JP3720208B2 - Heat exchanger and air-conditioning refrigeration apparatus using the same - Google Patents

Heat exchanger and air-conditioning refrigeration apparatus using the same Download PDF

Info

Publication number
JP3720208B2
JP3720208B2 JP07763799A JP7763799A JP3720208B2 JP 3720208 B2 JP3720208 B2 JP 3720208B2 JP 07763799 A JP07763799 A JP 07763799A JP 7763799 A JP7763799 A JP 7763799A JP 3720208 B2 JP3720208 B2 JP 3720208B2
Authority
JP
Japan
Prior art keywords
heat exchanger
heat transfer
plate
fin
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07763799A
Other languages
Japanese (ja)
Other versions
JP2000274982A (en
Inventor
雅弘 中山
邦彦 加賀
倫正 竹下
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP07763799A priority Critical patent/JP3720208B2/en
Publication of JP2000274982A publication Critical patent/JP2000274982A/en
Application granted granted Critical
Publication of JP3720208B2 publication Critical patent/JP3720208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、冷媒と気体等との流体間での熱交換を行うための熱交換器、及びそれを用いた空調冷凍装置に関するものである。
【0002】
【従来の技術】
図12は、例えば特開昭63−3188号公報に開示された空調冷凍装置に用いられるフィンチューブ型熱交換器を示す部分側面図である。この熱交換器は、プレートフィンチューブ型と一般に呼ばれるもので、一定間隔で配置されその間を空気が流れる(図中に矢印で風向きを示した)板状フィン1と、この各板状フィン1へ直角に挿入され、内部に冷媒が流れる伝熱管2とを有し、伝熱管2の気体通過方向に対して直角方向の段方向に隣接するもの同士の間の板状フィン1面には、切り起こし3群が設けられている。
【0003】
近年、地球温暖化防止の観点から空調冷凍装置の省エネルギー化や作動流体として使用する冷媒量の削減が強く求められ、この種の熱交換器にも高性能化と内容積の小型化が要求されている。
一方快適性を確保するため騒音増加抑制の観点から気体の通過風速は低く抑えられており、伝熱管内部の熱伝達率に対して空気側の熱伝達率は低い。そこで空気側の伝熱面積を増加させることにより、空気側伝熱向上を図っている。
【0004】
しかし、熱交換器小形化の要求や設置スペースの限界から、熱交換器の段方向の設置数や伝熱管長手方向の長さを変えて熱交換器を大型化し伝熱面積を増加させるのではなく、伝熱管径を小さくしたり、またフィンピッチを狭めるか伝熱管の列方向の設置列数を増加させて、熱交換器の伝熱面積を増加させる手法が採用される。
【0005】
以前は、例えば伝熱管径は10mm程度、フィンピッチは1.5mm程度まで、また列数は2列の熱交換器が製品化されていたが、最近では伝熱管径は7mm程度まで、フィンピッチは1.1mm程度まで狭められており、また列数も3列以上の熱交換器が製品化されている。
【0006】
図12においては、伝熱管外径Doが3mm≦Do≦7.5mmの範囲にあり、かつ伝熱管2の気体通過方向の列ピッチL1が1.2Do≦L1≦1.8Doの範囲にあり、かつ伝熱管2の気体通過方向に対して直角方向(段方向)の段ピッチBが2.6Do≦L2≦3.5Doの範囲にあることが前記公報に記載されている。
【0007】
【発明が解決しようとする課題】
しかし、上述の従来のフィンチューブ型熱交換器が記載された特開昭63−3188号公報では、フィンピッチやフィンの厚さについては言及していない。例えばフィンピッチを1.1mm程度まで狭くした場合、従来の熱交換器では伝熱管2の気体通過方向の列ピッチL1が小さすぎ、空気流の圧力損失が極端に増大し、送風機駆動力の増加や騒音値の増大を招き、空調冷凍装置の省エネルギー化に逆行し、かつ快適性確保が困難になるという問題点があった。
【0008】
また、伝熱面積の拡大を列数の増加により達成しようとする場合、例えば2列から3列の熱交換器にすると、空気流の圧力損失が約1.5倍に増大し、フィンピッチを狭めたのと同様、送風機駆動力の増加や騒音値の増大を招き、空調冷凍装置の省エネルギー化に逆行し、快適性確保が難しいという問題点があった。
【0009】
さらに、上述の従来のフィンチューブ型熱交換器が記載された特開昭63−3188号公報では、熱交換器の内容積についても言及していない。同公報に示されている伝熱管外径、列ピッチ、段ピッチとすると、熱交換器における伝熱管の配置密度がかえって上昇し、熱交換器の内容積が大きくなり、冷媒使用量が増大し地球温暖化防止の観点に反する。
【0010】
また空調冷凍装置は、室内熱交換器と室外熱交換器が組み合わせて使われるので、どちらか片方の熱交換器の内容積だけ小さくすればよいわけでなく、それぞれの内容積を小さくし、冷媒使用量の削減を図る必要がある。加えて空調冷凍装置はヒートポンプタイプとしても用いられるので、冷房運転、暖房運転に必要な冷媒量をそれぞれ削減し、かつその差がゼロとなるように室内熱交換器と室外熱交換器の内容積を設計する必要がある。
【0011】
この発明は、かかる問題点を解決するためになされたものであり、通風抵抗が小さくかつ伝熱性能の良好な熱交換器、およびこの熱交換器を用いて冷媒使用量の削減を図った空調冷凍装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
この発明に係る熱交換器は、多数平行に配置されその間を気体が流動する複数の板状フィンと、この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとしたものである。
【0013】
また、多数平行に配置されその間を気体が流動する複数の板状フィンと、この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンの積層方向のフィンピッチをFpとしたとき、板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたものである。
【0014】
また、多数平行に配置されその間を気体が流動する複数の板状フィンと、この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとし、板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたものである。
【0015】
この発明に係る空調冷凍装置は、冷媒を作動流体とし、圧縮機、絞り装置、凝縮熱交換器、蒸発熱交換器を備え、請求項1〜3何れかに記載の熱交換器を用いたものである。
【0016】
また、冷媒を作動流体とし、圧縮機、四方弁、絞り装置、室内熱交換器、室外熱交換器を備え、請求項1〜3何れかに記載の熱交換器を室内熱交換器に用いたものである。
【0018】
また、冷媒を作動流体とし、圧縮機、四方弁、絞り装置、室内熱交換器、室外熱交換器を備え、請求項1〜3何れかに記載の熱交換器を室内熱交換器に用いたものにおいて、室内熱交換器の内容積をVi、室外内熱交換器の内容積をVoとし、ViとVoとが1.4≦Vo/Vi≦1.8の関係を満たすものである。
【0019】
また、冷媒としてR407C、R410A、R32、イソブタン、プロパン、炭酸ガス、アンモニアのいずれかを用いたものである。
【0020】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
実施の形態1.
図1は実施の形態1を示す図で、熱交換器の部分側面平面図とその側面図である。図に示すように、板状フィン1と、この板状フィン1に対して垂直に挿入された伝熱管2とを有し、気体通過方向に対して直角方向の段方向に隣接する伝熱管間の板状フィン面に切り起こし3を設けている。
【0021】
この実施形態における熱交換器は、板状フィン1の積層方向のピッチFpはFp=0.001m、フィン厚みFtはFt=0.0001m、熱交換器の気体通過方向に沿った1列の長さである列ピッチLpはLp=0.012m、熱交換器の気体通過方向に対して直角方向の段方向に隣接する伝熱管の中心の距離である段ピッチDpはDp=0.014m、伝熱管の外径DはD=0.005m、熱交換器の気体通過方向の列の列数LnはLn=3である。
【0022】
熱交換器の伝熱性能と通風抵抗について、以上に述べた形状パラメータの定性的傾向について以下に説明する。
列ピッチLp、段ピッチDpを拡大すると、フィン表面での熱伝達率は向上するが、伝熱管2の外周からフィン端部までの距離と伝熱との関係で定義されるフィン効率が低下する。また、通風抵抗が減少するため、風量増加を図ることができる。
一方、列ピッチLp、段ピッチDpを縮小すると、フィン効率は向上するが、通風抵抗は増加するため、風量増加を図ることができない。
【0023】
また、フィンピッチFpを拡大すると、通風抵抗が減少するため、風量増加を図ることができるが、伝熱面積は減少する。
一方フィンピッチFpを縮小すると伝熱面積は増加するが、通風抵抗が増加し、風量増加を図ることができない。
加えてフィン厚さFtを拡大すると、フィン効率は向上するが、通風抵抗は増加する。一方フィン厚さFtを縮小すると、フィン効率は低下するが、通風抵抗は低減する。
以上ように、上述した形状パラメータには各々最適値があり、これを定量的に評価するため、以下に述べる手法にて熱交換器の伝熱性能と通風抵抗を算出する。
【0024】
空気と板状フィンの間の熱伝達率α[w/m2・k]は一般に次式で定義される。
α=Nu×λ/De
Nu= C1×(Re×Pr× De/Lp/Ln)C2
Re=U× De/ν
ここでNuはヌセルト数、Reはレイノルズ数である。Prはプラントル数、λは空気の熱伝導率、νは空気の動粘性係数で、それぞれ常温常圧の場合に、Pr=0.72、λ=0.0261[w/m・ k]、ν=0.000016[m2 /s]である。また、C1、C2は定数である。
【0025】
ここで代表長さDe[m]を次式にて定義する。
De=4×(Lp×Dp−π×D2 /4)×(Fp−Ft)/{2×(Lp×Dp−π×D2 /4 )+π×D×(Fp−Ft)}
板状フィン間の自由通過体積基準の風速U[m/s]と、熱交換器の前面風速Uf[m/s]とは、以下の式で定義される。
U=Uf× Lp×Dp×Fp/{(Lp×Dp−π×D2 /4 )×(Fp−Ft)}
【0026】
また、フィン効率ηは次式で定義される。
η=1/(1+ψ×α)
ψ={(4×Lp×Dp/π)0.5 −D}2 ×(4×Lp×Dp/π)0.5 /D0.5 /6/Ft/λf
ここでλf[w/m・ k]は板状フィンの熱伝導率である。
【0027】
一方、空気と板状フィンの間の通風抵抗ΔP[Pa]は次式にて定義される。
ΔP=2×F× Lp×Ln×ρ × U2 / De
F=C3× De/Lp/Ln+C4× ReC5×(De/Lp/Ln)1+C5
ここでFは摩擦損失係数で、C3、C4、C5は定数である。またρは空気の密度で、常温常圧の場合に1.2[kg/m3 ]程度となる。
【0028】
また、実施の形態1における熱交換器を空調冷凍装置に使用した場合の送風機駆動力低減を図るため、送風機駆動力を熱交換器の性能評価項目に追加する。
送風機駆動力Pf[w]は次式にて定義される。
Pf=ΔP×Q
ここで、Qは熱交換器を通過する空気流量[kg/s]であり、伝熱管長手方向の長さをW[m]、段数をDnとすると、熱交換器の前面風速Uf[m/s]とは、以下の関係がある。
Uf= Q/ρ/(W×Dp×Dn)
【0029】
以下、段ピッチDp、列ピッチLp、フィンピッチFp、フィン厚さFt、伝熱管の外径DをそれぞれパラメータとしてΔPを計算し、送風機駆動力Pf一定の条件で空気流量Qを決定して、この時の熱交換器の熱交換能力Eを算出した。なお熱交換能力は単位温度差当たりの熱交換量E[w/k]で評価し、次式による。
E=Q×H×ε
ε=1−exp(−T)
T=Ao×K/(Q×H)
K=1/(1/αo+Ao/Ai/αi)
αo=1/(Ao/(Ap+η×Af)/α)
Ao=Ap+Af
ここでH[w/kg・ k]は空気比熱、εは温度効率、K[w/m2・k]は熱通過率、Ao[m2 ]は熱交換器の空気側全伝熱面積、Ap[m2 ]は熱交換器の空気側パイプ伝熱面積、Af[m2 ]は熱交換器の空気側フィン伝熱面積、Ai[m2 ]は熱交換器の冷媒側伝熱面積であり、熱交換器の形状に依存する寸法、段ピッチDp、列ピッチLp、フィンピッチFp、フィン厚さFt、伝熱管の外径Dが決まれば、算出できる値である。なお熱交換器の管内を流れる流体の熱伝達率αi[w/m2・k] は、一定とする。
【0030】
以下、形状パラメータと熱交換能力Eの関係を図2〜図6に示す。なおこれらの図において、熱交換量E[w/k]は、段数が1段で、伝熱管長手方向の長さWが単位長さの時の値である。
図2は、伝熱管の外径D、列ピッチLp、フィンピッチFp、フィン厚さFtをほぼ最適値の範囲内で一定とし(必ずしも最適値の範囲内ではない)、段ピッチDp、をパラメータとして熱交換量Eを計算した結果である。
図2より、段ピッチDpが2D≦Dp≦3Dの範囲にあれば、熱交換量Eは十分に大きく、伝熱特性に優れた熱交換器となる。
【0031】
図3は、段ピッチDp、伝熱管の外径D、フィンピッチFp、フィン厚さFtをほぼ最適値の範囲内で一定とし(必ずしも最適値の範囲内ではない)、列ピッチLpをパラメータとして熱交換量Eを計算した結果である。
図3より、列ピッチLpが2D≦Lp≦3.5Dの範囲にあれば、熱交換量Eは十分に大きく、伝熱特性に優れた熱交換器となる。
【0032】
図4は、列ピッチLp、段ピッチDp、伝熱管の外径D、フィン厚さFtをほぼ最適値の範囲内で一定とし(必ずしも最適値の範囲内ではない)、フィンピッチFpをパラメータとして熱交換量Eを計算した結果である。
図4より、フィンピッチFpが0.15D≦Fp≦0.27Dの範囲にあれば、熱交換量Eは十分に大きく、伝熱特性に優れた熱交換器となる。
【0033】
図5は、列ピッチLp、段ピッチDp、伝熱管の外径D、フィンピッチFpをほぼ最適値の範囲内で一定とし(必ずしも最適値の範囲内ではない)、フィン厚さFtをパラメータとして熱交換量Eを計算した結果である。
図5より、フィン厚さFtが6≦Fp/Ft≦18の範囲にあれば、熱交換量Eは十分に大きく、伝熱特性に優れた熱交換器となる。
【0034】
図6は、ほぼ最適値の(必ずしも最適値ではない)列ピッチLp、段ピッチDp、フィンピッチFp、フィン厚さFtの範囲において、伝熱管の外径Dをパラメータとして熱交換量Eを計算した結果である。
図6より、伝熱管外径Dが3mm≦D≦7mmの範囲にあれば、熱交換量Eは十分に大きく、伝熱特性に優れた熱交換器となる。なお実測結果を図2〜6に白丸で示すが、いずれにおいても計算結果を精度良く再現している。
【0035】
なお、図1には気体通過方向に対して伝熱管を3列備えた例を示したが、列数は3列に限られたものでなく、何列でもよく本発明の効果を奏する。
また、板状フィン面に設けられた切り起こし3は、伝熱管2の間に3本設けた例を示したが、本数は3本に限定されるものではなく何本でもよく、また切り起こしがなくても本発明の効果を奏する。
【0036】
また、図7は実施形態1の変形例である熱交換器の部分側面図である。図7では、1列目に対して2列目の伝熱管の配置を段ピッチDpの1/2である千鳥配列でなく、例えば段ピッチDpの1/3としている。このように、伝熱管の配置が千鳥配列でなくても本発明の効果を奏する。
非千鳥配列の熱交換器は、空気流れ方向に対する伝熱管の投影面積減少により、通風抵抗が減少する。また伝熱管2の後ろの死水域減少により空気側伝熱性能が向上する。
【0037】
また、作動流体として、空気と冷媒の例を示したが、他の気体、液体、気液混合流体を用いても、同様の効を奏する。
【0038】
また、伝熱管外径を従来の10[mm]より小径化しているので、熱交換器の内容積が小さくなり、管内の作動流体の使用量削減を図ることができる。特に作動流体として燃焼性があるHC冷媒(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種の混合冷媒)や、毒性があるアンモニア冷媒を用いる場合、使用量削減を図ることは機器の安全性向上を図ることができる。
【0039】
実施の形態2.
図8は実施形態2を示す図で、空調冷凍装置の冷媒回路図である。図に示す冷媒回路は、圧縮機11、凝縮熱交換器12、絞り装置13、及び蒸発熱交換器14により構成されている。上述の実施の形態1による熱交換器を凝縮熱交換器12または蒸発熱交換器14、もしくは両方に用いることにより、エネルギ効率の高い空調冷凍装置を実現することができる。
ここで、エネルギ効率は、次式で定義されるものである。
暖房エネルギ効率=室内熱交換器(凝縮器)能力/全入力
冷房エネルギ効率=室内熱交換器(蒸発器)能力/全入力
【0040】
また、図9は実施の形態2の変形例による空調冷凍装置の冷媒回路図である。図に示す冷媒回路は、ヒートポンプタイプの空調冷凍装置の例であり、圧縮機11、四方弁15、室外熱交換器16、絞り装置13、室内熱交換器17より構成されている。上述の実施の形態1による熱交換器を、室外熱交換器16、または室内熱交換器17、もしくは両方に用いることにより、エネルギ効率の高い空調冷凍装置を実現することができる。
【0041】
実施の形態3.
図10は実施の形態3を示す図で、ヒートポンプタイプの空調冷凍装置の冷媒回路図である。図に示すように、圧縮機11、四方弁15、室外熱交換器16、絞り装置13、室内熱交換器17により構成されている。そして、室外熱交換器16の内容積をVo、室内熱交換器17の内容積をViとする。
以下、ヒートポンプタイプの空調冷凍装置における、室内外熱交換器の大きさと、冷房と暖房での必要冷媒量について述べる。
【0042】
ヒートポンプタイプの空調冷凍装置においては、暖房通常運転時、具体的には外気温が7[℃]の時、室外熱交換器16が着霜せず連続運転できることが要求される。この時冷媒の蒸発温度が0[℃]以上であれば着霜しないため、外気温との温度差が7[℃]以内となる蒸発熱交換性能を有する室外熱交換器16が必要となる。ここで熱交換器の性能を表す指標として、単位温度差あたりの熱交換量G[w/k]を考える。
【0043】
暖房能力(=凝縮能力)に対して必要な蒸発能力は、一般にその2/3〜3/4程度であり、例えば暖房能力が4000[w]の空調装置において室外熱交換器16に要求される蒸発能力を3000[w]とし、外気温との温度差を7[℃]とすると、G=428.6[w/k]である室外熱交換器が必要となる。
一方室内熱交換器17は、室温を20[℃]、凝縮温度を40[℃]とすると、温度差は20[℃]となり、G=200[w/k]である室内熱交換器17が必要となる。
【0044】
従って、ヒートポンプタイプの空調冷凍装置においては、室内熱交換器17より室外熱交換器16の方が2倍以上の熱交換能力を有することが要求される。
これはすなわち、同一性能の熱交換器であれば、室外熱交換器16は室内熱交換器17の2倍以上の大きさが必要となるということである。
ここで、例えば凝縮温度が30[℃]とすると、室温との温度差は10[℃]となり、G=400[w/k]である室内熱交換器17が必要となり、室外熱交換器16とほぼ同等の熱交換能力となるが、室内熱交換器16からの吹出し空気温度は30[℃]以下となり、体温より低い温度で暖房することになるので、その風が人間あたった場合不快感を感じ、快適性の面から考えると凝縮温度は40[℃]程度が下限値となる。従って、やはり室内熱交換器16より室外熱交換器17の方が2倍以上の熱交換能力を有することが要求される。
【0045】
一方冷房運転時、例えば冷房能力(=蒸発能力)が3000[w]の空調装置において、室温を27[℃]、室内熱交換器の蒸発温度を13[℃]とすると、温度差は14[℃]となり、G=214.3[w/k]である室内熱交換器16が必要となる。
また、室外熱交換器17に要求される凝縮能力を4000[w]とし、外気温を35[℃]、室外熱交換器17の凝縮温度を45[℃]とすると、温度差は10[℃]となり、G=400[w/k]である室外熱交換器17が必要となる。従って、冷房運転においても室内熱交換器16より室外熱交換器17の方が2倍程度の熱交換能力を有することが要求され、同一性能の熱交換器であれば、室外熱交換器17は室内熱交換器16の2倍程度の大きさが必要となる。
【0046】
一般に凝縮器において冷媒過多となると過冷却度が増大し、冷媒側伝熱性能の低い過冷却液部の伝熱面積が増大するので熱交換能力が低下する。また冷媒不足となると過冷却度が減少し、エンタルピ差がとれなくなるので熱交換能力が低下する。
一方、蒸発器においても一般に冷媒過多となると蒸発器出口乾き度が低下し、エンタルピ差がとれなくなるので熱交換能力が低下する。また冷媒不足となると蒸発器出口過熱度が増大し、冷媒側伝熱性能の低い過熱蒸気部の伝熱面積が増大するので熱交換能力が低下する。
従って凝縮器、蒸発器とも熱交換能力が最大となりエネルギ効率が最も高くなる最適な冷媒量が存在する。
【0047】
一方、実機での冷媒使用量について考えると、当然ながら内容積が小さい熱交換器の方が、また凝縮器より蒸発器の方が、冷媒量は少なくなる。ここで同一性能の熱交換器であれば、室外熱交換器17は室内熱交換器16の2倍程度の大きさ(=内容積)が必要となることを前述したが、室外熱交換器17が凝縮器となる冷房運転の方が暖房運転より冷媒使用量が多くなる。よってヒートポンプタイプの空調冷凍装置においては、冷房運転基準でエネルギ効率が最大となる冷媒量を充填すると暖房運転時は冷媒過多となりエネルギ効率が低下する。
【0048】
また、暖房運転基準でエネルギ効率が最大となる冷媒量を充填すると冷房運転時は冷媒不足となりエネルギ効率が低下する。従って熱交換器の性能と内容積の調整により冷房・暖房ともエネルギ効率が最大となる冷媒量を充填しなければならない。
【0049】
なお冷媒回路に冷房・暖房の冷媒量差を吸収する冷媒量調整容器を設ければエネルギ効率が最大となる運転は可能であるが、充填する冷媒量は冷房・暖房で使用量の多い運転に合わせることになり、冷媒量の削減はできない。また冷媒量調整容器を設けることは、機器のコストアップにつながり、この容器の収納スペースも必要となるので機器の小形化にも反することになり、得策ではない。
【0050】
熱交換器内の冷媒存在量Moは、熱交換器を過熱蒸気部、過冷却液部、二相部の3つの部分に分けて考えると、それぞれの部分の冷媒存在量Mgsh、Mlsc、Mtpの合計Mo=Mgsh+Mlsc+Mtpとなる。
ここでMgsh、Mlsc、Mtpは、それぞれ次式にて計算される。
Mgsh=Vgsh×ρgsh
Mlsc=Vlsc×ρlsc
Mtp=Vtp×ρtp
ρtp=F×ρg+(1−F)×ρl
F=1/{1−S×(ρg/ρl)}+S×(ρg/ρl)×LN{Xi+(Xo−Xi)S×(ρg/ρl)}/(Xo−Xi)/{1−S×(ρg/ρl)}2
S=(Ug/Ul)C6
ここで、M[kg]は冷媒存在量、V[m3]は内容積、ρ[kg/m3]は冷媒密度、U[m/s]は冷媒流速であり、添え字oは熱交換器全体、gshは過熱蒸気、lscは過冷却液、tpは二相部、gは飽和蒸気、lは飽和液である。
【0051】
単相部である過熱蒸気部と過冷却液部は、その時の冷媒状態である過熱度または過冷却度から冷媒密度を計算し、その部分が占める熱交換器の内容積と合わせて冷媒量を計算することができる。
二相域については、ボイド率Fとすべり比Sという無次元数を導入し、冷媒密度ρtpを計算して冷媒量を計算する。ここでC6は飽和蒸気冷媒と飽和液冷媒の流速の比、すなわちすべり比Sを関係づけた定数である。なおXiは二相部入口乾き度、Xoは二相部出口乾き度である。ここで凝縮器の場合は、一般にXi=1、Xo=0であり、蒸発器の場合はVlsc=0である。
【0052】
図11は、ある冷媒量の時に室内熱交換器の内容積Viと室外熱交換器の内容積Voの比Vo/Viを横軸に取り、その時の冷房と暖房のエネルギ効率を縦軸に取った特性図である。これは、上述した式に基づいて冷媒量と室内熱交換器16の内容積Vi、室外熱交換器17の内容積Voから、過冷却度と過熱度を計算してエネルギ効率を求めた。
図11より内容積比Vo/Viの変化に対して、暖房のエネルギ効率変化は緩やかであるが、冷房のエネルギ効率変化は大きく、内容積比Vo/Viが1.4≦Vo/Vi≦1.8の範囲にあれば、冷房暖房ともエネルギ効率は十分に高くなることが予測される。実機試験結果を白丸にて示すが良い一致を見ている。
【0053】
従って室内外熱交換器16の内容積の調整により冷房、暖房ともエネルギ効率が最大となる運転が可能となり、冷房、暖房の冷媒量差を吸収する冷媒量調整容器を設けなくてくもよく、冷媒量の削減と、機器のコスト低減、ならびにこの容器の収納スペースも必要となるので機器の小形化も達成することができる。この時熱交換器に実施の形態1に述べた熱交換器を使用すれば、エネルギ効率をさらに高めることができる。
【0054】
なお、上述の実施形態1から実施形態3で述べた熱交換器およびそれを用いた空調冷凍装置については、HCFC(R22など)やHFC(R116、R125、R134a、R14、R143a、R152a、R227ea、R23、R236ea、R236fa、R245ca、R245fa、R32、R41、RC318などや、これら冷媒の数種の混合冷媒R407A、R407B、R407C、R407D、R407E、R410A、R410B、R404A、R507A、R508A、R508Bなど)、HC(ブタン、イソブタン、エタン、プロパン、プロピレンなどや、これら冷媒の数種の混合冷媒)、自然冷媒(空気、炭酸ガス、アンモニアなどや、これら冷媒の数種の混合冷媒)、またこれら冷媒の数種の混合冷媒など、どんな種類の冷媒を用いても、その効果を達成することができる。かつ、燃焼性のあるHC冷媒や毒性のあるアンモニア冷媒を用いる場合、冷媒使用量の削減は装置の安全性向上を図ることができる。
【0055】
なお、上述の実施形態1から実施形態3で述べた熱交換器およびそれを用いた空調冷凍装置については、鉱油系、アルキルベンゼン油系、エステル油系、エーテル油系、フッ素油系など、冷媒と油が溶ける溶けないに関わらず、どんな冷凍機油についても、その効果を達成することができる。特に冷媒との溶解性が0または難溶性の冷凍機油については、空調冷凍装置の油循環率を溶解度以下、もしくは0.5%以下とすることにより、その効果を達成することができる。
【0056】
【発明の効果】
この発明に係る熱交換器は、伝熱管の外径Dを3≦D≦7mmとし、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとしたので、送風機駆動力を増加させることなく、伝熱性能が高くかつ通風抵抗が小さい熱交換器を構成できるため、大幅な熱交換量向上を達成することができる。
【0057】
また、伝熱管の外径Dを3≦D≦7mmとし、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンの積層方向のフィンピッチをFpとしたとき、板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたので、同様に送風機駆動力を増加させることなく、伝熱性能が高くかつ通風抵抗が小さい熱交換器を構成できるため、大幅な熱交換量向上を達成することができる。
【0058】
また、伝熱管の外径Dを3≦D≦7mmとし、伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとし、板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたので、さらに送風機駆動力を増加させることなく、伝熱性能が高くかつ通風抵抗が小さい熱交換器を構成できるため、大幅な熱交換量向上を達成することができる。
【0059】
この発明に係る空調冷凍装置は、請求項1〜3何れかに記載の熱交換器を用いたので、送風機駆動力を増加させることなく、伝熱性能が高くかつ通風抵抗が小さい熱交換器を構成できるため、大幅な熱交換量向上を達成し、機器のエネルギ効率を飛躍的に向上させることができる。
【0060】
また、冷媒を作動流体とし、請求項1〜3何れかに記載の熱交換器を室内熱交換器に用いたので、送風機駆動力を増加させることなく、伝熱性能が高くかつ通風抵抗が小さい熱交換器を構成できるため、大幅な熱交換量向上を達成し、機器のエネルギ効率を飛躍的に向上させることができる。
【0062】
また、冷媒を作動流体とし、圧縮機、四方弁、絞り装置、室内熱交換器、室外熱交換器を備え、請求項1〜3何れかに記載の熱交換器を室内熱交換器に用いたものにおいて、室内熱交換器の内容積をVi、室外内熱交換器の内容積をVoとし、ViとVoとが1.4≦Vo/Vi≦1.8の関係を満たすので、冷媒量の削減と、機器のコスト低減、ならびに機器の小形化を達成しつつ、機器のエネルギ効率を飛躍的に向上させることができる。
【0063】
また、冷媒としてR407C、R410A、R32、イソブタン、プロパン、炭酸ガス、アンモニア等のどんな種類の冷媒を用いても、機器のエネルギ効率を飛躍的に向上させることができ、かつ、燃焼性のあるHC冷媒や毒性のあるアンモニア冷媒を用いる場合、冷媒使用量の削減は装置の安全性向上を図ることができる。
【図面の簡単な説明】
【図1】 実施の形態1を示す図で、熱交換器の部分側面平面図とその側面図である。
【図2】 実施の形態1を示す図で、伝熱管の段ピッチと熱交換量との関係を示す特性図である。
【図3】 実施の形態1を示す図で、伝熱管の列ピッチと熱交換量との関係を示す特性図である。
【図4】 実施の形態1を示す図で、フィンピッチと熱交換量との関係を示す特性図である。
【図5】 実施の形態1を示す図で、フィン厚さと熱交換量との関係を示す特性図である。
【図6】 実施の形態1を示す図で、伝熱管の外径と熱交換量との関係を示す特性図である。
【図7】 実施の形態1の変形例を示す図で、熱交換器の部分側面平面図である。
【図8】 実施の形態2を示す図で、空調冷凍装置の冷媒回路図である。
【図9】 実施の形態2の変形例を示す図で、空調冷凍装置の冷媒回路図である。
【図10】 実施の形態3を示す図で、空調冷凍装置の冷媒回路図である。
【図11】 実施の形態3を示す図で、室内熱交換器と室外熱交換器との内容積とエネルギ効率との関係を示す特性図である。
【図12】 従来の熱交換器を示す図で、熱交換器の部分側面平面図である。
【符号の説明】
1 板状フィン、2 伝熱管、3 切り起こし、11 圧縮機、12 凝縮熱交換器、13 絞り装置、14 蒸発熱交換器、15 四方弁、16 室外熱交換器、17 室内熱交換器。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger for performing heat exchange between a refrigerant and a gas or the like, and an air-conditioning refrigeration apparatus using the heat exchanger.
[0002]
[Prior art]
FIG. 12 is a partial side view showing a fin tube type heat exchanger used in an air conditioning refrigeration apparatus disclosed in, for example, Japanese Patent Laid-Open No. 63-3188. This heat exchanger is generally called a plate fin tube type, is arranged at regular intervals, and air flows between them (wind direction is indicated by an arrow in the figure), and to each of these plate fins 1 There is a heat transfer tube 2 inserted at a right angle and through which a refrigerant flows, and the plate-like fins 1 between the adjacent ones in the step direction perpendicular to the gas passage direction of the heat transfer tube 2 are cut off. Three groups of wakes are provided.
[0003]
In recent years, from the viewpoint of global warming prevention, energy saving of air-conditioning refrigeration equipment and reduction of the amount of refrigerant used as working fluid are strongly demanded, and this type of heat exchanger is also required to have high performance and small internal volume. ing.
On the other hand, in order to ensure comfort, the gas passing wind speed is kept low from the viewpoint of suppressing noise increase, and the heat transfer rate on the air side is lower than the heat transfer rate inside the heat transfer tube. Therefore, the air side heat transfer is increased by increasing the air side heat transfer area.
[0004]
However, due to the requirement for downsizing the heat exchanger and the limitation of installation space, it is not possible to increase the heat transfer area by increasing the size of the heat exchanger by changing the number of heat exchangers installed in the stage direction or the length in the heat transfer tube longitudinal direction. However, a method of increasing the heat transfer area of the heat exchanger by reducing the diameter of the heat transfer tube, reducing the fin pitch, or increasing the number of rows installed in the row direction of the heat transfer tubes is employed.
[0005]
Previously, for example, heat exchanger tube diameter was about 10 mm, fin pitch was about 1.5 mm, and heat exchangers with two rows were commercialized, but recently, heat transfer tube diameter is about 7 mm, The fin pitch is narrowed to about 1.1 mm, and heat exchangers with three or more rows have been commercialized.
[0006]
In FIG. 12, the heat transfer tube outer diameter Do is in the range of 3 mm ≦ Do ≦ 7.5 mm, and the row pitch L1 in the gas passage direction of the heat transfer tube 2 is in the range of 1.2 Do ≦ L1 ≦ 1.8 Do, In addition, the publication discloses that the step pitch B in the direction perpendicular to the gas passage direction of the heat transfer tube 2 (step direction) is in the range of 2.6 Do ≦ L2 ≦ 3.5 Do.
[0007]
[Problems to be solved by the invention]
However, Japanese Patent Laid-Open No. 63-3188, which describes the above-described conventional fin tube heat exchanger, does not mention fin pitch and fin thickness. For example, when the fin pitch is narrowed to about 1.1 mm, the row pitch L1 in the gas passage direction of the heat transfer tube 2 is too small in the conventional heat exchanger, the pressure loss of the air flow increases extremely, and the blower driving force increases. In addition, there is a problem that the noise level is increased, the energy saving of the air-conditioning refrigeration apparatus is reversed, and it is difficult to ensure comfort.
[0008]
In addition, when attempting to increase the heat transfer area by increasing the number of rows, for example, if a heat exchanger of 2 to 3 rows is used, the pressure loss of the air flow increases about 1.5 times, and the fin pitch is increased. As with the narrowing, there is a problem that it increases the driving force of the blower and the noise level and goes back to energy saving of the air-conditioning refrigeration system, making it difficult to ensure comfort.
[0009]
Furthermore, Japanese Patent Laid-Open No. 63-3188, which describes the above-described conventional fin tube heat exchanger, does not mention the internal volume of the heat exchanger. If the heat transfer tube outer diameter, row pitch, and step pitch shown in the same publication are used, the heat transfer tube arrangement density in the heat exchanger will increase, and the internal volume of the heat exchanger will increase, increasing the amount of refrigerant used. It is against the viewpoint of preventing global warming.
[0010]
In addition, because the air conditioning refrigeration system is used in combination with an indoor heat exchanger and an outdoor heat exchanger, it is not necessary to reduce the internal volume of either one of the heat exchangers. It is necessary to reduce the amount used. In addition, since the air-conditioning refrigeration system is also used as a heat pump type, the internal volume of the indoor heat exchanger and the outdoor heat exchanger is reduced so that the amount of refrigerant required for cooling operation and heating operation is reduced and the difference between them is zero. Need to design.
[0011]
The present invention has been made to solve such a problem, and is a heat exchanger having a small ventilation resistance and a good heat transfer performance, and an air conditioner designed to reduce the amount of refrigerant used by using this heat exchanger. An object is to provide a refrigeration apparatus.
[0012]
[Means for Solving the Problems]
  The heat exchanger according to the present invention includes a plurality of plate-like fins arranged in parallel and through which gas flows, and inserted into the plate-like fins at right angles, through which the working fluid passes and the gas passes. Outer diameter D provided in a plurality of rows in a row direction perpendicular to the direction and provided in a plurality of rows in the row direction of the gas passage directionIs 3mm ≦ D ≦ 7mmA heat transfer tube and a cut-and-raised portion provided on the plate-like fin surface and having an opening facing the gas flow, the step pitch Dp in the step direction of the heat transfer tube being 2D ≦ Dp ≦ 3D, The row pitch Lp in the row direction is 2D ≦ Lp ≦ 3.5D, and the fin pitch Fp of the plate-like fins is0.15D ≦ Fp ≦ 0.27DIt is what.
[0013]
  In addition, a plurality of plate-like fins arranged in parallel and through which gas flows, and inserted into each plate-like fin at a right angle, the working fluid passes through the inside and is perpendicular to the direction in which the gas passes. Outer diameter D provided in a plurality of rows in the row direction and in a plurality of rows in the row direction of the gas passage directionIs 3mm ≦ D ≦ 7mmA heat transfer tube and a cut-and-raised portion provided on the plate-like fin surface and having an opening facing the gas flow, the step pitch Dp in the step direction of the heat transfer tube being 2D ≦ Dp ≦ 3D, The column pitch Lp in the column direction is 2D ≦ Lp ≦ 3.5D,When the fin pitch in the stacking direction of the plate-like fins is Fp,The fin thickness Ft of the plate-like fin is 6 ≦ Fp / Ft ≦ 18.
[0014]
  In addition, a plurality of plate-like fins arranged in parallel and through which gas flows, and inserted into each plate-like fin at a right angle, the working fluid passes through the inside and is perpendicular to the direction in which the gas passes. Outer diameter D provided in a plurality of rows in the step direction and in a plurality of rows in the row direction of the gas passage directionIs 3mm ≦ D ≦ 7mmA heat transfer tube and a cut-and-raised portion provided on the plate-like fin surface and having an opening facing the gas flow, the step pitch Dp in the step direction of the heat transfer tube being 2D ≦ Dp ≦ 3D, The row pitch Lp in the row direction is 2D ≦ Lp ≦ 3.5D, and the fin pitch Fp of the plate-like fins is0.15D ≦ Fp ≦ 0.27DAnd the fin thickness Ft of the plate-like fin is 6 ≦ Fp / Ft ≦ 18.
[0015]
The air-conditioning refrigerating apparatus according to the present invention includes a compressor as a working fluid, a compressor, a throttle device, a condensing heat exchanger, and an evaporating heat exchanger, wherein the heat exchanger according to any one of claims 1 to 3 is used. It is.
[0016]
The refrigerant is a working fluid, and includes a compressor, a four-way valve, a throttle device, an indoor heat exchanger, and an outdoor heat exchanger, and the heat exchanger according to any one of claims 1 to 3 is used for the indoor heat exchanger. Is.
[0018]
The refrigerant is a working fluid, and includes a compressor, a four-way valve, a throttle device, an indoor heat exchanger, and an outdoor heat exchanger, and the heat exchanger according to any one of claims 1 to 3 is used for the indoor heat exchanger. In this case, the internal volume of the indoor heat exchanger is Vi, the internal volume of the outdoor heat exchanger is Vo, and Vi and Vo satisfy the relationship of 1.4 ≦ Vo / Vi ≦ 1.8.
[0019]
Further, any one of R407C, R410A, R32, isobutane, propane, carbon dioxide, and ammonia is used as the refrigerant.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 shows the first embodiment, and is a partial side plan view and a side view of a heat exchanger. As shown in the figure, a plate-like fin 1 and a heat transfer tube 2 inserted perpendicularly to the plate-like fin 1 and between adjacent heat transfer tubes in a step direction perpendicular to the gas passage direction. Cut and raised 3 is provided on the plate-like fin surface.
[0021]
In the heat exchanger in this embodiment, the pitch Fp in the stacking direction of the plate-like fins 1 is Fp = 0.001 m, the fin thickness Ft is Ft = 0.0001 m, and the length of one row along the gas passage direction of the heat exchanger The row pitch Lp is Lp = 0.012 m, and the step pitch Dp, which is the distance between the centers of the heat transfer tubes adjacent in the step direction perpendicular to the gas passage direction of the heat exchanger, is Dp = 0.014 m. The outer diameter D of the heat tube is D = 0.005 m, and the number Ln of rows in the gas passage direction of the heat exchanger is Ln = 3.
[0022]
The qualitative tendency of the shape parameters described above will be described below for the heat transfer performance and the ventilation resistance of the heat exchanger.
When the row pitch Lp and the step pitch Dp are increased, the heat transfer coefficient on the fin surface is improved, but the fin efficiency defined by the relationship between the distance from the outer periphery of the heat transfer tube 2 to the fin end and the heat transfer is lowered. . Further, since the ventilation resistance is reduced, the air volume can be increased.
On the other hand, if the row pitch Lp and the step pitch Dp are reduced, the fin efficiency is improved, but the airflow resistance is increased, so that the air volume cannot be increased.
[0023]
Further, if the fin pitch Fp is increased, the airflow resistance is reduced, so that the air volume can be increased, but the heat transfer area is reduced.
On the other hand, when the fin pitch Fp is reduced, the heat transfer area increases, but the ventilation resistance increases and the air volume cannot be increased.
In addition, when the fin thickness Ft is increased, the fin efficiency is improved, but the ventilation resistance is increased. On the other hand, when the fin thickness Ft is reduced, the fin efficiency is reduced, but the ventilation resistance is reduced.
As described above, each of the above-described shape parameters has an optimum value, and in order to quantitatively evaluate this, the heat transfer performance and the ventilation resistance of the heat exchanger are calculated by the method described below.
[0024]
Heat transfer coefficient α [w / m between air and plate fins2K] is generally defined by the following equation:
α = Nu × λ / De
Nu = C1 × (Re × Pr × De / Lp / Ln)C2
Re = U × De / ν
Here, Nu is the Nusselt number and Re is the Reynolds number. Pr is the Prandtl number, λ is the thermal conductivity of air, ν is the kinematic viscosity coefficient of air, and Pr = 0.72, λ = 0.0261 [w / m · k], ν at room temperature and normal pressure, respectively. = 0.000016 [m2 / S]. C1 and C2 are constants.
[0025]
Here, the representative length De [m] is defined by the following equation.
De = 4 × (Lp × Dp−π × D2 / 4) × (Fp−Ft) / {2 × (Lp × Dp−π × D2 / 4) + π × D × (Fp−Ft)}
The wind speed U [m / s] based on the free passing volume between the plate fins and the front wind speed Uf [m / s] of the heat exchanger are defined by the following equations.
U = Uf * Lp * Dp * Fp / {(Lp * Dp- [pi] * D2 / 4) × (Fp−Ft)}
[0026]
Further, the fin efficiency η is defined by the following equation.
η = 1 / (1 + ψ × α)
ψ = {(4 × Lp × Dp / π)0.5 -D}2 × (4 × Lp × Dp / π)0.5 / D0.5 / 6 / Ft / λf
Here, λf [w / m · k] is the thermal conductivity of the plate fin.
[0027]
On the other hand, the ventilation resistance ΔP [Pa] between the air and the plate-like fin is defined by the following equation.
ΔP = 2 × F × Lp × Ln × ρ × U2 / De
F = C3 × De / Lp / Ln + C4 × ReC5× (De / Lp / Ln)1 + C5
Here, F is a friction loss coefficient, and C3, C4, and C5 are constants. Also, ρ is the density of air, 1.2 [kg / m at normal temperature and normal pressure.Three ].
[0028]
Further, in order to reduce the blower driving force when the heat exchanger in Embodiment 1 is used in an air conditioning refrigeration apparatus, the blower driving force is added to the performance evaluation item of the heat exchanger.
The blower driving force Pf [w] is defined by the following equation.
Pf = ΔP × Q
Here, Q is the air flow rate [kg / s] passing through the heat exchanger, where the length in the longitudinal direction of the heat transfer tube is W [m] and the number of stages is Dn, the front wind speed Uf [m / [s] has the following relationship.
Uf = Q / ρ / (W × Dp × Dn)
[0029]
Hereinafter, ΔP is calculated using each of the step pitch Dp, the row pitch Lp, the fin pitch Fp, the fin thickness Ft, and the outer diameter D of the heat transfer tube as parameters, and the air flow rate Q is determined under the condition that the fan driving force Pf is constant. The heat exchange capacity E of the heat exchanger at this time was calculated. The heat exchange capacity is evaluated by the heat exchange amount E [w / k] per unit temperature difference, and is based on the following formula.
E = Q × H × ε
ε = 1−exp (−T)
T = Ao × K / (Q × H)
K = 1 / (1 / αo + Ao / Ai / αi)
αo = 1 / (Ao / (Ap + η × Af) / α)
Ao = Ap + Af
Where H [w / kg · k] is the specific heat of the air, ε is the temperature efficiency, and K [w / m2・ K] is the heat transfer rate, Ao [m2] Is the total heat transfer area on the air side of the heat exchanger, Ap [m2] Is the heat transfer area of the air side pipe of the heat exchanger, Af [m2] Is the air side fin heat transfer area of the heat exchanger, Ai [m2] Is the heat transfer area on the refrigerant side of the heat exchanger, and the dimensions depending on the shape of the heat exchanger, the step pitch Dp, the row pitch Lp, the fin pitch Fp, the fin thickness Ft, and the outer diameter D of the heat transfer tube are determined. This is a value that can be calculated. Note that the heat transfer coefficient αi [w / m] of the fluid flowing in the pipe of the heat exchanger2・ K] is constant.
[0030]
Hereinafter, the relationship between the shape parameter and the heat exchange capacity E is shown in FIGS. In these figures, the heat exchange amount E [w / k] is a value when the number of stages is one and the length W in the longitudinal direction of the heat transfer tube is a unit length.
FIG. 2 shows that the outer diameter D, the row pitch Lp, the fin pitch Fp, and the fin thickness Ft of the heat transfer tube are substantially constant within the optimum value range (not necessarily within the optimum value range), and the step pitch Dp is set as a parameter. Is the result of calculating the heat exchange amount E.
As shown in FIG. 2, when the step pitch Dp is in the range of 2D ≦ Dp ≦ 3D, the heat exchange amount E is sufficiently large, and the heat exchanger has excellent heat transfer characteristics.
[0031]
FIG. 3 shows that the step pitch Dp, the outer diameter D of the heat transfer tube, the fin pitch Fp, and the fin thickness Ft are substantially constant within the optimum value range (not necessarily within the optimum value range), and the column pitch Lp is used as a parameter. It is the result of calculating the heat exchange amount E.
From FIG. 3, if the row pitch Lp is in the range of 2D ≦ Lp ≦ 3.5D, the heat exchange amount E is sufficiently large and the heat exchanger is excellent in heat transfer characteristics.
[0032]
FIG. 4 shows that the row pitch Lp, the step pitch Dp, the outer diameter D of the heat transfer tube, and the fin thickness Ft are substantially constant within the optimum value range (not necessarily within the optimum value range), and the fin pitch Fp is used as a parameter. It is the result of calculating the heat exchange amount E.
From FIG. 4, when the fin pitch Fp is in the range of 0.15D ≦ Fp ≦ 0.27D, the heat exchange amount E is sufficiently large, and the heat exchanger has excellent heat transfer characteristics.
[0033]
FIG. 5 shows that the row pitch Lp, the step pitch Dp, the outer diameter D of the heat transfer tube, and the fin pitch Fp are substantially constant within the optimum value range (not necessarily within the optimum value range), and the fin thickness Ft is used as a parameter. It is the result of calculating the heat exchange amount E.
As shown in FIG. 5, when the fin thickness Ft is in the range of 6 ≦ Fp / Ft ≦ 18, the heat exchange amount E is sufficiently large and the heat exchanger is excellent in heat transfer characteristics.
[0034]
FIG. 6 shows the heat exchange amount E calculated using the outer diameter D of the heat transfer tube as a parameter in the range of the row pitch Lp, the step pitch Dp, the fin pitch Fp, and the fin thickness Ft, which are almost optimum values (not necessarily optimum values). It is the result.
From FIG. 6, when the heat transfer tube outer diameter D is in the range of 3 mm ≦ D ≦ 7 mm, the heat exchange amount E is sufficiently large, and the heat exchanger has excellent heat transfer characteristics. The actual measurement results are shown by white circles in FIGS. 2 to 6, and in all cases, the calculation results are accurately reproduced.
[0035]
Although FIG. 1 shows an example in which three rows of heat transfer tubes are provided in the gas passage direction, the number of rows is not limited to three, and any number of rows can provide the effect of the present invention.
In addition, the example in which three cut-and-raised portions 3 provided on the plate-like fin surface are provided between the heat transfer tubes 2 is shown, but the number is not limited to three, and any number may be used. Even if it does not exist, there exists an effect of this invention.
[0036]
FIG. 7 is a partial side view of a heat exchanger that is a modification of the first embodiment. In FIG. 7, the arrangement of the heat transfer tubes in the second row with respect to the first row is not a staggered arrangement that is ½ of the step pitch Dp, but is, for example, 1 / of the step pitch Dp. Thus, even if the arrangement of the heat transfer tubes is not staggered, the effects of the present invention are exhibited.
In the non-staggered heat exchanger, the draft resistance is reduced by reducing the projected area of the heat transfer tube in the air flow direction. Moreover, the air-side heat transfer performance is improved by reducing the dead water area behind the heat transfer tube 2.
[0037]
Moreover, although the example of air and a refrigerant | coolant was shown as a working fluid, even if it uses other gas, liquid, and gas-liquid mixed fluid, there exists the same effect.
[0038]
Moreover, since the outer diameter of the heat transfer tube is smaller than the conventional 10 mm, the internal volume of the heat exchanger is reduced, and the amount of working fluid used in the tube can be reduced. In particular, when using HC refrigerants (butane, isobutane, ethane, propane, propylene, etc., or some mixed refrigerants of these refrigerants) or toxic ammonia refrigerants that are flammable as working fluids, The safety of the equipment can be improved.
[0039]
Embodiment 2. FIG.
FIG. 8 is a diagram showing the second embodiment and is a refrigerant circuit diagram of the air-conditioning refrigeration apparatus. The refrigerant circuit shown in the figure includes a compressor 11, a condensation heat exchanger 12, an expansion device 13, and an evaporating heat exchanger 14. By using the heat exchanger according to the first embodiment for the condensation heat exchanger 12 or the evaporative heat exchanger 14 or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.
Here, energy efficiency is defined by the following equation.
Heating energy efficiency = indoor heat exchanger (condenser) capacity / all inputs
Cooling energy efficiency = indoor heat exchanger (evaporator) capacity / total input
[0040]
FIG. 9 is a refrigerant circuit diagram of an air conditioning refrigeration apparatus according to a modification of the second embodiment. The refrigerant circuit shown in the figure is an example of a heat pump type air-conditioning refrigeration apparatus, and includes a compressor 11, a four-way valve 15, an outdoor heat exchanger 16, an expansion device 13, and an indoor heat exchanger 17. By using the heat exchanger according to the first embodiment for the outdoor heat exchanger 16, the indoor heat exchanger 17, or both, an air-conditioning refrigeration apparatus with high energy efficiency can be realized.
[0041]
Embodiment 3 FIG.
FIG. 10 is a diagram showing the third embodiment, and is a refrigerant circuit diagram of a heat pump type air-conditioning refrigeration apparatus. As shown in the figure, the compressor 11, the four-way valve 15, the outdoor heat exchanger 16, the expansion device 13, and the indoor heat exchanger 17 are configured. And let the internal volume of the outdoor heat exchanger 16 be Vo, and let the internal volume of the indoor heat exchanger 17 be Vi.
Hereinafter, the size of the indoor / outdoor heat exchanger and the amount of refrigerant required for cooling and heating in the heat pump type air-conditioning refrigeration apparatus will be described.
[0042]
In the heat pump type air-conditioning refrigeration apparatus, it is required that the outdoor heat exchanger 16 can be continuously operated without frost formation during normal heating operation, specifically, when the outside air temperature is 7 [° C.]. At this time, if the evaporating temperature of the refrigerant is 0 [° C.] or higher, frost is not formed. Therefore, the outdoor heat exchanger 16 having an evaporating heat exchanging performance with a temperature difference within 7 [° C.] from the outside air temperature is required. Here, the heat exchange amount G [w / k] per unit temperature difference is considered as an index representing the performance of the heat exchanger.
[0043]
The evaporation capacity required for the heating capacity (= condensing capacity) is generally about 2/3 to 3/4 of the capacity, and is required for the outdoor heat exchanger 16 in an air conditioner having a heating capacity of 4000 [w], for example. If the evaporation capacity is 3000 [w] and the temperature difference from the outside air temperature is 7 [° C.], an outdoor heat exchanger with G = 428.6 [w / k] is required.
On the other hand, in the indoor heat exchanger 17, when the room temperature is 20 [° C.] and the condensation temperature is 40 [° C.], the temperature difference is 20 [° C.] and the indoor heat exchanger 17 with G = 200 [w / k] Necessary.
[0044]
Therefore, in the heat pump type air-conditioning refrigeration apparatus, the outdoor heat exchanger 16 is required to have a heat exchange capacity twice or more that of the indoor heat exchanger 17.
In other words, if the heat exchanger has the same performance, the outdoor heat exchanger 16 needs to be twice as large as the indoor heat exchanger 17.
Here, for example, if the condensation temperature is 30 [° C.], the temperature difference from the room temperature is 10 [° C.], the indoor heat exchanger 17 with G = 400 [w / k] is required, and the outdoor heat exchanger 16 However, the temperature of the air blown out from the indoor heat exchanger 16 is 30 [° C.] or less, and heating is performed at a temperature lower than the body temperature. The condensation temperature has a lower limit of about 40 [° C.] in terms of comfort. Therefore, the outdoor heat exchanger 17 is also required to have a heat exchange capacity more than twice that of the indoor heat exchanger 16.
[0045]
On the other hand, during cooling operation, for example, in an air conditioner with a cooling capacity (= evaporation capacity) of 3000 [w], if the room temperature is 27 [° C.] and the evaporation temperature of the indoor heat exchanger is 13 [° C.], the temperature difference is 14 [ ° C] and the indoor heat exchanger 16 having G = 24.3 [w / k] is required.
Further, when the condensation capacity required for the outdoor heat exchanger 17 is 4000 [w], the outside air temperature is 35 [° C.], and the condensation temperature of the outdoor heat exchanger 17 is 45 [° C.], the temperature difference is 10 [° C. Therefore, the outdoor heat exchanger 17 with G = 400 [w / k] is required. Accordingly, in the cooling operation, the outdoor heat exchanger 17 is required to have a heat exchange capacity about twice that of the indoor heat exchanger 16, and if the heat exchanger has the same performance, the outdoor heat exchanger 17 is About twice as large as the indoor heat exchanger 16 is required.
[0046]
Generally, when the refrigerant is excessive in the condenser, the degree of supercooling is increased, and the heat transfer area of the supercooled liquid part having a low refrigerant side heat transfer performance is increased, so that the heat exchange capability is lowered. In addition, when the refrigerant becomes insufficient, the degree of supercooling decreases, and the difference in enthalpy cannot be obtained, so the heat exchange capacity is reduced.
On the other hand, in the evaporator, generally, when the refrigerant is excessive, the evaporator outlet dryness is lowered, and the enthalpy difference cannot be taken, so that the heat exchange ability is lowered. Further, when the refrigerant becomes insufficient, the degree of superheat at the evaporator outlet increases, and the heat transfer area of the superheated steam section having a low refrigerant side heat transfer performance is increased, so that the heat exchange capability is reduced.
Therefore, both the condenser and the evaporator have an optimum refrigerant amount that maximizes the heat exchange capacity and maximizes the energy efficiency.
[0047]
On the other hand, when considering the amount of refrigerant used in the actual machine, it is natural that the amount of refrigerant in the heat exchanger with a smaller internal volume is smaller in the evaporator than in the condenser. Here, if the heat exchanger has the same performance, the outdoor heat exchanger 17 needs to be about twice as large as the indoor heat exchanger 16 (= internal volume). In the cooling operation in which a condenser is used, the amount of refrigerant used is larger than that in the heating operation. Therefore, in a heat pump type air-conditioning refrigeration system, if the refrigerant amount that maximizes the energy efficiency based on the cooling operation standard is charged, the refrigerant becomes excessive during the heating operation and the energy efficiency is lowered.
[0048]
In addition, if the refrigerant amount that maximizes the energy efficiency based on the heating operation standard is charged, the refrigerant becomes insufficient during the cooling operation, and the energy efficiency decreases. Therefore, it is necessary to fill the refrigerant amount that maximizes the energy efficiency for both cooling and heating by adjusting the performance and internal volume of the heat exchanger.
[0049]
If the refrigerant circuit is equipped with a refrigerant amount adjustment container that absorbs the difference in the amount of refrigerant between cooling and heating, it is possible to operate with maximum energy efficiency. The amount of refrigerant cannot be reduced. Providing the refrigerant quantity adjusting container leads to an increase in the cost of the equipment, and a storage space for the container is also required, which is against the downsizing of the equipment and is not a good idea.
[0050]
Refrigerant abundance Mo in the heat exchanger is determined by dividing the heat exchanger into three parts, a superheated steam part, a supercooling liquid part, and a two-phase part, and the refrigerant abundance Mgsh, Mlsc, Mtp of each part. Total Mo = Mgsh + Mlsc + Mtp.
Here, Mgsh, Mlsc, and Mtp are calculated by the following equations, respectively.
Mgsh = Vgsh × ρgsh
Mlsc = Vlsc × ρlsc
Mtp = Vtp × ρtp
ρtp = F × ρg + (1−F) × ρl
F = 1 / {1-S × (ρg / ρl)} + S × (ρg / ρl) × LN {Xi + (Xo−Xi) S × (ρg / ρl)} / (Xo−Xi) / {1-S × (ρg / ρl)}2
S = (Ug / Ul)C6
Here, M [kg] is the refrigerant abundance, V [mThree] Is the internal volume, ρ [kg / mThree] Is the refrigerant density, U [m / s] is the refrigerant flow velocity, subscript o is the whole heat exchanger, gsh is the superheated steam, lsc is the supercooled liquid, tp is the two-phase part, g is the saturated steam, l is It is a saturated liquid.
[0051]
The superheated steam part and the supercooled liquid part, which are single-phase parts, calculate the refrigerant density from the degree of superheat or supercooling that is the refrigerant state at that time, and calculate the amount of refrigerant together with the internal volume of the heat exchanger occupied by that part. Can be calculated.
For the two-phase region, a dimensionless number such as a void fraction F and a slip ratio S is introduced, and the refrigerant density ρtp is calculated to calculate the refrigerant amount. Here, C6 is a constant relating the ratio of the flow rates of the saturated vapor refrigerant and the saturated liquid refrigerant, that is, the slip ratio S. Xi is the dryness of the two-phase part inlet, and Xo is the dryness of the two-phase part outlet. Here, in the case of a condenser, generally, Xi = 1 and Xo = 0, and in the case of an evaporator, Vlsc = 0.
[0052]
FIG. 11 shows the ratio Vo / Vi between the internal volume Vi of the indoor heat exchanger and the internal volume Vo of the outdoor heat exchanger at a certain amount of refrigerant on the horizontal axis and the energy efficiency of cooling and heating at that time on the vertical axis. FIG. The energy efficiency was obtained by calculating the degree of supercooling and the degree of superheat from the amount of refrigerant, the internal volume Vi of the indoor heat exchanger 16, and the internal volume Vo of the outdoor heat exchanger 17 based on the above-described formula.
From FIG. 11, the energy efficiency change of heating is moderate with respect to the change of the internal volume ratio Vo / Vi, but the energy efficiency change of the cooling is large, and the internal volume ratio Vo / Vi is 1.4 ≦ Vo / Vi ≦ 1. If it is in the range of .8, the energy efficiency is expected to be sufficiently high for both cooling and heating. The actual machine test results are shown as white circles, but they are in good agreement.
[0053]
Therefore, the adjustment of the internal volume of the indoor / outdoor heat exchanger 16 enables an operation that maximizes the energy efficiency for both cooling and heating, and there is no need to provide a refrigerant amount adjustment container that absorbs the refrigerant amount difference between the cooling and heating. Reduction of the amount, cost of the equipment, and storage space for the container are also required, so that the equipment can be miniaturized. At this time, if the heat exchanger described in Embodiment 1 is used as the heat exchanger, the energy efficiency can be further increased.
[0054]
In addition, about the heat exchanger described in Embodiment 1 to Embodiment 3 and the air-conditioning refrigeration apparatus using the heat exchanger, HCFC (R22, etc.) and HFC (R116, R125, R134a, R14, R143a, R152a, R227ea, R23, R236ea, R236fa, R245ca, R245fa, R32, R41, RC318, etc., and some mixed refrigerants R407A, R407B, R407C, R407D, R407E, R410A, R410B, R404A, R507A, R508A, R508B) HC (butane, isobutane, ethane, propane, propylene, etc., and some mixed refrigerants of these refrigerants), natural refrigerant (air, carbon dioxide, ammonia, etc., and some mixed refrigerants of these refrigerants), Several mixed refrigerants Be used any type of refrigerant, it can achieve its effect. In addition, when flammable HC refrigerant or toxic ammonia refrigerant is used, reducing the amount of refrigerant used can improve the safety of the apparatus.
[0055]
In addition, about the heat exchanger described in Embodiments 1 to 3 and the air-conditioning refrigeration apparatus using the heat exchanger, mineral oil, alkylbenzene oil, ester oil, ether oil, fluorine oil, and the like can be used. The effect can be achieved with any refrigeration oil, whether the oil is soluble or not. In particular, with respect to refrigerating machine oil having zero or poor solubility in the refrigerant, the effect can be achieved by setting the oil circulation rate of the air-conditioning refrigerating apparatus to a solubility of 0.5% or less.
[0056]
【The invention's effect】
  In the heat exchanger according to the present invention, the outer diameter D of the heat transfer tube is 3 ≦ D ≦ 7 mm, the step pitch Dp in the step direction of the heat transfer tube is 2D ≦ Dp ≦ 3D, and the column pitch Lp in the column direction of the heat transfer tube is 2D ≦ Lp ≦ 3.5D, and the fin pitch Fp of the plate fins0.15D ≦ Fp ≦ 0.27DAs a result, a heat exchanger having high heat transfer performance and low ventilation resistance can be configured without increasing the fan driving force, so that a significant improvement in heat exchange can be achieved.
[0057]
  Further, the outer diameter D of the heat transfer tube is set to 3 ≦ D ≦ 7 mm, the step pitch Dp in the step direction of the heat transfer tube is set to 2D ≦ Dp ≦ 3D, and the column pitch Lp in the column direction of the heat transfer tube is set to 2D ≦ Lp ≦ 3.5D. age,When the fin pitch in the stacking direction of the plate-like fins is Fp,Since the fin thickness Ft of the plate-like fin is 6 ≦ Fp / Ft ≦ 18, a heat exchanger having high heat transfer performance and low ventilation resistance can be configured without increasing the fan driving force in the same manner. An improvement in the amount of heat exchange can be achieved.
[0058]
  Further, the outer diameter D of the heat transfer tube is set to 3 ≦ D ≦ 7 mm, the step pitch Dp in the step direction of the heat transfer tube is set to 2D ≦ Dp ≦ 3D, and the column pitch Lp in the column direction of the heat transfer tube is set to 2D ≦ Lp ≦ 3.5D. And the fin pitch Fp of the plate fins0.15D ≦ Fp ≦ 0.27DSince the fin thickness Ft of the plate-like fins is 6 ≦ Fp / Ft ≦ 18, a heat exchanger with high heat transfer performance and low ventilation resistance can be configured without further increasing the fan driving force. A significant improvement in heat exchange can be achieved.
[0059]
Since the air-conditioning refrigerating apparatus according to the present invention uses the heat exchanger according to any one of claims 1 to 3, a heat exchanger having high heat transfer performance and low ventilation resistance without increasing the fan driving force. Since it can be configured, a significant improvement in heat exchange can be achieved, and the energy efficiency of the device can be dramatically improved.
[0060]
Moreover, since the refrigerant is the working fluid and the heat exchanger according to any one of claims 1 to 3 is used for the indoor heat exchanger, the heat transfer performance is high and the ventilation resistance is small without increasing the fan driving force. Since the heat exchanger can be configured, it is possible to achieve a significant improvement in the amount of heat exchange and to dramatically improve the energy efficiency of the device.
[0062]
The refrigerant is a working fluid, and includes a compressor, a four-way valve, a throttle device, an indoor heat exchanger, and an outdoor heat exchanger, and the heat exchanger according to any one of claims 1 to 3 is used for an indoor heat exchanger. In this case, the internal volume of the indoor heat exchanger is Vi, the internal volume of the outdoor heat exchanger is Vo, and Vi and Vo satisfy the relationship of 1.4 ≦ Vo / Vi ≦ 1.8. The energy efficiency of the device can be dramatically improved while achieving reduction, cost reduction of the device, and downsizing of the device.
[0063]
In addition, any type of refrigerant such as R407C, R410A, R32, isobutane, propane, carbon dioxide, ammonia, etc. can be used as the refrigerant, and the energy efficiency of the equipment can be dramatically improved and flammable HC When a refrigerant or a toxic ammonia refrigerant is used, reducing the amount of refrigerant used can improve the safety of the apparatus.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment, and is a partial side plan view and a side view of a heat exchanger.
FIG. 2 shows the first embodiment, and is a characteristic diagram showing the relationship between the stage pitch of the heat transfer tubes and the heat exchange amount.
FIG. 3 shows the first embodiment and is a characteristic diagram showing the relationship between the row pitch of the heat transfer tubes and the heat exchange amount;
FIG. 4 is a diagram showing the first embodiment and is a characteristic diagram showing a relationship between a fin pitch and a heat exchange amount.
FIG. 5 is a diagram showing the first embodiment and is a characteristic diagram showing a relationship between a fin thickness and a heat exchange amount.
FIG. 6 shows the first embodiment and is a characteristic diagram showing the relationship between the outer diameter of the heat transfer tube and the amount of heat exchange.
7 is a diagram showing a modification of the first embodiment, and is a partial side plan view of the heat exchanger. FIG.
FIG. 8 is a diagram showing a second embodiment and is a refrigerant circuit diagram of an air-conditioning refrigeration apparatus.
FIG. 9 is a diagram showing a modification of the second embodiment, and is a refrigerant circuit diagram of an air conditioning refrigeration apparatus.
FIG. 10 shows the third embodiment and is a refrigerant circuit diagram of the air-conditioning refrigeration apparatus.
FIG. 11 shows the third embodiment and is a characteristic diagram showing the relationship between the internal volume and energy efficiency of the indoor heat exchanger and the outdoor heat exchanger.
FIG. 12 is a diagram showing a conventional heat exchanger, and is a partial side plan view of the heat exchanger.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Plate-like fin, 2 Heat exchanger tube, 3 Cutting and raising, 11 Compressor, 12 Condensation heat exchanger, 13 Expansion device, 14 Evaporation heat exchanger, 15 Four-way valve, 16 Outdoor heat exchanger, 17 Indoor heat exchanger.

Claims (7)

多数平行に配置されその間を気体が流動する複数の板状フィンと、
この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、
前記板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、
前記伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、
前記伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、
前記板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとしたことを特徴とする熱交換器。
A plurality of plate-like fins arranged in parallel and through which gas flows,
The plate-like fins are inserted at right angles, the working fluid passes through the inside, and a plurality of stages are provided in a step direction perpendicular to the gas passage direction, and a plurality of rows are provided in the row direction of the gas passage direction. A heat transfer tube having an outer diameter D of 3 mm ≦ D ≦ 7 mm ;
Provided on the plate-like fin surface, and provided with a cut-and-raised opening facing the gas flow,
The step pitch Dp in the step direction of the heat transfer tube is 2D ≦ Dp ≦ 3D,
The row pitch Lp in the row direction of the heat transfer tubes is 2D ≦ Lp ≦ 3.5D,
The heat exchanger according to claim 1 , wherein a fin pitch Fp of the plate fin is 0.15D ≦ Fp ≦ 0.27D .
多数平行に配置されその間を気体が流動する複数の板状フィンと、
この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられるとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、
前記板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、
前記伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、
前記伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、
前記板状フィンの積層方向のフィンピッチをFpとしたとき、前記板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたことを特徴とする熱交換器。
A plurality of plate-like fins arranged in parallel and through which gas flows,
The plate-like fins are inserted at right angles, the working fluid passes through the inside, and a plurality of stages are provided in a step direction perpendicular to the gas passage direction, and a plurality of rows are provided in the row direction of the gas passage direction. A heat transfer tube having an outer diameter D of 3 mm ≦ D ≦ 7 mm ;
Provided on the plate-like fin surface, and provided with a cut-and-raised opening facing the gas flow,
The step pitch Dp in the step direction of the heat transfer tube is 2D ≦ Dp ≦ 3D,
The row pitch Lp in the row direction of the heat transfer tubes is 2D ≦ Lp ≦ 3.5D,
A heat exchanger , wherein a fin thickness Ft of the plate-like fins is 6 ≦ Fp / Ft ≦ 18 when a fin pitch in the stacking direction of the plate-like fins is Fp.
多数平行に配置されその間を気体が流動する複数の板状フィンと、
この各板状フィンへ直角に挿入され、内部を作動流体が通過し、気体の通過する方向に対して直角方向の段方向へ複数段設けられとともに気体通過方向の列方向に複数列設けられた外径Dが3mm≦D≦7mmの伝熱管と、
前記板状フィン面上に設けられ、気体の流れに対向して開口部を有する切り起こしとを備え、
前記伝熱管の段方向の段ピッチDpを2D≦Dp≦3Dとし、
前記伝熱管の列方向の列ピッチLpを2D≦Lp≦3.5Dとし、
前記板状フィンのフィンピッチFpを0.15D≦Fp≦0.27Dとし、
前記板状フィンのフィン厚さFtを6≦Fp/Ft≦18としたことを特徴とする熱交換器。
A plurality of plate-like fins arranged in parallel and through which gas flows,
The plate-like fins are inserted at right angles, the working fluid passes through the inside, and a plurality of stages are provided in the step direction perpendicular to the gas passing direction, and a plurality of lines are provided in the column direction in the gas passage direction. A heat transfer tube having an outer diameter D of 3 mm ≦ D ≦ 7 mm ;
Provided on the plate-like fin surface, and provided with a cut-and-raised opening facing the gas flow,
The step pitch Dp in the step direction of the heat transfer tube is 2D ≦ Dp ≦ 3D,
The row pitch Lp in the row direction of the heat transfer tubes is 2D ≦ Lp ≦ 3.5D,
The fin pitch Fp of the plate fin is 0.15D ≦ Fp ≦ 0.27D ,
A heat exchanger characterized in that a fin thickness Ft of the plate-like fins is set to 6 ≦ Fp / Ft ≦ 18.
冷媒を作動流体とし、圧縮機、絞り装置、凝縮熱交換器、蒸発熱交換器を備えた空調冷凍装置において、請求項1〜3何れかに記載の熱交換器を用いたことを特徴とする空調冷凍装置。  A heat exchanger according to any one of claims 1 to 3 is used in an air-conditioning refrigeration apparatus using a refrigerant as a working fluid and including a compressor, an expansion device, a condensing heat exchanger, and an evaporating heat exchanger. Air conditioning refrigeration equipment. 冷媒を作動流体とし、圧縮機、四方弁、絞り装置、室内熱交換器、室外熱交換器を備えた空調冷凍装置において、請求項1〜3何れかに記載の熱交換器を前記室内熱交換器に用いたことを特徴とする空調冷凍装置。  An air-conditioning refrigeration system using a refrigerant as a working fluid and including a compressor, a four-way valve, a throttle device, an indoor heat exchanger, and an outdoor heat exchanger, wherein the heat exchanger according to any one of claims 1 to 3 is the indoor heat exchanger. An air-conditioning refrigeration apparatus characterized by being used in a container. 室内熱交換器の内容積をVi、室外内熱交換器の内容積をVoとし、ViとVoとが1.4≦Vo/Vi≦1.8の関係を満たすことを特徴とする請求項5記載の空調冷凍装置。  6. The internal volume of the indoor heat exchanger is Vi, the internal volume of the outdoor heat exchanger is Vo, and Vi and Vo satisfy a relationship of 1.4 ≦ Vo / Vi ≦ 1.8. The air-conditioning refrigeration apparatus described. 冷媒としてR407C、R410A、R32、イソブタン、プロパン、炭酸ガス、アンモニアのいずれかを用いたことを特徴とする請求項4〜のいずれかに記載の空調冷凍装置。The air-conditioning refrigerating apparatus according to any one of claims 4 to 6 , wherein any one of R407C, R410A, R32, isobutane, propane, carbon dioxide, and ammonia is used as the refrigerant.
JP07763799A 1999-03-23 1999-03-23 Heat exchanger and air-conditioning refrigeration apparatus using the same Expired - Lifetime JP3720208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07763799A JP3720208B2 (en) 1999-03-23 1999-03-23 Heat exchanger and air-conditioning refrigeration apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07763799A JP3720208B2 (en) 1999-03-23 1999-03-23 Heat exchanger and air-conditioning refrigeration apparatus using the same

Publications (2)

Publication Number Publication Date
JP2000274982A JP2000274982A (en) 2000-10-06
JP3720208B2 true JP3720208B2 (en) 2005-11-24

Family

ID=13639421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07763799A Expired - Lifetime JP3720208B2 (en) 1999-03-23 1999-03-23 Heat exchanger and air-conditioning refrigeration apparatus using the same

Country Status (1)

Country Link
JP (1) JP3720208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900402A (en) * 2012-12-26 2014-07-02 株式会社能率 Heat exchanger and water heater including the same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257483A (en) * 2001-02-28 2002-09-11 Toyo Radiator Co Ltd Plate fin type heat exchanger
DE10296722B4 (en) * 2002-02-28 2012-07-26 Lg Electronics Inc. Heat exchanger for a cooling unit
JP4130636B2 (en) * 2004-01-30 2008-08-06 三菱電機株式会社 Refrigerator built-in showcase
JP2006234264A (en) * 2005-02-24 2006-09-07 Mitsubishi Electric Corp Fin and tube-type heat exchanger
JP2006329534A (en) * 2005-05-26 2006-12-07 Toshiba Kyaria Kk Heat exchanger and air conditioner
JP4826266B2 (en) * 2006-01-27 2011-11-30 ダイキン工業株式会社 Air conditioner
JP4412385B2 (en) * 2007-10-22 2010-02-10 三菱電機株式会社 Refrigerant leak detection method for refrigeration cycle equipment
JP2009109050A (en) * 2007-10-29 2009-05-21 Panasonic Corp Heat pump device
JP4610626B2 (en) * 2008-02-20 2011-01-12 三菱電機株式会社 Heat exchanger and ceiling-embedded air conditioner installed in ceiling-embedded air conditioner
JP5519205B2 (en) 2008-08-07 2014-06-11 サンデン株式会社 Heat exchanger and heat pump device using the same
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same
EP2400251B1 (en) 2009-02-23 2014-09-24 Mitsubishi Heavy Industries, Ltd. Gas cooler
JP4715971B2 (en) 2009-11-04 2011-07-06 ダイキン工業株式会社 Heat exchanger and indoor unit equipped with the same
JP2011237047A (en) * 2010-04-30 2011-11-24 Daikin Industries Ltd Heat exchanger of air conditioner
CN102918348B (en) * 2010-05-31 2015-03-25 三电有限公司 Heat exchanger and heat pump that uses same
US9890978B2 (en) 2010-09-10 2018-02-13 Mitsubishi Electric Corporation Renewal method of air-conditioning unit for vehicle and air-conditioning unit for vehicle
JP2012132593A (en) * 2010-12-20 2012-07-12 Fuji Electric Co Ltd Heat exchanger
CN102506522A (en) * 2011-09-26 2012-06-20 王永刚 Fin type heat exchanger and assembly method thereof
JPWO2013108648A1 (en) 2012-01-18 2015-05-11 三菱電機株式会社 Heat exchanger for vehicle air conditioner and vehicle air conditioner
JP5553101B2 (en) * 2012-10-15 2014-07-16 三菱電機株式会社 Cooler and cooler
WO2014147788A1 (en) * 2013-03-21 2014-09-25 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and production method for heat exchanger
JP6180338B2 (en) * 2014-01-29 2017-08-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioner
JP6533257B2 (en) * 2017-07-18 2019-06-19 日立ジョンソンコントロールズ空調株式会社 Air conditioner
US11965701B2 (en) 2019-08-06 2024-04-23 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN212720029U (en) * 2020-06-10 2021-03-16 青岛海尔(胶州)空调器有限公司 Condenser, air condensing units and air conditioning system
KR20220116296A (en) * 2020-08-24 2022-08-22 후지 덴키 가부시키가이샤 Finned Tube Heat Exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103900402A (en) * 2012-12-26 2014-07-02 株式会社能率 Heat exchanger and water heater including the same
CN103900402B (en) * 2012-12-26 2016-04-13 株式会社能率 Heat exchanger and the water heater possessing this heat exchanger

Also Published As

Publication number Publication date
JP2000274982A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3720208B2 (en) Heat exchanger and air-conditioning refrigeration apparatus using the same
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
JP4506609B2 (en) Air conditioner and method of manufacturing air conditioner
JP4749373B2 (en) Air conditioner
EP3232139B1 (en) Heat exchanger of an air-conditioning device
AU2009216419B2 (en) Heat exchanger arranged in ceiling-buried air conditioner, and ceiling-buried air conditioner
KR101797176B1 (en) Dual pipe structure for internal heat exchanger
JP2009281693A (en) Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
WO2014119430A1 (en) Outdoor unit and refrigeration cycle device
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
EP1659344A1 (en) Indoor unit of air conditioner
JP5312413B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus using the same
JP6400257B1 (en) Heat exchanger and air conditioner
JP2010249343A (en) Fin tube type heat exchanger and air conditioner using the same
JP2005291694A (en) Indoor unit of air conditioner
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP5631452B2 (en) Finned tube heat exchanger and refrigeration cycle apparatus using the same
JP2003090691A (en) Fin tube heat exchanger and refrigerating cycle employing the same
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP2022019458A (en) Heat exchanger
JP4186359B2 (en) HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER
JP2009127882A (en) Heat exchanger, indoor unit, and air conditioner
JP7118247B2 (en) air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP4143973B2 (en) Air conditioner

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term