198A1 (en) Compressor and refrigeration cycle device
WO2022137492A1 (en) Rotor, electric motor, compressor, refrigeration cycle device, and air conditioning device
JP7466692B2 (en) Compressor and refrigeration cycle device
WO2023152799A1 (en) Compressor and refrigeration cycle device with said compressor
KR101992586B1 (en) Compressor and refrigeration cycle unit
WO2017212598A1 (en) Hermetic compressor and air-conditioner
KR20180037040A (en) Stator iron core, compressor and refrigeration cycle unit
JP6391816B2 (en) Rotary compressor and vapor compression refrigeration cycle apparatus
JP6324624B2 (en) Refrigerant compressor and vapor compression refrigeration cycle apparatus equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539225

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2401000405

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202180100918.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE