JP2005083741A - Air conditioner having heat exchanger and refrigerant switching means - Google Patents

Air conditioner having heat exchanger and refrigerant switching means Download PDF

Info

Publication number
JP2005083741A
JP2005083741A JP2004245383A JP2004245383A JP2005083741A JP 2005083741 A JP2005083741 A JP 2005083741A JP 2004245383 A JP2004245383 A JP 2004245383A JP 2004245383 A JP2004245383 A JP 2004245383A JP 2005083741 A JP2005083741 A JP 2005083741A
Authority
JP
Japan
Prior art keywords
tube
air conditioner
refrigerant
heat exchanger
conditioner according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004245383A
Other languages
Japanese (ja)
Inventor
Don Suu Muun
ドン スー ムーン
Sim Won Chin
シム ウォン チン
Soo Hong Ki
キ スー ホン
Jung Woo Lee
ジュン ウー リー
In Fuwa Jun
イン フワ ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020030062111A external-priority patent/KR100574869B1/en
Priority claimed from KR1020030063664A external-priority patent/KR101005419B1/en
Priority claimed from KR1020030077857A external-priority patent/KR20050043089A/en
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2005083741A publication Critical patent/JP2005083741A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To increase an enthalpy difference between an inlet and an outlet of an evaporator in an air conditioner to enhance a refrigerant flow rate. <P>SOLUTION: In this cooling and heating unit formed of an interior heat exchanger, an exterior heat exchanger, a fourway valve and a compressor for compressing a refrigerant, a double tube heat exchanger 103 is arranged in front of an inlet of the compressor 101, a refrigerant flow switching device 106 is arranged between the interior heat exchanger 104 and the exterior heat-exchanger 102, so as to conduct effective heat exchange in cooling and heating operations, and a refrigerant flow directions in an inlet and an outlet of the double tube heat-exchanger 103 are maintained fixedly even in the switching between the cooling and heating operations. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は冷媒の熱交換及び冷暖房が可能な装置に係り、圧縮機入口側に二重管熱交換器を構成して、凝縮機を有する室外熱交換器と蒸発器を有する室内熱交換器との間に冷媒流動切り替え装置を構成することによって、冷房運転時に凝縮機出口側の中温高圧の液体冷媒と蒸発器出口側の低温低圧の過熱状態の冷媒とを效果的に熱交換させることによって凝縮機出口側の液体冷媒の過熱度を増加させて膨脹装置の冷媒流量特性を向上させ、蒸発器入口側のエンタルピーが小さくなって蒸発器の入口及び出口間のエンタルピー差が大きくなるために冷房能力が増加する装置に関する。   The present invention relates to an apparatus capable of heat exchange and cooling / heating of a refrigerant, comprising a double pipe heat exchanger on the compressor inlet side, an outdoor heat exchanger having a condenser, and an indoor heat exchanger having an evaporator. By constructing a refrigerant flow switching device between the two, the refrigerant is condensed by effectively exchanging heat between the medium-temperature and high-pressure liquid refrigerant on the condenser outlet side and the low-temperature and low-pressure superheated refrigerant on the evaporator outlet side during cooling operation. Increases the superheat degree of the liquid refrigerant on the outlet side of the machine to improve the refrigerant flow characteristics of the expansion device, reduces the enthalpy on the inlet side of the evaporator, and increases the enthalpy difference between the inlet and outlet of the evaporator, so that the cooling capacity Relates to a device that increases.

加えて、熱交換器は二重管構造を有して対向流または併行流で熱交換を行う熱交換器のチューブとコアとが一定面積以上で接触するように線接触または面接触するようにして伝熱性能を高めることができる構造に関する。   In addition, the heat exchanger has a double-pipe structure, and the heat exchanger tube that performs heat exchange in a counter flow or parallel flow and the core are in line contact or surface contact so that the core and the core are in contact over a certain area. It is related with the structure which can improve heat-transfer performance.

一般に、冷房及び暖房の少なくとも一つ以上をもたらす装置、例えば空調装置やヒートポンプなどが室内で使われる場合には、室内温度を外気温度と関係なく希望する適正温度に維持する役割をする。   Generally, when an apparatus that provides at least one of cooling and heating, such as an air conditioner or a heat pump, is used indoors, it serves to maintain the room temperature at a desired appropriate temperature regardless of the outside air temperature.

室内温度が希望する温度に一定に維持されれば、ユーザーは快適感を感じるようになる。   If the room temperature is kept constant at a desired temperature, the user feels comfortable.

図1は、一般的な冷凍サイクルを示した図面である。   FIG. 1 shows a general refrigeration cycle.

図面に見られるように、低温低圧の気体状態の冷媒を高温高圧の気体状態の冷媒に変化させる圧縮機1と、前記圧縮機1で変化させた高温高圧の気体状態の冷媒を中温高圧の液体状態の冷媒に変化させながら外部に熱を放出する凝縮機2と、前記凝縮機2で変化させた中温高圧の液体状態の冷媒を低温低圧の冷媒に変化させる膨脹機構3と、前記膨脹機構3で変化させた低温低圧の冷媒を気体状態に変換させながら外部の熱を吸収する蒸発器4とから構成されて、各構成要素は冷媒管で連結されている。   As shown in the drawings, a compressor 1 that changes a low-temperature and low-pressure gaseous refrigerant to a high-temperature and high-pressure gaseous refrigerant, and a high-temperature and high-pressure gaseous refrigerant that is changed by the compressor 1 is changed to a medium-temperature and high-pressure liquid. A condenser 2 that releases heat to the outside while being changed to a refrigerant in a state; an expansion mechanism 3 that changes a medium-temperature and high-pressure liquid refrigerant changed by the condenser 2 to a low-temperature and low-pressure refrigerant; and the expansion mechanism 3 The evaporator 4 absorbs external heat while converting the low-temperature and low-pressure refrigerant changed in the above into a gaseous state, and each component is connected by a refrigerant pipe.

前記冷凍サイクル装置は、蒸発器で外部の熱を吸収して凝縮機で外部に熱を放出することを利用して食品を新鮮に保管したり、室内を冷暖房させ室内環境を快適に維持したりする冷蔵庫や空調装置などに活用される。   The refrigeration cycle apparatus can store food freshly by using the evaporator to absorb heat from the outside and use the condenser to release the heat to the outside. Used for refrigerators and air conditioners.

図2は、一般的な空調装置の冷房サイクルを示した状態図である。   FIG. 2 is a state diagram showing a cooling cycle of a general air conditioner.

図面に見られるように、室内熱交換器4から圧縮機1に流入した低温低圧の気相(気体)冷媒は圧縮機1の加圧作用を介して高温高圧の気相状態に加圧されると同時に、冷房サイクルが形成されるように切り替えられた四方弁5を介して室外熱交換器2に吐出され、前記室外熱交換器2に吐出された冷媒は前記室外熱交換器2の内部を流動しながら室外ファン7の駆動により室外熱交換器内に吸入された外部空気と熱交換を行って中温高圧の液相状態に相変化を起こす。   As shown in the drawing, the low-temperature and low-pressure gas-phase (gas) refrigerant flowing into the compressor 1 from the indoor heat exchanger 4 is pressurized to a high-temperature and high-pressure gas-phase state through the pressurizing action of the compressor 1. At the same time, the refrigerant discharged to the outdoor heat exchanger 2 through the four-way valve 5 switched so as to form a cooling cycle, and the refrigerant discharged to the outdoor heat exchanger 2 flows inside the outdoor heat exchanger 2. While flowing, the outdoor fan 7 is driven to exchange heat with the external air sucked into the outdoor heat exchanger, thereby causing a phase change to a liquid phase state of medium temperature and high pressure.

このように相変化された冷媒は膨脹バルブ3に吐出されると同時に、前記膨脹バルブ3の内部を流動しながら蒸発作用が容易に行われることができるように低温低圧の液状状態に減圧されて室内熱交換器4に吐出され、前記室内熱交換器4に吐出された冷媒は前記室内熱交換器4の周囲空気と熱交換を行って低温低圧の気相状態に相変化を起こした後に、四方弁5を介して再び圧縮機1に流入する。   The refrigerant thus phase-changed is discharged to the expansion valve 3 and at the same time, the refrigerant is reduced to a low-temperature and low-pressure liquid state so that the evaporation operation can be easily performed while flowing in the expansion valve 3. After the refrigerant discharged to the indoor heat exchanger 4 and the refrigerant discharged to the indoor heat exchanger 4 exchanges heat with the ambient air of the indoor heat exchanger 4 to cause a phase change to a low-temperature and low-pressure gas phase state, It flows into the compressor 1 again through the four-way valve 5.

このように室内熱交換器4で膨脹バルブ3を介して減圧された冷媒と熱交換された周囲空気は前記冷媒に熱を奪われて冷たい冷気に変化し、前記冷気は室内ファン6を介して室内に吐出されて空調装置の冷房行程が終了する。   Thus, the ambient air heat-exchanged with the refrigerant decompressed via the expansion valve 3 in the indoor heat exchanger 4 is deprived of heat by the refrigerant and changes into cold cold air, and the cold air passes through the indoor fan 6. It is discharged into the room and the cooling process of the air conditioner is completed.

図3は、一般的な空調装置の暖房サイクルを示した状態図である。   FIG. 3 is a state diagram showing a heating cycle of a general air conditioner.

図面に見られるように、前述した冷房行程と反対のサイクルを形成することによって、室外熱交換器2から圧縮機1に流入した低温低圧の気相冷媒は圧縮機1の加圧作用を介して高温高圧の気相状態に加圧されると同時に、暖房サイクルが形成されるように切り替えられた四方弁5を介して室内熱交換器4に吐出されて室内熱交換器4の周囲空気との熱交換を介して中温高圧の液相状態に相変化を起こした後に膨脹バルブ3に吐出され、この時に高温高圧の気相冷媒と熱交換された周囲空気は前記冷媒熱により熱い空気に変化すると同時に、室内ファン6を介して室内に吐出されて室内の温度を上昇させる。   As can be seen in the drawing, by forming a cycle opposite to the above-described cooling stroke, the low-temperature and low-pressure gas-phase refrigerant flowing into the compressor 1 from the outdoor heat exchanger 2 is passed through the pressurizing action of the compressor 1. At the same time as being pressurized to a high-temperature and high-pressure gas phase, it is discharged to the indoor heat exchanger 4 through the four-way valve 5 switched so as to form a heating cycle, and with the ambient air of the indoor heat exchanger 4 When the ambient air that has been discharged into the expansion valve 3 and undergoes heat exchange with the high-temperature and high-pressure gas-phase refrigerant at this time is changed into hot air by the heat of the refrigerant, after undergoing a phase change to a liquid phase state of medium and high pressure through heat exchange. At the same time, it is discharged into the room through the indoor fan 6 to raise the room temperature.

また、膨脹バルブ3に吐出された冷媒は室外熱交換器2で蒸発作用が円滑に行われるように低温低圧の液相状態に減圧された後に室外熱交換器2に吐出され、前記室外熱交換器2に吐出された冷媒は室外熱交換器内に流入した外部空気との熱交換を介して低温低圧の気相状態に相変化を起こした後に、四方弁5を介して再び圧縮機1に流入する。   In addition, the refrigerant discharged to the expansion valve 3 is decompressed to a low-temperature and low-pressure liquid phase so that the evaporating action is smoothly performed in the outdoor heat exchanger 2 and then discharged to the outdoor heat exchanger 2 to perform the outdoor heat exchange. The refrigerant discharged to the vessel 2 undergoes a phase change to a low-temperature and low-pressure gas phase state through heat exchange with the external air flowing into the outdoor heat exchanger, and then returns to the compressor 1 via the four-way valve 5 again. Inflow.

図4は、一般的な冷暖房装置を概略的に示した構成図である。   FIG. 4 is a configuration diagram schematically showing a general air-conditioning apparatus.

図面に見られるように、冷暖房装置が冷房運転される時には圧縮機1で吐出された冷媒ガスがオイル分離器8でオイルと分離され、このように分離された冷媒ガスは四方弁5を通過して室外熱交換器2に流入した後に、膨脹バルブを経由しながら低温低圧の冷媒状態に変化して室内熱交換器4に流入する。   As shown in the drawing, when the cooling / heating apparatus is in cooling operation, the refrigerant gas discharged from the compressor 1 is separated from the oil by the oil separator 8, and the separated refrigerant gas passes through the four-way valve 5. After flowing into the outdoor heat exchanger 2, the refrigerant changes to a low-temperature and low-pressure refrigerant state through the expansion valve and flows into the indoor heat exchanger 4.

前記室内熱交換器4で蒸発した冷媒ガスは室内空気と熱交換された後に、四方弁5を介してアキュムレーター9に流入し、前記アキュムレーター9に流入した冷媒ガスは圧縮機1に吸入されながら連続的に循環する。   The refrigerant gas evaporated in the indoor heat exchanger 4 is exchanged with indoor air, and then flows into the accumulator 9 through the four-way valve 5. The refrigerant gas that has flowed into the accumulator 9 is sucked into the compressor 1. While circulating continuously.

一方、暖房運転される時には、前記圧縮機1で吐出された冷媒ガスがオイル分離器8を通過しながらオイルと分離され、この冷媒ガスは四方弁5を経由して室内熱交換器4を通過しながら凝縮されて室内空気と熱交換され、次に、冷媒は膨脹バルブを通過しながら低温低圧の冷媒状態に変化し、室外熱交換器2を通過しながら蒸発する。   On the other hand, during the heating operation, the refrigerant gas discharged from the compressor 1 is separated from the oil while passing through the oil separator 8, and this refrigerant gas passes through the indoor heat exchanger 4 via the four-way valve 5. The refrigerant is condensed and heat exchanged with the room air. Next, the refrigerant changes into a low-temperature and low-pressure refrigerant state while passing through the expansion valve, and evaporates while passing through the outdoor heat exchanger 2.

前記蒸発した冷媒ガスは四方弁5を経由してアキュムレーター9に流入した後に、圧縮機1に吸入されながら循環する。   The evaporated refrigerant gas flows into the accumulator 9 via the four-way valve 5 and then circulates while being sucked into the compressor 1.

図5は、一般的な空調装置に二重管熱交換器を適用したことを示す構成図である。   FIG. 5 is a configuration diagram showing that a double pipe heat exchanger is applied to a general air conditioner.

図面に見られるように、室外熱交換器である凝縮機1と膨脹装置との間に二重管熱交換器10を装着したことが特徴とされる。   As can be seen from the drawings, a double-tube heat exchanger 10 is mounted between the condenser 1 that is an outdoor heat exchanger and the expansion device.

圧縮機1で圧縮された冷媒は、室外熱交換器2に流入し、前記室外熱交換器では外側の外部空気と熱交換を行って、前述の二重管熱交換器10での熱交換を行った後に、膨脹装置3を経由して室内熱交換器である蒸発器4に流入する。   The refrigerant compressed by the compressor 1 flows into the outdoor heat exchanger 2, and the outdoor heat exchanger exchanges heat with the outside air outside to exchange heat with the double pipe heat exchanger 10 described above. After performing, it flows into the evaporator 4 which is an indoor heat exchanger via the expansion apparatus 3. FIG.

この時に、室内の空気と熱交換を行いながら室内の温度を既に設定された低い温度に維持し、その後、前記二重管熱交換器10を経由して熱交換を行いながら前記圧縮機1に流入して再循環される。   At this time, while exchanging heat with the indoor air, the indoor temperature is maintained at a preset low temperature, and then the heat is exchanged via the double pipe heat exchanger 10 to the compressor 1. Inflow and recirculate.

このような熱交換器は室外熱交換器の過冷度をどのように増加させるのかによって膨脹装置の冷媒流量が変化し、蒸発器の入口及び出口間のエンタルピー差の変化による冷媒流量特性が影響を受けるようになって冷房性能係数COP等のシステムの全体効率が左右されるようになるだけでなく、圧縮機入口の過熱度をどのように増加させるのかによって液体圧縮防止に影響を及ぼし、圧縮機入口側の温度上昇に影響を及ぼして高速運転時の性能を大幅に左右するようになる。   In such a heat exchanger, the refrigerant flow rate of the expansion device varies depending on how the degree of subcooling of the outdoor heat exchanger is increased, and the refrigerant flow rate characteristic due to the change in the enthalpy difference between the inlet and outlet of the evaporator is affected. As a result, the overall efficiency of the system, such as the cooling performance coefficient COP, will be affected, and it will affect the liquid compression prevention depending on how the superheat degree of the compressor inlet is increased. It affects the temperature rise on the inlet side of the aircraft and greatly affects the performance during high-speed operation.

以下、前述の熱交換器に対する関連技術を説明する。   Hereinafter, related technologies for the above-described heat exchanger will be described.

図6は、一般的な液体・気体熱交換器の例示図である。   FIG. 6 is a view showing an example of a general liquid / gas heat exchanger.

図6を参照すれば、液体・気体熱交換器2は、内部の第1チューブ11と外部の第2チューブ12とが二重管形態で結合され、第1チューブ11は一方側が蒸発器側13の出口P1に連結されて他方側が圧縮機側14の入口P2に連結され、低温低圧の気体を流入させ、第2チューブ12に流れる流体と熱交換させて圧縮機に移送する。   Referring to FIG. 6, in the liquid / gas heat exchanger 2, an inner first tube 11 and an outer second tube 12 are coupled in a double tube form, and one side of the first tube 11 is an evaporator side 13. The other side is connected to the inlet P2 of the compressor side 14 and is connected to the inlet P2 of the compressor side 14 so that a low-temperature and low-pressure gas flows in, exchanges heat with the fluid flowing in the second tube 12, and transfers to the compressor.

すなわち、第1チューブ11は蒸発器側出口P1及び圧縮機側入口P2に連結された低温低圧の気体が流れる管であり、第2チューブ12は凝縮機側15の出口P3及び膨脹バルブ側16の入口P4に連結されて第1チューブ11を流れる冷媒と対向流(または併行流)として中温高圧の液体が流れることによって、第1チューブ11に流れる気体を伝熱により中温とする。   That is, the first tube 11 is a pipe through which a low-temperature and low-pressure gas flows connected to the evaporator-side outlet P1 and the compressor-side inlet P2, and the second tube 12 is connected to the outlet P3 on the condenser side 15 and the expansion valve side 16. A medium-temperature high-pressure liquid flows as a counter flow (or a parallel flow) with the refrigerant flowing through the first tube 11 connected to the inlet P4, so that the gas flowing through the first tube 11 is brought to an intermediate temperature by heat transfer.

図7及び図8は、一般的な液体・気体熱交換器2の一実施形態である。   7 and 8 show an embodiment of a general liquid / gas heat exchanger 2.

図7及び図8に示したように、内部の第1チューブ11を流れる冷媒に熱交換させるために、第1チューブ11の内部空間11aには放射状に形成されたコア17が挿入される。   As shown in FIGS. 7 and 8, radially formed cores 17 are inserted into the internal space 11 a of the first tube 11 in order to exchange heat with the refrigerant flowing through the internal first tube 11.

前記第1チューブ11の内部に挿入されるコア17は、放射形状を有し、すなわち、複数個のピンが中心から一定角度に離隔されて垂直に突出している。   The core 17 inserted into the first tube 11 has a radial shape, that is, a plurality of pins protrude perpendicularly with a certain angle from the center.

しかしながら、このようなコア17のピンは第1チューブ11の内周面に対して線接触しかしないので伝熱性能が低いし、コアを製造するのも難しい。   However, since the pins of the core 17 are only in line contact with the inner peripheral surface of the first tube 11, the heat transfer performance is low and it is difficult to manufacture the core.

また第2チューブ12の内部空間12aには中温高圧の液体が流れる。   Further, a medium-temperature and high-pressure liquid flows in the internal space 12 a of the second tube 12.

図9は、一般的な液体・気体熱交換器2の他の実施形態を示した図面である。   FIG. 9 is a view showing another embodiment of a general liquid / gas heat exchanger 2.

図9に示したように、第1チューブ71と第2チューブ12との間の管形状は、波状"〜"18に加工され、第2チューブ12を流れる流体と第1チューブ11を流れる冷媒との熱交換の効率をさらに向上させている。図9におけるその他の参照番号は図6の参照番号に対応する。   As shown in FIG. 9, the tube shape between the first tube 71 and the second tube 12 is processed into a wave shape “˜” 18, and the fluid flowing through the second tube 12 and the refrigerant flowing through the first tube 11 The efficiency of heat exchange is further improved. The other reference numbers in FIG. 9 correspond to the reference numbers in FIG.

しかしながら、図9のような方式も伝熱性能が低い問題がある。   However, the method as shown in FIG. 9 also has a problem of low heat transfer performance.

本発明の目的は、圧縮機入口前に二重管熱交換器を配置し、室内熱交換器及び室外熱交換器の間に冷媒流動切り替え装置を配置して、室外熱交換器の過冷度を増加させることによって膨脹装置の冷媒流量を増加させ、蒸発器の入口及び出口間のエンタルピー差の増加により冷媒流量を向上可能な構造を提供することである。   An object of the present invention is to arrange a double pipe heat exchanger in front of the compressor inlet, arrange a refrigerant flow switching device between the indoor heat exchanger and the outdoor heat exchanger, and reduce the degree of subcooling of the outdoor heat exchanger. To increase the refrigerant flow rate of the expansion device by increasing the flow rate, and to provide a structure capable of improving the refrigerant flow rate by increasing the enthalpy difference between the inlet and outlet of the evaporator.

また、本発明のもう一つの目的は、圧縮機入口の過熱度を増加させて液体圧縮防止に有利であって、圧縮機入口側の温度上昇を防止することである。   Another object of the present invention is to increase the degree of superheat at the compressor inlet, which is advantageous for preventing liquid compression and preventing temperature rise on the compressor inlet side.

また、本発明のもう一つの目的は、液体・気体熱交換器の内側または外側チューブの内部に前記チューブ内周面との面接触構造を有するコアを結合させるようにした液体・気体熱交換器を提供することである。   Another object of the present invention is to provide a liquid / gas heat exchanger in which a core having a surface contact structure with the inner peripheral surface of the tube is coupled to the inner or outer tube of the liquid / gas heat exchanger. Is to provide.

また、本発明のもう一つの目的は、チューブを二重管にして対向流または併行流として流体を流し、内側または外側チューブに流れる気体冷媒へ外側または内側チューブに流れる流体から伝熱させると同時に、前記内側または外側チューブに挿入される放射形状または扇形状のコアにより伝熱性能を向上させることができるようにした液体・気体熱交換器を提供することである。   Another object of the present invention is to make a tube a double tube and to flow a fluid as a counter flow or a parallel flow, and at the same time to transfer heat from the fluid flowing in the outer or inner tube to the gas refrigerant flowing in the inner or outer tube. It is another object of the present invention to provide a liquid / gas heat exchanger in which heat transfer performance can be improved by a radial or fan-shaped core inserted into the inner or outer tube.

また、本発明のもう一つの目的は、扇形状コアの中心部の拡張管により扇形状を拡張させることによってチューブと密着した状態の面接触が生じるようにして、伝熱性能を向上させることができるようにした液体・気体熱交換器を提供することである。   Another object of the present invention is to improve the heat transfer performance by expanding the fan shape with the expansion tube at the center of the fan-shaped core so that the surface contact is brought into close contact with the tube. It is to provide a liquid / gas heat exchanger that is made possible.

また、本発明のもう一つの目的は、内側または外側チューブを長手方向に少なくとも一つの領域に分割し、扇形状のコアをジグザグ状に各領域で結合させるようにした液体・気体熱交換器を提供することである。   Another object of the present invention is to provide a liquid / gas heat exchanger in which an inner or outer tube is divided into at least one region in the longitudinal direction and a fan-shaped core is joined in each region in a zigzag manner. Is to provide.

また、本発明の目的は、折り面を有する螺旋形の内部コアを第1チューブ内に取り付けて、前記第1チューブ内の内部コアの折り面によって発生する渦流によって、前記内部コアの外側空間と前記第1チューブの内周面との間で熱交換が容易に起こるようにして伝熱性能を高めた熱交換器を提供することである。   Another object of the present invention is to attach a spiral inner core having a folding surface in the first tube, and to create an outer space of the inner core by a vortex generated by the folding surface of the inner core in the first tube. An object of the present invention is to provide a heat exchanger with improved heat transfer performance so that heat exchange can easily occur with the inner peripheral surface of the first tube.

本発明による熱交換器及び冷媒切り替え装置を有する空調装置は、凝縮機、蒸発器、圧縮機及び前記圧縮機で出力される冷媒経路を切り替える切り替え手段を有する空調装置において、熱交換を行う二重管熱交換器が前記圧縮機前に配置される。   An air conditioner having a heat exchanger and a refrigerant switching device according to the present invention includes a condenser, an evaporator, a compressor, and an air conditioner having switching means for switching a refrigerant path output from the compressor. A tube heat exchanger is placed in front of the compressor.

また、本発明により、凝縮機、蒸発器、圧縮機、冷媒経路を切り替える切り替え手段及び前記圧縮機前に配置された熱交換器を有する空調装置において、前記凝縮機または蒸発器から排出される冷媒の経路を変更して前記熱交換器を経由するようにする冷媒経路変更手段としてチェックバルブまたは四方弁がさらに配置される。   Further, according to the present invention, in the air conditioner having a condenser, an evaporator, a compressor, switching means for switching a refrigerant path, and a heat exchanger disposed in front of the compressor, the refrigerant discharged from the condenser or the evaporator A check valve or a four-way valve is further arranged as a refrigerant path changing means for changing the path of the refrigerant and passing through the heat exchanger.

また、本発明により、凝縮機、蒸発器、圧縮機及び前記圧縮機前に配置された熱交換器を有する空調装置において、前記熱交換器には2個以上の冷媒経路が形成され、前記冷媒経路を流れる冷媒間の熱伝逹のための手段が一定の面積の面接触を形成する。   According to the present invention, in the air conditioner having a condenser, an evaporator, a compressor, and a heat exchanger disposed in front of the compressor, two or more refrigerant paths are formed in the heat exchanger, and the refrigerant Means for heat transfer between the refrigerant flowing through the path form a surface contact of a certain area.

本発明の一実施形態において、第1冷媒が流れる第1チューブと、前記第1チューブの外側の第2冷媒が流れる第2チューブと、前記第1または2チューブに結合して前記第1チューブまたは第2チューブと一定の面積で面接触する扇形状のコアとが設けられる。   In one embodiment of the present invention, the first tube through which the first refrigerant flows, the second tube through which the second refrigerant outside the first tube flows, and the first tube or A fan-shaped core that is in surface contact with the second tube at a constant area is provided.

本発明の一実施形態において、前記コアの中心部には第1チューブまたは第2チューブと扇形状のコアとの間の面接触を増大させるための拡張管が長手方向に結合される。   In one embodiment of the present invention, an expansion tube for increasing surface contact between the first tube or the second tube and the fan-shaped core is coupled to the central portion of the core in the longitudinal direction.

本発明の一実施形態において、第1冷媒が流れる第1チューブと、前記第1チューブ外側の第2冷媒が流れる第2チューブと、前記第1または2チューブに結合して前記第1チューブまたは第2チューブの内周面と一定以上の面積で接触するような線接触または面接触を形成する螺旋形状の内部コアとが設けられる。   In one embodiment of the present invention, a first tube through which the first refrigerant flows, a second tube through which the second refrigerant outside the first tube flows, and the first or second tube coupled to the first or second tube. A spiral inner core that forms a line contact or a surface contact that contacts the inner peripheral surface of the two tubes at a certain area or more is provided.

本発明によれば、室外熱交換器の過冷度を増加させることによって膨脹装置の冷媒流量が増えて、蒸発器の入口及び出口間のエンタルピー差の増加による冷媒流量特性が向上し、システムの全体効率が向上するだけでなく、圧縮機入口の過熱度を増加させて液体圧縮防止に有利となり、圧縮機入口側の温度上昇を防止することによって高速運転に卓越した性能を発揮できる効果がある。   According to the present invention, the refrigerant flow rate of the expansion device is increased by increasing the degree of supercooling of the outdoor heat exchanger, and the refrigerant flow rate characteristic is improved by increasing the enthalpy difference between the inlet and outlet of the evaporator. Not only is the overall efficiency improved, it is advantageous for preventing liquid compression by increasing the degree of superheat at the compressor inlet, and it has the effect of exhibiting outstanding performance for high speed operation by preventing temperature rise on the compressor inlet side. .

また、本発明の熱交換器は、気体冷媒が流れるチューブ内部に製造が容易な扇形状のコアを結合することによって、チューブ面との面接触を介して液体・気体として流れる冷媒の伝熱性能を向上させることができる効果がある。   The heat exchanger according to the present invention has a heat transfer performance of a refrigerant that flows as a liquid / gas through surface contact with the tube surface by coupling a fan-shaped core that is easy to manufacture inside the tube through which the gas refrigerant flows. There is an effect that can be improved.

また、本発明は、コアをチューブ面と密着させることができるように前記コア中心部に拡張管を挿入して結合することによってコアを拡張させ、また、拡張管によって伝熱性能を向上させる効果がある。   In addition, the present invention expands the core by inserting and connecting an expansion tube to the core center so that the core can be brought into close contact with the tube surface, and also improves the heat transfer performance by the expansion tube There is.

また、本発明は折り面を有する内部コアを用いて渦流発生を促進させて作動流体自体が管壁に頻繁にぶつかるようにして熱伝逹を促進させる効果がある。   Further, the present invention has an effect of promoting heat transfer by promoting the generation of vortex using the inner core having the folding surface so that the working fluid itself frequently hits the tube wall.

以下、本発明による熱交換器及び冷媒切り替え手段を有する空調装置の望ましい実施形態に対して添付した図面に基づいて説明する。   Hereinafter, preferred embodiments of an air conditioner having a heat exchanger and refrigerant switching means according to the present invention will be described with reference to the accompanying drawings.

図10は本発明による熱交換器と冷媒切り替え装置としてチェックバルブとを用いた場合の主要構成を示す構成図であって、図11は図10において冷媒切り替えのためにチェックバルブの代わりに四方弁を適用した構成を示す構成図であり、図12は図10及び図11においてチェックバルブ及び四方弁が配置されていない熱交換装置の構成を示す構成図である。   FIG. 10 is a block diagram showing a main configuration when a heat exchanger according to the present invention and a check valve as a refrigerant switching device are used. FIG. 11 is a four-way valve instead of a check valve for refrigerant switching in FIG. FIG. 12 is a configuration diagram showing a configuration of a heat exchange device in which the check valve and the four-way valve are not arranged in FIGS. 10 and 11.

これらの図面を参照すれば、室内熱交換器、室外熱交換器、四方弁及び冷媒を圧縮する圧縮機により形成される冷暖房装置において、前記圧縮機101の入口前に二重管熱交換器103を、及び、前記室内熱交換器104と室外熱交換器102との間に冷媒流動切り替え装置106、107を配置して冷暖房動作時に効果的な熱交換を行って、冷暖房運転切り替え時においても、前記二重管熱交換器103の入口及び出口での冷媒流動方向を一定に維持する。   Referring to these drawings, in a cooling / heating device formed by an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and a compressor for compressing refrigerant, a double-tube heat exchanger 103 is provided before the inlet of the compressor 101. In addition, the refrigerant flow switching devices 106 and 107 are arranged between the indoor heat exchanger 104 and the outdoor heat exchanger 102 to perform effective heat exchange during the cooling and heating operation, and even during the cooling and heating operation switching, The refrigerant flow direction at the inlet and outlet of the double-pipe heat exchanger 103 is kept constant.

図10の冷暖房装置では、冷媒流動切り替え装置として複数個のバルブを含むチェックバルブ106を配置したことが特徴であって、図11による他の実施形態では冷媒流動切り替え装置としてチェックバルブの代わりに四方弁107を配置したことが特徴である。   The air conditioning apparatus of FIG. 10 is characterized in that a check valve 106 including a plurality of valves is arranged as a refrigerant flow switching device, and in another embodiment according to FIG. The valve 107 is characteristic.

このように二重管熱交換器103及び冷媒流動切り替え装置を備えた冷暖房装置の動作を説明する。   The operation of the air conditioning apparatus including the double pipe heat exchanger 103 and the refrigerant flow switching device will be described.

冷房時には、凝縮機出口側の中温高圧の液体冷媒と蒸発器出口側の低温低圧の過熱状態の冷媒を熱交換させることによって凝縮機出口側の液体冷媒の過冷度が増えて、膨脹装置の冷媒流量特性を向上させるようになる。   During cooling, heat exchange between the medium-temperature and high-pressure liquid refrigerant on the condenser outlet side and the low-temperature and low-pressure superheated refrigerant on the evaporator outlet side increases the degree of supercooling of the liquid refrigerant on the condenser outlet side. The refrigerant flow rate characteristics are improved.

すなわち、過冷度が大きいほど冷媒流量が増えて、蒸発器入口側のエンタルピーが小さくなって蒸発器の入口及び出口間のエンタルピー差が大きくなり、冷房能力が増加するようになる。   That is, as the degree of supercooling increases, the refrigerant flow rate increases, the enthalpy on the evaporator inlet side decreases, the enthalpy difference between the inlet and outlet of the evaporator increases, and the cooling capacity increases.

また、暖房時には、凝縮機出口側の中温高圧の液体冷媒と蒸発器出口側の低温低圧の過熱状態の冷媒を熱交換させることによって圧縮機入口側の過熱度が増えて、液体圧縮が発生する可能性が減るようになって圧縮機の運転信頼性が向上するようになる。   Also, during heating, heat exchange occurs between the medium-temperature and high-pressure liquid refrigerant on the condenser outlet side and the low-temperature and low-pressure superheated refrigerant on the evaporator outlet side, thereby increasing the degree of superheat on the compressor inlet side and generating liquid compression. As the possibility decreases, the operational reliability of the compressor is improved.

すなわち、蒸発器入口側の冷媒と蒸発器出口側の過熱状態の冷媒とを熱交換させることによって圧縮機入口、すなわち、蒸発器出口温度の過熱度を低減して圧縮機の圧縮特性を向上させるようになるが、特に高周波数(Hz)運転時に圧縮機の入口過熱度を小さくすることによって圧縮機出口温度が過熱されることを防止するようになる。   That is, the heat at the evaporator inlet side and the superheated refrigerant at the evaporator outlet side are heat-exchanged to reduce the degree of superheat at the compressor inlet, that is, the evaporator outlet temperature, thereby improving the compression characteristics of the compressor. However, the compressor outlet temperature is prevented from being overheated by reducing the degree of superheat of the compressor at the time of high frequency (Hz) operation.

図12は、図10及び図11においてチェックバルブまたは四方弁が配置されていない構成を示す構成図である。   FIG. 12 is a configuration diagram showing a configuration in which no check valve or four-way valve is arranged in FIGS. 10 and 11.

図面に見られるように、四方弁と圧縮機入口側との間に二重管熱交換器を設置することによって、凝縮機出口側の中温高圧の液体冷媒と蒸発器出口側の低温低圧の過熱状態の冷媒とを熱交換させることによって凝縮機出口側の液体冷媒の過冷度が増えて、膨脹装置の冷媒流量特性を向上させるようになる。   As can be seen in the drawing, by installing a double-pipe heat exchanger between the four-way valve and the compressor inlet side, the medium-temperature high-pressure liquid refrigerant on the condenser outlet side and the low-temperature low-pressure superheat on the evaporator outlet side By exchanging heat with the refrigerant in the state, the degree of supercooling of the liquid refrigerant on the outlet side of the condenser is increased, and the refrigerant flow characteristic of the expansion device is improved.

すなわち、過冷度が大きいほど冷媒流量が増えて、蒸発器入口側のエンタルピーが小さくなって蒸発器の入口及び出口間のエンタルピー差である冷房能力が増加するようになる。   That is, as the degree of supercooling increases, the refrigerant flow rate increases, the enthalpy on the evaporator inlet side decreases, and the cooling capacity that is the enthalpy difference between the inlet and outlet of the evaporator increases.

しかしながら、図12の構造は単純な反面、冷房モードとは違って暖房モードにおいては、熱交換効果は殆どない。   However, the structure of FIG. 12 is simple, but unlike the cooling mode, there is almost no heat exchange effect in the heating mode.

図13は、本発明の一実施形態における液体・気体熱交換器の透視図であって、図14は本発明の一実施形態における液体・気体熱交換器の分解図であり、図15は本発明の一実施形態における熱交換器の組み立て途中の図面であり、図16は本発明の一実施形態における液体・気体熱交換器の断面図であって、図17、18、19及び20は本発明の他の実施形態における液体・気体熱交換器をそれぞれ示した図面である。   13 is a perspective view of a liquid / gas heat exchanger according to an embodiment of the present invention, FIG. 14 is an exploded view of the liquid / gas heat exchanger according to an embodiment of the present invention, and FIG. FIG. 16 is a drawing in the middle of assembly of the heat exchanger in one embodiment of the invention, FIG. 16 is a cross-sectional view of the liquid / gas heat exchanger in one embodiment of the present invention, and FIGS. It is drawing which showed the liquid and gas heat exchanger in other embodiment of invention, respectively.

図13から図16を参照すれば、入口及び出口111、110を有して低温低圧の気体冷媒が流れる第1チューブ108と、入口及び出口113、112を有して前記第1チューブ108の外側に結合されて第1チューブ108を流れる気体冷媒との間の伝熱のために中温高圧の液体冷媒が対向式に流れる第2チューブ109と、前記第1チューブ108内に収納される扇形状コア130と、コア130の外側端部が第1チューブ108の内周面に密着するように前記コア130の中心部に挿入される拡張管114とが設けられている。   Referring to FIGS. 13 to 16, a first tube 108 having inlets and outlets 111 and 110 through which a low-temperature and low-pressure gas refrigerant flows, and an outer side of the first tube 108 having inlets and outlets 113 and 112. A second tube 109 in which a medium-temperature and high-pressure liquid refrigerant flows in an opposing manner for heat transfer between the gas refrigerant flowing through the first tube 108 and the fan-shaped core housed in the first tube 108 130 and an expansion tube 114 inserted into the center of the core 130 so that the outer end of the core 130 is in close contact with the inner peripheral surface of the first tube 108.

ここで、前記拡張管114は両端の顎部119が加工されてコア130と一体に結合する。   Here, the extension tube 114 is integrally coupled with the core 130 by processing the jaws 119 at both ends.

このように構成された本発明の一実施形態による液体・気体熱交換器に対して添付した図面を参照しながら説明する。   The liquid / gas heat exchanger configured as described above according to an embodiment of the present invention will be described with reference to the accompanying drawings.

まず、図13、14及び図15を参照すれば、内管である第1チューブ108と外管である第2チューブ109とを長手方向に二重管形態で結合し、第1チューブ108は蒸発器側110の出口P1に連結させて蒸発器から出た低温低圧の気体冷媒を熱交換させた後に連結した圧縮機側111の入口P2へ送る。   First, referring to FIGS. 13, 14 and 15, the first tube 108 which is an inner tube and the second tube 109 which is an outer tube are coupled in the longitudinal direction in a double tube form, and the first tube 108 is evaporated. The low-temperature and low-pressure gas refrigerant that is connected to the outlet P1 on the compressor side 110 and is discharged from the evaporator is subjected to heat exchange and then sent to the inlet P2 on the connected compressor side 111.

この時に、第2チューブ109を対向流または併行流で流れる中温高圧の流体から前記第1チューブ108内に形成されたコアを介して気体冷媒は伝熱され、第1チューブ108の内部の気体温度を上昇させて圧力を増加させる。   At this time, the gaseous refrigerant is transferred from the medium-temperature and high-pressure fluid flowing in the second tube 109 in a counterflow or a parallel flow through the core formed in the first tube 108, and the gas temperature inside the first tube 108 is increased. To increase the pressure.

このような第1チューブ108の伝熱性能を向上させることができるように、第1チューブ108の内部空間110には伝熱手段が長手方向に部分的に面接触し、前記伝熱手段は一実施形態において扇形状のコア130として構成される。   In order to improve the heat transfer performance of the first tube 108, heat transfer means partially contacts the inner space 110 of the first tube 108 in the longitudinal direction. In the embodiment, the fan-shaped core 130 is configured.

図14、図15及び図16に示したように、前記コア130は扇形状であり、それぞれの縦辺及び横長辺118、117が逆三角形構造で相互に連結されて扇形状を形成する。   As shown in FIGS. 14, 15 and 16, the core 130 has a fan shape, and the vertical sides and the long horizontal sides 118 and 117 are connected to each other in an inverted triangular structure to form a fan shape.

すなわち、コア130は隣接した縦辺118の間を連結するために上部の横長辺117及び下部の横短辺116がジグザグに縦辺118と連続的に連結した一体型構造であり、その中心部の横短辺116を基準にして終端の横長辺117が扇形状に広がる。   That is, the core 130 has an integrated structure in which the upper horizontal side 117 and the lower horizontal short side 116 are continuously connected to the vertical side 118 in a zigzag manner to connect the adjacent vertical sides 118. The lateral long side 117 at the end spreads in a fan shape with reference to the lateral short side 116.

この時、コア終端の横長辺117は第1チューブ108の内周面と面接触して気体冷媒の伝熱性能を向上させることができる。   At this time, the horizontal long side 117 at the end of the core can be in surface contact with the inner peripheral surface of the first tube 108 to improve the heat transfer performance of the gaseous refrigerant.

またコア130は、終端の横長辺117が第1チューブ108の内周面と密着するために、コア130の中心部の横短辺116の内側を貫通する拡張管114が長手方向に結合される。   In addition, since the end 130 of the core 130 is in close contact with the inner peripheral surface of the first tube 108, the expansion tube 114 that penetrates the inside of the side short side 116 at the center of the core 130 is coupled in the longitudinal direction. .

図14から図16に示したように、拡張管114は第1チューブ108内部空間110に結合する扇形状のコア130の中心部に長手方向に挿入されて結合する。   As shown in FIGS. 14 to 16, the expansion tube 114 is inserted and coupled in the longitudinal direction to the central portion of the fan-shaped core 130 coupled to the internal space 110 of the first tube 108.

拡張管をコアに挿入する時にはコアの中心部が前記拡張管の挿入により拡張されるようになるので、コア全体が第1チューブ108の外側方向に押圧されて横長辺117がチューブ内面と密着した状態で面接触するようになる。   When the expansion tube is inserted into the core, the center portion of the core is expanded by the insertion of the expansion tube, so that the entire core is pressed toward the outside of the first tube 108 and the lateral long side 117 is in close contact with the inner surface of the tube. It comes in surface contact in the state.

このような拡張管114は内部が開放されていて、その半径はコア中心部で横短辺116が形成する半径よりは大きいことが望ましい。   Such an expansion tube 114 is preferably open inside, and its radius is preferably larger than the radius formed by the lateral short side 116 at the center of the core.

したがって、第1チューブ108において、拡張管114、扇形状のコア130、及び第1チューブ108の内面は、連続的に密着する。   Therefore, in the first tube 108, the expansion tube 114, the fan-shaped core 130, and the inner surface of the first tube 108 are in close contact with each other.

この実施形態において、拡張管114は、長手方向に管形状でも、内部が開放されて外側方向にコアの拡張が可能な他の構造でも良い。   In this embodiment, the expansion tube 114 may have a tubular shape in the longitudinal direction, or may have another structure in which the core can be expanded in the outward direction by opening the inside.

前記拡張管114の両端には、図16に示したように、顎部119が外方向に突出するように加工されるが、この顎部119がコア130の横短辺116の両端に掛かってコア130及び拡張管114を共に固定させる。   As shown in FIG. 16, both ends of the expansion tube 114 are processed so that a jaw portion 119 protrudes outward. The jaw portion 119 is hooked on both ends of the lateral short side 116 of the core 130. The core 130 and the expansion tube 114 are fixed together.

ここで、拡張管114の両端の顎部119が突出される構造でコアを結合させる。   Here, the cores are coupled in a structure in which the jaw portions 119 at both ends of the expansion tube 114 are projected.

他の実施形態では、中心にねじを有する複数の拡張管が顎部に結合可能であり、両端の顎部が拡張管結合後にハンマー等で形成され、または、顎部と横短辺との間の溝への挿入されるように離間された形状に顎部を形成することもできる。   In another embodiment, a plurality of expansion tubes having a screw in the center can be coupled to the jaw, and the jaws at both ends are formed with a hammer or the like after the expansion tube is coupled, or between the jaw and the lateral short side. It is also possible to form the jaws in a spaced shape so as to be inserted into the groove.

図17は、本発明の他の実施形態を示した液体・気体熱交換器200を示したものである。   FIG. 17 shows a liquid / gas heat exchanger 200 according to another embodiment of the present invention.

図17を参照すれば、第1チューブ109を3つの領域d1、d2、d3に分けて各領域の大きさに合うように扇形状のコア130、120、121をそれぞれに嵌め込む。   Referring to FIG. 17, the first tube 109 is divided into three regions d1, d2, and d3, and fan-shaped cores 130, 120, and 121 are fitted into the regions so as to fit the size of each region.

これは長手方向への単一のコアの挿入が難しい場合に効率的である。   This is efficient when it is difficult to insert a single core in the longitudinal direction.

この時に、3個のコア130、120、121は冷媒が流れていく方向に対してジグザグに互い違いに結合することによって、コア縦辺による冷媒との接触面積、すなわち、抵抗を増加させる。   At this time, the three cores 130, 120, and 121 are alternately coupled in a zigzag manner in the direction in which the refrigerant flows, thereby increasing the contact area with the refrigerant, that is, the resistance, by the core vertical sides.

このような3個のコア130、120、121の中心部には一つ以上の拡張管114が前述した方法に基づき結合され、扇形状のコア130、120、121を外側へ拡張させて、第1チューブ108の内周面との密着した状態で面接触させる。   One or more expansion tubes 114 are coupled to the center of the three cores 130, 120, and 121 according to the above-described method, and the fan-shaped cores 130, 120, and 121 are expanded to the outside. The surface contact is made in close contact with the inner peripheral surface of one tube 108.

一実施形態において、第1チューブ108内に第1コア121、第2コア120及び第3コア130をジグザグに結合して、内部に単一の拡張管114を挿入する。   In one embodiment, the first core 121, the second core 120, and the third core 130 are coupled in a zigzag manner within the first tube 108, and a single expansion tube 114 is inserted therein.

これにより第1チューブ121を通過する気体冷媒は、第2チューブ120内の流体、第1コア130、第2コア120、第3コア121及び拡張管114により加熱されて圧力が高まる。   As a result, the gaseous refrigerant passing through the first tube 121 is heated by the fluid in the second tube 120, the first core 130, the second core 120, the third core 121, and the expansion tube 114, thereby increasing the pressure.

他の実施形態において、本発明は、第1チューブ内に少なくとも一つ以上の扇形状のコアを少なくとも一つ以上の管により又は管がない形状で結合させることができるように多様な形状とする構造的な変更が可能である。   In another embodiment, the present invention may have various shapes so that at least one fan-shaped core can be coupled to the first tube with at least one tube or without a tube. Structural changes are possible.

図18は、図14に示された放射状コアの変形として波形態の放射状に構成したことを示した図面である。   FIG. 18 is a diagram showing a wave-shaped radial configuration as a modification of the radial core shown in FIG.

図面に見られるように、第1チューブを流れていく低温低圧の流体は波形態のコアにより抵抗力が増して渦流が形成され、第2チューブの高温高圧の流体との熱伝導効率性が増大する。   As shown in the drawing, the low-temperature and low-pressure fluid flowing through the first tube is increased in resistance by the corrugated core to form a vortex and the heat conduction efficiency with the high-temperature and high-pressure fluid in the second tube is increased. To do.

図19は、図14に示された熱伝逹のために第1チューブに配置されたコア130がコア123として第2チューブに配置されたことを示した図面であり、前述した内容は第2チューブに配置されたコアにも適用可能である。   FIG. 19 is a view illustrating that the core 130 disposed in the first tube for heat transfer illustrated in FIG. 14 is disposed as the core 123 in the second tube. The present invention can also be applied to a core disposed on a tube.

図20は、本発明の他の実施形態による液体・気体熱交換器の構成を概略的に示す断面側面図であって、図21及び図22は図20の液体・気体熱交換器の分解斜視図である。   20 is a cross-sectional side view schematically showing a configuration of a liquid / gas heat exchanger according to another embodiment of the present invention. FIGS. 21 and 22 are exploded perspective views of the liquid / gas heat exchanger of FIG. FIG.

図面に見られるように、液体・気体熱交換器102は内部の第1チューブ108と外部の第2チューブ109が二重管形態で結合し、前記第2チューブ109内の第1チューブ108は一方側が蒸発器出口110に連結され、他方側が圧縮機入口111に連結されて、低温低圧の気体を吸入して第2チューブ109に流れる流体と熱交換させて圧縮機に移送する。   As shown in the drawing, the liquid / gas heat exchanger 102 has an inner first tube 108 and an outer second tube 109 coupled in a double tube form, and the first tube 108 in the second tube 109 is one side. One side is connected to the evaporator outlet 110, and the other side is connected to the compressor inlet 111. The low-temperature and low-pressure gas is sucked and exchanged with the fluid flowing in the second tube 109 and transferred to the compressor.

ここで、第1チューブ108は蒸発器出口及び圧縮機入口に連結されて低温低圧の気体が流れる管であり、前記第1チューブ108の外側の第2チューブ109は凝縮機出口及び膨脹バルブの入口に連結され、前記第2チューブには第1チューブ108を流れる冷媒と対向流または併行流で中温高圧の液体が流れるようにすることによって、第1チューブ108を流れる気体は熱伝導によって中温となる。この時に、前記第1チューブ108の内周面と一定の面積以上で接触するような線接触または面接触する複数個の折り面を備えた螺旋形状の内部コア124によって渦流発生を促進させて作動流体自体が管壁に頻繁にぶつかるようにして熱伝逹を促進させ、熱交換がより活発となる。   Here, the first tube 108 is connected to the evaporator outlet and the compressor inlet, and the low-temperature and low-pressure gas flows. The second tube 109 outside the first tube 108 is the condenser outlet and the inlet of the expansion valve. The gas flowing through the first tube 108 is brought to an intermediate temperature by heat conduction by allowing the second tube to flow a medium-temperature and high-pressure liquid in a flow opposite to or parallel to the refrigerant flowing through the first tube 108. . At this time, the spiral inner core 124 having a plurality of folding surfaces which are in line contact or surface contact with the inner peripheral surface of the first tube 108 with a certain area or more promotes the generation of eddy currents. The fluid itself frequently hits the tube wall to promote heat transfer, and heat exchange becomes more active.

この動作を図21及び図22を参照して説明する。   This operation will be described with reference to FIGS.

直四角形の板材を複数個の折り面形状を有する螺旋状の形状とするようにベンディングまたは折り曲げによってコア124を成形して、これを前記第1チューブ108の内周面と一定面積以上が接触するような線接触または面接触するように設置する。前記第1チューブ108内部に低温の冷媒が通過すると、前記第1チューブ108の内周面と前記螺旋形コア124の外側との間で流動する冷媒は前記第2チューブ109内の中温の冷媒と熱交換して中温となるが、このように中温になった冷媒は前記螺旋形コア124に形成された複数個の折り面にぶつかって渦流を形成するようになり、この渦流によって前記第1チューブ108内の低温の冷媒と容易に混合するようになる。   A core 124 is formed by bending or bending so that a rectangular plate material is formed in a spiral shape having a plurality of folding surfaces, and the core 124 is in contact with the inner peripheral surface of the first tube 108 over a certain area. Install in line contact or surface contact. When a low-temperature refrigerant passes through the first tube 108, the refrigerant flowing between the inner peripheral surface of the first tube 108 and the outside of the spiral core 124 is the medium-temperature refrigerant in the second tube 109. Although the heat exchange results in an intermediate temperature, the refrigerant having the intermediate temperature collides with a plurality of folding surfaces formed on the spiral core 124 to form an eddy current, and the vortex current causes the first tube. It becomes easy to mix with the low-temperature refrigerant in 108.

したがって、前記第1チューブ108内の冷媒も短い時間で中温の冷媒に変化するようになる。   Therefore, the refrigerant in the first tube 108 also changes to a medium temperature refrigerant in a short time.

図23は、本発明によるph線図を示した図面である。   FIG. 23 shows a ph diagram according to the present invention.

図面に見られるように、圧縮冷凍サイクルを行うことによって、圧縮機側Bでエンタルピー(enthalpy)が増加するようになり、膨脹バルブ側A及び蒸発器側Aでエンタルピーが減少するようになることによって、全体的に伝熱性能が大幅に向上することが分かる。   As can be seen in the drawing, by performing a compression refrigeration cycle, the enthalpy on the compressor side B increases and the enthalpy on the expansion valve side A and evaporator side A decreases. It can be seen that the overall heat transfer performance is greatly improved.

前述したように、本発明は、熱交換及び冷暖房を效率的に行うために、圧縮機入口側に二重管熱交換器を構成し、凝縮機を含む室外熱交換器と蒸発器を含む室内熱交換器との間に冷媒流動切り替え装置を配置することによって、冷房運転時に凝縮機出口側の中温高圧の液体冷媒と蒸発器出口側の低温低圧の過熱状態の冷媒とを效果的に熱交換させることによって凝縮機出口側の液体冷媒の過熱度を増加させて膨脹装置の冷媒流量特性を向上させ、蒸発器の入口側のエンタルピーが小さくなって蒸発器の入口及び出口間のエンタルピー差を大きくし、冷房能力を増加させる空調装置に関する。   As described above, in order to efficiently perform heat exchange and cooling / heating, the present invention comprises a double pipe heat exchanger on the compressor inlet side, and includes an outdoor heat exchanger including a condenser and an indoor space including an evaporator. By disposing the refrigerant flow switching device between the heat exchanger, the medium-temperature and high-pressure liquid refrigerant on the condenser outlet side and the low-temperature and low-pressure superheated refrigerant on the evaporator outlet side are effectively exchanged heat during cooling operation. By increasing the superheat degree of the liquid refrigerant on the condenser outlet side, the refrigerant flow characteristics of the expansion device are improved, the enthalpy on the inlet side of the evaporator is reduced, and the enthalpy difference between the inlet and outlet of the evaporator is increased. And an air conditioner that increases cooling capacity.

前述の熱交換器は、二重管構造を有して対向流または併行流で熱交換を行う熱交換器のチューブとコアが一定面積以上で接触するような線接触または面接触するようにして伝熱性能を高めることができる構造である。   The heat exchanger described above has a double-pipe structure and performs line contact or surface contact so that the tube and the core of the heat exchanger that perform heat exchange in a counter flow or parallel flow are in contact with each other over a certain area. It is a structure that can enhance heat transfer performance.

本発明の望ましい実施形態を説明したが、本発明は多様な変化と変更及び均等物を用いることができる。本発明は前述の実施形態を適切に変形しても同一に応用可能であることが明確である。   Although the preferred embodiments of the present invention have been described, the present invention can be used with various changes, modifications, and equivalents. It is clear that the present invention can be applied in the same way even if the above-described embodiment is appropriately modified.

したがって前記記載内容は特許請求範囲の限界により本発明の範囲が限られるのでない。   Accordingly, the scope of the present invention is not limited by the limitations of the claims.

空調装置及び冷凍サイクルが動作される装置に適用可能である。   The present invention is applicable to an air conditioner and a device in which a refrigeration cycle is operated.

一般的な冷凍サイクルを示した図面である。It is drawing which showed the general refrigerating cycle. 一般的な空調装置の冷房サイクルを示した状態図である。It is the state figure which showed the cooling cycle of the general air conditioner. 一般的な空調装置の暖房サイクルを示した状態図である。It is the state figure which showed the heating cycle of the general air conditioner. 一般的な冷暖房装置を概略的に示した構成図である。It is the block diagram which showed the general air conditioning apparatus roughly. 一般的な空調装置に二重管熱交換器を適用した場合を示す構成図である。It is a block diagram which shows the case where a double pipe heat exchanger is applied to a general air conditioner. 一般的な液体・気体熱交換器の例示図である。It is an illustration figure of a general liquid and gas heat exchanger. 一般的な一実施形態による液体・気体熱交換器である。1 is a liquid / gas heat exchanger according to one general embodiment. 一般的な一実施形態による液体・気体熱交換器であるA liquid / gas heat exchanger according to a general embodiment 一般的な他の実施形態による液体・気体熱交換器である。2 is a liquid / gas heat exchanger according to another general embodiment. 本発明による熱交換器と冷媒切り替え装置としてチェックバルブとを用いた主要構成を示す構成図である。It is a block diagram which shows the main structures using the heat exchanger by this invention, and a check valve as a refrigerant | coolant switching apparatus. 図10において冷媒切り替えのためにチェックバルブの代わりに四方弁を適用した構成を示す構成図である。It is a block diagram which shows the structure which applied the four-way valve instead of the check valve for refrigerant | coolant switching in FIG. 図10及び図11においてチェックバルブ及び四方弁が配置されていない熱交換装置の構成を示す構成図である。It is a block diagram which shows the structure of the heat exchange apparatus in which the check valve and the four-way valve are not arrange | positioned in FIG.10 and FIG.11. 本発明の実施形態による液体・気体熱交換器の透視図である。1 is a perspective view of a liquid / gas heat exchanger according to an embodiment of the present invention. 本発明の実施形態による液体・気体熱交換器の分解図である。1 is an exploded view of a liquid / gas heat exchanger according to an embodiment of the present invention. 本発明の実施形態による熱交換器の組み立て途中を示す図である。It is a figure which shows the middle of the assembly of the heat exchanger by embodiment of this invention. 本発明の実施形態による液体・気体熱交換器の断面図である。1 is a cross-sectional view of a liquid / gas heat exchanger according to an embodiment of the present invention. 本発明の他の実施形態による液体・気体熱交換器を示した図面である。4 is a view showing a liquid / gas heat exchanger according to another embodiment of the present invention. 本発明の他の実施形態による液体・気体熱交換器を示した図面である。4 is a view showing a liquid / gas heat exchanger according to another embodiment of the present invention. 本発明の他の実施形態による液体・気体熱交換器を示した図面である。4 is a view showing a liquid / gas heat exchanger according to another embodiment of the present invention. 本発明の他の実施形態による液体・気体熱交換器を示した図面である。4 is a view showing a liquid / gas heat exchanger according to another embodiment of the present invention. 図20の液体・気体熱交換器の分解斜視図である。FIG. 21 is an exploded perspective view of the liquid / gas heat exchanger of FIG. 20. 図20の液体・気体熱交換器の分解斜視図である。FIG. 21 is an exploded perspective view of the liquid / gas heat exchanger of FIG. 20. 本発明によるph線図である。FIG. 3 is a ph diagram according to the present invention.

符号の説明Explanation of symbols

101 圧縮機
102 室外熱交換器
103 二重管熱交換器
104 室内熱交換器
105 四方弁
106 チェックバルブ
107 四方弁
DESCRIPTION OF SYMBOLS 101 Compressor 102 Outdoor heat exchanger 103 Double pipe heat exchanger 104 Indoor heat exchanger 105 Four-way valve 106 Check valve 107 Four-way valve

Claims (22)

凝縮機、蒸発器、圧縮機及び前記圧縮機から排出される冷媒の経路を切り替える切り替え手段を有する空調装置において、
熱交換を行う熱交換手段を前記圧縮機前に配置したことを特徴とする空調装置。
In an air conditioner having a condenser, an evaporator, a compressor, and switching means for switching a path of refrigerant discharged from the compressor,
An air conditioner characterized in that heat exchange means for performing heat exchange is arranged in front of the compressor.
前記熱交換手段は二重管熱交換器であることを特徴とする請求項1に記載の空調装置。   The air conditioner according to claim 1, wherein the heat exchange means is a double pipe heat exchanger. 凝縮機、蒸発器、圧縮機、冷媒経路を切り替える切り替え手段及び前記圧縮機前に配置された熱交換器を有する空調装置において、
前記凝縮機または前記蒸発器から排出される冷媒の経路を変更して前記熱交換器を経由するようにする別の冷媒経路変更手段を有することを特徴とする空調装置。
In an air conditioner having a condenser, an evaporator, a compressor, switching means for switching a refrigerant path, and a heat exchanger disposed in front of the compressor,
An air conditioner comprising another refrigerant path changing means for changing a path of the refrigerant discharged from the condenser or the evaporator and passing through the heat exchanger.
前記冷媒経路変更手段はチェックバルブであることを特徴とする請求項3に記載の空調装置。   The air conditioner according to claim 3, wherein the refrigerant path changing means is a check valve. 前記チェックバルブは4個の組み合わされたバルブからなることを特徴とする請求項4に記載の空調装置。   The air conditioner according to claim 4, wherein the check valve is composed of four combined valves. 前記冷媒経路変更手段は四方弁であることを特徴とする請求項3に記載の空調装置。   The air conditioner according to claim 3, wherein the refrigerant path changing means is a four-way valve. 凝縮機、蒸発器、圧縮機及び前記圧縮機前に配置された熱交換器を有する空調装置において、
前記熱交換器には2個以上の冷媒経路が形成され、前記冷媒経路を流れる冷媒の間の熱伝逹のための手段が一定の面積の面接触を形成することを特徴とする空調装置。
In an air conditioner having a condenser, an evaporator, a compressor and a heat exchanger arranged in front of the compressor,
The air conditioner is characterized in that two or more refrigerant paths are formed in the heat exchanger, and means for heat transfer between the refrigerants flowing through the refrigerant path forms a surface contact of a certain area.
前記2個以上の冷媒経路は、第1冷媒が流れる第1チューブと、前記第1チューブ外側の第2冷媒が流れる第2チューブと、前記第1または2チューブに結合して第1チューブまたは第2チューブに一定の面積で接触する手段とを備えることを特徴とする請求項7に記載の空調装置。   The two or more refrigerant paths are connected to the first tube or the first tube through which the first refrigerant flows, the second tube through which the second refrigerant outside the first tube flows, and the first or second tube. The air conditioner according to claim 7, further comprising means for contacting the two tubes with a constant area. 前記第1チューブまたは前記第2チューブに一定の面積で部分的に面接触する手段は、前記第1または2チューブ内に長手方向に結合して前記第1チューブまたは第2チューブの内周面と部分的に面接触する扇形状のコアを備えることを特徴とする請求項8に記載の空調装置。   Means for making partial surface contact with the first tube or the second tube with a certain area is coupled to the first tube or the second tube in a longitudinal direction, and an inner peripheral surface of the first tube or the second tube. The air conditioner according to claim 8, further comprising a fan-shaped core that is partially in surface contact. 前記扇形状のコアはそれぞれの縦辺及び横長辺が逆三角形構造で相互に連結されて扇形状を形成することを特徴とする請求項8に記載の空調装置。   The air conditioner according to claim 8, wherein the fan-shaped cores have a vertical shape and a horizontal long side that are connected to each other in an inverted triangular structure to form a fan shape. 前記コアは隣接した縦辺間を連結するために上部の横長辺及び下部の横短辺がジグザグに縦辺と連続的に連結した一体型構造であり、その中心部の横短辺を基準にして終端の横長辺が扇形状に広がることを特徴とする請求項10に記載の空調装置。   The core has an integrated structure in which the upper horizontal side and the lower horizontal short side are continuously connected to the vertical side in a zigzag manner in order to connect the adjacent vertical sides, with the horizontal short side at the center as a reference. The air conditioner according to claim 10, wherein the lateral long side of the terminal extends in a fan shape. 前記扇形状のコアが配置される前記第1または2チューブを1個以上に分割して前記扇形状のコアをそれぞれに設置することを特徴とする請求項9に記載の空調装置。   The air conditioner according to claim 9, wherein the first or second tube in which the fan-shaped core is arranged is divided into one or more and the fan-shaped cores are respectively installed. 前記第1チューブまたは第2チューブに一定の面積で接触する手段は、前記第1または2チューブ内に長手方向に結合して前記第1チューブまたは第2チューブの内周面と部分的に面接触する波形態のコアを備えることを特徴とする請求項8に記載の空調装置。   The means for contacting the first tube or the second tube with a certain area is coupled in the longitudinal direction in the first or second tube and partially in surface contact with the inner peripheral surface of the first tube or the second tube. The air conditioner according to claim 8, further comprising a corrugated core. 前記波形態のコアにより冷媒の流れに抵抗力と渦流が形成されて熱伝導効率性が増大することを特徴とする請求項13に記載の空調装置。   14. The air conditioner according to claim 13, wherein the wave-shaped core forms a resistance force and a vortex in the refrigerant flow to increase heat conduction efficiency. 前記コアの中心部には前記第1チューブまたは前記第2チューブと前記扇形状のコアとの間の面接触を増大させるための拡張管が長手方向に結合されることを特徴とする請求項9に記載の空調装置。   The expansion tube for increasing the surface contact between the first tube or the second tube and the fan-shaped core is coupled to the central portion of the core in the longitudinal direction. The air conditioner described in 1. 前記拡張管の両端には前記コアの両端に掛けられる顎部が突出形成されていることを特徴とする請求項15に記載の空調装置。   The air conditioner according to claim 15, wherein jaws that are hung on both ends of the core protrude from both ends of the expansion pipe. 2個以上の前記コアが前記第1チューブまたは前記第2チューブ内に配置されることを特徴とする請求項9に記載の空調装置。   The air conditioner according to claim 9, wherein two or more of the cores are disposed in the first tube or the second tube. 前記2個以上のコアは前記第1チューブまたは前記第2チューブ内部でジグザグに結合することを特徴とする請求項17に記載の空調装置。   The air conditioner according to claim 17, wherein the two or more cores are coupled in a zigzag manner inside the first tube or the second tube. 前記第1チューブまたは前記第2チューブに一定の面積で接触する手段は、前記第1または2チューブ内に長手方向に結合して前記第1チューブまたは第2チューブの内周面と一定面積以上で接触するような線接触または面接触する螺旋形状の内部コアを備えることを特徴とする請求項8に記載の空調装置。   The means for contacting the first tube or the second tube with a certain area is coupled to the first tube or the second tube in a longitudinal direction so that the inner surface of the first tube or the second tube is larger than the certain area. The air conditioner according to claim 8, further comprising a spiral inner core that makes line contact or surface contact. 前記内部コアは、複数個の折り面を備えることを特徴とする請求項19に記載の空調装置。   The air conditioner according to claim 19, wherein the inner core includes a plurality of folding surfaces. 前記複数の折り面はベンディングまたは折り曲げによって一体に形成されることを特徴とする請求項20に記載の空調装置。   The air conditioner according to claim 20, wherein the plurality of folding surfaces are integrally formed by bending or bending. 前記複数の折り面を備えるコアにより冷媒の流れに抵抗力と渦流が形成されて熱伝導効率性が増大することを特徴とする請求項20に記載の空調装置。   21. The air conditioner according to claim 20, wherein a resistance force and a vortex flow are formed in the flow of the refrigerant by the core including the plurality of folding surfaces to increase heat conduction efficiency.
JP2004245383A 2003-09-05 2004-08-25 Air conditioner having heat exchanger and refrigerant switching means Pending JP2005083741A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020030062111A KR100574869B1 (en) 2003-09-05 2003-09-05 Liquid-to-suction heat exchanger
KR1020030063664A KR101005419B1 (en) 2003-09-15 2003-09-15 Liquid-to-Suction Heat Exchanger
KR1020030077857A KR20050043089A (en) 2003-11-05 2003-11-05 Heat pump

Publications (1)

Publication Number Publication Date
JP2005083741A true JP2005083741A (en) 2005-03-31

Family

ID=34139415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004245383A Pending JP2005083741A (en) 2003-09-05 2004-08-25 Air conditioner having heat exchanger and refrigerant switching means

Country Status (4)

Country Link
US (1) US20050050910A1 (en)
EP (1) EP1512924A3 (en)
JP (1) JP2005083741A (en)
CN (1) CN100422665C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008523A (en) * 2006-06-28 2008-01-17 Hitachi Appliances Inc Refrigerating cycle and water heater
JP2012500159A (en) * 2008-08-18 2012-01-05 ランシンガー,ジア,アール Windscreen cleaning fluid heating apparatus and system
WO2012108112A1 (en) * 2011-02-08 2012-08-16 サンデン株式会社 Refrigeration cycle device
CN106288487A (en) * 2016-08-26 2017-01-04 芜湖美智空调设备有限公司 One drags many air-conditionings and control method thereof
JP2017125640A (en) * 2016-01-13 2017-07-20 株式会社豊田中央研究所 Inner wall surface structure for flow channel, and heat exchange system

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656083B1 (en) * 2005-01-31 2006-12-11 엘지전자 주식회사 Heat exchanger in an air harmonizing system
KR100697088B1 (en) * 2005-06-09 2007-03-20 엘지전자 주식회사 Air-Condition
KR20080062891A (en) * 2006-12-29 2008-07-03 엘지전자 주식회사 Fan in the air conditioner
EP2145150B8 (en) 2007-05-11 2016-08-10 The Chemours Company FC, LLC Method for exchanging heat in a vapor compression heat transfer system and a vapor compression heat transfer system comprising an intermediate heat exchanger with a dual-row evaporator or condenser
US9587888B2 (en) * 2008-07-24 2017-03-07 Mahle International Gmbh Internal heat exchanger assembly
US8925620B2 (en) 2008-08-18 2015-01-06 Tsm Corporation Windshield washer fluid heater
CN101957062B (en) * 2010-11-09 2012-10-10 吴秀华 Internal and external heat absorbing water heater having high efficiency and energy saving properties
CN102213504B (en) * 2011-04-18 2012-11-14 四川空分设备(集团)有限责任公司 System for using LNG (Liquefied Natural Gas) in air conditioner
US20120291478A1 (en) * 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
PL220684B1 (en) * 2011-06-10 2015-11-30 Aic Spółka Akcyjna Heat exchanger tube
CN102425836A (en) * 2011-12-14 2012-04-25 合肥通用制冷设备有限公司 Novel seperation type heat pipe heat exchange air conditioning unit
DE112013003996T5 (en) * 2012-08-10 2015-05-07 CONTITECH KüHNER GMBH & CIE KG Intake flow enhancement for internal heat exchanger
CN103629868B (en) * 2012-08-28 2015-10-14 陈君 A kind of High-energy-efficienhousehold household air conditioner
CN103807936B (en) * 2012-11-08 2018-06-26 杭州三花研究院有限公司 A kind of heat pump air conditioning system
EP2735835A3 (en) * 2012-11-26 2014-11-26 TI Automotive Engineering Centre (Heidelberg) GmbH Internal heat exchanger for an air conditioning system
CN103292523B (en) * 2013-05-14 2016-05-04 西安交通大学 A kind of cold and hot two air-conditioning systems processed with regenerator
CN103245136A (en) * 2013-05-22 2013-08-14 浙江创立汽车空调有限公司 Device for improving refrigerating capability of air conditioner
CN103743143A (en) * 2013-12-24 2014-04-23 西安交通大学 Air conditioning refrigerating device
US20160040938A1 (en) * 2014-08-06 2016-02-11 Contitech North America, Inc. Internal heat exchanger and method for making the same
FR3026171B1 (en) * 2014-09-23 2019-03-22 Valeo Systemes Thermiques DEVICE FOR THERMALLY CONDITIONING A FLUID FOR A MOTOR VEHICLE
CN104697248B (en) * 2015-03-26 2017-07-28 广东美的暖通设备有限公司 For the heat exchanger of Teat pump boiler and the Teat pump boiler with it
CN105466058A (en) * 2016-01-11 2016-04-06 唐玉敏 Different-aggregated heat utilization enthalpy compensation system with primary evaporation
CN106369720A (en) * 2016-09-30 2017-02-01 广东美的制冷设备有限公司 Air conditioning system, air conditioner and air conditioning method
CN108061404A (en) * 2017-08-28 2018-05-22 浙江大学 A kind of two-way mixed working fluid heat pump system
CN108061399A (en) * 2017-08-28 2018-05-22 浙江大学 A kind of two-way heat recovery heat pump system
CN108061400B (en) * 2017-08-28 2021-05-14 浙江大学 Switchable bidirectional mixed working medium heat pump system
CN108061403A (en) * 2017-08-28 2018-05-22 浙江大学 A kind of two-way self-cascade heat pump system
AU2017438484B2 (en) * 2017-11-02 2021-05-20 Mitsubishi Electric Corporation Refrigeration cycle device
CN108826541A (en) * 2018-05-11 2018-11-16 浙江大学 A kind of dehumidification heat exchange heat pump air conditioning system and its operation method with regenerator
CN109405331A (en) * 2018-09-26 2019-03-01 珠海格力电器股份有限公司 Heat pump system
CN110486987B (en) * 2019-09-11 2024-04-09 武汉亚格光电技术股份有限公司 Lotus root core type refrigerating evaporator
CN113715574B (en) * 2021-07-29 2023-05-02 西安交通大学 Transcritical carbon dioxide electric automobile thermal management system and frostless control method thereof
CN115682457A (en) * 2022-09-22 2023-02-03 珠海格力电器股份有限公司 Air conditioning system with heat exchange structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842568U (en) * 1981-09-08 1983-03-22 日立造船株式会社 Heat exchanger
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH10160269A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Refrigerating device
JPH11183062A (en) * 1997-12-18 1999-07-06 Maruyasu Ind Co Ltd Double piped heat exchanger
JP2003004315A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Air conditioner
JP2003510546A (en) * 1999-09-20 2003-03-18 ベール ゲーエムベーハー ウント コー Air conditioner with internal heat exchanger
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2003240362A (en) * 2002-02-20 2003-08-27 Fujitsu General Ltd Air conditioner

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2236358A (en) * 1939-11-29 1941-03-25 Thomas B Allardice Combined cinder collector and fluid heater
GB1464453A (en) * 1973-09-21 1977-02-16 Daikin Ind Ltd Refrigerating apparatus
US4089667A (en) * 1976-10-27 1978-05-16 Sun-Econ, Inc. Heat extraction or reclamation apparatus for refrigerating and air conditioning systems
US4448348A (en) * 1982-08-19 1984-05-15 Bidwell Malcolm A Forced air flue heater device
CN1155645A (en) * 1995-09-22 1997-07-30 Lg电子株式会社 Heat exchange apparatus
JPH1054616A (en) * 1996-08-14 1998-02-24 Daikin Ind Ltd Air conditioner
JPH10170172A (en) * 1996-12-09 1998-06-26 Sango Co Ltd Double tube type heat exchanger
EP1033541B1 (en) * 1997-11-17 2004-07-21 Daikin Industries, Limited Refrigerating apparatus
JPH11351680A (en) * 1998-06-08 1999-12-24 Calsonic Corp Cooling equipment
JP2985882B1 (en) * 1998-08-21 1999-12-06 ダイキン工業株式会社 Double tube heat exchanger
CN2336312Y (en) * 1998-09-09 1999-09-01 海尔集团公司 Casing heat exchanger
JP2000121275A (en) * 1998-10-14 2000-04-28 Toyota Motor Corp Double pipe heat exchanger
US6138747A (en) * 1999-02-17 2000-10-31 Dehr Heat Transfer System, Inc. Heat exchanger tube to header swaging process
ATE380987T1 (en) * 1999-10-18 2007-12-15 Daikin Ind Ltd REFRIGERATOR
US6345666B1 (en) * 1999-12-17 2002-02-12 Fantom Technologies, Inc. Sublouvred fins and a heat engine and a heat exchanger having same
DE10038624C2 (en) * 2000-08-03 2002-11-21 Broekelmann Aluminium F W Heat transfer tube with twisted inner fins
JP2002195677A (en) * 2000-10-20 2002-07-10 Denso Corp Heat pump cycle
US6715307B2 (en) * 2001-01-24 2004-04-06 Calsonic Kansei Corporation Air conditioner for vehicle
US6872070B2 (en) * 2001-05-10 2005-03-29 Hauck Manufacturing Company U-tube diffusion flame burner assembly having unique flame stabilization
JP3991654B2 (en) * 2001-11-05 2007-10-17 株式会社富士通ゼネラル Air conditioner

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842568U (en) * 1981-09-08 1983-03-22 日立造船株式会社 Heat exchanger
JPH1019418A (en) * 1996-07-03 1998-01-23 Toshiba Corp Refrigerator with deep freezer
JPH10160269A (en) * 1996-11-29 1998-06-19 Matsushita Electric Ind Co Ltd Refrigerating device
JPH11183062A (en) * 1997-12-18 1999-07-06 Maruyasu Ind Co Ltd Double piped heat exchanger
JP2003510546A (en) * 1999-09-20 2003-03-18 ベール ゲーエムベーハー ウント コー Air conditioner with internal heat exchanger
JP2003004315A (en) * 2001-06-20 2003-01-08 Fujitsu General Ltd Air conditioner
JP2003194432A (en) * 2001-10-19 2003-07-09 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2003240362A (en) * 2002-02-20 2003-08-27 Fujitsu General Ltd Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008008523A (en) * 2006-06-28 2008-01-17 Hitachi Appliances Inc Refrigerating cycle and water heater
JP2012500159A (en) * 2008-08-18 2012-01-05 ランシンガー,ジア,アール Windscreen cleaning fluid heating apparatus and system
WO2012108112A1 (en) * 2011-02-08 2012-08-16 サンデン株式会社 Refrigeration cycle device
JP2017125640A (en) * 2016-01-13 2017-07-20 株式会社豊田中央研究所 Inner wall surface structure for flow channel, and heat exchange system
CN106288487A (en) * 2016-08-26 2017-01-04 芜湖美智空调设备有限公司 One drags many air-conditionings and control method thereof

Also Published As

Publication number Publication date
EP1512924A2 (en) 2005-03-09
US20050050910A1 (en) 2005-03-10
CN100422665C (en) 2008-10-01
EP1512924A3 (en) 2011-01-26
CN1590927A (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP2005083741A (en) Air conditioner having heat exchanger and refrigerant switching means
JP3982545B2 (en) Air conditioner
JP5496217B2 (en) heat pump
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
KR100758902B1 (en) multi type air conditioning system and controlling method of the system
EP1804011A2 (en) Refrigerator
JP5936785B1 (en) Air conditioner
WO2007034744A1 (en) Air conditioner
JPH0875290A (en) Heat pump type air conditioner
CN113339909B (en) Heat pump air conditioning system
JP2552555B2 (en) How to operate the heat pump
JP2005214613A (en) Air conditioner
JP2009162403A (en) Air conditioner
KR100720714B1 (en) Apparatus for large-scale heat pump with two-step shell-tube heat exchanger
JP4983878B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
KR101005419B1 (en) Liquid-to-Suction Heat Exchanger
JP3007455B2 (en) Refrigeration cycle device
KR20050043089A (en) Heat pump
JPH02161263A (en) Air conditioner
JP2010078256A (en) Fin tube type heat exchanger, and refrigerating cycle device and air conditioner using the same
KR101487740B1 (en) Duality Cold Cycle of Heat pump system
KR20090004273A (en) High pressure refrigerants system
KR101305281B1 (en) Dual supercooling apparatus and airconditioner applying the same
JPH0894192A (en) Vapor compression type refrigerating device
KR20110103827A (en) Heat exchanger for air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101221