JP3177302U - Air conditioning unit - Google Patents

Air conditioning unit Download PDF

Info

Publication number
JP3177302U
JP3177302U JP2012002911U JP2012002911U JP3177302U JP 3177302 U JP3177302 U JP 3177302U JP 2012002911 U JP2012002911 U JP 2012002911U JP 2012002911 U JP2012002911 U JP 2012002911U JP 3177302 U JP3177302 U JP 3177302U
Authority
JP
Japan
Prior art keywords
heat exchanger
leeward
refrigerant
windward
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012002911U
Other languages
Japanese (ja)
Inventor
正 岡本
泰司 道本
Original Assignee
株式会社B.T.P
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社B.T.P filed Critical 株式会社B.T.P
Priority to JP2012002911U priority Critical patent/JP3177302U/en
Application granted granted Critical
Publication of JP3177302U publication Critical patent/JP3177302U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

【課題】配管が簡略化されていると共に、運転制御が容易で、かつ運転効率が向上した冷暖房空調装置を提供する。
【解決手段】圧縮機5及び室内機用熱交換器6を有し、外気通風路に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器11及び風下側熱交換器12が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器11に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器12に流れ、冷房時には高温冷媒が風下側熱交換器12及び風上側熱交換器11の順に流れる構成を有する冷暖房空調装置であって、冷房運転時及び暖房運転時のいずれにおいても、風上側熱交換器11において冷媒が重量方向の上から下に流れる構成を有し、風上側熱交換器11と風下側熱交換器12との距離が5〜50mmであること、を特徴とする冷暖房空調装置。
【選択図】図1
An air-conditioning / air-conditioning apparatus in which piping is simplified, operation control is easy, and operation efficiency is improved.
An upwind heat exchanger (11) and a leeward wind turbine (11) having a compressor (5) and a heat exchanger (6) for an indoor unit and arranged side by side in series on the windward side and the leeward side of the outdoor air passage by serial connection. The side heat exchanger 12 is used as an outdoor unit heat exchanger. During heating, the high-temperature refrigerant flows to the windward heat exchanger 11, and then the refrigerant having a low temperature due to adiabatic expansion flows to the leeward heat exchanger 12. A cooling / heating air conditioner having a configuration in which a high-temperature refrigerant flows in the order of the leeward heat exchanger 12 and the windward heat exchanger 11 during cooling, in the windward heat exchanger 11 in both the cooling operation and the heating operation. A cooling and heating air conditioner having a configuration in which the refrigerant flows from the top to the bottom in the weight direction, and the distance between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is 5 to 50 mm.
[Selection] Figure 1

Description

本考案は、室外機用熱交換装置に特徴を有する冷暖房空調装置(システム)に関する。   The present invention relates to a heating / cooling air conditioner (system) characterized by a heat exchange device for an outdoor unit.

一般に、冷暖房空調システムの室外機用熱交換器においては、暖房運転時に、外気の温度が低下すると、室外機用熱交換器に霜が付着して、通風量の低下及び熱交換量の低下をきたすため、除霜する必要があった。そのため、外気通風路に対して風上側と風下側に並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器に流れ、冷房時には高温冷媒が風下側熱交換器、風上側熱交換器の順に流れるようにした冷暖房空調システムが知られている(例えば、特許文献1の特許請求の範囲並びに図1及び2等参照)。   In general, in an outdoor unit heat exchanger of an air conditioning / air conditioning system, when the temperature of the outside air decreases during heating operation, frost adheres to the outdoor unit heat exchanger, reducing the ventilation rate and the heat exchange rate. It was necessary to defrost to make it come. Therefore, the windward side heat exchanger and the leeward side heat exchanger arranged in parallel on the windward side and the leeward side with respect to the outdoor air passage are used as outdoor unit heat exchangers, and during heating, the high-temperature refrigerant is used as the windward side heat exchanger. A cooling and heating air conditioning system is known in which the refrigerant having a low temperature due to adiabatic expansion flows to the leeward heat exchanger and the high temperature refrigerant flows in the order of the leeward heat exchanger and then the windward heat exchanger during cooling. (See, for example, the claims of Patent Document 1 and FIGS. 1 and 2).

上記特許文献1に記載の冷暖房空調システムは、図10に示すように、圧縮機5と、室内機用熱交換器6と、室外機用熱交換器10と、第1,第2の電子膨張弁EV1,EV2と、を具備してなる。なお、室外機用熱交換器10は、外気通風路7に対して風上側に配置される風上側熱交換器11と風下側に配置される風下側熱交換器12とが並設されている。なお、風上側熱交換器11の風上側には、外気Aを取り込むための送風ファン13が配設されている。   As shown in FIG. 10, the air conditioning and air conditioning system described in Patent Document 1 includes a compressor 5, an indoor unit heat exchanger 6, an outdoor unit heat exchanger 10, and first and second electronic expansions. And valves EV1 and EV2. The outdoor unit heat exchanger 10 includes a windward heat exchanger 11 disposed on the windward side of the outdoor air passage 7 and a leeward heat exchanger 12 disposed on the leeward side. . A blower fan 13 for taking in outside air A is disposed on the windward side of the windward heat exchanger 11.

また、圧縮機5と室内機用熱交換器6とを接続する第1の配管21と、圧縮機5と室外機用熱交換器10の風下側熱交換器12とを接続する第2の配管22には切換弁である四方弁DVが介設されている。この四方弁DVの切り換えによって、圧縮機5から吐出される高温・高圧の冷媒が室内機用熱交換器6、又は、風下側熱交換器12に流れるようになっている。また、室内機用熱交換器6と風上側熱交換器11とを接続する第3の配管23には、第1の逆止弁CVaと、冷房時にのみ機能する第1の電子膨張弁EV1が介設されている。また、風上側熱交換器11と風下側熱交換器12とを接続する第4の配管24には、第2の逆止弁CVbと暖房時にのみ機能する第2の電子膨張弁EV2が介設されている。   Moreover, the 1st piping 21 which connects the compressor 5 and the indoor unit heat exchanger 6, and the 2nd piping which connects the compressor 5 and the leeward side heat exchanger 12 of the heat exchanger 10 for outdoor units. 22 is provided with a four-way valve DV which is a switching valve. By switching the four-way valve DV, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows to the indoor unit heat exchanger 6 or the leeward heat exchanger 12. The third pipe 23 that connects the indoor unit heat exchanger 6 and the windward heat exchanger 11 includes a first check valve CVa and a first electronic expansion valve EV1 that functions only during cooling. It is installed. The fourth pipe 24 connecting the windward side heat exchanger 11 and the leeward side heat exchanger 12 is provided with a second check valve CVb and a second electronic expansion valve EV2 that functions only during heating. Has been.

特開2008−25897号公報JP 2008-25897 A

しかしながら、特許文献1に記載の冷暖房空調システムにおいては、1台の冷暖房空調システムに2つの電子膨張弁を設ける必要があるため、配管が複雑になると共に、電子膨張弁の制御が複雑になり、かつコストが嵩む等の懸念があった。   However, in the air conditioning air conditioning system described in Patent Document 1, since it is necessary to provide two electronic expansion valves in one air conditioning air conditioning system, the piping becomes complicated and the control of the electronic expansion valve becomes complicated, In addition, there are concerns such as increased costs.

また、特許文献1に記載の冷暖房空調システムにおいては、内部を流れる冷媒(内部流体)が常に流路抵抗の大きい液相状態にある風上側熱交換器に関して、冷房運転時と暖房運転時とで冷媒流入方向が代わるため、運転効率が低下するという問題もあった。   Further, in the air conditioning and air conditioning system described in Patent Document 1, with respect to the windward side heat exchanger in which the refrigerant (internal fluid) flowing inside is always in a liquid phase state having a large flow path resistance, the cooling and heating operations are performed. Since the refrigerant inflow direction is changed, there is a problem that the operation efficiency is lowered.

この考案は、上記事情に鑑みてなされたもので、配管の簡略化が図れると共に、運転制御を容易にし、かつ運転効率の向上が図れるようにした冷暖房空調装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a cooling / heating air conditioner that can simplify piping, facilitate operation control, and improve operation efficiency.

上記課題を解決するため、本考案は、
圧縮機及び室内機用熱交換器を有し、外気通風路に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が前記風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が前記風下側熱交換器に流れ、冷房時には高温冷媒が前記風下側熱交換器及び前記風上側熱交換器の順に流れる構成を有する冷暖房空調装置であって、
上記風上側熱交換器の上端に設けられた冷媒流入口に接続する冷媒流入管と、
上記風上側熱交換器の下端に設けられた冷媒流出口に接続する冷媒流出管と、
上記冷媒流出管に介設される膨張機構と、
上記冷媒流入管と冷媒流出管とを接続する互いに並列な第1及び第2の分岐管と、
上記第1及び第2の分岐管にそれぞれ直列に介設され、上記冷媒流入口側から冷媒流出口側への流れを阻止すると共に、管内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する2つの逆止弁と、
上記第1の分岐管における2つの逆止弁の間と上記風下側熱交換器の下端の冷媒流出入口とを接続する室外側管と、
上記第2の分岐管における2つの逆止弁の間と上記室内熱交換器とを接続する室内側管と、を具備し、
少なくとも上記風上側熱交換器が、上記冷媒流入口及び上記冷媒流出口が設けられた一対のヘッダーパイプと、上記一対のヘッダーパイプに連通する互いに平行な複数の扁平熱交換管と、隣接する前記扁平熱交換管の間に介在されるコルゲートフィンと、で構成されているパラレルフロー型熱交換器であり、
冷房運転時及び暖房運転時のいずれにおいても、上記風上側熱交換器において冷媒が重量方向の上から下に流れる構成を有し、
前記風上側熱交換器と前記風下側熱交換器との距離が5〜50mmであること、
を特徴とする冷暖房空調装置に関する。
In order to solve the above problems, the present invention
A windward side heat exchanger and a leeward side heat exchanger that have a compressor and a heat exchanger for indoor units, and are arranged side by side in series on the windward side and the leeward side of the outdoor air passage by serial connection. Used as a heat exchanger for heating, high-temperature refrigerant flows to the leeward heat exchanger during heating, then low-temperature refrigerant due to adiabatic expansion flows to the leeward heat exchanger, and during cooling, the high-temperature refrigerant flows to the leeward side A heating and cooling air conditioner having a configuration in which the heat exchanger and the windward heat exchanger flow in this order,
A refrigerant inlet pipe connected to a refrigerant inlet provided at the upper end of the upwind heat exchanger;
A refrigerant outlet pipe connected to a refrigerant outlet provided at the lower end of the upwind heat exchanger;
An expansion mechanism interposed in the refrigerant outflow pipe;
A first branch pipe and a second branch pipe which are parallel to each other and connect the refrigerant inlet pipe and the refrigerant outlet pipe;
Each of the first and second branch pipes is connected in series to block the flow from the refrigerant inlet side to the refrigerant outlet side, and when the secondary side is at a high pressure relative to the primary side of the refrigerant flowing in the pipe. Two check valves to block the flow;
An outdoor pipe connecting the two check valves in the first branch pipe and a refrigerant outlet at the lower end of the leeward heat exchanger;
An indoor pipe connecting between the two check valves in the second branch pipe and the indoor heat exchanger;
At least the upwind heat exchanger includes a pair of header pipes provided with the refrigerant inlet and the refrigerant outlet, and a plurality of parallel flat heat exchange tubes communicating with the pair of header pipes, adjacent to each other. A parallel flow type heat exchanger composed of corrugated fins interposed between flat heat exchange tubes,
In both the cooling operation and the heating operation, the windward heat exchanger has a configuration in which the refrigerant flows from the top to the bottom in the weight direction,
The distance between the windward side heat exchanger and the leeward side heat exchanger is 5 to 50 mm,
It is related with the air-conditioning air conditioning apparatus characterized by these.

ここで、上記膨張機構は、例えば膨張弁又は毛管現象を利用するキャピラリーチューブを用いて形成することができる。   Here, the expansion mechanism can be formed using, for example, an expansion valve or a capillary tube utilizing capillary action.

このような構成を有する本考案の冷暖房空調装置においては、1つの膨張機構の制御と、複数(4個)の逆止弁からなる逆止弁機構と、によって、冷房運転時及び暖房運転時のいずれにおいても風上側熱交換器への冷媒の流入方向を一定にすることができる。   In the air-conditioning / air-conditioning apparatus of the present invention having such a configuration, the control of one expansion mechanism and the check valve mechanism including a plurality of (four) check valves can be used during cooling operation and heating operation. In any case, the flow direction of the refrigerant into the upwind heat exchanger can be made constant.

また、本考案者らは、多くの試作品を作製して鋭意実験を繰り返した結果、風上側熱交換器と風下側熱交換器との距離が5mm以上であれば、風上側熱交換器から風下側熱交換器に流れる空気の攪拌を発生させ、十分な難着霜効果を確保でき、風上側熱交換器と風下側熱交換器との距離が50mm以下であれば、冷暖房空調装置の寸法を大きくすることなく十分な熱交換性能を確保できることを見出した。特に風上側熱交換器と風下側熱交換器との距離が50mm超となると、熱交換性能の更なる向上は見込めず、冷暖房空調装置の寸法が大きくなるだけであった。   In addition, as a result of producing a number of prototypes and repeating intensive experiments, the inventors have determined that if the distance between the windward side heat exchanger and the leeward side heat exchanger is 5 mm or more, the windward side heat exchanger When the air flowing into the leeward side heat exchanger is agitated and sufficient frost formation effect can be ensured, and the distance between the leeward side heat exchanger and the leeward side heat exchanger is 50 mm or less, the dimensions of the air conditioner / air conditioner It has been found that sufficient heat exchange performance can be secured without increasing the size. In particular, when the distance between the windward side heat exchanger and the leeward side heat exchanger exceeds 50 mm, no further improvement in the heat exchange performance can be expected, and only the size of the air-conditioning / air-conditioning apparatus is increased.

上記の本考案の冷暖房空調装置においては、上記風上側熱交換器及び上記風下側熱交換器のいずれもが、上下に対峙する一対のアルミニウム製のヘッダーパイプと、前記一対のヘッダーパイプに連通する互いに平行なアルミニウム製の扁平熱交換管と、隣接する扁平熱交換管の間に介在されるアルミニウム製のフィンと、で構成されたパラレルフロー型熱交換器であること、が好ましい。   In the air-conditioning / air-conditioning apparatus according to the present invention, both the upwind heat exchanger and the downwind heat exchanger communicate with a pair of aluminum header pipes facing each other and the pair of header pipes. It is preferable that the parallel flow type heat exchanger is composed of aluminum flat heat exchange tubes parallel to each other and aluminum fins interposed between adjacent flat heat exchange tubes.

このような構成を有する本考案の冷暖房空調装置によれば、風上側熱交換器と風下側熱交換器の双方を同じ構造にすることができる上、両熱交換器の厚さをフィン・アンド・チューブ型熱交換器に比較して薄くすることができる。加えて、扁平熱交換管を垂直方向に配列することで、扁平熱交換管に付着する結露水又は除霜により生じた水を溜まりにくくすることができる。また、熱交換性能を高性能に維持させた状態で、熱交換器を薄くすることができる。   According to the air-conditioning / air-conditioning apparatus of the present invention having such a configuration, both the windward side heat exchanger and the leeward side heat exchanger can have the same structure, and the thicknesses of both the heat exchangers can be set to fin and・ It can be made thinner than tube heat exchangers. In addition, by arranging the flat heat exchange tubes in the vertical direction, it is possible to make it difficult to collect the condensed water or water generated by defrosting attached to the flat heat exchange tubes. In addition, the heat exchanger can be thinned while maintaining high heat exchange performance.

また、上記の本考案の冷暖房空調装置においては、前記風上側熱交換器と前記風下側熱交換器との距離が10〜50mmであること、更には、30〜50mmであること、が好ましい。   In the air conditioning / heating air conditioner of the present invention, the distance between the windward side heat exchanger and the leeward side heat exchanger is preferably 10 to 50 mm, and more preferably 30 to 50 mm.

風上側熱交換器と風下側熱交換器との距離が上記範囲内にあれば、より確実に、冷暖房空調装置の寸法を抑えつつ風上側熱交換器から風下側熱交換器に流れる空気の攪拌を促し十分な難着霜効果及び熱交換性能を確保できる。   If the distance between the windward side heat exchanger and the leeward side heat exchanger is within the above range, the agitation of the air flowing from the windward side heat exchanger to the leeward side heat exchanger is more reliably suppressed while suppressing the size of the air conditioning air conditioner And sufficient frost effect and heat exchange performance can be secured.

また、上記の本考案の冷暖房空調装置においては、前記風上側熱交換器の通気抵抗R1が前記風下側熱交換器の通気抵抗R2より小さいこと、が好ましい。 In the cooling / heating air conditioner of the present invention, it is preferable that the ventilation resistance R 1 of the windward heat exchanger is smaller than the ventilation resistance R 2 of the leeward heat exchanger.

このような構成を有する本考案に係る冷暖房空調装置によれば、風上側熱交換器の全面面積と風下側熱交換器の全面面積とが略同じであっても、風上側熱交換器から風下側熱交換器に流れる空気の圧損を確実に低減させて、熱交換性能を向上させることができる。   According to the cooling / heating air conditioner according to the present invention having such a configuration, even if the entire area of the windward side heat exchanger and the entire area of the leeward side heat exchanger are substantially the same, the leeward side of the leeward side heat exchanger The pressure loss of the air flowing through the side heat exchanger can be reliably reduced, and the heat exchange performance can be improved.

また、上記の本考案の冷暖房空調装置においては、前記風上側熱交換器における前記フィンがルーバーレスコルゲートフィンであり、前記風下側熱交換器における前記フィンがルーバー付コルゲートフィンであること、が好ましい。   In the cooling / heating air conditioner of the present invention, it is preferable that the fin in the upwind heat exchanger is a louverless corrugated fin, and the fin in the leeward heat exchanger is a louvered corrugated fin. .

このような構成を有する本考案の冷暖房空調装置によれば、風上側熱交換器の全面面積と風下側熱交換器の全面面積とが略同じであっても、また、風上側熱交換器及び風下側熱交換器を略同じサイズとしつつ、確実に風上側熱交換器の通気抵抗R1を風下側熱交換器の通気抵抗R2より小さくすることができ、風上側熱交換器から風下側熱交換器に流れる空気の圧損をより確実に低減させて、熱交換性能を向上させることができる。 According to the air conditioning air conditioning apparatus of the present invention having such a configuration, even if the entire area of the windward heat exchanger and the entire area of the leeward heat exchanger are substantially the same, the windward heat exchanger and While the leeward side heat exchanger has substantially the same size, the ventilation resistance R 1 of the leeward side heat exchanger can be surely made smaller than the ventilation resistance R 2 of the leeward side heat exchanger. The pressure loss of the air flowing through the heat exchanger can be more reliably reduced, and the heat exchange performance can be improved.

上記の本考案の冷暖房空調装置においては、上記風上側熱交換器の上端に冷媒流入口を設けると共に、該風上側熱交換器の下端に上記冷媒流出口を設ける方が好ましい。   In the cooling / heating air conditioner of the present invention, it is preferable to provide a refrigerant inlet at the upper end of the upwind heat exchanger and provide the refrigerant outlet at the lower end of the upwind heat exchanger.

このように構成することにより、より確実に、風上側熱交換器への冷媒の流れを重力方向(上から下)へ流すことができ、風上側熱交換器の通路抵抗値を最小限に抑制することができる。   With this configuration, the refrigerant flow to the windward heat exchanger can be flowed more reliably in the direction of gravity (from top to bottom), and the passage resistance value of the windward heat exchanger can be minimized. can do.

本考案によれば、上記のように構成されているので、以下のような優れた効果が得られる。即ち、本考案によれば、1つの膨張機構の制御と逆止弁機構によって、冷房運転時と暖房運転時のいずれにおいても風上側熱交換器へ凝縮後の高温冷媒を流すことができるため、膨張機構が簡略化していると共に、運転制御を容易にし、かつ運転効率が向上している。   According to this invention, since it is comprised as mentioned above, the following outstanding effects are acquired. In other words, according to the present invention, the control of one expansion mechanism and the check valve mechanism allow the high-temperature refrigerant after condensation to flow to the windward heat exchanger in both the cooling operation and the heating operation. The expansion mechanism is simplified, operation control is facilitated, and operation efficiency is improved.

また、風上側熱交換器への冷媒の流れを重力方向(上から下)へ流すことができ、風上側熱交換器の通路抵抗値を最小限に抑制することができるので、更に運転効率が向上している。   Further, the flow of the refrigerant to the windward heat exchanger can be made to flow in the direction of gravity (from top to bottom), and the passage resistance value of the windward heat exchanger can be suppressed to a minimum, so that the operation efficiency is further improved. It has improved.

本考案に係る冷暖房空調システムの室外機用熱交換装置の冷房運転時の状態を示す概略構成図である。It is a schematic block diagram which shows the state at the time of air_conditionaing | cooling operation | movement of the heat exchanger for outdoor units of the air conditioning air conditioning system which concerns on this invention. 室外機用熱交換装置の暖房運転時の状態を示す概略構成図である。It is a schematic block diagram which shows the state at the time of the heating operation of the heat exchanger for outdoor units. 本考案における逆止弁の冷房運転時の状態を示す断面図である。It is sectional drawing which shows the state at the time of the cooling operation of the non-return valve in this invention. 本考案における逆止弁の暖房運転時の状態を示す断面図である。It is sectional drawing which shows the state at the time of heating operation of the non-return valve in this invention. 本考案における風上側熱交換器と風下側熱交換器を展開して示す概略構成図である。It is a schematic block diagram which expand | deploys and shows the leeward side heat exchanger and leeward side heat exchanger in this invention. 風上側熱交換器11と風下側熱交換器12の一例を示す斜視図である。It is a perspective view which shows an example of the windward side heat exchanger 11 and the leeward side heat exchanger 12. FIG. 図1及び図2の冷暖房空調装置1における風上側熱交換器11のフィン(ルーバーレス)17の構造を示す部分拡大図(a)及び風下側熱交換器12のフィン(ルーバー付き)17の構造を示す部分拡大図(b)(それぞれ扁平熱交換管16の長さ方向に略平行な方向からみた図)である。The partial enlarged view (a) which shows the structure of the fin (louverless) 17 of the windward side heat exchanger 11 and the structure of the fin (with louver) 17 of the leeward side heat exchanger 12 in the heating / cooling air conditioner 1 of FIGS. (B) (The figure seen from the direction substantially parallel to the length direction of the flat heat exchange pipe | tube 16), respectively. 図1及び図2の冷暖房空調装置1における風下側熱交換器12のフィン(ルーバー付き)17と扁平熱交換管18との構造の一例を示す部分写真である。It is a partial photograph which shows an example of the structure of the fin (with louver) 17 and the flat heat exchange pipe | tube 18 of the leeward side heat exchanger 12 in the air conditioning air conditioner 1 of FIG.1 and FIG.2. 室外機用熱交換器10に使用できる他の熱交換器の例を示す斜視図である。It is a perspective view which shows the example of the other heat exchanger which can be used for the heat exchanger 10 for outdoor units. 従来の冷暖房空調システムの室外機用熱交換装置を示す概略構成図である。It is a schematic block diagram which shows the heat exchanger for outdoor units of the conventional air-conditioning / air-conditioning system.

以下に、本考案に係る冷暖房空調システムの室外機用熱交換装置の実施形態を添付図面に基づいて詳細に説明する。ここでは、従来の室外機用熱交換装置と同じ部分には同一符号を付して説明する。   Hereinafter, an embodiment of a heat exchange device for an outdoor unit of an air conditioning and air conditioning system according to the present invention will be described in detail with reference to the accompanying drawings. Here, the same parts as those of the conventional outdoor unit heat exchange device will be described with the same reference numerals.

本考案の冷暖房空調システムは、外気通風路に対して風上側と風下側に並設される風上側熱交換器11及び風下側熱交換器12からなる室外機用熱交換器10と、風上側熱交換器11の上端に設けられた冷媒流入口18aに接続する冷媒流入管31と、風上側熱交換器11の下端に設けられた冷媒流出口18bに接続する冷媒流出管32と、この冷媒流出管32に介設される膨張機構例えば膨張弁EVと、冷媒流入管31と冷媒流出管32とを接続する互いに並列な第1の分岐管33及び第2の分岐管34と、第1及び第2の分岐管33,34に介設される計4個の逆止弁CV1,CV2,CV3,CV4からなる後述する逆止弁機構40と、第1の分岐管33における2つの逆止弁CV1,CV2の間と風下側熱交換器12の下端の冷媒流出入口18dとを接続する室外側管35と、第2の分岐管34における2つの逆止弁CV3,CV4の間と室内機用熱交換器6(以下に室内側熱交換器6という)とを接続する第1の室内側管36と、を具備する。   The air conditioning and air conditioning system according to the present invention includes an outdoor unit heat exchanger 10 including an upwind heat exchanger 11 and a leeward heat exchanger 12 that are arranged in parallel on the upwind side and downwind side with respect to the outdoor air passage, and the upwind side. A refrigerant inlet pipe 31 connected to the refrigerant inlet 18a provided at the upper end of the heat exchanger 11, a refrigerant outlet pipe 32 connected to the refrigerant outlet 18b provided at the lower end of the windward heat exchanger 11, and the refrigerant An expansion mechanism provided in the outflow pipe 32, for example, an expansion valve EV, a first branch pipe 33 and a second branch pipe 34 connected in parallel to each other, connecting the refrigerant inflow pipe 31 and the refrigerant outflow pipe 32, and A check valve mechanism 40, which will be described later, consisting of a total of four check valves CV1, CV2, CV3, and CV4 interposed in the second branch pipes 33 and 34, and two check valves in the first branch pipe 33 Refrigerant flow between CV1 and CV2 and at the lower end of the leeward heat exchanger 12 The outdoor side pipe 35 connecting the inlet 18d, the space between the two check valves CV3 and CV4 in the second branch pipe 34, and the indoor unit heat exchanger 6 (hereinafter referred to as the indoor side heat exchanger 6) And a first indoor side pipe 36 to be connected.

なお、風下側熱交換器12と室内側熱交換器6とを接続する第2の室内側管37には、風下側熱交換器12側から順に四方弁DVと圧縮機5が介設されており、この四方弁DVの切り換えによって、圧縮機5から吐出される高温・高圧の冷媒が室内機用熱交換器6、又は、室外機用熱交換器10の風下側熱交換器12に流れるようになっている。   The second indoor pipe 37 connecting the leeward heat exchanger 12 and the indoor heat exchanger 6 is provided with a four-way valve DV and a compressor 5 in order from the leeward heat exchanger 12 side. The high-temperature and high-pressure refrigerant discharged from the compressor 5 flows through the indoor unit heat exchanger 6 or the leeward heat exchanger 12 of the outdoor unit heat exchanger 10 by switching the four-way valve DV. It has become.

上記逆止弁機構40は、図1〜図4に示すように、冷媒流入管31と冷媒流出管32とを接続する互いに並列な第1の分岐管33及び第2の分岐管34のうちの一方、即ち第1の分岐管33に直列に介設される第1の逆止弁CV1及び第2の逆止弁CV2と、他方の分岐管すなわち第2の分岐管34に直列に介設される第3の逆止弁CV3及び第4の逆止弁CV4の4個の逆止弁によって構成されている。この場合、各逆止弁CV1〜CV4は、冷媒流入口18a側から冷媒流出口18b側への流れを阻止すると共に、第1,第2の分岐管33,34内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する機能を有している。   As shown in FIGS. 1 to 4, the check valve mechanism 40 includes a first branch pipe 33 and a second branch pipe 34 that connect the refrigerant inflow pipe 31 and the refrigerant outflow pipe 32 in parallel with each other. In other words, the first check valve CV1 and the second check valve CV2 that are interposed in series with the first branch pipe 33 and the other branch pipe, that is, the second branch pipe 34, are connected in series. The third check valve CV3 and the fourth check valve CV4 are four check valves. In this case, the check valves CV1 to CV4 block the flow from the refrigerant inlet 18a side to the refrigerant outlet 18b side and to the primary side of the refrigerant flowing in the first and second branch pipes 33 and 34. On the other hand, the secondary side has a function of blocking the flow when the pressure is high.

上記のように形成される逆止弁機構40において、第1の分岐管33における第1の逆止弁CV1と第2の逆止弁CV2の間と風下側熱交換器12の下端の冷媒流出入口18dとが室外側管35によって接続されている。また、第2の分岐管34における第3の逆止弁CV3と第4の逆止弁CV4の間と室内側熱交換器6とが第1の室内側管36によって接続されている。   In the check valve mechanism 40 formed as described above, refrigerant flows out of the first branch pipe 33 between the first check valve CV1 and the second check valve CV2 and at the lower end of the leeward heat exchanger 12. The inlet 18d is connected to the outdoor pipe 35. Further, the third check valve CV3 and the fourth check valve CV4 in the second branch pipe 34 and the indoor heat exchanger 6 are connected by the first indoor pipe 36.

室外機用熱交換器10を構成する風上側熱交換器11と風下側熱交換器12は、共にアルミニウム合金製のパラレルフロー型熱交換器によって形成されている。即、風上側熱交換器11及び風下側熱交換器12は、図5及び図6に示すように、それぞれ上下に対峙する一対のアルミニウム合金製のヘッダーパイプ14,15と、これらヘッダーパイプ14,15に連通する互いに平行なアルミニウム合金製の例えば押出形材からなる複数の扁平熱交換管16と、隣接する扁平熱交換管16の間に介在されるアルミニウム合金製のコルゲートフィン17とで主に構成されている。   Both the windward side heat exchanger 11 and the leeward side heat exchanger 12 constituting the outdoor unit heat exchanger 10 are formed of aluminum alloy parallel flow type heat exchangers. Immediately, as shown in FIGS. 5 and 6, the windward side heat exchanger 11 and the leeward side heat exchanger 12 include a pair of header pipes 14 and 15 made of aluminum alloy facing each other, and the header pipes 14 and 14. 15, a plurality of flat heat exchange pipes 16 made of, for example, extruded shapes made of parallel aluminum alloys, and corrugated fins 17 made of aluminum alloy interposed between adjacent flat heat exchange pipes 16. It is configured.

この場合、風上側熱交換器11の上部ヘッダーパイプ14には、冷媒流入管31が接続される冷媒流入口18aが設けられ、風上側熱交換器11の下部ヘッダーパイプ15には、冷媒流出管32が接続される冷媒流出口18bが設けられている。一方、風下側熱交換器12の上部ヘッダーパイプ14には、第1の室内側管36が接続される冷媒流入出口18cが設けられ、風下側熱交換器12の下部ヘッダーパイプ15には、第2の室内側管37が接続される冷媒流入出口18dが設けられている。なお、扁平熱交換管16は、複数の冷媒通路(図示せず)が区画形成されている。また、上部及び下部ヘッダーパイプ14,15、扁平熱交換管16及びコルゲートフィン17は例えばろう付けによって一体に形成されている。   In this case, the upper header pipe 14 of the windward side heat exchanger 11 is provided with a refrigerant inlet 18a to which the refrigerant inflow pipe 31 is connected, and the lower header pipe 15 of the windward side heat exchanger 11 is provided with a refrigerant outlet pipe. The refrigerant | coolant outflow port 18b to which 32 is connected is provided. On the other hand, the upper header pipe 14 of the leeward heat exchanger 12 is provided with a refrigerant inflow / outlet port 18c to which the first indoor pipe 36 is connected, and the lower header pipe 15 of the leeward heat exchanger 12 has a first header pipe 15c. A refrigerant inlet / outlet port 18d to which the two indoor pipes 37 are connected is provided. The flat heat exchange pipe 16 has a plurality of refrigerant passages (not shown) defined therein. Further, the upper and lower header pipes 14 and 15, the flat heat exchange pipe 16 and the corrugated fins 17 are integrally formed by brazing, for example.

上記のように、風上側熱交換器11と風下側熱交換器12を、パラレルフロー型熱交換器にて形成することにより、伝熱フィンに複数列の蛇行伝熱管を貫通させた、フィン・アンド・チューブ型の熱交換器に比べて厚さを薄くすることができるので、室外機用熱交換器10の設置スペースの省スペース化、すなわち室外機用熱交換器10、膨張弁EV及び逆止弁機構40等を収容する室外機50の省スペース化が図れる。なお、図5において、符号60は、室内側熱交換器6を収容する室内機である。また、パラレルフロー型熱交換器とフィン・アンド・チューブ型熱交換器を、通風面積、通気抵抗及び熱交換性能を同等として比較した場合、パラレルフロー型熱交換器はフィン・アンド・チューブ型熱交換器に対して、熱交換器厚み寸法を約半分にすることができる。   As described above, by forming the windward side heat exchanger 11 and the leeward side heat exchanger 12 with a parallel flow type heat exchanger, a plurality of meandering heat transfer tubes are penetrated through the heat transfer fins. Since the thickness can be reduced as compared with the And-tube type heat exchanger, the installation space of the outdoor unit heat exchanger 10 can be saved, that is, the outdoor unit heat exchanger 10, the expansion valve EV and the reverse. Space saving of the outdoor unit 50 that accommodates the valve stop mechanism 40 and the like can be achieved. In FIG. 5, reference numeral 60 is an indoor unit that houses the indoor heat exchanger 6. In addition, when comparing parallel flow heat exchangers and fin-and-tube heat exchangers with the same ventilation area, ventilation resistance, and heat exchange performance, parallel flow heat exchangers have fin-and-tube heat exchangers. For the exchanger, the heat exchanger thickness dimension can be halved.

なお、上記実施形態では膨張機構が膨張弁EVにて形成される場合について説明したが、膨張弁EVに代えて、毛管現象を利用するキャピラリーチューブにて膨張機構を形成してもよい。   In addition, although the said embodiment demonstrated the case where an expansion mechanism was formed with the expansion valve EV, it may replace with the expansion valve EV and may form an expansion mechanism with the capillary tube using a capillary phenomenon.

ここで、本考案者らは、多くの試作品を作製して鋭意実験を繰り返した結果、風上側熱交換器11と風下側熱交換器12との距離W(図1及び図2参照)が5mm以上であれば、風上側熱交換器11から風下側熱交換器12に流れる空気の攪拌を促して十分な熱交換性能を確保でき、風上側熱交換器11と風下側熱交換器12との距離が50mm以下であれば、冷暖房空調装置の寸法を大きくすることなく十分な熱交換性能を確保できることを見出した。特に風上側熱交換器11と風下側熱交換器12との距離が50mm超となると、熱交換性能の更なる向上は見込めず、冷暖房空調装置の寸法が大きくなるだけであった。   Here, the inventors of the present invention produced many prototypes and repeated diligent experiments. As a result, the distance W (see FIGS. 1 and 2) between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is If it is 5 mm or more, agitation of the air flowing from the windward side heat exchanger 11 to the leeward side heat exchanger 12 can be promoted to ensure sufficient heat exchange performance, and the windward side heat exchanger 11 and the leeward side heat exchanger 12 It has been found that if the distance is 50 mm or less, sufficient heat exchange performance can be ensured without increasing the size of the air-conditioning and air-conditioning apparatus. In particular, when the distance between the windward side heat exchanger 11 and the leeward side heat exchanger 12 exceeds 50 mm, further improvement in the heat exchange performance cannot be expected, and only the size of the air-conditioning and air-conditioning apparatus is increased.

また、風上側熱交換器11と前記風下側熱交換器12との距離Wが5mm以上であれば、風上側熱交換器11と前記風下側熱交換器12との間隔が、上記範囲であれば、風上側熱交換器11と風下側熱交換器12との間の気流を妨げにくく、かつ、冷暖房空調装置1内のスペースを取り過ぎることもない。特に、上記距離Wが50mmを超えると熱交換性能は略一定となって変化が無いことを本発明者らは実験で確認している。風上側熱交換器11と前記風下側熱交換器12との距離Wは10〜50mmであることが好ましく、更には、30〜50mmであることが好ましい。   If the distance W between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is 5 mm or more, the distance between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is within the above range. For example, the airflow between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is not easily disturbed, and the space in the air conditioning / air conditioning apparatus 1 is not excessively taken. In particular, the present inventors have confirmed through experiments that the heat exchange performance is substantially constant and does not change when the distance W exceeds 50 mm. The distance W between the windward side heat exchanger 11 and the leeward side heat exchanger 12 is preferably 10 to 50 mm, and more preferably 30 to 50 mm.

次に、本実施形態の冷暖房空調装置においては、風上側熱交換器11では、図7の(a)に示すように、扁平熱交換管16の間に配設されているコルゲートフィン17aが平板状の形状(ルーバーレス)を有し、風下側熱交換器12では、図7の(b)及び図8に示すように、扁平熱交換管16の間に配設されているコルゲートフィン17bは、平板状であるとともに多数のスリット状の開口17cが並列して設けられた形状(ルーバー付き)を有していてもよい(もちろん、風上側熱交換器11及び風下側熱交換器12のいずれもが図7の(a)に示す構造を有していても図7の(b)及び図8に示す構造を有していてもよい。)。   Next, in the air conditioning air conditioner of this embodiment, in the windward side heat exchanger 11, the corrugated fins 17a disposed between the flat heat exchange tubes 16 are flat as shown in FIG. In the leeward side heat exchanger 12, as shown in FIG. 7B and FIG. 8, the corrugated fins 17b disposed between the flat heat exchange tubes 16 are In addition, it may have a shape (with a louver) that is flat and has a large number of slit-shaped openings 17c provided in parallel (of course, either the windward side heat exchanger 11 or the leeward side heat exchanger 12). 7 may have the structure shown in FIG. 7 (a) or the structure shown in FIG. 7 (b) and FIG.

このような構造により、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2より小さく設定されているのが好ましい。通気抵抗とは、一般的に言う圧力損失と略同じ意味を有し、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2と同じか大きいと、風下側熱交換器12に供給される風量が下がってしまい、熱交換性能を損なってしまう傾向にある。そのため、本実施形態では、上記のように、風上側熱交換器11の通気抵抗R1が風下側熱交換器12の通気抵抗R2より小さく設定されており、外気通風路7を流れる外気Aの風上側熱交換器11によって受ける圧損を少なくして、熱交換性能の低下が効果的に抑制されている。 With such a structure, it is preferable that the ventilation resistance R 1 of the windward side heat exchanger 11 is set smaller than the ventilation resistance R 2 of the leeward side heat exchanger 12. The ventilation resistance has substantially the same meaning as the pressure loss in general, and when the ventilation resistance R 1 of the windward side heat exchanger 11 is equal to or larger than the ventilation resistance R 2 of the leeward side heat exchanger 12, the leeward side The air volume supplied to the heat exchanger 12 tends to decrease, and the heat exchange performance tends to be impaired. Therefore, in the present embodiment, as described above, the ventilation resistance R 1 of the windward side heat exchanger 11 is set to be smaller than the ventilation resistance R 2 of the leeward side heat exchanger 12, and the outside air A flowing through the outside air ventilation path 7. The pressure loss received by the windward side heat exchanger 11 is reduced, and the deterioration of the heat exchange performance is effectively suppressed.

上記の通気抵抗の単位に関し、「Pa(AF−0.5m/sec)」とは、通過風速が0.5m/secの際の通気抵抗であることを意味し、「Pa(AF−1.5m/sec)」とは通過風速が1.5m/secの際の通気抵抗であることを意味する。本実施形態におけるこの通過風速は、熱交換性能と静音性とのバランスを考慮して、0.5〜3.0m/secの範囲、好ましくは0.5〜1.5m/secの範囲で決定すればよい。   Regarding the unit of ventilation resistance, “Pa (AF−0.5 m / sec)” means the ventilation resistance when the passing wind speed is 0.5 m / sec, and “Pa (AF-1. “5 m / sec)” means a ventilation resistance when the passing wind speed is 1.5 m / sec. The passing wind speed in the present embodiment is determined in the range of 0.5 to 3.0 m / sec, preferably in the range of 0.5 to 1.5 m / sec in consideration of the balance between heat exchange performance and quietness. do it.

より具体的には、風上側熱交換器11から風下側熱交換器12に流れる空気の圧損を確実に低減させて、熱交換性能を向上させることができ、かつ、冷暖房空調装置1の機能をより確実に発揮することができるという観点から、例えば風上側熱交換器11の通気抵抗R1を2Pa(AF−0.5m/sec)〜14Pa(AF−3.0m/sec)に設定し、風下側熱交換器12の通気抵抗R2を3Pa(AF−0.5m/sec)〜28Pa(AF−3.0m/sec)に設定することが好ましい。更には、風上側熱交換器11の通気抵抗R1を2Pa(AF−0.5m/sec)〜14Pa(AF−1.5m/sec)に設定し、風下側熱交換器12の通気抵抗R2を3Pa(AF−0.5m/sec)〜28Pa(AF−1.5m/sec)に設定することが好ましい。 More specifically, the pressure loss of the air flowing from the windward side heat exchanger 11 to the leeward side heat exchanger 12 can be reliably reduced, the heat exchange performance can be improved, and the function of the air conditioner / air conditioner 1 can be improved. From the viewpoint that it can be more reliably exhibited, for example, the ventilation resistance R 1 of the windward side heat exchanger 11 is set to 2 Pa (AF-0.5 m / sec) to 14 Pa (AF-3.0 m / sec), it is preferable to set the ventilation resistance R 2 of the leeward side heat exchanger 12 to 3Pa (AF-0.5m / sec) ~28Pa (AF-3.0m / sec). Furthermore, the ventilation resistance R 1 of the leeward heat exchanger 11 is set to 2 Pa (AF−0.5 m / sec) to 14 Pa (AF−1.5 m / sec), and the ventilation resistance R of the leeward heat exchanger 12 is set. 2 is preferably set to 3 Pa (AF-0.5 m / sec) to 28 Pa (AF-1.5 m / sec).

上記の通気抵抗は、コルゲートフィン17のピッチ(fp:山−谷間の距離)や風上側熱交換器11及び風下側熱交換器12のコア厚み(コアとなる部分の厚み、本実施形態においては扁平熱交換管16の幅と略一致)によっても変動し得る。例えば、コア厚みが14、16、19又は21mmであり、fpは1.0〜2.5の範囲で適宜選択されるが、選択したこれらの具体的数値に応じて、風上側熱交換器11の通気抵抗R1及び風下側熱交換器12の通気抵抗R2を、上記の通気抵抗の範囲に設定すればよい。 The airflow resistance is the pitch of the corrugated fins 17 (fp: distance between peaks and valleys), and the core thicknesses of the windward side heat exchanger 11 and the leeward side heat exchanger 12 (thickness of the portion serving as the core, in the present embodiment). It can also vary depending on the width of the flat heat exchange tube 16. For example, the core thickness is 14, 16, 19 or 21 mm, and fp is appropriately selected in the range of 1.0 to 2.5, but depending on these selected specific values, the windward side heat exchanger 11 the ventilation resistance R 1 and the ventilation resistance R 2 of the leeward side heat exchanger 12, may be set to the above range of airflow resistance.

また、上記実施の形態では、風上側熱交換器11と風下側熱交換器12の双方を、上下に対峙するヘッダーパイプ14,15を有するアルミニウム合金製のパラレルフロー型熱交換器としたが、風上側熱交換器11は、例えば図9に示すように、左右に対峙するヘッダーパイプを有するアルミニウム合金製のパラレルフロー型熱交換器であってもよい。図9は、伝熱フィン103に複数列の蛇行伝熱管104を貫通させた、フィン・アンド・チューブ型熱交換器102の一例である(ただし、図9においては左右に対峙するヘッダーパイプは省略されている。)。   Moreover, in the said embodiment, although the windward side heat exchanger 11 and the leeward side heat exchanger 12 were made into the parallel flow type heat exchanger made from the aluminum alloy which has the header pipes 14 and 15 facing up and down, For example, as shown in FIG. 9, the windward side heat exchanger 11 may be a parallel flow type heat exchanger made of aluminum alloy having header pipes facing left and right. FIG. 9 is an example of a fin-and-tube heat exchanger 102 in which a plurality of rows of meandering heat transfer tubes 104 are passed through the heat transfer fins 103 (however, in FIG. 9, header pipes facing left and right are omitted). Has been).

また、上記実施の形態では、風上側熱交換器11と風下側熱交換器12の大きさを同じにした場合について説明したが、風上側熱交換器11の高さ,面積を風下側熱交換器12に対して1/4〜2/3として更に圧損を少なくすることができる。
なお、風上側熱交換器11及び風下側熱交換器12は、従来と同様に、室外機のフレームに取り付けて防振効果を備えているのが好ましい。
Moreover, although the said embodiment demonstrated the case where the magnitude | size of the leeward side heat exchanger 11 and the leeward side heat exchanger 12 was made the same, the height and area of the leeward side heat exchanger 11 are made into leeward side heat exchange. The pressure loss can be further reduced to 1/4 to 2/3 of the vessel 12.
In addition, it is preferable that the windward side heat exchanger 11 and the leeward side heat exchanger 12 are attached to the frame of the outdoor unit and have a vibration isolation effect as in the conventional case.

次に、この発明に係る室外機用熱交換器10を用いた冷暖房空調システムの動作について、図1〜図4を参照して説明する。   Next, operation | movement of the air-conditioning / air-conditioning system using the heat exchanger 10 for outdoor units which concerns on this invention is demonstrated with reference to FIGS.

<冷房運転時>
冷房運転時には、図1及び図3に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構40の第4の逆止弁CV4を通過し、室内側熱交換器6へ流れ蒸発される。このとき、第2の逆止弁CV2と第3の逆止弁CV3には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない(図3参照)。
<During cooling operation>
During the cooling operation, as indicated by arrows in FIGS. 1 and 3, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and has been reduced in pressure by adiabatic expansion is supplied to the fourth check valve CV4 of the check valve mechanism 40. It passes through and flows into the indoor heat exchanger 6 and is evaporated. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because the valve back is filled with high-pressure refrigerant (see FIG. 3).

室内側熱交換器6を通過した冷媒は、四方弁DV→圧縮機5→風下側熱交換器12を通過し、室外側管35を介して第1の分岐管33における第1の逆止弁CV1と第2の逆止弁CV2の間に流入する。逆止弁機構40に戻った冷媒は、第1の逆止弁CV1を通過する。このとき、第2の逆止弁CV2と第3の逆止弁CV3は弁の逆止機能が働いて流路として機能しない(図3参照)。   The refrigerant that has passed through the indoor heat exchanger 6 passes through the four-way valve DV → the compressor 5 → the leeward heat exchanger 12, and the first check valve in the first branch pipe 33 via the outdoor pipe 35. It flows between CV1 and the second check valve CV2. The refrigerant that has returned to the check valve mechanism 40 passes through the first check valve CV1. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because of the valve check function (see FIG. 3).

第1の逆止弁CV1を通過した冷媒すなわち高温の凝縮液は、風上側熱交換器11の上端の冷媒流入口18aから重力方向(上から下)へ流れる。これにより、風上側熱交換器11はサブクーラとして機能すると共に、風上側熱交換器11の通路抵抗値を最小限に抑制することができるので、運転効率の向上を図ることができる。   The refrigerant that has passed through the first check valve CV1, that is, the high-temperature condensate, flows in the direction of gravity (from top to bottom) from the refrigerant inlet 18a at the upper end of the windward heat exchanger 11. Thereby, while the windward side heat exchanger 11 functions as a subcooler and the passage resistance value of the windward side heat exchanger 11 can be suppressed to the minimum, the operating efficiency can be improved.

<暖房運転時>
暖房運転時には、図2に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構40の第2の逆止弁CV2を通過し、風下側熱交換器12へ流れ蒸発される。このとき、第1の逆止弁CV1と第4の逆止弁CV4には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない(図4参照)。
<During heating operation>
During the heating operation, as indicated by an arrow in FIG. 2, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and has been reduced in pressure by adiabatic expansion passes through the second check valve CV <b> 2 of the check valve mechanism 40, It flows to the leeward heat exchanger 12 and is evaporated. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths because the valve back is filled with high-pressure refrigerant (see FIG. 4).

風下側熱交換器12を通過した冷媒は、四方弁DV→圧縮機5→室内側熱交換器6を通過し、第1の室内側管36を介して第2の分岐管34における第3の逆止弁CV3と第4の逆止弁CV4の間に流入する。逆止弁機構40に戻った冷媒は、第3の逆止弁CV3を通過する。このとき、第1の逆止弁CV1と第4の逆止弁CV4は弁の逆止機能が働いて流路として機能しない(図4参照)。   The refrigerant that has passed through the leeward heat exchanger 12 passes through the four-way valve DV → the compressor 5 → the indoor heat exchanger 6 and passes through the first indoor pipe 36 and the third branch pipe 34 through the third branch pipe 34. It flows between the check valve CV3 and the fourth check valve CV4. The refrigerant that has returned to the check valve mechanism 40 passes through the third check valve CV3. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths because of the valve check function (see FIG. 4).

第3の逆止弁CV3を通過した冷媒すなわち高温の凝縮液は、風上側熱交換器11の上端の冷媒流入口18aから重力方向(上から下)へ流れる。これにより、風上側熱交換器11の通路抵抗値を最小限に抑制することができるので、運転効率が向上する。   The refrigerant that has passed through the third check valve CV3, that is, the high-temperature condensate, flows in the direction of gravity (from top to bottom) from the refrigerant inlet 18a at the upper end of the windward heat exchanger 11. Thereby, since the passage resistance value of the windward side heat exchanger 11 can be suppressed to the minimum, the operation efficiency is improved.

上記のように、この発明に係る室外機用熱交換装置によれば、1つの膨張弁EV(膨張機構)の制御と逆止弁機構40によって、冷房運転時と暖房運転時のいずれにおいても風上側熱交換器11への冷媒の流入方向を一定にすることができるので、配管が簡略化されると共に、運転制御を容易になり、かつ運転効率が向上する。   As described above, according to the heat exchange device for an outdoor unit according to the present invention, the air flow is controlled in both the cooling operation and the heating operation by controlling one expansion valve EV (expansion mechanism) and the check valve mechanism 40. Since the inflow direction of the refrigerant to the upper heat exchanger 11 can be made constant, the piping is simplified, operation control is facilitated, and operation efficiency is improved.

5・・・圧縮機、
6・・・室内側熱交換器、
10・・・ 室外機用熱交換器、
11・・・風上側熱交換器、
12・・・風下側熱交換器、
18a・・・冷媒流入口、
18b・・・冷媒流出口、
31・・・冷媒流入管、
32・・・冷媒流出管、
33・・・第1の分岐管、
34・・・第2の分岐管、
35・・・室外側管、
36・・・第1の室内側管、
37・・・第2の室内側管、
40・・・逆止弁機構、
EV・・・膨張弁(膨張機構)、
CV1〜CV4・・・第1〜第4の逆止弁。
5 ... Compressor,
6 ... Indoor heat exchanger,
10 ... heat exchanger for outdoor unit,
11 ... windward heat exchanger,
12 ... leeward heat exchanger,
18a ... refrigerant inlet,
18b ... refrigerant outlet,
31 ... Refrigerant inlet pipe,
32 ... refrigerant outlet pipe,
33 ... 1st branch pipe,
34 ... second branch pipe,
35 ... outdoor pipe,
36: first indoor side pipe,
37 ... second indoor side pipe,
40: Check valve mechanism,
EV: expansion valve (expansion mechanism),
CV1 to CV4... First to fourth check valves.

Claims (4)

圧縮機及び室内機用熱交換器を有し、外気通風路に対して風上側と風下側に直列接続により面対向して並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が前記風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が前記風下側熱交換器に流れ、冷房時には高温冷媒が前記風下側熱交換器及び前記風上側熱交換器の順に流れる構成を有する冷暖房空調装置であって、
上記風上側熱交換器の上端に設けられた冷媒流入口に接続する冷媒流入管と、
上記風上側熱交換器の下端に設けられた冷媒流出口に接続する冷媒流出管と、
上記冷媒流出管に介設される膨張機構と、
上記冷媒流入管と冷媒流出管とを接続する互いに並列な第1及び第2の分岐管と、
上記第1及び第2の分岐管にそれぞれ直列に介設され、上記冷媒流入口側から冷媒流出口側への流れを阻止すると共に、管内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する2つの逆止弁と、
上記第1の分岐管における2つの逆止弁の間と上記風下側熱交換器の下端の冷媒流出入口とを接続する室外側管と、
上記第2の分岐管における2つの逆止弁の間と上記室内熱交換器とを接続する室内側管と、を具備し、
少なくとも上記風上側熱交換器が、上記冷媒流入口及び上記冷媒流出口が設けられた一対のヘッダーパイプと、上記一対のヘッダーパイプに連通する互いに平行な複数の扁平熱交換管と、隣接する前記扁平熱交換管の間に介在されるコルゲートフィンと、で構成されているパラレルフロー型熱交換器であり、
冷房運転時及び暖房運転時のいずれにおいても、上記風上側熱交換器において冷媒が重量方向の上から下に流れる構成を有し、
前記風上側熱交換器と前記風下側熱交換器との距離が5〜50mmであること、
を特徴とする冷暖房空調装置。
A windward side heat exchanger and a leeward side heat exchanger that have a compressor and a heat exchanger for indoor units, and are arranged side by side in series on the windward side and the leeward side of the outdoor air passage by serial connection. Used as a heat exchanger for heating, high-temperature refrigerant flows to the leeward heat exchanger during heating, then low-temperature refrigerant due to adiabatic expansion flows to the leeward heat exchanger, and during cooling, the high-temperature refrigerant flows to the leeward side A heating and cooling air conditioner having a configuration in which the heat exchanger and the windward heat exchanger flow in this order,
A refrigerant inlet pipe connected to a refrigerant inlet provided at the upper end of the upwind heat exchanger;
A refrigerant outlet pipe connected to a refrigerant outlet provided at the lower end of the upwind heat exchanger;
An expansion mechanism interposed in the refrigerant outflow pipe;
A first branch pipe and a second branch pipe which are parallel to each other and connect the refrigerant inlet pipe and the refrigerant outlet pipe;
Each of the first and second branch pipes is connected in series to block the flow from the refrigerant inlet side to the refrigerant outlet side, and when the secondary side is at a high pressure relative to the primary side of the refrigerant flowing in the pipe. Two check valves to block the flow;
An outdoor pipe connecting the two check valves in the first branch pipe and a refrigerant outlet at the lower end of the leeward heat exchanger;
An indoor pipe connecting between the two check valves in the second branch pipe and the indoor heat exchanger;
At least the upwind heat exchanger includes a pair of header pipes provided with the refrigerant inlet and the refrigerant outlet, and a plurality of parallel flat heat exchange tubes communicating with the pair of header pipes, adjacent to each other. A parallel flow type heat exchanger composed of corrugated fins interposed between flat heat exchange tubes,
In both the cooling operation and the heating operation, the windward heat exchanger has a configuration in which the refrigerant flows from the top to the bottom in the weight direction,
The distance between the windward side heat exchanger and the leeward side heat exchanger is 5 to 50 mm,
Air-conditioning air conditioner characterized by.
上記風上側熱交換器及び上記風下側熱交換器のいずれもが、上記冷媒流入口及び上記冷媒流出口が設けられた一対のヘッダーパイプと、上記一対のヘッダーパイプに連通する互いに平行な複数の扁平熱交換管と、隣接する前記扁平熱交換管の間に介在されるコルゲートフィンと、で構成されているパラレルフロー型熱交換器であること、
を特徴とする請求項1に記載の冷暖房空調装置。
Each of the windward side heat exchanger and the leeward side heat exchanger includes a pair of header pipes provided with the refrigerant inlet and the refrigerant outlet, and a plurality of parallel pipes communicating with the pair of header pipes. A parallel flow type heat exchanger composed of flat heat exchange tubes and corrugated fins interposed between the adjacent flat heat exchange tubes,
The air-conditioning air conditioning apparatus of Claim 1 characterized by these.
前記風上側熱交換器の通気抵抗R1が前記風下側熱交換器の通気抵抗R2より小さいこと、
を特徴とする請求項1又は2に記載の冷暖房空調装置。
The ventilation resistance R 1 of the leeward heat exchanger is smaller than the ventilation resistance R 2 of the leeward heat exchanger;
The air conditioning air conditioning apparatus according to claim 1 or 2.
前記風上側熱交換器における前記フィンがルーバーレスコルゲートフィンであり、前記風下側熱交換器における前記フィンがルーバー付コルゲートフィンであること、
を特徴とする請求項2又は3に記載の冷暖房空調装置。
The fins in the windward heat exchanger are louverless corrugated fins, and the fins in the leeward heat exchanger are corrugated fins with louvers,
The air conditioning air conditioning apparatus according to claim 2 or 3.
JP2012002911U 2012-05-17 2012-05-17 Air conditioning unit Expired - Fee Related JP3177302U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012002911U JP3177302U (en) 2012-05-17 2012-05-17 Air conditioning unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012002911U JP3177302U (en) 2012-05-17 2012-05-17 Air conditioning unit

Publications (1)

Publication Number Publication Date
JP3177302U true JP3177302U (en) 2012-07-26

Family

ID=48004147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012002911U Expired - Fee Related JP3177302U (en) 2012-05-17 2012-05-17 Air conditioning unit

Country Status (1)

Country Link
JP (1) JP3177302U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072111A (en) * 2013-09-08 2015-04-16 株式会社B.T.P. Heating and cooling air conditioning system
WO2016002111A1 (en) * 2014-06-30 2016-01-07 正 岡本 Cooling and heating air-conditioning system
WO2020110213A1 (en) * 2018-11-28 2020-06-04 三菱電機株式会社 Air-conditioner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072111A (en) * 2013-09-08 2015-04-16 株式会社B.T.P. Heating and cooling air conditioning system
WO2016002111A1 (en) * 2014-06-30 2016-01-07 正 岡本 Cooling and heating air-conditioning system
WO2020110213A1 (en) * 2018-11-28 2020-06-04 三菱電機株式会社 Air-conditioner
JP7210609B2 (en) 2018-11-28 2023-01-23 三菱電機株式会社 air conditioner

Similar Documents

Publication Publication Date Title
JP6641721B2 (en) Heat exchangers and air conditioners
JP5071597B2 (en) Heat exchanger and air conditioner
JP4889011B2 (en) Air conditioning system
JP5858478B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
CN101592421B (en) Fin tubular heat exchanger
JP4845987B2 (en) Air conditioning system
JP4178472B2 (en) Heat exchanger and air conditioner
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP2006284133A (en) Heat exchanger
JP5608478B2 (en) Heat exchanger and air conditioner using the same
JP3177302U (en) Air conditioning unit
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP6383942B2 (en) Heat exchanger
JP2014137177A (en) Heat exchanger and refrigerator
JP4785670B2 (en) Air conditioner indoor unit
JP2007147221A (en) Heat exchanger with fin
JPWO2017042940A1 (en) Heat exchanger
JPH11337104A (en) Air conditioner
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
JP5404571B2 (en) Heat exchanger and equipment
TWI731588B (en) air conditioner
JP6678413B2 (en) Air conditioner
JP2015014397A (en) Heat exchanger
JP6885857B2 (en) Air conditioner

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150704

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R323531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees