JP2009127930A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2009127930A
JP2009127930A JP2007302871A JP2007302871A JP2009127930A JP 2009127930 A JP2009127930 A JP 2009127930A JP 2007302871 A JP2007302871 A JP 2007302871A JP 2007302871 A JP2007302871 A JP 2007302871A JP 2009127930 A JP2009127930 A JP 2009127930A
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
flat
air conditioner
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007302871A
Other languages
Japanese (ja)
Inventor
Takahide Tadokoro
敬英 田所
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007302871A priority Critical patent/JP2009127930A/en
Publication of JP2009127930A publication Critical patent/JP2009127930A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce ventilating resistance of a heat exchanger regardless of an environment and operating time, and to hold down noise. <P>SOLUTION: This air conditioner includes a heat exchanger whose heat transfer pipe is flat in section, wherein a stream lining means for stream lining an air current direction flowing into the heat exchanger 10A is provided on the upstream side of the heat exchanger 10A having the flat heat transfer pipe 12, and the stream lining means is substantially uniform in width or thickness when viewed from the side of the heat exchanger, and installed so that the total of lengths 14 of extension lines 13 of major axes of the flat shapes of the respective flat heat transfer pipes intersecting the stream lining means and passing the stream lining means is minimized. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エアコン等の空気調和機に係り、より詳しくは空気調和機に搭載される熱交換器の改良に関する。   The present invention relates to an air conditioner such as an air conditioner, and more particularly to an improvement of a heat exchanger mounted on the air conditioner.

エアコン等の空気調和機は、一般に室内壁に据え付けられて、上側にある吸込口から室内の気流を吸い込み、下側にある吹出口から吐き出すようになっている。   An air conditioner such as an air conditioner is generally installed on an indoor wall, sucks indoor airflow from a suction port on the upper side, and discharges it from a blower outlet on the lower side.

そして、このような空気調和機の内部には、複数のブレードを有する送風機の周囲を取り囲むように熱交換器が配置されている。熱交換器は、冷媒を通す伝熱管と伝熱フィンから構成されている。吸込口と熱交換器の間には、集塵や空気清浄用の機器またはフィルタが必要に応じて配置されている。吸込口から流入した気流はフィルタを通り、熱交換器を通過して熱交換した後、送風機によって吹出口から外に排出される。   And in such an air conditioner, the heat exchanger is arrange | positioned so that the circumference | surroundings of the air blower which has a some braid | blade may be surrounded. The heat exchanger is composed of heat transfer tubes and heat transfer fins through which refrigerant passes. A dust collecting and air cleaning device or a filter is disposed between the suction port and the heat exchanger as necessary. The airflow flowing in from the suction port passes through the filter, passes through the heat exchanger, exchanges heat, and then is discharged from the outlet by the blower.

近年、空気調和機には省電力・静音化が求められ、特に容量の小さい空気調和機では送風機の入力値が圧縮機の入力値よりも支配的になるため、空力負荷が小さいユニットが必要とされている。解決手段の一つとして熱交換器の伝熱管の形状に着目した低圧損化が挙げられる。   In recent years, air conditioners have been required to save power and be quiet. Especially in small-size air conditioners, the input value of the blower becomes more dominant than the input value of the compressor, so a unit with low aerodynamic load is required. Has been. One solution is low pressure loss focusing on the shape of the heat exchanger tube of the heat exchanger.

従来の熱交換器の伝熱管には断面形状が円管形状のものが多いが、このような円形伝熱管は、流動抵抗が大きく、送風機の負荷を大きくする。また、円形伝熱管の下流部で流速が遅い後流域が発生するため、伝熱性能の悪化を招き、さらに円形伝熱管で発生した渦が下流の送風機に流入して騒音を発生させていた。   Many of the heat transfer tubes of conventional heat exchangers have a circular tube shape in cross section, but such circular heat transfer tubes have a large flow resistance and increase the load on the blower. Further, since a downstream region having a low flow velocity is generated in the downstream portion of the circular heat transfer tube, the heat transfer performance is deteriorated, and further, the vortex generated in the circular heat transfer tube flows into the downstream fan and generates noise.

そこで、伝熱管の断面形状を扁平形状として熱交換器に流入する気流方向に扁平形状の長軸を略一致させることで流動抵抗を小さくしたものが提案されている(例えば、特許文献1参照)。   Then, what made flow resistance small by making the cross-sectional shape of a heat exchanger tube into a flat shape, and making the long axis of a flat shape substantially correspond to the airflow direction which flows in into a heat exchanger is proposed (for example, refer patent document 1). .

また、伝熱管の断面形状を扁平形状とすることによって、熱交換器を蒸発器として使用した際に、管表面に凝縮水が付着して伝熱性能が悪化しないように、伝熱フィンに対して伝熱管を傾けるようにしたものが提案されている(例えば、特許文献2参照)。   In addition, by making the cross-sectional shape of the heat transfer tube flat, when the heat exchanger is used as an evaporator, condensation heat adheres to the tube surface and the heat transfer performance is not deteriorated. There has been proposed a structure in which the heat transfer tube is inclined (see, for example, Patent Document 2).

特開平5−79654号公報(図1)JP-A-5-79654 (FIG. 1) 特開平11−141904号公報(図5、図6)Japanese Patent Laid-Open No. 11-141904 (FIGS. 5 and 6)

空気調和機に吸い込まれ、熱交換器に流入する気流の経路は箱体の形状やユニットが置かれた環境やユニットの状態に依存する。箱体の形状とは、吸込口から熱交換器までの空間のことであり、ユニットが置かれた環境とは、吸込口周囲が狭いなどのことである。また、ユニットの状態とは、空気調和機の使用時間経過によって埃フィルタや吹出口へのごみが付着して局所的に気流抵抗が変わることをいう。つまり、時間経過とともに気流の経路が変化する。そのため、前述のように単に気流方向にあわせて扁平伝熱管を傾けて配置しただけのものにあっては、ユニットの使用開始時には設計どおりの効果を期待できるが、使用環境・時間経過により、ユニットの状態が変化すると、性能が変化する。さらに、扁平伝熱管はアスペクト比が大きく、円形伝熱管に比べて流入する気流の方向によって抵抗の大小差が大きいため、流動抵抗が増加し、騒音が大きくなる問題がある。   The path of the airflow sucked into the air conditioner and flowing into the heat exchanger depends on the shape of the box, the environment in which the unit is placed, and the state of the unit. The shape of the box means the space from the suction port to the heat exchanger, and the environment where the unit is placed means that the periphery of the suction port is narrow. Moreover, the state of the unit means that the dust resistance and dust are attached to the air outlet and the airflow resistance changes locally as the air conditioner is used. That is, the airflow path changes with time. Therefore, if the flat heat transfer tube is simply tilted according to the air flow direction as described above, the effect as designed can be expected at the start of use of the unit. The performance changes when the state changes. Further, the flat heat transfer tube has a large aspect ratio, and there is a large difference in resistance depending on the direction of the inflowing air compared to the circular heat transfer tube, so there is a problem that the flow resistance increases and noise increases.

本発明の技術的課題は、環境や使用時間に依らず、熱交換器の通風抵抗を低減でき、騒音も小さく抑えることができるようにすることにある。   The technical problem of the present invention is to be able to reduce the ventilation resistance of the heat exchanger and to suppress the noise, regardless of the environment and usage time.

本発明に係る空気調和機は、下記の構成からなるものである。すなわち、ユニット内部に、送風機を取り囲むように、複数の伝熱フィン及びこれら伝熱フィンを貫く複数の伝熱管からなる熱交換器を1つ又は複数配置し、送風機の回転によって吸込口から空気を吸い込み、熱交換器を通過させて冷媒と空気を熱交換させ、吹出口からユニット外部に放出させる空気調和機であって、伝熱管の断面形状が扁平形状である熱交換器を備え、この扁平伝熱管を有する熱交換器の上流側には、この熱交換器に流入する気流方向を整流する整流手段を設け、この整流手段は、その熱交換器側方より見た幅または厚みが略一定で、かつ各扁平伝熱管の扁平形状の長軸の延長線が当該整流手段と交差してこの整流手段部分を通過する長さの合計が最小となるように設置されてなるものである。   The air conditioner according to the present invention has the following configuration. That is, one or a plurality of heat exchangers composed of a plurality of heat transfer fins and a plurality of heat transfer tubes penetrating the heat transfer fins are arranged inside the unit so as to surround the blower, and air is sucked from the suction port by the rotation of the blower. An air conditioner that sucks in, passes through a heat exchanger, exchanges heat between the refrigerant and air, and discharges the air from the outlet to the outside of the unit. The air conditioner includes a heat exchanger having a flat cross-sectional shape of the heat transfer tube. On the upstream side of the heat exchanger having a heat transfer tube, a rectifying means for rectifying the direction of airflow flowing into the heat exchanger is provided, and the rectifying means has a substantially constant width or thickness as viewed from the side of the heat exchanger. In addition, the flat extension line of the flat long axis of each flat heat transfer tube intersects with the rectifying means so that the total length passing through the rectifying means is minimized.

本発明の空気調和機によれば、扁平伝熱管側の熱交換器の上流側にある整流手段によって気流方向が整流され、扁平伝熱管側の熱交換器には、その扁平形状の長軸方向に対して平行な気流が入り、流動抵抗が減少する。この整流効果は、熱交換器側方より見た幅または厚みが略一定上流の整流手段の設置向きで決まるため、周囲の環境変化・使用時間経過の影響を受け難い。このため、効果が持続する。   According to the air conditioner of the present invention, the airflow direction is rectified by the rectifying means on the upstream side of the heat exchanger on the flat heat transfer tube side, and the heat exchanger on the flat heat transfer tube side has the long axis direction of the flat shape Airflow parallel to the air enters and the flow resistance decreases. Since this rectification effect is determined by the installation direction of the rectification means having a substantially constant width or thickness as viewed from the side of the heat exchanger, the rectification effect is hardly affected by surrounding environmental changes and usage time. For this reason, an effect lasts.

実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態1に係る空気調和機を示す側面断面図である。
Embodiment 1 FIG.
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a side sectional view showing an air conditioner according to Embodiment 1 of the present invention.

本実施形態の空気調和機は、ユニット内部に貫流送風機5が配置され、吸い込み部には、貫流送風機5を囲むように熱交換器6B,6C,10Aが配置されている。そのうち前面下部に配置されている熱交換器10Aは、複数の伝熱フィン10aとこれら伝熱フィン10aを貫き冷媒を通す扁平伝熱管12とで構成されている。また、熱交換器10Aの上流側には、複数の伝熱フィン6aとこれら伝熱フィン6aを貫き冷媒を通す円形伝熱管7とで構成される熱交換器6Aが設置されている。熱交換器6Aは、その伝熱フィン6aの幅が略一定であり、各扁平伝熱管12の扁平形状の長軸の延長線13が上流側の熱交換器6Aの伝熱フィン6aと交差してこの伝熱フィン6a部分を通過する長さ14の合計が最小となるように、熱交換器10Aに対向する面の向きが調整されて配置されている。なお、扁平伝熱管12のうち下部付近の扁平伝熱管12aは貫流送風機5の方向を向くように傾いて設置されている。   As for the air conditioner of this embodiment, the once-through fan 5 is arrange | positioned inside a unit, and heat exchanger 6B, 6C, 10A is arrange | positioned at the suction part so that the once-through fan 5 may be enclosed. Among them, the heat exchanger 10A disposed in the lower front portion is composed of a plurality of heat transfer fins 10a and flat heat transfer tubes 12 that pass through the heat transfer fins 10a and pass the refrigerant. Further, on the upstream side of the heat exchanger 10A, a heat exchanger 6A including a plurality of heat transfer fins 6a and a circular heat transfer tube 7 that passes through the heat transfer fins 6a and passes the refrigerant is installed. In the heat exchanger 6A, the width of the heat transfer fins 6a is substantially constant, and the flat long-axis extension line 13 of each flat heat transfer tube 12 intersects the heat transfer fins 6a of the upstream heat exchanger 6A. The direction of the surface facing the heat exchanger 10A is adjusted so that the total of the lengths 14 passing through the heat transfer fins 6a is minimized. The flat heat transfer tube 12 a in the vicinity of the lower portion of the flat heat transfer tube 12 is installed to be inclined so as to face the cross-flow fan 5.

次に、本実施形態の空気調和機の動作について図2乃至図4を用いて説明する。
図2は比較例における空気調和機内部の気流の模式図、図3は比較例における空気調和機の熱交換器周りの気流の模式図、図4は本実施形態における空気調和機の熱交換器周りの気流の模式図である。
Next, operation | movement of the air conditioner of this embodiment is demonstrated using FIG. 2 thru | or FIG.
2 is a schematic diagram of the air flow inside the air conditioner in the comparative example, FIG. 3 is a schematic diagram of the air flow around the heat exchanger of the air conditioner in the comparative example, and FIG. 4 is a heat exchanger of the air conditioner in the present embodiment. It is a schematic diagram of the surrounding airflow.

熱交換器10Aの伝熱管の断面形状が扁平形状の場合、前面下部の熱交換器10Aに流入する気流3は、熱交換器10Aの前面に沿う方向から伝熱フィン6a内に進入し、図3のように扁平伝熱管12の側面に沿って流れる。この場合、気流3が扁平伝熱管12の間を通過しにくく、場所によっては剥離を生じる。すなわち、上流に整流機能を持つ熱交換器6Aがなければ、熱交換器10Aの入口側と出口側の気流方向の角度差が大きくなるため、扁平形状の長軸がより長い扁平伝熱管を使用しなければ気流方向を曲げることができず、圧損も非常に大きくなって、流動損失が高くなり、伝熱性能が悪化する。さらに、扁平伝熱管12で発生した渦15が下流の貫流送風機5に流れ込み、矢印方向16に回転する貫流送風機5の翼17と干渉を起こして騒音悪化を招く。   When the cross-sectional shape of the heat transfer tube of the heat exchanger 10A is a flat shape, the airflow 3 flowing into the heat exchanger 10A at the lower front portion enters the heat transfer fins 6a from the direction along the front surface of the heat exchanger 10A. 3 flows along the side surface of the flat heat transfer tube 12. In this case, the airflow 3 hardly passes between the flat heat transfer tubes 12, and peeling occurs depending on the location. In other words, if there is no heat exchanger 6A having a rectifying function upstream, the angle difference between the air flow directions on the inlet side and the outlet side of the heat exchanger 10A becomes large, so a flat heat transfer tube with a longer flat long axis is used. Otherwise, the airflow direction cannot be bent, the pressure loss becomes very large, the flow loss becomes high, and the heat transfer performance deteriorates. Further, the vortex 15 generated in the flat heat transfer tube 12 flows into the downstream once-through fan 5 and interferes with the blades 17 of the once-through fan 5 rotating in the arrow direction 16 to cause noise deterioration.

本実施形態の空気調和機においては、図1のように扁平伝熱管12側の熱交換器10Aの上流側に円形伝熱管7を有する熱交換器6Aが配置されて、その伝熱フィン6aの幅が略一定で、扁平伝熱管12の扁平形状の長軸の延長線13が伝熱フィン6aと交差してこの伝熱フィン6a部分を通過する長さ14の合計が最小となるように、熱交換器10Aに対向する熱交換器6Aの面の向きが調整されて配置されている。したがって、吸込口2から吸い込まれて、吹出口4から吐き出される気流3は、ユニットに流入すると、まず各熱交換器6A,10A,6B,6C内部を通過して貫流送風機5に向かうが、各熱交換器6A,6B,6Cに流入する気流方向はユニットの風路形状によって決まるため場所によってまちまちである。しかし、通常、伝熱フィン6aには伝熱性能を高めるためのスリット18(図4)があり、スリット18が気流にとって抵抗となるため、熱交換器6Aに入った気流3は各伝熱フィン6a間を最短経路で通過するような方向に進路が徐々に修正される。そして、伝熱フィン6aの出口においては、伝熱フィン6aの幅方向19に平行に流出する。その結果、熱交換器10Aへの流入方向が扁平伝熱管12の扁平形状の長軸方向に沿い、流動損失が低く伝熱管での渦発生が少なくなる。   In the air conditioner of the present embodiment, a heat exchanger 6A having a circular heat transfer tube 7 is arranged on the upstream side of the heat exchanger 10A on the flat heat transfer tube 12 side as shown in FIG. The width is substantially constant, and the total length 14 of the flat heat transfer tube 12 extending through the long axis 13 of the flat shape intersecting the heat transfer fin 6a and passing through the heat transfer fin 6a portion is minimized. The orientation of the surface of the heat exchanger 6A facing the heat exchanger 10A is adjusted. Therefore, when the airflow 3 sucked from the inlet 2 and discharged from the outlet 4 flows into the unit, it first passes through the heat exchangers 6A, 10A, 6B, and 6C toward the once-through fan 5, The direction of the airflow flowing into the heat exchangers 6A, 6B, 6C is determined by the shape of the air path of the unit, and therefore varies depending on the place. However, normally, the heat transfer fin 6a has a slit 18 (FIG. 4) for enhancing the heat transfer performance, and the slit 18 becomes a resistance against the air flow, so that the air flow 3 entering the heat exchanger 6A is transferred to each heat transfer fin. The course is gradually corrected in such a direction as to pass between 6a by the shortest path. And in the exit of the heat-transfer fin 6a, it flows out in parallel with the width direction 19 of the heat-transfer fin 6a. As a result, the inflow direction to the heat exchanger 10A is along the long axis direction of the flat shape of the flat heat transfer tube 12, the flow loss is low, and vortex generation in the heat transfer tube is reduced.

また、扁平伝熱管12のうち、貫流送風機5の方向を向くように傾けて設置されている扁平伝熱管12aは、図4のように前面下部に流れる気流3を貫流送風機5側に曲げることによって、下流側が狭い下部空間を流れる気流3をスムーズに送り出す働きをする。その結果、貫流送風機5側に送り出された気流の方向20と翼17の弧の接線方向に翼先端から延ばした直線21が作る翼17への流入角22が小さくなり(図4中の矢印の方向を負の角と定める)、剥離などによる損失が低減される。   Further, among the flat heat transfer tubes 12, the flat heat transfer tubes 12 a that are installed so as to face the direction of the once-through fan 5 are configured by bending the air flow 3 flowing in the lower front portion toward the once-through fan 5 as shown in FIG. 4. The downstream side functions to smoothly send out the airflow 3 flowing in the narrow lower space. As a result, the inflow angle 22 to the blade 17 formed by the straight line 21 extending from the blade tip in the direction 20 of the airflow sent to the cross-flow fan 5 side and the tangential direction of the arc of the blade 17 is reduced (indicated by the arrow in FIG. 4). The direction is defined as a negative angle), and loss due to peeling is reduced.

以上の整流効果は、ユニットの使用時間によって、吸込口2や貫流送風機5にごみが付着することやユニットが設置された場所、例えば吸い込み空間が狭いことなどによる環境条件が変わることによってユニット内部の気流方向が変化しても、扁平伝熱管12に流入する気流が上流側の熱交換器6Aで一定に整流されるため、持続する。そして、冷凍サイクル面で必要となる熱交換器での空力性能が向上する。   The rectifying effect described above is based on the usage time of the unit, such as dust adhering to the suction port 2 and the once-through blower 5, and the environmental conditions due to the place where the unit is installed, for example, the suction space is narrow. Even if the airflow direction changes, the airflow flowing into the flat heat transfer tube 12 is rectified by the upstream heat exchanger 6A, and thus continues. And the aerodynamic performance in the heat exchanger required by the refrigerating cycle surface improves.

このように、本実施形態によれば、ユニット内部に貫流送風機5と複数の伝熱フィンと伝熱フィンを貫く複数の伝熱管で構成された熱交換器を1個または複数個備え、吸込口2から空気を吸い込み、熱交換器を通過させて冷媒と空気を熱交換させて、ユニット外部に放出させる空気調和機において、伝熱管が扁平伝熱管12aからなる熱交換器10Aを設けるとともに、さらに熱交換器10Aの上流側の略全面に亘って伝熱フィン6aの幅が略略一定の別の熱交換器6Aを設け、かつ各扁平伝熱管12aの扁平形状の長軸の延長線13が上流側の熱交換器6Aの伝熱フィン6aと交差してこの伝熱フィン6a部分を通過する長さ14の合計が最小になるように、熱交換器10Aに対向する熱交換器6Aの面の向きを調整して配置構成したので、環境や使用時間に依らず、熱交換器の通風抵抗を低減でき、騒音も小さく抑えることができるユニットが得られる。   Thus, according to this embodiment, the unit is provided with one or a plurality of heat exchangers constituted by the once-through fan 5, the plurality of heat transfer fins, and the plurality of heat transfer tubes penetrating the heat transfer fins, and the suction port. In the air conditioner that sucks air from 2 and passes through the heat exchanger to exchange heat between the refrigerant and the air, and releases it to the outside of the unit, the heat transfer tube is provided with a heat exchanger 10A composed of a flat heat transfer tube 12a, and further Another heat exchanger 6A in which the width of the heat transfer fin 6a is substantially constant is provided over substantially the entire upstream side of the heat exchanger 10A, and the flat elongated extension 13 of each flat heat transfer tube 12a is upstream. Of the surface of the heat exchanger 6A facing the heat exchanger 10A so that the sum of the lengths 14 crossing the heat transfer fins 6a of the side heat exchanger 6A and passing through the heat transfer fins 6a portion is minimized. Since the arrangement was adjusted by adjusting the orientation Regardless of the environment or usage time can reduce the ventilation resistance of the heat exchanger, the unit can be suppressed noise is small is obtained.

なお、熱交換器を凝縮器として使用するときには、過冷却状態、つまり液体状態の冷媒処理をしなくてはならないが、扁平伝熱管12aでは冷媒通過流路が多く、冷媒流速が遅くなるため、伝熱性能が悪くなることが考えられる。そのため、流路数を少なくして冷媒流速を上げて伝熱性能の低下を抑制する別の熱交換器が必要になる。本実施形態では、扁平伝熱管12a側の熱交換器10Aの上流側に円形伝熱管7を有する熱交換器6Aを配置しているので、この熱交換器6Aによって冷媒流速を上げることができ、伝熱性能の低下を抑制することができる。また、扁平伝熱管12aと円形伝熱管7を直列に接続して混在させることも可能であり、この場合、熱交換器を凝縮器として使用するとき、つまり暖房時に、冷媒の通過経路が、入口側を扁平伝熱管12a、出口側を円形伝熱管7にすると、冷媒が液状態のとき円形伝熱管7で処理されるため、管内圧損を低く抑えることができるという利点が得られる。   In addition, when using the heat exchanger as a condenser, it is necessary to perform a refrigerant treatment in a supercooled state, that is, a liquid state, but in the flat heat transfer tube 12a, there are many refrigerant passage channels, and the refrigerant flow rate becomes slow. It is conceivable that the heat transfer performance deteriorates. Therefore, another heat exchanger is required in which the number of flow paths is reduced and the refrigerant flow rate is increased to suppress a decrease in heat transfer performance. In this embodiment, since the heat exchanger 6A having the circular heat transfer tube 7 is arranged on the upstream side of the heat exchanger 10A on the flat heat transfer tube 12a side, the flow rate of the refrigerant can be increased by the heat exchanger 6A. A decrease in heat transfer performance can be suppressed. Further, the flat heat transfer tubes 12a and the circular heat transfer tubes 7 can be connected in series and mixed, and in this case, when the heat exchanger is used as a condenser, that is, during heating, the passage path of the refrigerant is If the side is the flat heat transfer tube 12a and the outlet side is the circular heat transfer tube 7, since the circular heat transfer tube 7 is processed when the refrigerant is in a liquid state, an advantage that the pressure loss in the tube can be suppressed is obtained.

実施の形態2.
図5は本発明の実施の形態2に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 2. FIG.
FIG. 5 is a side sectional view showing an air conditioner according to Embodiment 2 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、図5のように熱交換量が不足しないように、扁平伝熱管を有する熱交換器を、貫流送風機5の前面下部だけでなく、前面上部と背面にも設置して、貫流送風機5直前の熱交換器は全て扁平伝熱管の熱交換器とするとともに、これら前面上部側の熱交換器10Bと背面側の熱交換器10Cの上流側に、それぞれ円形伝熱管7を有する熱交換器6B,6Cを配置したものであり、基本的に前述の実施の形態1のものに熱交換器10B,10Cを追加したものである。   In the air conditioner of the present embodiment, a heat exchanger having a flat heat transfer tube is installed not only on the front lower part of the cross-flow blower 5 but also on the front upper part and the rear face so that the amount of heat exchange is not insufficient as shown in FIG. The heat exchanger immediately before the once-through fan 5 is a flat heat transfer tube heat exchanger, and circular heat transfer tubes are respectively provided upstream of the heat exchanger 10B on the upper front side and the heat exchanger 10C on the rear side. The heat exchangers 6B and 6C having 7 are arranged, and the heat exchangers 10B and 10C are basically added to those of the first embodiment described above.

本実施形態の空気調和機において、熱交換器10B,10Cの互いの境界部側に位置する扁平伝熱管12b,12cは、これらにより曲げられて流出する気流3a,3bが干渉しないように貫流送風機5側(下向き)に傾けられている。また、背面側の熱交換器10Cの下部の伝熱管12dも風路に沿って傾けて設置されている。   In the air conditioner of the present embodiment, the flat heat transfer tubes 12b and 12c located on the boundary sides of the heat exchangers 10B and 10C are bent by these so as to prevent the airflows 3a and 3b flowing out from interfering with each other. It is tilted to the 5 side (downward). Further, the lower heat transfer tube 12d of the heat exchanger 10C on the back side is also installed inclined along the air passage.

熱交換器を増やすと、空力抵抗が大きくなるが、本実施形態のように、追加する熱交換器として、いずれも扁平伝熱管の熱交換器10B,10Cを用い、それぞれの上流に円形伝熱管の熱交換器6B,6Cを配置することで、流れを整流させて下流部の扁平伝熱管の熱交換器10B,10Cに流れ込ませることができるとともに、貫流送風機5直前の熱交換器が全て扁平伝熱管12a,12c,12cの熱交換器10A,10B,10Cとなって、空力性能の悪化を小さく抑えることができる。   When the number of heat exchangers is increased, the aerodynamic resistance increases. However, as in the present embodiment, the heat exchangers 10B and 10C, which are flat heat transfer tubes, are used as the heat exchangers to be added, and circular heat transfer tubes are upstream of each. By arranging the heat exchangers 6B and 6C, the flow can be rectified to flow into the heat exchangers 10B and 10C of the flat heat transfer tubes in the downstream portion, and all the heat exchangers immediately before the once-through fan 5 are flat. It becomes the heat exchangers 10A, 10B, and 10C of the heat transfer tubes 12a, 12c, and 12c, and deterioration of aerodynamic performance can be suppressed small.

また、扁平伝熱管12b,12cの傾きによって熱交換器10B,10Cの上部の気流が干渉するのを防止でき、熱交換器10B,10Cを出た後の風路によって気流が妨げられることがなく、スムーズに流すことができ、熱交換器での空力性能が向上する。   Moreover, it can prevent that the airflow of the upper part of heat exchanger 10B, 10C interferes with the inclination of flat heat exchanger tube 12b, 12c, and an airflow is not obstructed by the air path after leaving heat exchanger 10B, 10C. It can flow smoothly, and the aerodynamic performance in the heat exchanger is improved.

実施の形態3.
図6は本発明の実施の形態3に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 3 FIG.
FIG. 6 is a side sectional view showing an air conditioner according to Embodiment 3 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、扁平伝熱管を有する熱交換器が、貫流送風機5の前面下部、前面上部、及び背面に設置され、これら熱交換器10A,10B,10Cの上流側に、それぞれ円形伝熱管7を有する熱交換器6D,6B,6Eが配置されている点においては、基本的に前述の実施形態2と共通している。しかし、ここでは前面下部側の熱交換器10Aの扁平伝熱管12aと背面側の熱交換器10Cの伝熱管12dのそれぞれの上流側に、円形伝熱管7が存在せず、この点で前述の実施形態2のものと異なっている。   In the air conditioner of the present embodiment, heat exchangers having flat heat transfer tubes are installed on the front lower portion, front upper portion, and rear surface of the once-through blower 5, and upstream of these heat exchangers 10A, 10B, and 10C, respectively. The heat exchangers 6D, 6B, and 6E having the circular heat transfer tubes 7 are basically the same as those in the second embodiment described above. However, here, the circular heat transfer tube 7 does not exist on the upstream side of each of the flat heat transfer tube 12a of the heat exchanger 10A on the lower front side and the heat transfer tube 12d of the heat exchanger 10C on the back side. It differs from that of the second embodiment.

これを更に詳述すると、前面下部の円形伝熱管側の熱交換器6Dと背面の円形伝熱管側の熱交換器6Eは、いずれも伝熱フィン6b,6cが長方形ではなく、幅が一定ではない。例えば、周囲が風路壁に接近している所(伝熱フィン6bの下部や伝熱フィン6cの上下部)では風速が遅いため、気流制御に関する重要性は低い。また、熱交換器6D,6B,6Eの互いの境界部が重なり合う所(特に伝熱フィン6bの上部)では2重に伝熱フィンを重ねても、気流制御効果は変わらない。したがって、ここでは、伝熱フィン6bの上部の一部を切り欠いて、扁平伝熱管側の熱交換器10Aの上流側を覆わないように構成している。但し、流速が速くなる上部(特に前面上部)では、円形伝熱管7側の熱交換器6Bによる気流制御を行わなくてはならないため、幅が略一定の伝熱フィン6aで扁平伝熱管側の熱交換器10Bの上流を覆うように構成している。   More specifically, in the heat exchanger 6D on the lower side of the circular heat transfer tube on the lower front surface and the heat exchanger 6E on the rear side of the circular heat transfer tube, the heat transfer fins 6b and 6c are not rectangular and the width is constant. Absent. For example, since the wind speed is low where the surroundings are close to the wind path wall (the lower part of the heat transfer fins 6b and the upper and lower parts of the heat transfer fins 6c), the importance of airflow control is low. Further, even when the heat exchanger fins 6D, 6B, and 6E overlap each other (particularly at the top of the heat transfer fins 6b), the airflow control effect does not change even if the heat transfer fins are overlapped. Accordingly, here, a part of the upper part of the heat transfer fin 6b is cut away so that the upstream side of the heat exchanger 10A on the flat heat transfer tube side is not covered. However, in the upper part (especially, the upper part of the front surface) where the flow velocity becomes faster, the air flow must be controlled by the heat exchanger 6B on the circular heat transfer tube 7 side, so the heat transfer fins 6a having a substantially constant width are used on the flat heat transfer tube side. It is comprised so that the upstream of the heat exchanger 10B may be covered.

本実施形態の空気調和機においては、伝熱フィン6b,6cにおける下流側が狭い空間に対応する部分を切り欠いて構成しているので、下流側が狭い空間を流れる気流3をよりスムーズに送り出すことができる。   In the air conditioner of the present embodiment, the downstream side of the heat transfer fins 6b and 6c is formed by cutting out a portion corresponding to the narrow space, so that the air flow 3 flowing in the narrow space on the downstream side can be sent out more smoothly. it can.

実施の形態4.
図7は本発明の実施の形態4に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 4 FIG.
FIG. 7 is a side sectional view showing an air conditioner according to Embodiment 4 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、貫流送風機5の前面下部、前面上部、及び背面に、それぞれ扁平伝熱管12を有する熱交換器10A,10B,10Cが設置され、これら熱交換器10A,10B,10Cの上流側に、それぞれ円形伝熱管7を有する熱交換器6A,6B,6Cが配置されている点においては、基本的に前述の実施形態2と共通している。しかし、ここでは各熱交換器10A,10B,10Cの個々において、扁平伝熱管12の扁平形状の長軸方向が揃えられて構成されており、この点で前述の実施形態2のものと異なっている。   In the air conditioner of the present embodiment, heat exchangers 10A, 10B, and 10C having flat heat transfer tubes 12 are installed on the front lower portion, front upper portion, and rear surface of the once-through blower 5, respectively, and these heat exchangers 10A, 10B, The heat exchangers 6A, 6B, and 6C each having the circular heat transfer tube 7 are disposed upstream of 10C, and is basically the same as that of the second embodiment. However, here, each of the heat exchangers 10A, 10B, and 10C is configured such that the long axis direction of the flat shape of the flat heat transfer tube 12 is aligned, which is different from that of the second embodiment described above. Yes.

本実施形態の空気調和機において、上流側の熱交換器6A,6B,6Cで流れ方向が修正されて扁平伝熱管12側の熱交換器10A,10B,10Cに流入する原理は、前述の実施形態1と同様である。   In the air conditioner of the present embodiment, the principle that the flow direction is corrected by the upstream heat exchangers 6A, 6B, 6C and flows into the heat exchangers 10A, 10B, 10C on the flat heat transfer tube 12 side is as described above. This is the same as the first embodiment.

本実施形態においては、各熱交換器10A,10B,10Cの個々において、扁平伝熱管12の扁平形状の長軸方向が揃えられて構成されているので、各扁平伝熱管12の扁平形状の長軸の延長線が上流側の熱交換器6A,6B,6Cの各伝熱フィン6a,6a,6aと交差してこれら伝熱フィン6a,6a,6a部分を通過する長さの合計は、長方形伝熱フィンのもので扁平伝熱管12の一部を傾けた場合に比べて小さくなる。その結果、上流側の各伝熱フィン6a部での流動抵抗が小さくなり、流動損失が低減されて、ユニット低入力効果が得られる。   In the present embodiment, each of the heat exchangers 10A, 10B, 10C is configured such that the long axis direction of the flat shape of the flat heat transfer tube 12 is aligned, so that the flat length of each flat heat transfer tube 12 is long. The total length of the extension line of the shaft crossing the heat transfer fins 6a, 6a, 6a of the upstream heat exchangers 6A, 6B, 6C and passing through these heat transfer fins 6a, 6a, 6a is rectangular. Compared to the case where a portion of the flat heat transfer tube 12 is inclined with a heat transfer fin. As a result, the flow resistance in each heat transfer fin 6a portion on the upstream side is reduced, the flow loss is reduced, and the unit low input effect is obtained.

また、貫流送風機5の直前にて気流との間で熱交換を行う熱交換器を全て扁平伝熱管12の熱交換器10A,10B,10Cから構成したので、流動抵抗が小さくなって、貫流送風機5の負荷を抑えることができる。   Moreover, since all the heat exchangers that exchange heat with the airflow immediately before the once-through fan 5 are configured from the heat exchangers 10A, 10B, and 10C of the flat heat transfer tubes 12, the flow resistance is reduced, and the once-through fan. 5 load can be suppressed.

実施の形態5.
図8は本発明の実施の形態5に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 5 FIG.
FIG. 8 is a side sectional view showing an air conditioner according to Embodiment 5 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、貫流送風機5の前面下部および背面に、それぞれ伝熱フィン10aの長手方向に対して扁平伝熱管12e,12fを貫流送風機5の翼17の回転方向に傾けた熱交換器10A,10Cが設置されているとともに、貫流送風機5の前面上部に円形伝熱管7を有する熱交換器6Bが設置され、さらに扁平伝熱管側の熱交換器10A,10Cの上流側に、それぞれ円形伝熱管7を有する熱交換器6A,6Cが配置されている。すなわち、前面下部の熱交換器10Aにおいては、扁平伝熱管12eを上方に向けて、気流3aを斜め上方向きで流入させる配置にし、熱交換器10Cにおいては、扁平伝熱管12fを下方に向けて、気流3bを斜め下方向きで流入させる配置にして、貫流送風機5に流入する気流方向を制御し、翼17への流入角が小さくなるようにしている。それ以外の構成は前述の実施形態1と同様である。   In the air conditioner of the present embodiment, flat heat transfer tubes 12e and 12f are inclined at the front lower portion and the rear surface of the once-through fan 5 with respect to the longitudinal direction of the heat transfer fins 10a in the rotation direction of the blades 17 of the once-through fan 5, respectively. The exchangers 10A and 10C are installed, a heat exchanger 6B having a circular heat transfer tube 7 is installed at the upper front of the once-through fan 5, and further, upstream of the heat exchangers 10A and 10C on the flat heat transfer tube side, Heat exchangers 6A and 6C each having a circular heat transfer tube 7 are arranged. That is, in the heat exchanger 10A at the lower front surface, the flat heat transfer tube 12e is directed upward and the air flow 3a is flowed obliquely upward, and in the heat exchanger 10C, the flat heat transfer tube 12f is directed downward. The airflow 3b is arranged so as to flow obliquely downward, the direction of the airflow flowing into the once-through fan 5 is controlled, and the inflow angle to the blade 17 is made small. Other configurations are the same as those of the first embodiment.

本実施形態の空気調和機のように、伝熱フィン10aの長手方向に対して扁平伝熱管12e,12fを傾けて、貫流送風機5の翼17に対して回転する方向に気流3a,3bを向けると、翼17付近で流れが剥離し難くなり、送風性能が高くなる。   Like the air conditioner of the present embodiment, the flat heat transfer tubes 12e and 12f are inclined with respect to the longitudinal direction of the heat transfer fin 10a, and the airflows 3a and 3b are directed in the direction of rotation with respect to the blades 17 of the once-through fan 5. Then, it becomes difficult for the flow to peel off in the vicinity of the blade 17 and the air blowing performance is improved.

なお、整流作用を有する上流側の熱交換器6A,6Cの伝熱フィン6aのエッジと扁平伝熱管側の熱交換器10A,10Cの伝熱フィン10aのエッジとを平行配置とせず、図8のようにエッジ間距離に差を付けることでも、気流方向を整流化でき、意図した気流方向を実現し易くなる。これにより、貫流送風機5への流入角が改善された流れを作ることができ、ユニット性能が向上する。   The edges of the heat transfer fins 6a of the upstream heat exchangers 6A and 6C having the rectifying action and the edges of the heat transfer fins 10a of the heat exchangers 10A and 10C on the flat heat transfer tube side are not arranged in parallel. As described above, the airflow direction can also be rectified by providing a difference in the distance between the edges, and the intended airflow direction can be easily realized. Thereby, the flow in which the inflow angle to the once-through blower 5 is improved can be made, and the unit performance is improved.

実施の形態6.
図9は本発明の実施の形態6に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 6 FIG.
FIG. 9 is a side sectional view showing an air conditioner according to Embodiment 6 of the present invention, in which the same reference numerals are given to the same portions as those of Embodiment 1 described above.

本実施形態の空気調和機は、貫流送風機5の前面上部に、伝熱フィン10aの長手方向に対して扁平伝熱管12を貫流送風機5を中心とする放射線上に沿う如く(必ずしも向きを放射線上に一致させる必要はない)傾けた熱交換器10Dが設置されているとともに、貫流送風機5の前面下部および背面に、円形伝熱管7を有する熱交換器6A,6Cが配置され、さらに扁平伝熱管側の熱交換器10Dの上流側に、円形伝熱管7を有する熱交換器6Fが配置されている。また、上流側の熱交換器6Fは、各扁平伝熱管12の扁平形状の長軸の延長線13が伝熱フィン6dと交差してこの伝熱フィン6d部分を通過する長さ14の合計が最小となるように、伝熱フィン6dの幅を略一定として円弧状に構成されている。つまり、熱交換器6Fは、その伝熱フィン6dの延長方向の軸線が、各延長線13と交差する部位において、それぞれ延長線13と直交するように、その長手方向の形状が一義的に決定されてなるものである。   In the air conditioner of the present embodiment, the flat heat transfer tube 12 is arranged on the front upper portion of the once-through fan 5 along the radiation centered on the once-through fan 5 with respect to the longitudinal direction of the heat transfer fins 10a. And the heat exchangers 6A and 6C having the circular heat transfer tubes 7 are disposed on the front lower portion and the rear surface of the once-through blower 5, and the flat heat transfer tubes are further provided. A heat exchanger 6F having a circular heat transfer tube 7 is arranged on the upstream side of the side heat exchanger 10D. In addition, the upstream heat exchanger 6F has a total length 14 that passes through the heat transfer fin 6d portion, with the flat extension 13 of the flat shape of each flat heat transfer tube 12 intersecting the heat transfer fin 6d. The heat transfer fin 6d has a substantially constant width so as to be minimized. That is, the shape of the heat exchanger 6F in the longitudinal direction is uniquely determined so that the axis of the heat transfer fin 6d in the extending direction intersects with each extension line 13 at right angles to the extension line 13 respectively. It has been made.

したがって、本実施形態の空気調和機においては、扁平伝熱管12に流入する気流方向をその扁平形状の長軸方向に一致させることができ、かつ気流3を集中させて貫流送風機5へ向かわせることができる。このため、気流3の方向を制御しながら、流動抵抗を減少させることができ、さらに吸い込み風量分布を適切にすることができる。   Therefore, in the air conditioner of this embodiment, the direction of the airflow flowing into the flat heat transfer tube 12 can be matched with the long axis direction of the flat shape, and the airflow 3 is concentrated and directed to the once-through fan 5. Can do. For this reason, it is possible to reduce the flow resistance while controlling the direction of the air flow 3, and to make the suction air volume distribution appropriate.

実施の形態7.
図10は本発明の実施の形態7に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 7 FIG.
FIG. 10 is a side sectional view showing an air conditioner according to Embodiment 7 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、伝熱面積を稼ぐため、前面下部の伝熱フィン10bの幅を設置空間に応じて局所的に異ならせた(広げた)ものである。   In the air conditioner of this embodiment, in order to increase the heat transfer area, the width of the heat transfer fins 10b in the lower front portion is locally changed (expanded) according to the installation space.

本実施形態においても、前述の実施の形態1と同様に扁平伝熱管の扁平形状の長軸の延長線13が上流側の伝熱フィン6aと交差してこの伝熱フィン6a部分を通過する長さ14の合計が最小になるようにすることで、実施の形態1と同等の効果が得られる。   Also in the present embodiment, as in the first embodiment described above, the long extension 13 of the flat shape of the flat heat transfer tube intersects the heat transfer fin 6a on the upstream side and passes through the heat transfer fin 6a portion. By minimizing the sum of the lengths 14, the same effects as those of the first embodiment can be obtained.

さらに、伝熱フィン10bの幅を広げた分、熱交換効率が向上する。   Further, the heat exchange efficiency is improved by increasing the width of the heat transfer fin 10b.

実施の形態8.
図11は本発明の実施の形態8に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 8 FIG.
FIG. 11 is a side sectional view showing an air conditioner according to Embodiment 8 of the present invention, in which the same reference numerals are given to the same portions as those in Embodiment 1 described above.

本実施形態の空気調和機は、扁平伝熱管12を有する熱交換器10Bがユニットの前面上部に配置されている。その上流側には空気調和機に空気清浄機としての機能を持たせるために、厚みが略一定の集塵用や空気清浄用の機器またはフィルタ(以下、これらをまとめて単に「フィルタ」という)9Aが配置されている。フィルタ9Aは、各扁平伝熱管12の扁平形状の長軸の延長線13が当該フィルタ9Aと交差して当該フィルタ9A部分を通過する長さ14の合計が最小になるように、その熱交換器10Bに対向する面の向きが調整されて配置されている。これは整流化の部品を熱交換器からフィルタ9Aに交換したと考えればよい。   In the air conditioner of the present embodiment, a heat exchanger 10B having a flat heat transfer tube 12 is arranged in the upper front portion of the unit. On the upstream side, in order to give the air conditioner a function as an air purifier, a dust collecting or air purifying device or filter having a substantially constant thickness (hereinafter, these are simply referred to as “filter”). 9A is arranged. The filter 9A has its heat exchanger such that the total length 14 of the flat long axis 13 of each flat heat transfer tube 12 crossing the filter 9A and passing through the filter 9A portion is minimized. The direction of the surface facing 10B is adjusted and arranged. This may be considered that the rectifying component is replaced from the heat exchanger to the filter 9A.

本実施形態の空気調和機において、フィルタ9A中を通過する気流3は、前述の実施形態1と同様にフィルタ通過時の抵抗を最小にするため、最短経路を通過するように方向が変わる。その結果、フィルタ9A直後の気流3は扁平伝熱管12の扁平形状の長軸方向を向き、熱交換器10B通過時の流動抵抗が減少する。   In the air conditioner of the present embodiment, the direction of the airflow 3 passing through the filter 9A changes so as to pass through the shortest path in order to minimize the resistance when passing through the filter, as in the first embodiment. As a result, the airflow 3 immediately after the filter 9A faces the flat major axis direction of the flat heat transfer tube 12, and the flow resistance when passing through the heat exchanger 10B decreases.

実施の形態9.
図12は本発明の実施の形態9に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1,6と同一部分には同一符号を付してある。なお、ここでは説明にあたって前述の図9を参照するものとする。
Embodiment 9 FIG.
FIG. 12 is a side sectional view showing an air conditioner according to Embodiment 9 of the present invention, in which the same parts as those in Embodiments 1 and 6 are given the same reference numerals. Note that FIG. 9 is referred to in the description here.

本実施形態の空気調和機は、扁平伝熱管12を貫流送風機5を中心とする放射線上に沿う如く傾けた熱交換器10Dがユニットの前面上部に配置されている。その上流側には空気調和機に空気清浄機としての機能を持たせるために、厚みが略一定の集塵用や空気清浄用の機器またはフィルタ(以下、これらをまとめて単に「フィルタ」という)9Bが配置されている。フィルタ9Bは、各扁平伝熱管12の扁平形状の長軸の延長線13が当該フィルタ9Bと交差して当該フィルタ9B部分を通過する長さ14の合計が最小となるように、円弧状に構成されている(図9参照)。つまり、フィルタ9Bは、その高さ方向の軸線が、放射状の各延長線13と交差する部位において、それぞれ延長線13と直交するように、その高さ方向の形状が一義的に決定されてなるものであり、整流化の部品を図9の熱交換器6Fからフィルタ9Bに交換したと考えればよい。   In the air conditioner of the present embodiment, a heat exchanger 10D that inclines the flat heat transfer tube 12 along the radiation centering on the once-through fan 5 is disposed in the upper front portion of the unit. On the upstream side, in order to give the air conditioner a function as an air purifier, a dust collecting or air purifying device or filter having a substantially constant thickness (hereinafter, these are simply referred to as “filter”). 9B is arranged. The filter 9B is configured in an arc shape so that the total length 14 of the flat long axis 13 of each flat heat transfer tube 12 crossing the filter 9B and passing through the filter 9B portion is minimized. (See FIG. 9). In other words, the shape of the filter 9B is uniquely determined so that the axis in the height direction intersects each of the radial extension lines 13 so that the filter 9B is orthogonal to the extension lines 13, respectively. Therefore, it may be considered that the rectifying component is replaced from the heat exchanger 6F in FIG. 9 to the filter 9B.

本実施形態の空気調和機において、フィルタ9B中を通過する気流3は、前述の実施形態1と同様にフィルタ通過時の抵抗を最小にするため、最短経路を通過するように方向が変わる。その結果、フィルタ9B直後の気流3は扁平伝熱管12の扁平形状の長軸方向を向き、気流3が集中して貫流送風機5へ向かう。このため、気流3の方向を制御しながら、流動抵抗を減少させることができ、さらに吸い込み風量分布を適切にすることができる。   In the air conditioner of the present embodiment, the direction of the airflow 3 passing through the filter 9B changes so as to pass through the shortest path in order to minimize the resistance when passing through the filter, as in the first embodiment. As a result, the airflow 3 immediately after the filter 9B is directed in the long axis direction of the flat shape of the flat heat transfer tube 12, and the airflow 3 is concentrated toward the once-through fan 5. For this reason, it is possible to reduce the flow resistance while controlling the direction of the air flow 3, and to make the suction air volume distribution appropriate.

実施の形態10.
図13は本発明の実施の形態10に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 10 FIG.
FIG. 13 is a side sectional view showing an air conditioner according to Embodiment 10 of the present invention, in which the same reference numerals are given to the same portions as those in Embodiment 1 described above.

本実施形態の空気調和機は、ユニットの内部形状に合わせて長手方向23がくの字状に折れ曲がっている伝熱フィン10cを有し、扁平伝熱管12を持つ熱交換器10Fを、ユニットの貫流送風機5の前面下部から前面上部に至る空間内に配置するとともに、ユニットの背面に、円形伝熱管7を持つ熱交換器6Cを配置し、さらに扁平伝熱管側の熱交換器10Fのくの字状両辺の上流側、つまり前面下部と前面上部に、それぞれ各伝熱フィン6aの幅14a,14bが略一定で、円形伝熱管7を持つ熱交換器6A,6Bを配置したものである。   The air conditioner of the present embodiment includes a heat exchanger 10F having a flat heat transfer tube 12 having a heat transfer fin 10c whose longitudinal direction 23 is bent in a U shape in accordance with the internal shape of the unit. A heat exchanger 6C having a circular heat transfer tube 7 is disposed on the back surface of the unit and disposed in a space from the lower front surface to the upper front surface of the blower 5, and further, a square shape of the heat exchanger 10F on the flat heat transfer tube side. The heat exchangers 6A and 6B having the circular heat transfer tubes 7 are disposed on the upstream side of the two sides, that is, on the lower part of the front surface and the upper part of the front surface.

本実施形態の空気調和機において、上流側の各熱交換器6A,6Bは、それぞれの伝熱フィン6a,6aの幅が略一定であり、下流側の熱交換器10Fの伝熱フィン10cを長手方向の曲がり部10d付近を境に上側と下側に分けて考えると、各扁平伝熱管12の扁平形状の長軸の延長線が上流側の各伝熱フィン6a,6aと交差してこれら伝熱フィン6a,6a部分を通過する長さ14a,14bの合計が最小となるように、熱交換器10Fに対向する面の向きが調整されて、熱交換器10Fの上流側の全面に亘って配置されている。この結果、環境や使用時間に依らず、熱交換器の通風抵抗を低減でき、騒音も小さく抑えることができ、伝熱性能を向上させることができる。   In the air conditioner of the present embodiment, the upstream heat exchangers 6A, 6B have substantially constant widths of the heat transfer fins 6a, 6a, and the heat transfer fins 10c of the downstream heat exchanger 10F Considering the bent portion 10d in the longitudinal direction as an upper boundary and a lower boundary, the extension line of the flat long axis of each flat heat transfer tube 12 intersects with the heat transfer fins 6a, 6a on the upstream side. The direction of the surface facing the heat exchanger 10F is adjusted so that the sum of the lengths 14a and 14b passing through the heat transfer fins 6a and 6a is minimized, and the entire surface upstream of the heat exchanger 10F is adjusted. Are arranged. As a result, the ventilation resistance of the heat exchanger can be reduced, the noise can be suppressed small, and the heat transfer performance can be improved regardless of the environment and usage time.

実施の形態11.
図14は本発明の実施の形態11に係る空気調和機を示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 11 FIG.
FIG. 14 is a side sectional view showing an air conditioner according to Embodiment 11 of the present invention, in which the same reference numerals are given to the same portions as those of Embodiment 1 described above.

本実施形態の空気調和機は、前述の実施形態10と同じようにユニットの内部形状に合わせて長手方向23がくの字状に折れ曲がっている伝熱フィン10cを有し、扁平伝熱管12を持つ熱交換器10Fを、ユニットの貫流送風機5の前面下部から前面上部に至る空間内に配置するとともに、ユニットの背面に、円形伝熱管7を持つ熱交換器6Cを配置し、さらに扁平伝熱管側の熱交換器10Fの上流側に、円形伝熱管7を持ち、伝熱フィン6eが同じく、くの字状に折れ曲がっている熱交換器6Gを熱交換器10Fに沿うようにその上流側の全面に亘って配置したものである。   The air conditioner according to the present embodiment includes the heat transfer fins 10c whose longitudinal direction 23 is bent in a U shape in accordance with the internal shape of the unit as in the above-described embodiment 10, and has the flat heat transfer tube 12. The heat exchanger 10F is arranged in the space from the lower front part to the upper front part of the cross-flow fan 5 of the unit, and the heat exchanger 6C having the circular heat transfer pipe 7 is arranged on the rear side of the unit, and further the flat heat transfer tube side A heat exchanger 6G having a circular heat transfer tube 7 on the upstream side of the heat exchanger 10F and the heat transfer fins 6e bent in a U-shape is also provided on the entire upstream surface of the heat exchanger 10F along the heat exchanger 10F. It is arranged over.

ところで、扁平伝熱管側の熱交換器10Fの上流側の円形伝熱管を持つ熱交換器を、前述の実施形態10のように分割構成した場合、全ての扁平伝熱管12を覆うことができなくなる可能性が存在し、扁平伝熱管12に流入する気流3を制御しきれない箇所が生ずる可能性が存在する(例えば、円形伝熱管を持つ隣接熱交換器相互の境界部など)。   By the way, when the heat exchanger having the circular heat transfer tube on the upstream side of the heat exchanger 10F on the flat heat transfer tube side is divided and configured as in the above-described embodiment 10, all the flat heat transfer tubes 12 cannot be covered. There is a possibility that there may be a place where the airflow 3 flowing into the flat heat transfer tube 12 cannot be controlled (for example, a boundary portion between adjacent heat exchangers having circular heat transfer tubes).

本実施形態の空気調和機においては、扁平伝熱管側の熱交換器10Fの伝熱フィン10cの長手方向23と単一構成からなる円形伝熱管側の熱交換器6Gの長手方向24が揃っているので、扁平伝熱管12の上流側略全面を確実に覆うことができ、上流側の熱交換器6Gによる気流制御が可能になり、扁平伝熱管12に流入する気流方向が改善し、ユニットの伝熱性能を向上させることができる。   In the air conditioner of the present embodiment, the longitudinal direction 23 of the heat transfer fin 10c of the heat exchanger 10F on the flat heat transfer tube side and the longitudinal direction 24 of the heat exchanger 6G on the circular heat transfer tube side having a single configuration are aligned. Therefore, it is possible to reliably cover substantially the entire upstream side of the flat heat transfer tube 12 and to control the air flow by the upstream heat exchanger 6G, improving the direction of the air flow flowing into the flat heat transfer tube 12, Heat transfer performance can be improved.

また、各扁平伝熱管12の扁平形状の長軸の延長線が上流側の伝熱フィン6eと交差して伝熱フィン6e部分を通過する長さ14a,14b,14cの合計が最小となるように、熱交換器6Gの熱交換器10Fに対向する面の向きが調整されて配置されている。この結果、環境や使用時間に依らず、熱交換器の通風抵抗を低減でき、騒音も小さく抑えることができ、伝熱性能を向上させることができる。   Further, the total length of the lengths 14a, 14b, and 14c passing through the heat transfer fin 6e portion is minimized so that the extension line of the flat long axis of each flat heat transfer tube 12 intersects the heat transfer fin 6e on the upstream side. Further, the orientation of the surface of the heat exchanger 6G facing the heat exchanger 10F is adjusted. As a result, the ventilation resistance of the heat exchanger can be reduced, the noise can be suppressed small, and the heat transfer performance can be improved regardless of the environment and usage time.

実施の形態12.
図15は本発明の実施の形態12に係る空気調和機を示す側面断面図であり、図中、前述の実施形態10と同一部分には同一符号を付してある。なお、ここでは説明にあたって前述の図11及び図13を参照するものとする。
Embodiment 12 FIG.
FIG. 15 is a side sectional view showing an air conditioner according to Embodiment 12 of the present invention. In the figure, the same parts as those in Embodiment 10 are given the same reference numerals. Here, in the description, the above-described FIGS. 11 and 13 are referred to.

本実施形態の空気調和機は、前述の実施形態10におけるくの字状伝熱フィン10cを有し扁平伝熱管12を持つ熱交換器10Fの上流側の熱交換器の一部(熱交換器6B)を、厚みが略一定の集塵用や空気清浄用の機器またはフィルタ(以下、これらをまとめて単に「フィルタ」という)9Cに置き換えたものである。   The air conditioner of the present embodiment is a part of the heat exchanger upstream of the heat exchanger 10F having the flat-shaped heat transfer tube 12 having the letter-shaped heat transfer fins 10c in the above-described tenth embodiment (heat exchanger 6B) is replaced with a dust collecting or air cleaning device or filter having a substantially constant thickness (hereinafter collectively referred to simply as “filter”) 9C.

本実施形態の空気調和機において、整流手段となるフィルタ9Cは、熱交換器10Fの各扁平伝熱管12の扁平形状の長軸の延長線13(図11参照)が当該フィルタ9Cと交差して当該フィルタ9C部分を通過する長さ14(図11参照)の合計が最小になるように、その熱交換器10Fに対向する面の向きが調整されて配置されている。したがって、フィルタ9C中を通過する気流3は、前述の実施形態1と同様にフィルタ通過時の抵抗を最小にするため、最短経路を通過するように方向が変わる。その結果、フィルタ9C直後の気流3は扁平伝熱管12の扁平形状の長軸方向を向き、熱交換器10F通過時の流動抵抗が減少し、吸い込み風量分布を適切にすることができる。   In the air conditioner of the present embodiment, the filter 9C serving as a rectifying means is configured such that a flat long-axis extension line 13 (see FIG. 11) of each flat heat transfer tube 12 of the heat exchanger 10F intersects the filter 9C. The orientation of the surface facing the heat exchanger 10F is adjusted so that the total length 14 (see FIG. 11) passing through the filter 9C portion is minimized. Accordingly, the direction of the air flow 3 passing through the filter 9C changes so as to pass through the shortest path in order to minimize the resistance when passing through the filter, as in the first embodiment. As a result, the airflow 3 immediately after the filter 9C is directed in the long axis direction of the flat shape of the flat heat transfer tube 12, the flow resistance when passing through the heat exchanger 10F is reduced, and the suction airflow distribution can be made appropriate.

実施の形態13.
図16は本発明の実施の形態13に係る空気調和機を示す側面断面図であり、図中、前述の実施形態11と同一部分には同一符号を付してある。なお、ここでは説明にあたって前述の図14を参照するものとする。
Embodiment 13 FIG.
FIG. 16 is a side sectional view showing an air conditioner according to Embodiment 13 of the present invention. In the figure, the same parts as those in Embodiment 11 are given the same reference numerals. Here, in the description, reference is made to FIG. 14 described above.

本実施形態の空気調和機は、前述の実施形態11におけるくの字状伝熱フィン10cを有し扁平伝熱管12を持つ熱交換器10Fの上流側の熱交換器6Gを、厚みが略一定で伝熱フィン10cと同様にくの字状に折れ曲がっている集塵用や空気清浄用の機器またはフィルタ(以下、これらをまとめて単に「フィルタ」という)9Dに置き換えたものである。   The air conditioner of the present embodiment has a substantially constant thickness of the heat exchanger 6G on the upstream side of the heat exchanger 10F having the flat-shaped heat transfer tubes 12 having the dog-shaped heat transfer fins 10c in the above-described Embodiment 11. In the same manner as in the heat transfer fin 10c, a dust collecting or air cleaning device or filter (hereinafter collectively referred to simply as "filter") 9D bent in a dogleg shape is replaced.

本実施形態の空気調和機においても、前述の実施形態11と同様に扁平伝熱管側の熱交換器10Fの伝熱フィン10cの長手方向23(図14参照)とフィルタ9Dの長手方向24(図14参照)が揃っているので、扁平伝熱管12の上流側略全面を確実に覆うことができ、上流側のフィルタ9Dによる気流制御が可能になり、扁平伝熱管12に流入する気流方向が改善し、ユニットの伝熱性能を向上させることができる。   Also in the air conditioner of the present embodiment, the longitudinal direction 23 (see FIG. 14) of the heat transfer fin 10c of the heat exchanger 10F on the flat heat transfer tube side and the longitudinal direction 24 (see FIG. 14) of the filter 9D, as in the above-described Embodiment 11. 14), the substantially entire upstream side of the flat heat transfer tube 12 can be reliably covered, and the air flow control by the upstream filter 9D becomes possible, and the direction of the air flow flowing into the flat heat transfer tube 12 is improved. In addition, the heat transfer performance of the unit can be improved.

また、各扁平伝熱管12の扁平形状の長軸の延長線が上流側のフィルタ9Dと交差してフィルタ9D部分を通過する長さ14a,14b,14c(図14参照)の合計が最小となるように、フィルタ9Dの熱交換器10Fに対向する面の向きが調整されて配置されている。この結果、環境や使用時間に依らず、熱交換器の通風抵抗を低減でき、騒音も小さく抑えることができ、伝熱性能を向上させることができる。   Further, the sum of the lengths 14a, 14b, and 14c (see FIG. 14) in which the extension line of the flat long axis of each flat heat transfer tube 12 intersects the upstream filter 9D and passes through the filter 9D portion is minimized. Thus, the direction of the surface facing the heat exchanger 10F of the filter 9D is adjusted and arranged. As a result, the ventilation resistance of the heat exchanger can be reduced, the noise can be suppressed small, and the heat transfer performance can be improved regardless of the environment and usage time.

実施の形態14.
図17は本発明の実施の形態14に係る空気調和機に搭載される伝熱フィンを示す正面図、図18は比較例に搭載される伝熱フィンを示す正面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 14 FIG.
FIG. 17 is a front view showing a heat transfer fin mounted on an air conditioner according to Embodiment 14 of the present invention, and FIG. 18 is a front view showing a heat transfer fin mounted on a comparative example. The same parts as those in the first embodiment are denoted by the same reference numerals.

これまでの実施の例は熱交換器側方より見て1つの伝熱フィン内で伝熱管の断面形状が一種類の場合にのみ言及していたが、本実施形態の空気調和機では、熱交換器側方より見て1つの伝熱フィン30A内に断面形状の異なる伝熱管すなわち円形伝熱管7と扁平伝熱管12を共に配置している。つまり、図17に示すように上流側1列目には円形伝熱管7、2列目以降には扁平伝熱管12が配置されている。   Although the example of implementation so far mentioned only when the cross-sectional shape of the heat transfer tube is one kind in one heat transfer fin when viewed from the side of the heat exchanger, the air conditioner of the present embodiment The heat transfer tubes having different cross-sectional shapes, that is, the circular heat transfer tube 7 and the flat heat transfer tube 12 are arranged in one heat transfer fin 30A as viewed from the side of the exchanger. That is, as shown in FIG. 17, the circular heat transfer tubes 7 are arranged in the first row on the upstream side, and the flat heat transfer tubes 12 are arranged in the second and subsequent rows.

比較例(図18)に示すように1つの伝熱フィン内に円形伝熱管7を2列以上配置した場合、円形伝熱管7の下流部には流速が遅い後流部28が生じる。このようなものにおいて、伝熱性能を維持するため、円形伝熱管7を列毎に千鳥状に配置すると、1列目で発生した後流域が2列目の伝熱管間の流路を狭くして流動損失を大きくする。そこで、本実施形態では、図17のように伝熱管を1列目が円形伝熱管7、2列目が扁平伝熱管12としている。   As shown in the comparative example (FIG. 18), when two or more circular heat transfer tubes 7 are arranged in one heat transfer fin, a downstream portion 28 having a low flow velocity is generated in the downstream portion of the circular heat transfer tube 7. In such a case, in order to maintain the heat transfer performance, when the circular heat transfer tubes 7 are arranged in a staggered manner for each row, the wake area generated in the first row narrows the flow path between the heat transfer tubes in the second row. To increase current loss. Therefore, in the present embodiment, as shown in FIG. 17, the heat transfer tubes are the circular heat transfer tubes 7 in the first row and the flat heat transfer tubes 12 in the second row.

熱交換器に流入する気流方向はユニットの位置によってまちまちであるため、流入方向の影響を受けやすい扁平伝熱管12ではなく円形伝熱管7を配置して気流抵抗を大きくしないようにする。一方、2列目は流路幅を確保するために扁平伝熱管12を用いて円形伝熱管7が作る後流域の影響を小さくする。熱交換器を通過する気流3は、既述したように伝熱フィン30Aに設置されたスリット(図4のスリット18参照)などの抵抗によって次第に伝熱フィン30Aの長手方向に対して垂直、つまり、最短通過経路に修正されていくため、扁平伝熱管12を伝熱フィン30Aの幅方向19に平行になるように設置すれば、流動抵抗低減と伝熱性能向上を実現することができる。   Since the direction of the airflow flowing into the heat exchanger varies depending on the position of the unit, the circular heat transfer tube 7 is arranged instead of the flat heat transfer tube 12 that is easily affected by the inflow direction so as not to increase the airflow resistance. On the other hand, in the second row, the influence of the rear flow area created by the circular heat transfer tube 7 is reduced using the flat heat transfer tube 12 in order to secure the flow path width. As described above, the airflow 3 passing through the heat exchanger is gradually perpendicular to the longitudinal direction of the heat transfer fins 30A due to resistance such as slits (see the slits 18 in FIG. 4) installed in the heat transfer fins 30A. Therefore, if the flat heat transfer tube 12 is installed so as to be parallel to the width direction 19 of the heat transfer fin 30A, the flow resistance can be reduced and the heat transfer performance can be improved.

実施の形態15.
図19は本発明の実施の形態15に係る空気調和機に搭載される伝熱フィンの正面図(a)と空気調和機の側面断面図(b)であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 15 FIG.
FIG. 19 is a front view (a) of a heat transfer fin mounted on an air conditioner according to Embodiment 15 of the present invention and a side sectional view (b) of the air conditioner. The same parts as those in FIG.

本実施形態の空気調和機は、実施形態14で挙げた熱交換器に気流制御の機能を付加したもので、図19(a)の複数の扁平伝熱管12のうち最下部の扁平伝熱管12aを、その扁平形状の長軸の延長線13が伝熱フィン30Bの幅方向19に対して傾けて形成したものである。   The air conditioner of this embodiment is obtained by adding a function of airflow control to the heat exchanger described in Embodiment 14, and among the plurality of flat heat transfer tubes 12 in FIG. Is formed by inclining the long extension line 13 of the flat shape with respect to the width direction 19 of the heat transfer fin 30B.

この熱交換器を例えば、図19(b)のように空気調和機の前面下部に設置すると、実施の形態1と同様に最下部の気流3がスムーズに貫流送風機5に送られるため、前述の実施の形態1と同様の効果が得られる。
またユニットに搭載すると熱交換器が奥行き方向に2台から1台に減ったことにより前面下部の空間が広がることによって、気流がさらに吸い込みやすくなり性能向上できる。あるいは、空間を一定にしてユニット全体の奥行きをコンパクトにすることができる。
For example, when this heat exchanger is installed at the lower front portion of the air conditioner as shown in FIG. 19B, the lowermost airflow 3 is smoothly sent to the once-through fan 5 as in the first embodiment. The same effect as in the first embodiment can be obtained.
Moreover, when mounted on the unit, the heat exchanger is reduced from two to one in the depth direction, so that the space at the lower part of the front surface is widened, so that airflow can be more easily sucked and the performance can be improved. Alternatively, the entire unit can be made compact while keeping the space constant.

実施の形態16.
図20は本発明の実施の形態16に係る空気調和機に搭載される伝熱フィンを示す正面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 16 FIG.
FIG. 20 is a front view showing a heat transfer fin mounted on an air conditioner according to Embodiment 16 of the present invention. In FIG. 20, the same parts as those of Embodiment 1 are given the same reference numerals.

本実施形態の空気調和機は、熱交換器側方より見て1つの伝熱フィン30Cに円形伝熱管7と扁平伝熱管12が混在している。すなわち、上流側1列目には円形伝熱管7、2列目、3列目には扁平伝熱管12が配置されている。伝熱管の配置間隔(列間間隔)は、1列目と2列目間の間隔(列間ピッチ)26aよりも2列目と3列目間の間隔(列間ピッチ)26bの方が狭くなっている。これは、扁平伝熱管12を用いることによって流速が遅い後流域が狭くなり、その影響が小さくなったため、実現可能となったもので、伝熱管の間隔を狭くしても性能低下は起こらない。このため、円形伝熱管列を有する熱交換器側方より見て1つの伝熱フィン内の円形伝熱管列の下流側に、複数の扁平伝熱管列を設けた熱交換器の奥行き寸法を短くでき、熱交換器の流動損失低減や吸い込み空間が広がり、性能向上が図れる。また、ユニットのコンパクト化が図れる。   In the air conditioner of this embodiment, the circular heat transfer tubes 7 and the flat heat transfer tubes 12 are mixed in one heat transfer fin 30C when viewed from the side of the heat exchanger. That is, the circular heat transfer tubes 7 are arranged in the first row on the upstream side, and the flat heat transfer tubes 12 are arranged in the second, third, and third rows. The arrangement interval (inter-column spacing) of the heat transfer tubes is smaller in the interval (inter-column pitch) 26b between the second and third columns than in the inter-column interval (inter-pitch) 26a. It has become. This is because the use of the flat heat transfer tube 12 narrows the wake area where the flow velocity is low, and the influence thereof is reduced. Therefore, the reduction in performance does not occur even if the interval between the heat transfer tubes is reduced. For this reason, the depth dimension of the heat exchanger provided with a plurality of flat heat transfer tube rows on the downstream side of the circular heat transfer tube row in one heat transfer fin as viewed from the side of the heat exchanger having the circular heat transfer tube rows is shortened. This can reduce the flow loss of the heat exchanger and widen the suction space, improving the performance. In addition, the unit can be made compact.

実施の形態17.
図21は本発明の実施の形態17に係る空気調和機に搭載される伝熱フィンを示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 17. FIG.
FIG. 21 is a side sectional view showing a heat transfer fin mounted on an air conditioner according to Embodiment 17 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. .

本実施形態の空気調和機は、熱交換器側方より見て1つの伝熱フィン30Dに円形伝熱管7と扁平伝熱管12が混在している。すなわち、上流側1列目には円形伝熱管7、2列目には扁平伝熱管12が配置されている。扁平伝熱管12の段方向29の配置については、円形伝熱管7と扁平伝熱管12とが千鳥状に配置されるように構成されている。これは、空力の負荷がユニット全体の入力に支配的な場合に好適である。   In the air conditioner of this embodiment, the circular heat transfer tubes 7 and the flat heat transfer tubes 12 are mixed in one heat transfer fin 30D as viewed from the side of the heat exchanger. That is, the circular heat transfer tubes 7 are arranged in the first row on the upstream side, and the flat heat transfer tubes 12 are arranged in the second row. About the arrangement | positioning of the step direction 29 of the flat heat exchanger tube 12, the circular heat exchanger tube 7 and the flat heat exchanger tube 12 are comprised so that it may arrange | position in zigzag form. This is suitable when the aerodynamic load is dominant on the input of the entire unit.

本実施形態の空気調和機においては、隣接する伝熱管間の距離が開いているので、気流3が通過し易く空力負荷を低減させることができる。また、下流側に扁平伝熱管12を配置しているので、上流側の円形伝熱管7で気流方向が修正されて下流側の扁平伝熱管12に流れが沿う。これにより、空力負荷が小さいユニットが実現でき、静音化が可能となる。   In the air conditioner of this embodiment, since the distance between the adjacent heat transfer tubes is open, the airflow 3 can easily pass through and the aerodynamic load can be reduced. Further, since the flat heat transfer tube 12 is arranged on the downstream side, the air flow direction is corrected by the circular heat transfer tube 7 on the upstream side, and the flow follows the flat heat transfer tube 12 on the downstream side. As a result, a unit with a small aerodynamic load can be realized, and noise reduction can be achieved.

本実施形態の伝熱フィン30Dは、空力の負荷がユニット全体の入力に支配的になる容量の小さい空気調和機に好適であり、これを適用することで、容量の小さい空気調和機においても静音化が容易となる。なお、本実施形態は熱交換器側方より見て1つの伝熱フィン内に断面形状の異なる伝熱管が混在している前述の実施形態14〜16にも適用できることは言うまでもない。   The heat transfer fin 30D of this embodiment is suitable for an air conditioner having a small capacity in which an aerodynamic load is dominant in the input of the entire unit. It becomes easy. In addition, it cannot be overemphasized that this embodiment is applicable also to the above-mentioned Embodiments 14-16 in which the heat exchanger tube from which cross-sectional shape differs is mixed in one heat exchanger fin seeing from the heat exchanger side.

実施の形態18.
図22は本発明の実施の形態18に係る空気調和機に搭載される伝熱フィンを示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 18 FIG.
FIG. 22 is a side sectional view showing a heat transfer fin mounted on an air conditioner according to Embodiment 18 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. .

本実施形態の空気調和機は、熱交換器側方より見て1つの伝熱フィン30Eに円形伝熱管7と扁平伝熱管12が混在している。すなわち、上流側1列目には円形伝熱管7、2列目には扁平伝熱管12が配置されている。また、段方向29については、円形伝熱管7の間に扁平伝熱管12が複数(ここでは2つ)配置され、幅方向19(図19参照)については、円形伝熱管7の背後、つまり伝熱フィン30Eの長手方向(段方向)に対して垂直方向に1列目の円形伝熱管7を下流側へ投影した時にその影となる部分に、扁平伝熱管12を配置しないように構成されている。   In the air conditioner of this embodiment, the circular heat transfer tubes 7 and the flat heat transfer tubes 12 are mixed in one heat transfer fin 30E when viewed from the side of the heat exchanger. That is, the circular heat transfer tubes 7 are arranged in the first row on the upstream side, and the flat heat transfer tubes 12 are arranged in the second row. In the step direction 29, a plurality (two in this case) of flat heat transfer tubes 12 are arranged between the circular heat transfer tubes 7, and in the width direction 19 (see FIG. 19), behind the circular heat transfer tubes 7, that is, in the heat transfer tubes 7. The flat heat transfer tubes 12 are not arranged in the shadowed portions when the first row of circular heat transfer tubes 7 are projected downstream in the direction perpendicular to the longitudinal direction (step direction) of the heat fins 30E. Yes.

段方向でみて円形伝熱管7の間は、熱交換器に流入する風速が速い。したがって、本実施形態の空気調和機のように、その風速が速い円形伝熱管7の間に集中して扁平伝熱管12を配置することで、流動損失の増大を抑えながら熱交換量を多く稼ぐことができる。風速が遅い円形伝熱管7背後は、熱交換量よりも扁平伝熱管12の本数を減らし、風路確保に重点をおく。これにより、伝熱性能を高めた空気調和機を実現することができる。   The wind speed flowing into the heat exchanger is fast between the circular heat transfer tubes 7 when viewed in the step direction. Therefore, like the air conditioner of this embodiment, by arranging the flat heat transfer tubes 12 in a concentrated manner between the circular heat transfer tubes 7 whose wind speed is fast, the heat exchange amount is increased while suppressing an increase in flow loss. be able to. At the back of the circular heat transfer tube 7 where the wind speed is slow, the number of flat heat transfer tubes 12 is reduced rather than the amount of heat exchange, and emphasis is placed on securing the air path. Thereby, the air conditioner which improved heat-transfer performance is realizable.

実施の形態19.
図23は本発明の実施の形態19に係る空気調和機に搭載される伝熱フィンを示す側面断面図であり、図中、前述の実施形態1と同一部分には同一符号を付してある。
Embodiment 19. FIG.
FIG. 23 is a side sectional view showing a heat transfer fin mounted on an air conditioner according to Embodiment 19 of the present invention. In the figure, the same parts as those in Embodiment 1 are given the same reference numerals. .

前述の実施形態14〜18のように、1枚の伝熱フィンに扁平伝熱管と円形伝熱管が混在する場合、暖房時の冷媒の通過経路が、入口側を扁平伝熱管、出口側を円形伝熱管にすると冷媒が液状態のとき円形伝熱管で処理されるため管内圧損を低く抑えることができるという利点が得られる。   When flat heat transfer tubes and circular heat transfer tubes coexist in one heat transfer fin as in the above-described embodiments 14 to 18, the refrigerant passage during heating has a flat heat transfer tube on the inlet side and a circular shape on the outlet side. When the heat transfer tube is used, an advantage is obtained in that the pressure loss in the tube can be kept low because the refrigerant is processed by the circular heat transfer tube when in a liquid state.

しかし、その際、同一の伝熱フィンで冷媒の入口側と出口側の冷媒温度差が大きくなり、伝熱フィンを通じた配管相互で熱が交換され、空気−伝熱フィン間の熱の移動が減少(熱ロス)してしまうことが考えられる。   However, at that time, the refrigerant temperature difference between the inlet side and the outlet side of the refrigerant increases with the same heat transfer fin, heat is exchanged between the pipes through the heat transfer fin, and the heat transfer between the air-heat transfer fins It can be thought that it will decrease (heat loss).

本実施形態の空気調和機は、図23のように伝熱フィン30Fにおける扁平伝熱管12の列と円形伝熱管7の列の間に、配管の温度差などを考慮に入れた大きさのスリットや切込み31からなる断熱部を設けて、熱を遮断するようにしたものである。   As shown in FIG. 23, the air conditioner according to the present embodiment has a slit having a size that takes into account a temperature difference between pipes between the row of flat heat transfer tubes 12 and the row of circular heat transfer tubes 7 in the heat transfer fin 30F. And a heat insulating part made up of a cut 31 is provided to block heat.

本実施形態の空気調和機においては、スリットや切込み31からなる断熱部によって、伝熱フィンを通じた配管間の熱移動が阻止される。このため、熱ロスを減らすことができ、空気調和機の性能を高めることができる。   In the air conditioner of the present embodiment, the heat transfer between the pipes through the heat transfer fins is prevented by the heat insulating portion including the slits and the cuts 31. For this reason, a heat loss can be reduced and the performance of an air conditioner can be improved.

本発明の実施の形態1に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 1 of this invention. 比較例の空気調和機内部の気流の模式図である。It is a schematic diagram of the airflow inside the air conditioner of a comparative example. 比較例の空気調和機における熱交換器周りの気流の模式図である。It is a schematic diagram of the airflow around the heat exchanger in the air conditioner of the comparative example. 本発明の実施の形態1に係る空気調和機の熱交換器周りの気流の模式図である。It is a schematic diagram of the airflow around the heat exchanger of the air conditioner according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 8 of this invention. 本発明の実施の形態9に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner concerning Embodiment 10 of this invention. 本発明の実施の形態11に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner concerning Embodiment 11 of this invention. 本発明の実施の形態12に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner concerning Embodiment 12 of this invention. 本発明の実施の形態13に係る空気調和機を示す側面断面図である。It is side surface sectional drawing which shows the air conditioner concerning Embodiment 13 of this invention. 本発明の実施の形態14に係る空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 14 of this invention. 比較例の空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner of a comparative example. 本発明の実施の形態15に係る空気調和機に搭載される伝熱フィンの正面図(a)と空気調和機の側面断面図(b)である。It is the front view (a) of the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 15 of this invention, and side sectional drawing (b) of an air conditioner. 本発明の実施の形態16に係る空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 16 of this invention. 本発明の実施の形態17に係る空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 17 of this invention. 本発明の実施の形態18に係る空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 18 of this invention. 本発明の実施の形態19に係る空気調和機に搭載される伝熱フィンを示す正面図である。It is a front view which shows the heat-transfer fin mounted in the air conditioner which concerns on Embodiment 19 of this invention.

符号の説明Explanation of symbols

2 吸込口、3 気流、4 吹出口、5 貫流送風機(送風機)、6a〜6e,10a〜10c,30A〜30F 伝熱フィン、6A〜6G 円形伝熱管側の熱交換器、7 円形伝熱管、9A〜9D フィルタ、10A〜10F 扁平伝熱管側の熱交換器、12,12a〜12f 扁平伝熱管、13 扁平形状の長軸の延長線、14 整流手段部分を通過する長さ、26a,26b 列間ピッチ、31 スリットや切込み。   2 inlet, 3 airflow, 4 outlet, 5 once-through fan (blower), 6a to 6e, 10a to 10c, 30A to 30F heat transfer fin, 6A to 6G heat exchanger on the circular heat transfer tube side, 7 circular heat transfer tube, 9A to 9D filter, 10A to 10F flat heat transfer tube side heat exchanger, 12, 12a to 12f flat heat transfer tube, 13 flat extension of long axis, 14 length passing through rectifying means, 26a, 26b rows Pitch, 31 slits and cuts.

Claims (17)

ユニット内部に、送風機を取り囲むように、複数の伝熱フィン及びこれら伝熱フィンを貫く複数の伝熱管からなる熱交換器を1つ又は複数配置し、前記送風機の回転によって吸込口から空気を吸い込み、前記熱交換器を通過させて冷媒と空気を熱交換させ、吹出口からユニット外部に放出させる空気調和機であって、
前記伝熱管の断面形状が扁平形状である熱交換器を備え、該扁平伝熱管を有する熱交換器の上流側には、該熱交換器に流入する気流方向を整流する整流手段を設け、該整流手段は、その熱交換器側方より見た幅または厚みが略一定で、かつ各扁平伝熱管の扁平形状の長軸の延長線が当該整流手段と交差してこの整流手段部分を通過する長さの合計が最小となるように設置されてなることを特徴とする空気調和機。
Inside the unit, one or more heat exchangers consisting of a plurality of heat transfer fins and a plurality of heat transfer tubes penetrating these heat transfer fins are arranged so as to surround the blower, and air is sucked from the suction port by the rotation of the blower An air conditioner that passes through the heat exchanger to exchange heat between the refrigerant and air, and discharges the air from the outlet to the outside of the unit,
A heat exchanger having a flat cross-sectional shape of the heat transfer tube, provided on the upstream side of the heat exchanger having the flat heat transfer tube is a rectifying means for rectifying the direction of airflow flowing into the heat exchanger; The rectifying means has a substantially constant width or thickness as viewed from the side of the heat exchanger, and the flat long-axis extension line of each flat heat transfer tube intersects the rectifying means and passes through the rectifying means portion. An air conditioner characterized by being installed so that the total length is minimized.
複数の前記扁平伝熱管のうち少なくともユニット内の狭い空間部に配置される1本を、その扁平形状の長軸の向きが前記送風機の方向を向くように構成したことを特徴とする請求項1記載の空気調和機。   2. One of the plurality of flat heat transfer tubes arranged at least in a narrow space in the unit is configured such that the direction of the long axis of the flat shape faces the direction of the blower. The air conditioner described. 前記扁平伝熱管の熱交換器の上流側に配置される整流手段を、複数の伝熱フィン及びこれら伝熱フィンを貫く断面形状が円管形状である複数の円形伝熱管を有する熱交換器から構成し、前記長さの合計が最小となるようにその下流側の前記扁平伝熱管の熱交換器に対向する面の向きを調整して配置してなることを特徴とする請求項1又は請求項2記載の空気調和機。   The rectifying means disposed on the upstream side of the heat exchanger of the flat heat transfer tube is a heat exchanger having a plurality of heat transfer fins and a plurality of circular heat transfer tubes whose cross-sectional shape passing through these heat transfer fins is a circular tube shape. 2. The structure according to claim 1, wherein the surface of the flat heat transfer tube on the downstream side thereof is adjusted so that the total of the lengths is minimized, and the orientation of the surface facing the heat exchanger is adjusted. Item 3. An air conditioner according to Item 2. 扁平伝熱管側の熱交換器の伝熱フィンを、その長手方向が直線状となるように形成し、円形伝熱管側の熱交換器を、扁平伝熱管側の熱交換器の上流側の全面に亘って配置したことを特徴とする請求項3記載の空気調和機。   The heat transfer fins of the heat exchanger on the flat heat transfer tube side are formed so that the longitudinal direction is linear, and the heat exchanger on the circular heat transfer tube side is connected to the entire upstream surface of the heat exchanger on the flat heat transfer tube side. The air conditioner according to claim 3, wherein the air conditioner is arranged over a wide area. 扁平伝熱管側の熱交換器の伝熱フィンは、その長手方向が折れ曲がって形成されており、円形伝熱管側の熱交換器は、扁平伝熱管側の熱交換器の上流側の全面に亘って配置されてなることを特徴とする請求項3記載の空気調和機。   The heat transfer fins of the heat exchanger on the flat heat transfer tube side are bent in the longitudinal direction, and the heat exchanger on the circular heat transfer tube side extends over the entire upstream side of the heat exchanger on the flat heat transfer tube side. The air conditioner according to claim 3, wherein the air conditioner is arranged. 前記熱交換器を凝縮器として使用する場合、冷媒の入口側を扁平伝熱管側の熱交換器、冷媒の出口側を円形伝熱管側の熱交換器とすることを特徴とする請求項3乃至請求項5のいずれかに記載の空気調和機。   When the heat exchanger is used as a condenser, the refrigerant inlet side is a flat heat transfer tube side heat exchanger, and the refrigerant outlet side is a circular heat transfer tube side heat exchanger. The air conditioner according to claim 5. 前記扁平伝熱管の熱交換器の上流側に配置される整流手段を、集塵や空気清浄用の機器またはフィルタから構成し、前記長さの合計が最小となるようにその下流側熱交換器に対向する面の向きを調整して配置してなることを特徴とする請求項1又は請求項2記載の空気調和機。   The rectifying means arranged on the upstream side of the heat exchanger of the flat heat transfer tube is constituted by dust collecting or air cleaning equipment or a filter, and the downstream side heat exchanger so that the total of the length is minimized. The air conditioner according to claim 1 or 2, wherein the air conditioner is arranged by adjusting a direction of a surface opposed to the air conditioner. 扁平伝熱管側の熱交換器の伝熱フィンを、その長手方向が直線状となるように形成し、前記集塵や空気清浄用の機器またはフィルタを、扁平伝熱管側の熱交換器の上流側の全面に亘って配置したことを特徴とする請求項7記載の空気調和機。   The heat transfer fin of the heat exchanger on the flat heat transfer tube side is formed so that its longitudinal direction is linear, and the dust collecting and air cleaning device or filter is connected upstream of the heat exchanger on the flat heat transfer tube side. The air conditioner according to claim 7, wherein the air conditioner is disposed over the entire side surface. 扁平伝熱管側の熱交換器の伝熱フィンは、その長手方向が折れ曲がって形成されており、前記集塵や空気清浄用の機器またはフィルタは、扁平伝熱管側の熱交換器の上流側の全面に亘って配置されてなることを特徴とする請求項7又は請求項8記載の空気調和機。   The heat transfer fin of the heat exchanger on the flat heat transfer tube side is formed by bending its longitudinal direction, and the dust collecting and air cleaning device or filter is provided on the upstream side of the heat exchanger on the flat heat transfer tube side. The air conditioner according to claim 7 or 8, wherein the air conditioner is arranged over the entire surface. 前記送風機の直前にて気流との間で熱交換を行う熱交換器は全て扁平伝熱管の熱交換器であることを特徴とする請求項1乃至請求項9のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 1 to 9, wherein all of the heat exchangers that exchange heat with the air flow immediately before the blower are flat heat transfer tube heat exchangers. . 前記扁平伝熱管の熱交換器の上流側に配置される整流手段を、該扁平伝熱管の熱交換器の伝熱フィンの上流側を貫く断面形状が円管形状である複数の円形伝熱管を有する熱交換器から構成して、熱交換器側方より見て1枚の伝熱フィンに2列以上の伝熱管が配置されるようにし、上流側1列目の伝熱管を前記円形伝熱管とし、2列目以降を扁平伝熱管としたことを特徴とする請求項1記載の空気調和機。   A plurality of circular heat transfer tubes whose cross-sectional shape penetrating the upstream side of the heat transfer fins of the heat exchanger of the flat heat transfer tube is a circular tube shape, the rectifying means disposed on the upstream side of the heat exchanger of the flat heat transfer tube. A heat exchanger having two or more rows of heat transfer tubes arranged on a single heat transfer fin when viewed from the side of the heat exchanger, and the first heat transfer tube on the upstream side is the circular heat transfer tube. The air conditioner according to claim 1, wherein the second and subsequent rows are flat heat transfer tubes. 前記2列目以降の扁平伝熱管のうち少なくともユニット内の狭い空間部に配置される1本を、その扁平形状の長軸の向きが前記送風機の方向を向くように構成したことを特徴とする請求項11記載の空気調和機。   One of the flat heat transfer tubes in the second and subsequent rows arranged in at least a narrow space in the unit is configured such that the direction of the long axis of the flat shape faces the direction of the blower. The air conditioner according to claim 11. 前記1列目の円形伝熱管と前記2列目以降の扁平伝熱管とを千鳥状に配置したことを特徴とする請求項11又は請求項12記載の空気調和機。   The air conditioner according to claim 11 or 12, wherein the first row of circular heat transfer tubes and the second and subsequent flat heat transfer tubes are arranged in a staggered manner. 前記伝熱フィンの長手方向に対して垂直方向に1列目の円形伝熱管を下流側へ投影した時にその影となる部分に、扁平伝熱管を配置しないことを特徴とする請求項11又は請求項12記載の空気調和機。   The flat heat transfer tube is not arranged in a portion that is shaded when the first row of circular heat transfer tubes is projected downstream in a direction perpendicular to the longitudinal direction of the heat transfer fins. Item 13. An air conditioner according to item 12. 2列目以降の列間ピッチを、1列目と2列目間の列間ピッチよりも短くしたことを特徴とする請求項11乃至請求項14のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 11 to 14, wherein a pitch between rows after the second row is shorter than a pitch between rows between the first row and the second row. 前記熱交換器を凝縮器として使用する場合、冷媒の入口側を扁平伝熱管に、冷媒の出口側を円形伝熱管となるように冷媒の通過経路を設定することを特徴とする請求項11乃至請求項15のいずれかに記載の空気調和機。   When the heat exchanger is used as a condenser, the refrigerant passage path is set so that the refrigerant inlet side is a flat heat transfer tube and the refrigerant outlet side is a circular heat transfer tube. The air conditioner according to claim 15. 1列目と2列目の間に熱移動を遮断するためのスリット又は切込みを入れたことを特徴とする請求項11乃至請求項16のいずれかに記載の空気調和機。   The air conditioner according to any one of claims 11 to 16, wherein a slit or a cut is provided between the first row and the second row to block heat transfer.
JP2007302871A 2007-11-22 2007-11-22 Air conditioner Pending JP2009127930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302871A JP2009127930A (en) 2007-11-22 2007-11-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302871A JP2009127930A (en) 2007-11-22 2007-11-22 Air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010249189A Division JP2011021884A (en) 2010-11-05 2010-11-05 Air conditioner

Publications (1)

Publication Number Publication Date
JP2009127930A true JP2009127930A (en) 2009-06-11

Family

ID=40819048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302871A Pending JP2009127930A (en) 2007-11-22 2007-11-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP2009127930A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107841A (en) * 2010-11-19 2012-06-07 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
CN103673258A (en) * 2013-12-17 2014-03-26 Tcl空调器(中山)有限公司 Heat exchanger and wall-mounted type air conditioner
CN103900154A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900152A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900151A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900153A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
JP2014130000A (en) * 2012-12-28 2014-07-10 Panasonic Corp Air conditioner
JP2015140981A (en) * 2014-01-29 2015-08-03 三菱電機株式会社 Fin tube-type heat exchanger, method of manufacturing the same, and air conditioner
CN111981571A (en) * 2020-08-13 2020-11-24 Tcl空调器(中山)有限公司 Wall-mounted air conditioner indoor unit, air conditioner and air supply method of air conditioner

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382127A (en) * 1986-09-26 1988-04-12 Matsushita Electric Ind Co Ltd Digital voltage controlled oscillator
JPS63233225A (en) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd Air conditioner
JPH10220788A (en) * 1997-02-04 1998-08-21 Daikin Ind Ltd Indoor machine equipped with air cleaning filter
JPH11182881A (en) * 1997-12-19 1999-07-06 Daikin Ind Ltd Air conditioner
JP2005265263A (en) * 2004-03-18 2005-09-29 Mitsubishi Electric Corp Heat-exchanger and air-conditioner
JP2006003001A (en) * 2004-06-17 2006-01-05 Rinnai Corp Air temperature adjusting machine
JP2007064623A (en) * 2006-11-07 2007-03-15 Daikin Ind Ltd Heat exchanger fixing plate and air conditioner

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6382127A (en) * 1986-09-26 1988-04-12 Matsushita Electric Ind Co Ltd Digital voltage controlled oscillator
JPS63233225A (en) * 1987-03-20 1988-09-28 Matsushita Electric Ind Co Ltd Air conditioner
JPH10220788A (en) * 1997-02-04 1998-08-21 Daikin Ind Ltd Indoor machine equipped with air cleaning filter
JPH11182881A (en) * 1997-12-19 1999-07-06 Daikin Ind Ltd Air conditioner
JP2005265263A (en) * 2004-03-18 2005-09-29 Mitsubishi Electric Corp Heat-exchanger and air-conditioner
JP2006003001A (en) * 2004-06-17 2006-01-05 Rinnai Corp Air temperature adjusting machine
JP2007064623A (en) * 2006-11-07 2007-03-15 Daikin Ind Ltd Heat exchanger fixing plate and air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012107841A (en) * 2010-11-19 2012-06-07 Mitsubishi Electric Corp Fin tube type heat exchanger and air conditioner using the same
CN103900154A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900152A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900151A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
CN103900153A (en) * 2012-12-28 2014-07-02 松下电器产业株式会社 Air conditioner
JP2014130000A (en) * 2012-12-28 2014-07-10 Panasonic Corp Air conditioner
CN103900153B (en) * 2012-12-28 2018-06-15 松下电器产业株式会社 Air regulator
CN103900152B (en) * 2012-12-28 2018-08-03 松下电器产业株式会社 Air regulator
CN103900151B (en) * 2012-12-28 2018-08-03 松下电器产业株式会社 Air regulator
CN103673258A (en) * 2013-12-17 2014-03-26 Tcl空调器(中山)有限公司 Heat exchanger and wall-mounted type air conditioner
JP2015140981A (en) * 2014-01-29 2015-08-03 三菱電機株式会社 Fin tube-type heat exchanger, method of manufacturing the same, and air conditioner
CN111981571A (en) * 2020-08-13 2020-11-24 Tcl空调器(中山)有限公司 Wall-mounted air conditioner indoor unit, air conditioner and air supply method of air conditioner

Similar Documents

Publication Publication Date Title
JP2009127930A (en) Air conditioner
JP6041895B2 (en) Air conditioner
JP5143317B1 (en) Air conditioner indoor unit
JP6058242B2 (en) Air conditioner
JP4678327B2 (en) Air conditioner
JP6223596B2 (en) Air conditioner indoor unit
JP2006226595A (en) Air conditioner
JP2016200338A (en) Air conditioner
JP2007170308A (en) Indoor unit of air conditioner
US9303646B2 (en) Cross flow fan and air conditioner
JP2010038400A (en) Finned heat exchanger
JP2006153332A (en) Outdoor unit for air conditioner
JP2019015432A (en) Heat exchanger and heat exchange unit
JP2014081150A (en) Air conditioner
JP2011021884A (en) Air conditioner
JP5506821B2 (en) Air conditioner
JP5596510B2 (en) Air conditioner indoor unit
JP5774206B2 (en) Air conditioner indoor unit
JP2005180772A (en) Indoor unit of air conditioner
JP4920653B2 (en) Air conditioner
JP2007170757A (en) Indoor unit of air conditioner
JP5997115B2 (en) Air conditioner
JP2008215758A (en) Heat exchanger
JP6000454B2 (en) Air conditioner indoor unit
JP6301091B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110419