JP4845987B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP4845987B2
JP4845987B2 JP2009062259A JP2009062259A JP4845987B2 JP 4845987 B2 JP4845987 B2 JP 4845987B2 JP 2009062259 A JP2009062259 A JP 2009062259A JP 2009062259 A JP2009062259 A JP 2009062259A JP 4845987 B2 JP4845987 B2 JP 4845987B2
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
pipe
leeward
windward
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009062259A
Other languages
Japanese (ja)
Other versions
JP2010216692A (en
JP2010216692A5 (en
Inventor
学 大久保
泰司 道本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
株式会社B.T.P.
Original Assignee
株式会社B.T.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社B.T.P. filed Critical 株式会社B.T.P.
Priority to JP2009062259A priority Critical patent/JP4845987B2/en
Publication of JP2010216692A publication Critical patent/JP2010216692A/en
Publication of JP2010216692A5 publication Critical patent/JP2010216692A5/ja
Application granted granted Critical
Publication of JP4845987B2 publication Critical patent/JP4845987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify piping, to facilitate operation control, and to improve operation efficiency. <P>SOLUTION: This air conditioning system includes: a refrigerant inflow pipe 31 connected to a refrigerant inflow port 18a formed in an upwind side heat exchanger 11; a refrigerant outflow pipe 32 connected to a refrigerant outflow port 18b; an expansion mechanism such as an expansion valve EV interposed in the refrigerant outflow pipe; branch pipes 33, 34 connecting the refrigerant inflow pipe to the refrigerant outflow pipe and arranged in parallel with each other; two check valves CV1, CV2 (CV3, CV4) interposed in each of the branch pipes in series, inhibiting a flow from the refrigerant inflow port side to the refrigerant outflow port side and inhibiting a flow when the pressure of the secondary side of a refrigerant made to flow in the pipe is higher than that of the primary side; an outdoor side pipe 35 for connecting a portion between the two check valves of the first branch pipe to a refrigerant inflow/outflow port at a lower end of a downwind side heat exchanger 12; and an indoor side pipe 36 for connecting a portion between the two check valves of the second branch pipe to an indoor side heat exchanger 6. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

この発明は、室外機用熱交換装置に特徴を有する冷暖房空調システム関するものである。 The present invention relates to a heating and cooling air conditioning system characterized by a heat exchanger for the outdoor unit.

一般に、冷暖房空調システムの室外機用熱交換器においては、暖房運転時に、外気の温度が低下すると、室外機用熱交換器に霜が付着して、通風量の低下及び熱交換量の低下をきたすため、除霜する必要があった。そのため、外気通風路に対して風上側と風下側に並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器に流れ、冷房時には高温冷媒が風下側熱交換器、風上側熱交換器の順に流れるようにした冷暖房空調システムが知られている(例えば、特許文献1参照)。   In general, in an outdoor unit heat exchanger of an air conditioning / air conditioning system, when the temperature of the outside air decreases during heating operation, frost adheres to the outdoor unit heat exchanger, reducing the ventilation rate and the heat exchange rate. It was necessary to defrost to make it come. Therefore, the windward side heat exchanger and the leeward side heat exchanger arranged in parallel on the windward side and the leeward side with respect to the outdoor air passage are used as outdoor unit heat exchangers, and during heating, the high-temperature refrigerant is used as the windward side heat exchanger. A cooling and heating air conditioning system is known in which the refrigerant having a low temperature due to adiabatic expansion flows to the leeward heat exchanger and the high temperature refrigerant flows in the order of the leeward heat exchanger and then the windward heat exchanger during cooling. (For example, refer to Patent Document 1).

上記特許文献1に記載の冷暖房空調システムは、図6に示すように、圧縮機5と、室内機用熱交換器6と、室外機用熱交換器10と、第1,第2の電子膨張弁EV1,EV2と、を具備してなる。なお、室外機用熱交換器10は、外気通風路7に対して風上側に配置される風上側熱交換器11と風下側に配置される風下側熱交換器12とが並設されている。なお、風上側熱交換器11の風上側には、外気Aを取り込むための送風ファン13が配設されている。   As shown in FIG. 6, the air conditioning and air conditioning system described in Patent Document 1 includes a compressor 5, an indoor unit heat exchanger 6, an outdoor unit heat exchanger 10, and first and second electronic expansions. And valves EV1 and EV2. The outdoor unit heat exchanger 10 includes a windward heat exchanger 11 disposed on the windward side of the outdoor air passage 7 and a leeward heat exchanger 12 disposed on the leeward side. . A blower fan 13 for taking in outside air A is disposed on the windward side of the windward heat exchanger 11.

また、圧縮機5と室内機用熱交換器6とを接続する第1の配管21と、圧縮機5と室外機用熱交換器10の風下側熱交換器12とを接続する第2の配管22には切換弁である四方弁DVが介設されている。この四方弁DVの切り換えによって、圧縮機5から吐出される高温・高圧の冷媒が室内機用熱交換器6、又は、風下側熱交換器12に流れるようになっている。また、室内機用熱交換器6と風上側熱交換器11とを接続する第3の配管23には、第1の逆止弁CVaと、冷房時にのみ機能する第1の電子膨張弁EV1が介設されている。また、風上側熱交換器11と風下側熱交換器12とを接続する第4の配管24には、第2の逆止弁CVbと暖房時にのみ機能する第2の電子膨張弁EV2が介設されている。   Moreover, the 1st piping 21 which connects the compressor 5 and the indoor unit heat exchanger 6, and the 2nd piping which connects the compressor 5 and the leeward side heat exchanger 12 of the heat exchanger 10 for outdoor units. 22 is provided with a four-way valve DV which is a switching valve. By switching the four-way valve DV, the high-temperature and high-pressure refrigerant discharged from the compressor 5 flows to the indoor unit heat exchanger 6 or the leeward heat exchanger 12. The third pipe 23 that connects the indoor unit heat exchanger 6 and the windward heat exchanger 11 includes a first check valve CVa and a first electronic expansion valve EV1 that functions only during cooling. It is installed. The fourth pipe 24 connecting the windward side heat exchanger 11 and the leeward side heat exchanger 12 is provided with a second check valve CVb and a second electronic expansion valve EV2 that functions only during heating. Has been.

特開2008−25897号公報(特許請求の範囲、図1,図2)JP 2008-25897 A (Claims, FIGS. 1 and 2)

しかしながら、特許文献1に記載の冷暖房空調システムにおいては、1台の冷暖房空調システムに2つの電子膨張弁を設ける必要があるため、配管が複雑になると共に、電子膨張弁の制御が複雑になり、かつコストが嵩む等の懸念があった。   However, in the air conditioning air conditioning system described in Patent Document 1, since it is necessary to provide two electronic expansion valves in one air conditioning air conditioning system, the piping becomes complicated and the control of the electronic expansion valve becomes complicated, In addition, there are concerns such as increased costs.

また、特許文献1に記載の冷暖房空調システムにおいては、内部を流れる冷媒(内部流体)が常に流路抵抗の大きい液相状態にある風上側熱交換器に関して、冷房運転時と暖房運転時とで冷媒流入方向が代わるため、運転効率が低下するという問題もあった。   Further, in the air conditioning and air conditioning system described in Patent Document 1, with respect to the windward side heat exchanger in which the refrigerant (internal fluid) flowing inside is always in a liquid phase state having a large flow path resistance, the cooling and heating operations are performed. Since the refrigerant inflow direction is changed, there is a problem that the operation efficiency is lowered.

この発明は、上記事情に鑑みてなされたもので、配管の簡略化が図れると共に、運転制御を容易にし、かつ運転効率の向上が図れるようにした冷暖房空調システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and simplifying the piping can be reduced, to facilitate the operation control, and an object thereof to provide an HVAC system which is adapted can be improved operating efficiency .

上記課題を解決するため、請求項1記載の発明は、外気通風路に対して風上側と風下側に並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器に流れ、冷房時には高温冷媒が風下側熱交換器、風上側熱交換器の順に流れるようにした冷暖房空調システムにおいて、上記風上側熱交換器の上端に設けられた冷媒流入口に接続する冷媒流入管と、上記風上側熱交換器の下端に設けられた冷媒流出口に接続する冷媒流出管と、記冷媒流出管に介設される膨張機構と、上記冷媒流入管と冷媒流出管とを接続する互いに並列な第1及び第2の分岐管と、上記第1及び第2の分岐管にそれぞれ直列に介設され、上記冷媒流入口側から冷媒流出口側への流れを阻止すると共に、管内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する2つの逆止弁と、上記第1の分岐管における2つの逆止弁の間と上記風下側熱交換器の下端の冷媒流出入口とを接続する室外側管と上記第2の分岐管における2つの逆止弁の間と上記室内熱交換器とを接続する室内側管と、を具備し、上記風上側熱交換器及び上記風下側熱交換器が、それぞれ上記冷媒流入口及び上記冷媒流出口が設けられた一対のヘッダーパイプと、上記一対のヘッダーパイプに連通する互いに平行な複数の扁平熱交換管と、隣接する前記扁平熱交換管の間に介在されるコルゲートフィンと、で構成されている一枚のパラレルフロー型熱交換器からなり、かつ互いに面対向して縦に並設されており、冷房運転時及び暖房運転時のいずれにおいても、上記風上側熱交換器において冷媒が重量方向の上から下に流れる構成を有することを特徴とする。ここで、膨張機構は、例えば膨張弁又は毛管現象を利用するキャピラリーチューブにて形成することができる。
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that the windward side heat exchanger and the leeward side heat exchanger that are arranged in parallel on the windward side and the leeward side with respect to the outdoor air passage are used as outdoor unit heat exchangers. Used when heating, high-temperature refrigerant flows to the windward heat exchanger, then the refrigerant that has become low temperature due to adiabatic expansion flows to the leeward heat exchanger, and during cooling, the high-temperature refrigerant flows to the leeward heat exchanger and windward heat exchange. In a cooling / heating air conditioning system configured to flow in the order of the cooler, a refrigerant inlet pipe connected to a refrigerant inlet provided at an upper end of the windward heat exchanger and a refrigerant outlet provided at a lower end of the windward heat exchanger A refrigerant outlet pipe connected to the refrigerant outlet pipe, an expansion mechanism interposed in the refrigerant outlet pipe, the first and second branch pipes in parallel connecting the refrigerant inlet pipe and the refrigerant outlet pipe, and the first and second The refrigerant flow is interposed in series with each of the second branch pipes. Two check valves for blocking the flow from the inlet side to the refrigerant outlet side and blocking the flow when the secondary side is at a high pressure relative to the primary side of the refrigerant flowing in the pipe, and the two check valves in the first branch pipe The outdoor heat exchanger connecting between the check valves and the refrigerant outflow inlet at the lower end of the leeward heat exchanger and the two heat check valves in the second branch pipe are connected to the indoor heat exchanger. An indoor side pipe, and the windward side heat exchanger and the leeward side heat exchanger are respectively provided with a pair of header pipes provided with the refrigerant inlet and the refrigerant outlet, and the pair of header pipes. A parallel flow type heat exchanger composed of a plurality of parallel flat heat exchange tubes communicating with each other and corrugated fins interposed between the adjacent flat heat exchange tubes, and facing each other Oppositely arranged vertically, In any of the operation and in heating operation tufts operation also, the refrigerant in the windward heat exchanger, characterized in Rukoto that have a structure that flows from the top to the bottom of the weight direction. Here, the expansion mechanism can be formed by, for example, an expansion valve or a capillary tube utilizing capillary action.

このように構成することにより、1つの膨張機構の制御と複数(4個)の逆止弁からなる逆止弁機構によって、冷房運転時と暖房運転時のいずれにおいても風上側熱交換器への冷媒の流入方向を一定にすることができる。   By comprising in this way, by the control of one expansion mechanism and the non-return valve mechanism which consists of a plurality (4) of non-return valves, it is possible to connect to the windward side heat exchanger in both the cooling operation and the heating operation. The inflow direction of the refrigerant can be made constant.

この発明において、上記風上側熱交換器の上端に冷媒流入口を設けると共に、該風上側熱交換器の下端に上記冷媒流出口を設ける方が好ましい(請求項2)。   In this invention, it is preferable to provide the refrigerant inlet at the upper end of the upwind heat exchanger and to provide the refrigerant outlet at the lower end of the upwind heat exchanger.

このように構成することにより、風上側熱交換器への冷媒の流れを重力方向(上から下)へ流すことができ、風上側熱交換器の通路抵抗値を最小限に抑制することができる。   By comprising in this way, the flow of the refrigerant | coolant to an upwind heat exchanger can be flowed to a gravitational direction (from top to bottom), and the passage resistance value of an upwind heat exchanger can be suppressed to the minimum. .

この発明によれば、上記のように構成されているので、以下のような優れた効果が得られる。   According to this invention, since it is configured as described above, the following excellent effects can be obtained.

(1)請求項1記載の発明によれば、1つの膨張機構の制御と逆止弁機構によって、冷房運転時と暖房運転時のいずれにおいても風上側熱交換器へ凝縮後の高温冷媒を流すことができるので、膨張機構の簡略化が図れると共に、運転制御を容易にし、かつ運転効率の向上が図れる。 (1) According to the first aspect of the present invention, the condensed high-temperature refrigerant is caused to flow to the windward heat exchanger in both the cooling operation and the heating operation by the control of one expansion mechanism and the check valve mechanism. Therefore, the expansion mechanism can be simplified, operation control can be facilitated, and operation efficiency can be improved.

(2)請求項2記載の発明によれば、風上側熱交換器への冷媒の流れを重力方向(上から下)へ流すことができ、風上側熱交換器の通路抵抗値を最小限に抑制することができるので、上記(1)に加えて更に運転効率の向上を図ることができる。   (2) According to the invention described in claim 2, the flow of the refrigerant to the windward heat exchanger can be caused to flow in the direction of gravity (from top to bottom), and the passage resistance value of the windward heat exchanger is minimized. Since it can suppress, in addition to said (1), the improvement of driving | operation efficiency can be aimed at further.

この発明に係る冷暖房空調システムの室外機用熱交換装置の冷房運転時の状態を示す概略構成図である。It is a schematic block diagram which shows the state at the time of air_conditionaing | cooling driving | operation of the heat exchanger for outdoor units of the air conditioning system which concerns on this invention. 室外機用熱交換装置の暖房運転時の状態を示す概略構成図である。It is a schematic block diagram which shows the state at the time of the heating operation of the heat exchanger for outdoor units. この発明における逆止弁の冷房運転時の状態を示す断面図である。It is sectional drawing which shows the state at the time of the cooling operation of the non-return valve in this invention. この発明における逆止弁の暖房運転時の状態を示す断面図である。It is sectional drawing which shows the state at the time of heating operation of the non-return valve in this invention. この発明における風上側熱交換器と風下側熱交換器を展開して示す概略構成図である。It is a schematic block diagram which expand | deploys and shows the windward side heat exchanger and leeward side heat exchanger in this invention. 従来の冷暖房空調システムの室外機用熱交換装置を示す概略構成図である。It is a schematic block diagram which shows the heat exchanger for outdoor units of the conventional air-conditioning / air conditioning system.

以下に、この発明に係る冷暖房空調システムの室外機用熱交換装置の実施形態を添付図面に基づいて詳細に説明する。ここでは、従来の室外機用熱交換装置と同じ部分には同一符号を付して説明する。   Hereinafter, an embodiment of a heat exchanger for an outdoor unit of an air conditioning system according to the present invention will be described in detail with reference to the accompanying drawings. Here, the same parts as those of the conventional outdoor unit heat exchange device will be described with the same reference numerals.

冷暖房空調システムは、外気通風路に対して風上側と風下側に並設される風上側熱交換器11及び風下側熱交換器12からなる室外機用熱交換器10と、風上側熱交換器11の上端に設けられた冷媒流入口18aに接続する冷媒流入管31と、風上側熱交換器11の下端に設けられた冷媒流出口18bに接続する冷媒流出管32と、この冷媒流出管32に介設される膨張機構例えば膨張弁EVと、冷媒流入管31と冷媒流出管32とを接続する互いに並列な第1の分岐管33及び第2の分岐管34と、第1及び第2の分岐管33,34に介設される計4個の逆止弁CV1,CV2,CV3,CV4からなる後述する逆止弁機構40と、第1の分岐管33における2つの逆止弁CV1,CV2の間と風下側熱交換器12の下端の冷媒流出入口18dとを接続する室外側管35と、第2の分岐管34における2つの逆止弁CV3,CV4の間と室内機用熱交換器6(以下に室内側熱交換器6という)とを接続する第1の室内側管36と、を具備する。   The air-conditioning / air-conditioning system includes an outdoor unit heat exchanger 10 including an upwind heat exchanger 11 and a leeward heat exchanger 12 arranged in parallel on the upwind side and the downwind side with respect to an outdoor air passage, and an upwind heat exchanger. 11, a refrigerant inflow pipe 31 connected to the refrigerant inlet 18 a provided at the upper end of the heat exchanger 11, a refrigerant outlet pipe 32 connected to the refrigerant outlet 18 b provided at the lower end of the windward heat exchanger 11, and the refrigerant outlet pipe 32. An expansion mechanism, for example, an expansion valve EV, a first branch pipe 33 and a second branch pipe 34 connected in parallel to each other, connecting the refrigerant inflow pipe 31 and the refrigerant outflow pipe 32, and the first and second A check valve mechanism 40, which will be described later, consisting of a total of four check valves CV1, CV2, CV3, CV4 interposed in the branch pipes 33, 34, and two check valves CV1, CV2 in the first branch pipe 33 And the refrigerant outlet 1 at the lower end of the leeward heat exchanger 12 The outdoor side pipe 35 for connecting d, the space between the two check valves CV3 and CV4 in the second branch pipe 34, and the indoor unit heat exchanger 6 (hereinafter referred to as the indoor side heat exchanger 6) are connected. A first indoor pipe 36.

なお、風下側熱交換器12と室内側熱交換器6とを接続する第2の室内側管37には、風下側熱交換器12側から順に四方弁DVと圧縮機5が介設されており、この四方弁DVの切り換えによって、圧縮機5から吐出される高温・高圧の冷媒が室内機用熱交換器6、又は、室外機用熱交換器10の風下側熱交換器12に流れるようになっている。   The second indoor pipe 37 connecting the leeward heat exchanger 12 and the indoor heat exchanger 6 is provided with a four-way valve DV and a compressor 5 in order from the leeward heat exchanger 12 side. The high-temperature and high-pressure refrigerant discharged from the compressor 5 flows through the indoor unit heat exchanger 6 or the leeward heat exchanger 12 of the outdoor unit heat exchanger 10 by switching the four-way valve DV. It has become.

上記逆止弁機構40は、図1ないし図4に示すように、冷媒流入管31と冷媒流出管32とを接続する互いに並列な第1の分岐管33及び第2の分岐管34のうちの一方、すなわち第1の分岐管33に直列に介設される第1の逆止弁CV1及び第2の逆止弁CV2と、他方の分岐管すなわち第2の分岐管34に直列に介設される第3の逆止弁CV3及び第4の逆止弁CV4の4個の逆止弁によって構成されている。この場合、各逆止弁CV1〜CV4は、冷媒流入口18a側から冷媒流出口18b側への流れを阻止すると共に、第1,第2の分岐管33,34内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する機能を有している。   As shown in FIGS. 1 to 4, the check valve mechanism 40 includes a first branch pipe 33 and a second branch pipe 34 that are connected in parallel to each other and connect the refrigerant inflow pipe 31 and the refrigerant outflow pipe 32. In other words, the first check valve CV1 and the second check valve CV2 that are interposed in series with the first branch pipe 33 and the other branch pipe, that is, the second branch pipe 34, are connected in series. The third check valve CV3 and the fourth check valve CV4 are four check valves. In this case, the check valves CV1 to CV4 block the flow from the refrigerant inlet 18a side to the refrigerant outlet 18b side and to the primary side of the refrigerant flowing in the first and second branch pipes 33 and 34. On the other hand, the secondary side has a function of blocking the flow when the pressure is high.

上記のように形成される逆止弁機構40において、第1の分岐管33における第1の逆止弁CV1と第2の逆止弁CV2の間と風下側熱交換器12の下端の冷媒流出入口18dとが室外側管35によって接続されている。また、第2の分岐管34における第3の逆止弁CV3と第4の逆止弁CV4の間と室内側熱交換器6とが第1の室内側管36によって接続されている。   In the check valve mechanism 40 formed as described above, refrigerant flows out of the first branch pipe 33 between the first check valve CV1 and the second check valve CV2 and at the lower end of the leeward heat exchanger 12. The inlet 18d is connected to the outdoor pipe 35. Further, the third check valve CV3 and the fourth check valve CV4 in the second branch pipe 34 and the indoor heat exchanger 6 are connected by the first indoor pipe 36.

室外機用熱交換器10を構成する風上側熱交換器11と風下側熱交換器12は、共にアルミニウム合金製のパラレルフロー型熱交換器によって形成されている。すなわち、風上側熱交換器11及び風下側熱交換器12は、図5に示すように、それぞれ上下に対峙する一対のアルミニウム合金製のヘッダーパイプ14,15と、これらヘッダーパイプ14,15に連通する互いに平行なアルミニウム合金製の例えば押出形材からなる複数の扁平熱交換管16と、隣接する扁平熱交換管16の間に介在されるアルミニウム合金製のコルゲートフィン17とで主に構成されている。   Both the windward side heat exchanger 11 and the leeward side heat exchanger 12 constituting the outdoor unit heat exchanger 10 are formed of aluminum alloy parallel flow type heat exchangers. That is, as shown in FIG. 5, the windward side heat exchanger 11 and the leeward side heat exchanger 12 communicate with a pair of header pipes 14 and 15 made of aluminum alloy facing each other and the header pipes 14 and 15. The plurality of flat heat exchange pipes 16 made of, for example, extruded shapes made of parallel aluminum alloys, and corrugated fins 17 made of aluminum alloy interposed between adjacent flat heat exchange pipes 16 are mainly configured. Yes.

この場合、風上側熱交換器11の上部ヘッダーパイプ14には、冷媒流入管31が接続される冷媒流入口18aが設けられ、風上側熱交換器11の下部ヘッダーパイプ15には、冷媒流出管32が接続される冷媒流出口18bが設けられている。一方、風下側熱交換器12の上部ヘッダーパイプ14には、第1の室内側管36が接続される冷媒流入出口18cが設けられ、風下側熱交換器12の下部ヘッダーパイプ15には、第2の室内側管37が接続される冷媒流入出口18dが設けられている。なお、扁平熱交換管16は、複数の冷媒通路(図示せず)が区画形成されている。また、上部及び下部ヘッダーパイプ14,15、扁平熱交換管16及びコルゲートフィン17は例えばろう付けによって一体に形成されている。   In this case, the upper header pipe 14 of the windward side heat exchanger 11 is provided with a refrigerant inlet 18a to which the refrigerant inflow pipe 31 is connected, and the lower header pipe 15 of the windward side heat exchanger 11 is provided with a refrigerant outlet pipe. The refrigerant | coolant outflow port 18b to which 32 is connected is provided. On the other hand, the upper header pipe 14 of the leeward heat exchanger 12 is provided with a refrigerant inflow / outlet port 18c to which the first indoor pipe 36 is connected, and the lower header pipe 15 of the leeward heat exchanger 12 has a first header pipe 15c. A refrigerant inlet / outlet port 18d to which the two indoor pipes 37 are connected is provided. The flat heat exchange pipe 16 has a plurality of refrigerant passages (not shown) defined therein. Further, the upper and lower header pipes 14 and 15, the flat heat exchange pipe 16 and the corrugated fins 17 are integrally formed by brazing, for example.

上記のように、風上側熱交換器11と風下側熱交換器12を、パラレルフロー型熱交換器にて形成することにより、伝熱フィンに複数列の蛇行伝熱管を貫通させた、フィン・アンド・チューブ型の熱交換器に比べて厚さを薄くすることができるので、室外機用熱交換器10の設置スペースの省スペース化、すなわち室外機用熱交換器10、膨張弁EV及び逆止弁機構40等を収容する室外機50の省スペース化が図れる。なお、図5において、符号60は、室内側熱交換器6を収容する室内機である。また、パラレルフロー型熱交換器とフィン・アンド・チューブ型熱交換器を、通風面積及び熱交換性能を同等として比較した場合、パラレルフロー型熱交換器は、フィン・アンド・チューブ型熱交換器に対して外気の圧損を少なくすることができると共に、冷媒の圧損を少なくすることができる。 As described above, by forming the windward side heat exchanger 11 and the leeward side heat exchanger 12 with a parallel flow type heat exchanger, a plurality of meandering heat transfer tubes are penetrated through the heat transfer fins. Since the thickness can be reduced as compared with the And-tube type heat exchanger, the installation space of the outdoor unit heat exchanger 10 can be saved, that is, the outdoor unit heat exchanger 10, the expansion valve EV and the reverse. Space saving of the outdoor unit 50 that accommodates the valve stop mechanism 40 and the like can be achieved. In FIG. 5, reference numeral 60 is an indoor unit that houses the indoor heat exchanger 6. In addition, when comparing parallel flow type heat exchangers and fin-and-tube heat exchangers with the same ventilation area and heat exchange performance, parallel flow type heat exchangers are fin-and-tube type heat exchangers. In contrast, the pressure loss of the outside air can be reduced, and the pressure loss of the refrigerant can be reduced.

なお、上記実施形態では膨張機構が膨張弁EVにて形成される場合について説明したが、膨張弁EVに代えて、毛管現象を利用するキャピラリーチューブにて膨張機構を形成してもよい。   In addition, although the said embodiment demonstrated the case where an expansion mechanism was formed with the expansion valve EV, it may replace with the expansion valve EV and may form an expansion mechanism with the capillary tube using a capillary phenomenon.

また、上記実施の形態では、風上側熱交換器11と風下側熱交換器12の双方を、上下に対峙するヘッダーパイプ14,15を有するアルミニウム合金製のパラレルフロー型熱交換器としたが、風上側熱交換器11は、左右に対峙するヘッダーパイプを有するアルミニウム合金製のパラレルフロー型熱交換器であってもよい。   Moreover, in the said embodiment, although the windward side heat exchanger 11 and the leeward side heat exchanger 12 were made into the parallel flow type heat exchanger made from the aluminum alloy which has the header pipes 14 and 15 facing up and down, The windward side heat exchanger 11 may be an aluminum alloy parallel flow heat exchanger having header pipes facing left and right.

また、上記実施の形態では、風上側熱交換器11と風下側熱交換器12の大きさを同じにした場合について説明したが、風上側熱交換器11の高さ,面積を風下側熱交換器12に対して1/4〜2/3として更に圧損を少なくすることができる。   Moreover, although the said embodiment demonstrated the case where the magnitude | size of the leeward side heat exchanger 11 and the leeward side heat exchanger 12 was made the same, the height and area of the leeward side heat exchanger 11 are made into leeward side heat exchange. The pressure loss can be further reduced to 1/4 to 2/3 of the vessel 12.

次に、この発明に係る室外機用熱交換器10を用いた冷暖房空調システムの動作について、図1ないし図4を参照して説明する。   Next, the operation of the air conditioning and air conditioning system using the outdoor unit heat exchanger 10 according to the present invention will be described with reference to FIGS.

<冷房運転時>
冷房運転時には、図1及び図3に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構40の第4の逆止弁CV4を通過し、室内側熱交換器6へ流れ蒸発される。このとき、第2の逆止弁CV2と第3の逆止弁CV3には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない(図3参照)。
<During cooling operation>
During the cooling operation, as indicated by arrows in FIGS. 1 and 3, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and has been reduced in pressure by adiabatic expansion is supplied to the fourth check valve CV4 of the check valve mechanism 40. It passes through and flows into the indoor heat exchanger 6 and is evaporated. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because the valve back is filled with high-pressure refrigerant (see FIG. 3).

室内側熱交換器6を通過した冷媒は、四方弁DV→圧縮機5→風下側熱交換器12を通過し、室外側管35を介して第1の分岐管33における第1の逆止弁CV1と第2の逆止弁CV2の間に流入する。逆止弁機構40に戻った冷媒は、第1の逆止弁CV1を通過する。このとき、第2の逆止弁CV2と第3の逆止弁CV3は弁の逆止機能が働いて流路として機能しない(図3参照)。   The refrigerant that has passed through the indoor heat exchanger 6 passes through the four-way valve DV → the compressor 5 → the leeward heat exchanger 12, and the first check valve in the first branch pipe 33 via the outdoor pipe 35. It flows between CV1 and the second check valve CV2. The refrigerant that has returned to the check valve mechanism 40 passes through the first check valve CV1. At this time, the second check valve CV2 and the third check valve CV3 do not function as flow paths because of the valve check function (see FIG. 3).

第1の逆止弁CV1を通過した冷媒すなわち高温の凝縮液は、風上側熱交換器11の上端の冷媒流入口18aから重力方向(上から下)へ流れる。これにより、風上側熱交換器11はサブクーラとして機能すると共に、風上側熱交換器11の通路抵抗値を最小限に抑制することができるので、運転効率の向上を図ることができる。   The refrigerant that has passed through the first check valve CV1, that is, the high-temperature condensate, flows in the direction of gravity (from top to bottom) from the refrigerant inlet 18a at the upper end of the windward heat exchanger 11. Thereby, while the windward side heat exchanger 11 functions as a subcooler and the passage resistance value of the windward side heat exchanger 11 can be suppressed to the minimum, the operating efficiency can be improved.

<暖房運転時>
暖房運転時には、図2に矢印で示すように、膨張弁EV(膨張機構)を通過し断熱膨張で低圧化された冷媒は、逆止弁機構40の第2の逆止弁CV2を通過し、風下側熱交換器12へ流れ蒸発される。このとき、第1の逆止弁CV1と第4の逆止弁CV4には、弁裏に高圧の冷媒が充満している状態であるので、流路として機能しない(図4参照)。
<During heating operation>
During the heating operation, as indicated by an arrow in FIG. 2, the refrigerant that has passed through the expansion valve EV (expansion mechanism) and has been reduced in pressure by adiabatic expansion passes through the second check valve CV <b> 2 of the check valve mechanism 40, It flows to the leeward heat exchanger 12 and is evaporated. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths because the valve back is filled with high-pressure refrigerant (see FIG. 4).

風下側熱交換器12を通過した冷媒は、四方弁DV→圧縮機5→室内側熱交換器6を通過し、第1の室内側管36を介して第2の分岐管34における第3の逆止弁CV3と第4の逆止弁CV4の間に流入する。逆止弁機構40に戻った冷媒は、第3の逆止弁CV3を通過する。このとき、第1の逆止弁CV1と第4の逆止弁CV4は弁の逆止機能が働いて流路として機能しない(図4参照)。   The refrigerant that has passed through the leeward heat exchanger 12 passes through the four-way valve DV → the compressor 5 → the indoor heat exchanger 6 and passes through the first indoor pipe 36 and the third branch pipe 34 through the third branch pipe 34. It flows between the check valve CV3 and the fourth check valve CV4. The refrigerant that has returned to the check valve mechanism 40 passes through the third check valve CV3. At this time, the first check valve CV1 and the fourth check valve CV4 do not function as flow paths because of the valve check function (see FIG. 4).

第3の逆止弁CV3を通過した冷媒すなわち高温の凝縮液は、風上側熱交換器11の上端の冷媒流入口18aから重力方向(上から下)へ流れる。これにより、風上側熱交換器11の通路抵抗値を最小限に抑制することができるので、運転効率の向上を図ることができる。   The refrigerant that has passed through the third check valve CV3, that is, the high-temperature condensate, flows in the direction of gravity (from top to bottom) from the refrigerant inlet 18a at the upper end of the windward heat exchanger 11. Thereby, since the passage resistance value of the windward heat exchanger 11 can be suppressed to the minimum, the operation efficiency can be improved.

上記のように、この発明に係る室外機用熱交換装置によれば、1つの膨張弁EV(膨張機構)の制御と逆止弁機構40によって、冷房運転時と暖房運転時のいずれにおいても風上側熱交換器11への冷媒の流入方向を一定にすることができるので、配管の簡略化が図れると共に、運転制御を容易にし、かつ運転効率の向上が図れる。   As described above, according to the heat exchange device for an outdoor unit according to the present invention, the air flow is controlled in both the cooling operation and the heating operation by controlling one expansion valve EV (expansion mechanism) and the check valve mechanism 40. Since the inflow direction of the refrigerant to the upper heat exchanger 11 can be made constant, piping can be simplified, operation control can be facilitated, and operation efficiency can be improved.

5 圧縮機
6 室内側熱交換器
10 室外機用熱交換器
11 風上側熱交換器
12 風下側熱交換器
18a 冷媒流入口
18b 冷媒流出口
31 冷媒流入管
32 冷媒流出管
33 第1の分岐管
34 第2の分岐管
35 室外側管
36 第1の室内側管
37 第2の室内側管
40 逆止弁機構
EV 膨張弁(膨張機構)
CV1〜CV4 第1〜第4の逆止弁

5 Compressor 6 Indoor Heat Exchanger 10 Outdoor Heat Exchanger 11 Upward Heat Exchanger 12 Downward Heat Exchanger 18a Refrigerant Inlet 18b Refrigerant Outlet 31 Refrigerant Inlet Pipe 32 Refrigerant Outlet Pipe 33 First Branch Pipe 34 Second branch pipe 35 Outdoor side pipe 36 First indoor side pipe 37 Second indoor side pipe 40 Check valve mechanism EV Expansion valve (expansion mechanism)
CV1 to CV4 first to fourth check valves

Claims (1)

外気通風路に対して風上側と風下側に並設される風上側熱交換器及び風下側熱交換器が室外機用熱交換器として用いられ、暖房時には高温冷媒が風上側熱交換器に流れた後、断熱膨張により低温となった冷媒が風下側熱交換器に流れ、冷房時には高温冷媒が風下側熱交換器、風上側熱交換器の順に流れるようにした冷暖房空調システムにおいて、
上記風上側熱交換器の上端に設けられた冷媒流入口に接続する冷媒流入管と、
上記風上側熱交換器の下端に設けられた冷媒流出口に接続する冷媒流出管と、
上記冷媒流出管に介設される膨張機構と、
上記冷媒流入管と冷媒流出管とを接続する互いに並列な第1及び第2の分岐管と、
上記第1及び第2の分岐管にそれぞれ直列に介設され、上記冷媒流入口側から冷媒流出口側への流れを阻止すると共に、管内を流れる冷媒の一次側に対して二次側が高圧時には流れを阻止する2つの逆止弁と、
上記第1の分岐管における2つの逆止弁の間と上記風下側熱交換器の下端の冷媒流出入口とを接続する室外側管と、
上記第2の分岐管における2つの逆止弁の間と上記室内熱交換器とを接続する室内側管と、を具備し、
上記風上側熱交換器及び上記風下側熱交換器が、それぞれ上記冷媒流入口及び上記冷媒流出口が設けられた一対のヘッダーパイプと、上記一対のヘッダーパイプに連通する互いに平行な複数の扁平熱交換管と、隣接する前記扁平熱交換管の間に介在されるコルゲートフィンと、で構成されている一枚のパラレルフロー型熱交換器からなり、かつ互いに面対向して縦に並設されており、
冷房運転時及び暖房運転時のいずれにおいても、上記風上側熱交換器において冷媒が重量方向の上から下に流れる構成を有すること
を特徴とする冷暖房空調システム。
The windward side heat exchanger and the leeward side heat exchanger that are installed side by side on the windward side and the leeward side with respect to the outdoor air passage are used as heat exchangers for the outdoor unit. During heating, high-temperature refrigerant flows to the windward side heat exchanger. After that, the refrigerant that has become low temperature due to adiabatic expansion flows to the leeward side heat exchanger, and at the time of cooling, the high temperature refrigerant flows in the order of the leeward side heat exchanger, then the windward side heat exchanger,
A refrigerant inlet pipe connected to a refrigerant inlet provided at the upper end of the upwind heat exchanger;
A refrigerant outlet pipe connected to a refrigerant outlet provided at the lower end of the upwind heat exchanger;
An expansion mechanism interposed in the refrigerant outflow pipe;
A first branch pipe and a second branch pipe which are parallel to each other and connect the refrigerant inlet pipe and the refrigerant outlet pipe;
Each of the first and second branch pipes is connected in series to block the flow from the refrigerant inlet side to the refrigerant outlet side, and when the secondary side is at a high pressure relative to the primary side of the refrigerant flowing in the pipe. Two check valves to block the flow;
An outdoor pipe connecting the two check valves in the first branch pipe and a refrigerant outlet at the lower end of the leeward heat exchanger;
An indoor pipe connecting between the two check valves in the second branch pipe and the indoor heat exchanger ;
The windward side heat exchanger and the leeward side heat exchanger include a pair of header pipes provided with the refrigerant inlet and the refrigerant outlet, respectively, and a plurality of parallel flat heats communicating with the pair of header pipes. It consists of a single parallel flow type heat exchanger composed of an exchange pipe and a corrugated fin interposed between the adjacent flat heat exchange pipes, and is arranged vertically in parallel facing each other. And
In any time and in the heating operation cooling operation, Rukoto that have a structure that flows down the refrigerant in the windward heat exchanger from the top of the weight direction,
Heating and cooling air conditioning system according to claim.
JP2009062259A 2009-03-16 2009-03-16 Air conditioning system Active JP4845987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009062259A JP4845987B2 (en) 2009-03-16 2009-03-16 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009062259A JP4845987B2 (en) 2009-03-16 2009-03-16 Air conditioning system

Publications (3)

Publication Number Publication Date
JP2010216692A JP2010216692A (en) 2010-09-30
JP2010216692A5 JP2010216692A5 (en) 2011-06-23
JP4845987B2 true JP4845987B2 (en) 2011-12-28

Family

ID=42975730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009062259A Active JP4845987B2 (en) 2009-03-16 2009-03-16 Air conditioning system

Country Status (1)

Country Link
JP (1) JP4845987B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752803B2 (en) 2011-02-16 2017-09-05 Johnson Controls Technology Company Heat pump system with a flow directing system
CN103380335B (en) * 2011-02-16 2016-09-14 江森自控科技公司 There is the heat pump of flowing guiding system
JP6303872B2 (en) * 2013-09-08 2018-04-04 日本軽金属株式会社 Air conditioning system
WO2016002111A1 (en) * 2014-06-30 2016-01-07 正 岡本 Cooling and heating air-conditioning system
WO2020110213A1 (en) * 2018-11-28 2020-06-04 三菱電機株式会社 Air-conditioner
JP2022070188A (en) * 2020-10-26 2022-05-12 グリーンアース株式会社 Global warming alleviation method by air conditioner using coolant r410a

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6419872A (en) * 1987-07-15 1989-01-23 Ricoh Kk Picture processing system
JPH10160269A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Refrigerating device
JP2003056930A (en) * 2001-08-08 2003-02-26 Hitachi Ltd Air heat source type heat pump apparatus, water-cooled heat pump apparatus, air-cooled refrigerating apparatus and water-cooled refrigerating apparatus
JP2003302124A (en) * 2002-04-11 2003-10-24 Showa Denko Kk Heat exchanger with receiver tank, receiver tank assembly structure of heat exchanger, method for assembling the same, and refrigerating system
JP2006220351A (en) * 2005-02-10 2006-08-24 Hitachi Ltd Freezer
JP4889011B2 (en) * 2006-07-20 2012-02-29 株式会社B.T.P. Air conditioning system

Also Published As

Publication number Publication date
JP2010216692A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP6641721B2 (en) Heat exchangers and air conditioners
JP6011009B2 (en) Heat exchanger and air conditioner
JP4889011B2 (en) Air conditioning system
JP4845987B2 (en) Air conditioning system
JP2012163328A5 (en)
JP2006284134A (en) Heat exchanger
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
JP2006284133A (en) Heat exchanger
JP6157593B2 (en) Heat exchanger and refrigeration cycle air conditioner using the same
JP2007255785A (en) Heat exchanger with fin and air conditioner
JP3177302U (en) Air conditioning unit
JP2014137177A (en) Heat exchanger and refrigerator
JP2007147221A (en) Heat exchanger with fin
JP2005127529A (en) Heat exchanger
JP2015230129A (en) Heat exchanger
JP4647512B2 (en) Air conditioner
JP5404571B2 (en) Heat exchanger and equipment
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
TWI731588B (en) air conditioner
JPWO2019130394A1 (en) Heat exchanger and refrigeration cycle equipment
CN106871496A (en) Indoor heat exchanger and air-conditioner
WO2017042940A1 (en) Heat exchanger
JP6885857B2 (en) Air conditioner
JP2017048953A (en) Air conditioner
CN206131220U (en) Air conditioning unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110415

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110415

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20110727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4845987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350