JP2006207994A - Evaporator - Google Patents

Evaporator Download PDF

Info

Publication number
JP2006207994A
JP2006207994A JP2005374291A JP2005374291A JP2006207994A JP 2006207994 A JP2006207994 A JP 2006207994A JP 2005374291 A JP2005374291 A JP 2005374291A JP 2005374291 A JP2005374291 A JP 2005374291A JP 2006207994 A JP2006207994 A JP 2006207994A
Authority
JP
Japan
Prior art keywords
heat exchange
header
drainage
exchange pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005374291A
Other languages
Japanese (ja)
Other versions
JP4774295B2 (en
Inventor
Sumitaka Watanabe
純孝 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005374291A priority Critical patent/JP4774295B2/en
Publication of JP2006207994A publication Critical patent/JP2006207994A/en
Application granted granted Critical
Publication of JP4774295B2 publication Critical patent/JP4774295B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator with excellent drainability of condensate. <P>SOLUTION: This evaporator 1 is arranged with a space along a longitudinal direction, and is provided with a plurality of heat transfer tubes 12 extended vertically. A drainage promoting member 30 extended vertically is arranged between the longitudinally adjacent heat transfer tubes 12. A gap 70 is provided between the two longitudinally adjacent heat transfer tubes 12, and the drainage promoting member 30 disposed between the both transfer tubes 12, and the gaps 70 serve as drainage channel 60. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、たとえば自動車に搭載される冷凍サイクルであるカーエアコンに組み込まれるエバポレータに関する。   The present invention relates to an evaporator incorporated in, for example, a car air conditioner that is a refrigeration cycle mounted in an automobile.

この明細書および特許請求の範囲において、通風方向下流側(図1および図10に矢印Xで示す側、図4右側)を前、これと反対側を後といい、図2の上下、左右を上下、左右というものとする。   In this specification and claims, the downstream side in the ventilation direction (the side indicated by the arrow X in FIGS. 1 and 10 and the right side in FIG. 4) is referred to as the front, and the opposite side is referred to as the rear. It is assumed to be up and down and left and right.

従来、カーエアコン用エバポレータとして、1対の皿状プレートを対向させて周縁部どうしをろう付してなる複数の偏平中空体が並列状に配置され、隣接する偏平中空体間にコルゲートフィンが配置されて偏平中空体にろう付された、所謂積層型エバポレータが広く使用されていた。   Conventionally, as an evaporator for a car air conditioner, a plurality of flat hollow bodies formed by brazing peripheral edges with a pair of plate-shaped plates facing each other are arranged in parallel, and corrugated fins are arranged between adjacent flat hollow bodies. So-called laminated evaporators brazed to a flat hollow body have been widely used.

ところで、近年、エバポレータのさらなる小型軽量化および高性能化が要求されるようになってきた。そして、このような要求を満たすエバポレータとして、間隔をおいて配置された複数の偏平状熱交換管からなる熱交換管群が通風方向に並んで2列配置されるとともに、左右方向に隣り合う熱交換管どうしの間にコルゲートフィンが配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ1列の熱交換管群の熱交換管が接続された第1ヘッダと、熱交換管の一端側において第1ヘッダの後側に配置され、かつ1列の熱交換管群の熱交換管が接続された第2ヘッダと、熱交換管の他端側に配置され、かつ第1ヘッダに接続されている熱交換管が接続された第3ヘッダと、熱交換管の他端側に配置され、かつ第2ヘッダに接続されている熱交換管群の熱交換管が接続された第4ヘッダとを備えており、第1ヘッダの一端に冷媒入口が形成されるとともに、第2ヘッダにおける冷媒入口と同一端に冷媒出口が形成され、第1および第2ヘッダ内がその長さ方向の中間部で仕切板により区画され、冷媒入口から第1ヘッダ内に流入した冷媒が、すべての熱交換管およびすべてのヘッダを通過して冷媒出口から流出するようになっているエバポレータが知られている(特許文献1参照)。   Incidentally, in recent years, there has been a demand for further reduction in size and weight and higher performance of the evaporator. As an evaporator satisfying such requirements, heat exchange tube groups composed of a plurality of flat heat exchange tubes arranged at intervals are arranged in two rows in the ventilation direction, and heat adjacent to the left and right direction. A heat exchange core part formed by arranging corrugated fins between the exchange pipes, and a heat exchange pipe arranged at one end of the heat exchange pipe and connected to the heat exchange pipes of one row of heat exchange pipe groups. 1 header, a second header disposed on the rear side of the first header on one end side of the heat exchange pipe, and connected to a heat exchange pipe of a row of heat exchange pipe groups, and on the other end side of the heat exchange pipe The heat of the heat exchanger tube group which is arrange | positioned and the heat exchanger tube connected to the 1st header is connected, and the heat exchanger tube group which is arrange | positioned at the other end side of the heat exchanger tube, and is connected to the 2nd header. And a fourth header to which an exchange pipe is connected. A refrigerant inlet is formed at the end, a refrigerant outlet is formed at the same end as the refrigerant inlet in the second header, and the inside of the first and second headers is partitioned by a partition plate at an intermediate portion in the length direction. An evaporator is known in which the refrigerant flowing into the first header passes through all the heat exchange tubes and all the headers and flows out from the refrigerant outlet (see Patent Document 1).

ところで、特許文献1記載のエバポレータにおいては、上述した積層型エバポレータに比べて小型軽量化および高性能化が図られているため、コルゲートフィンの表面に発生する凝縮水量が多くなる。しかしながら、特許文献1記載のエバポレータによれば、凝縮水が多くなった場合の排水性が十分ではない。
特開2003−214794号公報
By the way, in the evaporator of patent document 1, since the size and weight reduction and performance improvement are achieved compared with the laminated | stacked evaporator mentioned above, the amount of condensed water generated on the surface of a corrugated fin increases. However, according to the evaporator of patent document 1, the drainage property when condensed water increases is not enough.
JP 2003-214794 A

この発明の目的は、上記問題を解決し、凝縮水の排水性に優れたエバポレータを提供することにある。   An object of the present invention is to provide an evaporator that solves the above problems and is excellent in drainage of condensed water.

本発明は、上記課題を解決するために以下の態様からなる。   In order to solve the above-mentioned problems, the present invention comprises the following aspects.

1)前後方向に間隔をおいて配置され、かつ上下方向に伸びる複数の熱交換管を備えたエバポレータであって、
前後に隣り合う熱交換管どうしの間に、上下方向に伸びる排水促進部材が配置され、前後の熱交換管と排水促進部材との間に排水路が形成されているエバポレータ。
1) An evaporator provided with a plurality of heat exchange tubes arranged at intervals in the front-rear direction and extending in the vertical direction,
An evaporator in which a drainage promotion member extending in the vertical direction is disposed between heat exchange pipes adjacent to each other in the front and rear, and a drainage channel is formed between the front and rear heat exchange pipes and the drainage promotion member.

2)前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在しており、この隙間が排水路となっている上記1)記載のエバポレータ。   2) There is a gap between at least one of the two heat exchange pipes adjacent to the front and back and the drainage promotion member disposed between the two heat exchange pipes, and this gap becomes a drainage channel. The evaporator according to 1) above.

3)前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材とが接触しており、排水促進部材と、これと接触している熱交換管との間に、熱交換管の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所が形成され、この凹所が排水路となっている上記1)記載のエバポレータ。   3) At least one of the two heat exchange pipes adjacent to the front and rear is in contact with the drainage promotion member disposed between the two heat exchange pipes, and the drainage promotion member is in contact with the heat. The above described 1), wherein a recess that is recessed inward in the left-right direction and extending in the up-down direction from the extended surfaces of the left and right side surfaces of the heat exchange tube is formed between the exchange tube and the recess is a drainage channel. Evaporator.

4)熱交換管が偏平状であるとともにその幅方向を前後方向に向けて配置されている上記1)〜3)のうちのいずれかに記載のエバポレータ。   4) The evaporator according to any one of the above items 1) to 3), wherein the heat exchange tube is flat and is disposed with its width direction directed in the front-rear direction.

5)排水促進部材の左右両側面のうち少なくともいずれか一方に、上下方向に伸びる排水溝が形成されている上記1)〜4)のうちのいずれかに記載のエバポレータ。   5) The evaporator according to any one of the above 1) to 4), wherein drainage grooves extending in the vertical direction are formed on at least one of the left and right side surfaces of the drainage promotion member.

6)熱交換管が偏平状であるとともにその幅方向を前後方向に向けて配置され、排水促進部材の左右方向の厚みが、熱交換管の左右方向の厚みと等しくなっている上記1)記載のエバポレータ。   6) The above 1) description, wherein the heat exchange pipe is flat and the width direction thereof is arranged in the front-rear direction, and the thickness of the drainage promotion member is equal to the thickness of the heat exchange pipe in the left-right direction. The evaporator.

7)前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在し、この隙間が排水路となっており、熱交換管および排水促進部材の左右方向の厚みをh(mm)、上記隙間の前後方向の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たす上記6)記載のエバポレータ。   7) There is a gap between at least one of the two heat exchange pipes adjacent to the front and rear and the drainage promotion member disposed between the two heat exchange pipes, and this gap serves as a drainage channel. The above 6) satisfying the relation 0 <w / h ≦ 1/4, where h (mm) is the thickness in the left-right direction of the heat exchange pipe and drainage promotion member, and w (mm) is the width in the front-rear direction of the gap. The described evaporator.

8)前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材とが接触しており、排水促進部材と、これと接触している熱交換管との間に、熱交換管の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所が形成され、この凹所が排水路となっており、排水路断面積をS(mm)、熱交換管および排水促進部材の左右方向の厚みをh(mm)とした場合、0.05≦S/h≦1.5の関係を満たす上記6)記載のエバポレータ。 8) At least one of the two heat exchange pipes adjacent to the front and rear is in contact with the drainage promotion member disposed between the two heat exchange pipes, and the drainage promotion member is in contact with the heat. A recess that is recessed inward in the left-right direction and extending in the up-down direction from the extended surfaces of the left and right side surfaces of the heat exchange tube is formed between the exchange tube and this recess serves as a drainage channel. Evaporator satisfying the relationship of 0.05 ≦ S / h ≦ 1.5, where S is (mm 2 ) and the thickness in the left-right direction of the heat exchange pipe and drainage promotion member is h (mm).

9)前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面の水平断面形状が、それぞれ円弧状となっている上記6)〜8)のうちのいずれかに記載のエバポレータ。   9) The horizontal cross-sectional shapes of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member are arc-shaped, respectively, according to any one of 6) to 8) above Evaporator.

10)前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状が円弧状であり、同他方が熱交換管の左右両側面と直角をなす平坦面である上記6)〜8)のうちのいずれかに記載のエバポレータ。   10) Either the outer wall of the end wall on the drainage promotion member side in the front or rear heat exchange pipe or the front and rear faces of the drainage promotion member has a circular cross section, and the other is perpendicular to the left and right side surfaces of the heat exchange pipe The evaporator according to any one of 6) to 8), wherein the evaporator is a flat surface.

11)前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状が円弧状であり、同他方の水平断面形状がV形である上記6)〜8)のうちのいずれかに記載のエバポレータ。   11) The horizontal cross-sectional shape of one of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member is an arc shape, and the other horizontal cross-sectional shape is a V shape The evaporator according to any one of 6) to 8).

12)前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面の水平断面形状が、それぞれV形である上記6)〜8)のうちのいずれかに記載のエバポレータ。   12) The evaporator according to any one of the above 6) to 8), wherein the horizontal cross-sectional shapes of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member are respectively V-shaped.

13)前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状がV形であり、同他方が熱交換管の左右両側面と直角をなす平坦面である上記6)〜8)のうちのいずれかに記載のエバポレータ。   13) The horizontal cross-sectional shape of one of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange tubes and the front and rear surfaces of the drainage promotion member is V-shaped, and the other is perpendicular to the left and right side surfaces of the heat exchange tube The evaporator according to any one of 6) to 8), wherein the evaporator is a flat surface.

14)前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在し、この隙間が排水路となっており、熱交換管および排水促進部材の左右方向の厚みをh(mm)、排水路の前後方向の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たし、排水路に臨む熱交換管の端壁外面および排水路に臨む排水促進部材の外面が、それぞれ熱交換管の左右両側面と直角をなす平坦面である上記6)記載のエバポレータ。   14) There is a gap between at least one of the two heat exchange pipes adjacent to the front and rear, and the drainage promotion member disposed between the two heat exchange pipes, and this gap serves as a drainage channel. When the thickness of the heat exchange pipe and drainage promotion member in the left-right direction is h (mm) and the width in the front-rear direction of the drainage channel is w (mm), the relationship 0 <w / h ≦ 1/4 is satisfied. The evaporator according to 6) above, wherein the outer surface of the end wall of the heat exchange pipe facing the outer surface and the outer surface of the drainage promotion member facing the drainage channel are flat surfaces perpendicular to the left and right side surfaces of the heat exchange pipe, respectively.

15)排水促進部材の左右両側面のうち少なくともいずれか一方に、上下方向に伸びる排水溝が形成されている上記6)〜14)のうちのいずれかに記載のエバポレータ。   15) The evaporator according to any one of 6) to 14) above, wherein a drainage groove extending in the vertical direction is formed on at least one of the left and right side surfaces of the drainage promotion member.

16)左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が、前後方向に間隔をおいて複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された第1ヘッダと、熱交換管の一端側において第1ヘッダの後側に配置され、かつ残りの熱交換管群の熱交換管が接続された第2ヘッダと、熱交換管の他端側に配置され、かつ第1ヘッダに接続されている熱交換管が接続された第3ヘッダと、熱交換管の他端側に配置され、かつ第2ヘッダに接続されている熱交換管群の熱交換管が接続された第4ヘッダとを備えており、前後に隣り合う熱交換管どうしの間に、上下方向に伸びる排水促進部材が配置されている上記1)〜15)のうちのいずれかに記載のエバポレータ。   16) A heat exchange core section configured by arranging a plurality of rows of heat exchange pipes arranged at intervals in the front-rear direction, and a heat exchange core section composed of a plurality of heat exchange pipes arranged at intervals in the left-right direction. A first header arranged on one end side of the pipe and connected to heat exchange pipes of at least one row of heat exchange pipe groups; arranged on the rear side of the first header on one end side of the heat exchange pipe; A second header to which a heat exchange pipe of the heat exchange pipe group is connected, a third header that is disposed on the other end side of the heat exchange pipe and connected to the first header, and a heat A fourth header to which the heat exchange pipe of the heat exchange pipe group which is arranged on the other end side of the exchange pipe and connected to the second header is connected, and between the heat exchange pipes adjacent to each other in the front and rear In any one of 1) to 15) above, a drainage promotion member extending in the vertical direction is disposed. Evaporator.

17)第1ヘッダと第2ヘッダとが一体化されている上記16)記載のエバポレータ。   17) The evaporator according to 16) above, wherein the first header and the second header are integrated.

18)第1ヘッダと第2ヘッダとが、両ヘッダの熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両ヘッダにおける熱交換管とは反対側の部分を形成しかつ第1部材にろう付された第2部材とを備えており、これにより両ヘッダが一体化されている上記17)記載のエバポレータ。   18) The first header and the second header form a part on the heat exchange pipe side of both headers, and the first member to which the heat exchange pipe is connected and the part on the opposite side of the heat exchange pipe in both headers The evaporator according to 17) above, further comprising a second member formed and brazed to the first member, whereby both headers are integrated.

19)第3ヘッダと第4ヘッダとが一体化されている上記16)〜18)のうちのいずれかに記載のエバポレータ。   19) The evaporator according to any one of 16) to 18), wherein the third header and the fourth header are integrated.

20)第3ヘッダと第4ヘッダとが、両ヘッダの熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両ヘッダにおける熱交換管とは反対側の部分を形成しかつ第1部材にろう付された第2部材とを備えており、これにより両ヘッダが一体化されている上記19)記載のエバポレータ。   20) The third header and the fourth header form a part on the heat exchange pipe side of both headers, and the first member to which the heat exchange pipe is connected, and the part on the opposite side of the heat exchange pipe in both headers The evaporator according to the above item 19), further comprising a second member formed and brazed to the first member, whereby both headers are integrated.

21)第1ヘッダが、冷媒入口を有する冷媒入口ヘッダであり、第2ヘッダが、冷媒出口を有する冷媒出口ヘッダであり、第3ヘッダが、冷媒が冷媒入口ヘッダから熱交換管を通って流入する冷媒流入ヘッダであり、第4ヘッダが、冷媒が熱交換管を通って冷媒出口ヘッダに流出する冷媒流出ヘッダであり、第3ヘッダと第4ヘッダとが連通させられている上記16)〜20)のうちのいずれかに記載のエバポレータ。   21) The first header is a refrigerant inlet header having a refrigerant inlet, the second header is a refrigerant outlet header having a refrigerant outlet, and the third header is a refrigerant flowing from the refrigerant inlet header through the heat exchange pipe. The refrigerant inflow header, the fourth header is a refrigerant outflow header through which the refrigerant flows out to the refrigerant outlet header through the heat exchange pipe, and the third header and the fourth header are in communication with each other. The evaporator according to any one of 20).

22)圧縮機、コンデンサおよびエバポレータを備えており、かつフロン系冷媒を用いる冷凍サイクルであって、エバポレータが、上記1)〜21)のうちのいずれかに記載のエバポレータからなる冷凍サイクル。   22) A refrigeration cycle comprising a compressor, a condenser, and an evaporator, and using a chlorofluorocarbon refrigerant, wherein the evaporator comprises the evaporator according to any one of 1) to 21) above.

23)圧縮機、ガスクーラ、エバポレータ、減圧器、およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、エバポレータが、上記1)〜21)のうちのいずれかに記載のエバポレータからなる超臨界冷凍サイクル。   23) A refrigeration cycle comprising a compressor, a gas cooler, an evaporator, a decompressor, and an intermediate heat exchanger for exchanging heat between the refrigerant coming out of the gas cooler and the refrigerant coming out of the evaporator, and using a supercritical refrigerant. A supercritical refrigeration cycle comprising the evaporator according to any one of 1) to 21) above.

24)上記22)または23)記載の冷凍サイクルが、カーエアコンとして搭載されている車両。   24) A vehicle on which the refrigeration cycle described in 22) or 23) above is mounted as a car air conditioner.

上記1)〜4)のエバポレータにおいては、前後方向に間隔をおいて配置された複数の熱交換管が、左右方向に間隔をおいて並べられ、左右方向に隣り合う熱交換管どうしの間にフィンが配置されて熱交換管に接合される。このエバポレータによれば、フィンの表面に発生した凝縮水は、キャピラリ効果により熱交換管とフィンとの接合部側に引き寄せられ、後側の熱交換管とフィンとの接合部に引き寄せられた凝縮水は、左右方向に隣り合う熱交換管どうしの間の通風間隙を流れる風により前側に流れるとともに、キャピラリ効果により排水促進部材側に引き寄せられ、熱交換管と排水促進部材との間の排水路内に入る。そして、前後に隣り合う熱交換管どうしの間隔を、特許文献1記載のエバポレータと同じにした場合、前後の熱交換管と排水促進部材との間に形成される排水路の排水路断面積は比較的小さくなるので、凝縮水はキャピラリ効果により排水路内に溜まることなく排水路を通って下方に排水される。したがって、エバポレータの排水性が向上する。しかも、凝縮水の排水性が向上するので、排水路内においての凝縮水の凍結を抑制することが可能になり、エバポレータの冷却性能の低下を防止することができる。   In the evaporators 1) to 4), a plurality of heat exchange tubes arranged at intervals in the front-rear direction are arranged at intervals in the left-right direction, and between the heat exchange tubes adjacent in the left-right direction. Fins are arranged and joined to the heat exchange tubes. According to this evaporator, the condensed water generated on the surface of the fin is attracted to the joint portion between the heat exchange tube and the fin by the capillary effect, and is condensed to the joint portion between the rear heat exchange tube and the fin. Water flows to the front side by the wind flowing through the ventilation gap between the heat exchange tubes adjacent in the left-right direction, and is drawn to the drainage promotion member side by the capillary effect, and the drainage channel between the heat exchange tube and the drainage promotion member Get inside. And when the space | interval of the heat exchange pipes adjacent before and behind is made the same as the evaporator of patent document 1, the drainage channel cross-sectional area of the drainage channel formed between the front and back heat exchange tubes and the drainage promotion member is Since it becomes comparatively small, the condensed water is drained downward through the drainage channel without being accumulated in the drainage channel due to the capillary effect. Therefore, the drainage of the evaporator is improved. And since the drainage of condensed water improves, it becomes possible to suppress the freezing of condensed water in a drainage channel, and it can prevent the fall of the cooling performance of an evaporator.

上記5)のエバポレータによれば、風の影響およびキャピラリ効果により排水促進部材側に流れた凝縮水は、排水促進部材の排水溝に沿っても下方に排水されることになり、排水性が向上する。   According to the evaporator of 5) above, the condensed water that has flowed to the drainage promotion member side due to the influence of the wind and the capillary effect is drained downward along the drainage groove of the drainage promotion member, improving drainage performance. To do.

上記7)および9)〜13)のエバポレータによれば、熱交換管と排水促進部材との間の隙間からなる排水路内に入った凝縮水は、効率良く排水路を通って下方に排水される。したがって、凝縮水の排水性が向上する。   According to the evaporators 7) and 9) to 13), the condensed water that has entered the drainage channel formed by the gap between the heat exchange pipe and the drainage promotion member is efficiently drained downward through the drainage channel. The Therefore, the drainage of condensed water improves.

上記8)および9)〜13)のエバポレータによれば、熱交換管と排水促進部材との間に形成された凹所からなる排水路内に入った凝縮水は、効率良く排水路を通って下方に排水される。   According to the evaporators 8) and 9) to 13) above, the condensed water that has entered the drainage channel consisting of a recess formed between the heat exchange pipe and the drainage promotion member passes through the drainage channel efficiently. It is drained downward.

上記14)のエバポレータによれば、熱交換管と排水促進部材との間の隙間からなる排水路内に入った凝縮水は、効率良く排水路を通って下方に排水される。したがって、凝縮水の排水性が向上する。   According to the evaporator of 14), the condensed water that has entered the drainage channel formed by the gap between the heat exchange pipe and the drainage promotion member is efficiently drained downward through the drainage channel. Therefore, the drainage of condensed water improves.

上記15)のエバポレータによれば、風の影響およびキャピラリ効果により排水促進部材側に流れた凝縮水は、排水促進部材の排水溝に沿っても下方に排水されることになり、排水性が向上する。   According to the evaporator of 15) above, the condensed water that has flowed to the drainage promotion member side due to the influence of the wind and the capillary effect is drained downward along the drainage groove of the drainage promotion member, improving drainage performance. To do.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

実施形態1
この実施形態は図1〜図10に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1および図2はエバポレータの全体構成を示し、図3〜図9は要部の構成を示す。また、図10はエバポレータにおける冷媒の流れ方を示す。   1 and 2 show the overall configuration of the evaporator, and FIGS. 3 to 9 show the configuration of the main part. FIG. 10 shows how the refrigerant flows in the evaporator.

図1および図2において、フロン系冷媒を使用するカーエアコンに用いられるエバポレータ(1)は、上下方向に間隔をおいて配置されたアルミニウム製冷媒入出用タンク(2)およびアルミニウム製冷媒ターン用タンク(3)と、両タンク(2)(3)間に設けられた熱交換コア部(4)とを備えている。   1 and 2, an evaporator (1) used in a car air conditioner using a chlorofluorocarbon refrigerant is composed of an aluminum refrigerant inlet / outlet tank (2) and an aluminum refrigerant turn tank arranged at intervals in the vertical direction. (3) and a heat exchange core section (4) provided between both tanks (2) and (3).

冷媒入出用タンク(2)は、前側(通風方向下流側)に位置する冷媒入口ヘッダ(5)(第1ヘッダ)と、後側(通風方向上流側)に位置する冷媒出口ヘッダ(6)(第2ヘッダ)とを備えており、後述する連結手段により相互に連結一体化されている。冷媒入出用タンク(2)の冷媒入口ヘッダ(5)にアルミニウム製冷媒入口管(7)が接続され、同じく冷媒出口ヘッダ(6)にアルミニウム製冷媒出口管(8)が接続されている。   The refrigerant inlet / outlet tank (2) includes a refrigerant inlet header (5) (first header) located on the front side (downstream side in the ventilation direction) and a refrigerant outlet header (6) located on the rear side (upstream side in the ventilation direction) ( 2nd header), and are mutually connected and integrated by connecting means to be described later. An aluminum refrigerant inlet pipe (7) is connected to the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2), and an aluminum refrigerant outlet pipe (8) is also connected to the refrigerant outlet header (6).

冷媒ターン用タンク(3)は、前側に位置する冷媒流入ヘッダ(9)(第3ヘッダ)と、後側に位置する冷媒流出ヘッダ(11)(第4ヘッダ)とを備えており、両ヘッダ(9)(11)が連結部(10)により相互に連結一体化され、両ヘッダ(9)(11)と連結部(10)とにより排水樋(20)が形成されている(図4参照)。   The refrigerant turn tank (3) includes a refrigerant inflow header (9) (third header) located on the front side and a refrigerant outflow header (11) (fourth header) located on the rear side. (9) and (11) are connected and integrated with each other by the connecting portion (10), and the drainage basin (20) is formed by the headers (9) and (11) and the connecting portion (10) (see FIG. 4). ).

熱交換コア部(4)は、左右方向に間隔をおいて並列状に配置された複数の熱交換管(12)からなる熱交換管群(13)が、前後方向に並んで複数列、ここでは2列配置され、各熱交換管群(13)の隣接する熱交換管(12)どうしの間の通風間隙、および各熱交換管群(13)の左右両端の熱交換管(12)の外側にそれぞれコルゲートフィン(14)が配置されて熱交換管(12)にろう付されることにより構成されている。前後に隣り合う熱交換管(12)の間には、上下方向に伸びるアルミニウム製排水促進部材(30)が配置され、コルゲートフィン(14)にろう付されている。左右両端のコルゲートフィン(14)の外側にはそれぞれアルミニウム製サイドプレート(15)が配置されてコルゲートフィン(14)にろう付されている。そして、前側熱交換管群(13)の熱交換管(12)の上下両端は冷媒入口ヘッダ(5)および冷媒流入ヘッダ(9)に接続され、往き側冷媒流通部となっている。後側熱交換管群(13)の熱交換管(12)の上下両端部は冷媒出口ヘッダ(6)および冷媒流出ヘッダ(11)に接続され、戻り側冷媒流通部となっている。   The heat exchange core section (4) is composed of a plurality of heat exchange pipe groups (13) each including a plurality of heat exchange pipes (12) arranged in parallel at intervals in the left-right direction. Are arranged in two rows, the ventilation gap between adjacent heat exchange tubes (12) of each heat exchange tube group (13), and the heat exchange tubes (12) at the left and right ends of each heat exchange tube group (13). Corrugated fins (14) are respectively arranged on the outer sides and brazed to the heat exchange pipe (12). Between the heat exchange pipes (12) adjacent to the front and rear, an aluminum drainage promotion member (30) extending in the vertical direction is disposed and brazed to the corrugated fin (14). Aluminum side plates (15) are respectively arranged outside the corrugated fins (14) at the left and right ends and brazed to the corrugated fins (14). The upper and lower ends of the heat exchange pipe (12) of the front heat exchange pipe group (13) are connected to the refrigerant inlet header (5) and the refrigerant inflow header (9) to form an outgoing refrigerant circulation section. The upper and lower ends of the heat exchange pipe (12) of the rear heat exchange pipe group (13) are connected to the refrigerant outlet header (6) and the refrigerant outflow header (11) to form a return side refrigerant circulation section.

図3に示すように、冷媒入出用タンク(2)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつすべての熱交換管(12)が接続されたプレート状の第1部材(16)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(16)の上側を覆う第2部材(17)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両部材(16)(17)の両端に接合されて左右両端開口を閉鎖するアルミニウム製キャップ(18)(19)とよりなり、右側キャップ(19)の外面に、冷媒入口ヘッダ(5)および冷媒出口ヘッダ(6)に跨るように、前後方向に長いアルミニウム製のジョイントプレート(21)がろう付されている。ジョイントプレート(21)に、冷媒入口管(7)および冷媒出口管(8)が接続されている。   As shown in FIG. 3, the refrigerant inlet / outlet tank (2) is a plate-shaped first member (16) formed of an aluminum brazing sheet having a brazing filler metal layer on both sides and to which all heat exchange pipes (12) are connected. ), A second member (17) made of a bare material formed from an aluminum extruded shape and covering the upper side of the first member (16), and an aluminum brazing sheet having a brazing filler metal layer on both sides and both members (16) An aluminum cap (18) (19) that is joined to both ends of (17) and closes the left and right end openings, and has a refrigerant inlet header (5) and a refrigerant outlet header on the outer surface of the right cap (19). A long aluminum joint plate (21) is brazed so as to straddle (6). A refrigerant inlet pipe (7) and a refrigerant outlet pipe (8) are connected to the joint plate (21).

第1部材(16)は、その前後両側部分に、それぞれ中央部が下方に突出した曲率の小さい横断面円弧状の湾曲部(22)を有している。各湾曲部(22)に、前後方向に長い複数の管挿通穴(23)が、左右方向に間隔をおいて形成されている。前後両湾曲部(22)の管挿通穴(23)は、それぞれ左右方向に関して同一位置にある。前側湾曲部(22)の前縁および後側湾曲部(22)の後縁に、それぞれ立ち上がり壁(22a)が全長にわたって一体に形成されている。また、第1部材(16)の両湾曲部(22)間に、冷媒入口ヘッダ(5)と冷媒出口ヘッダ(6)とを連結する手段を構成する平坦部(24)が形成され、平坦部(24)に、複数の貫通穴(25)が左右方向に間隔をおいて形成されている。   The first member (16) has curved portions (22) having a small cross-sectional arc shape with a central portion projecting downward at both front and rear side portions thereof. A plurality of tube insertion holes (23) that are long in the front-rear direction are formed in each bending portion (22) at intervals in the left-right direction. The tube insertion holes (23) of the front and rear curved portions (22) are at the same position in the left-right direction. Standing walls (22a) are integrally formed over the entire length at the front edge of the front curved portion (22) and the rear edge of the rear curved portion (22), respectively. Further, a flat portion (24) constituting a means for connecting the refrigerant inlet header (5) and the refrigerant outlet header (6) is formed between both curved portions (22) of the first member (16), and the flat portion In (24), a plurality of through holes (25) are formed at intervals in the left-right direction.

第2部材(17)は下方に開口した横断面略m字状であり、左右方向に伸びる前後両壁(26)と、前後両壁(26)間の中央部に設けられかつ左右方向に伸びるとともに、冷媒入出用タンク(2)内を前後2つの空間に仕切る仕切手段としての仕切壁(27)と、前後両壁(26)および仕切壁(27)の上端どうしをそれぞれ一体に連結する上方に突出した2つの略円弧状連結壁(28)とを備えている。なお、仕切壁(27)は、冷媒入口ヘッダ(5)と冷媒出口ヘッダ(6)とを連結する手段を構成している。第2部材(17)の後壁(26)の下端部と仕切壁(27)の下端部とは、冷媒出口ヘッダ(6)内を上下2つの空間(6a)(6b)に区画する区画手段としての分流用抵抗板(29)により全長にわたって一体に連結されている。分流用抵抗板(29)の後側部分における左右両端部を除いた部分には、左右方向に長い複数の冷媒通過穴(31A)(31B)が左右方向に間隔をおいて貫通状に形成されている。仕切壁(27)の下端は前後両壁(26)の下端よりも下方に突出しており、その下縁に、下方に突出しかつ第1部材(16)の貫通穴(25)に嵌め入れられる複数の突起(27a)が左右方向に間隔をおいて一体に形成されている。突起(27a)は、仕切壁(27)の所定部分を切除することにより形成されている。   The second member (17) has a substantially m-shaped cross section that opens downward, and is provided in the center between the front and rear walls (26) extending in the left-right direction and the front and rear walls (26) and extends in the left-right direction. In addition, a partition wall (27) as a partition means for partitioning the refrigerant inlet / outlet tank (2) into two front and rear spaces, and an upper portion connecting the front and rear walls (26) and the upper ends of the partition wall (27) together. And two substantially arc-shaped connecting walls (28) projecting from each other. The partition wall (27) constitutes means for connecting the refrigerant inlet header (5) and the refrigerant outlet header (6). The lower end portion of the rear wall (26) of the second member (17) and the lower end portion of the partition wall (27) are partition means for partitioning the refrigerant outlet header (6) into two upper and lower spaces (6a) and (6b). Are integrally connected over the entire length by a shunt resistor plate (29). A plurality of refrigerant passage holes (31A) (31B) that are long in the left-right direction are formed in a penetrating manner at intervals in the left-right direction in the portion excluding the left and right end portions in the rear portion of the shunt resistor plate (29). ing. The lower end of the partition wall (27) protrudes downward from the lower ends of the front and rear walls (26), and a plurality of lower walls protrude downward and are fitted into the through holes (25) of the first member (16). The protrusions (27a) are integrally formed with an interval in the left-right direction. The protrusion (27a) is formed by cutting a predetermined portion of the partition wall (27).

右側キャップ(19)の前側には、冷媒入口ヘッダ(5)内に嵌め入れられる左方突出部(32)が一体に形成され、同じく後側には、冷媒出口ヘッダ(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側左方突出部(33)と、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側左方突出部(34)とが上下に間隔をおいて一体に形成されている。また、右側キャップ(19)の前後両側縁と上縁との間の円弧状部に、それぞれ左方に突出した係合爪(35)が一体に形成され、同じく下縁の前側部分および後側部分に、それぞれ左方に突出した係合爪(36)が一体に形成されている。右側キャップ(19)の前側の左方突出部(32)の底壁に冷媒入口(37)が形成され、同じく後側の上側左方突出部(33)の底壁に冷媒出口(38)が形成されている。左側キャップ(18)は右側キャップ(19)と左右対称形であり、冷媒入口ヘッダ(5)内に嵌め入れられる右方突出部(39)、冷媒出口ヘッダ(6)の分流用抵抗板(29)よりも上側の空間(6a)内に嵌め入れられる上側右方突出部(41)、分流用抵抗板(29)よりも下側の空間(6b)内に嵌め入れられる下側右方突出部(42)、および右方に突出した上下の係合爪(43)(44)が一体に形成されている。右方突出部(39)および上側右方突出部(41)の底壁には開口は形成されていない。両キャップ(18)(19)の上縁は、それぞれ冷媒入出用タンク(2)の第2部材(17)上面の両端と合致するように、2つの略円弧状部が前後方向の中央部において一体に連なったような形状となっている。また、両キャップ(18)(19)の下縁は、曲率の小さい2つの略円弧状部が前後方向の中央部において平坦部を介して一体に連なったような形状となっている。   On the front side of the right cap (19), a left protruding portion (32) that is fitted into the refrigerant inlet header (5) is integrally formed, and on the rear side, a resistance for shunting the refrigerant outlet header (6) is formed. Upper left protrusion (33) that fits in the space (6a) above the plate (29), and lower side that fits in the space (6b) below the shunt resistor plate (29) The left projecting portion (34) is integrally formed with a space in the vertical direction. The arcuate portion between the front and rear side edges and the upper edge of the right cap (19) is integrally formed with an engaging claw (35) projecting to the left, and the front portion and the rear side of the lower edge are also formed. Engaging claws (36) projecting to the left are formed integrally with the part. A refrigerant inlet (37) is formed in the bottom wall of the front left protrusion (32) of the right cap (19), and a refrigerant outlet (38) is also formed in the bottom wall of the rear upper left protrusion (33). Is formed. The left cap (18) is symmetrical with the right cap (19) and has a right protrusion (39) fitted into the refrigerant inlet header (5) and a shunt resistor plate (29) of the refrigerant outlet header (6). ) Upper right protrusion (41) fitted into the upper space (6a), lower right protrusion fitted into the lower space (6b) than the shunt resistor plate (29) (42) and upper and lower engaging claws (43) and (44) protruding rightward are integrally formed. No opening is formed in the bottom wall of the right protrusion (39) and the upper right protrusion (41). The upper edges of the caps (18) and (19) have two substantially arcuate portions at the center in the front-rear direction so that they coincide with both ends of the upper surface of the second member (17) of the refrigerant inlet / outlet tank (2). It is shaped like a single piece. Further, the lower edges of the caps (18) and (19) have such a shape that two substantially arc-shaped portions having a small curvature are integrally connected via a flat portion at the center in the front-rear direction.

そして、第1部材(16)の前側湾曲部(22)および平坦部(24)と、第2部材(17)の前壁(26)、仕切壁(27)および前側連結壁(28)と、左右のキャップ(18)(19)の前側部分とにより、冷媒入口ヘッダ(5)が形成され、第1部材(16)の後側湾曲部(22)および平坦部(24)と、第2部材(17)の後壁(26)、仕切壁(27)および後側連結壁(28)と、左右のキャップ(18)(19)の後側部分とにより、冷媒出口ヘッダ(6)が形成されている。冷媒入口ヘッダ(5)と冷媒出口ヘッダ(6)とは平坦部(24)および仕切壁(27)により連結一体化されている。   And the front curved part (22) and flat part (24) of the first member (16), the front wall (26), the partition wall (27) and the front connection wall (28) of the second member (17), The refrigerant inlet header (5) is formed by the front portions of the left and right caps (18) and (19), the rear curved portion (22) and the flat portion (24) of the first member (16), and the second member. (17) The refrigerant outlet header (6) is formed by the rear wall (26), the partition wall (27), the rear connection wall (28), and the rear portions of the left and right caps (18) (19). ing. The refrigerant inlet header (5) and the refrigerant outlet header (6) are connected and integrated by a flat portion (24) and a partition wall (27).

ジョイントプレート(21)は、右側キャップ(19)の冷媒入口(37)に通じる短円筒状冷媒流入口(45)と、同じく冷媒出口(38)に通じる短円筒状冷媒流出口(46)とを備えている。ジョイントプレート(21)の上下両縁部における冷媒流入口(45)と冷媒流出口(46)との間の部分には、それぞれ左方に突出した屈曲部(47)が形成されている。上側の屈曲部(47)は、右側キャップ(19)の上縁における2つの略円弧状部の間、および第2部材(17)の2つの連結壁(28)間に係合している。下側の屈曲部(47)は、右側キャップ(19)の下縁における2つの略円弧状部の間に形成された上記平坦部、および第1部材(16)の平坦部(24)に係合している。さらに、ジョイントプレート(21)の下縁の前後両端部には、それぞれ左方に突出した係合爪(48)が一体に形成されている。係合爪(48)は、右側キャップ(19)の下縁に係合している。ジョイントプレート(21)の冷媒流入口(45)に、冷媒入口管(7)の一端部に形成された縮径部が差し込まれてろう付され、同じく冷媒流出口(46)に、冷媒出口管(8)の一端部に形成された縮径部が差し込まれてろう付されている。図示は省略したが、冷媒入口管(7)および冷媒出口管(8)の他端部には、両管(7)(8)に跨るように膨張弁取付部材が接合されている。   The joint plate (21) has a short cylindrical refrigerant inlet (45) leading to the refrigerant inlet (37) of the right cap (19) and a short cylindrical refrigerant outlet (46) also leading to the refrigerant outlet (38). I have. Bent portions (47) protruding leftward are formed at portions between the refrigerant inlet (45) and the refrigerant outlet (46) at both upper and lower edges of the joint plate (21). The upper bent portion (47) is engaged between the two substantially arc-shaped portions at the upper edge of the right cap (19) and between the two connecting walls (28) of the second member (17). The lower bent portion (47) is engaged with the flat portion formed between two substantially arc-shaped portions at the lower edge of the right cap (19) and the flat portion (24) of the first member (16). Match. Furthermore, engaging claws (48) protruding leftward are integrally formed at both front and rear end portions of the lower edge of the joint plate (21). The engaging claw (48) is engaged with the lower edge of the right cap (19). A reduced diameter portion formed at one end of the refrigerant inlet pipe (7) is inserted into the refrigerant inlet (45) of the joint plate (21) and brazed, and similarly to the refrigerant outlet (46), the refrigerant outlet pipe A reduced diameter portion formed at one end of (8) is inserted and brazed. Although not shown, an expansion valve mounting member is joined to the other ends of the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8) so as to straddle both pipes (7) and (8).

冷媒入出用タンク(2)の第1および第2部材(16)(17)と、両キャップ(18)(19)と、ジョイントプレート(21)とは次のようにしてろう付されている。すなわち、第1および第2部材(16)(17)は、第2部材(17)の突起(27a)が第1部材(16)の貫通穴(25)に挿通されてかしめられることにより、第1部材(16)の前後の立ち上がり壁(22a)の上端部が第2部材(17)の前後両壁(26)の下端部に係合させられた状態で、第1部材(16)のろう材層を利用して相互にろう付されている。両キャップ(18)(19)は、前側の突出部(39)(32)が両部材(16)(17)における仕切壁(27)よりも前側の空間内に、後側の上突出部(41)(33)が両部材(16)(17)における仕切壁(27)よりも後側でかつ分流用抵抗板(29)よりも上側の空間内に、および後側の下突出部(42)(34)が仕切壁(17)よりも後側でかつ分流用抵抗板(29)よりも下側の空間内にそれぞれ嵌め入れられ、上側の係合爪(43)(35)が第2部材(17)の連結壁(28)に係合させられ、下側の係合爪(44)(36)が第1部材(16)の湾曲部(22)に係合させられた状態で、両キャップ(18)(19)のろう材層を利用して第1および第2部材(17)(17)にろう付されている。ジョイントプレート(21)は、屈曲部(47)が右側キャップ(19)および第2部材(17)に係合させられ、係合爪(48)が右側キャップ(19)に係合させられた状態で、右側キャップ(19)のろう材層を利用して右側キャップ(19)にろう付されている。   The first and second members (16), (17), the caps (18), (19), and the joint plate (21) of the refrigerant inlet / outlet tank (2) are brazed as follows. That is, the first and second members (16), (17) are inserted into the through holes (25) of the first member (16) by the protrusions (27a) of the second member (17) and caulked. The brazing of the first member (16) with the upper ends of the front and rear rising walls (22a) of the one member (16) engaged with the lower ends of the front and rear walls (26) of the second member (17) They are brazed together using a layer of material. Both caps (18) and (19) are arranged so that the front protrusions (39) and (32) are in the space on the front side of the partition walls (27) in both members (16) and (17), and the rear upper protrusions ( 41) (33) is located behind the partition wall (27) in both members (16) and (17) and above the shunt resistor plate (29), and the rear lower protrusion (42 ) (34) are respectively fitted in the spaces behind the partition wall (17) and below the shunt resistor plate (29), and the upper engaging claws (43) (35) are second With the lower engaging claws (44) (36) engaged with the curved portion (22) of the first member (16) engaged with the connecting wall (28) of the member (17), The first and second members (17) and (17) are brazed using the brazing material layers of both caps (18) and (19). In the joint plate (21), the bent portion (47) is engaged with the right cap (19) and the second member (17), and the engaging claw (48) is engaged with the right cap (19). Thus, the right cap (19) is brazed using the brazing material layer of the right cap (19).

こうして、冷媒入出用タンク(2)が形成されており、冷媒出口ヘッダ(6)は分流用抵抗板(29)により上下両空間(6a)(6b)に区画され、これらの空間(6a)(6b)は冷媒通過穴(31A)(31B)により連通させられている。右側キャップ(19)の冷媒出口(38)は冷媒出口ヘッダ(6)の上部空間(6a)内に通じている。   Thus, the refrigerant inlet / outlet tank (2) is formed, and the refrigerant outlet header (6) is partitioned into upper and lower spaces (6a) (6b) by the shunt resistor plate (29), and these spaces (6a) ( 6b) communicates with the refrigerant passage holes (31A) and (31B). The refrigerant outlet (38) of the right cap (19) communicates with the upper space (6a) of the refrigerant outlet header (6).

図4〜図6に示すように、冷媒ターン用タンク(3)は、両面にろう材層を有するアルミニウムブレージングシートから形成されかつすべての熱交換管(12)が接続されたプレート状の第1部材(50)と、アルミニウム押出形材から形成されたベア材よりなりかつ第1部材(50)の下側を覆う第2部材(51)と、両面にろう材層を有するアルミニウムブレージングシートから形成されかつ両端開口を閉鎖するアルミニウム製キャップ(52)(53)と、連結部(10)に接合された左右方向に長いアルミニウムベア材製排水補助プレート(54)と、右側キャップ(52)の外面に、冷媒流入ヘッダ(9)および冷媒流出ヘッダ(11)に跨るようにろう付された前後方向に長いアルミニウムベア材製の連通部材(55)とよりなり、連通部材(55)を介して冷媒流入ヘッダ(9)と冷媒流出ヘッダ(11)とが右端部で連通させられている。   As shown in FIGS. 4-6, the refrigerant | coolant turn tank (3) is formed from the aluminum brazing sheet | seat which has a brazing material layer on both surfaces, and the plate-shaped 1st to which all the heat exchange pipe | tubes (12) were connected. Formed from an aluminum brazing sheet comprising a member (50), a second member (51) made of a bare material formed from an extruded aluminum material and covering the lower side of the first member (50), and a brazing material layer on both sides Aluminum caps (52) (53) that are closed at both ends, drainage auxiliary plates (54) made of aluminum bare material that are long in the left-right direction joined to the connecting portion (10), and the outer surface of the right cap (52) And a communication member (55) made of an aluminum bare material that is brazed so as to straddle the refrigerant inflow header (9) and the refrigerant outflow header (11), and the refrigerant passes through the communication member (55). Inflow header (9) and refrigerant outflow header (11) are at the right end It is made to communicate with.

冷媒流入ヘッダ(9)および冷媒流出ヘッダ(11)はそれぞれ頂面、前後両側面および底面を有している。両ヘッダ(9)(11)の頂面は前後方向内側部分および外側部分を除いて水平な平坦面(9a)(11a)となっており、頂面の前後方向内側部分には前後方向内側に向かって下方に直線状に傾斜した傾斜面からなる第1の低位部(9b)(11b)が形成されている。そして、第1の低位部(9b)(11b)が排水樋(20)の前後両側面となっており、排水樋(20)の前後両側面が上方に向かって前後方向外側に広がっている。第1の低位部(9b)(11b)の水平面に対する下向き傾斜角度は45度以上であることが好ましい。なお、排水樋(20)の前後両側面、すなわち両ヘッダ(9)(11)の第1の低位部(9b)(11b)は、上方に向かって前後方向外側に広がっておれば、直線状に傾斜したものに限らず、湾曲していてもよい。また、両ヘッダ(9)(11)の頂面の前後方向外側部分には、水平面に対し、前後方向外側に向かって下方に直線状に傾斜した傾斜面からなる第2の低位部(9c)(11c)が形成されている。第2の低位部(9c)(11c)の水平面に対する下向き傾斜角度は45度以上であることが好ましい。両ヘッダ(9)(11)の前後方向外側面は頂面の第2の低位部(9c)(11c)に連なっている。   The refrigerant inflow header (9) and the refrigerant outflow header (11) each have a top surface, front and rear side surfaces, and a bottom surface. The top surfaces of both headers (9) and (11) are horizontal flat surfaces (9a) and (11a) except for the inner and outer portions in the front-rear direction. A first low-order part (9b) (11b) is formed of an inclined surface linearly inclined downward. And the 1st low-order part (9b) (11b) is the front-and-rear both sides | surfaces of a drainage basin (20), and the front-and-rear both sides | surfaces of a drainage basin (20) are spread outward in the front-back direction. It is preferable that the downward inclination angle with respect to the horizontal plane of the first low-order parts (9b) and (11b) is 45 degrees or more. The front and rear sides of the drainage basin (20), that is, the first low-order parts (9b) and (11b) of the headers (9) and (11) are straight if they extend outward in the front-rear direction. It may be curved, not limited to the one that is inclined. In addition, the front and rear direction outer portions of the top surfaces of both headers (9) and (11) have a second lower portion (9c) comprising an inclined surface linearly inclined downward toward the outer side in the front and rear direction with respect to the horizontal plane. (11c) is formed. It is preferable that the downward inclination angle with respect to the horizontal plane of the second low-order parts (9c) and (11c) is 45 degrees or more. The front and rear outer surfaces of both headers (9) and (11) are connected to the second low-order parts (9c) and (11c) of the top surface.

第1部材(50)は、冷媒流入ヘッダ(9)の上部を形成する第1ヘッダ形成部(56)と、冷媒流出ヘッダ(11)の上部を形成する第2ヘッダ形成部(57)と、両ヘッダ形成部(56)(57)を連結しかつ連結部(10)を形成する連結壁(58)とよりなる。第1ヘッダ形成部(56)は、水平平坦状頂壁(56a)と、頂壁(56a)の後縁に全長にわたって一体に形成されかつ後方に向かって下方に傾斜した第1の傾斜壁(56b)と、頂壁(56a)の前縁に全長にわたって一体に形成されかつ前方に向かって下方に傾斜した第2の傾斜壁(56c)と、第2の傾斜壁(56c)の前縁に全長にわたって一体に形成された垂下壁(56d)とよりなる。第2ヘッダ形成部(57)は、水平平坦状頂壁(57a)と、頂壁(57a)の前縁に全長にわたって一体に形成されかつ前方に向かって下方に傾斜した第1の傾斜壁(57b)と、頂壁(57a)の後縁に全長にわたって一体に形成されかつ後方に向かって下方に傾斜した第2の傾斜壁(57c)と、第2の傾斜壁(57c)の後縁に全長にわたって一体に形成された垂下壁(57d)とよりなる。第1ヘッダ形成部(56)の第1の傾斜壁(56b)の下縁と第2ヘッダ形成部(57)の第1の傾斜壁(57b)の下縁とが連結壁(58)により一体に連結されている。両ヘッダ形成部(56)(57)の垂下壁(56d)(57d)の下端面は前後方向内方に向かって下方に傾斜しており、この下端面の外側部分により後述する段差部(69)が形成されるようになっている。そして、第1ヘッダ形成部(56)の頂壁(56a)上面が冷媒流入ヘッダ(9)の頂面の水平平坦面(9a)を形成し、両傾斜壁(56b)(56c)外面が両低位部(9b)(9c)を形成し、垂下壁(56c)外面が前側面の上側部分を形成している。また、第2ヘッダ形成部(57)の頂壁(57a)上面が冷媒流出ヘッダ(11)の頂面の水平平坦面(11a)を形成し、両傾斜壁(57b)(57c)外面が両低位部(11b)(11c)を形成し、垂下壁(57d)外面が後側面の上側部分を形成している。   The first member (50) includes a first header forming part (56) that forms the upper part of the refrigerant inflow header (9), a second header forming part (57) that forms the upper part of the refrigerant outflow header (11), The header forming portions (56) and (57) are connected to each other and the connecting wall (58) is formed to form the connecting portion (10). The first header forming portion (56) is formed of a horizontal flat top wall (56a) and a first inclined wall integrally formed over the entire length of the rear edge of the top wall (56a) and inclined downward toward the rear. 56b), a second inclined wall (56c) formed integrally with the front edge of the top wall (56a) over the entire length and inclined downward toward the front, and a front edge of the second inclined wall (56c) It consists of a hanging wall (56d) integrally formed over the entire length. The second header forming portion (57) includes a horizontal flat top wall (57a) and a first inclined wall (integrally formed over the entire length of the front edge of the top wall (57a) and inclined downward toward the front ( 57b), a second inclined wall (57c) formed integrally with the rear edge of the top wall (57a) and inclined downward toward the rear, and a rear edge of the second inclined wall (57c) A hanging wall (57d) integrally formed over the entire length. The lower edge of the first inclined wall (56b) of the first header forming portion (56) and the lower edge of the first inclined wall (57b) of the second header forming portion (57) are integrated by the connecting wall (58). It is connected to. The lower end surfaces of the hanging walls (56d) and (57d) of the header forming portions (56) and (57) are inclined downward inward in the front-rear direction, and a step portion (69 described later) is formed by an outer portion of the lower end surfaces. ) Is formed. The upper surface of the top wall (56a) of the first header forming portion (56) forms the horizontal flat surface (9a) of the top surface of the refrigerant inflow header (9), and the outer surfaces of both inclined walls (56b) (56c) are both. The lower portions (9b) and (9c) are formed, and the outer surface of the hanging wall (56c) forms the upper portion of the front side surface. The top surface of the top wall (57a) of the second header forming portion (57) forms a horizontal flat surface (11a) of the top surface of the refrigerant outflow header (11), and the outer surfaces of both inclined walls (57b) (57c) are both. The lower portion (11b) (11c) is formed, and the outer surface of the hanging wall (57d) forms the upper portion of the rear side surface.

第1部材(50)の両ヘッダ形成部(56)(57)に、それぞれ前後方向に長い複数の管挿通穴(59)が左右方向に間隔をおいて形成されている。両ヘッダ形成部(56)(57)の管挿通穴(59)は左右方向に関して同一位置にある。管挿通穴(59)の連結部(10)側端部、すなわち第1ヘッダ形成部(56)の管挿通穴(59)の後端部および第2ヘッダ形成部(57)の管挿通穴(59)の前端部はそれぞれ第1の傾斜壁(56b)(57b)に位置しており、これにより管挿通穴(59)の連結部(10)側端部が排水樋(20)の側面に位置している。また、管挿通穴(59)の前後方向外端部、すなわち第1ヘッダ形成部(56)の管挿通穴(59)の前端部および第2ヘッダ形成部(57)の管挿通穴(59)の後端部はそれぞれ第2の傾斜壁(56c)(57c)に位置しており、これにより管挿通穴(59)の前後方向外端部は両ヘッダ(9)(11)の頂面の第2の低位部(9c)(11c)に位置している。   A plurality of tube insertion holes (59) that are long in the front-rear direction are formed in both header forming portions (56), (57) of the first member (50) at intervals in the left-right direction. The pipe insertion holes (59) of both header forming portions (56) (57) are at the same position in the left-right direction. The connecting portion (10) side end portion of the tube insertion hole (59), that is, the rear end portion of the tube insertion hole (59) of the first header forming portion (56) and the tube insertion hole of the second header forming portion (57) ( 59) are located on the first inclined walls (56b) and (57b), respectively, so that the end of the pipe insertion hole (59) on the connecting part (10) side is located on the side surface of the drainage basin (20). positioned. In addition, the outer end in the front-rear direction of the pipe insertion hole (59), that is, the front end of the pipe insertion hole (59) of the first header forming part (56) and the pipe insertion hole (59) of the second header forming part (57) The rear ends are located on the second inclined walls (56c) and (57c), respectively, so that the outer ends in the front-rear direction of the pipe insertion holes (59) are located on the top surfaces of both headers (9) and (11). It is located in the second lower part (9c) (11c).

第1部材(50)の両ヘッダ形成部(56)(57)の頂壁(56a)(57a)および両傾斜壁(56b)(56c)(57b)(57c)における管挿通穴(59)の左右両側部分は、管挿通穴(59)に向かって下方に傾斜した傾斜部(61)となっており、各管挿通穴(59)の左右両側の傾斜部(61)により凹所(62)が形成されている。第1部材(50)の両ヘッダ形成部(56)(57)の第2の傾斜壁(56c)(57c)および垂下壁(56d)(57d)の外面に、凝縮水を冷媒ターン用タンク(3)下方に排水する排水溝(63)が、管挿通穴(59)の前後方向外端部に連なって形成されている。排水溝(63)の溝底は、管挿通穴(59)から遠ざかるにつれて徐々に下方に向かっている。排水溝(63)における第2の傾斜壁(56c)(57c)、すなわち第2の低位部(9c)(11c)に存在する部分の溝底は、水平面に対し、前後方向外側に向かって下方に直線状に傾斜している。排水溝(63)における第2の低位部(9c)(11c)に存在する部分の溝底の水平面に対する下向き傾斜角度は45度以上であることが好ましい。排水溝(63)における垂下壁(56d)(57d)に存在する部分の下端は、垂下壁(56d)(57d)の下端面に開口している。   The pipe insertion holes (59) of the top walls (56a) (57a) and the inclined walls (56b) (56c) (57b) (57c) of both header forming portions (56) (57) of the first member (50) The left and right side portions are inclined portions (61) inclined downward toward the tube insertion holes (59), and the recesses (62) are formed by the inclined portions (61) on the left and right sides of each tube insertion hole (59). Is formed. On the outer surfaces of the second inclined walls (56c) (57c) and the hanging walls (56d) (57d) of both header forming portions (56) (57) of the first member (50), condensed water is supplied to the refrigerant turn tank ( 3) A drainage groove (63) for draining downward is formed continuously to the outer end in the front-rear direction of the pipe insertion hole (59). The bottom of the drainage groove (63) gradually goes downward as it goes away from the pipe insertion hole (59). The second inclined wall (56c) (57c) in the drainage groove (63), that is, the groove bottom of the portion existing in the second low-order part (9c) (11c), is downward toward the outside in the front-rear direction with respect to the horizontal plane. It is inclined linearly. It is preferable that the downward inclination angle with respect to the horizontal surface of the groove bottom of the portion of the drainage groove (63) existing in the second low-order part (9c) (11c) is 45 degrees or more. The lower ends of the portions of the drainage grooves (63) existing on the hanging walls (56d) and (57d) are opened at the lower end surfaces of the hanging walls (56d) and (57d).

第1部材(50)の連結壁(58)に、左右方向に長い複数の排水用貫通穴(64)が左右方向に間隔をおいて形成されている。また、第1部材(50)の連結壁(58)に、複数の固定用貫通穴(65)が、排水用貫通穴(64)からずれた位置に来るように左右方向に間隔をおいて形成されている。   In the connecting wall (58) of the first member (50), a plurality of drainage through holes (64) elongated in the left-right direction are formed at intervals in the left-right direction. In addition, a plurality of fixing through holes (65) are formed in the connecting wall (58) of the first member (50) at intervals in the left-right direction so as to be shifted from the drain through holes (64). Has been.

第2部材(51)は、冷媒流入ヘッダ(9)の下部を形成する第1ヘッダ形成部(66)と、冷媒流出ヘッダ(11)の下部を形成する第2ヘッダ形成部(67)と、両ヘッダ形成部(66)(67)を連結しかつ第1部材(50)の連結壁(58)にろう付されて連結部(10)を形成する連結壁(68)とよりなる。第1ヘッダ形成部(66)は、垂直状の前後両壁(66a)と、前後両壁(66a)の下端どうしを一体に連結する下方に突出した横断面略円弧状底壁(66b)とよりなる。第2ヘッダ形成部(67)は、垂直状の前後両壁(67a)と、前後両壁(67a)の下端どうしを一体に連結する下方に突出した横断面略円弧状底壁(67b)と、前後両壁(67a)の上端部どうしを一体に連結する水平な分流制御壁(67c)とよりなる。第1ヘッダ形成部(66)の後壁(66a)の上端部と第2ヘッダ形成部(67)の前壁(67a)の上端部とが連結壁(68)により一体に連結されている。第1ヘッダ形成部(66)の前壁(66a)外面および第2ヘッダ形成部(67)の後壁(67a)外面は、それぞれ第1部材(50)の第1ヘッダ形成部(56)の垂下壁(56d)外面および第2ヘッダ形成部(57)の垂下壁(57d)外面よりも前後方向内側に位置しており、これにより第1部材(50)の垂下壁(56d)(57d)と第2部材(51)の前後壁(66a)(67a)との接合部に段差部(69)が設けられるとともに、垂下壁(56d)(57d)外面が段差部(69)を介して前壁(66a)および後壁(67a)の外面に対して前後方向外側に位置し、排水溝(63)の下端全体が段差部(69)に開口している(図4参照)。また、第1ヘッダ形成部(66)の前壁(66a)の上縁部外面および第2ヘッダ形成部(67)の後壁(67a)の上縁部外面は、排水溝(63)における垂下壁(56d)(57d)に存在する部分の底面と面一となっている。そして、第1ヘッダ形成部(66)の前壁(66a)外面が冷媒流入ヘッダ(9)の前側面の下側部分を形成し、第2ヘッダ形成部(67)の後壁(67a)外面が冷媒流出ヘッダ(11)の後側面の下側部分を形成している。   The second member (51) includes a first header forming part (66) that forms the lower part of the refrigerant inflow header (9), a second header forming part (67) that forms the lower part of the refrigerant outflow header (11), The header forming portions 66 and 67 are connected to each other and are connected to the connecting wall 58 of the first member 50 to be connected to the connecting wall 68 to form the connecting portion 10. The first header forming portion (66) includes a vertical front and rear walls (66a), a bottom wall (66b) having a substantially arcuate cross section projecting downward and integrally connecting lower ends of the front and rear walls (66a). It becomes more. The second header forming portion (67) includes a vertical front and rear walls (67a) and a bottom wall (67b) having a substantially arcuate cross section projecting downward to integrally connect lower ends of the front and rear walls (67a). And a horizontal diversion control wall (67c) for integrally connecting the upper ends of the front and rear walls (67a). The upper end portion of the rear wall (66a) of the first header forming portion (66) and the upper end portion of the front wall (67a) of the second header forming portion (67) are integrally connected by a connecting wall (68). The outer surface of the front wall (66a) of the first header forming part (66) and the outer surface of the rear wall (67a) of the second header forming part (67) are respectively formed on the first header forming part (56) of the first member (50). The outer surface of the hanging wall (56d) and the hanging wall (57d) outer surface of the second header forming portion (57) are located on the inner side in the front-rear direction, whereby the hanging wall (56d) (57d) of the first member (50) And the front and rear walls (66a) and (67a) of the second member (51) are provided with a stepped portion (69), and the outer surfaces of the hanging walls (56d) and (57d) through the stepped portion (69) It is located on the outside in the front-rear direction with respect to the outer surfaces of the wall (66a) and the rear wall (67a), and the entire lower end of the drainage groove (63) opens into the step portion (69) (see FIG. 4). The outer surface of the upper edge of the front wall (66a) of the first header forming portion (66) and the outer surface of the upper edge of the rear wall (67a) of the second header forming portion (67) are suspended in the drainage groove (63). It is flush with the bottom surface of the portion existing on the walls (56d) and (57d). The outer surface of the front wall (66a) of the first header forming portion (66) forms the lower portion of the front side surface of the refrigerant inflow header (9), and the outer surface of the rear wall (67a) of the second header forming portion (67). Forms the lower part of the rear side of the refrigerant outflow header (11).

第2部材(51)の第2ヘッダ形成部(67)の分流制御壁(67c)における前後方向の中心部よりも後側の部分には、複数の円形冷媒通過穴(71)が左右方向に間隔をおいて貫通状に形成されている。隣り合う円形冷媒通過穴(71)間の間隔は、左端部から遠ざかるにつれて徐々に大きくなっている。なお、隣り合う円形冷媒通過穴(71)間の間隔は、すべて等しくなっていてもよい。第2部材(51)の連結壁(68)における第1部材(50)の排水用貫通穴(64)と合致した位置にそれぞれ左右方向に長い排水用貫通穴(72)が形成され、同じく第1部材(50)の固定用貫通穴(65)と合致した位置にそれぞれ固定用貫通穴(73)が形成されている。   A plurality of circular coolant passage holes (71) are formed in the left-right direction at the rear side of the center part in the front-rear direction of the flow dividing control wall (67c) of the second header forming portion (67) of the second member (51). It is formed in a penetrating manner with an interval. The interval between adjacent circular refrigerant passage holes (71) gradually increases as the distance from the left end portion increases. The intervals between adjacent circular coolant passage holes (71) may all be equal. In the connecting wall (68) of the second member (51), drainage through holes (72) that are long in the left-right direction are formed at positions corresponding to the drainage through holes (64) of the first member (50). A fixing through hole (73) is formed at a position corresponding to the fixing through hole (65) of one member (50).

排水補助プレート(54)における第1および第2部材(50)(51)の排水用貫通穴(64)(72)と対応する部分に、その上縁から切り欠き(74)が形成されている。切り欠き(74)の開放部の左右方向の幅は排水用貫通穴(64)(72)の左右方向の長さと等しくなっている。排水補助プレート(54)の前後両面に、それぞれ切り欠き(74)の下端部に連なるように上下方向に伸びかつ下端部が排水補助プレート(54)の下端面に開口した排水補助溝(75)が形成されている。また、排水補助プレート(54)の上縁における第1および第2部材(50)(51)の固定用貫通穴(65)(73)と合致した位置に、上方に突出しかつ両固定用貫通穴(65)(73)に挿通される突起(76)が形成されている。   A notch (74) is formed from the upper edge of the drainage auxiliary plate (54) at the portion corresponding to the drainage through holes (64) and (72) of the first and second members (50) and (51). . The width in the left-right direction of the opening of the notch (74) is equal to the length in the left-right direction of the drainage through holes (64) (72). A drainage auxiliary groove (75) extending in the vertical direction on both front and rear surfaces of the drainage auxiliary plate (54) so as to be connected to the lower end of the notch (74) and having a lower end opened to the lower end surface of the drainage auxiliary plate (54) Is formed. Further, at the upper edge of the drainage auxiliary plate (54), the first and second members (50), (51) are protruded upward at positions matching the fixing through holes (65), (73), and both fixing through holes are provided. (65) A projection (76) is formed which is inserted through (73).

各キャップ(52)(53)はプレート状であり、両面にろう材層を有するアルミニウムブレージングシートにプレス加工を施すことにより形成されたものである。右側キャップ(52)の前側には、冷媒流入ヘッダ(9)内に嵌め入れられる左方突出部(77)が一体に形成され、同じく後側には、冷媒流出ヘッダ(11)の分流制御壁(67c)よりも上側の空間(11A)内に嵌め入れられる上側左方突出部(78)と、分流制御壁(67c)よりも下側の空間(11B)内に嵌め入れられる下側左方突出部(79)とが上下に間隔をおいて一体に形成されている。また、右側キャップ(52)の前後両側縁と下縁との間の円弧状部および上縁の前後両端寄りの部分に、それぞれ左方に突出した係合爪(81)が形成され、さらに上下両縁の前後方向中央部に、それぞれ右方に突出した係合爪(82)が形成されている。右側キャップ(52)の前側の左方突出部(77)の底壁および後側の下側左方突出部(79)の底壁に、それぞれ貫通穴(83)(84)が形成されている。前側の貫通穴(83)が冷媒流入ヘッダ(9)内を外部に通じさせ、後側の貫通穴(84)が冷媒流出ヘッダ(11)の分流制御壁(67c)よりも下側の空間(11B)内を外部に通じさせる。   Each cap (52) (53) has a plate shape and is formed by pressing an aluminum brazing sheet having a brazing filler metal layer on both sides. On the front side of the right cap (52), a left projecting portion (77) fitted into the refrigerant inflow header (9) is integrally formed, and on the rear side, the flow dividing control wall of the refrigerant outflow header (11) is formed. (67c) Upper left protrusion (78) fitted into the space (11A) above and (67c) lower left side fitted into the space (11B) below the flow dividing control wall (67c) The protruding portion (79) is integrally formed with a vertical interval. In addition, an engagement claw (81) protruding leftward is formed on the arc-shaped portion between the front and rear side edges and the lower edge of the right cap (52) and the portion near the front and rear ends of the upper edge. Engaging claws (82) projecting to the right are formed at the center in the front-rear direction of both edges. Through holes (83) and (84) are formed in the bottom wall of the front left protrusion (77) on the front side of the right cap (52) and the bottom wall of the lower left protrusion (79) on the rear side, respectively. . The front through hole (83) communicates the inside of the refrigerant inflow header (9) to the outside, and the rear through hole (84) is a space below the flow dividing control wall (67c) of the refrigerant outflow header (11) ( 11B) Let the inside communicate with the outside.

左側キャップ(53)の前側には、冷媒流入ヘッダ(9)内に嵌め入れられる右方突出部(85)が一体に形成され、同じく後側には、冷媒流出ヘッダ(11)の分流制御壁(67c)よりも上側の空間(11A)内に嵌め入れられる上側右方突出部(86)と、分流制御壁(67c)よりも下側の空間(11B)内に嵌め入れられる下側右方突出部(87)とが上下に間隔をおいて一体に形成されている。また、左側キャップ(53)の前後両側縁と下縁との間の円弧状部および上縁の前後両端寄りの部分に、それぞれ右方に突出した係合爪(88)が一体に形成されている。右方突出部(85)および下側右方突出部(87)の底壁には貫通穴は形成されていない。   On the front side of the left cap (53), a right protruding portion (85) fitted into the refrigerant inflow header (9) is integrally formed, and on the rear side, the flow dividing control wall of the refrigerant outflow header (11) is formed. Upper right protrusion (86) that fits in space (11A) above (67c), and lower right that fits in space (11B) below shunt control wall (67c) The projecting portion (87) is integrally formed with a vertical spacing. In addition, an engaging claw (88) projecting to the right is formed integrally with the arc-shaped portion between the front and rear side edges and the lower edge of the left cap (53) and the upper edge near the front and rear ends. Yes. No through hole is formed in the bottom wall of the right protrusion (85) and the lower right protrusion (87).

連通部材(55)はアルミニウムベア材にプレス加工を施すことにより形成されたものであり、右方から見て右側キャップ(52)と同形同大のプレート状であって、その周縁部が右側キャップ(52)の外面にろう付されている。連通部材(55)には、右側キャップ(52)の2つの貫通穴(83)(84)を通じさせるように外方膨出部(89)が形成されている。外方膨出部(89)の内部が、右側キャップ(52)の両貫通穴(83)(84)を通じさせる連通路(91)となっている。また、連通部材(55)の上下両縁における前後方向の中央部には、右側キャップ(52)の係合爪(82)が嵌る切り欠き(92)が形成されている。   The communicating member (55) is formed by pressing an aluminum bare material, and has a plate shape that is the same shape and size as the right cap (52) when viewed from the right. The outer surface of the cap (52) is brazed. The communication member (55) is formed with an outward bulging portion (89) so as to be passed through the two through holes (83) and (84) of the right cap (52). The inside of the outward bulging portion (89) serves as a communication path (91) that allows both through holes (83) and (84) of the right cap (52) to pass therethrough. Further, a notch (92) into which the engaging claw (82) of the right cap (52) is fitted is formed in the center part in the front-rear direction on both upper and lower edges of the communication member (55).

冷媒ターン用タンク(3)の第1および第2部材(50)(51)と、排水補助プレート(54)と、両キャップ(52)(53)と、連通部材(55)とは次のようにしてろう付されている。すなわち、第1部材(50)と第2部材(51)とは、連結壁(58)(68)どうしが排水用貫通穴(64)(72)および固定用貫通穴(65)(73)が合致するように合わせられるとともに、両ヘッダ形成部(56)(57)の垂下壁(56d)(57d)下端と第1ヘッダ形成部(66)の前壁(66a)および第2ヘッダ形成部(67)の後壁(67a)上端とが係合させられ、排水補助プレート(54)の突起(76)が両部材(50)(51)の固定用貫通穴(65)(73)に挿通させられてかしめられることにより両部材(56)(57)が仮止めされた状態で、第1部材(50)のろう材層を利用して相互にろう付されている。排水補助プレート(54)は、第1部材(50)のろう材層を利用して両部材(50)(51)の連結壁(58)(68)にろう付されている。両キャップ(52)(53)は、前側の突出部(77)(85)が両部材(50)(51)の第1ヘッダ形成部(56)(66)により形成される空間内に、後側の上突出部(78)(86)が両部材(50)(51)の第2ヘッダ形成部(57)(67)により形成される空間における分流制御壁(67c)よりも上側の部分内に、後側の下突出部(79)(87)が両部材(50)(51)の第2ヘッダ形成部(57)(67)により形成される空間における分流制御壁(67c)よりも下側の部分内にそれぞれ嵌め入れられ、上側の係合爪(81)(88)が第1部材(50)に係合させられ、下側の係合爪(81)(88)が第2部材(51)に係合させられた状態で、各キャップ(52)(53)のろう材層を利用して第1および第2部材(50)(51)にろう付されている。連通部材(55)は、右側キャップ(52)の係合爪(82)が切り欠き(92)内に嵌るように連通部材(55)に係合させられた状態で、右側キャップ(52)のろう材層を利用して右側キャップ(52)にろう付されている。   The first and second members (50) and (51) of the refrigerant turn tank (3), the drainage auxiliary plate (54), the caps (52) and (53), and the communication member (55) are as follows. It is brazed. That is, the first member (50) and the second member (51) have a connecting through hole (64) (72) between the connecting walls (58) and (68) and a fixing through hole (65) (73). The two header forming portions (56) and (57) have a suspended wall (56d) (57d) lower end, the front wall (66a) of the first header forming portion (66) and the second header forming portion ( 67) The upper end of the rear wall (67a) is engaged, and the protrusion (76) of the drainage auxiliary plate (54) is inserted into the fixing through holes (65) (73) of both members (50) (51). The two members (56) and (57) are temporarily fastened by being caulked, and are brazed to each other using the brazing material layer of the first member (50). The drainage auxiliary plate (54) is brazed to the connecting walls (58) and (68) of both members (50) and (51) using the brazing material layer of the first member (50). Both caps (52) and (53) have rear protrusions (77) and (85) in the space formed by the first header forming portions (56) and (66) of both members (50) and (51). On the upper side of the flow dividing control wall (67c) in the space formed by the second header forming portions (57) and (67) of the two members (50) and (51). In addition, the rear lower protrusions (79) and (87) are lower than the flow dividing control wall (67c) in the space formed by the second header forming portions (57) and (67) of both members (50) and (51). The upper engaging claws (81) and (88) are engaged with the first member (50), and the lower engaging claws (81) and (88) are engaged with the second member. In the state of being engaged with (51), the first and second members (50) (51) are brazed using the brazing material layer of each cap (52) (53). The communicating member (55) is engaged with the communicating member (55) so that the engaging claw (82) of the right cap (52) is fitted into the notch (92). The right cap (52) is brazed using a brazing material layer.

こうして、冷媒ターン用タンク(3)が形成されており、両部材(50)(51)の第1ヘッダ形成部(56)(66)により冷媒流入ヘッダ(9)が形成され、同じく第2ヘッダ形成部(57)(67)により冷媒流出ヘッダ(11)が形成されている。冷媒流出ヘッダ(11)は分流制御壁(67c)により上下2つの空間(11A)(11B)に区画されており、これらの空間(11A)(11B)は円形冷媒通過穴(71)により連通させられている。右側キャップ(52)の後側貫通穴(84)は冷媒流出ヘッダ(11)の下部空間(11B)に通じている。そして、冷媒流入ヘッダ(9)内と冷媒流出ヘッダ(11)の下部空間(11B)内とが、右側キャップ(52)の貫通穴(83)(84)および連通部材(55)の外方膨出部(89)内の連通路(91)を介して連通させられている。また、両部材(50)(51)の連結壁(58)(68)により連結部(10)が形成され、冷媒流入ヘッダ(9)の第1の低位部(9b)と冷媒流出ヘッダ(11)の第1の低位部(11b)と連結部(10)とにより排水樋(20)が形成されている。   Thus, the refrigerant turn tank (3) is formed, and the refrigerant inflow header (9) is formed by the first header forming portions (56) and (66) of both members (50) and (51), and the second header is also formed. A refrigerant outflow header (11) is formed by the forming portions (57) and (67). The refrigerant outflow header (11) is divided into two upper and lower spaces (11A) and (11B) by a flow dividing control wall (67c), and these spaces (11A) and (11B) are communicated by a circular refrigerant passage hole (71). It has been. The rear through hole (84) of the right cap (52) communicates with the lower space (11B) of the refrigerant outflow header (11). The refrigerant inflow header (9) and the lower space (11B) of the refrigerant outflow header (11) are expanded outwardly of the through holes (83) and (84) of the right cap (52) and the communication member (55). It is connected via the communication path (91) in the exit part (89). Further, a connecting portion (10) is formed by the connecting walls (58) and (68) of both members (50) and (51), and the first low-order portion (9b) of the refrigerant inflow header (9) and the refrigerant outflow header (11 The drainage basin (20) is formed by the first low-order part (11b) and the connecting part (10).

熱交換管(12)はアルミニウム押出形材で形成されたベア材からなり、前後方向に幅広の偏平状で、その内部に長さ方向に伸びる複数の冷媒通路(12a)が並列状に形成されている。熱交換管(12)の前後両端壁の外面の水平断面形状は、中央部が外方に突出した円弧状となっている(図8参照)。なお、以下の説明において、「円弧状」という用語は、厳密な意味での円の一部に限定されるものではなく、たとえばだ円の一部も含むものとする。前側の熱交換管(12)と後側の熱交換管(12)とは、左右方向の同一位置に来るように配置されており、熱交換管(12)の上端部は冷媒入出用タンク(2)の第1部材(16)の管挿通穴(23)に挿通されて第1部材(16)のろう材層を利用して第1部材(16)にろう付され、同じく下端部は冷媒ターン用タンク(3)の第1部材(50)の管挿通穴(59)に挿通されて第1部材(50)のろう材層を利用して第1部材(50)にろう付されている。そして、前側の熱交換管(12)が冷媒入口ヘッダ(5)および冷媒流入ヘッダ(9)に連通し、後側の熱交換管(12)が冷媒出口ヘッダ(6)および冷媒流出ヘッダ(11)に連通している。   The heat exchange pipe (12) is made of a bare material formed of an aluminum extruded profile, and has a wide and flat shape in the front-rear direction, and a plurality of refrigerant passages (12a) extending in the length direction are formed in parallel inside the heat exchange pipe (12). ing. The horizontal cross-sectional shape of the outer surfaces of the front and rear end walls of the heat exchange pipe (12) is an arc shape with the center portion protruding outward (see FIG. 8). In the following description, the term “arc-shaped” is not limited to a part of a circle in a strict sense, and includes, for example, a part of an ellipse. The front heat exchange pipe (12) and the rear heat exchange pipe (12) are arranged at the same position in the left-right direction, and the upper end portion of the heat exchange pipe (12) is a refrigerant inlet / outlet tank ( 2) The first member (16) is inserted into the tube insertion hole (23) and brazed to the first member (16) using the brazing material layer of the first member (16). The turn tank (3) is inserted into the tube insertion hole (59) of the first member (50) and brazed to the first member (50) using the brazing material layer of the first member (50). . The front heat exchange pipe (12) communicates with the refrigerant inlet header (5) and the refrigerant inflow header (9), and the rear heat exchange pipe (12) communicates with the refrigerant outlet header (6) and the refrigerant outflow header (11). ).

ここで、熱交換管(12)の左右方向の厚みである管高さ(h)は0.75〜1.5mm(図7参照)、前後方向の幅である管幅は12〜18mm、周壁の肉厚は0.175〜0.275mm、冷媒通路(12a)どうしを仕切る仕切壁の厚さは0.175〜0.275mm、仕切壁のピッチは0.5〜3.0mm、前後両端壁の外面の曲率半径は0.35〜0.75mmであることが好ましい。   Here, the tube height (h) which is the thickness in the left-right direction of the heat exchange tube (12) is 0.75 to 1.5 mm (see FIG. 7), the tube width which is the width in the front-rear direction is 12 to 18 mm, and the peripheral wall The wall thickness of the partition wall is 0.175 to 0.275 mm, the thickness of the partition wall partitioning the refrigerant passages (12a) is 0.175 to 0.275 mm, the pitch of the partition wall is 0.5 to 3.0 mm, both front and rear walls The curvature radius of the outer surface is preferably 0.35 to 0.75 mm.

なお、熱交換管(12)としては、アルミニウム押出形材製のものに代えて、アルミニウム製電縫管の内部にインナーフィンを挿入することにより複数の冷媒通路を形成したものを用いてもよい。また、両面にろう材層を有するアルミニウムブレージングシートに圧延加工を施すことにより形成され、かつ連結部を介して連なった2つの平坦壁形成部と、各平坦壁形成部における連結部とは反対側の側縁より隆起状に一体成形された側壁形成部と、平坦壁形成部の幅方向に所定間隔をおいて両平坦壁形成部よりそれぞれ隆起状に一体成形された複数の仕切壁形成部とを備えた板を、連結部においてヘアピン状に曲げて側壁形成部どうしを突き合わせて相互にろう付し、仕切壁形成部により仕切壁を形成したものを用いてもよい。   As the heat exchange pipe (12), instead of one made of an aluminum extruded shape, a pipe in which a plurality of refrigerant passages are formed by inserting inner fins into an aluminum electric sewing pipe may be used. . Also, two flat wall forming parts formed by rolling an aluminum brazing sheet having a brazing filler metal layer on both sides and connected via connecting parts, and the opposite side of the connecting part in each flat wall forming part A side wall forming portion integrally formed in a protruding shape from the side edges of the flat wall forming portion, and a plurality of partition wall forming portions integrally formed in a protruding shape from the two flat wall forming portions at a predetermined interval in the width direction of the flat wall forming portion. It is also possible to use a plate having a partition wall formed by bending a plate with a hairpin shape at the connecting portion, butting the side wall forming portions with each other and brazing each other.

コルゲートフィン(14)は両面にろう材層を有するアルミニウムブレージングシートを用いて波状に形成されたものであり、波頂部(14a)、波底部(14b)および波頂部(14a)と波底部(14b)とを連結する平坦な水平状連結部(14c)よりなり(図7参照)、連結部(14c)に複数のルーバが前後方向に並んで形成されている。コルゲートフィン(14)は、前後両熱交換管(12)に共有されており、その前後方向の幅は前側熱交換管(12)の前側縁と後側熱交換管(12)の後側縁との間隔をほぼ等しくなっている。そして、コルゲートフィン(14)の波頂部(14a)および波底部(14b)は、前後の熱交換管(12)にろう付されている。   The corrugated fin (14) is formed in a corrugated shape using an aluminum brazing sheet having a brazing filler metal layer on both sides, the wave crest (14a), the wave bottom (14b) and the wave crest (14a) and the wave bottom (14b). ) Are connected to each other (see FIG. 7), and a plurality of louvers are formed side by side in the front-rear direction. The corrugated fin (14) is shared by the front and rear heat exchange pipes (12), and the width in the front and rear direction is the front edge of the front heat exchange pipe (12) and the rear edge of the rear heat exchange pipe (12). The interval between and is almost equal. The wave crest (14a) and the wave bottom (14b) of the corrugated fin (14) are brazed to the front and rear heat exchange tubes (12).

ここで、コルゲートフィン(14)のフィン高さ(H)は波頂部(14a)と波底部(14b)との直線距離であり、フィン高さ(H)=7.0mm〜10.0mmであることが好ましい。また、コルゲートフィン(14)のフィンピッチ(Pf)は隣り合う波頂部(14a)および波底部(14b)の上下方向の中央部間の間隔(P)の1/2、すなわち(Pf)=P/2であり、フィンピッチ(Pf)=1.3〜1.8mmであることが好ましい。また、コルゲートフィン(14)の波頂部(14a)および波底部(14b)は、熱交換管(12)に面接触状にろう付された平坦部分と、平坦部分の両側に設けられかつ連結部(14c)に連なったアール状部分とよりなるが、アール状部分の曲率半径(R)は0.7mm以下であることが好ましい(図7参照)。   Here, the fin height (H) of the corrugated fin (14) is a linear distance between the wave crest (14a) and the wave bottom (14b), and the fin height (H) is 7.0 mm to 10.0 mm. It is preferable. Further, the fin pitch (Pf) of the corrugated fin (14) is 1/2 of the interval (P) between the vertical center portions of the adjacent wave crest (14a) and wave bottom (14b), that is, (Pf) = P / 2, and the fin pitch (Pf) is preferably 1.3 to 1.8 mm. The corrugated fin (14) has a wave crest (14a) and a wave bottom (14b) that are flatly brazed to the heat exchange pipe (12) in a surface contact manner, and provided on both sides of the flat part and connected to each other. The radius of curvature (R) of the rounded portion is preferably 0.7 mm or less (see FIG. 7).

図8および図9に示すように、排水促進部材(30)は中空状であって、前後方向に若干幅広の偏平状となっており、その左右方向の厚みは熱交換管(12)の管高さ(h)である左右方向の厚みと等しくなっている。排水促進部材(30)の前後両面の水平断面形状は、中央部が前後方向外方に突出した円弧状となっている。排水促進部材(30)の前後両側縁と、前後両熱交換管(12)との間には隙間(70)が存在しており、これにより排水路(60)が形成されている。ここで、熱交換管(12)および排水促進部材(30)の左右方向の厚みをh(mm)、上記隙間(70)の最も幅狭部分の前後方向の幅、すなわち左右方向の中央部間の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たしていることが好ましい。w/h>1/4の場合、凝縮水をキャピラリ効果により排水路(60)に引き寄せる効果、および凝縮水をキャピラリ効果により排水路(60)を通って下方に排水する効果が十分ではない場合がある。   As shown in FIGS. 8 and 9, the drainage promotion member (30) is hollow and has a flat shape that is slightly wider in the front-rear direction. The thickness in the left-right direction is the tube of the heat exchange pipe (12). It is equal to the thickness in the left-right direction, which is the height (h). The horizontal cross-sectional shape of both front and rear surfaces of the drainage promotion member (30) is an arc shape with the center portion protruding outward in the front-rear direction. A gap (70) exists between the front and rear side edges of the drainage promotion member (30) and the front and rear heat exchange pipes (12), thereby forming a drainage channel (60). Here, the thickness in the left-right direction of the heat exchange pipe (12) and the drainage promotion member (30) is h (mm), and the width in the front-rear direction of the narrowest part of the gap (70), that is, between the center parts in the left-right direction. When the width of is w (mm), it is preferable that the relationship of 0 <w / h ≦ 1/4 is satisfied. When w / h> ¼, the effect of drawing condensed water to the drainage channel (60) by the capillary effect and the effect of draining the condensed water downward through the drainage channel (60) by the capillary effect are not sufficient There is.

エバポレータ(1)は、冷媒入口管(7)および冷媒出口管(8)を除く各構成部材を組み合わせて仮止めし、すべての構成部材を一括してろう付することにより製造される。   The evaporator (1) is manufactured by temporarily fixing a combination of the constituent members excluding the refrigerant inlet pipe (7) and the refrigerant outlet pipe (8), and brazing all the constituent members together.

エバポレータ(1)は、圧縮機およびコンデンサとともにフロン系冷媒を使用する冷凍サイクルを構成し、カーエアコンとして車両、たとえば自動車に搭載される。   The evaporator (1) constitutes a refrigeration cycle that uses a chlorofluorocarbon refrigerant together with a compressor and a condenser, and is mounted on a vehicle such as an automobile as a car air conditioner.

上述したエバポレータ(1)において、図10に示すように、圧縮機、コンデンサおよび膨張弁を通過した気液混相の2相冷媒が、冷媒入口管(7)からジョイントプレート(21)の冷媒流入口(45)および右側キャップ(19)の冷媒入口(37)を通って冷媒入出用タンク(2)の冷媒入口ヘッダ(5)内に入り、分流して前側のすべての熱交換管(12)の冷媒通路(12a)内に流入する。   In the above-described evaporator (1), as shown in FIG. 10, the gas-liquid mixed phase two-phase refrigerant that has passed through the compressor, the condenser, and the expansion valve flows from the refrigerant inlet pipe (7) to the refrigerant inlet of the joint plate (21). Enters the refrigerant inlet header (5) of the refrigerant inlet / outlet tank (2) through the refrigerant inlet (37) of the right cap (19) and the right cap (19). It flows into the refrigerant passage (12a).

すべての熱交換管(12)の冷媒通路(12a)内に流入した冷媒は、冷媒通路(12a)内を下方に流れて冷媒ターン用タンク(3)の冷媒流入ヘッダ(9)内に入る。冷媒流入ヘッダ(9)内に入った冷媒は右方に流れ、右側キャップ(52)の前側貫通穴(83)、連通部材(55)の外方膨出部(89)内の連通路(91)および右側キャップ(52)の後側貫通穴(84)を通ることにより、流れ方向を変えるようにターンして冷媒流出ヘッダ(11)の下部空間(11B)内に入る。   The refrigerant that has flowed into the refrigerant passages (12a) of all the heat exchange tubes (12) flows downward in the refrigerant passages (12a) and enters the refrigerant inflow header (9) of the refrigerant turn tank (3). The refrigerant that has entered the refrigerant inflow header (9) flows to the right, the front through hole (83) of the right cap (52), and the communication path (91 in the outward bulge portion (89) of the communication member (55). ) And the rear through-hole (84) of the right cap (52), it turns to change the flow direction and enters the lower space (11B) of the refrigerant outflow header (11).

そして、冷媒入口ヘッダ(5)から前側の熱交換管(12)への冷媒の分流が充分に均一化されていないことに起因して、前側の熱交換管(12)を流れる冷媒の温度(冷媒乾き度)の分布に偏りが生じていたとしても、冷媒流入ヘッダ(9)から冷媒流出ヘッダ(11)の下部空間(11B)内にターンして流入する際に冷媒が混合されることになり、その温度は全体に均一になる。   Then, due to the fact that the refrigerant flow from the refrigerant inlet header (5) to the front heat exchange pipe (12) is not sufficiently uniform, the temperature of the refrigerant flowing through the front heat exchange pipe (12) ( Even if there is a bias in the distribution of the refrigerant dryness, the refrigerant is mixed when it turns into the lower space (11B) of the refrigerant outflow header (11) and flows into the lower space (11B) of the refrigerant outflow header (11). The temperature becomes uniform throughout.

冷媒流出ヘッダ(11)の下部空間(11B)内に入った冷媒は左方に流れ、分流制御壁(67c)の円形冷媒通過穴(71)を通って上部空間(11A)内に入り、分流して後側のすべての熱交換管(12)の冷媒通路(12a)内に流入する。   The refrigerant that has entered the lower space (11B) of the refrigerant outflow header (11) flows to the left, enters the upper space (11A) through the circular refrigerant passage hole (71) of the flow dividing control wall (67c), and is divided. And flows into the refrigerant passages (12a) of all the heat exchange tubes (12) on the rear side.

熱交換管(12)の冷媒通路(12)内に流入した冷媒は、流れ方向を変えて冷媒通路(12a)内を上方に流れて冷媒出口ヘッダ(6)の下部空間(6b)内に入り、分流用抵抗板(29)の長円形冷媒通過穴(31A)(31B)を通って上部空間(6a)内に入る。ここで、分流用抵抗板(29)によって冷媒の流れに抵抗が付与されるので、冷媒流出ヘッダ(11)の上部空間(11A)から後側の熱交換管(12)への分流が均一化されるとともに、冷媒入口ヘッダ(5)から前側の熱交換管(12)への分流も一層均一化される。その結果、すべての熱交換管(12)の冷媒流通量が均一化され、熱交換コア部(4)全体の温度分布も均一化される。   The refrigerant flowing into the refrigerant passage (12) of the heat exchange pipe (12) changes the flow direction and flows upward in the refrigerant passage (12a) to enter the lower space (6b) of the refrigerant outlet header (6). Then, it enters the upper space (6a) through the oblong coolant passage holes (31A) and (31B) of the shunt resistor plate (29). Here, resistance is imparted to the refrigerant flow by the shunt resistor plate (29), so that the shunt flow from the upper space (11A) of the refrigerant outflow header (11) to the rear heat exchange pipe (12) is made uniform. In addition, the flow from the refrigerant inlet header (5) to the front heat exchange pipe (12) is further uniformized. As a result, the refrigerant circulation amount of all the heat exchange tubes (12) is made uniform, and the temperature distribution of the entire heat exchange core part (4) is made uniform.

ついで、冷媒出口ヘッダ(6)の上部空間(6a)内に入った冷媒は、右側キャップ(19)の冷媒出口(38)およびジョイントプレート(21)の冷媒流出口(46)を通り、冷媒出口管(8)に流出する。そして、冷媒が前側の熱交換管(12)の冷媒通路(12a)、および後側の熱交換管(12)の冷媒通路(12a)を流れる間に、通風間隙を図1および図10に矢印Xで示す方向に流れる空気と熱交換をし、気相となって流出する。   Next, the refrigerant that has entered the upper space (6a) of the refrigerant outlet header (6) passes through the refrigerant outlet (38) of the right cap (19) and the refrigerant outlet (46) of the joint plate (21), and then the refrigerant outlet. It flows out into the pipe (8). While the refrigerant flows through the refrigerant passage (12a) of the front heat exchange pipe (12) and the refrigerant passage (12a) of the rear heat exchange pipe (12), the ventilation gaps are indicated by arrows in FIGS. It exchanges heat with the air flowing in the direction indicated by X and flows out as a gas phase.

このとき、熱交換管(12)およびコルゲートフィン(14)の表面、特にコルゲートフィン(14)の表面に多くの凝縮水が発生する。発生した凝縮水の大部分は、キャピラリ効果により熱交換管(12)とコルゲートフィン(14)の波頂部(14a)および波底部(14b)との接合部側に流れる。後側の熱交換管(12)とコルゲートフィン(14)との接合部に引き寄せられた凝縮水は、左右方向に隣り合う熱交換管(12)どうしの間の通風間隙を流れる風により前側に流れるとともに、キャピラリ効果により排水促進部材(30)側に引き寄せられ、排水路(60)内に入る。そして、キャピラリ効果により排水路(60)を通って下方に排水される。したがって、排水性が向上し、その結果凝縮水の凍結を抑制することが可能になり、エバポレータの冷却性能の低下を防止することができる。なお、前側の熱交換管(12)とコルゲートフィン(14)との接合部に引き寄せられた凝縮水は、左右方向に隣り合う熱交換管(12)どうしの間の通風間隙を流れる風により前側に流れ、前側熱交換管(12)の前端面に沿って下方に排水される。   At this time, a large amount of condensed water is generated on the surfaces of the heat exchange pipe (12) and the corrugated fin (14), particularly on the surface of the corrugated fin (14). Most of the generated condensed water flows to the junction side between the wave exchange part (14a) and the wave bottom part (14b) of the heat exchange pipe (12) and the corrugated fin (14) by the capillary effect. The condensed water drawn to the joint between the rear heat exchange pipe (12) and the corrugated fin (14) is moved forward by the wind flowing through the ventilation gap between the heat exchange pipes (12) adjacent in the left-right direction. As it flows, it is drawn toward the drainage promotion member (30) by the capillary effect and enters the drainage channel (60). Then, it is drained downward through the drainage channel (60) by the capillary effect. Accordingly, drainage is improved, and as a result, it is possible to suppress freezing of condensed water, and it is possible to prevent a decrease in the cooling performance of the evaporator. The condensed water drawn to the joint between the front heat exchange pipe (12) and the corrugated fin (14) is moved forward by the wind flowing through the ventilation gap between the heat exchange pipes (12) adjacent in the left-right direction. And is drained downward along the front end face of the front heat exchange pipe (12).

排水路(60)を通って下方に排水された凝縮水は、冷媒ターン用タンク(3)の排水樋(20)内に入り、排水樋(20)内にある程度凝縮水が溜まると、排水用貫通穴(64)(72)を通って連結部(10)の下方に流出し、排水補助プレート(54)の切り欠き(74)の周縁部に沿って流れて排水補助溝(75)内に入り、排水補助溝(75)内を下方に流れてその下端開口から冷媒ターン用タンク(3)の下方へ落下する。前側熱交換管(12)の前端面に沿って下方に排水された凝縮水は、排水溝(63)内に入り、排水溝(63)内を流れてその下端開口、すなわち段差部(69)への開口から冷媒ターン用タンク(3)の下方へ落下する。こうして、発生した凝縮水が排水される。   The condensed water drained downward through the drainage channel (60) enters the drainage basin (20) of the refrigerant turn tank (3), and when the condensed water accumulates in the drainage basin (20) to some extent, It flows out through the through holes (64) and (72) to the lower part of the connecting part (10), flows along the peripheral edge of the notch (74) of the drainage auxiliary plate (54), and enters the drainage auxiliary groove (75). Enters, flows downward in the drainage auxiliary groove (75), and falls from the lower end opening to the lower side of the refrigerant turn tank (3). Condensed water drained downward along the front end face of the front heat exchange pipe (12) enters the drainage groove (63) and flows through the drainage groove (63), that is, its lower end opening, that is, the step part (69). Falls from the opening to the bottom of the refrigerant turn tank (3). Thus, the generated condensed water is drained.

以下、エバポレータの排水性を評価するために行った実験例について説明する。   Hereinafter, experimental examples performed to evaluate the drainage of the evaporator will be described.

実験例1
熱交換管(12)、排水促進部材(30)およびコルゲートフィン(14)が、上記実施形態の構成で、かつ冷媒入出用タンク(2)および冷媒ターン用タンク(3)が取り付けられていない試験体を用意した。熱交換管(12)および排水促進部材(30)の左右方向の厚みhは1.4mm、熱交換管(12)と排水促進部材(30)との隙間(70)の前後方向の幅wは0.25mm、排水促進部材(30)の前後方向の幅は3.5mm、コルゲートフィン(14)のフィン高さ(H)は8mm、フィンピッチ(P)は1.5mmである。そして、熱交換管(12)および排水促進部材(30)の両端開口を密閉した。ついで、この試験体を水槽内の水に浸し、熱交換管(12)どうしの間やコルゲートフィン(14)の間に残存していた空気を除去した後30分間放置した。ついで、試験体を垂直状態で吊り上げて水から出し、この状態で試験体の重量を1800秒間測定することにより、排水性を評価した。
Experimental example 1
A test in which the heat exchange pipe (12), the drainage promotion member (30), and the corrugated fin (14) have the configuration of the above embodiment, and the refrigerant inlet / outlet tank (2) and the refrigerant turn tank (3) are not attached. Prepared the body. The thickness h in the left-right direction of the heat exchange pipe (12) and the drainage promotion member (30) is 1.4 mm, and the width w in the front-rear direction of the gap (70) between the heat exchange pipe (12) and the drainage promotion member (30) is The width in the front-rear direction of the drainage promotion member (30) is 3.5 mm, the fin height (H) of the corrugated fin (14) is 8 mm, and the fin pitch (P) is 1.5 mm. Then, both end openings of the heat exchange pipe (12) and the drainage promotion member (30) were sealed. Next, the test specimen was immersed in water in a water tank, and air remaining between the heat exchange tubes (12) and between the corrugated fins (14) was removed and left for 30 minutes. Next, the test specimen was lifted in a vertical state and taken out of the water, and the weight of the test specimen was measured in this state for 1800 seconds to evaluate drainage.

比較実験例1
前後の熱交換管(12)どうしの間に排水促進部材が配置されていないことを除いては、実験例1と同じ構成の試験体を用意し、実験例1と同様にして、排水性を評価した。
Comparative Experiment Example 1
Except that the drainage promotion member is not arranged between the front and rear heat exchange pipes (12), prepare a test body having the same configuration as in Experimental Example 1, and in the same manner as in Experimental Example 1, evaluated.

実験例1および比較実験例1の結果を図11に示す。なお、図11において、保水重量は、エバポレータを垂直状態で吊り上げて水から出した直後を100%とした場合の比率を表す。保水重量が小さくなるということは、排水された水の量が多くなるということであり、排水性が向上していることになる。   The results of Experimental Example 1 and Comparative Experimental Example 1 are shown in FIG. In addition, in FIG. 11, water retention weight represents the ratio when the evaporator is lifted in a vertical state and taken immediately after being taken out of water to 100%. The fact that the water retention weight is reduced means that the amount of drained water is increased, and the drainage performance is improved.

実施形態2
この実施形態は図12に示すものである。
Embodiment 2
This embodiment is shown in FIG.

実施形態2の場合、前後両熱交換管(12)の前後方向内側の端壁外面と排水促進部材(30)の前後両面とが接触している。そして、前後両熱交換管(12)と排水促進部材(30)との間に、熱交換管(12)の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所(90)が形成され、この凹所(90)が排水路(80)となっている。ここで、排水路(80)の断面積(図12にクロスハッチングを付した部分)をS(mm)、熱交換管(12)および排水促進部材(30)の左右方向の厚みをh(mm)とした場合、0.05≦S/h≦1.5の関係を満たしていることが好ましい。S/hが上記範囲外の場合、凝縮水をキャピラリ効果により排水路(80)に引き寄せる効果、および凝縮水をキャピラリ効果により排水路(80)を通って下方に排水する効果が十分ではない場合がある。 In the case of Embodiment 2, the outer surface of the end wall on the inner side in the front-rear direction of both the front and rear heat exchange tubes (12) and the front and rear surfaces of the drainage promotion member (30) are in contact. And, between the front and rear heat exchange pipe (12) and the drainage promotion member (30), a recess (indented inward in the left-right direction and extended in the vertical direction from the extended surfaces of the left and right side surfaces of the heat exchange pipe (12) ( 90) is formed, and this recess (90) is a drainage channel (80). Here, the cross-sectional area of the drainage channel (80) (the portion hatched in FIG. 12) is S (mm 2 ), and the thickness of the heat exchange pipe (12) and the drainage promotion member (30) in the horizontal direction is h ( mm), it is preferable that the relationship of 0.05 ≦ S / h ≦ 1.5 is satisfied. When S / h is outside the above range, the effect of attracting condensed water to the drainage channel (80) by the capillary effect and the effect of draining the condensed water downward through the drainage channel (80) by the capillary effect are not sufficient. There is.

その他の構成は実施形態1と同じである。   Other configurations are the same as those of the first embodiment.

上記2つの実施形態においては、この発明によるエバポレータが、フロン系冷媒を使用するカーエアコンのエバポレータに適用されているが、これに限定されるものではなく、圧縮機、ガスクーラ、中間熱交換器、膨張弁およびエバポレータを有しかつCO冷媒のような超臨界冷媒を使用するカーエアコンを備えた車両、たとえば自動車において、カーエアコンのエバポレータに適用されることがある。 In the above-described two embodiments, the evaporator according to the present invention is applied to an evaporator of a car air conditioner that uses a chlorofluorocarbon refrigerant, but is not limited thereto, and includes a compressor, a gas cooler, an intermediate heat exchanger, In a vehicle having a car air conditioner having an expansion valve and an evaporator and using a supercritical refrigerant such as a CO 2 refrigerant, for example, an automobile, it may be applied to an evaporator of a car air conditioner.

以下、熱交換管と排水促進部材の変形例について説明する。   Hereinafter, modifications of the heat exchange pipe and the drainage promotion member will be described.

図13は、実施形態1の場合と同様に、熱交換管と排水促進部材との間に隙間(70)が存在し、この隙間(70)が排水路(60)となっている場合の変形例である。なお、この変形例の説明において、実施形態1と同じものには同じ符号を付して説明を省略する。   As in the case of the first embodiment, FIG. 13 shows a modification in the case where a gap (70) exists between the heat exchange pipe and the drainage promotion member, and this gap (70) is a drainage channel (60). It is an example. In the description of this modification, the same components as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図13(a)に示す変形例の場合、排水促進部材(30A)の前後両面は、熱交換管(12)の左右両側面と直角をなす平坦面となっている。   In the modification shown in FIG. 13 (a), the front and rear surfaces of the drainage promotion member (30A) are flat surfaces that are perpendicular to the left and right surfaces of the heat exchange tube (12).

図13(b)に示す変形例の場合、前側熱交換管(12A)の後端壁の外面および後側熱交換管(12A)の前端壁の外面は、それぞれ熱交換管(12A)の左右両側面と直角をなす平坦面となっている。   In the modification shown in FIG. 13 (b), the outer surface of the rear end wall of the front heat exchange pipe (12A) and the outer surface of the front end wall of the rear heat exchange pipe (12A) are respectively left and right of the heat exchange pipe (12A). It is a flat surface perpendicular to both sides.

図13(c)に示す変形例の場合、排水促進部材(30B)の前後両面の水平断面形状が、左右方向の中央部が前後方向外方に突出したV形となっている。   In the case of the modification shown in FIG. 13 (c), the horizontal cross-sectional shape of the front and rear surfaces of the drainage promotion member (30B) is a V shape in which the central portion in the left-right direction protrudes outward in the front-rear direction.

図13(d)に示す変形例の場合、前側熱交換管(12B)の後端壁の外面の水平断面形状が、左右方向の中央部が後方に突出したV形となっており、後側熱交換管(12B)の前端壁の外面の水平断面形状が、左右方向の中央部が前方に突出したV形となっている。   In the case of the modification shown in FIG. 13 (d), the horizontal cross-sectional shape of the outer surface of the rear end wall of the front heat exchange pipe (12B) is a V-shape with the central part in the left-right direction protruding rearward. The horizontal cross-sectional shape of the outer surface of the front end wall of the heat exchange pipe (12B) is V-shaped with the center portion in the left-right direction protruding forward.

図13(e)に示す変形例の場合、排水促進部材(30B)は図13(c)に示すものと同じであり、前後の熱交換管(12B)は図13(d)に示すものと同じである。   In the modification shown in FIG. 13 (e), the drainage promotion member (30B) is the same as that shown in FIG. 13 (c), and the front and rear heat exchange tubes (12B) are those shown in FIG. 13 (d). The same.

図13(f)に示す変形例の場合、排水促進部材(30A)は図13(a)に示すものと同じであり、前後の熱交換管(12A)は図13(b)に示すものと同じである。   In the modification shown in FIG. 13 (f), the drainage promotion member (30A) is the same as that shown in FIG. 13 (a), and the front and rear heat exchange tubes (12A) are as shown in FIG. 13 (b). The same.

図13(g)に示す変形例の場合、排水促進部材(30B)は図13(c)に示すものと同じでり、前後の熱交換管(12A)は図13(b)に示すものと同じあでる。   In the modification shown in FIG. 13 (g), the drainage promotion member (30B) is the same as that shown in FIG. 13 (c), and the front and rear heat exchange tubes (12A) are those shown in FIG. 13 (b). It ’s the same.

図13(h)に示す変形例の場合、排水促進部材(30A)は図13(a)に示すものと同じでり、前後の熱交換管(12B)は図13(d)に示すものと同じである。   In the modification shown in FIG. 13 (h), the drainage promotion member (30A) is the same as that shown in FIG. 13 (a), and the front and rear heat exchange tubes (12B) are those shown in FIG. 13 (d). The same.

図13に示す変形例において、すべての排水促進部材(30)(30A)(30B)はアルミニウム製であって中空状である。また、熱交換管(12)(12A)(12B)の左右方向の厚みと排水促進部材(30)(30A)(30B)の左右方向の厚みとは等しくなっている。さらに、実施形態1で述べた条件、すなわち熱交換管(12)(12A)(12B)および排水促進部材(30)(30A)(30B)の左右方向の厚みをh(mm)、上記隙間の最も幅狭部分の前後方向の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たしていることが好ましい。   In the modification shown in FIG. 13, all the drainage promotion members (30) (30A) (30B) are made of aluminum and have a hollow shape. Further, the thickness in the left-right direction of the heat exchange tubes (12), (12A), and (12B) is equal to the thickness in the left-right direction of the drainage promotion members (30), (30A), and (30B). Furthermore, the conditions described in the first embodiment, that is, the thickness in the left-right direction of the heat exchange pipes (12) (12A) (12B) and the drainage promotion members (30) (30A) (30B) are set to h (mm). When the width in the front-rear direction of the narrowest part is w (mm), it is preferable that the relationship 0 <w / h ≦ 1/4 is satisfied.

図14は、実施形態2の場合と同様に、熱交換管と排水促進部材とが接触しており、前後両熱交換管(12)と排水促進部材(30)との間に、熱交換管(12)の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所(90)が形成され、この凹所(90)が排水路(80)となっている場合の変形例である。なお、この変形例の説明において、実施形態2と同じものには同じ符号を付して説明を省略する。   As in the case of the second embodiment, FIG. 14 shows that the heat exchange pipe and the drainage promotion member are in contact with each other, and between the front and rear heat exchange pipes (12) and the drainage promotion member (30), Deformation in the case where a recess (90) that is recessed inward in the left-right direction and extends in the up-down direction from the extended surfaces of the left and right sides of (12) is formed, and this recess (90) is a drainage channel (80) It is an example. In the description of this modification, the same components as those in the second embodiment are denoted by the same reference numerals and the description thereof is omitted.

図14(a)に示す変形例の場合、排水促進部材(30A)の水平断面形状は図13(a)に示すものと同一である。   In the case of the modification shown in FIG. 14 (a), the horizontal cross-sectional shape of the drainage promotion member (30A) is the same as that shown in FIG. 13 (a).

図14(b)に示す変形例の場合、前後の熱交換管(12A)の水平断面形状は図13(b)に示すものと同一である。   In the case of the modification shown in FIG. 14 (b), the horizontal sectional shape of the front and rear heat exchange tubes (12A) is the same as that shown in FIG. 13 (b).

図14(c)に示す変形例の場合、排水促進部材(30B)の水平断面形状は図13(c)に示すものと同一である。   In the modification shown in FIG. 14 (c), the horizontal cross-sectional shape of the drainage promotion member (30B) is the same as that shown in FIG. 13 (c).

図14(d)に示す変形例の場合、前後熱交換管(12B)の水平断面形状は図13(d)に示すものと同一である。   In the case of the modification shown in FIG. 14 (d), the horizontal cross-sectional shape of the front and rear heat exchange tubes (12B) is the same as that shown in FIG. 13 (d).

図14(e)に示す変形例の場合、排水促進部材(30B)および前後の熱交換管(12B)の水平断面形状は図13(e)に示すものと同一である。   In the modification shown in FIG. 14 (e), the horizontal cross-sectional shapes of the drainage promotion member (30B) and the front and rear heat exchange tubes (12B) are the same as those shown in FIG. 13 (e).

図14(f)に示す変形例の場合、排水促進部材(30B)および前後の熱交換管(12A)の水平断面形状は図13(g)に示すものと同一である。   In the modification shown in FIG. 14 (f), the horizontal cross-sectional shapes of the drainage promotion member (30B) and the front and rear heat exchange pipes (12A) are the same as those shown in FIG. 13 (g).

図14(g)に示す変形例の場合、排水促進部材(30A)および前後の熱交換管(12B)の水平断面形状は図13(h)に示すものと同一である。   In the modification shown in FIG. 14 (g), the horizontal cross-sectional shapes of the drainage promotion member (30A) and the front and rear heat exchange tubes (12B) are the same as those shown in FIG. 13 (h).

図14に示す変形例において、すべての排水促進部材(30)(30A)(30B)はアルミニウム製であって中空状である。また、熱交換管(12)(12A)(12B)の左右方向の厚みと排水促進部材(30)(30A)(30B)の左右方向の厚みとは等しくなっている。さらに、実施形態2で述べた条件、すなわち排水路断面積をS(mm)、熱交換管(12)および排水促進部材820)の左右方向の厚みをh(mm)とした場合、0.05≦S/h≦1.5の関係を満たしていることが好ましい。 In the modification shown in FIG. 14, all the drainage promotion members (30) (30A) (30B) are made of aluminum and have a hollow shape. Further, the thickness in the left-right direction of the heat exchange tubes (12), (12A), and (12B) is equal to the thickness in the left-right direction of the drainage promotion members (30), (30A), and (30B). Further, when the conditions described in the second embodiment, that is, the cross-sectional area of the drainage channel is S (mm 2 ) and the thickness in the left-right direction of the heat exchange pipe (12) and the drainage promotion member 820) is h (mm), 0. It is preferable that the relationship of 05 ≦ S / h ≦ 1.5 is satisfied.

実施形態1および2、ならびに図13〜図14に示す変形例において、排水促進部材は中空状となっているが、これに限定されるものではなく、中実であってもよい。   In the first and second embodiments and the modifications shown in FIGS. 13 to 14, the drainage promotion member is hollow, but is not limited to this and may be solid.

排水促進部材が中実の場合、その左右両側面のうち少なくともいずれか一面に、上下方向に伸びる排水溝が形成されていてもよい。その具体例を、図15を参照して、説明する。   When the drainage promotion member is solid, drainage grooves extending in the vertical direction may be formed on at least one of the left and right side surfaces. A specific example will be described with reference to FIG.

図15(a)の排水促進部材(300)の左右両側面には、それぞれ角溝からなる排水溝(400)が形成されている。   Drainage grooves (400) each consisting of a square groove are formed on the left and right sides of the drainage promotion member (300) in FIG. 15 (a).

図15(b)の排水促進部材(300A)の左右両側面には、それぞれV溝からなる排水溝(400A)が形成されている。   Drainage grooves (400A) each formed of a V-groove are formed on both left and right side surfaces of the drainage promotion member (300A) in FIG. 15 (b).

図15(c)の排水促進部材(300B)の左右両側面には、それぞれ円弧溝からなる排水溝(400B)が形成されている。   A drainage groove (400B) made of an arc groove is formed on each of the left and right side surfaces of the drainage promotion member (300B) in FIG. 15 (c).

図15(d)の排水促進部材(300C)の片面には、U溝からなる排水溝(400C)が形成されている。   On one side of the drainage promotion member (300C) in FIG. 15 (d), a drainage groove (400C) formed of a U-groove is formed.

図15(e)の排水促進部材(300D)の片面には、角溝からなる排水溝(400D)が形成されている。   On one side of the drainage promotion member (300D) in FIG. 15 (e), a drainage groove (400D) comprising a square groove is formed.

図15(f)の排水促進部材(300E)の片面には、V溝からなる排水溝(400E)が形成されている。   On one side of the drainage promotion member (300E) in FIG. 15 (f), a drainage groove (400E) composed of a V-groove is formed.

図15(g)の排水促進部材(300F)の片面には、一方の側面が左右両側面と直角をなしている変形V溝からなる排水溝(400F)が形成されている。   On one side of the drainage promotion member (300F) in FIG. 15 (g), a drainage groove (400F) is formed which is formed of a deformed V-groove whose one side surface is perpendicular to the left and right side surfaces.

なお、図15(a)〜(g)においては、排水促進部材の前後両面の水平断面形状が、左右方向の中央部が前後方向外方に突出した円弧状となっているが、これに限定されるものではなく、図13(a)および(c)に示すような形状となっていてもよい。   In FIGS. 15 (a) to 15 (g), the horizontal cross-sectional shape of the front and rear surfaces of the drainage promotion member is an arc shape in which the central portion in the left-right direction protrudes outward in the front-rear direction, but is not limited thereto. Instead, the shape may be as shown in FIGS. 13 (a) and 13 (c).

この発明による実施形態1のエバポレータの全体構成を示す一部切り欠き斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partially cutaway perspective view showing an overall configuration of an evaporator according to Embodiment 1 of the present invention. 図1に示すエバポレータを後方から見た際の中間部を省略した垂直断面図である。It is the vertical sectional view which omitted the middle part at the time of seeing the evaporator shown in Drawing 1 from back. 図1に示すエバポレータの冷媒入出用タンクの部分の分解斜視図である。It is a disassembled perspective view of the refrigerant | coolant inlet / outlet part of the evaporator shown in FIG. 一部を省略した図2のA−A線拡大断面図である。It is the AA line expanded sectional view of Drawing 2 which omitted some. 図1に示すエバポレータの冷媒ターン用タンクの部分の分解斜視図である。It is a disassembled perspective view of the part of the tank for refrigerant | coolant turns of the evaporator shown in FIG. 図2のB−B線拡大断面図である。FIG. 3 is an enlarged sectional view taken along line B-B in FIG. 2. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 図4の一部を省略したC−C線拡大断面図である。FIG. 5 is an enlarged sectional view taken along the line CC in which a part of FIG. 4 is omitted. 図8の部分拡大図である。It is the elements on larger scale of FIG. 図1に示すエバポレータにおける冷媒の流れ方を示す図である。It is a figure which shows how the refrigerant | coolant flows in the evaporator shown in FIG. 実験例1および比較実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1 and Comparative Experimental Example 1. この発明による実施形態2のエバポレータを示す図9相当の図である。It is a figure equivalent to FIG. 9 which shows the evaporator of Embodiment 2 by this invention. 排水促進部材および熱交換管の変形例を示す水平断面図である。It is a horizontal sectional view showing a modification of a drainage promotion member and a heat exchange pipe. 排水促進部材および熱交換管の他の変形例を示す水平断面図である。It is a horizontal sectional view showing other modifications of a drainage promotion member and a heat exchange pipe. 排水促進部材のさらに他の変形例を示す水平断面図である。It is a horizontal sectional view showing other modifications of a drainage promotion member.

符号の説明Explanation of symbols

(1):エバポレータ
(4):熱交換コア部
(5):冷媒入口ヘッダ(第1ヘッダ)
(6):冷媒出口ヘッダ(第2ヘッダ)
(9):冷媒流入ヘッダ(第3ヘッダ)
(11):冷媒流出ヘッダ(第4ヘッダ)
(12)(12A)(12B):熱交換管
(13):熱交換管群
(30)(30A)(30B):排水促進部材
(60):排水路
(70):隙間
(80):排水路
(90):凹所
(300)(300A)(300B)(300C)(300D)(300E)(300F):排水促進部材
(400)(400A)(400B)(400C)(400D)(400E)(400F):排水溝
(1): Evaporator
(4): Heat exchange core
(5): Refrigerant inlet header (first header)
(6): Refrigerant outlet header (second header)
(9): Refrigerant inflow header (third header)
(11): Refrigerant outflow header (4th header)
(12) (12A) (12B): Heat exchange pipe
(13): Heat exchange tube group
(30) (30A) (30B): Drainage promotion member
(60): Drainage channel
(70): Clearance
(80): Drainage channel
(90): Recess
(300) (300A) (300B) (300C) (300D) (300E) (300F): Drainage promotion member
(400) (400A) (400B) (400C) (400D) (400E) (400F): Drain

Claims (24)

前後方向に間隔をおいて配置され、かつ上下方向に伸びる複数の熱交換管を備えたエバポレータであって、
前後に隣り合う熱交換管どうしの間に、上下方向に伸びる排水促進部材が配置され、前後の熱交換管と排水促進部材との間に排水路が形成されているエバポレータ。
An evaporator provided with a plurality of heat exchange tubes arranged at intervals in the front-rear direction and extending in the vertical direction,
An evaporator in which a drainage promotion member extending in the vertical direction is disposed between heat exchange pipes adjacent to each other in the front and rear, and a drainage channel is formed between the front and rear heat exchange pipes and the drainage promotion member.
前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在しており、この隙間が排水路となっている請求項1記載のエバポレータ。 There is a gap between at least one of the two heat exchange pipes adjacent to the front and rear and the drainage promotion member disposed between the two heat exchange pipes, and this gap serves as a drainage channel. The evaporator according to Item 1. 前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材とが接触しており、排水促進部材と、これと接触している熱交換管との間に、熱交換管の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所が形成され、この凹所が排水路となっている請求項1記載のエバポレータ。 At least one of the two heat exchange pipes adjacent to each other in front and back is in contact with the drainage promotion member disposed between the two heat exchange pipes, and the drainage promotion member and the heat exchange pipe in contact therewith 2. The evaporator according to claim 1, wherein a recess that is recessed inward in the left-right direction and extends in the up-down direction is formed from the extended surfaces of the left and right side surfaces of the heat exchange pipe, and the recess serves as a drainage channel. 熱交換管が偏平状であるとともにその幅方向を前後方向に向けて配置されている請求項1〜3のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 3, wherein the heat exchange pipe has a flat shape and is disposed with its width direction directed in the front-rear direction. 排水促進部材の左右両側面のうち少なくともいずれか一方に、上下方向に伸びる排水溝が形成されている請求項1〜4のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 1 to 4, wherein a drainage groove extending in the vertical direction is formed on at least one of the left and right side surfaces of the drainage promotion member. 熱交換管が偏平状であるとともにその幅方向を前後方向に向けて配置され、排水促進部材の左右方向の厚みが、熱交換管の左右方向の厚みと等しくなっている請求項1記載のエバポレータ。 The evaporator according to claim 1, wherein the heat exchange pipe is flat and is arranged with its width direction directed in the front-rear direction, and the thickness in the left-right direction of the drainage promotion member is equal to the thickness in the left-right direction of the heat exchange pipe. . 前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在し、この隙間が排水路となっており、熱交換管および排水促進部材の左右方向の厚みをh(mm)、排水路の前後方向の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たす請求項6記載のエバポレータ。 There is a gap between at least one of the two heat exchange pipes adjacent to the front and rear and the drainage promotion member disposed between the two heat exchange pipes, and this gap serves as a drainage channel. The pipe and the drainage promotion member satisfy the relationship of 0 <w / h ≦ 1/4, where h (mm) is the thickness in the left-right direction and w (mm) is the width in the front-rear direction of the drainage channel. Evaporator. 前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材とが接触しており、排水促進部材と、これと接触している熱交換管との間に、熱交換管の左右両側面の延長面から左右方向内方に凹みかつ上下方向に伸びる凹所が形成され、この凹所が排水路となっており、排水路断面積をS(mm)、熱交換管および排水促進部材の左右方向の厚みをh(mm)とした場合、0.05≦S/h≦1.5の関係を満たす請求項6記載のエバポレータ。 At least one of the two heat exchange pipes adjacent to each other in front and back is in contact with the drainage promotion member disposed between the two heat exchange pipes, and the drainage promotion member and the heat exchange pipe in contact therewith Between the left and right sides of the heat exchange pipe, a recess that is recessed inward in the left-right direction and extending in the up-down direction is formed as a drainage channel. The evaporator according to claim 6, satisfying a relationship of 0.05 ≦ S / h ≦ 1.5, where (mm 2 ), and the thickness in the left-right direction of the heat exchange pipe and the drainage promotion member is h (mm). 前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面の水平断面形状が、それぞれ円弧状となっている請求項6〜8のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 6 to 8, wherein the horizontal cross-sectional shapes of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member are respectively arcuate. 前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状が円弧状であり、同他方が熱交換管の左右両側面と直角をなす平坦面である請求項6〜8のうちのいずれかに記載のエバポレータ。 The horizontal cross-sectional shape of one of the outer wall of the drainage promotion member side of the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member is an arc, and the other is perpendicular to the left and right side surfaces of the heat exchange pipe. The evaporator according to any one of claims 6 to 8, which is a flat surface. 前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状が円弧状であり、同他方の水平断面形状がV形である請求項6〜8のうちのいずれかに記載のエバポレータ。 The horizontal cross-sectional shape of any one of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member is an arc shape, and the other horizontal cross-sectional shape is a V shape. The evaporator in any one of -8. 前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面の水平断面形状が、それぞれV形である請求項6〜8のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 6 to 8, wherein the horizontal cross-sectional shapes of the end wall outer surface on the drainage promotion member side in the front and rear heat exchange pipes and the front and rear surfaces of the drainage promotion member are respectively V-shaped. 前後の熱交換管における排水促進部材側の端壁外面および排水促進部材の前後両面のうちいずれか一方の水平断面形状がV形であり、同他方が熱交換管の左右両側面と直角をなす平坦面である請求項6〜8のうちのいずれかに記載のエバポレータ。 The horizontal cross-sectional shape of one of the outer wall of the drainage promotion member side of the front and rear heat exchange pipes and the front and rear faces of the drainage promotion member is V-shaped, and the other is perpendicular to the left and right side surfaces of the heat exchange pipe. The evaporator according to any one of claims 6 to 8, which is a flat surface. 前後に隣り合う2つの熱交換管のうち少なくともいずれか一方と、両熱交換管間に配置された排水促進部材との間に隙間が存在し、この隙間が排水路となっており、熱交換管および排水促進部材の左右方向の厚みをh(mm)、排水路の前後方向の幅をw(mm)とした場合、0<w/h≦1/4の関係を満たし、排水路に臨む熱交換管の端壁外面および排水路に臨む排水促進部材の外面が、それぞれ熱交換管の左右両側面と直角をなす平坦面である請求項6記載のエバポレータ。 There is a gap between at least one of the two heat exchange pipes adjacent to the front and rear and the drainage promotion member disposed between the two heat exchange pipes, and this gap serves as a drainage channel. When the horizontal thickness of the pipe and the drainage promotion member is h (mm) and the width in the front-rear direction of the drainage channel is w (mm), the relationship 0 <w / h ≦ 1/4 is satisfied and the drainage channel faces the drainage channel. The evaporator according to claim 6, wherein the outer surface of the end wall of the heat exchange pipe and the outer surface of the drainage promotion member facing the drainage path are flat surfaces that are perpendicular to the left and right side faces of the heat exchange pipe. 排水促進部材の左右両側面のうち少なくともいずれか一方に、上下方向に伸びる排水溝が形成されている請求項6〜14のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 6 to 14, wherein a drainage groove extending in a vertical direction is formed on at least one of the left and right side surfaces of the drainage promotion member. 左右方向に間隔をおいて配置された複数の熱交換管からなる熱交換管群が、前後方向に間隔をおいて複数列配置されることにより構成された熱交換コア部と、熱交換管の一端側に配置され、かつ少なくとも1列の熱交換管群の熱交換管が接続された第1ヘッダと、熱交換管の一端側において第1ヘッダの後側に配置され、かつ残りの熱交換管群の熱交換管が接続された第2ヘッダと、熱交換管の他端側に配置され、かつ第1ヘッダに接続されている熱交換管が接続された第3ヘッダと、熱交換管の他端側に配置され、かつ第2ヘッダに接続されている熱交換管群の熱交換管が接続された第4ヘッダとを備えており、前後に隣り合う熱交換管どうしの間に、上下方向に伸びる排水促進部材が配置されている請求項1〜15のうちのいずれかに記載のエバポレータ。 A heat exchange tube group composed of a plurality of heat exchange tubes arranged at intervals in the left-right direction is arranged in a plurality of rows at intervals in the front-rear direction, and A first header arranged on one end side and connected to a heat exchange pipe of at least one row of heat exchange pipe groups; arranged on the rear side of the first header on one end side of the heat exchange pipe; and the remaining heat exchange A second header to which a heat exchange pipe of the tube group is connected; a third header to which the heat exchange pipe connected to the first header is connected to the other end of the heat exchange pipe; and a heat exchange pipe And the fourth header to which the heat exchange pipe of the heat exchange pipe group connected to the second header is connected, and between the heat exchange pipes adjacent to each other, The drainage promotion member extended in the up-down direction is described in any one of Claims 1-15 Evaporator. 第1ヘッダと第2ヘッダとが一体化されている請求項16記載のエバポレータ。 The evaporator according to claim 16, wherein the first header and the second header are integrated. 第1ヘッダと第2ヘッダとが、両ヘッダの熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両ヘッダにおける熱交換管とは反対側の部分を形成しかつ第1部材にろう付された第2部材とを備えており、これにより両ヘッダが一体化されている請求項17記載のエバポレータ。 The first header and the second header form a part on the heat exchange pipe side of both headers, and the first member to which the heat exchange pipe is connected, and a part on the opposite side of the heat exchange pipe in both headers. The evaporator according to claim 17, further comprising a second member brazed to the first member, whereby both headers are integrated. 第3ヘッダと第4ヘッダとが一体化されている請求項16〜18のうちのいずれかに記載のエバポレータ。 The evaporator according to any one of claims 16 to 18, wherein the third header and the fourth header are integrated. 第3ヘッダと第4ヘッダとが、両ヘッダの熱交換管側の部分を形成しかつ熱交換管が接続された第1部材と、両ヘッダにおける熱交換管とは反対側の部分を形成しかつ第1部材にろう付された第2部材とを備えており、これにより両ヘッダが一体化されている請求項19記載のエバポレータ。 The third header and the fourth header form a part on the heat exchange pipe side of both headers and the first member to which the heat exchange pipe is connected and the part on the opposite side of the heat exchange pipe in both headers. The evaporator according to claim 19, further comprising: a second member brazed to the first member, whereby both headers are integrated. 第1ヘッダが、冷媒入口を有する冷媒入口ヘッダであり、第2ヘッダが、冷媒出口を有する冷媒出口ヘッダであり、第3ヘッダが、冷媒が冷媒入口ヘッダから熱交換管を通って流入する冷媒流入ヘッダであり、第4ヘッダが、冷媒が熱交換管を通って冷媒出口ヘッダに流出する冷媒流出ヘッダであり、第3ヘッダと第4ヘッダとが連通させられている請求項16〜20のうちのいずれかに記載のエバポレータ。 The first header is a refrigerant inlet header having a refrigerant inlet, the second header is a refrigerant outlet header having a refrigerant outlet, and the third header is a refrigerant in which the refrigerant flows from the refrigerant inlet header through the heat exchange pipe. 21. The inflow header, the fourth header is a refrigerant outflow header through which the refrigerant flows out to the refrigerant outlet header through the heat exchange pipe, and the third header and the fourth header are in communication with each other. The evaporator as described in any one of them. 圧縮機、コンデンサおよびエバポレータを備えており、かつフロン系冷媒を用いる冷凍サイクルであって、エバポレータが、請求項1〜21のうちのいずれかに記載のエバポレータからなる冷凍サイクル。 A refrigeration cycle comprising a compressor, a condenser, and an evaporator, and using a chlorofluorocarbon refrigerant, wherein the evaporator is an evaporator according to any one of claims 1 to 21. 圧縮機、ガスクーラ、エバポレータ、減圧器、およびガスクーラから出てきた冷媒とエバポレータから出てきた冷媒とを熱交換させる中間熱交換器を備えており、かつ超臨界冷媒を用いる冷凍サイクルであって、エバポレータが、請求項1〜21のうちのいずれかに記載のエバポレータからなる超臨界冷凍サイクル。 A compressor, a gas cooler, an evaporator, a decompressor, and a refrigeration cycle that includes an intermediate heat exchanger that exchanges heat between the refrigerant that has come out of the gas cooler and the refrigerant that has come out of the evaporator, and uses a supercritical refrigerant, The supercritical refrigerating cycle which an evaporator consists of an evaporator in any one of Claims 1-21. 請求項22または23記載の冷凍サイクルが、カーエアコンとして搭載されている車両。 A vehicle in which the refrigeration cycle according to claim 22 or 23 is mounted as a car air conditioner.
JP2005374291A 2004-12-28 2005-12-27 Evaporator Expired - Fee Related JP4774295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374291A JP4774295B2 (en) 2004-12-28 2005-12-27 Evaporator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004378542 2004-12-28
JP2004378542 2004-12-28
JP2005374291A JP4774295B2 (en) 2004-12-28 2005-12-27 Evaporator

Publications (2)

Publication Number Publication Date
JP2006207994A true JP2006207994A (en) 2006-08-10
JP4774295B2 JP4774295B2 (en) 2011-09-14

Family

ID=36965051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374291A Expired - Fee Related JP4774295B2 (en) 2004-12-28 2005-12-27 Evaporator

Country Status (1)

Country Link
JP (1) JP4774295B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015990A1 (en) 2006-07-31 2008-02-07 Alpha Corporation Electric steering-lock device
KR100831850B1 (en) * 2006-12-14 2008-05-22 모딘코리아 유한회사 Heat exchanger
JP2017519961A (en) * 2014-05-28 2017-07-20 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger
WO2017158795A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Heat exchanger and air conditioner
JP2019138507A (en) * 2018-02-08 2019-08-22 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cold storage function
US10760824B2 (en) 2015-12-17 2020-09-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2023121344A1 (en) * 2021-12-22 2023-06-29 한온시스템 주식회사 Heat exchanger

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190364A (en) * 1982-04-30 1983-11-07 Ajinomoto Co Inc Emulsified batter for baking food
JPS61128578A (en) * 1984-11-28 1986-06-16 Fujitsu Ltd Inp group light-receiving element
JPH09280754A (en) * 1996-04-16 1997-10-31 Showa Alum Corp Heat exchanger
JP2000241093A (en) * 1999-02-24 2000-09-08 Daikin Ind Ltd Air heat exchanger
JP2001255040A (en) * 2000-03-10 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger for cooling
JP2004170061A (en) * 2002-10-30 2004-06-17 Showa Denko Kk Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190364A (en) * 1982-04-30 1983-11-07 Ajinomoto Co Inc Emulsified batter for baking food
JPS61128578A (en) * 1984-11-28 1986-06-16 Fujitsu Ltd Inp group light-receiving element
JPH09280754A (en) * 1996-04-16 1997-10-31 Showa Alum Corp Heat exchanger
JP2000241093A (en) * 1999-02-24 2000-09-08 Daikin Ind Ltd Air heat exchanger
JP2001255040A (en) * 2000-03-10 2001-09-21 Zexel Valeo Climate Control Corp Heat exchanger for cooling
JP2004170061A (en) * 2002-10-30 2004-06-17 Showa Denko Kk Heat exchanger, pipe material and fin material of heat exchanger and manufacturing method of heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015990A1 (en) 2006-07-31 2008-02-07 Alpha Corporation Electric steering-lock device
KR100831850B1 (en) * 2006-12-14 2008-05-22 모딘코리아 유한회사 Heat exchanger
JP2017519961A (en) * 2014-05-28 2017-07-20 ダンフォス・マイクロ・チャンネル・ヒート・エクスチェンジャー・(ジャシン)・カンパニー・リミテッド Heat exchanger
US10591227B2 (en) 2014-05-28 2020-03-17 Danfoss Micro Channel Heat Exchanger (Jiaxing) Co., Ltd. Heat exchanger including a mixing and redistribution header
US10760824B2 (en) 2015-12-17 2020-09-01 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2017158795A1 (en) * 2016-03-17 2017-09-21 三菱電機株式会社 Heat exchanger and air conditioner
GB2563169A (en) * 2016-03-17 2018-12-05 Mitsubishi Electric Corp Heat exchanger and air conditioner
JPWO2017158795A1 (en) * 2016-03-17 2018-12-13 三菱電機株式会社 Heat exchanger and air conditioner
US10775081B2 (en) 2016-03-17 2020-09-15 Mitsubishi Electric Corporation Heat exchanger and air conditioner
GB2563169B (en) * 2016-03-17 2021-04-14 Mitsubishi Electric Corp Heat exchanger and air conditioner
JP2019138507A (en) * 2018-02-08 2019-08-22 株式会社ケーヒン・サーマル・テクノロジー Evaporator with cold storage function
WO2023121344A1 (en) * 2021-12-22 2023-06-29 한온시스템 주식회사 Heat exchanger

Also Published As

Publication number Publication date
JP4774295B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4810203B2 (en) Heat exchanger
JP4599245B2 (en) Heat exchanger
JP4734021B2 (en) Heat exchanger
JP4898300B2 (en) Evaporator
JP2006132920A (en) Heat exchanger
US20080202153A1 (en) Evaporator
JP4774295B2 (en) Evaporator
JP2010112695A (en) Evaporator
JP4786234B2 (en) Heat exchanger
JP2008020098A (en) Heat exchanger
JP2009024899A (en) Evaporator
JP2010197019A (en) Evaporator
JP4915285B2 (en) Heat exchanger
JP2006170601A (en) Evaporator
JP2006194576A (en) Evaporator
JP2011257111A5 (en)
JP4866615B2 (en) Heat exchanger
JP5194279B2 (en) Evaporator
JP4617148B2 (en) Heat exchanger
JP5508818B2 (en) Evaporator
JP5574737B2 (en) Heat exchanger
JP2009299923A (en) Heat exchanger
JP2007071432A (en) Heat exchanger and its manufacturing method
JP5067731B2 (en) Heat exchanger
JP4663272B2 (en) Heat exchangers and evaporators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4774295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees