JPH10220919A - Condenser - Google Patents

Condenser

Info

Publication number
JPH10220919A
JPH10220919A JP2485297A JP2485297A JPH10220919A JP H10220919 A JPH10220919 A JP H10220919A JP 2485297 A JP2485297 A JP 2485297A JP 2485297 A JP2485297 A JP 2485297A JP H10220919 A JPH10220919 A JP H10220919A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
header
chamber
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2485297A
Other languages
Japanese (ja)
Inventor
Hiroyuki Inaba
浩行 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Corp filed Critical Calsonic Corp
Priority to JP2485297A priority Critical patent/JPH10220919A/en
Priority to EP97310451A priority patent/EP0851188B8/en
Priority to DE69717408T priority patent/DE69717408T2/en
Priority to EP02007395A priority patent/EP1223391B8/en
Priority to DE69733284T priority patent/DE69733284T2/en
Priority to US08/996,519 priority patent/US6302193B1/en
Priority to AU49273/97A priority patent/AU731965B2/en
Priority to KR1019970072883A priority patent/KR19980064541A/en
Publication of JPH10220919A publication Critical patent/JPH10220919A/en
Priority to US09/929,071 priority patent/US6546997B2/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent lubricant mixed in refrigerant from being accumulated in a condenser. SOLUTION: In a vertical flowing type condenser, a total flow passage area of first heat transfer pipes 19a, 19a where refrigerant flows down is made wider than a total flow passage area of second heat transfer pipes 20a, 20a where refrigerant is lifted up. Further, a total flow passage area of the second heat transfer pipes 21a, 21a is made less than a total flow passage area of third heat transfer pipes 21a, 21a where refrigerant is flowed down. Alternatively, inner fins becoming a relative large resistance against the flow of the refrigerant are arranged inside both third heat transfer pipes 19a, 21a. No such inner fins are arranged inside the second heat transfer pipe 20a.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば自動車用空
調機を構成する蒸気圧縮式冷凍機のコンプレッサとエバ
ポレータとの間に直列に組み込み、コンプレッサで圧縮
した冷媒を放熱し凝縮させてから、リキッドタンクを介
してエバポレータに送り出すコンデンサの改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, for example, a liquid crystal device which is incorporated in series between a compressor and an evaporator of a vapor compression refrigerator constituting an air conditioner for an automobile, and radiates and condenses the refrigerant compressed by the compressor. The present invention relates to an improvement in a condenser to be sent to an evaporator through a tank.

【0002】[0002]

【従来の技術】自動車室内の冷房や除湿を行なう自動車
用空調機には、蒸気圧縮式冷凍機が組み込まれている。
図8は、特開平4−95522号公報に記載された、蒸
気圧縮式冷凍機の基本構成を示す回路図である。コンプ
レッサ1から吐出された高温・高圧のガス状冷媒は、コ
ンデンサ2を通過する間に空気との間で熱交換を行なっ
て温度低下し、凝縮液化する。この結果生じた液状の冷
媒は、一度リキッドタンク3に溜められてから、膨張弁
4を介してエバポレータ5に送られ、このエバポレータ
5内で蒸発する。エバポレータ5の温度は、蒸発潜熱を
奪われて低下する為、このエバポレータ5に空調用の空
気を流通させれば、この空気の温度を低下させると同時
に、この空気中に含まれる水蒸気を取り除く事ができ
る。エバポレータ5内で蒸発気化した冷媒は、上記コン
プレッサ1に吸引されて圧縮され、再び上記サイクルを
繰り返す。
2. Description of the Related Art A vapor compression refrigerator is incorporated in an automotive air conditioner for cooling and dehumidifying the interior of an automobile.
FIG. 8 is a circuit diagram showing a basic configuration of a vapor compression refrigerator described in Japanese Patent Application Laid-Open No. 4-95522. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 exchanges heat with air while passing through the condenser 2 to lower the temperature and condense and liquefy. The resulting liquid refrigerant is once stored in the liquid tank 3, sent to the evaporator 5 via the expansion valve 4, and evaporates in the evaporator 5. Since the temperature of the evaporator 5 decreases due to the deprivation of latent heat of vaporization, the flow of air for air-conditioning through the evaporator 5 reduces the temperature of the air and simultaneously removes the water vapor contained in the air. Can be. The refrigerant evaporated and vaporized in the evaporator 5 is sucked by the compressor 1 and compressed, and the cycle is repeated again.

【0003】次に、図9は、本発明の対象となるコンデ
ンサ2を示している。このコンデンサ2は、上下に間隔
をあけてそれぞれ水平方向に配置された上下1対のヘッ
ダ6a、6b同士の間で冷媒が上下方向に流れる、所謂
縦流れ式である。この様な縦流れ式のコンデンサ2は、
近接設置される図示しないラジエータのコア部との間で
フィンを共通化して、これらコンデンサ2とラジエータ
とのコンパクト化を図れる為、研究されている。このコ
ンデンサ2を構成する各ヘッダ6a、6bの内側には、
それぞれ1乃至複数枚の隔壁を設けて、各ヘッダ6a、
6bの内側を気密・液密を保持した状態で、複数の室に
仕切っている。この隔壁には、上側のヘッダ6a内を第
一上部室15と第二上部室16との2室に仕切る上部隔
壁13と、下側のヘッダ6b内を第一下部室17と第二
下部室18との2室に仕切る下部隔壁14とがある。
又、このコンデンサ2を構成する各伝熱管7、7は、上
記1対のヘッダ6a、6b同士の間に、水平方向に隣り
合う伝熱管7、7同士の間にフィン8、8を挟持した状
態で、上下方向に配設している。これら各伝熱管7、7
とフィン8、8とが、コア部9を構成する。図9に示す
様に、上記各伝熱管7、7は、上端部を上記第一上部室
15に、下端部を上記第一下部室17に、それぞれ通じ
させた複数本の第一伝熱管19、19と、上端部を上記
第二上部室16に、下端部を上記第一下部室17に、そ
れぞれ通じさせた複数本の第二伝熱管20、20と、上
端部を上記第二上部室16に、下端部を上記第二下部室
18に、それぞれ通じさせた複数本の第三伝熱管21、
21とに、上記上部、下部各隔壁13、14を境にして
分けられる。このうち、各第一伝熱管19、19は、最
も上流側に存在する複数本の伝熱管7、7であり、冷媒
を下方に流す。又、上記各第二伝熱管20、20は、中
間部分に存在する複数本の伝熱管7、7であり、冷媒を
上方に流す。更に、上記各第三伝熱管21、21は、最
も下流側に存在する複数本の伝熱管7、7であり、冷媒
を下方に流す。これら第一〜第三伝熱管19、20、2
1は、それぞれに対応する伝熱管7、7の本数を異に
し、第一伝熱管19、19の流路面積の合計S19を上記
各第二伝熱管20、20の流路面積の合計S20よりも広
くし、上記各第二伝熱管20、20の流路面積の合計S
20を上記各第三伝熱管21、21の流路面積の合計S21
よりも広くしている。即ち、各第一〜第三伝熱管19、
20、21の流路面積の合計S19、S20、S21を、S19
>S20>S21の順に、互いに異ならせている。又、図1
0の様に、上記各第一〜第三伝熱管19、20、21の
流路面積の合計S19、S20、S21を、S19=S20=S21
(各第一〜第三伝熱管19、20、21に対応する伝熱
管7、7の本数を同じにする)としている例もある。何
れにしても、上記各伝熱管7、7及びフィン8、8から
成るコア部9の左右両端縁部には、それぞれサイドプレ
ート10a、10bを設けている。
FIG. 9 shows a capacitor 2 to which the present invention is applied. This condenser 2 is of a so-called vertical flow type, in which a refrigerant flows vertically between a pair of upper and lower headers 6a and 6b which are arranged in the horizontal direction at an interval vertically. Such a vertical flow type capacitor 2
Research has been conducted to share the fins with the core of a radiator (not shown) that is installed in the vicinity and to make the condenser 2 and the radiator compact. Inside each of the headers 6a and 6b constituting the capacitor 2,
Each of the headers 6a,
The inside of 6b is partitioned into a plurality of chambers while keeping the inside airtight and liquidtight. The partition includes an upper partition 13 that partitions the inside of the upper header 6a into two chambers, a first upper chamber 15 and a second upper chamber 16, and a first lower chamber 17 and a second lower chamber that partition the inside of the lower header 6b. 18 and a lower partition wall 14 for partitioning into two chambers.
The heat transfer tubes 7 constituting the condenser 2 sandwich fins 8 between the pair of headers 6a and 6b and the heat transfer tubes 7 adjacent to each other in the horizontal direction. In the state, they are arranged vertically. These heat transfer tubes 7, 7
And the fins 8 constitute a core portion 9. As shown in FIG. 9, each of the heat transfer tubes 7, 7 has a plurality of first heat transfer tubes 19, each having an upper end communicating with the first upper chamber 15 and a lower end communicating with the first lower chamber 17. , 19, a plurality of second heat transfer tubes 20, 20 having an upper end communicating with the second upper chamber 16, and a lower end communicating with the first lower chamber 17, respectively. 16, a plurality of third heat transfer tubes 21 each having a lower end portion connected to the second lower chamber 18,
21 and the upper and lower partitions 13 and 14. Among these, the first heat transfer tubes 19, 19 are a plurality of heat transfer tubes 7, 7 located at the most upstream side, and allow the refrigerant to flow downward. Each of the second heat transfer tubes 20, 20 is a plurality of heat transfer tubes 7, 7 existing in an intermediate portion, and allows the refrigerant to flow upward. Further, the third heat transfer tubes 21, 21 are a plurality of heat transfer tubes 7, 7 located at the most downstream side, and allow the refrigerant to flow downward. These first to third heat transfer tubes 19, 20, 2
1, and different from the number of heat transfer tubes 7, 7 corresponding to the respective total S of the sum S 19 of the flow passage area of the first heat exchanger tube 19, 19 flow passage area of each of the second heat exchanger tube 20, 20 20 and the sum S of the flow passage areas of the second heat transfer tubes 20, 20.
20 is the total S 21 of the flow passage areas of the third heat transfer tubes 21, 21.
Is wider than. That is, each of the first to third heat transfer tubes 19,
Total S 19 of the flow passage area of 20 and 21, the S 20, S 21, S 19
> S 20 > S 21 in this order. Also, FIG.
0, the sum S 19 , S 20 , S 21 of the flow area of each of the first to third heat transfer tubes 19 , 20 , 21 is represented by S 19 = S 20 = S 21.
In some cases, the number of heat transfer tubes 7 corresponding to the first to third heat transfer tubes 19, 20, 21 is the same. In any case, side plates 10a and 10b are provided at the left and right end edges of the core portion 9 including the heat transfer tubes 7 and fins 8 and 8, respectively.

【0004】又、上側のヘッダ6aの一端(図9〜10
の右端)部上面には、入口ブロック11をろう付け固定
している。この入口ブロック11には、冷媒送り込み口
である入口ポート12を設けており、この入口ポート1
2を、前記第一上部室15の内側に通じさせている。上
記入口ポート12から送り込まれた冷媒は、図9〜10
に矢印で示す様に、上記1対のヘッダ6a、6bの間部
分を折り返しつつ、上下方向に流れる。
[0004] One end of the upper header 6a (FIGS. 9 to 10).
An entrance block 11 is brazed and fixed to the upper surface of the right end portion of FIG. The inlet block 11 is provided with an inlet port 12 serving as a refrigerant inlet.
2 communicates with the inside of the first upper chamber 15. The refrigerant sent from the inlet port 12 is shown in FIGS.
As shown by the arrow in FIG. 3, the air flows in the vertical direction while folding back the portion between the pair of headers 6a and 6b.

【0005】更に、前記下側のヘッダ6bの他端(図9
〜10の左端)部で最も下流側に存在する室に対応する
部分の一部(図9〜10の例では第二下部室18に対応
する部分)には、図示しない吐出口を設けている。コン
デンサ2に流れ込み、上記コンデンサ2内を図9〜10
に矢印で示す様に流れた冷媒は、上記下側のヘッダ6b
の他端部内側に達する。そして、この冷媒は、上記吐出
口から吐出され、リキッドタンク3、膨張弁4を経て、
エバポレータ5(図8参照)に送られる。
Further, the other end of the lower header 6b (FIG. 9)
A discharge port (not shown) is provided in a part (a part corresponding to the second lower chamber 18 in the example of FIGS. 9 to 10) corresponding to the chamber located at the most downstream side in the (left end of the 10) portion. . It flows into the condenser 2 and the inside of the condenser 2 is shown in FIGS.
The refrigerant flowing as shown by the arrow in FIG.
Reaches the inside of the other end. The refrigerant is discharged from the discharge port, passes through the liquid tank 3 and the expansion valve 4,
It is sent to the evaporator 5 (see FIG. 8).

【0006】以上の様に構成され作用するコンデンサ2
の内部には、上記コンプレッサ1(図8参照)から送ら
れてくる冷媒が、凝縮液化しつつ通過する。又、この様
にコンデンサ2の内部を通過する液状の冷媒中には、鉱
物油或は合成油であるコンプレッサの潤滑油が混入して
いる。
The capacitor 2 constructed and operates as described above
The refrigerant sent from the compressor 1 (see FIG. 8) passes through the inside of the inside while being condensed and liquefied. Further, the lubricating oil of the compressor, which is a mineral oil or a synthetic oil, is mixed in the liquid refrigerant passing through the inside of the condenser 2 as described above.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のコンデ
ンサでは、上側のヘッダ6bの一部で、第一下部室17
と第二下部室18とを仕切る下部隔壁14の近傍部分
に、上記潤滑油が滞溜し易い(図9〜10の斜線部参
照)。これは、第一伝熱管19、19内を流れ、第一下
部室17内に入り込んだ冷媒が、上記潤滑油を上記下部
隔壁14に押し付けつつ、第二伝熱管20、20内に入
り込んで、この第二伝熱管20、20内を上方に流れる
為である。上記第一下部室17内を下部隔壁14に向け
て流れる冷媒の流速が早ければ、上記潤滑油を第二伝熱
管20、20内に押し込めるが、図9〜10に示した従
来構造の場合には、この流速が十分とは言えない。この
結果、冷媒内に混入している潤滑油は、冷媒と共に第二
伝熱管20、20内を上昇せず、上記下側のヘッダ6b
の一部で上記下部隔壁14の近傍部分に滞溜する事にな
る。この様に、コンデンサ2内に潤滑油が滞溜する分だ
け、コンプレッサに送り込まれる潤滑油の量が不足しが
ちになる。特に、アイドリング時、或は可変容量コンプ
レッサの容量減少時等、コンプレッサから吐出される冷
媒が少なく、コンデンサ2内を流れる冷媒の量が少ない
場合に、上記問題が発生し易い。本発明のコンデンサ
は、上述の様な不具合を解消すべく発明したものであ
る。
In the above-mentioned conventional capacitor, the first lower chamber 17 is formed by a part of the upper header 6b.
The lubricating oil easily accumulates in the vicinity of the lower partition wall 14 that separates the lubricating oil from the second lower chamber 18 (see the hatched portions in FIGS. 9 to 10). This is because the refrigerant flowing in the first heat transfer tubes 19 and 19 and entering the first lower chamber 17 presses the lubricating oil against the lower partition wall 14 and enters the second heat transfer tubes 20 and 20. This is because the second heat transfer tubes 20, 20 flow upward. If the flow rate of the refrigerant flowing toward the lower partition wall 14 in the first lower chamber 17 is high, the lubricating oil can be pushed into the second heat transfer tubes 20, 20, but in the case of the conventional structure shown in FIGS. However, this flow rate is not sufficient. As a result, the lubricating oil mixed in the refrigerant does not rise in the second heat transfer tubes 20, 20 together with the refrigerant, and the lower header 6b
Will accumulate in a portion near the lower partition wall 14. As described above, the amount of the lubricating oil sent to the compressor tends to be insufficient for the amount of the lubricating oil remaining in the condenser 2. In particular, when the amount of refrigerant discharged from the compressor is small and the amount of refrigerant flowing through the condenser 2 is small, for example, at the time of idling or when the capacity of the variable capacity compressor is reduced, the above problem is likely to occur. The capacitor of the present invention has been invented in order to solve the above-mentioned problems.

【0008】[0008]

【課題を解決するための手段】本発明のコンデンサは何
れも、前述した従来から考えられているコンデンサと同
様に、それぞれが水平方向に亙って設けられ、上下方向
に亙って互いに離隔して配置された上下1対のヘッダ
と、上側のヘッダ内を少なくとも第一上部室と第二上部
室との2室に仕切る少なくとも1枚の上部隔壁と、下側
のヘッダ内を少なくとも第一下部室と第二下部室との2
室に仕切る少なくとも1枚の下部隔壁と、上記上側のヘ
ッダの一部に設けて上記第一上部室に通じる冷媒送り込
み口と、上記上側のヘッダと上記下側のヘッダとの間に
設け、それぞれの上端部を上記第一上部室に、それぞれ
の下端部を上記第一下部室に、それぞれ通じさせた、複
数本の第一伝熱管と、上記上側のヘッダと上記下側のヘ
ッダとの間に設け、それぞれの上端部を上記第二上部室
に、それぞれの下端部を上記第一下部室に、それぞれ通
じさせた、複数本の第二伝熱管と、上記上側のヘッダと
上記下側のヘッダとの間に設け、それぞれの上端部を上
記第二上部室に、それぞれの下端部を上記第二下部室
に、それぞれ通じさせた、複数本の第三伝熱管と、それ
ぞれ複数本ずつの第一〜第三伝熱管と共にコア部を構成
するフィンとを備える。そして、上記第二下部室を冷媒
吐出口に、直接又は上記第三伝熱管よりも下流側に設け
た流路部材を介して通じさせている。
All the capacitors of the present invention are provided in the horizontal direction and are separated from each other in the vertical direction, similarly to the above-mentioned conventional capacitors. A pair of upper and lower headers arranged at least in one row, at least one upper partition partitioning the inside of the upper header into at least two chambers of a first upper chamber and a second upper chamber, and at least a first lower partition in the lower header. 2 of the room and the second lower room
At least one lower partition partitioning the chamber, a refrigerant inlet provided in a part of the upper header and communicating with the first upper chamber, provided between the upper header and the lower header, respectively The upper end of the first heat transfer tube, the lower end of each of the first heat transfer tube, the lower end of the first heat transfer tube, respectively, between the upper header and the lower header Provided, the upper end of each of the second upper chamber, the lower end of each of the first lower chamber, respectively, a plurality of second heat transfer tubes, the upper header and the lower header. A plurality of third heat transfer tubes, each having a plurality of third heat transfer tubes, each of which has an upper end portion connected to the second upper chamber and a lower end portion connected to the second lower chamber, respectively. And fins constituting a core together with the first to third heat transfer tubes. . The second lower chamber communicates with the refrigerant discharge port directly or via a flow path member provided downstream of the third heat transfer tube.

【0009】特に、本発明のコンデンサのうち、請求項
1に記載したコンデンサに於いては、冷媒の流れ方向に
関して上流端に存在し、上記第一上部室から第一下部室
に向け冷媒を下方に流す上記第一伝熱管の流路面積の合
計を、冷媒の流れ方向に関して中間部に存在し、上記第
一下部室から上記第二上部室に向け冷媒を上方に流す上
記第二伝熱管の流路面積の合計よりも広くすると共に、
上記第二伝熱管の流路面積の合計を、冷媒の流れ方向に
関して下流端に存在し上記第二上部室から上記第二下部
室に向け冷媒を下方に流す上記第三伝熱管の流路面積の
合計以下としている。
In the condenser according to the first aspect of the present invention, the refrigerant is present at the upstream end in the flow direction of the refrigerant, and the refrigerant flows downward from the first upper chamber toward the first lower chamber. The total of the flow area of the first heat transfer tube flowing in the middle direction with respect to the flow direction of the refrigerant, the second heat transfer tube of the flow of the refrigerant upward from the first lower chamber toward the second upper chamber While making it wider than the total flow area,
The sum of the flow area of the second heat transfer tube, the flow area of the third heat transfer tube which is present at the downstream end with respect to the flow direction of the refrigerant and flows the refrigerant downward from the second upper chamber toward the second lower chamber. Or less than the sum of

【0010】更に、請求項2に記載したコンデンサに於
いては、冷媒の流れ方向に関して上流端及び下流端に存
在し、上記上側のヘッダから下側のヘッダに向けて冷媒
を下方に流す第一、第三両伝熱管の内部に、冷媒の流れ
に対して比較的大きな抵抗となる抵抗部を設け、冷媒の
流れ方向に関して中間部に存在し、上記下側のヘッダか
ら上側のヘッダに向け冷媒を上方に流す第二伝熱管の内
部には、冷媒の流れに対して大きな抵抗となる抵抗部を
設けていない。
Further, in the condenser according to the present invention, the refrigerant exists at the upstream end and the downstream end in the flow direction of the refrigerant, and the refrigerant flows downward from the upper header toward the lower header. Inside the third heat transfer tubes, a resistance portion having a relatively large resistance to the flow of the refrigerant is provided, and is located at an intermediate portion with respect to the flow direction of the refrigerant, and the refrigerant flows from the lower header toward the upper header. Is not provided inside the second heat transfer tube through which heat flows upward.

【0011】[0011]

【作用】上述の様に構成される本発明のコンデンサは何
れも、下側のヘッダから上側のヘッダに向けて冷媒を勢
い良く流す為、この下側のヘッダ内に存在する潤滑油
を、冷媒と共に第二伝熱管内に効率的に送り込める。
In any of the condensers of the present invention configured as described above, since the refrigerant flows vigorously from the lower header toward the upper header, the lubricating oil present in the lower header is removed by the refrigerant. In addition, it can be efficiently sent into the second heat transfer tube.

【0012】[0012]

【発明の実施の形態】図1は、請求項1に対応する、本
発明の実施の形態の第1例を示している。本例のコンデ
ンサ2の基本構成は、前述した従来構造と同様である。
特に、本発明のコンデンサ2は、各ヘッダ6a、6bを
仕切る隔壁の水平方向位置を異ならせた点が、従来構造
とは異なる。そこで、前述した従来構造と同等の部分に
就いては、重複する説明を省略若しくは簡略にし、以
下、本発明の特徴部分を中心に説明する。
FIG. 1 shows a first embodiment of the present invention corresponding to claim 1. The basic configuration of the capacitor 2 of the present example is the same as the conventional structure described above.
In particular, the capacitor 2 of the present invention is different from the conventional structure in that the horizontal position of the partition separating the headers 6a and 6b is different. Therefore, the description of the same parts as those of the conventional structure described above will be omitted or simplified, and the following description will focus on the characteristic parts of the present invention.

【0013】本例のコンデンサ2は、図1に示す様に、
上下1対のヘッダ6a、6bと、上側のヘッダ6a内を
第一上部室15aと第二上部室16aとの2室に仕切る
上部隔壁13と、下側のヘッダ6b内を第一下部室17
aと第二下部室18aとの2室に仕切る下部隔壁14と
を備える。又、各伝熱管7、7は、最も上流側に存在す
る複数本の伝熱管7、7であり、冷媒を下方に流す第一
伝熱管19a、19aと、中間部分に存在する複数本の
伝熱管7、7であり、冷媒を上方に流す第二伝熱管20
a、20aと、最も下流側に存在する複数本の伝熱管
7、7であり、冷媒を下方に流す第三伝熱管21a、2
1aとから成る。
As shown in FIG.
A pair of upper and lower headers 6a, 6b, an upper partition 13 that partitions the inside of the upper header 6a into two chambers, a first upper chamber 15a and a second upper chamber 16a, and a first lower chamber 17 inside the lower header 6b.
a and a lower partition wall 14 that partitions the chamber into a second lower chamber 18a. Each of the heat transfer tubes 7, 7 is a plurality of heat transfer tubes 7, 7 located at the most upstream side. The first heat transfer tubes 19a, 19a through which the refrigerant flows downward, and the plurality of heat transfer tubes existing in an intermediate portion. The second heat transfer tube 20 which is a heat tube 7 and which allows the refrigerant to flow upward.
a, 20a and a plurality of heat transfer tubes 7, 7 which are present at the most downstream side, and are third heat transfer tubes 21a, 2
1a.

【0014】本例のコンデンサ2では、各第一〜第三伝
熱管19a、20a、21aの本数の構成を、前述した
従来構造とは異ならせている。即ち、上記第一上部室1
5aから上記第一下部室17aに向け冷媒を下方に流す
第一伝熱管19a、19aの流路面積の合計S19a を、
上記第一下部室17aから上記第二上部室16aに向け
て冷媒を上方に流す上記第二伝熱管20a、20aの流
路面積の合計S20a よりも広くしている。これと共に、
上記冷媒を上方に流す第二伝熱管20a、20aの流路
面積の合計S20a を、上記第二上部室16aから上記第
二下部室18aに向け冷媒を下方に流す上記第三伝熱管
21a、21aの流路面積の合計S21a以下としてい
る。即ち、各第一〜第三伝熱管19a、20a、21a
の流路面積の合計S19a 、S20a 、S21a 同士の関係
を、S19a >S20a ≦S21a としている。
In the condenser 2 of this embodiment, the number of the first to third heat transfer tubes 19a, 20a and 21a is different from that of the conventional structure described above. That is, the first upper chamber 1
The total S 19a of the flow passage areas of the first heat transfer tubes 19a, 19a through which the refrigerant flows downward from 5a toward the first lower chamber 17a,
The flow path area of the second heat transfer tubes 20a, 20a through which the refrigerant flows upward from the first lower chamber 17a toward the second upper chamber 16a is wider than the total flow area S20a . With this,
The total heat transfer area S 20a of the second heat transfer tubes 20a, 20a through which the refrigerant flows upward, the third heat transfer tubes 21a, through which the refrigerant flows downward from the second upper chamber 16a toward the second lower chamber 18a, The sum of the flow path areas 21a is not more than S21a . That is, each of the first to third heat transfer tubes 19a, 20a, 21a
S19a , S20a , and S21a have a relationship of S19a > S20aS21a .

【0015】上述の様に、冷媒を上方に流す第二伝熱管
20a、20aの流路面積の合計S20a を、冷媒を下方
に流す第一、第三伝熱管19a、21aのそれぞれの流
路面積の合計S19a 、S21a と同じかこれよりも小さく
している為、第二伝熱管20a、20a内を上昇する冷
媒の流速が増大する。そして、下側のヘッダ6b内で下
部隔壁14の近傍部分に達した潤滑油を冷媒と共に第二
伝熱管20a、20a内に効率良く押し込める。この結
果、冷媒と共にコンプレッサに送られる潤滑油の量を確
保して、このコンプレッサの耐久性向上を図れる。
As described above, the total flow area S 20a of the second heat transfer tubes 20a, 20a through which the refrigerant flows upward is determined by the respective flow paths of the first and third heat transfer tubes 19a, 21a through which the refrigerant flows downward. Since the total area is equal to or smaller than S 19a and S 21a , the flow velocity of the refrigerant rising in the second heat transfer tubes 20a and 20a increases. Then, the lubricating oil that has reached the vicinity of the lower partition wall 14 in the lower header 6b is efficiently pushed into the second heat transfer tubes 20a, 20a together with the refrigerant. As a result, the amount of lubricating oil sent to the compressor together with the refrigerant is secured, and the durability of the compressor can be improved.

【0016】次に、図2は、やはり請求項1に対応す
る、本発明の実施の形態の第2例を示している。本例の
コンデンサ2は、上部隔壁13、13を2枚設け、伝熱
管7、7を、第一〜第四伝熱管19b、20b、21
b、23の4区画に区分している。本例の場合には、冷
媒の流れ方向に関して上流端に存在し、冷媒を下方に流
す上記第一伝熱管19b、19bの流路面積の合計S
19b を、冷媒の流れ方向に関して中間部に存在し、冷媒
を上方に流す上記第二伝熱管20b、20bの流路面積
の合計S20b よりも広くしている。これと共に、冷媒を
上方に流す上記第二伝熱管20b、20bの流路面積の
合計S20b を、冷媒を下方に流す上記第三伝熱管21
b、21bの流路面積の合計S21b 以下としている。
又、特許請求の範囲に記載した、第三伝熱管よりも下流
側に設けた流路部材に相当し、冷媒を上方に流す第四伝
熱管23、23の流路面積の合計S23を、これら第四伝
熱管23、23の上流側に存在し、冷媒を下方に流す上
記第三伝熱管21b、21bの流路面積の合計S21b
りも小さくしている。即ち、各第一〜第四伝熱管19
b、20b、21b、23の流路面積の合計S19b 、S
20b 、S21b 、S23同士の関係を、S19b >S20b ≦S
21b >S23に規制している。
FIG. 2 shows a second embodiment of the present invention, which also corresponds to claim 1. In the condenser 2 of this example, two upper partition walls 13 are provided, and the heat transfer tubes 7 are provided with first to fourth heat transfer tubes 19b, 20b, 21.
b, 23. In the case of this example, the flow path area of the first heat transfer tubes 19b, 19b, which is present at the upstream end in the flow direction of the refrigerant and flows the refrigerant downward, is S.
The 19b, present in the intermediate portion with respect to the flow direction of the refrigerant, the flowing coolant upwardly second heat exchanger tube 20b, are wider than the sum S 20b of the flow path area of 20b. At the same time, the total heat transfer area S 20b of the second heat transfer tubes 20b, 20b through which the refrigerant flows upward is reduced by the third heat transfer tubes 21 through which the refrigerant flows downward.
The sum of the flow path areas b and 21b is set to S 21b or less.
In addition, as described in the claims, corresponds to a flow path member provided downstream from the third heat transfer pipe, the total flow area S23 of the fourth heat transfer pipe 23 , 23 for flowing the refrigerant upward, The flow path area of the third heat transfer tubes 21b, 21b, which is present on the upstream side of the fourth heat transfer tubes 23, 23 and allows the refrigerant to flow downward, is made smaller than the total S21b . That is, each of the first to fourth heat transfer tubes 19
b, 20b, 21b, the sum of the flow channel areas S 19b , S
20b, S 21b, the relationship between S 23, S 19b> S 20b ≦ S
21b> is restricted to S 23.

【0017】上述の様に、冷媒を上方に流す上記第二伝
熱管20b、20bの流路面積の合計S20b を、冷媒を
下方に流す上記第一、第三伝熱管19b、21bの流路
面積の合計S19b 、S21b よりも小さく、同じく冷媒を
上方に流す上記第四伝熱管23、23の流路面積の合計
23を、これら第四伝熱管23、23の上流側に存在
し、同じく冷媒を下方に流す第三伝熱管21b、21b
の流路面積の合計S21bよりも小さくして、第二、第四
伝熱管20b、23内を上昇する冷媒の流速を増加させ
ている為、冷媒内の潤滑油を冷媒と共に第二、第四伝熱
管20b、23内に効率良く送り込める。その他の構成
及び作用は、上述した第1例の場合と同様であるから、
同等部分には同一符号を付して、重複する説明を省略す
る。尚、上記隔壁の数を更に増やし、コア部9を構成す
る伝熱管7、7を更に細かく区分した場合も、同様に、
冷媒を上昇させる伝熱管の流路面積の合計を、冷媒を下
降させる伝熱管の流路面積の合計以下とする。
[0017] As described above, the flowing coolant upwardly second heat exchanger tube 20b, and the sum S 20b of the flow path area of 20b, the first flow of coolant to lower, third heat exchanger tube 19b, 21b flow path of The total area S23 of the fourth heat transfer tubes 23 , 23, which is smaller than the total area S19b , S21b and which also allows the refrigerant to flow upward, is present upstream of the fourth heat transfer tubes 23 , 23. , The third heat transfer tubes 21b, 21b through which the refrigerant flows downward.
Since the flow area of the refrigerant ascending in the second and fourth heat transfer tubes 20b and 23 is increased by making the total flow area S 21b smaller than that of It can be efficiently fed into the four heat transfer tubes 20b and 23. Other configurations and operations are the same as those of the first example described above,
Equivalent portions are denoted by the same reference numerals, and redundant description will be omitted. In the case where the number of the partition walls is further increased and the heat transfer tubes 7 constituting the core portion 9 are further finely divided, similarly,
The sum of the flow passage areas of the heat transfer tubes for raising the refrigerant is equal to or less than the sum of the flow passage areas of the heat transfer tubes for lowering the refrigerant.

【0018】次に、図3〜4は、請求項2に対応する、
本発明の実施の形態の第3例を示している。本例のコン
デンサでは、冷媒を流下させる第一、第三伝熱管とし
て、低廉化を目的に、図4に示す様な、所謂合わせチュ
ーブと呼ばれる伝熱管7bを使用している。この伝熱管
7bは、アルミニウム合金製の板材の幅方向中間部をU
字形に折り返して、折り返し部28及びこの折り返し部
28の両端縁から連続する互いに平行な1対の平板部2
9、29を設けている。そして、これら両平板部29、
29の先端縁部にそれぞれ折れ曲がり部30、30を、
互いに近づく方向に形成し、これら折れ曲がり部30、
30の先端部同士を互いに重ね合わせている。これら両
折れ曲がり部30、30の先端部同士の重ね合わせ部
は、他の構成部材のろう付けと同時に、互いにろう付け
接合する。
Next, FIGS. 3 and 4 correspond to claim 2.
13 shows a third example of the embodiment of the present invention. In the condenser of this example, as the first and third heat transfer tubes through which the refrigerant flows, heat transfer tubes 7b called so-called combined tubes as shown in FIG. 4 are used for the purpose of cost reduction. This heat transfer tube 7b is formed by connecting a width direction intermediate portion of a plate material made of aluminum alloy to U
It is folded back into a letter shape, and a folded portion 28 and a pair of parallel flat plate portions 2 continuous from both end edges of the folded portion 28 are formed.
9, 29 are provided. Then, these two flat plate portions 29,
Bent portions 30 and 30 are respectively provided at the tip edges of 29,
They are formed in a direction approaching each other, and these bent portions 30,
The 30 tips are overlapped with each other. The overlapping portions of the distal ends of the two bent portions 30, 30 are brazed and joined together with the other components at the same time.

【0019】又、この様な伝熱管7bの内側には、冷媒
の流れに対して比較的大きな抵抗になる抵抗部を構成す
るインナーフィン22aを挿入し、このインナーフィン
22aと上記各平板部29、29の内面とをろう付け接
合している。このインナーフィン22aは、上記伝熱管
7b内を流れる流体(冷媒)の流れを乱し、この流体と
伝熱管7bとの間の熱交換効率を向上させると共に、上
記伝熱管7bを構成する1対の平板部29、29同士の
間隔が広がる事を防止して、この伝熱管7bの耐圧性向
上を図る。尚、この様なインナーフィン22aは、帯状
のアルミニウム合金製の板材を曲げ形成する事により構
成している。これに対して、冷媒を上昇させる第二伝熱
管となる伝熱管7aは、例えばアルミニウム合金を押し
出し成形する事により造り、図3に示す様に、その内側
を複数の流路に仕切る壁を、一体に設けている。この伝
熱管7aは、内部を仕切る壁を伝熱管7aの長さ方向に
亙ってストレートに形成している為、この伝熱管7a内
で冷媒の流れに対して大きな抵抗とはならない。従っ
て、図4に示した様な、インナーフィン22aを備えた
伝熱管7bよりも通路抵抗が小さい。
Further, an inner fin 22a constituting a resistance portion having a relatively large resistance to the flow of the refrigerant is inserted into the inside of the heat transfer tube 7b, and the inner fin 22a and each of the flat plate portions 29 are formed. , 29 are brazed to each other. The inner fins 22a disturb the flow of the fluid (refrigerant) flowing in the heat transfer tube 7b, improve the heat exchange efficiency between the fluid and the heat transfer tube 7b, and form a pair of the heat transfer tube 7b. The distance between the flat plate portions 29 is prevented from being widened, and the pressure resistance of the heat transfer tube 7b is improved. In addition, such an inner fin 22a is formed by bending a band-shaped plate made of an aluminum alloy. On the other hand, the heat transfer tube 7a serving as the second heat transfer tube for raising the refrigerant is formed by, for example, extruding an aluminum alloy, and as shown in FIG. It is provided integrally. Since the heat transfer tube 7a has a wall that partitions the inside formed straight along the length of the heat transfer tube 7a, the heat transfer tube 7a does not have a large resistance to the flow of the refrigerant in the heat transfer tube 7a. Therefore, the passage resistance is smaller than that of the heat transfer tube 7b having the inner fins 22a as shown in FIG.

【0020】以上の様に、冷媒を流下させる第一、第三
伝熱管となる伝熱管7bと冷媒を上昇させる第二伝熱管
となる伝熱管7aとの構造を変える事により、第二伝熱
管となる伝熱管7aの抵抗を減少させ、この伝熱管7a
内を上昇する冷媒の流速を増加させ、冷媒内の潤滑油を
冷媒と共に第二伝熱管となる伝熱管7a内に効率良く送
り込める。尚、本例の構造は、単独で、即ち、前述の図
9〜10に示した従来構造のコンデンサに組み合わせる
他、図1〜2に示した実施の形態の第1〜2例の構造と
組み合わせて実施する事もできる。
As described above, by changing the structure of the heat transfer tube 7b serving as the first and third heat transfer tubes for flowing the refrigerant and the heat transfer tube 7a serving as the second heat transfer tube for raising the refrigerant, the second heat transfer tube is formed. The resistance of the heat transfer tube 7a is reduced.
The lubricating oil in the refrigerant can be efficiently sent together with the refrigerant into the heat transfer tube 7a serving as the second heat transfer tube by increasing the flow velocity of the refrigerant rising inside. It should be noted that the structure of this example is used alone, that is, in combination with the capacitor having the conventional structure shown in FIGS. Can also be implemented.

【0021】次に、図5〜7は、やはり請求項2に対応
する、本発明の実施の形態の第4例を示している。本例
のコンデンサでは、冷媒を流下させる第一及び第三伝熱
管となる伝熱管7cを、図5に示す様な形状としてい
る。この伝熱管7cは、アルミニウム合金製で帯状の板
材24をロール成形して成る。即ち、ロール成形に伴っ
て上記板材24の幅方向両端縁に接合部25a、25b
を、この板材24の全長に亙って形成すると共に、上記
板材24の幅方向中間部をU字形に180度折り返し、
上記両接合部25a、25b同士を互いに突き合わせて
ろう付けする事により、伝熱管7cとしている。この伝
熱管7cを構成する1対の平板部26、26の両面で互
いに対向する部分には、上記板材24に上述したロール
成形を施すと同時に、それぞれが伝熱管7cの内面側に
突出する、多数の突起27、27を形成している。これ
ら各突起27、27は、この伝熱管7cの内側に、軸方
向に亙る平行流路が形成されない様に、上記平板部26
に千鳥状に配置している。この為、上記各突起27、2
7は、上記伝熱管7c内で冷媒の流れを、伝熱管7cの
長さ方向と異なる方向に乱し、この冷媒の流れに対して
比較的大きな抵抗となる。これに対して、冷媒を上昇さ
せる第二伝熱管となる伝熱管7dは、図6〜7に示す様
に、アルミニウム合金板製で波形のインナーフィン22
bを挿入した構造としている。この伝熱管7dは、冷媒
の流れを乱す事がなく、上述した伝熱管7cよりも抵抗
が小さい。
Next, FIGS. 5 to 7 show a fourth embodiment of the present invention, which also corresponds to claim 2. FIG. In the condenser of the present example, the heat transfer tubes 7c serving as the first and third heat transfer tubes through which the refrigerant flows down are shaped as shown in FIG. The heat transfer tube 7c is formed by roll-forming a band-shaped plate member 24 made of an aluminum alloy. That is, the joining portions 25a, 25b are formed at both ends in the width direction of the plate material 24 with the roll forming.
Is formed over the entire length of the plate member 24, and the widthwise intermediate portion of the plate member 24 is folded back in a U-shape by 180 degrees.
The heat transfer tube 7c is obtained by brazing the two joint portions 25a and 25b against each other. The above-described roll forming is performed on the plate member 24 on the opposing portions on both surfaces of the pair of flat plate portions 26 constituting the heat transfer tube 7c, and at the same time, each protrudes toward the inner surface side of the heat transfer tube 7c. A large number of projections 27 are formed. These projections 27, 27 are formed on the flat plate portion 26 so that a parallel flow path extending in the axial direction is not formed inside the heat transfer tube 7c.
Are arranged in a zigzag pattern. Therefore, each of the protrusions 27, 2
7 disturbs the flow of the refrigerant in the heat transfer tube 7c in a direction different from the length direction of the heat transfer tube 7c, and has a relatively large resistance to the flow of the refrigerant. On the other hand, as shown in FIGS. 6 to 7, the heat transfer tube 7 d serving as the second heat transfer tube for raising the refrigerant is made of an aluminum alloy plate and has a corrugated inner fin 22.
b is inserted. The heat transfer tube 7d does not disturb the flow of the refrigerant, and has a lower resistance than the above-described heat transfer tube 7c.

【0022】以上の様に構成する事により、冷媒を上方
に流す第二伝熱管となる伝熱管7dの抵抗を小さくし、
この伝熱管7d内を上昇する冷媒の流速を増加させて、
冷媒内の潤滑油を冷媒と共に上記伝熱管7d内に効率良
く送り込める。その他の構成及び作用は、上述した第3
例の場合と同様である。尚、上述した伝熱管7a、7
b、7c、7dの組み合わせは、通路抵抗の小さい伝熱
管7a、7dにより冷媒を上昇させる第二伝熱管を構成
し、冷媒の流れに対する抵抗が比較的大きい伝熱管7
b、7cにより冷媒を流下させる第一、第三伝熱管を構
成するものであれば、上述した第3例及び第4例以外の
組み合わせでも差し支えない。
With the above configuration, the resistance of the heat transfer tube 7d serving as the second heat transfer tube through which the refrigerant flows upward can be reduced.
By increasing the flow velocity of the refrigerant rising in the heat transfer tube 7d,
The lubricating oil in the refrigerant can be efficiently sent into the heat transfer tube 7d together with the refrigerant. Other configurations and operations are the same as those of the third embodiment.
This is the same as in the example. The heat transfer tubes 7a, 7
The combination of b, 7c, 7d constitutes a second heat transfer tube for raising the refrigerant by the heat transfer tubes 7a, 7d having a small passage resistance, and the heat transfer tube 7 having a relatively large resistance to the flow of the refrigerant.
Any combination other than the above-described third and fourth examples may be used as long as it constitutes the first and third heat transfer tubes through which the refrigerant flows down by b and 7c.

【0023】[0023]

【発明の効果】本発明のコンデンサは、以上の様に構成
され作用する為、冷媒内に混入している潤滑油のうち、
下側のヘッダの下部隔壁近傍に滞溜する潤滑油の量を少
なくできる。この結果、コンプレッサに送られる潤滑油
の量を確保して、このコンプレッサを組み込んだ自動車
用空調機の耐久性向上を図れる。
The condenser of the present invention is constructed and operated as described above, and therefore, of the lubricating oil mixed in the refrigerant,
The amount of lubricating oil accumulated near the lower partition of the lower header can be reduced. As a result, the amount of lubricating oil sent to the compressor can be secured, and the durability of an air conditioner for an automobile incorporating the compressor can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の第1例を示す、コンデン
サの略斜視図。
FIG. 1 is a schematic perspective view of a capacitor showing a first example of an embodiment of the present invention.

【図2】同第2例を示す、コンデンサの略斜視図。FIG. 2 is a schematic perspective view of a capacitor showing the second example.

【図3】同第3例に、第二伝熱管として組み込む伝熱管
を示す、部分切断斜視図。
FIG. 3 is a partially cut perspective view showing a heat transfer tube incorporated as a second heat transfer tube in the third example.

【図4】同第3例に、第一及び第三伝熱管として組み込
む伝熱管を示す、端部斜視図。
FIG. 4 is an end perspective view showing heat transfer tubes incorporated as first and third heat transfer tubes in the third example.

【図5】同第4例に、第一及び第三伝熱管として組み込
む伝熱管を示す、部分切断斜視図。
FIG. 5 is a partially cutaway perspective view showing heat transfer tubes incorporated as first and third heat transfer tubes in the fourth example.

【図6】同第4例に、第二伝熱管として組み込む伝熱管
を示す、部分切断斜視図。
FIG. 6 is a partially cut perspective view showing a heat transfer tube incorporated as a second heat transfer tube in the fourth example.

【図7】組み立てた状態で示す、図6のA−A断面図。FIG. 7 is a sectional view taken along the line AA of FIG. 6, which is shown in an assembled state.

【図8】コンデンサが組み込まれる蒸気圧縮式冷凍機の
回路図。
FIG. 8 is a circuit diagram of a vapor compression refrigerator in which a condenser is incorporated.

【図9】従来のコンデンサの第1例を示す略斜視図。FIG. 9 is a schematic perspective view showing a first example of a conventional capacitor.

【図10】同第2例を示す略斜視図。FIG. 10 is a schematic perspective view showing the second example.

【符号の説明】[Explanation of symbols]

1 コンプレッサ 2 コンデンサ 3 リキッドタンク 4 膨張弁 5 エバポレータ 6a、6b ヘッダ 7、7a、7b、7c 伝熱管 8 フィン 9 コア部 10a、10b サイドプレート 11 入口ブロック 12 入口ポート 13 上部隔壁 14 下部隔壁 15、15a 第一上部室 16、16a 第二上部室 17、17a 第一下部室 18、18a 第二下部室 19、19a、19b 第一伝熱管 20、20a、20b 第二伝熱管 21、21a、21b 第三伝熱管 22a、22b インナーフィン 23 第四伝熱管 24 板材 25a、25b 接合部 26 平板部 27 突起 28 折り返し部 29 平板部 30 折れ曲がり部 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Liquid tank 4 Expansion valve 5 Evaporator 6a, 6b Header 7, 7a, 7b, 7c Heat transfer tube 8 Fin 9 Core part 10a, 10b Side plate 11 Inlet block 12 Inlet port 13 Upper partition 14 Lower partition 15, 15a First upper chamber 16, 16a Second upper chamber 17, 17a First lower chamber 18, 18a Second lower chamber 19, 19a, 19b First heat transfer tube 20, 20a, 20b Second heat transfer tube 21, 21a, 21b Third Heat transfer tubes 22a, 22b Inner fins 23 Fourth heat transfer tube 24 Plates 25a, 25b Joined portions 26 Flat plate portions 27 Projections 28 Folded portions 29 Flat plate portions 30 Bent portions

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 それぞれが水平方向に亙って設けられ、
上下方向に亙って互いに離隔して配置された上下1対の
ヘッダと、上側のヘッダ内を少なくとも第一上部室と第
二上部室との2室に仕切る少なくとも1枚の上部隔壁
と、下側のヘッダ内を少なくとも第一下部室と第二下部
室との2室に仕切る少なくとも1枚の下部隔壁と、上記
上側のヘッダの一部に設けて上記第一上部室に通じる冷
媒送り込み口と、上記上側のヘッダと上記下側のヘッダ
との間に設け、それぞれの上端部を上記第一上部室に、
それぞれの下端部を上記第一下部室に、それぞれ通じさ
せた、複数本の第一伝熱管と、上記上側のヘッダと上記
下側のヘッダとの間に設け、それぞれの上端部を上記第
二上部室に、それぞれの下端部を上記第一下部室に、そ
れぞれ通じさせた、複数本の第二伝熱管と、上記上側の
ヘッダと上記下側のヘッダとの間に設け、それぞれの上
端部を上記第二上部室に、それぞれの下端部を上記第二
下部室に、それぞれ通じさせた、複数本の第三伝熱管
と、それぞれ複数本ずつの第一〜第三伝熱管と共にコア
部を構成するフィンとを備え、上記第二下部室を冷媒吐
出口に、直接又は上記第三伝熱管よりも下流側に設けた
流路部材を介して通じさせたコンデンサに於いて、冷媒
の流れ方向に関して上流端に存在し、上記第一上部室か
ら第一下部室に向け冷媒を下方に流す上記第一伝熱管の
流路面積の合計を、冷媒の流れ方向に関して中間部に存
在し、上記第一下部室から上記第二上部室に向け冷媒を
上方に流す上記第二伝熱管の流路面積の合計よりも広く
すると共に、上記第二伝熱管の流路面積の合計を、冷媒
の流れ方向に関して下流端に存在し上記第二上部室から
上記第二下部室に向け冷媒を下方に流す上記第三伝熱管
の流路面積の合計以下とした事を特徴とするコンデン
サ。
1. Each is provided in a horizontal direction,
A pair of upper and lower headers spaced apart from each other in the vertical direction, at least one upper partition partitioning the interior of the upper header into at least a first upper chamber and a second upper chamber; At least one lower partition partitioning the inside of the header into at least two chambers of a first lower chamber and a second lower chamber, and a refrigerant inlet provided in a part of the upper header and communicating with the first upper chamber. , Provided between the upper header and the lower header, each upper end in the first upper chamber,
Each lower end is connected to the first lower chamber, respectively, a plurality of first heat transfer tubes, provided between the upper header and the lower header, each upper end of the second header In the upper chamber, the lower end of each is connected to the first lower chamber, respectively, a plurality of second heat transfer tubes, provided between the upper header and the lower header, each upper end The second upper chamber, the lower end of each of the second lower chamber, respectively, a plurality of third heat transfer tubes, and a plurality of first to third heat transfer tubes each with a core portion. In the condenser, the second lower chamber is connected to the refrigerant discharge port directly or through a flow path member provided downstream of the third heat transfer tube. Exists at the upstream end with respect to the first upper chamber toward the first lower chamber. The total of the flow area of the first heat transfer tube for flowing the medium downward is present at an intermediate portion with respect to the flow direction of the refrigerant, and the second for flowing the refrigerant upward from the first lower chamber toward the second upper chamber. Along with the passage area of the heat transfer tubes being wider than the sum of the passage areas of the second heat transfer tubes, the sum of the passage areas of the second heat transfer tubes is located at the downstream end with respect to the flow direction of the refrigerant and is directed from the second upper chamber to the second lower chamber. A condenser characterized in that the total flow passage area of the third heat transfer tube through which a refrigerant flows downward is equal to or less than the total.
【請求項2】 それぞれが水平方向に亙って設けられ、
上下方向に亙って互いに離隔して配置された上下1対の
ヘッダと、上側のヘッダ内を少なくとも第一上部室と第
二上部室との2室に仕切る少なくとも1枚の上部隔壁
と、下側のヘッダ内を少なくとも第一下部室と第二下部
室との2室に仕切る少なくとも1枚の下部隔壁と、上記
上側のヘッダの一部に設けて上記第一上部室に通じる冷
媒送り込み口と、上記上側のヘッダと上記下側のヘッダ
との間に設け、それぞれの上端部を上記第一上部室に、
それぞれの下端部を上記第一下部室に、それぞれ通じさ
せた、複数本の第一伝熱管と、上記上側のヘッダと上記
下側のヘッダとの間に設け、それぞれの上端部を上記第
二上部室に、それぞれの下端部を上記第一下部室に、そ
れぞれ通じさせた、複数本の第二伝熱管と、上記上側の
ヘッダと上記下側のヘッダとの間に設け、それぞれの上
端部を上記第二上部室に、それぞれの下端部を上記第二
下部室に、それぞれ通じさせた、複数本の第三伝熱管
と、それぞれ複数本ずつの第一〜第三伝熱管と共にコア
部を構成するフィンとを備え、上記第二下部室を冷媒吐
出口に、直接又は上記第三伝熱管よりも下流側に設けた
流路部材を介して通じさせたコンデンサに於いて、冷媒
の流れ方向に関して上流端及び下流端に存在し、上記上
側のヘッダから下側のヘッダに向けて冷媒を下方に流す
第一、第三両伝熱管の内部に、冷媒の流れに対して比較
的大きな抵抗となる抵抗部を設け、冷媒の流れ方向に関
して中間部に存在し、上記下側のヘッダから上側のヘッ
ダに向け冷媒を上方に流す第二伝熱管の内部には、冷媒
の流れに対して大きな抵抗となる抵抗部を設けていない
事を特徴とするコンデンサ。
2. Each is provided in a horizontal direction,
A pair of upper and lower headers spaced apart from each other in the vertical direction, at least one upper partition partitioning the interior of the upper header into at least a first upper chamber and a second upper chamber; At least one lower partition partitioning the inside of the header into at least two chambers of a first lower chamber and a second lower chamber, and a refrigerant inlet provided in a part of the upper header and communicating with the first upper chamber. , Provided between the upper header and the lower header, each upper end in the first upper chamber,
Each lower end is connected to the first lower chamber, respectively, a plurality of first heat transfer tubes, provided between the upper header and the lower header, each upper end of the second header In the upper chamber, the lower end of each is connected to the first lower chamber, respectively, a plurality of second heat transfer tubes, provided between the upper header and the lower header, each upper end The second upper chamber, the lower end of each of the second lower chamber, respectively, a plurality of third heat transfer tubes, and a plurality of first to third heat transfer tubes each with a core portion. In the condenser, the second lower chamber is connected to the refrigerant discharge port directly or through a flow path member provided downstream of the third heat transfer tube. Exists at the upstream end and the downstream end with respect to Inside the first and third heat transfer tubes for flowing the refrigerant downward toward the header, a resistance portion having a relatively large resistance to the flow of the refrigerant is provided, and the resistance portion is present at an intermediate portion with respect to the flow direction of the refrigerant, A capacitor characterized by not having a resistance portion that has a large resistance to the flow of a refrigerant inside a second heat transfer tube through which a refrigerant flows upward from a lower header toward an upper header.
JP2485297A 1996-12-25 1997-02-07 Condenser Pending JPH10220919A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2485297A JPH10220919A (en) 1997-02-07 1997-02-07 Condenser
EP97310451A EP0851188B8 (en) 1996-12-25 1997-12-22 Condenser assembly structure
DE69717408T DE69717408T2 (en) 1996-12-25 1997-12-22 Condenser assembly structure
EP02007395A EP1223391B8 (en) 1996-12-25 1997-12-22 Condenser assembly structure
DE69733284T DE69733284T2 (en) 1996-12-25 1997-12-22 Capacitor body structure
US08/996,519 US6302193B1 (en) 1996-12-25 1997-12-23 Condenser assembly structure
AU49273/97A AU731965B2 (en) 1996-12-25 1997-12-24 Condenser assembly structure
KR1019970072883A KR19980064541A (en) 1996-12-25 1997-12-24 Condenser Assembly Structure
US09/929,071 US6546997B2 (en) 1996-12-25 2001-08-15 Condenser assembly structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2485297A JPH10220919A (en) 1997-02-07 1997-02-07 Condenser

Publications (1)

Publication Number Publication Date
JPH10220919A true JPH10220919A (en) 1998-08-21

Family

ID=12149753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2485297A Pending JPH10220919A (en) 1996-12-25 1997-02-07 Condenser

Country Status (1)

Country Link
JP (1) JPH10220919A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645290B1 (en) * 1999-04-07 2006-11-13 쇼와 덴코 가부시키가이샤 Condenser and refrigerating system for air conditioning using the same
WO2007099868A1 (en) 2006-03-01 2007-09-07 Calsonic Kansei Corporation Heat exchanger and integrated-type heat exchanger
JP2013174398A (en) * 2012-02-27 2013-09-05 Japan Climate Systems Corp Heat exchanger
WO2020003967A1 (en) * 2018-06-29 2020-01-02 サンデン・オートモーティブクライメイトシステム株式会社 Heat exchanger and vehicular air-conditioning device
WO2022249425A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100645290B1 (en) * 1999-04-07 2006-11-13 쇼와 덴코 가부시키가이샤 Condenser and refrigerating system for air conditioning using the same
WO2007099868A1 (en) 2006-03-01 2007-09-07 Calsonic Kansei Corporation Heat exchanger and integrated-type heat exchanger
JP2013174398A (en) * 2012-02-27 2013-09-05 Japan Climate Systems Corp Heat exchanger
WO2020003967A1 (en) * 2018-06-29 2020-01-02 サンデン・オートモーティブクライメイトシステム株式会社 Heat exchanger and vehicular air-conditioning device
WO2022249425A1 (en) * 2021-05-28 2022-12-01 三菱電機株式会社 Heat exchanger, air conditioner outdoor unit equipped with heat exchanger, and air conditioner equipped with air conditioner outdoor unit

Similar Documents

Publication Publication Date Title
US7992401B2 (en) Evaporator
CN101978229B (en) Condenser
AU740183B2 (en) Heat exchanger
US8550153B2 (en) Heat exchanger and method of operating the same
US20070277964A1 (en) Heat exchange tube and evaporator
US5479985A (en) Heat exchanger
US7971636B2 (en) Heat exchanger with drain grooves
US7726389B2 (en) Evaporator
US7303003B2 (en) Heat exchanger
US20070251681A1 (en) Evaporator
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
JP4052706B2 (en) Subcool system capacitor
US20090019885A1 (en) Evaporator
US5906237A (en) Heat exchanger having a plurality of heat-exchanging units
CN102221272B (en) Condenser
US20080245518A1 (en) Flat Tube Making Platelike Body, Flat Tube, Heat Exchanger and Process for Fabricating Heat Exchanger
JP2001050686A (en) Evaporator
US20120198882A1 (en) Evaporator
JP2001027484A (en) Serpentine heat-exchanger
JPH10220919A (en) Condenser
US6446715B2 (en) Flat heat exchange tubes
CN110651162B (en) Refrigerant evaporator and method for manufacturing same
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP4106718B2 (en) Heat exchanger
JPH11211277A (en) Subcool system condenser

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20060713

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060801

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031