JP6885857B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6885857B2
JP6885857B2 JP2017237873A JP2017237873A JP6885857B2 JP 6885857 B2 JP6885857 B2 JP 6885857B2 JP 2017237873 A JP2017237873 A JP 2017237873A JP 2017237873 A JP2017237873 A JP 2017237873A JP 6885857 B2 JP6885857 B2 JP 6885857B2
Authority
JP
Japan
Prior art keywords
pipe
heat transfer
refrigerant
branch pipe
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017237873A
Other languages
Japanese (ja)
Other versions
JP2019105402A (en
Inventor
秀穂 藤田
秀穂 藤田
智史 莅戸
智史 莅戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corona Corp
Original Assignee
Corona Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corona Corp filed Critical Corona Corp
Priority to JP2017237873A priority Critical patent/JP6885857B2/en
Publication of JP2019105402A publication Critical patent/JP2019105402A/en
Application granted granted Critical
Publication of JP6885857B2 publication Critical patent/JP6885857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、一般家庭用で使用する小型の空気調和機に関するものである。 The present invention relates to a small air conditioner used for general household use.

従来よりこの種のものに於いては、圧縮機及び熱交換器を備えた室外ユニットと室内ユニットとを冷媒配管でつないだ空気調和機において、前記熱交換器は、風の後流側に冷媒入口として第1分岐管が配置され、隣接する2つの伝熱管に第1分岐管により冷媒が分流されて2つのサーキットとして冷媒を流し、2つのサーキットの隣接する2つの伝熱管を第2分岐管で合流させたのち、第2分岐管を長配管により熱交換器下部の後流側の伝熱管に接続させて熱交換器前流側最下端より冷媒を排出させるようにしたので、冷媒は、第1分岐管で隣接する2つの伝熱管に分岐されて2つのサーキットに流されて長い配管が不要になり、熱交換器の効率を向上させることが可能となる。また、2つのサーキットを第1分岐管で合流させて、風の後流側の伝熱管に接続しているので、冷媒の流れをカウンターフローにすることができ、熱交換器の効率を好ましい状態にすることができるものだった。(例えば、特許文献1参照) Conventionally, in this type of air exchanger, in an air conditioner in which an outdoor unit equipped with a compressor and a heat exchanger and an indoor unit are connected by a refrigerant pipe, the heat exchanger is a refrigerant on the wake side of the wind. A first branch pipe is arranged as an inlet, the refrigerant is divided into two adjacent heat transfer pipes by the first branch pipe, the refrigerant flows as two circuits, and the two adjacent heat transfer pipes of the two circuits are connected to the second branch pipe. After merging at, the second branch pipe was connected to the heat transfer pipe on the wake side of the lower part of the heat exchanger by a long pipe so that the refrigerant was discharged from the lowermost end on the front flow side of the heat exchanger. The first branch pipe is branched into two adjacent heat transfer tubes and is flown through the two circuits, eliminating the need for a long pipe and improving the efficiency of the heat exchanger. Further, since the two circuits are merged by the first branch pipe and connected to the heat transfer pipe on the wake side of the wind, the flow of the refrigerant can be made into a counterflow, and the efficiency of the heat exchanger is in a preferable state. It was something that could be done. (See, for example, Patent Document 1)

特開平11−230637号公報Japanese Unexamined Patent Publication No. 11-23637

室外熱交換器を蒸発器として使用した場合に、冷媒が流入する冷媒流入口に近い領域では液冷媒の割合が大きいために、伝熱管や接続配管の抵抗によって室外熱交換器内を流れる冷媒量にバラツキが生じる。この冷媒流量のバラツキが大きいと室外熱交換器の効率は低下し、冷凍回路全体の効率も低下する。そこで、室外熱交換器内を流れる冷媒量をできるだけ均一にすることで空気調和機の効率を向上する必要があった。 When the outdoor heat exchanger is used as an evaporator, the proportion of liquid refrigerant is large in the region near the refrigerant inlet where the refrigerant flows, so the amount of refrigerant flowing in the outdoor heat exchanger due to the resistance of the heat transfer pipe and connecting pipes. Will vary. If the flow rate of the refrigerant varies widely, the efficiency of the outdoor heat exchanger will decrease, and the efficiency of the entire refrigeration circuit will also decrease. Therefore, it is necessary to improve the efficiency of the air conditioner by making the amount of the refrigerant flowing in the outdoor heat exchanger as uniform as possible.

この発明はこの点に着目し上記欠点を解決する為、特にその構成を、圧縮機と四方弁と室外熱交換器を備えた室外機と、室内熱交換器を備えた室内機とを冷媒配管で接続した空気調和機に於いて、前記室外熱交換器は所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンと、空気を流通させる方向に複数列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管と、前記伝熱管を互いに接続する接続配管とを有し、前記室外熱交換器を蒸発器として使用した場合に、冷媒が流入する冷媒流入口に近い前記接続配管にて、上下方向に分流を行うT型分岐管を備え、前記T型分岐管の下側接続口と、前記T型分岐管よりも高い位置の前記伝熱管の接続口A1とを接続する下側接続配管を有し、前記T型分岐管の上側接続口と、前記T型分岐管よりも低い位置の前記伝熱管の接続口A2とを接続する上側接続配管を有し、前記上側接続配管の管径B1を前記下側接続配管の管径B2よりも大きくし、前記T型分岐管と接続する前記接続配管の管径が前記下側接続配管の管径B2と同一であるようにした。 In order to solve the above-mentioned drawbacks by paying attention to this point, the present invention particularly comprises a refrigerant pipe for an outdoor unit equipped with a compressor, a four-way valve and an outdoor heat exchanger, and an indoor unit equipped with an indoor heat exchanger. In the air conditioner connected by, the outdoor heat exchangers are laminated with a predetermined gap, and a plurality of fins for circulating air in the gap, a plurality of rows in the direction for flowing air, and a direction for circulating air. It has heat transfer pipes arranged in a plurality of stages in the vertical direction intersecting with each other and connecting pipes for connecting the heat transfer pipes to each other, and when the outdoor heat exchanger is used as an evaporator, it is provided at the refrigerant inflow port into which the refrigerant flows. A T-type branch pipe that divides the flow in the vertical direction is provided in the nearby connection pipe, and the lower connection port of the T-type branch pipe and the connection port A1 of the heat transfer pipe at a position higher than the T-type branch pipe. It has a lower connection pipe for connecting the above, and has an upper connection pipe for connecting the upper connection port of the T-type branch pipe and the connection port A2 of the heat transfer pipe at a position lower than the T-type branch pipe. The pipe diameter B1 of the upper connecting pipe is made larger than the pipe diameter B2 of the lower connecting pipe, and the pipe diameter of the connecting pipe connected to the T-shaped branch pipe is the same as the pipe diameter B2 of the lower connecting pipe. It was in a certain way.

この発明によれば、室外熱交換器を蒸発器として使用した場合に、冷媒が流入する冷媒流入口に近い接続配管にて、上下方向に分流を行うT型分岐管を備え、T型分岐管の上側接続口に接続する上側接続配管の管径B1を、T型分岐管の下側接続口に接続する下側接続配管の管径B2よりも大きくし、前記T型分岐管と接続する前記接続配管の管径が前記下側接続配管の管径B2と同一であることで、T型分岐管における液冷媒の分配量を調整して、室外熱交換器内を流れる冷媒量をできるだけ均一にすることで空気調和機の効率を向上することができる。
また、室外熱交換器を凝縮器として使用した場合においても、T型分岐管に流れ込む冷媒を上側接続配管の管径B1を下側続配管の管径B2よりも大きくすることで、T型分岐管における冷媒の合流を均一にスムーズにすることができる。
According to the present invention, when the outdoor heat exchanger is used as an evaporator, the T-type branch pipe is provided with a T-type branch pipe that divides the flow in the vertical direction in a connection pipe near the refrigerant inflow port into which the refrigerant flows. The pipe diameter B1 of the upper connection pipe connected to the upper connection port of the T-type branch pipe is made larger than the pipe diameter B2 of the lower connection pipe connected to the lower connection port of the T-type branch pipe, and the pipe diameter B2 is connected to the T-type branch pipe. Since the pipe diameter of the connecting pipe is the same as the pipe diameter B2 of the lower connecting pipe, the distribution amount of the liquid refrigerant in the T-shaped branch pipe is adjusted to make the amount of the refrigerant flowing in the outdoor heat exchanger as uniform as possible. By doing so, the efficiency of the air exchanger can be improved.
Further, even when the outdoor heat exchanger is used as a condenser, the refrigerant flowing into the T-type branch pipe is T-type branched by making the pipe diameter B1 of the upper connecting pipe larger than the pipe diameter B2 of the lower connecting pipe. The merging of the refrigerant in the pipe can be made uniform and smooth.

この発明一実施例に係る空気調和機の概略構成図。The schematic block diagram of the air conditioner which concerns on one Example of this invention. 同側面方向の概略構成図。Schematic configuration diagram in the same side direction. 同要部の斜視図。A perspective view of the main part. 他の実施例を示す側面方向の概略構成図。The schematic block diagram in the side direction which shows another Example. 同要部の斜視図。A perspective view of the main part.

次にこの発明に係る空気調和機を図面に示された一実施例で説明する。
1は屋外に設置される空気調和機の室外機で、室内に設置される室内機2と冷媒配管3で接続される。この空気調和機は、インバータ制御により回転数可変の圧縮機4と、四方弁5と、室外熱交換器6と、膨張弁7と、室内熱交換器8とが順次接続され冷凍回路9を構成し冷媒を循環している。
Next, the air conditioner according to the present invention will be described with reference to an embodiment shown in the drawings.
Reference numeral 1 denotes an outdoor unit of an air conditioner installed outdoors, which is connected to an indoor unit 2 installed indoors by a refrigerant pipe 3. In this air conditioner, a compressor 4 having a variable rotation speed by inverter control, a four-way valve 5, an outdoor heat exchanger 6, an expansion valve 7, and an indoor heat exchanger 8 are sequentially connected to form a refrigeration circuit 9. The refrigerant is circulated.

前記室外熱交換器6には室外ファン10が付設され、この室外ファン10によって空気を室外熱交換器6に送ることで室外の空気との間で熱交換を行う。また、前記室内熱交換器8には室内ファン11が付設され、この室内ファン11によって空気を室内熱交換器8に送ることで室内の空気との間で熱交換を行う。 An outdoor fan 10 is attached to the outdoor heat exchanger 6, and the outdoor fan 10 sends air to the outdoor heat exchanger 6 to exchange heat with the outdoor air. Further, an indoor fan 11 is attached to the indoor heat exchanger 8, and the indoor fan 11 sends air to the indoor heat exchanger 8 to exchange heat with the indoor air.

暖房運転では、前記室外熱交換器6が蒸発器として機能し、室内熱交換器8は凝縮器として機能する。一方、冷房運転時は、室外熱交換器6が凝縮器として機能し、室内熱交換器8が蒸発器として機能する。 In the heating operation, the outdoor heat exchanger 6 functions as an evaporator, and the indoor heat exchanger 8 functions as a condenser. On the other hand, during the cooling operation, the outdoor heat exchanger 6 functions as a condenser, and the indoor heat exchanger 8 functions as an evaporator.

前記室外熱交換器6について詳述する。室外熱交換器6は、フィンチューブ型熱交換器である。この室外熱交換器6は、所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィン12を有する。また、フィン12の積層方向に貫通し、空気を流通させる方向に2列、空気を流通させる方向と交差する上下方向に24段配置される伝熱管13(外径7.0mm)とを有し、それらの伝熱管13を順次接続して形成した接続配管14に冷媒を流通させている。この実施例において、図2の室外熱交換器6に空気が流通する方向は、白抜き矢印で図示したとおり図2の右から左である。室外熱交換器6が蒸発器として機能する暖房運転の場合、図2の実線の矢印に示すように、前記膨張弁7から接続配管201(外径7.0mm)へ流れた液冷媒は、Y型分岐管15によって2方向に接続配管202・203(外径7.0mm)に分流され、室外熱交換器6の風上側にある列のうち、最下段より4〜5段上方にある伝熱管104・105(冷媒流入口)に流入する。伝熱管104に流入した冷媒は、最下段までの伝熱管103・102・101を下方向に流通した後、接続配管204(外径9.52mm)に流入する。また、伝熱管105に流入した冷媒は、伝熱管106・107・108の順に上方向に流通した後、接続配管205(外径7.0mm)に流入する。 The outdoor heat exchanger 6 will be described in detail. The outdoor heat exchanger 6 is a fin tube type heat exchanger. The outdoor heat exchanger 6 is laminated with a predetermined gap, and has a plurality of fins 12 for passing air through the gap. Further, it has two rows of heat transfer tubes 13 (outer diameter 7.0 mm) penetrating in the stacking direction of the fins 12 and arranged in 24 stages in the vertical direction intersecting the air flowing direction. , The refrigerant is circulated through the connection pipe 14 formed by sequentially connecting the heat transfer pipes 13. In this embodiment, the direction in which air flows through the outdoor heat exchanger 6 in FIG. 2 is from right to left in FIG. 2 as shown by the white arrows. In the heating operation in which the outdoor heat exchanger 6 functions as an evaporator, as shown by the solid line arrow in FIG. 2, the liquid refrigerant flowing from the expansion valve 7 to the connecting pipe 201 (outer diameter 7.0 mm) is Y. The heat transfer tube is divided into the connecting pipes 202 and 203 (outer diameter 7.0 mm) in two directions by the type branch pipe 15, and is 4 to 5 steps above the bottom of the rows on the wind side of the outdoor heat exchanger 6. It flows into 104.105 (refrigerant inflow port). The refrigerant that has flowed into the heat transfer tube 104 flows downward through the heat transfer tubes 103, 102, and 101 up to the bottom stage, and then flows into the connection pipe 204 (outer diameter: 9.52 mm). Further, the refrigerant that has flowed into the heat transfer tube 105 flows upward in the order of the heat transfer tubes 106, 107, and 108, and then flows into the connection pipe 205 (outer diameter 7.0 mm).

前記接続配管204は上方向に約17段重力に反して上昇するために太い外径9.52mmの銅管を使用する。そして、並行分岐管17によって2方向に接続配管208・209(外径7.0mm)に分流され、風上側にある列のうち、最上段より7段下方にある伝熱管118と6段段下方にある伝熱管119に流入する。伝熱管118に流入した冷媒は、伝熱管117・116・115を下方向に流通した後、風下側列の伝熱管139から上方向に伝熱管140・141・143・144を流通して接続配管212(外径7.0mm)に到る。伝熱管119に流入した冷媒は、伝熱管120・121・123・124を上方向に流通した後、風下側列で最上段の伝熱管148から下方向に147・146・145を流通して接続配管213(外径7.0mm)に到る。 The connecting pipe 204 uses a thick copper pipe having an outer diameter of 9.52 mm in order to rise upward against gravity in about 17 steps. Then, the parallel branch pipe 17 divides the flow into the connecting pipes 208 and 209 (outer diameter 7.0 mm) in two directions, and among the rows on the windward side, the heat transfer pipe 118 located 7 steps below the top and 6 steps below. It flows into a certain heat transfer tube 119. The refrigerant flowing into the heat transfer tube 118 flows downward through the heat transfer tubes 117, 116, 115, and then flows upward from the heat transfer tubes 139 in the leeward side row to the heat transfer tubes 140, 141, 143, 144, and is connected to the connecting pipe. It reaches 212 (outer diameter 7.0 mm). The refrigerant flowing into the heat transfer tube 119 flows upward through the heat transfer tubes 120, 121, 123, 124, and then flows downward from the uppermost heat transfer tube 148 in the leeward row to connect with 147, 146, 145. It reaches the pipe 213 (outer diameter 7.0 mm).

図2に加えて図3の斜視図で詳述する。図3の白抜き矢印は暖房運転時の冷媒の流通方向を示す。前記接続配管205は、T型分岐管16によって上下方向に分流する。このT型分岐管16の下側接続口16aと、T型分岐管16よりも高い位置の伝熱管109の接続口A1とを下側接続配管206(外径7.0mm)で接続し、T型分岐管16の上側接続口16bと、T型分岐管16よりも低い位置の伝熱管125(風下側の最下段)の接続口A2とを上側接続配管207(外径7.94mm)で接続する。これによって、重力に反して上側に流れる上側接続配管207の管径B1(外径7.94mm)を重量方向に流れる下側接続配管206の管径B2(外径7.0mm)よりも大きくすることで、T型分岐管16における液冷媒の分配量を適切に調整することができる。 In addition to FIG. 2, the perspective view of FIG. 3 will be described in detail. The white arrows in FIG. 3 indicate the flow direction of the refrigerant during the heating operation. The connecting pipe 205 is divided in the vertical direction by the T-shaped branch pipe 16. The lower connection port 16a of the T-type branch pipe 16 and the connection port A1 of the heat transfer tube 109 at a position higher than the T-type branch pipe 16 are connected by the lower connection pipe 206 (outer diameter 7.0 mm), and T The upper connection port 16b of the type branch pipe 16 and the connection port A2 of the heat transfer tube 125 (lowermost stage on the leeward side) located lower than the T type branch pipe 16 are connected by the upper connection pipe 207 (outer diameter 7.94 mm). To do. As a result, the pipe diameter B1 (outer diameter 7.94 mm) of the upper connecting pipe 207 flowing upward against gravity is made larger than the pipe diameter B2 (outer diameter 7.0 mm) of the lower connecting pipe 206 flowing in the weight direction. Therefore, the distribution amount of the liquid refrigerant in the T-type branch pipe 16 can be appropriately adjusted.

また、室外熱交換器6を凝縮器として使用する冷房運転の場合(図2の破線矢印)においても、T型分岐管16に流れ込む冷媒を上側接続配管207の管径B1を下側続配管206の管径B2よりも大きくすることで、T型分岐管16における冷媒の合流を均一にスムーズにすることができる。冷媒の分流や合流を行う分岐管の種類は多数有るが、この発明ではT型分岐管とY型分岐管と並行分岐管の3種類を使用する。一般的にT型分岐管は冷媒が流通方向に対して垂直に、上下又は左右方向に分流され、分流方向や分流後の抵抗によって、冷媒を分流する割合の調整が必要ところで使用する。また、Y型分岐管は冷媒が流通方向に対して斜め方向に分流することであまり方向性に左右されずに均等に冷媒を分流する。また、並行分岐管はT型分岐管やY型分岐管に比較して安価であり、比較的分流の割合や抵抗の影響を考慮する必要の低い部分で使用される。 Further, even in the case of cooling operation using the outdoor heat exchanger 6 as a condenser (broken arrow in FIG. 2), the refrigerant flowing into the T-shaped branch pipe 16 is transferred to the upper connecting pipe 207 with the pipe diameter B1 of the lower connecting pipe 206. By making the pipe diameter B2 larger than that of B2, the merging of the refrigerants in the T-shaped branch pipe 16 can be made uniform and smooth. There are many types of branch pipes for splitting and merging refrigerants, but in the present invention, three types of T-type branch pipes, Y-type branch pipes, and parallel branch pipes are used. Generally, the T-type branch pipe is used where the refrigerant is split vertically, vertically or horizontally with respect to the flow direction, and the ratio of the refrigerant split is required to be adjusted by the split direction and the resistance after the split. Further, in the Y-type branch pipe, the refrigerant is divided diagonally with respect to the flow direction, so that the refrigerant is evenly distributed without being influenced by the direction. Further, the parallel branch pipe is cheaper than the T-type branch pipe and the Y-type branch pipe, and is used in a portion where it is relatively necessary to consider the influence of the diversion ratio and resistance.

前記伝熱管125に流入した冷媒は上方向に伝熱管126・127・128・129・130・131・132・133・134を流通して接続配管210(外径7.0mm)に到る。また、前記伝熱管109に流入した冷媒は上方向に伝熱管110・111・112・113・114を流通した後、風下側列の伝熱管138から下方向に伝熱管137・136・135を流通して接続配管211(外径7.0mm)に到る。 The refrigerant that has flowed into the heat transfer tube 125 flows upward through the heat transfer tubes 126, 127, 128, 129, 130, 131, 132, 133, and 134 and reaches the connecting pipe 210 (outer diameter 7.0 mm). Further, the refrigerant flowing into the heat transfer tube 109 flows upward through the heat transfer tubes 110, 111, 112, 113, 114, and then flows downward from the heat transfer tubes 138 in the leeward side row through the heat transfer tubes 137, 136, 135. Then, it reaches the connection pipe 211 (outer diameter 7.0 mm).

前記接続配管212と接続配管213は並行分岐管19で合流して接続配管215(外径9.52mm)に流れ、T型分岐管20に到る。また、前記接続配管210と接続配管211は並行分岐管18で合流して接続配管214(外径9.52mm)に流れ、T型分岐管20に到る。このT型分岐管20で冷媒を合流して接続配管216(外径9.52mm)から圧縮機4の方向へ流れる。前記接続配管214・215から下流側を外径9.52mmの太い配管にすることは、冷房運転時に室外熱交換器6を凝縮器として使用した場合を考慮したもので、当該部分は冷房運転時には冷媒入口側となるために、配管の抵抗を低くするために太い配管を使用している。 The connecting pipe 212 and the connecting pipe 213 merge at the parallel branch pipe 19 and flow into the connecting pipe 215 (outer diameter 9.52 mm) to reach the T-shaped branch pipe 20. Further, the connection pipe 210 and the connection pipe 211 merge at the parallel branch pipe 18 and flow into the connection pipe 214 (outer diameter 9.52 mm) to reach the T-type branch pipe 20. The refrigerant merges with the T-shaped branch pipe 20 and flows from the connecting pipe 216 (outer diameter 9.52 mm) in the direction of the compressor 4. The thick pipe with an outer diameter of 9.52 mm on the downstream side from the connection pipes 214 and 215 is considered in consideration of the case where the outdoor heat exchanger 6 is used as a condenser during the cooling operation, and the relevant part is during the cooling operation. Thick piping is used to reduce the resistance of the piping because it is on the refrigerant inlet side.

前記冷媒流入口(伝熱管104・105)から室外熱交換器6へ流入する液冷媒は、室外熱交換器6内で空気から熱を奪い徐々に気化して(気液二層流)、冷媒流出口(伝熱管134・135・144・145)では、ほぼ気化を終了して気体に変化する。液冷媒は気体の冷媒に比較して重量が大きいので冷媒の流通においても重力の影響を受けやすい傾向があり、冷媒流出口よりも冷媒流入口に近いT型分岐管16では冷媒にしめる液冷媒の割合が多いために重力の影響を受けやすい。そこで、冷媒流入口に近く液冷媒が流れるT型分岐管16から、重力に反して上側に流れる上側接続配管207の管径B1(外径7.94mm)を重量方向に流れる下側接続配管206の管径B2(外径7.0mm)よりも大きくすることで、T型分岐管16における液冷媒の分配量を適切に調整することができる。 The liquid refrigerant flowing into the outdoor heat exchanger 6 from the refrigerant inlet (heat transfer tubes 104 and 105) takes heat from the air in the outdoor heat exchanger 6 and gradually vaporizes (gas-liquid two-layer flow), and the refrigerant At the outlet (heat transfer tubes 134, 135, 144, 145), vaporization is almost completed and the gas is changed to gas. Since the liquid refrigerant is heavier than the gaseous refrigerant, it tends to be easily affected by gravity even in the flow of the refrigerant. In the T-type branch pipe 16 closer to the refrigerant inlet than the refrigerant outlet, the liquid refrigerant used as the refrigerant is used. Due to its high proportion, it is easily affected by gravity. Therefore, from the T-shaped branch pipe 16 in which the liquid refrigerant flows near the refrigerant inlet, the lower connecting pipe 206 flowing in the weight direction through the pipe diameter B1 (outer diameter 7.94 mm) of the upper connecting pipe 207 flowing upward against gravity. By making the pipe diameter B2 (outer diameter 7.0 mm) larger than that of the above, the distribution amount of the liquid refrigerant in the T-type branch pipe 16 can be appropriately adjusted.

図4と図5によって他の実施例の説明をする。また、図4の伝熱管(101から148)は、図2と同じ符号を使用し、各矢印の示す方向も図2に準ずるものとする。
図4の実線の矢印に示すように、前記膨張弁7から接続配管301(外径7.0mm)へ流れた液冷媒は、室外熱交換器6の風上側列で最下段の伝熱管101に流入し、
伝熱管102・103・104と上昇して、接続配管302(外径7.0mm)に流れる。
Other embodiments will be described with reference to FIGS. 4 and 5. Further, the heat transfer tubes (101 to 148) of FIG. 4 use the same reference numerals as those of FIG. 2, and the directions indicated by the arrows are also the same as those of FIG.
As shown by the solid arrow in FIG. 4, the liquid refrigerant flowing from the expansion valve 7 to the connection pipe 301 (outer diameter 7.0 mm) is transferred to the lowermost heat transfer tube 101 in the windward row of the outdoor heat exchanger 6. Inflow,
It rises to the heat transfer tubes 102, 103, 104 and flows into the connection pipe 302 (outer diameter 7.0 mm).

前記接続配管302は、T型分岐管22によって上下方向に分流する。このT型分岐管22の下側接続口22aと、風下側列で下から2段目の伝熱管126の接続口A3とを下側接続配管303(外径7.0mm)で接続し、T型分岐管22の上側接続口22bと、風下側列で最下段から4段上の伝熱管128の接続口A4とを上側接続配管304(外径7.94mm)で接続する。これによって、冷媒流入口に近いT型分岐管22から、重力に反して上側に流れる上側接続配管304の管径B1(外径7.94mm)を重量方向に流れる下側接続配管303の管径B2(外径7.0mm)よりも大きくすることで、T型分岐管22における液冷媒の分配量を適切に調整することができる。 The connecting pipe 302 is divided in the vertical direction by the T-shaped branch pipe 22. The lower connection port 22a of the T-shaped branch pipe 22 and the connection port A3 of the second stage heat transfer tube 126 from the bottom in the leeward side row are connected by the lower connection pipe 303 (outer diameter 7.0 mm), and T The upper connection port 22b of the mold branch pipe 22 and the connection port A4 of the heat transfer tube 128 four steps above the bottom in the leeward side row are connected by the upper connection pipe 304 (outer diameter 7.94 mm). As a result, the pipe diameter of the lower connecting pipe 303 flowing in the weight direction from the T-shaped branch pipe 22 near the refrigerant inflow through the pipe diameter B1 (outer diameter 7.94 mm) of the upper connecting pipe 304 flowing upward against gravity. By making it larger than B2 (outer diameter 7.0 mm), the distribution amount of the liquid refrigerant in the T-type branch pipe 22 can be appropriately adjusted.

また、室外熱交換器6を凝縮器として使用する冷房運転の場合(図4の破線矢印)においても、T型分岐管22に流れ込む冷媒を上側接続配管304の管径B1を下側続配管303の管径B2よりも大きくすることで、T型分岐管22における冷媒の合流を均一にスムーズにすることができる。 Further, even in the case of cooling operation using the outdoor heat exchanger 6 as a condenser (broken arrow in FIG. 4), the refrigerant flowing into the T-shaped branch pipe 22 is transferred to the upper connecting pipe 304 with the pipe diameter B1 of the lower connecting pipe 303. By making the pipe diameter B2 larger than that of the pipe diameter B2, the merging of the refrigerants in the T-shaped branch pipe 22 can be made uniform and smooth.

前記伝熱管126に流入した冷媒は、1段下の伝熱管125から接続配管305(外径7.0mm)に流れて、風上側列の下から11段目の伝熱管111に到達する。この伝熱管111から伝熱管112・113・・・と最上段の伝熱管124まで上昇した後、風下側列の最上段の伝熱管148から下方向に、伝熱管143まで流れて接続配管308(外径9.52mm)に到達する。 The refrigerant that has flowed into the heat transfer tube 126 flows from the heat transfer tube 125 one step below to the connection pipe 305 (outer diameter 7.0 mm) and reaches the heat transfer tube 111 at the eleventh stage from the bottom of the windward row. After rising from the heat transfer tube 111 to the heat transfer tubes 112, 113, ..., And the uppermost heat transfer tube 124, the heat transfer tube 148 flows downward from the uppermost heat transfer tube 148 in the leeward row to the heat transfer tube 143, and the connection pipe 308 ( The outer diameter reaches 9.52 mm).

前記伝熱管128に流入した冷媒は、1段下の伝熱管127から接続配管306(外径7.0mm)に流れて、風上側列の下から10段目の伝熱管110に到達する。この伝熱管110から下方向に伝熱管109・108・107・106・105と流れた後、風下側列の下から5段目の伝熱管129に到達し、この伝熱管129から伝熱管130・131・・・と伝熱管142まで上昇して接続配管307(外径9.52mm)に到達する。 The refrigerant that has flowed into the heat transfer tube 128 flows from the heat transfer tube 127 one step below to the connection pipe 306 (outer diameter 7.0 mm) and reaches the heat transfer tube 110 at the tenth stage from the bottom of the windward row. After flowing downward from the heat transfer tube 110 to the heat transfer tubes 109, 108, 107, 106, 105, the heat transfer tube 129 reaches the fifth stage from the bottom of the leeward side row, and the heat transfer tube 130. It rises to 131 ... and the heat transfer tube 142 and reaches the connection pipe 307 (outer diameter 9.52 mm).

前記接続配管308と接続配管307はY型分岐管21で冷媒を合流して接続配管309(外径9.52mm)から圧縮機4の方向へ流れる。前記接続配管307・308から下流側を外径9.52mmの太い配管にすることは、冷房運転時に室外熱交換器6を凝縮器として使用した場合を考慮したもので、当該部分は冷房運転時には冷媒入口側となるために、配管の抵抗を低くするために太い配管を使用している。 The connecting pipe 308 and the connecting pipe 307 merge with the refrigerant at the Y-shaped branch pipe 21 and flow from the connecting pipe 309 (outer diameter 9.52 mm) toward the compressor 4. The thick pipe with an outer diameter of 9.52 mm on the downstream side from the connection pipes 307 and 308 is considered in consideration of the case where the outdoor heat exchanger 6 is used as a condenser during the cooling operation, and the relevant part is during the cooling operation. Thick piping is used to reduce the resistance of the piping because it is on the refrigerant inlet side.

以上説明したように、冷媒流入口に近いT型分岐管16から、重力に反して上側に流れるる上側接続配管207の管径B1を重量方向に流れる下側接続配管206の管径B2よりも大きくすることで、T型分岐管16における液冷媒の分配量を適切に調整することができる。また、室外熱交換器6を凝縮器として使用する冷房運転の場合においても、T型分岐管16に流れ込む冷媒を上側接続配管207の管径B1を下側続配管206の管径B2よりも大きくすることで、T型分岐管16における冷媒の合流を均一にスムーズにすることができる。 As described above, the pipe diameter B1 of the upper connecting pipe 207 flowing upward against gravity from the T-shaped branch pipe 16 near the refrigerant inflow port is larger than the pipe diameter B2 of the lower connecting pipe 206 flowing in the weight direction. By increasing the size, the distribution amount of the liquid refrigerant in the T-type branch pipe 16 can be appropriately adjusted. Further, even in the case of cooling operation using the outdoor heat exchanger 6 as a condenser, the pipe diameter B1 of the upper connecting pipe 207 is larger than the pipe diameter B2 of the lower connecting pipe 206 for the refrigerant flowing into the T-shaped branch pipe 16. By doing so, the merging of the refrigerant in the T-shaped branch pipe 16 can be made uniform and smooth.

また、冷媒流入口に近いT型分岐管22から、重力に反して上側に流れる上側接続配管304の管径B1を重量方向に流れる下側接続配管303の管径B2よりも大きくすることで、T型分岐管22における液冷媒の分配量を適切に調整することができる。また、室外熱交換器6を凝縮器として使用する冷房運転の場合においても、T型分岐管22に流れ込む冷媒を上側接続配管304の管径B1を下側続配管303の管径B2よりも大きくすることで、T型分岐管22における冷媒の合流を均一にスムーズにすることができる。 Further, the pipe diameter B1 of the upper connecting pipe 304 flowing upward against gravity from the T-shaped branch pipe 22 near the refrigerant inflow port is made larger than the pipe diameter B2 of the lower connecting pipe 303 flowing in the weight direction. The distribution amount of the liquid refrigerant in the T-type branch pipe 22 can be appropriately adjusted. Further, even in the case of cooling operation using the outdoor heat exchanger 6 as a condenser, the pipe diameter B1 of the upper connecting pipe 304 is larger than the pipe diameter B2 of the lower connecting pipe 303 for the refrigerant flowing into the T-shaped branch pipe 22. By doing so, the merging of the refrigerant in the T-shaped branch pipe 22 can be made uniform and smooth.

なお、本実施形態で用いたその他の構成は一例として提示したものであり、発明の範囲を限定することは意図しておらず、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲において、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 The other configurations used in the present embodiment are presented as an example, and are not intended to limit the scope of the invention, and can be implemented in various other embodiments. Various omissions, replacements, and changes can be made without departing from the gist of. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1 室外機
2 室内機
4 圧縮機
6 室外熱交換器
7 膨張弁
16 T型分岐管
22 T型分岐管
206 下側接続配管
207 上側接続配管
303 下側接続配管
304 上側接続配管
1 Outdoor unit 2 Indoor unit 4 Compressor 6 Outdoor heat exchanger 7 Expansion valve 16 T-type branch pipe 22 T-type branch pipe 206 Lower connection pipe 207 Upper connection pipe 303 Lower connection pipe 304 Upper connection pipe

Claims (2)

圧縮機と四方弁と室外熱交換器を備えた室外機と、室内熱交換器を備えた室内機とを冷媒配管で接続した空気調和機に於いて、
前記室外熱交換器は所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンと、
空気を流通させる方向に複数列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管と、
前記伝熱管を互いに接続する接続配管とを有し、
前記室外熱交換器を蒸発器として使用した場合に、冷媒が流入する冷媒流入口に近い前記接続配管にて、上下方向に分流を行うT型分岐管を備え、
前記T型分岐管の下側接続口と、前記T型分岐管よりも高い位置の前記伝熱管の接続口A1とを接続する下側接続配管を有し、
前記T型分岐管の上側接続口と、前記T型分岐管よりも低い位置の前記伝熱管の接続口A2とを接続する上側接続配管を有し、
前記上側接続配管の管径B1を前記下側接続配管の管径B2よりも大きくし、前記T型分岐管と接続する前記接続配管の管径が前記下側接続配管の管径B2と同一であることを特徴とする空気調和機。
In an air conditioner in which an outdoor unit equipped with a compressor, a four-way valve, and an outdoor heat exchanger and an indoor unit equipped with an indoor heat exchanger are connected by a refrigerant pipe.
The outdoor heat exchangers are laminated with a predetermined gap, and a plurality of fins that allow air to flow through the gap,
Multiple rows of heat transfer tubes in the direction of air circulation, multiple heat transfer tubes arranged in multiple stages in the vertical direction intersecting the direction of air circulation,
It has a connecting pipe that connects the heat transfer pipes to each other.
When the outdoor heat exchanger is used as an evaporator, a T-shaped branch pipe that divides the flow in the vertical direction is provided in the connection pipe near the refrigerant inflow port into which the refrigerant flows.
It has a lower connection pipe that connects the lower connection port of the T-type branch pipe and the connection port A1 of the heat transfer pipe at a position higher than the T-type branch pipe.
It has an upper connection pipe that connects the upper connection port of the T-type branch pipe and the connection port A2 of the heat transfer pipe at a position lower than the T-type branch pipe.
The pipe diameter B1 of the upper connecting pipe is made larger than the pipe diameter B2 of the lower connecting pipe, and the pipe diameter of the connecting pipe connected to the T-shaped branch pipe is the same as the pipe diameter B2 of the lower connecting pipe. air conditioner, characterized in that.
圧縮機と四方弁と室外熱交換器を備えた室外機と、室内熱交換器を備えた室内機とを冷媒配管で接続した空気調和機に於いて、
前記室外熱交換器は所定の間隙をもって積層され、その間隙に空気を流通させる複数のフィンと、
空気を流通させる方向に複数列、空気を流通させる方向と交差する上下方向に複数段配置される伝熱管と、
前記伝熱管を互いに接続する接続配管とを有し、
前記室外熱交換器を蒸発器として使用した場合に、冷媒が流入する冷媒流入口に近い前記接続配管にて、上下方向に分流を行うT型分岐管を備え、
前記T型分岐管の下側接続口と、前記伝熱管の接続口A3とを接続する下側接続配管を有し、
前記T型分岐管の上側接続口と、前記伝熱管の接続口A3よりも高い位置の前記伝熱管の接続口A4とを接続する上側接続配管を有し、
前記上側接続配管の管径B1を前記下側接続配管の管径B2よりも大きくし、前記T型分岐管と接続する前記接続配管の管径が前記下側接続配管の管径B2と同一であることを特徴とする空気調和機。
In an air conditioner in which an outdoor unit equipped with a compressor, a four-way valve, and an outdoor heat exchanger and an indoor unit equipped with an indoor heat exchanger are connected by a refrigerant pipe.
The outdoor heat exchangers are laminated with a predetermined gap, and a plurality of fins that allow air to flow through the gap, and
Multiple rows of heat transfer tubes in the direction of air circulation, multiple heat transfer tubes arranged in multiple stages in the vertical direction intersecting the direction of air circulation,
It has a connecting pipe that connects the heat transfer pipes to each other.
When the outdoor heat exchanger is used as an evaporator, a T-shaped branch pipe that divides the flow in the vertical direction is provided in the connection pipe near the refrigerant inflow port into which the refrigerant flows.
It has a lower connection pipe that connects the lower connection port of the T-shaped branch pipe and the connection port A3 of the heat transfer pipe.
It has an upper connection pipe that connects the upper connection port of the T-shaped branch pipe and the connection port A4 of the heat transfer tube at a position higher than the connection port A3 of the heat transfer tube.
The pipe diameter B1 of the upper connecting pipe is made larger than the pipe diameter B2 of the lower connecting pipe, and the pipe diameter of the connecting pipe connected to the T-shaped branch pipe is the same as the pipe diameter B2 of the lower connecting pipe. air conditioner, characterized in that.
JP2017237873A 2017-12-12 2017-12-12 Air conditioner Active JP6885857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017237873A JP6885857B2 (en) 2017-12-12 2017-12-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017237873A JP6885857B2 (en) 2017-12-12 2017-12-12 Air conditioner

Publications (2)

Publication Number Publication Date
JP2019105402A JP2019105402A (en) 2019-06-27
JP6885857B2 true JP6885857B2 (en) 2021-06-16

Family

ID=67061204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017237873A Active JP6885857B2 (en) 2017-12-12 2017-12-12 Air conditioner

Country Status (1)

Country Link
JP (1) JP6885857B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111609479B (en) * 2020-04-23 2021-05-28 海信(山东)空调有限公司 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191360U (en) * 1974-12-27 1976-07-21
JPH0544653Y2 (en) * 1987-07-24 1993-11-12
JP2011158192A (en) * 2010-02-02 2011-08-18 Panasonic Corp Refrigerant distributor
JP2016084970A (en) * 2014-10-24 2016-05-19 株式会社富士通ゼネラル Heat exchanger

Also Published As

Publication number Publication date
JP2019105402A (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6545277B2 (en) Outdoor unit of air conditioner
WO2012114719A1 (en) Heat exchanger for air conditioner
JP6239159B2 (en) Refrigeration cycle equipment
JP2010127601A (en) Air conditioner
JP6223596B2 (en) Air conditioner indoor unit
WO2016155367A1 (en) Heat exchanger and multi-split system having same
JP2006097987A (en) Three-way branch pipe and fin tube type heat exchanger using the same
JP6885857B2 (en) Air conditioner
JP4845987B2 (en) Air conditioning system
JP2005090805A (en) Heat exchanger
JP2012167913A (en) Air conditioner
US10047963B2 (en) Indoor unit for air-conditioning apparatus
JP6102724B2 (en) Heat exchanger
JP6383942B2 (en) Heat exchanger
JP3177302U (en) Air conditioning unit
JP2007147221A (en) Heat exchanger with fin
CN102767895A (en) Air conditioner used thin finned tube heat exchanger
JP2016084970A (en) Heat exchanger
JP5940895B2 (en) Parallel flow type heat exchanger and air conditioner equipped with the same
CN106871496A (en) Indoor heat exchanger and air-conditioner
JP2015014397A (en) Heat exchanger
JP4902625B2 (en) Heat pump water heater and refrigeration equipment
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
JP2017053511A (en) Indoor unit of air conditioner
JP2015108495A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210513

R150 Certificate of patent or registration of utility model

Ref document number: 6885857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150