JP4178472B2 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP4178472B2
JP4178472B2 JP2004077448A JP2004077448A JP4178472B2 JP 4178472 B2 JP4178472 B2 JP 4178472B2 JP 2004077448 A JP2004077448 A JP 2004077448A JP 2004077448 A JP2004077448 A JP 2004077448A JP 4178472 B2 JP4178472 B2 JP 4178472B2
Authority
JP
Japan
Prior art keywords
header
heat transfer
transfer tube
refrigerant
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004077448A
Other languages
Japanese (ja)
Other versions
JP2005265263A (en
Inventor
真治 中出口
雅弘 中山
邦彦 加賀
孝行 吉田
慎一 岩本
泰城 村上
晃 石橋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2004077448A priority Critical patent/JP4178472B2/en
Publication of JP2005265263A publication Critical patent/JP2005265263A/en
Application granted granted Critical
Publication of JP4178472B2 publication Critical patent/JP4178472B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、空気調和機に収納される熱交換器及びその熱交換器を用いた空気調和機に関する。   The present invention relates to a heat exchanger housed in an air conditioner and an air conditioner using the heat exchanger.
従来の熱交換器として、伝熱管群の端部にヘッダを接続して多パス方式に構成された熱交換器が提案されている(例えば、特許文献1、2参照)。
また、空気調和機に収納される熱交換器で補助熱交換器を具備したものが提案されている(例えば、特許文献3参照)。
As a conventional heat exchanger, a heat exchanger configured in a multi-pass system by connecting a header to an end of a heat transfer tube group has been proposed (see, for example, Patent Documents 1 and 2).
Moreover, what equipped the auxiliary heat exchanger with the heat exchanger accommodated in an air conditioner is proposed (for example, refer patent document 3).
特開平4−268128号公報(請求項1、図1、図4)JP-A-4-268128 (Claim 1, FIG. 1, FIG. 4) 特開平4−240364公報(請求項1、図1−図3)JP-A-4-240364 (Claim 1, FIGS. 1 to 3) 特開2001−82761号公報(段落[0048]、[0072]、図7−図9)JP 2001-28761 A (paragraphs [0048] and [0072], FIGS. 7 to 9)
従来の空気調和機に用いる熱交換器は、特許文献1に開示するように、冷媒の圧力損失を抑制するため、伝熱管群の端部をヘッダを用いて接続する多パス方式の熱交換器を採用しているのが一般的である。すなわち、従来の熱交換器は、気流方向に沿って並列に配置された複数のフィンと、これらのフィンに対して直交する方向に配設され内部を冷媒が流動する複数の伝熱管群と、伝熱管群のそれぞれの端部に接続されたヘッダを備え、さらに各ヘッダ内部を気流方向に平行な平板状の仕切り板で仕切ることによって、伝熱管群の上下方向(段方向)に各ヘッダ内のヘッダ室を介して冷媒が通過する複数の冷媒回路を構成するものである。   As disclosed in Patent Document 1, a heat exchanger used in a conventional air conditioner is a multi-pass heat exchanger in which end portions of heat transfer tube groups are connected using a header in order to suppress pressure loss of the refrigerant. Is generally adopted. That is, the conventional heat exchanger includes a plurality of fins arranged in parallel along the airflow direction, a plurality of heat transfer tube groups arranged in a direction orthogonal to these fins and in which the refrigerant flows, Each header has a header connected to each end of the heat transfer tube group, and the inside of each header is partitioned by a flat partition plate parallel to the air flow direction so that each header in the vertical direction (stage direction) of the heat transfer tube group A plurality of refrigerant circuits through which the refrigerant passes through the header chamber are configured.
特許文献1の熱交換器においては、冷媒は、蒸発時には下方の伝熱管群から上方の伝熱管群へ各ヘッダのヘッダ室を介して順次流動し、凝縮時には上記蒸発時とは逆順に流動し、この流動の過程においてフィンを介して空気と熱交換を行う。また、各ヘッダ内部は気流方向に平行な平板状の仕切り板によって仕切られているので、1つの冷媒回路が、気流方向において他の冷媒回路と重なることはない。そのため、このような熱交換器を空気調和機に使用した場合には、冷媒蒸発時に、冷媒の流出口側の伝熱管内では、冷媒の乾き度が大きくなるので空気を十分冷却できず湿度の高い空気を通過させてしまうため、熱交換器の後方に設置されるファン表面で水分が結露し、空気調和機の吹出し口からいわゆる露飛びを起こすという課題があった。   In the heat exchanger of Patent Document 1, the refrigerant sequentially flows from the lower heat transfer tube group to the upper heat transfer tube group through the header chamber of each header during evaporation, and flows in the reverse order to the evaporation during condensation. In the course of this flow, heat exchange with air is performed through the fins. Further, since each header is partitioned by a flat partition plate parallel to the airflow direction, one refrigerant circuit does not overlap with other refrigerant circuits in the airflow direction. For this reason, when such a heat exchanger is used in an air conditioner, when the refrigerant evaporates, the dryness of the refrigerant increases in the heat transfer tube on the refrigerant outlet side, so that the air cannot be cooled sufficiently and the humidity is reduced. Since high air is allowed to pass through, moisture condenses on the surface of the fan installed behind the heat exchanger, and there is a problem that so-called dew is generated from the outlet of the air conditioner.
一方、特許文献2にはヘッダを用い管内抵抗を低減する分流方式を採用しながら、気流方向に直交する方向に冷媒が移動するよう形成されたヘッダを介して、複数の伝熱管中を冷媒が通過して空気と熱交換する方式により、露飛びを防止するものが示されている。しかしながら、同文献に開示されている熱交換器においては、気流の風上側でヘッダの(重力方向の)最下方位置に冷媒が流入した後、ヘッダ内では、冷媒は気流の風上側を最下方から最上方へ流れ、続いて、冷媒は気流の風下側を最上方から最下方に流れた後、風下側のヘッダ最下方位置から外部に流出する、単一冷媒回路を構成するものである。また、この熱交換器のヘッダでは、上下方向に複数の伝熱管が一体となって形成された伝熱管群が複数個連結され、これらの伝熱管群に含まれる伝熱管の本数が下方から上方へ向かって徐々に増加する方式が採用されている。そのため、冷媒流入側及び流出側のヘッダの配管構造が相当複雑になっている。したがって、多パス方式の熱交換器には採用しにくいヘッダ構造である。   On the other hand, Patent Document 2 adopts a diversion method that uses a header to reduce pipe resistance, while the refrigerant passes through a plurality of heat transfer tubes via a header formed so that the refrigerant moves in a direction orthogonal to the airflow direction. It shows what prevents dew spilling through a method of passing through and exchanging heat with air. However, in the heat exchanger disclosed in this document, after the refrigerant flows into the lowermost position (in the gravitational direction) of the header on the windward side of the airflow, the refrigerant moves down the windward side of the airflow in the header. Then, the refrigerant flows from the uppermost side to the lowermost side on the leeward side of the airflow, and then flows out from the lowermost position of the header on the leeward side to constitute a single refrigerant circuit. Further, in the header of this heat exchanger, a plurality of heat transfer tube groups in which a plurality of heat transfer tubes are integrally formed in the vertical direction are connected, and the number of heat transfer tubes included in these heat transfer tube groups is increased from below to above. A method of gradually increasing toward is adopted. Therefore, the piping structure of the header on the refrigerant inflow side and the outflow side is considerably complicated. Therefore, it is a header structure that is difficult to adopt for a multi-pass heat exchanger.
特許文献3の空気調和機では、熱交換パイプが円形状の断面をしているため、補助熱交換器を配置することで複数列となり、風圧損失が増大してしまい、風量の低下や騒音が増大してしまうという問題点があった。   In the air conditioner of Patent Document 3, since the heat exchange pipe has a circular cross section, the auxiliary heat exchanger is arranged in a plurality of rows, resulting in an increase in wind pressure loss, a reduction in air volume and noise. There was a problem that it increased.
本発明は、上記のような問題点に鑑みてなされたものであり、簡単なヘッダ構造により風圧損失を低減し露飛びを防止すると共に、冷媒側熱伝達率の向上と冷媒同士の熱交換による熱ロスの防止により、効率の高い熱交換器及び空気調和機を得ることを目的とする。   The present invention has been made in view of the above-described problems. The simple header structure reduces wind pressure loss and prevents dew escaping, and improves the refrigerant-side heat transfer coefficient and heat exchange between the refrigerants. An object is to obtain a highly efficient heat exchanger and air conditioner by preventing heat loss.
本発明の熱交換器は、気流方向に沿って並列に配置される複数のフィンと、前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の伝熱管群と、内部を仕切り板により複数のヘッダ室にそれぞれ分割された第1ヘッダ及び第2ヘッダと、を有する熱交換器において、前記第2ヘッダの冷媒流入位置の伝熱管群が接続された第2ヘッダのヘッダ室、前記第2ヘッダの冷媒流入位置の伝熱管群、前記第2ヘッダの冷媒流入位置の伝熱管群及び中間位置の伝熱管群に接続された第1ヘッダのヘッダ室、中間位置の伝熱管群、2つの中間位置の伝熱管群に接続された第2ヘッダのヘッダ室、中間位置の伝熱管群、中間位置の伝熱管群及び前記第ヘッダの冷媒流出位置の伝熱管群に接続された第1ヘッダのヘッダ室、前記第ヘッダの冷媒流出位置の伝熱管群、前記第ヘッダの冷媒流出位置の伝熱管群に接続された前記第2ヘッダのヘッダ室、とを順次接続して構成される冷媒回路を複数備え、前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられ、前記第2ヘッダの冷媒流入位置の伝熱管群とお互いに冷媒回路が異なる前記第2ヘッダの冷媒流出位置の伝熱管群とが気流方向に隣接するよう構成したことを特徴とするものである。 The heat exchanger of the present invention includes a plurality of fins arranged in parallel along the airflow direction, a plurality of heat transfer tube groups arranged in a direction orthogonal to the fins and in which a refrigerant flows, and the inside A heat exchanger having a first header and a second header each divided into a plurality of header chambers by a partition plate, wherein the header chamber of the second header is connected to a heat transfer tube group at a refrigerant inflow position of the second header. , A heat transfer tube group at the refrigerant inflow position of the second header, a heat transfer tube group at the refrigerant inflow position of the second header, a header chamber of the first header connected to the heat transfer tube group at the intermediate position, and a heat transfer tube group at the intermediate position Connected to the header chamber of the second header connected to the two heat transfer tube groups at the intermediate position, the heat transfer tube group at the intermediate position, the heat transfer tube group at the intermediate position, and the heat transfer tube group at the refrigerant outflow position of the second header first header header chamber, said second header Tube bank of the refrigerant outflow position, the second header of the second header of the header chamber connected to the tube bank of the refrigerant outflow position, capital sequentially plurality includes a refrigerant circuit constituted by connecting the first The header and the second header are provided so that each longitudinal direction thereof is orthogonal to the air flow direction, and the refrigerant transfer position of the second header is different from that of the heat transfer tube group at the refrigerant inflow position of the second header. The heat transfer tube group is configured to be adjacent to the airflow direction.
本発明の熱交換器によれば、複数の伝熱管群の端部に第1及び第2ヘッダを接続するとともに、第1及び第2ヘッダのそれぞれ2種類の仕切り板により伝熱管群を複数の冷媒回路に分割し、これにより分割された一方の冷媒回路の冷媒流入位置の伝熱管群と、この冷媒回路に隣接する別の冷媒回路の冷媒流出位置の伝熱管群とを、気流の風上側と風下側に互いに重なるように配置したので、均質に空気を冷却し、かつ除湿することが可能となり、露飛びを防止することができる。   According to the heat exchanger of the present invention, the first and second headers are connected to the end portions of the plurality of heat transfer tube groups, and the plurality of heat transfer tube groups are divided by the two types of partition plates of the first and second headers. The heat transfer tube group at the refrigerant inflow position of one refrigerant circuit divided into the refrigerant circuit and the heat transfer tube group at the refrigerant outflow position of another refrigerant circuit adjacent to the refrigerant circuit are Since it is arranged so as to overlap each other on the leeward side, air can be uniformly cooled and dehumidified, and dew can be prevented.
実施の形態1.
図1は本発明の第1の実施の形態を示す熱交換器の概略構成図であり、図2は図1のB−B拡大断面図、図3は図1のC−C拡大断面図、図4は図1の熱交換器を右側面からみた拡大図を示す。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of a heat exchanger showing a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view taken along line BB in FIG. 1, and FIG. 3 is an enlarged cross-sectional view taken along line CC in FIG. FIG. 4 shows an enlarged view of the heat exchanger of FIG. 1 viewed from the right side.
図1において、気流方向に沿って多数のフィン5が互いに平行に設置され、このフィン5に直交する方向に内部を冷媒が流動する多数の伝熱管群1a〜1c、1d1(1d2)、2a1(2a2)、2b〜2c、2d1(2d2)、3a1(3a2)、3b、3c、3d1(3d2)、4a1(4a2)、4b〜4dが挿入接合され、そして上記すべての伝熱管群の各伝熱管の一端間を第1ヘッダ12によって、また他端間を第2ヘッダ13によって、それぞれ連結し、接続している。第1ヘッダ12の内部には、詳しくは図2に示すように、上記伝熱管群の段方向(上下方向)に複数のヘッダ室に区画する2種類の仕切り板14が設けられ、第2ヘッダ13の内部には、詳しくは図3に示すように、同じく段方向(上下方向)に複数のヘッダ室に区画する2種類の仕切り板15が設けられている。そして、これらの仕切り板14、15により区画された各ヘッダ室ごとに各々冷媒の流れ方向を規制する。なお、上記のすべての伝熱管群は拡管手段によってフィン5に接合されている。   In FIG. 1, a large number of fins 5 are installed parallel to each other along the air flow direction, and a plurality of heat transfer tube groups 1a to 1c, 1d1 (1d2), 2a1 (in which the refrigerant flows in a direction orthogonal to the fins 5) 2a2), 2b-2c, 2d1 (2d2), 3a1 (3a2), 3b, 3c, 3d1 (3d2), 4a1 (4a2), 4b-4d, and each heat transfer tube of all the heat transfer tube groups Are connected and connected by a first header 12 and between the other ends by a second header 13. As shown in detail in FIG. 2, the first header 12 is provided with two types of partition plates 14 that are divided into a plurality of header chambers in the step direction (vertical direction) of the heat transfer tube group. As shown in detail in FIG. 3, two types of partition plates 15 are provided in the inside of 13, which are similarly divided into a plurality of header chambers in the step direction (vertical direction). Then, the flow direction of the refrigerant is regulated for each header chamber partitioned by these partition plates 14 and 15. All the heat transfer tube groups described above are joined to the fins 5 by the pipe expanding means.
図2において、第1ヘッダ12は、2種類の形状の仕切り板14a、14bからなる仕切り板14によって段方向に8個のヘッダ室12a〜12hに区画されている。一方の仕切り板14aは平板状であり、他方の仕切り板14bはステップ状の形状となっており、これらの仕切り板14a、14bは段方向に交互に設けられている。上述の8個のヘッダ室のうち、12bと12c、12dと12e、12fと12gは、ステップ状の仕切り板14bと平板状の仕切り板14aにより、L字状のヘッダ室(例えば12c)と逆L字状のヘッダ室(例えば12b)に区画されている。特に、ヘッダ室12bに接続される伝熱管群1d1および2a1(これらの伝熱管群を冷媒流入位置の伝熱管群と呼ぶ)と、ヘッダ室12cに接続される伝熱管群1d2および2a2(これらの伝熱管群を冷媒流出位置の伝熱管群と呼ぶ)とは、気流(気流方向を11で示す)の風上側と風下側に分離して段方向に各々2段に分けて配置されている。同様に、伝熱管群2d1および3a1と、2d2および3a2とが、伝熱管群3d1および4a1と、3d2および4a2とが、いずれも気流の風上側と風下側とに分離して各々2段に分けて配置されている。なお、上述の伝熱管群はいずれも気流方向に並ぶ3個の伝熱管により構成されている。一方、これら以外の伝熱管群では、気流方向に並ぶ6個の伝熱管により構成されている。   In FIG. 2, the first header 12 is partitioned into eight header chambers 12 a to 12 h in the step direction by a partition plate 14 including partition plates 14 a and 14 b having two types of shapes. One partition plate 14a has a flat plate shape, and the other partition plate 14b has a step shape. These partition plates 14a and 14b are alternately provided in the step direction. Of the eight header chambers described above, 12b and 12c, 12d and 12e, and 12f and 12g are opposite to the L-shaped header chamber (for example, 12c) by the step-shaped partition plate 14b and the flat partition plate 14a. It is partitioned into an L-shaped header chamber (for example, 12b). In particular, heat transfer tube groups 1d1 and 2a1 connected to the header chamber 12b (these heat transfer tube groups are called heat transfer tube groups at the refrigerant inflow position), and heat transfer tube groups 1d2 and 2a2 connected to the header chamber 12c (these components) The heat transfer tube group is referred to as the heat transfer tube group at the refrigerant outflow position, and is separated into an upwind side and an leeward side of the airflow (the airflow direction is indicated by 11) and is arranged in two stages in the step direction. Similarly, heat transfer tube groups 2d1 and 3a1, 2d2 and 3a2, heat transfer tube groups 3d1 and 4a1, 3d2 and 4a2 are separated into two stages, each separated into the leeward side and leeward side of the airflow. Are arranged. Note that each of the above-described heat transfer tube groups is constituted by three heat transfer tubes arranged in the airflow direction. On the other hand, the heat transfer tube group other than these is composed of six heat transfer tubes arranged in the airflow direction.
また図3において、第2ヘッダ13は、2種類の形状の仕切り板15a、15bからなる仕切り板15によって12個のヘッダ室13a、13b、13c1、13c2、13d、13e1、13e2、13f、13g1、13g2、13h、13iに区画されている。一方の仕切り板15aは平板状であり、他方の仕切り板15bはI字状の形状となっている。I字状の仕切り板15bは1つ置きに配設されている。上述の12個のヘッダ室のうち、13c1、13c2、13e1、13e2、13g1、13g2は、I字状の仕切り板15bにより、縦長の長方形状のヘッダ室(例えば13c1と13c2)に区画されている。特に、ヘッダ室13c1に接続される伝熱管群1d1および2a1(これらの伝熱管群を冷媒流入位置の伝熱管群と呼ぶ)と、ヘッダ室13c2に接続される伝熱管群1d2および2a2(これらの伝熱管群を冷媒流出位置の伝熱管群と呼ぶ)とは、気流の風上側と風下側に分離して各々2段に分けて配置されている。同様に、伝熱管群2d1および3a1と、2d2および3a2とが、伝熱管群3d1および4a1と、3d2および4a2とが、いずれも気流の風上側と風下側とに分離して各々2段に分けて配置されている。さらに、図1および図4において、16a、16b1、16b2、16c1、16c2、16d1、16d2、16eは冷媒の流入口あるいは流出口となる8個の接続管である。これらのうち、16b1、16c1、16d1、16eは蒸発時における冷媒流入口であり、16a、16b2、16c2、16d2は蒸発時における冷媒流出口である。また、凝縮時には、逆に前の4つが冷媒流入口、後の4つが冷媒流出口となる。   In FIG. 3, the second header 13 is divided into 12 header chambers 13a, 13b, 13c1, 13c2, 13d, 13e1, 13e2, 13f, 13g1, by a partition plate 15 composed of partition plates 15a and 15b having two types of shapes. It is divided into 13g2, 13h, and 13i. One partition plate 15a has a flat plate shape, and the other partition plate 15b has an I-shape. Every other I-shaped partition plate 15b is disposed. Among the 12 header chambers described above, 13c1, 13c2, 13e1, 13e2, 13g1, and 13g2 are partitioned into vertically long rectangular header chambers (for example, 13c1 and 13c2) by an I-shaped partition plate 15b. . In particular, heat transfer tube groups 1d1 and 2a1 connected to the header chamber 13c1 (these heat transfer tube groups are called heat transfer tube groups at the refrigerant inflow position) and heat transfer tube groups 1d2 and 2a2 connected to the header chamber 13c2 (these The heat transfer tube group is referred to as the heat transfer tube group at the refrigerant outflow position) and is divided into two stages each separated into the windward side and leeward side of the airflow. Similarly, heat transfer tube groups 2d1 and 3a1, 2d2 and 3a2, heat transfer tube groups 3d1 and 4a1, 3d2 and 4a2 are separated into two stages, each separated into the leeward side and leeward side of the airflow. Are arranged. Further, in FIGS. 1 and 4, 16 a, 16 b 1, 16 b 2, 16 c 1, 16 c 2, 16 d 1, 16 d 2, and 16 e are eight connecting pipes that serve as refrigerant inlets or outlets. Of these, 16b1, 16c1, 16d1, and 16e are refrigerant inlets during evaporation, and 16a, 16b2, 16c2, and 16d2 are refrigerant outlets during evaporation. At the time of condensation, the front four are the refrigerant inlet and the rear four are the refrigerant outlet.
冷媒は、蒸発時、実線矢印で示すように一方の第2ヘッダ13の接続管16b1、16c1、16d1、16eを通って、乾き度(乾き度は、冷媒蒸気の質量流量を冷媒蒸気の質量流量と冷媒液の質量流量との和で割った値で定義される。)が約0.2の状態で第2ヘッダ13に流入する。まず、接続管16eを通って第2ヘッダ13に流入する冷媒の動作を説明する。接続管16eからヘッダ室13iに流入した冷媒は、平板状の仕切り板15aによって流れが規制された状態で伝熱管群4dへ流入する。冷媒は、伝熱管群4dを通過する間にフィン5の間を流れる空気と熱交換するため、冷媒の乾き度は大きくなる。その後、冷媒は、伝熱管群4dから第1ヘッダ12側のヘッダ室12hに流入し、平板状の仕切り板14aによって流れが規制された状態で、再び伝熱管群4cへ流入し、空気と熱交換する。この後、冷媒は、伝熱管群4cから第2ヘッダ13側のヘッダ室13hに戻り、伝熱管群4bを通って平板状の仕切り板14aとステップ状の仕切り板14bによって区画された第1ヘッダ12側のヘッダ室12gへ流入する。その後、このヘッダ室12gに流入した冷媒は、伝熱管群4bから風下に位置する伝熱管群4a2と3d2とに分かれて流入し、空気と熱交換する。その後、伝熱管群4a2と3d2とを通過した冷媒は、I字状の仕切り板15bによって区画された第2ヘッダ13側のヘッダ室13g2で合流した後に、乾き度が1の状態で、接続管16d2を通って外部配管(図示せず)に流出する。   When the refrigerant evaporates, it passes through the connecting pipes 16b1, 16c1, 16d1, and 16e of one of the second headers 13 as indicated by solid arrows, and the dryness (the dryness is the mass flow rate of the refrigerant vapor. Is divided by the sum of the mass flow rate of the refrigerant liquid) and flows into the second header 13 in a state of about 0.2. First, the operation of the refrigerant flowing into the second header 13 through the connection pipe 16e will be described. The refrigerant that has flowed into the header chamber 13i from the connecting pipe 16e flows into the heat transfer tube group 4d in a state where the flow is restricted by the flat partition plate 15a. Since the refrigerant exchanges heat with the air flowing between the fins 5 while passing through the heat transfer tube group 4d, the dryness of the refrigerant increases. Thereafter, the refrigerant flows into the header chamber 12h on the first header 12 side from the heat transfer tube group 4d, and flows into the heat transfer tube group 4c again in a state where the flow is restricted by the flat partition plate 14a, and the air and heat Exchange. Thereafter, the refrigerant returns from the heat transfer tube group 4c to the header chamber 13h on the second header 13 side, passes through the heat transfer tube group 4b, and is partitioned by the flat partition plate 14a and the step-shaped partition plate 14b. It flows into the header chamber 12g on the 12th side. Thereafter, the refrigerant flowing into the header chamber 12g flows into the heat transfer tube groups 4a2 and 3d2 located downstream from the heat transfer tube group 4b, and exchanges heat with air. After that, the refrigerant that has passed through the heat transfer tube groups 4a2 and 3d2 merges in the header chamber 13g2 on the second header 13 side partitioned by the I-shaped partition plate 15b, and then the connection tube is in a state of dryness of 1. It flows out to external piping (not shown) through 16d2.
以上に述べた冷媒の一連の流路である、ヘッダ室13i、伝熱管群4d、ヘッダ室12h、伝熱管群4c、ヘッダ室13h、伝熱管群4b、ヘッダ室12g、伝熱管群4a2と3d2、ヘッダ室13g2により、1つの冷媒回路C1が形成され、この冷媒回路C1において、伝熱管群4dは冷媒流入位置に位置する伝熱管群、伝熱管群4a2と3d2は冷媒流出位置に位置する伝熱管群、伝熱管群4cと4bは中間位置の伝熱管群である。また、上述の伝熱管群4cは、図2に示すように、段方向(この図では、重力に沿う方向に相当する)には、1段で構成されている。このため、伝熱管群4cが複数段で構成されている従来例に比べて、個別の伝熱管への冷媒の分布が重力の影響で不均一になることを防止できている。このことは、例えば、ヘッダ室13hにおける伝熱管群4cから4bへの冷媒の移動においても同様である。   The header chamber 13i, the heat transfer tube group 4d, the header chamber 12h, the heat transfer tube group 4c, the header chamber 13h, the heat transfer tube group 4b, the header chamber 12g, and the heat transfer tube groups 4a2 and 3d2, which are a series of refrigerant flow paths described above. The header chamber 13g2 forms one refrigerant circuit C1, in which the heat transfer tube group 4d is a heat transfer tube group located at the refrigerant inflow position, and the heat transfer tube groups 4a2 and 3d2 are located at the refrigerant outflow position. The heat tube group and heat transfer tube groups 4c and 4b are heat transfer tube groups at intermediate positions. Further, as shown in FIG. 2, the above-described heat transfer tube group 4 c is composed of one stage in the step direction (corresponding to the direction along gravity in this figure). For this reason, compared with the prior art example in which the heat transfer tube group 4c is composed of a plurality of stages, it is possible to prevent the refrigerant distribution to the individual heat transfer tubes from becoming uneven due to the influence of gravity. This also applies to the movement of the refrigerant from the heat transfer tube group 4c to 4b in the header chamber 13h, for example.
同様に、接続管16d1を通って第2ヘッダ13に乾き度約0.2で流入した冷媒は、I字状の仕切り板15bによってヘッダ室13g2と区画されたヘッダ室13g1へ流入し、伝熱管群4a1と3d1とに分流する。この冷媒は伝熱管群4a1と3d1とを通過する間に空気と熱交換するため、その乾き度は大きくなる。その後、冷媒は、伝熱管群4a1と3d1から第1ヘッダ12側のヘッダ室12fに流入して合流し、ステップ状の仕切り板14bと平板状の仕切り板14aによって流れが規制された状態で、再び伝熱管群3cへ流入し、空気と熱交換する。その後、冷媒は、伝熱管群3cから第2ヘッダ13側のヘッダ室13fに戻り、伝熱管群3bを通って平板状の仕切り板14aとステップ状の仕切り板14bによって区画され第1ヘッダ12側のヘッダ室12eへ流入する。その後、ヘッダ室12eに流入した冷媒は、風下に位置する伝熱管群3a2と2d2とに分かれて流入し、空気と熱交換する。その後、伝熱管群3a2と2d2とを通過した冷媒は、I字状の仕切り板15bによって区画され第2ヘッダ13側のヘッダ室13e2で合流した後に、乾き度が1の状態で、接続管16c2を通って流出する。
以上に述べた冷媒の一連の流路である、ヘッダ室13g1、伝熱管群4a1と3d1、ヘッダ室12f、伝熱管群3c、ヘッダ室13f、伝熱管群3b、ヘッダ室12e、伝熱管群3a2と2d2、ヘッダ室13e2により、上記とは別の冷媒回路C2が形成される。この冷媒回路C2において、伝熱管群4a1と3d1は冷媒流入位置に位置する伝熱管群、伝熱管群3a2と2d2は冷媒流出位置に位置する伝熱管群、伝熱管群3cと3bは中間位置の伝熱管群である。
Similarly, the refrigerant that has flowed into the second header 13 through the connection pipe 16d1 at a dryness of about 0.2 flows into the header chamber 13g1 partitioned from the header chamber 13g2 by the I-shaped partition plate 15b, and the heat transfer tube Divide into groups 4a1 and 3d1. Since this refrigerant exchanges heat with air while passing through the heat transfer tube groups 4a1 and 3d1, the dryness of the refrigerant increases. Thereafter, the refrigerant flows from the heat transfer tube groups 4a1 and 3d1 into the header chamber 12f on the first header 12 side and joins, and the flow is regulated by the step-like partition plate 14b and the flat partition plate 14a. It flows into the heat transfer tube group 3c again and exchanges heat with air. After that, the refrigerant returns from the heat transfer tube group 3c to the header chamber 13f on the second header 13 side, passes through the heat transfer tube group 3b, and is partitioned by the flat partition plate 14a and the step-shaped partition plate 14b. Into the header chamber 12e. Thereafter, the refrigerant flowing into the header chamber 12e flows into the heat transfer tube groups 3a2 and 2d2 located on the leeward side and exchanges heat with the air. After that, the refrigerant that has passed through the heat transfer tube groups 3a2 and 2d2 is partitioned by the I-shaped partition plate 15b and merged in the header chamber 13e2 on the second header 13 side. Spill through.
The header chamber 13g1, the heat transfer tube groups 4a1 and 3d1, the header chamber 12f, the heat transfer tube group 3c, the header chamber 13f, the heat transfer tube group 3b, the header chamber 12e, and the heat transfer tube group 3a2 which are a series of refrigerant flow paths described above. 2d2 and the header chamber 13e2 form a refrigerant circuit C2 different from the above. In this refrigerant circuit C2, the heat transfer tube groups 4a1 and 3d1 are heat transfer tube groups located at the refrigerant inflow position, the heat transfer tube groups 3a2 and 2d2 are heat transfer tube groups located at the refrigerant outflow position, and the heat transfer tube groups 3c and 3b are intermediate positions. It is a heat transfer tube group.
以上において、冷媒回路C1の冷媒流出位置の伝熱管群4a2と3d2、冷媒回路C2の冷媒流入位置の伝熱管群4a1と3d1は、4a1と4a2および3d1と3d2が各々、気流方向に隣接するとともに、気流の風上側と風下側に互いに重なる(例えば4a1と4a2の配置を見ればわかるように、段方向には、同じ段位置に配置される)ように配設されている。また、段方向における前記第1ヘッダ12及び第2ヘッダ13での冷媒の主たる流動方向が、蒸発時には、図2、図3に実線の矢印で示すように冷媒回路C1と、これに隣接する他の冷媒回路であるC2とも、図において、下から上の方向となっており、一方、凝縮時には、図2、図3に破線の矢印で示すように冷媒回路C1と、これに隣接する他の冷媒回路であるC2とも、図中、上から下の方向となっている。このように、いずれの場合も隣接する冷媒回路間で互いに同方向となっている。さらに、両冷媒回路は第1ヘッダ12では、ステップ状の仕切り板14bで、第2ヘッダ13では、I字状の仕切り板15bで分割されている。
また、接続管16c1から第2ヘッダ13に乾き度約0.2で流入した冷媒の動作は、接続管16d1から流入した冷媒の動作と同様であり、最後は、乾き度が1の状態でそれぞれ接続管16b2、16c2より流出する。
In the above, heat transfer tube groups 4a2 and 3d2 at the refrigerant outflow position of refrigerant circuit C1, heat transfer tube groups 4a1 and 3d1 at the refrigerant inflow position of refrigerant circuit C2, 4a1 and 4a2, and 3d1 and 3d2 are adjacent to each other in the airflow direction. The windward side and the leeward side of the airflow are arranged so as to overlap each other (for example, as seen from the arrangement of 4a1 and 4a2, they are arranged at the same step position in the step direction). Further, when the main flow direction of the refrigerant in the first header 12 and the second header 13 in the step direction is evaporated, the refrigerant circuit C1 and other adjacent to the refrigerant circuit C1 as shown by solid line arrows in FIGS. C2 which is the refrigerant circuit of Fig. 2 is in the direction from bottom to top in the figure, while at the time of condensation, the refrigerant circuit C1 and other adjacent ones as shown by broken arrows in Figs. C2 which is a refrigerant circuit is also from the top to the bottom in the figure. Thus, in any case, the adjacent refrigerant circuits are in the same direction. Further, both refrigerant circuits are divided by a step-like partition plate 14 b in the first header 12 and by an I-shaped partition plate 15 b in the second header 13.
The operation of the refrigerant flowing from the connection pipe 16c1 to the second header 13 with a dryness of about 0.2 is the same as the operation of the refrigerant flowing from the connection pipe 16d1, and finally the dryness is 1 in each state. It flows out from the connecting pipes 16b2 and 16c2.
最後に、接続管16b1を通って第2ヘッダ13に乾き度約0.2で流入した冷媒の動作を説明する。接続管16b1よりI字状の仕切り板15bによって区画された第2ヘッダ13側のヘッダ室13c1に流入した冷媒は、伝熱管群2a1と1d1に分かれて流入し、伝熱管群2a1と1d1を通過する間に空気と熱交換するため、冷媒の乾き度は大きくなる。その後、冷媒は、伝熱管群2a1と1d1から第1ヘッダ12側のヘッダ室12bに流入して合流し、ステップ状の仕切り板14bと平板状の仕切り板14aによって流れが規制された状態で、再び伝熱管群1cへ流入し、空気と熱交換する。冷媒は、伝熱管群1cから第2ヘッダ13側のヘッダ室13bに戻り、伝熱管群1bを通って第1ヘッダ12側のヘッダ室12aへ流入する。その後、ヘッダ室12aに流入した冷媒は、伝熱管群1aに流入し、空気と熱交換する。その後、伝熱管群1aを通過した冷媒は、第2ヘッダ13側のヘッダ室13aに流入し、乾き度が1の状態で、接続管16aを通って流出する。   Finally, the operation of the refrigerant that has flowed into the second header 13 through the connection pipe 16b1 at a dryness of about 0.2 will be described. The refrigerant that has flowed into the header chamber 13c1 on the second header 13 side partitioned by the I-shaped partition plate 15b from the connecting pipe 16b1 flows into the heat transfer tube groups 2a1 and 1d1, and passes through the heat transfer tube groups 2a1 and 1d1. In the meantime, heat exchange with air is performed, so the dryness of the refrigerant increases. Thereafter, the refrigerant flows into the header chamber 12b on the first header 12 side from the heat transfer tube groups 2a1 and 1d1 and merges, and the flow is regulated by the step-like partition plate 14b and the flat partition plate 14a. It again flows into the heat transfer tube group 1c and exchanges heat with air. The refrigerant returns from the heat transfer tube group 1c to the header chamber 13b on the second header 13 side, and flows into the header chamber 12a on the first header 12 side through the heat transfer tube group 1b. Thereafter, the refrigerant flowing into the header chamber 12a flows into the heat transfer tube group 1a and exchanges heat with air. Thereafter, the refrigerant that has passed through the heat transfer tube group 1a flows into the header chamber 13a on the second header 13 side, and flows out through the connection tube 16a with a dryness of 1.
また、凝縮時、冷媒は破線矢印で示すように蒸発時とは逆方向に流れる。例えば、接続管16c2を通って第2ヘッダ13に流入した冷媒の動作を説明する。冷媒は、乾き度が1の過熱ガスの状態で接続管16c2に流入する。接続管16c2を通ってヘッダ室13e2に流入した冷媒は、伝熱管群2d2と3a2とに分かれて流入し、伝熱管群2d2と3a2とを通過する間に空気と熱交換するため、冷媒の乾き度は小さくなる。その後、冷媒は、伝熱管群2d2と3a2から第1ヘッダ12側のヘッダ室12eに流入して合流し、ステップ状の仕切り板14bと平板状の仕切り板14aによって流れが規制された状態で、再び伝熱管群3bへ流入し、空気と熱交換する。その後、冷媒は、伝熱管群3bから第2ヘッダ13側のヘッダ室13fに戻り、伝熱管群3cを通って第1ヘッダ12側のヘッダ室12fへ流入する。その後、ヘッダ室12fに流入した冷媒は、風上に位置する伝熱管群3d1と4a1に分かれて流入し、空気と熱交換する。その後、伝熱管群3d1と4a1を通過した冷媒は、第2ヘッダ13側のヘッダ室13g1で合流した後に、乾き度が0の過飽和状態で、接続管16d1を通って流出する。なお、図2、図3において、実線矢印は蒸発時の冷媒の主たる流動方向を、破線矢印は凝縮時の冷媒の主たる流動方向を示し、いずれも段方向となっている。   Also, during condensation, the refrigerant flows in the opposite direction to that during evaporation, as indicated by the dashed arrows. For example, the operation of the refrigerant flowing into the second header 13 through the connection pipe 16c2 will be described. The refrigerant flows into the connecting pipe 16c2 in the state of superheated gas having a dryness of 1. The refrigerant that has flowed into the header chamber 13e2 through the connection pipe 16c2 flows into the heat transfer pipe groups 2d2 and 3a2, and exchanges heat with air while passing through the heat transfer pipe groups 2d2 and 3a2. The degree becomes smaller. Thereafter, the refrigerant flows into and joins the header chamber 12e on the first header 12 side from the heat transfer tube groups 2d2 and 3a2, and the flow is regulated by the step-like partition plate 14b and the flat partition plate 14a. It again flows into the heat transfer tube group 3b and exchanges heat with air. Thereafter, the refrigerant returns from the heat transfer tube group 3b to the header chamber 13f on the second header 13 side, and flows into the header chamber 12f on the first header 12 side through the heat transfer tube group 3c. Thereafter, the refrigerant flowing into the header chamber 12f flows into the heat transfer tube groups 3d1 and 4a1 located on the windward side, and exchanges heat with air. Thereafter, the refrigerant that has passed through the heat transfer tube groups 3d1 and 4a1 merges in the header chamber 13g1 on the second header 13 side, and then flows out through the connection tube 16d1 in a supersaturated state with a dryness of 0. 2 and 3, the solid line arrows indicate the main flow direction of the refrigerant at the time of evaporation, and the broken line arrows indicate the main flow direction of the refrigerant at the time of condensation, both of which are stepwise.
このように、第1の実施の形態によれば、冷媒蒸発時に、冷媒回路C1の冷媒流出位置で乾き度が1となる伝熱管群3d2、4a2と、冷媒回路C2の冷媒流入位置で冷媒の乾き度が小さい伝熱管群3d1、4a1を、また、冷媒回路C2の冷媒流出位置で乾き度が1となる伝熱管群2d2、3a2と、冷媒回路C3の冷媒流入位置で冷媒の乾き度が小さい伝熱管群2d1、3a1を、さらに、冷媒回路C3の冷媒流出位置で乾き度が1となる伝熱管群1d2、2a2と、冷媒回路C4の冷媒流入位置で冷媒の乾き度が小さい伝熱管群1d1、2a1を、気流方向11に対して各々伝熱管群の同じ段位置でオーバーラップさせることにより、気流の風下側に位置する冷媒流出位置の伝熱管群3d2、4a2、2d2、3a2、1d2、2a2を通過する冷媒の乾き度が1となっても、気流の風上側にこれらの伝熱管群に各々対応して位置する伝熱管群3d1、4a1、2d1、3a1、1d1、2a1により、均質に空気を冷却し、かつ除湿することができるため、熱交換器の風下側(以降、熱交換器の後方という)での露飛びをほぼ防止することが可能となる。ここで、冷媒回路に配置される冷媒流出位置の伝熱管群のうち、段方向に1段のみで配設される伝熱管群1aでは、乾き度の小さな伝熱管群とは気流方向にオーバーラップしないが、従来例との比較では、乾き度が1となる伝熱管群の割合は段方向で16個中1個に相当し、従来の熱交換器(伝熱管群は段方向に16段、気流の並び方向に6個で、両端のダンパはすべて平板状の仕切り板で第1ヘッダでは8個、第2ヘッダでは12個のヘッダ室に区画された熱交換器)で乾き度が1となる伝熱管群の割合に比べてはるかに小さいため、露飛びが発生する可能性がかなり低下することは明らかである。   Thus, according to the first embodiment, when the refrigerant evaporates, the heat transfer tube groups 3d2, 4a2 having a dryness of 1 at the refrigerant outflow position of the refrigerant circuit C1, and the refrigerant at the refrigerant inflow position of the refrigerant circuit C2. The heat transfer tube groups 3d1, 4a1 having a low dryness, the heat transfer tube groups 2d2, 3a2 having a dryness of 1 at the refrigerant outflow position of the refrigerant circuit C2, and the refrigerant dryness at the refrigerant inflow position of the refrigerant circuit C3 are small. The heat transfer tube groups 2d1, 3a1 are further divided into heat transfer tube groups 1d2, 2a2 having a dryness of 1 at the refrigerant outflow position of the refrigerant circuit C3, and heat transfer tube groups 1d1 having a low dryness of the refrigerant at the refrigerant inflow position of the refrigerant circuit C4. 2a1 are overlapped at the same step position of the heat transfer tube group with respect to the airflow direction 11, respectively, so that the heat transfer tube groups 3d2, 4a2, 2d2, 3a2, 1d2, 2a2 at the refrigerant outflow position located on the leeward side of the airflow Even if the dryness of the refrigerant passing through becomes 1, air is uniformly distributed by the heat transfer tube groups 3d1, 4a1, 2d1, 3a1, 1d1, 2a1 positioned corresponding to these heat transfer tube groups on the windward side of the airflow. Since it can be cooled and dehumidified, it is possible to substantially prevent dew on the leeward side of the heat exchanger (hereinafter referred to as the rear of the heat exchanger). Here, among the heat transfer tube groups at the refrigerant outflow position arranged in the refrigerant circuit, the heat transfer tube group 1a arranged in only one step in the step direction overlaps with the heat transfer tube group having a small dryness in the air flow direction. However, in comparison with the conventional example, the ratio of the heat transfer tube group having a dryness of 1 corresponds to 1 in 16 in the step direction, and the conventional heat exchanger (the heat transfer tube group has 16 steps in the step direction, 6 in the direction of air flow, and the dampers at both ends are flat partition plates, 8 in the first header, 12 in the second header, and 12 in the header chamber. It is clear that the possibility of occurrence of dew is considerably reduced because it is much smaller than the proportion of heat transfer tubes.
また、ステップ状の仕切り板14bにより、気流に対して段方向には同じ段位置で、冷媒流出位置で乾き度が1となる1つの冷媒回路の伝熱管群の伝熱管数(3個)と冷媒流入位置で冷媒の乾き度が小さい別の冷媒回路の伝熱管群の伝熱管数(3個)との和を、これに隣接する段ごとの伝熱管の総数(6個)と同数に配置でき、またヘッダ位置でのこれら両冷媒回路の冷媒の主たる流動方向を同じ方向とすることができる。このため、外部配管との接続は一方の第2ヘッダ13に集中させる構成とすることも可能となる。   In addition, the step-like partition plate 14b allows the number of heat transfer tubes (three) in the heat transfer tube group of one refrigerant circuit to have a dryness of 1 at the same step position in the step direction with respect to the airflow and at the refrigerant outflow position. The sum of the number of heat transfer tubes (3) in the heat transfer tube group of another refrigerant circuit where the dryness of the refrigerant is small at the refrigerant inflow position is arranged in the same number as the total number (6) of heat transfer tubes in each adjacent stage. In addition, the main flow directions of the refrigerants in both refrigerant circuits at the header position can be the same direction. For this reason, it is also possible to adopt a configuration in which the connection with the external piping is concentrated on one second header 13.
さらに、例えば接続管16d1を通ってヘッダ室13g1に流入した冷媒が、伝熱管群3d1と4a1で不均一に分配されたとしても、他方のヘッダ室12fにて再び合流するため、分配の不均一をいったん解消することができ、伝熱性能を確保することができる。さらに、冷媒回路の中間経路において、伝熱管の段数が1段であることは分配の不均一解消に役立っている。   Further, for example, even if the refrigerant flowing into the header chamber 13g1 through the connection pipe 16d1 is non-uniformly distributed in the heat transfer tube groups 3d1 and 4a1, it is merged again in the other header chamber 12f, so that the non-uniform distribution Can be eliminated once and heat transfer performance can be secured. Further, the fact that the number of stages of the heat transfer tubes is one in the intermediate path of the refrigerant circuit is useful for eliminating uneven distribution.
加えて、そのすべてが平行に形成されている従来例の各ヘッダ室の境界線(仕切り板)を、例えば図2に示すように、冷媒流出位置の伝熱管群(例えば2d2、3a2)と、冷媒流入位置の伝熱管群(例えば2d1、3a1)とが隣接する境界では、伝熱管の配置が2段となる(伝熱管数は従来に比較して半数となる)構成とすべく、一方の第1ヘッダ12でのヘッダ室の境界線をステップ状に変更する(図3に示す他方の第2ヘッダ13ではヘッダ室の境界線をI字状に変更する)だけで、露飛びをほぼ防止できる熱交換器を容易に得ることができる。   In addition, the boundary lines (partition plates) of the header chambers of the conventional example, all of which are formed in parallel, as shown in FIG. 2, for example, with the heat transfer tube group (for example, 2d2, 3a2) at the refrigerant outflow position, At the boundary where the heat transfer tube group (for example, 2d1, 3a1) at the refrigerant inflow position is adjacent, one of the heat transfer tubes is arranged in two stages (the number of heat transfer tubes is half that of the conventional case) By simply changing the boundary line of the header chamber in the first header 12 to a step shape (in the other second header 13 shown in FIG. 3, the boundary line of the header chamber is changed to an I-shape), it is possible to substantially prevent exposure. The heat exchanger which can be obtained can be obtained easily.
一方、凝縮時に流入する冷媒は、冷媒流入位置の伝熱管群(例えば3d2、4a2)と、冷媒流出位置の伝熱管群(例えば3d1、4a1)とが隣接し、風上側に冷媒液の多い伝熱管群が配置されるので効率のよい熱交換器が実現できる。
また、凝縮時、冷媒回路の冷媒出口となる接続管16b1、16c1、16d1が気流の風上側に位置するため、冷媒の温度を十分に下げることができるため、システムの効率を向上することができる。
On the other hand, the refrigerant that flows in at the time of condensation is adjacent to the heat transfer tube group (for example, 3d2, 4a2) at the refrigerant inflow position and the heat transfer tube group (for example, 3d1, 4a1) at the refrigerant outflow position, and has a large amount of refrigerant liquid on the windward side. Since the heat tube group is arranged, an efficient heat exchanger can be realized.
Moreover, since the connection pipes 16b1, 16c1, and 16d1 that are the refrigerant outlets of the refrigerant circuit are positioned on the windward side of the air flow during condensation, the temperature of the refrigerant can be sufficiently lowered, and the efficiency of the system can be improved. .
図2、図3では、1つの冷媒回路中では、伝熱管群の数が、段方向には5段あるいは6段ある場合で、かつ気流方向には、例えば4d、4c、4bでは6列、4a2、3d2では3列ある場合を示したが、伝熱管群の段数および列数は任意である。
また、ここでは1つの冷媒回路の流入口および流出口と外部配管(図示せず)との各々の接続部を同じヘッダに設けたが、これらの接続部を異なるヘッダに設けてもよいし、ある1つの冷媒回路の流入口および流出口と外部配管(図示せず)との各々の接続部が同じヘッダにあるものと、異なるヘッダにあるものとが、混在するように設けてもよい。
2 and 3, in one refrigerant circuit, the number of heat transfer tube groups is 5 or 6 in the stage direction, and in the airflow direction, for example, 6 rows for 4d, 4c, and 4b, 4a2 and 3d2 show the case where there are three rows, but the number of stages and the number of rows of the heat transfer tube group are arbitrary.
Moreover, although each connection part of the inflow port and outflow port of one refrigerant circuit and external piping (not shown) was provided in the same header here, you may provide these connection parts in a different header, You may provide so that the connection part of the inflow port and outflow port of a certain one refrigerant circuit and external piping (not shown) may exist in the same header, and the thing in a different header may coexist.
実施の形態2.
次に、本発明の第2の実施の形態による熱交換器を図5から図8に示す。図5はこの実施の形態による熱交換器の概略構成図、図6は図5のD−D拡大断面図、図7は図5のE−E拡大断面図、図8は図4の熱交換器を右側面からみた拡大図である。
この実施の形態の熱交換器は、断面が扁平状の伝熱管群1A、2B、3C、4D、2A、2B、2C、2D、3A、3B、3C、3D、4A、4B、4C、4Dで構成したものである。すなわち、各々の伝熱管は気流方向11に並んだ複数の(例えば6個の)冷媒流路を有する。これらの扁平状伝熱管群は、気流方向に沿って平行に配設された多数のフィン5に対して直交する方向に、かつ断面の長軸方向が気流方向11に平行となるように挿入接合され、各伝熱管群の端部には第1の実施形態と同じ構造の第1ヘッダ12及び第2ヘッダ13が接続される。また、扁平状伝熱管というときは、伝熱管の断面が長円形状、楕円形状、あるいは流線形状等を含むものであり、内部を冷媒が流動する複数の独立した流路が一体に形成されているものである。なお、冷媒流路の断面形状は特に限定されるものではなく、四角形、円形等任意である。
Embodiment 2. FIG.
Next, a heat exchanger according to a second embodiment of the present invention is shown in FIGS. 5 is a schematic configuration diagram of the heat exchanger according to this embodiment, FIG. 6 is a DD enlarged sectional view of FIG. 5, FIG. 7 is an EE enlarged sectional view of FIG. 5, and FIG. It is the enlarged view which looked at the vessel from the right side.
The heat exchanger of this embodiment is a heat transfer tube group 1A, 2B, 3C, 4D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D having a flat cross section. It is composed. That is, each heat transfer tube has a plurality of (for example, six) refrigerant channels arranged in the airflow direction 11. These flat heat transfer tube groups are inserted and joined in a direction orthogonal to a large number of fins 5 arranged in parallel along the airflow direction and so that the major axis direction of the cross section is parallel to the airflow direction 11. And the 1st header 12 and the 2nd header 13 of the same structure as 1st Embodiment are connected to the edge part of each heat exchanger tube group. In addition, when referring to a flat heat transfer tube, the cross section of the heat transfer tube includes an ellipse, an ellipse, or a streamline shape, and a plurality of independent flow paths through which the refrigerant flows are integrally formed. It is what. In addition, the cross-sectional shape of the refrigerant flow path is not particularly limited, and may be any shape such as a square or a circle.
ここで、各扁平状伝熱管の冷媒流路を第1の実施の形態で説明した伝熱管群と同じ符号を用いてあらわすものとすると、扁平状伝熱管群の冷媒流路は図5、図6のようになる。そして、第1ヘッダ12において、扁平状伝熱管群1Dと2Aは、冷媒蒸発時、ステップ状の仕切り板14bによって、冷媒流入位置の冷媒流路1d1および2a1と、冷媒流出位置の冷媒流路1d2および2a2とが、気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置される。
同様に、扁平状伝熱管群2Dと3Aは、冷媒流入位置の冷媒流路2d1および3a1と、冷媒流出位置の冷媒流路2d2および3a2とが気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置され、また扁平状伝熱管群3Dと4Aは、冷媒流入位置の冷媒流路3d1および4a1と、冷媒流出位置の冷媒流路3d2および4a2とが気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置される。
Here, assuming that the refrigerant flow path of each flat heat transfer tube is represented by the same reference numeral as that of the heat transfer tube group described in the first embodiment, the refrigerant flow path of the flat heat transfer tube group is as shown in FIG. It becomes like 6. In the first header 12, the flat heat transfer tube groups 1D and 2A are divided into refrigerant flow paths 1d1 and 2a1 at the refrigerant inflow position and refrigerant flow path 1d2 at the refrigerant outflow position by the step-like partition plate 14b when the refrigerant evaporates. And 2a2 are arranged at the same step position so as to overlap each other on the windward side and the leeward side of the airflow.
Similarly, the flat heat transfer tube groups 2D and 3A are arranged so that the refrigerant flow paths 2d1 and 3a1 at the refrigerant inflow position and the refrigerant flow paths 2d2 and 3a2 at the refrigerant outflow position overlap each other on the windward side and the leeward side of the airflow. The flat heat transfer tube groups 3D and 4A are arranged at the same stage position. The refrigerant flow paths 3d1 and 4a1 at the refrigerant inflow position and the refrigerant flow paths 3d2 and 4a2 at the refrigerant outflow position are on the windward side and leeward side of the airflow. They are arranged at the same step position so as to overlap each other.
また、第2ヘッダ13においては、冷媒蒸発時、扁平状伝熱管群1Dと2Aは、I字状の仕切り板15bによって、冷媒流入位置の冷媒流路1d1および2a1と、冷媒流出位置の冷媒流路1d2および2a2とが気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置され、扁平状伝熱管群2Dと3Aは、冷媒流入位置の冷媒流路2d1および3a1と、冷媒流出位置の冷媒流路2d2および3a2とが気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置され、また扁平状伝熱管群3Dと4Aは、冷媒流入位置の冷媒流路3d1および4a1と、冷媒流出位置の冷媒流路3d2および4a2とが気流の風上側と風下側に互いに重なるようにそれぞれ同じ段位置に配置される。   Further, in the second header 13, when the refrigerant evaporates, the flat heat transfer tube groups 1D and 2A are separated from the refrigerant flow paths 1d1 and 2a1 at the refrigerant inflow position and the refrigerant flow at the refrigerant outflow position by the I-shaped partition plate 15b. The channels 1d2 and 2a2 are arranged at the same step position so that they overlap each other on the windward side and leeward side of the airflow, and the flat heat transfer tube groups 2D and 3A are connected to the refrigerant flow paths 2d1 and 3a1 at the refrigerant inflow position and the refrigerant outflow, respectively. The refrigerant flow paths 2d2 and 3a2 at the positions are arranged at the same step position so that they overlap each other on the windward side and the leeward side of the air flow, and the flat heat transfer tube groups 3D and 4A are arranged at the refrigerant flow positions 3d1 and 4a. 4a1 and the refrigerant flow paths 3d2 and 4a2 at the refrigerant outflow position are arranged at the same step position so as to overlap each other on the windward side and leeward side of the airflow.
これらの扁平状伝熱管群1D、2A、2D、3A、3D、4Aは、第1ヘッダ12ではステップ状の仕切り板14bの垂直板を挟んで第1ヘッダ12に接合され、第2ヘッダ13ではI字状の仕切り板15bの垂直板を挟んで第2ヘッダ13に接合される。したがって、これらの扁平状伝熱管群を冷媒流入位置の冷媒流路群と冷媒流出位置の冷媒流路群とに必ずしも分割する必要はない。
また、上記のすべての扁平状伝熱管群はロウ付け手段でフィン5に接合される。
These flat heat transfer tube groups 1D, 2A, 2D, 3A, 3D, and 4A are joined to the first header 12 across the vertical plate of the step-like partition plate 14b in the first header 12, and in the second header 13, The I-shaped partition plate 15b is joined to the second header 13 with the vertical plate interposed therebetween. Therefore, it is not always necessary to divide these flat heat transfer tube groups into a refrigerant channel group at the refrigerant inflow position and a refrigerant channel group at the refrigerant outflow position.
Further, all the above flat heat transfer tube groups are joined to the fins 5 by brazing means.
第2の実施の形態による熱交換器は、上記のように構成されているものであり、複数の冷媒流路が1つの伝熱管に一体に形成されている点で第1の実施の形態の熱交換器と相違するものであるため、冷媒蒸発時及び凝縮時の作用並びに効果は基本的に第1の実施形態と同様である。ただ、扁平状伝熱管群によると、円形断面の伝熱管群に比べて熱交換効率が高く、騒音が低くなる利点がある。   The heat exchanger according to the second embodiment is configured as described above. The heat exchanger according to the first embodiment is different in that a plurality of refrigerant flow paths are integrally formed in one heat transfer tube. Since it is different from the heat exchanger, the action and effect at the time of refrigerant evaporation and condensation are basically the same as those of the first embodiment. However, the flat heat transfer tube group has the advantages of higher heat exchange efficiency and lower noise than the heat transfer tube group having a circular cross section.
実施の形態3.
図9は、前述した本発明の熱交換器を適用した第3の実施の形態に係る空気調和機の断面を模式的に示している。図中、21は空気調和機の室内機本体、22は上部空気吸込口、23は前面側空気吸込口、24は空気吹出口、25は吹出しベーン、26は熱交換器、27は送風機、28は前ドレンパン、29は背面ドレンパン、30はスクロールケーシングである。また、前面側空気吸込口23の前には運転時に開く可動式のパネル(図示なし)があっても良い。
Embodiment 3 FIG.
FIG. 9 schematically shows a cross section of an air conditioner according to a third embodiment to which the above-described heat exchanger of the present invention is applied. In the figure, 21 is an indoor unit body of an air conditioner, 22 is an upper air inlet, 23 is a front side air inlet, 24 is an air outlet, 25 is an outlet vane, 26 is a heat exchanger, 27 is a blower, 28 Is a front drain pan, 29 is a back drain pan, and 30 is a scroll casing. Further, a movable panel (not shown) that opens during operation may be provided in front of the front air inlet 23.
室内機本体21内には、熱交換器26が配置され、この熱交換器26に覆われるようにして送風機27が配置される。この送風機27は熱交換器26の幅方向寸法と略同一の軸方向寸法を備え、熱交換器26と対向して配置される貫流ファンと、この貫流ファンを回転駆動するファンモータとから構成される。   A heat exchanger 26 is disposed in the indoor unit main body 21, and a blower 27 is disposed so as to be covered by the heat exchanger 26. The blower 27 has an axial dimension substantially the same as the width dimension of the heat exchanger 26, and includes a cross-flow fan disposed to face the heat exchanger 26 and a fan motor that rotationally drives the cross-flow fan. The
上記熱交換器26の前面側下端部は前ドレンパン28上に載り、背面側下端部は背面ドレンパン29上に載っている。熱交換器で生成されるドレン水がこれらドレンパンに流下し、前ドレンパン28に集められて、排水ホース(図示なし)を介して外部に排水できるようになっている。   The lower end portion on the front side of the heat exchanger 26 is placed on the front drain pan 28, and the lower end portion on the rear side is placed on the rear drain pan 29. The drain water generated in the heat exchanger flows down to these drain pans, is collected in the front drain pan 28, and can be drained to the outside through a drain hose (not shown).
また、前後ドレンパン28、29の一部側壁外面は送風機27に近接した位置に設けられ、これらで送風機27に対するノーズを構成している。上記ドレンパン28、29の側壁部と、吹出口24との間はスクロールケーシング30により連結されている。このスクロールケーシング30で囲まれる空間が、ノーズと吹出口24を連通する風路となる。   In addition, the outer surface of a part of the side walls of the front and rear drain pans 28 and 29 is provided at a position close to the blower 27, and these constitute a nose for the blower 27. A scroll casing 30 connects the side walls of the drain pans 28 and 29 and the air outlet 24. A space surrounded by the scroll casing 30 serves as an air passage that communicates the nose and the air outlet 24.
次に、上記熱交換器26について詳述する。この熱交換器26は、側面視で略逆V字状に形成された主熱交換器40と、この主熱交換器40の空気吸込み側に沿って配置される補助熱交換器44との組合せ体からなる。このような主熱交換器40が室内機本体21内に組み込まれた状態で、前面側空気吸込口23に対向して略くの字形状で位置することから、この部分を前面上部熱交換器41および前面下部熱交換器42と呼び、上部空気吸込口22と斜め背面側に傾斜して位置するものを背面熱交換器43と呼ぶ。
ここで、上記主熱交換器40は、前述した本発明の熱交換器を適用したものであり、端部に接続されるヘッダ部分は図示を省略してある。この主熱交換器40は、狭小の間隔を有して併設される多数枚のフィン45と、これらフィン45を貫通しロウ付け手段により接合された断面が扁平形状の熱交換パイプ46からなる。この熱交換パイプ46は第2の実施の形態における扁平状伝熱管に相当するものであり、内部には複数の冷媒流路が一体に形成されている。
Next, the heat exchanger 26 will be described in detail. This heat exchanger 26 is a combination of a main heat exchanger 40 formed in a substantially inverted V shape in a side view and an auxiliary heat exchanger 44 arranged along the air suction side of the main heat exchanger 40. Consists of the body. Since such a main heat exchanger 40 is incorporated in the indoor unit main body 21, it is positioned in a generally U shape opposite to the front air inlet 23, so that this portion is designated as a front upper heat exchanger. 41 and the front lower heat exchanger 42, and the one that is inclined to the upper air inlet 22 and the oblique rear side is called the rear heat exchanger 43.
Here, the main heat exchanger 40 is an application of the above-described heat exchanger of the present invention, and the header portion connected to the end portion is not shown. The main heat exchanger 40 includes a large number of fins 45 provided side by side with a narrow space, and a heat exchange pipe 46 having a flat cross section through the fins 45 and joined by brazing means. The heat exchange pipe 46 corresponds to the flat heat transfer tube in the second embodiment, and a plurality of refrigerant flow paths are integrally formed therein.
一方、上記補助熱交換器44は、背面熱交換器43の上方の略三角形の空間に配置され、背面熱交換器43の幅方向寸法と略同一の幅方向寸法を有している。また、上記補助熱交換器44は、狭小の間隔を有して併設される多数枚のフィン47と、これらフィン47を貫通しロウ付け手段により接合された断面が扁平形状の熱交換パイプ48からなる。   On the other hand, the auxiliary heat exchanger 44 is disposed in a substantially triangular space above the rear heat exchanger 43 and has a width direction dimension substantially the same as the width direction dimension of the rear heat exchanger 43. The auxiliary heat exchanger 44 includes a large number of fins 47 provided with a small interval, and a heat exchange pipe 48 having a flat cross section that penetrates the fins 47 and is joined by brazing means. Become.
図10は、熱交換器26における配管系統を模式的に示している。上記主熱交換器40は、前面上部熱交換器41、前面下部熱交換器42および背面熱交換器43のそれぞれの長手方向にわたって前後に断面扁平形状の熱交換パイプ46が2列、互いの列が一定の距離で離間して整列されると共に、碁盤状に配置して設けられる。   FIG. 10 schematically shows a piping system in the heat exchanger 26. The main heat exchanger 40 includes two rows of heat exchange pipes 46 having a flat cross section in the longitudinal direction of the front upper heat exchanger 41, the front lower heat exchanger 42, and the rear heat exchanger 43 in the longitudinal direction. Are arranged at a certain distance and arranged in a grid pattern.
前記主熱交換器40における断面扁平形状の熱交換パイプ46は、直線部分の長さが並設フィン45の幅方向とほぼ同じであり、両端が並設フィン45から突出する。端部はそれぞれヘッダー(図示なし)に接続され複数の冷媒回路が形成される。   The heat exchange pipe 46 having a flat cross-sectional shape in the main heat exchanger 40 has a straight portion whose length is substantially the same as the width direction of the parallel fins 45, and both ends project from the parallel fins 45. Each end is connected to a header (not shown) to form a plurality of refrigerant circuits.
前記補助熱交換器44における断面扁平形状熱交換パイプ48は、フィン47の長手方向に沿って1列に並べられる。断面扁平形状の熱交換パイプ48間の上下に示す実線および破線は両端のフィン47から突出する部分の一端を示し、この突出部分の断面扁平形状熱交換パイプ48をU字状に曲げるか、またはヘッダー(図示なし)を接続するなどして流路を構成する。   The heat exchange pipes 48 having a flat cross section in the auxiliary heat exchanger 44 are arranged in a line along the longitudinal direction of the fins 47. A solid line and a broken line shown above and below between the heat exchange pipes 48 having a flat cross section indicate one end of a portion protruding from the fins 47 at both ends, and the cross section flat heat exchange pipe 48 of the protrusion portion is bent in a U shape, or A flow path is configured by connecting a header (not shown).
前記補助熱交換器44には2系統の冷媒流路が形成され、各々の系統がさらに4系統に接続されて、前記主熱交換器40には8系統の冷媒流路が形成されている。   The auxiliary heat exchanger 44 is formed with two refrigerant channels, each of which is further connected to four systems, and the main heat exchanger 40 is formed with eight refrigerant channels.
図10の矢印は、冷房運転における冷媒の流れを示している。すなわち、冷房時には外部から冷媒は補助熱交換器44に導入され、この補助熱交換器44を出てから分岐部51において複数の系統に分流されてから、主熱交換器40に導かれる。さらに冷媒は主熱交換器40を出てから合流し、外部へ導かれる。暖房時の冷媒の流れは冷房時と逆の流れとなる。すなわち、暖房時には外部から冷媒は複数の系統に分流された後、主熱交換器40に導入され、この主熱交換器40を出てから合流し補助熱交換器44に導かれる。   The arrows in FIG. 10 indicate the flow of the refrigerant in the cooling operation. That is, at the time of cooling, the refrigerant is introduced from the outside into the auxiliary heat exchanger 44, exits the auxiliary heat exchanger 44, is divided into a plurality of systems at the branching portion 51, and then led to the main heat exchanger 40. Further, the refrigerant merges after leaving the main heat exchanger 40 and is guided to the outside. The refrigerant flow during heating is the reverse of that during cooling. That is, after heating, the refrigerant is divided into a plurality of systems from the outside and then introduced into the main heat exchanger 40. After leaving the main heat exchanger 40, the refrigerant is merged and led to the auxiliary heat exchanger 44.
第3の実施の形態によれば、熱交換器26として、前面上部熱交換器41、前面下部熱交換器42および背面熱交換器43の他に、室内機本体21の上部デッドスペースに補助熱交換器44を備えたものであるので、室内機本体21の容量をそのまま維持可能で、かつ熱交換容量が増加できるので熱交換能力の増大が得られる。また、主熱交換器40にはフィン45を貫通しロウ付け手段により接合された断面扁平形状の熱交換パイプ46を具備したので、風圧損失を低減でき、大風量化による効率向上や低騒音化が実現できる。   According to the third embodiment, as the heat exchanger 26, in addition to the front upper heat exchanger 41, the front lower heat exchanger 42, and the rear heat exchanger 43, auxiliary heat is added to the upper dead space of the indoor unit body 21. Since the exchanger 44 is provided, the capacity of the indoor unit body 21 can be maintained as it is, and the heat exchange capacity can be increased, so that the heat exchange capacity can be increased. Further, since the main heat exchanger 40 is provided with a heat exchange pipe 46 having a flat cross section that penetrates the fin 45 and is joined by brazing means, the wind pressure loss can be reduced, and the efficiency is increased and the noise is reduced by increasing the air volume. Can be realized.
また、主熱交換器40と熱的に遮断された補助熱交換器44に、暖房時の冷媒過冷却部が配置されるため、冷媒二相部との温度差による冷媒同士の熱交換で生じる熱ロスを防止することが可能となる。また、補助熱交換器44の冷媒流路の数が主熱交換器40の冷媒流路の数より少ないので、熱伝達率の低い液冷媒(過冷却部)の流速を上げることにより伝熱性能が向上できる。   Moreover, since the refrigerant | coolant subcooling part at the time of heating is arrange | positioned in the auxiliary heat exchanger 44 thermally interrupted with the main heat exchanger 40, it arises by the heat exchange of the refrigerant | coolants by the temperature difference with a refrigerant | coolant two phase part. It becomes possible to prevent heat loss. Further, since the number of refrigerant flow paths of the auxiliary heat exchanger 44 is smaller than the number of refrigerant flow paths of the main heat exchanger 40, the heat transfer performance is increased by increasing the flow rate of the liquid refrigerant (supercooling portion) having a low heat transfer coefficient. Can be improved.
また、暖房運転時の過冷却度Sc(deg)が増加するに伴い、熱交換器出入り口のエンタルピ差は大きくなり、熱交換量Qは大きくなるが、伝熱の悪い過冷却部の全熱交換器面積に占める割合が大きくなり、伝熱の良い冷媒二相部の割合が減少する。
サイクルの成績係数COPはCOP=Q/W(Wは圧縮機入力)で示され、圧縮機入力は熱交換器の熱通過率Kが大きいほど小さくなる。なお、熱通過率Kは伝熱管内の熱伝達率と空気側の熱伝達率によって決定される。よって、過冷却度Scは一般にSc=5〜15程度が最も空調機において成績係数COPが大きくなる。
In addition, as the degree of supercooling Sc (deg) during heating operation increases, the enthalpy difference at the entrance and exit of the heat exchanger increases and the heat exchange amount Q increases, but the total heat exchange of the supercooling section with poor heat transfer. The ratio to the vessel area increases, and the ratio of the refrigerant two-phase part with good heat transfer decreases.
The coefficient of performance COP of the cycle is expressed by COP = Q / W (W is the compressor input), and the compressor input becomes smaller as the heat transfer rate K of the heat exchanger increases. The heat transfer rate K is determined by the heat transfer coefficient in the heat transfer tube and the heat transfer coefficient on the air side. Therefore, the coefficient of performance COP is generally the highest in the air conditioner when the degree of supercooling Sc is about Sc = 5-15.
図13は、全て円管の熱交換パイプ46aで構成される補助熱交換器の無い円管熱交換器(図11参照)に対し、補助熱交換器の無い、扁平形状熱交換パイプ46で構成される扁平管熱交換器(図12参照)の過冷却度Sc(deg)に対する熱通過率Kの割合を示している。本例における補助熱交換器の無い扁平管熱交換器は、同じく補助熱交換器の無い円管熱交換器に比べて、Scが大きくなる場合のKの低下度合いが大きく、Scが小さいとき、扁平管熱交換器のKは円管熱交換器よりも大きいが、Scを大きくしていくと、円管熱交換器よりもKが低下する。これは扁平管熱交換器の2相域と過冷却域の管内熱伝達率の比率が円管と比べて非常に大きいことに起因している。   FIG. 13 shows a flat-shaped heat exchange pipe 46 without an auxiliary heat exchanger, as opposed to a circular heat exchanger without an auxiliary heat exchanger (see FIG. 11), which is composed of a circular heat exchange pipe 46a. The ratio of the heat transfer rate K with respect to the degree of supercooling Sc (deg) of the flat tube heat exchanger (refer FIG. 12) is shown. In the flat tube heat exchanger without an auxiliary heat exchanger in this example, the degree of decrease in K when Sc increases is large compared to a circular tube heat exchanger without an auxiliary heat exchanger, and when Sc is small, K of the flat tube heat exchanger is larger than that of the circular tube heat exchanger, but as Sc is increased, K is lower than that of the circular tube heat exchanger. This is due to the fact that the ratio of the heat transfer coefficient in the tube between the two-phase region and the supercooling region of the flat tube heat exchanger is very large compared to the circular tube.
一方、図15は、全て円管で構成される補助熱交換器44aのある円管熱交換器(図14参照)に対し、本実施の形態の補助熱交換器44のある扁平管熱交換器の過冷却度Sc(deg)に対する熱通過率Kの割合を示している。本実施の形態における扁平管熱交換器は円管熱交換器に比べてScが大きくなる場合のKの低下度合いは円管とほぼ同等である。また、本実施の形態の扁平管熱交換器はScが大きくなってもKは円管熱交換器を下回ることが無い。これは扁平管熱交換器の補助熱交換器(過冷却部)44が2パスと主熱交換器40のパス数よりも少ないパス数で構成され、管内の流速が増加したため、過冷却域の管内熱伝達率が大幅に向上したことに起因している。よって、補助熱交換器を付加する効果は円管熱交換器よりも大きい。   On the other hand, FIG. 15 shows a flat tube heat exchanger having an auxiliary heat exchanger 44 according to the present embodiment, as opposed to a circular tube heat exchanger (see FIG. 14) having an auxiliary heat exchanger 44a composed of a circular tube. The ratio of the heat passage rate K to the degree of supercooling Sc (deg) is shown. In the flat tube heat exchanger in the present embodiment, the degree of decrease in K when Sc is larger than that of the circular tube heat exchanger is substantially equal to that of the circular tube. Further, in the flat tube heat exchanger of the present embodiment, K does not fall below the circular tube heat exchanger even if Sc increases. This is because the auxiliary heat exchanger (supercooling section) 44 of the flat tube heat exchanger has two passes and a smaller number of passes than the number of passes of the main heat exchanger 40, and the flow velocity in the pipe has increased. This is because the heat transfer coefficient in the tube has been greatly improved. Therefore, the effect of adding the auxiliary heat exchanger is greater than that of the circular tube heat exchanger.
なお、本実施の形態では、空気調和室内機の場合を示したが、室外機においても同様な構成により同じ効果が得られる。また、断面扁平形状の熱交換パイプ46を碁盤配列にした場合を示したが、千鳥配列であっても同様の効果を有する。   In the present embodiment, the case of the air-conditioning indoor unit has been shown, but the same effect can be obtained by the same configuration in the outdoor unit. In addition, the case where the heat exchange pipes 46 having a flat cross section are arranged in a grid arrangement is shown, but the same effect can be obtained even in a staggered arrangement.
実施の形態4.
図16は、本発明の第4の実施の形態である空気調和機の断面を模式的に示している。補助熱交換器44を前面上部熱交換器41の吸込み側上部のスペースに配置した例である。その他は、第3の実施の形態の構成と同じであり、同じ効果が得られる。
Embodiment 4 FIG.
FIG. 16 schematically shows a cross section of an air conditioner according to a fourth embodiment of the present invention. This is an example in which the auxiliary heat exchanger 44 is arranged in the space on the suction side of the front upper heat exchanger 41. Others are the same as the structure of 3rd Embodiment, and the same effect is acquired.
実施の形態5.
図17は、本発明の第5の実施の形態である空気調和機の断面を模式的に示している。本実施の形態の補助熱交換器44aは、狭小の間隔を有して並設される多数枚のフィン47と、これらフィン47を貫通し拡管手段により接合された断面が円形状の熱交換パイプ49とからなる。その他は、第3の実施の形態の構成と同じであり、同じ効果が得られる。
Embodiment 5 FIG.
FIG. 17 schematically shows a cross section of an air conditioner according to a fifth embodiment of the present invention. The auxiliary heat exchanger 44a of the present embodiment includes a large number of fins 47 arranged in parallel with a narrow interval, and a heat exchange pipe having a circular cross section that penetrates the fins 47 and is joined by a pipe expanding means. 49. Others are the same as the structure of 3rd Embodiment, and the same effect is acquired.
実施の形態6.
図18は、本発明の第6の実施の形態である空気調和機の断面を模式的に示している。本実施の形態の補助熱交換器44aは、狭小の間隔を有して並設される多数枚のフィン47と、これらフィン47を貫通し拡管手段により接合された断面が円形状の熱交換パイプ49とからなり、前面上部熱交換器41の吸込み側上部のスペースに配置した例である。その他は、第3の実施の形態の構成と同じであり、同じ効果が得られる。
Embodiment 6 FIG.
FIG. 18 schematically shows a cross section of an air conditioner according to a sixth embodiment of the present invention. The auxiliary heat exchanger 44a of the present embodiment includes a large number of fins 47 arranged in parallel with a narrow interval, and a heat exchange pipe having a circular cross section that penetrates the fins 47 and is joined by a pipe expanding means. 49, and is arranged in the space on the suction side upper portion of the front upper heat exchanger 41. Others are the same as the structure of 3rd Embodiment, and the same effect is acquired.
実施の形態7.
図19は、図9に示した空気調和機の熱交換器26における冷媒配管系統を模式的に示した本発明の第7の実施の形態である。この補助熱交換器44には1系統の冷媒流路が形成され、出入口間に逆止弁52を介したバイパス回路53を具備する。8系統の冷媒流路が形成された主熱交換器40は、冷媒分岐部51を介して補助熱交換器44と接続されている。
Embodiment 7 FIG.
FIG. 19 is a seventh embodiment of the present invention schematically showing the refrigerant piping system in the heat exchanger 26 of the air conditioner shown in FIG. The auxiliary heat exchanger 44 is formed with a single refrigerant flow path, and includes a bypass circuit 53 via a check valve 52 between the inlet and outlet. The main heat exchanger 40 in which the eight refrigerant paths are formed is connected to the auxiliary heat exchanger 44 through the refrigerant branching portion 51.
図19の矢印は、冷房運転における冷媒の流れを示している。すなわち、冷房時には外部から冷媒は補助熱交換器44をバイパスし、逆止弁52を介して冷媒分岐部51に導入され、この冷媒分岐部51において複数の系統に分流されてから、主熱交換器40(41、42、43)に導かれる。そして主熱交換器40を出てから合流し、外部へ導かれる。暖房時の冷媒の流れは冷房時と逆の流れとなる。すなわち、暖房時には外部から冷媒は複数の系統に分流された後、主熱交換器40に導入され、この主熱交換器40を出てから前記冷媒分岐部51で合流し補助熱交換器44に導かれる。この際、逆止弁52によりバイパス回路53には冷媒が流れない。   The arrows in FIG. 19 indicate the flow of the refrigerant in the cooling operation. That is, during cooling, the refrigerant bypasses the auxiliary heat exchanger 44 from the outside, is introduced into the refrigerant branching portion 51 via the check valve 52, and is divided into a plurality of systems in the refrigerant branching portion 51 before main heat exchange. It is led to the container 40 (41, 42, 43). And after leaving the main heat exchanger 40, it joins and is guide | induced to the exterior. The refrigerant flow during heating is the reverse of that during cooling. That is, the refrigerant is divided into a plurality of systems from the outside during heating, and then introduced into the main heat exchanger 40. After leaving the main heat exchanger 40, the refrigerant is merged at the refrigerant branching portion 51 to the auxiliary heat exchanger 44. Led. At this time, the refrigerant does not flow into the bypass circuit 53 by the check valve 52.
本実施の形態によれば、主熱交換器40と熱的に遮断された補助熱交換器44に、暖房時の冷媒過冷却部が配置されるため、冷媒二相部との温度差による冷媒同士の熱交換で生じる熱ロスを防止することが可能となる。また、補助熱交換器44の冷媒流路を1系統としたので、熱伝達率の低い液冷媒(過冷却部)の流速を上げることにより伝熱性能を向上することができる。   According to the present embodiment, the auxiliary heat exchanger 44 that is thermally shut off from the main heat exchanger 40 is provided with the refrigerant subcooling section during heating, and therefore the refrigerant due to the temperature difference from the refrigerant two-phase section. It is possible to prevent heat loss caused by heat exchange between the two. Moreover, since the refrigerant flow path of the auxiliary heat exchanger 44 is made into one system, the heat transfer performance can be improved by increasing the flow rate of the liquid refrigerant (supercooling part) having a low heat transfer coefficient.
また、冷房時には1系統の冷媒流路からなる補助熱交換器44をバイパスすることにより、熱交換パイプ内の冷媒圧力損失の増大を抑制することができる。また、冷媒乾き度が小さい状態で同じに複数系統の冷媒流路に分配することができるので、均一な冷媒分配が可能となる。その結果、熱交換性能の向上が実現できる。   Further, during cooling, by bypassing the auxiliary heat exchanger 44 composed of one system of refrigerant flow path, it is possible to suppress an increase in refrigerant pressure loss in the heat exchange pipe. In addition, since the refrigerant can be equally distributed to a plurality of refrigerant flow paths in a state where the refrigerant dryness is small, uniform refrigerant distribution is possible. As a result, the heat exchange performance can be improved.
実施の形態8.
図20は、本発明の第8の実施の形態である空気調和機の熱交換器26(主熱交換器40、補助熱交換器44)と送風機27の配置を示している。これはパッケージエアコンの4方向吹出し天井カセットタイプの例である。同図(a)は概略上面図、同図(b)は概略側面図である。
図において、熱交換器26は主熱交換器40と補助熱交換器44により構成されている。主熱交換器40は断面扁平形状熱交換パイプ46を有し、ヘッダー31を中継して送風機27の周囲を取り囲むように配置してある。補助熱交換器44は主熱交換器40と送風機27との間、すなわち主熱交換器40の吸込み側全体または一部に配置してある。補助熱交換器44は、前記実施の形態1〜5のように断面扁平形状熱交換パイプ46または断面が円形状の熱交換パイプ49を有し、暖房時の冷媒過冷却部となるように冷媒流路を配置したものである。
Embodiment 8 FIG.
FIG. 20 shows the arrangement of the air conditioner heat exchanger 26 (the main heat exchanger 40 and the auxiliary heat exchanger 44) and the blower 27 according to the eighth embodiment of the present invention. This is an example of a four-way blowout ceiling cassette type of a packaged air conditioner. FIG. 4A is a schematic top view, and FIG. 4B is a schematic side view.
In the figure, the heat exchanger 26 includes a main heat exchanger 40 and an auxiliary heat exchanger 44. The main heat exchanger 40 has a heat exchange pipe 46 with a flat cross section, and is arranged so as to surround the blower 27 via the header 31. The auxiliary heat exchanger 44 is disposed between the main heat exchanger 40 and the blower 27, that is, the whole or a part of the suction side of the main heat exchanger 40. The auxiliary heat exchanger 44 has the flat cross-section heat exchange pipe 46 or the circular cross-section heat exchange pipe 49 as in the first to fifth embodiments, so that the refrigerant becomes a refrigerant supercooling section during heating. A flow path is arranged.
また。この熱交換器26はターボファンの送風機27の吹出し側を取り囲むように配置してある。送風機27は吸込グリル・プレフィルタ(共に図示なし)を介して下方より室内空気を吸い込み、熱交換器26に向けて径方向に吹き出す。熱交換器26を通過した空気は吹き出し風路(図示なし)を介して、室内に吹き出される。   Also. This heat exchanger 26 is arranged so as to surround the blowout side of the blower 27 of the turbofan. The blower 27 sucks room air from below through a suction grille / prefilter (both not shown), and blows it out toward the heat exchanger 26 in the radial direction. The air that has passed through the heat exchanger 26 is blown into the room through a blowout air passage (not shown).
このように構成したので、本実施の形態においても前記実施の形態1〜7と同様な効果が得られる。   Since it comprised in this way, the effect similar to the said Embodiment 1-7 is acquired also in this Embodiment.
本発明の実施の形態1を示す熱交換器の概略構成図。The schematic block diagram of the heat exchanger which shows Embodiment 1 of this invention. 図1のB−B拡大断面図。The BB expanded sectional view of FIG. 図1のC−C拡大断面図。CC expanded sectional view of FIG. 図1に示した熱交換器の右拡大側面図。The right enlarged side view of the heat exchanger shown in FIG. 本発明の実施の形態2を示す熱交換器の概略構成図。The schematic block diagram of the heat exchanger which shows Embodiment 2 of this invention. 図2のD−D拡大断面図。The DD expanded sectional view of FIG. 図2のE−E拡大断面図。EE expanded sectional view of FIG. 図2に示した熱交換器の右拡大側面図。The right expanded side view of the heat exchanger shown in FIG. 本発明の実施の形態3を示す空気調和機の断面図。Sectional drawing of the air conditioner which shows Embodiment 3 of this invention. 本発明の実施の形態3における熱交換器の冷媒配管系統図。The refrigerant | coolant piping system diagram of the heat exchanger in Embodiment 3 of this invention. 補助熱交換器の無い円管熱交換器による空気調和機の断面図。Sectional drawing of the air conditioner by the circular pipe heat exchanger without an auxiliary heat exchanger. 補助熱交換器の無い扁平管熱交換器による空気調和機の断面図。Sectional drawing of the air conditioner by the flat tube heat exchanger without an auxiliary heat exchanger. 上記円管熱交換器と扁平管熱交換器の特性比較図。The characteristic comparison figure of the said circular tube heat exchanger and a flat tube heat exchanger. 補助熱交換器のある円管熱交換器を具備する空気調和機の断面図。Sectional drawing of the air conditioner which comprises the circular pipe heat exchanger with an auxiliary heat exchanger. 本発明の実施の形態3の熱交換器と図14の円管熱交換器の特性比較図。The characteristic comparison figure of the heat exchanger of Embodiment 3 of this invention and the circular tube heat exchanger of FIG. 本発明の実施の形態4を示す空気調和機の断面図。Sectional drawing of the air conditioner which shows Embodiment 4 of this invention. 本発明の実施の形態5を示す空気調和機の断面図。Sectional drawing of the air conditioner which shows Embodiment 5 of this invention. 本発明の実施の形態6を示す空気調和機の断面図。Sectional drawing of the air conditioner which shows Embodiment 6 of this invention. 本発明の実施の形態7を示す熱交換器の冷媒配管系統図。The refrigerant | coolant piping system diagram of the heat exchanger which shows Embodiment 7 of this invention. 本発明の実施の形態8を示す空気調和機の上面図及び側面図。The top view and side view of an air conditioner which show Embodiment 8 of this invention.
符号の説明Explanation of symbols
1a、1b、1c、1d1、1d2、2a1、2a2、2b、2c、2d1、2d2、3a1、3a2、3b、3c、3d1、3d2、4a1、4a2、4b、4c、4d 伝熱管群または冷媒流路群、1A、1B、1C、1D、2A、2B、2C、2D、3A、3B、3C、3D、4A、4B、4C、4D 扁平状伝熱管群、5 フィン、11 気流方向、12 第1ヘッダ、12a〜12h ヘッダ室、13 第2ヘッダ、13a、13b、13c1、13c2、13d、13e1、13e2、13f、13g1、13g2、13h、13i ヘッダ室、14 仕切り板、14a 平板状の仕切り板、14b ステップ状の仕切り板、15 仕切り板、15a 平板状の仕切り板、15b I字状の仕切り板、21 空気調和機本体、40 主熱交換器、 41 前面上部熱交換器、 42 前面下部熱交換器、43 背面熱交換器、 44 補助熱交換器、 45 フィン、46 断面扁平形状熱交換パイプ、 47 フィン、48 断面扁平形状熱交換パイプ、49 断面円形状熱交換パイプ、51 冷媒分岐部、52 逆止弁、53 バイパス回路。
1a, 1b, 1c, 1d1, 1d2, 2a1, 2a2, 2b, 2c, 2d1, 2d2, 3a1, 3a2, 3b, 3c, 3d1, 3d2, 4a1, 4a2, 4b, 4c, 4d Heat transfer tube group or refrigerant flow path Group, 1A, 1B, 1C, 1D, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, 4A, 4B, 4C, 4D flat heat transfer tube group, 5 fin, 11 airflow direction, 12 first header , 12a to 12h Header chamber, 13 Second header, 13a, 13b, 13c1, 13c2, 13d, 13e1, 13e2, 13f, 13g1, 13g2, 13h, 13i Header chamber, 14 Partition plate, 14a Flat partition plate, 14b Step-like partition plate, 15 partition plate, 15a flat plate-like partition plate, 15b I-shaped partition plate, 21 air conditioner body, 40 main heat exchanger, 41 Upper surface heat exchanger, 42 Front lower heat exchanger, 43 Back heat exchanger, 44 Auxiliary heat exchanger, 45 fins, 46 cross section flat heat exchange pipe, 47 fins, 48 cross section flat heat exchange pipe, 49 cross section circle Shape heat exchange pipe, 51 refrigerant branch, 52 check valve, 53 bypass circuit.

Claims (10)

  1. 気流方向に沿って並列に配置される複数のフィンと、
    前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の伝熱管群と、 内部を仕切り板により複数のヘッダ室にそれぞれ分割された第1ヘッダ及び第2ヘッダと、を有する熱交換器において、
    前記第2ヘッダの冷媒流入位置の伝熱管群が接続された第2ヘッダのヘッダ室、前記第2ヘッダの冷媒流入位置の伝熱管群、前記第2ヘッダの冷媒流入位置の伝熱管群及び中間位置の伝熱管群に接続された第1ヘッダのヘッダ室、中間位置の伝熱管群、2つの中間位置の伝熱管群に接続された第2ヘッダのヘッダ室、中間位置の伝熱管群、中間位置の伝熱管群及び前記第ヘッダの冷媒流出位置の伝熱管群に接続された第1ヘッダのヘッダ室、前記第ヘッダの冷媒流出位置の伝熱管群、前記第ヘッダの冷媒流出位置の伝熱管群に接続された前記第2ヘッダのヘッダ室、とを順次接続して構成される冷媒回路を複数備え、
    前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられ、
    前記第2ヘッダの冷媒流入位置の伝熱管群とお互いに冷媒回路が異なる前記第2ヘッダの冷媒流出位置の伝熱管群とが気流方向に隣接するよう構成したことを特徴とする熱交換器。
    A plurality of fins arranged in parallel along the airflow direction;
    A plurality of heat transfer tube groups that are arranged in a direction orthogonal to the fins and in which the refrigerant flows; and a first header and a second header that are each divided into a plurality of header chambers by partition plates. In the heat exchanger,
    The header chamber of the second header to which the heat transfer tube group at the refrigerant inflow position of the second header is connected, the heat transfer tube group at the refrigerant inflow position of the second header, the heat transfer tube group at the refrigerant inflow position of the second header, and the middle first header header chamber connected to the tube bank position, tube bank of intermediate positions, two second header header chamber connected to the tube bank of the middle position, tube bank of the intermediate position, the intermediate position first header header chamber connected to the tube bank of the refrigerant outflow position of the heat transfer tube group and the second header, the tube bank of the refrigerant outflow position of the second header, a refrigerant outflow position of the second header A plurality of refrigerant circuits configured by sequentially connecting the header chambers of the second header connected to the heat transfer tube group;
    The first header and the second header are provided such that each longitudinal direction is orthogonal to the airflow direction,
    The heat exchanger is configured such that the heat transfer tube group at the refrigerant inflow position of the second header and the heat transfer tube group at the refrigerant outflow position of the second header having different refrigerant circuits are adjacent to each other in the airflow direction.
  2. 気流方向に沿って並列に配置される複数のフィンと、
    前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の伝熱管群と、 前記複数の伝熱管群の一端に接続され、平板状とステップ状の2種類の仕切り板により区画された複数のヘッダ室を有する第1ヘッダと、
    前記複数の伝熱管群の他端に接続され、平板状とI字状の仕切り板により区画された複数のヘッダ室を有する第2ヘッダとを備え、
    前記第1ヘッダは、前記ステップ状の仕切り板により段方向および気流の風上側に区画された伝熱管群が接続された部位と、前記平板状の仕切り板により段方向にのみ区画された伝熱管群が接続された部位とからなる第1のヘッダ室と、前記ステップ状の仕切り板により段方向および気流の風下側に区画された伝熱管群が接続された部位と、前記平板状の仕切り板により段方向にのみ区画された伝熱管群が接続された部位とからなる第2のヘッダ室とを有し、
    前記第2ヘッダは、前記平板状の仕切り板のみで区画された第3のヘッダ室と、前記平板状と前記I字状の仕切り板により前記伝熱管群を気流の風上側と風下側とに分割された2つのヘッダ室であって、風上側のヘッダ室である第4のヘッダ室と、風下側のヘッダ室である第5のヘッダ室とを有し、
    前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられた熱交換器であって、
    当該熱交換器を凝縮器として用いる際、前記第5のヘッダ室、前記第2のヘッダ室の風下側の伝熱管群が接続された部位、前記第2のヘッダ室の前記段方向にのみ区画された伝熱管群が接続された部位、第3のヘッダ室、前記第1のヘッダ室の段方向にのみ区画された伝熱管群が接続された部位、前記第1のヘッダ室の前記風上側の伝熱管群が接続された部位、第4のヘッダ室へと順次伝熱管群を介して冷媒が流れ、
    または、蒸発器として用いる際、前記第4のヘッダ室、前記第1のヘッダ室の前記風上側の伝熱管群が接続された部位、前記第1のヘッダ室の前記段方向にのみ区画された伝熱管群が接続された部位、第3のヘッダ室、前記第2のヘッダ室の段方向にのみ区画された伝熱管群が接続された部位、前記第2のヘッダ室の前記風上側の伝熱管群が接続された部位、第5のヘッダ室へと順次伝熱管群を介して冷媒が流れるよう構成した冷媒回路を複数有し、
    一の冷媒回路の前記第5のヘッダ室と他の冷媒回路の前記第4のヘッダ室とが気流方向に隣接して配置されたことを特徴とする熱交換器。
    A plurality of fins arranged in parallel along the airflow direction;
    A plurality of heat transfer tube groups that are arranged in a direction orthogonal to the fins and in which the refrigerant flows, and are connected to one end of the plurality of heat transfer tube groups and partitioned by two types of partition plates, a flat plate shape and a step shape A first header having a plurality of header chambers,
    A second header having a plurality of header chambers connected to the other ends of the plurality of heat transfer tube groups and partitioned by a flat plate shape and an I-shaped partition plate;
    The first header includes a portion to which a heat transfer tube group partitioned in the step direction and the windward side of the airflow is connected by the stepped partition plate, and a heat transfer tube partitioned only in the step direction by the flat partition plate. A first header chamber composed of a portion to which a group is connected, a portion to which a heat transfer tube group partitioned in the step direction and the leeward side of the airflow is connected by the step-like partition plate, and the flat partition plate And a second header chamber composed of a portion to which a heat transfer tube group partitioned only in the step direction is connected,
    The second header includes a third header chamber partitioned only by the flat partition plate, and the heat transfer tube group on the windward side and leeward side of the airflow by the flat plate shape and the I-shaped partition plate. Two divided header chambers, a fourth header chamber which is a leeward header chamber, and a fifth header chamber which is a leeward header chamber;
    The first header and the second header are heat exchangers provided such that each longitudinal direction is orthogonal to the air flow direction,
    When the heat exchanger is used as a condenser, the fifth header chamber, a portion where the leeward heat transfer tube group of the second header chamber is connected, and the compartment in only the step direction of the second header chamber A portion to which the heat transfer tube group is connected, a third header chamber, a portion to which the heat transfer tube group partitioned only in the step direction of the first header chamber is connected, and the windward side of the first header chamber The refrigerant flows sequentially through the heat transfer tube group to the portion where the heat transfer tube group is connected to the fourth header chamber,
    Or, when used as an evaporator, the fourth header chamber, the portion to which the upwind heat transfer tube group of the first header chamber is connected, and is partitioned only in the step direction of the first header chamber. The portion to which the heat transfer tube group is connected, the third header chamber, the portion to which the heat transfer tube group partitioned only in the step direction of the second header chamber is connected, and the windward transfer of the second header chamber. A plurality of refrigerant circuits configured such that the refrigerant flows sequentially through the heat transfer tube group to the portion to which the heat tube group is connected, to the fifth header chamber;
    The heat exchanger, wherein the fifth header chamber of one refrigerant circuit and the fourth header chamber of another refrigerant circuit are arranged adjacent to each other in the airflow direction.
  3. 気流方向に沿って並列に配置される複数のフィンと、
    前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の冷媒流路を有する断面が扁平状の扁平状伝熱管群と、
    内部を仕切り板により複数のヘッダ室にそれぞれ分割された第1ヘッダ及び第2ヘッダと、を有する熱交換器において、
    前記第2ヘッダの冷媒流入位置の扁平状の伝熱管が接続された第2ヘッダのヘッダ室、前記第2ヘッダの冷媒流入位置の扁平状の伝熱管、前記第2ヘッダの冷媒流入位置の扁平状の伝熱管及び中間位置の扁平状の伝熱管に接続された第1ヘッダのヘッダ室、中間位置の扁平状の伝熱管、2つの中間位置の扁平状の伝熱管に接続された第2ヘッダのヘッダ室、中間位置の扁平状の伝熱管、中間位置の扁平状の伝熱管及び前記第ヘッダの冷媒流出位置の扁平状の伝熱管に接続された第1ヘッダのヘッダ室、前記第ヘッダの冷媒流出位置の扁平状の伝熱管、前記第ヘッダの冷媒流出位置の扁平状の伝熱管に接続された前記第2ヘッダのヘッダ室、とを順次接続して構成される冷媒回路を複数備え、
    前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられ、
    前記第2ヘッダの冷媒流入位置の扁平状の伝熱管とお互いに冷媒回路が異なる前記第2ヘッダの冷媒流出位置の扁平状の伝熱管とが気流方向に隣接するよう構成したことを特徴とする熱交換器。
    A plurality of fins arranged in parallel along the airflow direction;
    A flat heat transfer tube group having a flat cross section having a plurality of refrigerant flow paths arranged in a direction orthogonal to the fins and through which the refrigerant flows;
    In a heat exchanger having a first header and a second header that are each divided into a plurality of header chambers by a partition plate,
    A header chamber of the second header to which a flat heat transfer tube at the refrigerant inflow position of the second header is connected, a flat heat transfer tube at the refrigerant inflow position of the second header, and a flatness of the refrigerant inflow position of the second header -Shaped heat transfer tube and a header chamber of a first header connected to a flat heat transfer tube at an intermediate position, a flat heat transfer tube at an intermediate position, and a second header connected to two flat heat transfer tubes at an intermediate position the header chamber, flat heat transfer tubes of the intermediate position, the first header of the header chamber connected to the flat shape flat heat exchanger tube of the outflow position of the heat transfer tube and the second header of the intermediate position, the second flat heat transfer tube of the outflow position of the header, the second header of the flat of the second header of the header chamber connected to the heat transfer tubes of the refrigerant outflow position, a refrigerant circuit constituted by successively connecting the city Multiple
    The first header and the second header are provided such that each longitudinal direction is orthogonal to the airflow direction,
    The flat heat transfer tube at the refrigerant inflow position of the second header and the flat heat transfer tube at the refrigerant outflow position of the second header having different refrigerant circuits are adjacent to each other in the airflow direction. Heat exchanger.
  4. 気流方向に沿って並列に配置される複数のフィンと、
    前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の冷媒流路を有する断面が扁平状の扁平状伝熱管群と、
    前記扁平状伝熱管群の一端に接続され、平板状とステップ状の2種類の仕切り板により区画された複数のヘッダ室を有する第1ヘッダと、 前記扁平状伝熱管群の他端に接続され、平板状とI字状の仕切り板により段方向に区画された複数のヘッダ室を有する第2ヘッダとを備え、
    前記第1ヘッダのヘッダ室は、前記ステップ状の仕切り板により段方向および気流の風上側に区画された前記扁平状伝熱管群が接続された部位と、前記平板状の仕切り板により段方向にのみ区画された前記扁平状伝熱管群が接続された部位とからなる第1のヘッダ室と、前記ステップ状の仕切り板により段方向および気流の風下側に区画された前記扁平状伝熱管群が接続された部位と、前記平板状の仕切り板により段方向にのみ区画された前記扁平状伝熱管群が接続された部位とからなる第2のヘッダ室とを有し、
    前記第2ヘッダは、前記平板状の仕切り板のみで区画された第3のヘッダ室と、前記平板状と前記I字状の仕切り板により前記扁平状伝熱管群を気流の風上側と風下側とに分割された2つのヘッダ室であって、風上側のヘッダ室である第4のヘッダ室と、風下側のヘッダ室である第5のヘッダ室とを有し、
    前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられた熱交換器であって、
    凝縮器として用いる際、前記第5のヘッダ室、前記第2のヘッダ室の風下側の扁平状伝熱管群が接続された部位、前記第2のヘッダ室の前記段方向にのみ区画された扁平状伝熱管群が接続された部位、第3のヘッダ室、前記第1のヘッダ室の段方向にのみ区画された扁平状伝熱管群が接続された部位、前記第1のヘッダ室の前記風上側の扁平状伝熱管群が接続された部位、第4のヘッダ室へと順次前記扁平状伝熱管群を介して冷媒が流れ、
    または、蒸発器として用いる際、前記第4のヘッダ室、前記第1のヘッダ室の前記風上側の扁平状伝熱管群が接続された部位、前記第1のヘッダ室の前記段方向にのみ区画された扁平状伝熱管群が接続された部位、第3のヘッダ室、前記第2のヘッダ室の段方向にのみ区画された扁平状伝熱管群が接続された部位、前記第2のヘッダ室の前記風上側の扁平状伝熱管群が接続された部位、第5のヘッダ室へと順次前記扁平状伝熱管群を介して冷媒が流れる冷媒回路を複数有し、
    一の冷媒回路の第5のヘッダ室と他の冷媒回路の第4のヘッダ室とが気流方向に隣接して配置されたことを特徴とする熱交換器。
    A plurality of fins arranged in parallel along the airflow direction;
    A flat heat transfer tube group having a flat cross section having a plurality of refrigerant flow paths arranged in a direction orthogonal to the fins and through which the refrigerant flows;
    A first header having a plurality of header chambers connected to one end of the flat heat transfer tube group and partitioned by two types of flat plate and step-like partition plates, and connected to the other end of the flat heat transfer tube group A second header having a plurality of header chambers partitioned in a step direction by a flat plate shape and an I-shaped partition plate;
    The header chamber of the first header is formed in the step direction by the step-like partition plate to which the flat heat transfer tube group partitioned in the step direction and the windward side of the airflow is connected, and the flat partition plate. A first header chamber composed of a portion to which the flat heat transfer tube group partitioned only is connected, and the flat heat transfer tube group partitioned in the step direction and the leeward side of the airflow by the step-shaped partition plate. A second header chamber comprising a connected portion and a portion to which the flat heat transfer tube group partitioned only in the step direction by the flat partition plate is connected;
    The second header includes a third header chamber partitioned only by the flat partition plate, and the flat heat transfer tube group by the flat plate and the I-shaped partition plate. Two header chambers divided into a fourth header chamber, which is a leeward header chamber, and a fifth header chamber, which is a leeward header chamber,
    The first header and the second header are heat exchangers provided such that each longitudinal direction is orthogonal to the air flow direction,
    When used as a condenser, the fifth header chamber, a portion to which a flat heat transfer tube group on the leeward side of the second header chamber is connected, a flat section partitioned only in the step direction of the second header chamber A portion to which the heat transfer tube group is connected, a third header chamber, a portion to which the flat heat transfer tube group partitioned only in the step direction of the first header chamber is connected, and the wind of the first header chamber The refrigerant flows sequentially through the flat heat transfer tube group to the portion where the upper flat heat transfer tube group is connected, to the fourth header chamber,
    Alternatively, when used as an evaporator, the fourth header chamber, a portion to which the windward flat heat transfer tube group of the first header chamber is connected, and only the step direction of the first header chamber is partitioned. A portion to which the flat heat transfer tube group formed is connected, a third header chamber, a portion to which the flat heat transfer tube group partitioned only in the step direction of the second header chamber is connected, and the second header chamber A portion to which the flat heat transfer tube group on the windward side is connected, a plurality of refrigerant circuits through which the refrigerant flows sequentially through the flat heat transfer tube group to the fifth header chamber,
    A heat exchanger, wherein a fifth header chamber of one refrigerant circuit and a fourth header chamber of another refrigerant circuit are arranged adjacent to each other in the airflow direction.
  5. 気流方向に沿って並列に配置される複数のフィンと、
    前記フィンに対して直交する方向に配設され内部を冷媒が流動する複数の伝熱管群と、 内部を仕切り板により複数のヘッダ室にそれぞれ分割された第1ヘッダ及び第2ヘッダと、を有する熱交換器において、
    前記第2ヘッダの冷媒流入位置の伝熱管群が接続された第2ヘッダのヘッダ室、前記第2ヘッダの冷媒流入位置の伝熱管群、前記第2ヘッダの冷媒流入位置の伝熱管群及び中間位置の伝熱管群に接続された第1ヘッダのヘッダ室、中間位置の伝熱管群、2つの中間位置の伝熱管群に接続された第2ヘッダのヘッダ室、中間位置の伝熱管群、中間位置の伝熱管群及び前記第ヘッダの冷媒流出位置の伝熱管群に接続された第1ヘッダのヘッダ室、前記第ヘッダの冷媒流出位置の伝熱管群、前記第ヘッダの冷媒流出位置の伝熱管群に接続された前記第2ヘッダのヘッダ室、とを順次接続して構成される冷媒回路を複数備え、
    前記第1ヘッダおよび第2ヘッダは、各々の長手方向が気流方向に直交するように設けられ、
    前記第2ヘッダの冷媒流入位置の伝熱管群が接続された第2ヘッダのヘッダ室とお互いに冷媒回路が異なる前記第2ヘッダの冷媒流出位置の伝熱管群に接続された前記第2ヘッダのヘッダ室とが気流方向に隣接するよう構成したことを特徴とする熱交換器。
    A plurality of fins arranged in parallel along the airflow direction;
    A plurality of heat transfer tube groups that are arranged in a direction orthogonal to the fins and in which the refrigerant flows; and a first header and a second header that are each divided into a plurality of header chambers by partition plates. In the heat exchanger,
    The header chamber of the second header to which the heat transfer tube group at the refrigerant inflow position of the second header is connected, the heat transfer tube group at the refrigerant inflow position of the second header, the heat transfer tube group at the refrigerant inflow position of the second header, and the middle first header header chamber connected to the tube bank position, tube bank of intermediate positions, two second header header chamber connected to the tube bank of the middle position, tube bank of the intermediate position, the intermediate position first header header chamber connected to the tube bank of the refrigerant outflow position of the heat transfer tube group and the second header, the tube bank of the refrigerant outflow position of the second header, a refrigerant outflow position of the second header A plurality of refrigerant circuits configured by sequentially connecting the header chambers of the second header connected to the heat transfer tube group;
    The first header and the second header are provided such that each longitudinal direction is orthogonal to the airflow direction,
    The second header connected to the heat transfer tube group at the refrigerant outflow position of the second header, the refrigerant circuit of which is different from the header chamber of the second header to which the heat transfer tube group at the refrigerant inflow position of the second header is connected. A heat exchanger configured to be adjacent to the header chamber in the airflow direction.
  6. 前記扁平状伝熱管群は、ロウ付け手段により前記フィンに接合してなることを特徴とする請求項3または4記載の熱交換器。   The heat exchanger according to claim 3 or 4, wherein the flat heat transfer tube group is joined to the fins by brazing means.
  7. 請求項1乃至6のいずれかに記載の熱交換器を主熱交換器とし、該主熱交換器の空気吸い込み側に補助熱交換器を配置したことを特徴とする空気調和機。   An air conditioner, wherein the heat exchanger according to any one of claims 1 to 6 is a main heat exchanger, and an auxiliary heat exchanger is disposed on the air suction side of the main heat exchanger.
  8. 前記補助熱交換器は、狭小の間隔を有して並設される多数枚のフィンと、これらのフィンを貫通しロウ付け手段により接合され、断面が扁平状で複数の冷媒流路を有する熱交換パイプからなることを特徴とする請求項7記載の空気調和機。  The auxiliary heat exchanger includes a plurality of fins arranged side by side with a narrow interval, and a heat passing through these fins and joined by brazing means, and has a flat cross section and a plurality of refrigerant flow paths. The air conditioner according to claim 7, comprising an exchange pipe.
  9. 前記補助熱交換器は、狭小の間隔を有して並設される多数枚のフィンと、これらのフィンを貫通し拡管手段により接合され、断面が円形状の熱交換パイプからなることを特徴とする請求項7記載の空気調和機。  The auxiliary heat exchanger is composed of a large number of fins arranged in parallel with a narrow interval, and a heat exchange pipe having a circular cross section that is penetrated through these fins and joined by a pipe expanding means. The air conditioner according to claim 7.
  10. 前記補助熱交換器の冷媒流路の数が前記主熱交換器の冷媒流路の数より少ないことを特徴とする請求項7乃至9のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 7 to 9, wherein the number of refrigerant channels of the auxiliary heat exchanger is smaller than the number of refrigerant channels of the main heat exchanger.
JP2004077448A 2004-03-18 2004-03-18 Heat exchanger and air conditioner Active JP4178472B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004077448A JP4178472B2 (en) 2004-03-18 2004-03-18 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004077448A JP4178472B2 (en) 2004-03-18 2004-03-18 Heat exchanger and air conditioner

Publications (2)

Publication Number Publication Date
JP2005265263A JP2005265263A (en) 2005-09-29
JP4178472B2 true JP4178472B2 (en) 2008-11-12

Family

ID=35090011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004077448A Active JP4178472B2 (en) 2004-03-18 2004-03-18 Heat exchanger and air conditioner

Country Status (1)

Country Link
JP (1) JP4178472B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501930B2 (en) * 2006-12-08 2010-07-14 三菱電機株式会社 Air conditioner
JP4749373B2 (en) * 2007-04-10 2011-08-17 三菱電機株式会社 Air conditioner
JP2009127930A (en) * 2007-11-22 2009-06-11 Mitsubishi Electric Corp Air conditioner
JP4827882B2 (en) * 2008-05-08 2011-11-30 三菱電機株式会社 Heat exchanger module, heat exchanger, indoor unit and air-conditioning refrigeration apparatus
JP2009281693A (en) * 2008-05-26 2009-12-03 Mitsubishi Electric Corp Heat exchanger, its manufacturing method, and air-conditioning/refrigerating device using the heat exchanger
JP4836996B2 (en) * 2008-06-19 2011-12-14 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger
JP4845943B2 (en) * 2008-08-26 2011-12-28 三菱電機株式会社 Finned tube heat exchanger and refrigeration cycle air conditioner
JP5199041B2 (en) * 2008-11-27 2013-05-15 シャープ株式会社 Air conditioner
JP5030932B2 (en) * 2008-12-10 2012-09-19 三菱電機株式会社 Heat exchanger and air-conditioning refrigeration system
JP5084707B2 (en) * 2008-12-11 2012-11-28 三菱電機株式会社 Air conditioner
JP2010249343A (en) * 2009-04-13 2010-11-04 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP5014372B2 (en) * 2009-04-14 2012-08-29 三菱電機株式会社 Finned tube heat exchanger and air-conditioning refrigeration system
JP2011112315A (en) * 2009-11-30 2011-06-09 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
JP4995308B2 (en) * 2010-07-20 2012-08-08 シャープ株式会社 Air conditioner indoor unit
JP5409544B2 (en) * 2010-08-04 2014-02-05 三菱電機株式会社 Air conditioner indoor unit and air conditioner
JP2011021884A (en) * 2010-11-05 2011-02-03 Mitsubishi Electric Corp Air conditioner
JP5295207B2 (en) * 2010-11-19 2013-09-18 三菱電機株式会社 Finned tube heat exchanger and air conditioner using the same
JP5171983B2 (en) * 2011-04-15 2013-03-27 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2013160954A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger, and refrigerating cycle device equipped with heat exchanger
JP5840291B2 (en) * 2012-04-26 2016-01-06 三菱電機株式会社 Heat exchanger, refrigeration cycle apparatus and air conditioner equipped with this heat exchanger
CN105247309A (en) 2013-03-15 2016-01-13 开利公司 Heat exchanger for air-cooled chiller

Also Published As

Publication number Publication date
JP2005265263A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4178472B2 (en) Heat exchanger and air conditioner
JP5071597B2 (en) Heat exchanger and air conditioner
CN107429975B (en) Heat exchanger and air conditioner
US7703504B2 (en) Air conditioner and manufacturing method therefor
EP2674717B1 (en) Heat exchanger for air conditioner
US10041710B2 (en) Heat exchanger and air conditioner
JP2003232553A (en) Air conditioner
WO2017208493A1 (en) Air conditioner
JP3177302U (en) Air conditioning unit
JP3851403B2 (en) Indoor unit for air conditioner
JP4785670B2 (en) Air conditioner indoor unit
JP2014137177A (en) Heat exchanger and refrigerator
JP3885063B2 (en) Air conditioner
JP3833351B2 (en) Indoor unit for air conditioner and its indoor heat exchanger
CN107407512B (en) Heat exchanger and air conditioner
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP4496951B2 (en) Air conditioner
JP2017048953A (en) Air conditioner
JP4624146B2 (en) Air conditioner indoor unit
JP6881550B2 (en) Heat exchanger
JP2015055407A (en) Heat exchanger and air conditioner
JP6590957B2 (en) Refrigeration equipment
JPH10196984A (en) Air conditioner
WO2021131038A1 (en) Heat exchanger and refrigeration cycle device
JP2018048769A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080813

R150 Certificate of patent or registration of utility model

Ref document number: 4178472

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250