JPH11183062A - Double piped heat exchanger - Google Patents

Double piped heat exchanger

Info

Publication number
JPH11183062A
JPH11183062A JP34881497A JP34881497A JPH11183062A JP H11183062 A JPH11183062 A JP H11183062A JP 34881497 A JP34881497 A JP 34881497A JP 34881497 A JP34881497 A JP 34881497A JP H11183062 A JPH11183062 A JP H11183062A
Authority
JP
Japan
Prior art keywords
heat transfer
pipe
tube
heat exchanger
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34881497A
Other languages
Japanese (ja)
Inventor
Yasufumi Sakakibara
康文 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Original Assignee
Maruyasu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd filed Critical Maruyasu Industries Co Ltd
Priority to JP34881497A priority Critical patent/JPH11183062A/en
Publication of JPH11183062A publication Critical patent/JPH11183062A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Abstract

PROBLEM TO BE SOLVED: To easily meet a request for increasing a heat exchanging capacity in a double piped heat exchanger having an inner pipe provided with heat transfer fin formed with a corrugated tube with a radial shape in cross section. SOLUTION: A double piped heat exchanger having an inner pipe 12. an outer pipe 14 and either a high temperature side fluid passage or a low temperature side fluid passage respectively in the inner pipe side and the outer pipe side. In the inner pipe 12, a heat transfer fin 22 formed with a corrugated tube radial in cross-section is arranged in contact with the inside of the wall of the inner pipe 12. A column body 26 is formed for closing the central part of the inner pipe to form an annular orifice.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二重管式熱交換器
に関する。特に、内管に高速の高温ガス(気体)を、外
管に冷却水(液体)を通過させて熱交換を行う熱交換
器、例えば、内燃機関の排気ガスを冷却水により冷却す
る排気冷却器(高度の熱交換能が要求される)等に好適
な発明である。
[0001] The present invention relates to a double-pipe heat exchanger. In particular, a heat exchanger that exchanges heat by passing high-speed high-temperature gas (gas) through the inner pipe and cooling water (liquid) through the outer pipe, for example, an exhaust cooler that cools exhaust gas of an internal combustion engine with cooling water (High heat exchange capability is required).

【0002】ここでは、外管に冷却水を、内管に高温ガ
スを通過させて、熱交換を行う場合を例に採るが、熱交
換媒体の組み合わせは、これに限られるものではない。
即ち、流体の組み合わせにおいて、液体/液体、気体/
気体、液体/気体、等任意であるとともに、高温側/低
温側の流体通路は、内管側/外管側のどちらにあっても
よい。
Here, a case where heat exchange is performed by passing cooling water through an outer tube and high-temperature gas through an inner tube is taken as an example, but the combination of heat exchange media is not limited to this.
That is, in the combination of fluids, liquid / liquid, gas /
Gas, liquid / gas, etc. are arbitrary, and the fluid passage on the high temperature side / low temperature side may be on either the inner tube side or the outer tube side.

【0003】[0003]

【背景技術】二重管式熱交換器としては、図1・2に示
す如く、内管12を外管14に挿通させ、外管14の両
端部を内管12の外壁に溶接したものがある。外管14
の両端部には、冷却水の入口ノズル16及び出口ノズル
18を向流/並流使用できるように形成されている(図
例では向流)。なお、20は管フランジである。
2. Description of the Related Art As shown in FIGS. 1 and 2, a double-pipe heat exchanger is one in which an inner pipe 12 is inserted into an outer pipe 14 and both ends of the outer pipe 14 are welded to the outer wall of the inner pipe 12. is there. Outer tube 14
The cooling water inlet nozzle 16 and outlet nozzle 18 are formed at both ends so that they can be used in countercurrent / cocurrent (countercurrent in the example in the figure). In addition, 20 is a pipe flange.

【0004】図1・2に示すような構成では、熱交換が
内管12の壁面だけであり、伝熱面積が小さく、かつ、
内管12の中心部側を流れる流体の熱交換が行い難く熱
交換効率が低い。即ち、全体として大きな熱交換能を得
難かった。
In the configuration shown in FIGS. 1 and 2, heat exchange is performed only on the wall surface of the inner tube 12, the heat transfer area is small, and
Heat exchange of the fluid flowing through the center of the inner tube 12 is difficult, and the heat exchange efficiency is low. That is, it was difficult to obtain a large heat exchange capacity as a whole.

【0005】このため、図3・4に示すような、複数本
(図例では4本)の細径の内管12Aを外管14の内側
に挿通させた多管式タイプが、通常、使用されている。
この構成では、伝熱面積が増大するとともに、中心部側
を流れる流体に対しても熱交換を行うことができ、大き
な熱交換能を得易い。
For this reason, as shown in FIGS. 3 and 4, a multi-tube type in which a plurality (four in the illustrated example) of small-diameter inner tubes 12A are inserted into the outer tube 14 is usually used. Have been.
With this configuration, the heat transfer area is increased, and heat exchange can be performed with respect to the fluid flowing on the central portion side, so that a large heat exchange capability is easily obtained.

【0006】しかし、図3・4に示す多管式タイプのも
のでは、製造工数がかさみ、かつ、重量も増大する傾向
にある。
However, the multi-tube type shown in FIGS. 3 and 4 tends to increase the number of manufacturing steps and increase the weight.

【0007】このため、本願発明者らは、先に、図1・
2に示す構成の二重管式熱交換器において、図5に示す
如く、内管12に、横断面放射状の波形チューブで形成
された伝熱フィン22を、内管12の管壁内側に接して
配した熱交換器を提案した(特願平9−182571
号:特開平 − 号公報参照、出願時未公
開)。伝熱面積の増大と内管12の中心部を流れる流体
の熱交換も可能として、熱交換能を増大させる。
[0007] For this reason, the inventors of the present invention have previously described FIG.
In the double-pipe heat exchanger having the configuration shown in FIG. 2, a heat transfer fin 22 formed of a corrugated tube having a radial cross section is brought into contact with the inner pipe 12 as shown in FIG. (Japanese Patent Application No. 9-182571)
No .: See Japanese Unexamined Patent Publication No. Hei. The heat transfer area can be increased and the fluid flowing through the center of the inner tube 12 can be exchanged with heat, thereby increasing the heat exchange capacity.

【0008】[0008]

【発明が解決しようとする課題】図5に示す構成の熱交
換器において、熱交換効能をさらに増大させようとした
場合、図6に示す如く、伝熱フィン22Aを形成する波
形チューブの波数を増大させることにより、伝熱面積を
増大させて対応することが考えられる。
In the heat exchanger having the structure shown in FIG. 5, when the heat exchange efficiency is to be further increased, as shown in FIG. 6, the wave number of the corrugated tube forming the heat transfer fins 22A is increased. It is conceivable to increase the heat transfer area to cope with the increase.

【0009】しかし、本発明者が検討した結果、熱交換
能が増大しないばかりか、返って低下することがあるこ
とが分かった。その理由は、下記の如くであると推定さ
れる。
However, as a result of the study by the present inventor, it was found that not only the heat exchange capacity did not increase but also decreased. The reason is presumed to be as follows.

【0010】波の数を増大させると、伝熱フィン22A
の波相互の間隙が、特に中心側よりで狭くなって該部の
伝熱フィンの圧力損失が大きくなる。このため、伝熱フ
ィン22Aの配設側である内管12の管壁側より、伝熱
フィン22Aの非配設側(内側)の内管12の中心部側
に高温ガスが優先的に流れる。そして、伝熱フィン22
Aの配設部位における、高温ガスの流速は小さく、該部
における伝熱係数が増大する。なお、管内流速が早くな
ると伝熱係数が増大することは当業者常識である(例え
ば、化学工学協会編「化学工学便覧 改定四版」(昭5
3−10−25)丸善、p359参照)。
When the number of waves is increased, the heat transfer fins 22A
The gap between the waves becomes narrower, especially on the center side, and the pressure loss of the heat transfer fins in this portion increases. For this reason, the high-temperature gas preferentially flows from the pipe wall side of the inner pipe 12 on the side where the heat transfer fins 22A are disposed to the center side of the inner pipe 12 on the side where the heat transfer fins 22A are not disposed (inside). . And the heat transfer fins 22
The flow rate of the high-temperature gas in the portion where A is disposed is small, and the heat transfer coefficient in that portion increases. It is common knowledge in the art that the heat transfer coefficient increases as the flow velocity in the tube increases (for example, the Chemical Engineering Association, “Chemical Engineering Handbook, Revised Fourth Edition” (Showa 5)
3-10-25) Maruzen, p. 359).

【0011】従って、熱交換は実質的に伝熱フィン22
Aの内径側部でのみ行われ、伝熱面積の増大が熱交換能
の増大に寄与しない。
Therefore, the heat exchange is substantially performed by the heat transfer fins 22.
This is performed only on the inner diameter side of A, and the increase in the heat transfer area does not contribute to the increase in the heat exchange capacity.

【0012】さらに、相対的に伝熱フィン22Aの肉厚
が薄くなり、伝熱フィン22A自体の伝熱抵抗も大きく
なり、熱交換能の低下に加担すると推定される。
Further, it is presumed that the thickness of the heat transfer fins 22A becomes relatively thin, and the heat transfer resistance of the heat transfer fins 22A itself also increases, thereby contributing to a reduction in heat exchange ability.

【0013】上記の如く、図5に示す構成の熱交換器に
おいて、熱交換能の増大は、伝熱フィンを形成する波形
チューブの波数を増大させることによっては、対応が困
難である。
As described above, in the heat exchanger having the structure shown in FIG. 5, it is difficult to increase the heat exchange capacity by increasing the wave number of the corrugated tube forming the heat transfer fin.

【0014】本発明は、上記にかんがみて、内管に横断
面放射状の波形チューブで形成された伝熱フィンを配し
た二重管式熱交換器において、熱交換能の増大要求に容
易に対応ができる二重管式熱交換器を提供することを目
的とする。
SUMMARY OF THE INVENTION In view of the above, the present invention provides a double-pipe heat exchanger in which heat transfer fins formed of corrugated tubes with a radial cross section are disposed on the inner pipe, and can easily respond to the demand for increased heat exchange capacity. It is an object of the present invention to provide a double-pipe heat exchanger capable of performing heat treatment.

【0015】[0015]

【課題を解決するための手段】本願発明の二重管式熱交
換器は、上記課題を、下記構成により解決するものであ
る。
The double-pipe heat exchanger according to the present invention solves the above-mentioned problems by the following constitution.

【0016】内管と外管とを備え、内管側および外管側
に、それぞれ、高温側流体通路および低温側流体通路の
どちらか一方づつを備えている二重管式熱交換器におい
て、内管に、横断面放射状の波形チューブで形成された
伝熱フィンを内管の管壁内側に接して配し、該伝熱フィ
ンの内側に、内管中心部を閉塞して環状オリフィスを形
成する環状オリフィス形成手段を配する。
In a double-pipe heat exchanger comprising an inner pipe and an outer pipe, each of which has one of a high-temperature fluid path and a low-temperature fluid path on the inner and outer pipe sides, A heat transfer fin formed of a corrugated tube having a radial cross section is disposed in contact with the inner wall of the inner tube, and a central portion of the inner tube is closed inside the heat transfer fin to form an annular orifice. An annular orifice forming means is provided.

【0017】該環状オリフィス形成手段は、内管中心部
に配された柱体とする形態があり、、さらに、該柱体を
円柱体とする形態がある。
The annular orifice forming means may be in the form of a column disposed at the center of the inner tube, and may be in the form of a column.

【0018】さらには、該環状オリフィス形成手段を、
両端閉じの中空柱体として、該中空柱体に外管内側と同
一流体通路の配管が接続されている構成とすることが、
熱交換能がさらに増大して望ましい。
Further, the annular orifice forming means may include:
As a hollow column closed at both ends, the hollow column may be configured such that a pipe having the same fluid path as the inside of the outer tube is connected to the hollow column.
Desirable further increase in heat exchange capacity.

【0019】[0019]

【発明の作用・効果】本発明の二重管式熱交換器は、上
記構成により、下記のような作用・効果を奏する。
Operation / Effect of the Invention The double-pipe heat exchanger of the present invention has the following operation / effect with the above configuration.

【0020】例えば、内管12に高温ガスを通し、外管
14に冷却水を通す。すると、高温ガスは、内管に配設
された伝熱フィン22の存在により、伝熱フィン22配
設側で、高温ガスの流れは抵抗を受ける。このとき、波
形チューブの内側には、内管中心部を閉塞する環状オリ
フィス形成手段26が配されている(図8参照)。この
ため、伝熱フィン22の内側に流れようとする高温ガス
は、強制的に伝熱フィン22側へ案内されて、伝熱フィ
ン22配設部位を流れて、伝熱フィン22と高温ガスと
の接触効率が向上する。
For example, high-temperature gas is passed through the inner tube 12 and cooling water is passed through the outer tube 14. Then, due to the presence of the heat transfer fins 22 provided in the inner pipe, the flow of the high temperature gas is subjected to resistance on the side where the heat transfer fins 22 are provided. At this time, an annular orifice forming means 26 for closing the central portion of the inner tube is disposed inside the corrugated tube (see FIG. 8). For this reason, the high-temperature gas which is going to flow inside the heat transfer fins 22 is forcibly guided to the heat transfer fins 22 side, flows through the heat transfer fins 22 and the heat transfer fins 22 and the high-temperature gas. Contact efficiency is improved.

【0021】また、高温ガスは伝熱フィン内側には実質
的に逃げられず、伝熱フィンで実質的に絞られるため、
高温ガスの流速は早くなり、伝熱係数も増大して熱伝達
率が向上する。
Further, since the high-temperature gas does not substantially escape inside the heat transfer fins and is substantially constricted by the heat transfer fins,
The flow rate of the hot gas is increased, the heat transfer coefficient is increased, and the heat transfer coefficient is improved.

【0022】従って、高温ガスと冷却水とは、伝熱フィ
ン及び内管管壁を介して、効率良く熱交換される。
Therefore, the high-temperature gas and the cooling water are efficiently exchanged heat through the heat transfer fins and the inner tube wall.

【0023】また、内管径と伝熱フィンの仕様(波形チ
ューブの波の高さ及び数)とで決まる伝熱面積と流速低
下にともなう伝熱フィンの伝熱係数の低下のバランスを
とって、所要の熱交換能の設計が容易となる。
The balance between the heat transfer area determined by the inner tube diameter and the specifications of the heat transfer fins (wave height and number of corrugated tubes) and the reduction in the heat transfer coefficient of the heat transfer fins due to the decrease in flow velocity are balanced. The required heat exchange capacity can be easily designed.

【0024】例えば、波形チューブの波数を増大させる
ことに伴う、高温ガスの伝熱フィンとの接触率の低下、
及び、流速低下に伴う熱伝達係数の低下が、環状オリフ
ィス形成手段の存在により補完される。このため、波形
チューブの波数の増大、即ち、伝熱面積の増大に略比例
させることができ、熱交換能の設計が容易となる。
For example, a decrease in the contact rate of the high-temperature gas with the heat transfer fins due to an increase in the wave number of the corrugated tube;
Further, the decrease in the heat transfer coefficient due to the decrease in the flow velocity is complemented by the presence of the annular orifice forming means. For this reason, the wave number of the corrugated tube can be increased substantially in proportion to the increase in the heat transfer area, and the heat exchange capacity can be easily designed.

【0025】よって、内管に横断面放射状の波形チュー
ブで形成された伝熱フィンを配した二重管式熱交換器に
おいて、熱交換効率を向上させるための対応が容易にで
きる。
Therefore, in the double-pipe heat exchanger in which the heat transfer fins formed of the corrugated tubes having a radial cross section are disposed on the inner pipe, measures for improving the heat exchange efficiency can be easily made.

【0026】さらに、柱体が両端閉じの中空体とされ、
該中空体に前記外管内側と同一流体通路の配管が接続さ
れている構成とすれば、高温ガスに対する冷却水の伝熱
面積が向上して、さらに熱交換能を増大させることがで
きる。
Further, the column is a hollow body closed at both ends,
If the hollow body is connected to a pipe having the same fluid passage as the inside of the outer tube, the heat transfer area of the cooling water to the high-temperature gas can be improved, and the heat exchange capacity can be further increased.

【0027】[0027]

【発明の実施の形態】以下、本発明の各種実施形態を図
例に基づいて説明をする。なお、前述例と同一部分につ
いては、同一図符号を付して、それらの説明の全部また
は一部を省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings. The same parts as those in the above-described example are denoted by the same reference numerals, and all or part of the description thereof will be omitted.

【0028】(1) 図7〜8に本発明の一実施形態を示
す。
(1) FIGS. 7 and 8 show an embodiment of the present invention.

【0029】内管12と外管14とを備え、内管12側
および外管14側を、それぞれ、高温側流体通路および
低温側流体通路のいずれか一方づつとする二重管式熱交
換器である。図例では内管12側が高温ガス流体通路と
され、外管14側が冷却水流体通路とされている。
A double-pipe heat exchanger having an inner pipe 12 and an outer pipe 14, wherein the inner pipe 12 side and the outer pipe 14 side are each one of a high-temperature side fluid passage and a low-temperature side fluid passage. It is. In the illustrated example, the inner pipe 12 side is a high-temperature gas fluid passage, and the outer pipe 14 side is a cooling water fluid passage.

【0030】内管12に、横断面放射状の波形チューブ
で形成された伝熱フィン22が内管12の管壁内側に接
して配されている。
A heat transfer fin 22 formed of a corrugated tube having a radial cross section is disposed on the inner pipe 12 in contact with the inner wall of the inner pipe 12.

【0031】ここで、伝熱フィン22である波形チュー
ブは、通常、図9にしめすような、熱伝導率が大きくバ
ネ性を有する金属製(例えば、鋼製)の金属波板24を
筒状に曲げて、内管12に挿入し、その後、蝋付けによ
り固定して形成することが望ましい。蝋付け工程前の仮
止め作業が不要となるためである。勿論、波形チューブ
を、当初から引き抜き等により加工成形したものを、内
管12に挿入して、固定してもよい。この場合は、波形
チューブは、内管に対して締まり嵌めとなるようにして
おくことが、上記と同様蝋付け工程前の仮止めが不要と
なり望ましい。
Here, the corrugated tube, which is the heat transfer fin 22, is generally formed by forming a metal (for example, steel) metal corrugated plate 24 having a large thermal conductivity and a spring property as shown in FIG. It is desirable to bend and insert into the inner tube 12 and then fix it by brazing. This is because temporary fixing work before the brazing process is not required. Of course, a corrugated tube formed by drawing or the like from the beginning may be inserted into the inner tube 12 and fixed. In this case, it is desirable that the corrugated tube be tightly fitted to the inner tube because the temporary fixing before the brazing step is not required similarly to the above.

【0032】ここで、波形チューブ22の板厚は、材質
により異なるが、鋼製の場合、通常、0.01〜0.5
mm、望ましくは、0.05〜0.2mmとする。薄くしす
ぎると、形態保持性とともに伝熱抵抗が大きくなり、ま
た、厚いと重量増大につながり望ましくない。
Here, the thickness of the corrugated tube 22 varies depending on the material.
mm, desirably 0.05 to 0.2 mm. If the thickness is too small, the heat transfer resistance is increased together with the shape retention, and if the thickness is too large, the weight increases, which is not desirable.

【0033】また、内管12の内半径rと波板24の高
さLとの関係は、内管12の内径にもよるが、内管12
の内径10〜50mmの範囲で、通常L/r=0.1〜
0.8、望ましくは、L/r=0.2〜0.7とする。
そして内径の範囲に対応して、波の山の高さはL=4〜
20mmとする。
The relationship between the inner radius r of the inner tube 12 and the height L of the corrugated plate 24 depends on the inner diameter of the inner tube 12.
L / r = 0.1 to 10 to 50 mm
0.8, preferably L / r = 0.2 to 0.7.
And according to the range of the inner diameter, the height of the wave peak is L = 4 ~
20 mm.

【0034】また、波形チューブ22の波ピッチは、要
求伝熱面積に対応して2〜5mmとする。
The wave pitch of the corrugated tube 22 is set to 2 to 5 mm corresponding to the required heat transfer area.

【0035】なお、波形チューブの形態は、波形の山・
谷がR状でなくても、山・谷が角ばっていてもよい。ま
た、長手方向で山を一定ピッチ毎にずらして形成した金
属製波板で形成したものを使用して形成してもよい。例
えば、図10に示す如く、略対称形の半山形状の山25
a、25bを交互に形成した波板24Aが望ましい。こ
の場合のピッチは、例えば5〜20mmとする。
The shape of the corrugated tube is the shape of the corrugated peak.
The valleys may not be R-shaped, but the peaks and valleys may be square. Alternatively, the ridges may be formed by using a metal corrugated plate in which the peaks are shifted at regular intervals in the longitudinal direction. For example, as shown in FIG.
A corrugated plate 24A in which a and 25b are alternately formed is desirable. The pitch in this case is, for example, 5 to 20 mm.

【0036】また、内管12の肉厚は、伝熱性の見地か
ら可及的に薄い方が望ましいが、波形チューブに比して
剛性が要求されるため、波形チューブより厚肉とする。
例えば、内管12の内径が上記範囲の場合、通常0.1
〜1.0mm、望ましくは0.3〜0.8mmとする。
The thickness of the inner tube 12 is desirably as thin as possible from the viewpoint of heat transfer. However, since the inner tube 12 is required to have higher rigidity than the corrugated tube, it is made thicker than the corrugated tube.
For example, when the inner diameter of the inner tube 12 is within the above range, it is usually 0.1
To 1.0 mm, preferably 0.3 to 0.8 mm.

【0037】外管14と内管12との隙間は、例えば、
内管12の内径が上記範囲の場合、通常、1〜5mmの範
囲とする。
The gap between the outer tube 14 and the inner tube 12 is, for example,
When the inner diameter of the inner tube 12 is in the above range, it is usually in the range of 1 to 5 mm.

【0038】(2) 伝熱フィン22の内側に、内管12中
心部を閉塞して環状オリフィスを形成する環状オリフィ
ス形成手段を配設する。
(2) Inside the heat transfer fins 22, an annular orifice forming means for closing the center of the inner tube 12 to form an annular orifice is provided.

【0039】具体的な態様としては、図8・11に示す
柱体26、26Aがある。このとき、柱体26、26A
は角柱(例えば、三角柱ないし山に対応した多角柱)で
あってもよいが、通常、円柱とする。そして、柱体26
Aは、内管12を通過させる流量を確保するために、即
ち、圧力損失を所定値以下とするために、図11に示す
如く、小径化して、伝熱フィン22との間に隙間がある
構成としてもよい。このときの隙間は、通常、3mm以内
とする。隙間が大き過ぎると、中心部側を流れる量が多
くなり、本発明の前述の作用・効果を奏し難くなる。
As a specific embodiment, there are pillars 26 and 26A shown in FIGS. At this time, the pillars 26, 26A
May be a prism (for example, a triangular prism or a polygonal prism corresponding to a mountain), but is usually a cylinder. And the pillar 26
A is reduced in diameter as shown in FIG. 11 so as to secure a flow rate to pass through the inner pipe 12, that is, to reduce the pressure loss to a predetermined value or less, and there is a gap between the heat transfer fins 22. It may be configured. The gap at this time is usually within 3 mm. If the gap is too large, the amount flowing on the central portion side will increase, and it will be difficult to achieve the above-described functions and effects of the present invention.

【0040】また、柱体26、26Aは、外管形成部
(熱交換部)の全長にわたり設ける必要は必ずしもな
く、熱交換部を越えて流体流入側に形成してもよい(図
7の二点鎖線参照)。熱交換部の長さが短い場合は、本
発明の作用・効果を奏する範囲で、手前側にのみ、また
は、中央部のみに設けてもよい。
The pillars 26 and 26A do not necessarily need to be provided over the entire length of the outer tube forming portion (heat exchange portion), and may be formed on the fluid inflow side beyond the heat exchange portion (FIG. 7-2). See dotted line). When the length of the heat exchange portion is short, the heat exchange portion may be provided only on the near side or only in the center portion within a range in which the function and effect of the present invention can be obtained.

【0041】また、柱体は図12に示す如く両端閉じの
中空体26Bとしてもよい。中空体26Bとしたとき
は、該中空体28に、外管と同一流体通路の配管を接続
する、即ち、図示しないが、冷却水の入口・出口を配管
してもよい。この場合は、グラフ図13で示す如く、更
に熱交換能が増大する。
The pillar may be a hollow body 26B having both ends closed as shown in FIG. When the hollow body 26B is used, a pipe having the same fluid path as the outer pipe may be connected to the hollow body 28, that is, although not shown, an inlet / outlet of the cooling water may be provided. In this case, the heat exchange capacity is further increased as shown in FIG.

【0042】なお、この柱体26、26A、26B等を
形成する材料は、中空体28に冷却水を通過させない場
合は、耐熱性を有するセラミックス、更には、耐熱性を
有すれば、プラスチックスであってもよい。この場合、
軽量化の見地から、中空体または発泡体とすることが望
ましい。
The material for forming the pillars 26, 26A, 26B and the like is made of ceramics having heat resistance when the cooling water is not allowed to pass through the hollow body 28, and plastics if heat resistant. It may be. in this case,
From the viewpoint of weight reduction, a hollow body or a foam is desirable.

【0043】本実施形態の使用態様は、従来と同様であ
り、その作用・効果は前述の通りである。
The mode of use of this embodiment is the same as in the prior art, and its operation and effects are as described above.

【0044】なお、図5、図8、図12に示す各形態に
おける熱交換能は、移動熱量指数で示すと、図13に示
すような比較モデルグラフ図になる。
The heat exchange capacity in each of the embodiments shown in FIGS. 5, 8 and 12 is represented by a comparative model graph as shown in FIG.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の二重管式熱交換器を示す正面図FIG. 1 is a front view showing a conventional double tube heat exchanger.

【図2】図1の2−2線拡大断面図FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1;

【図3】従来の多管式熱交換器の一例を示す正面図FIG. 3 is a front view showing an example of a conventional multi-tube heat exchanger.

【図4】図3の4−4線断面図FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

【図5】図1において内管に波形チューブの伝熱フィン
を設けた図2に対応する拡大端面図
FIG. 5 is an enlarged end view corresponding to FIG. 2 in which a heat transfer fin of a corrugated tube is provided on the inner tube in FIG. 1;

【図6】図5において波形チューブの山数を増大させた
端面図
FIG. 6 is an end view in which the number of peaks of the corrugated tube in FIG. 5 is increased.

【図7】本発明の熱交換器の一実施形態を示す縦断面図FIG. 7 is a longitudinal sectional view showing one embodiment of the heat exchanger of the present invention.

【図8】図7の8−8線拡大端面図である。FIG. 8 is an enlarged end view taken along line 8-8 in FIG. 7;

【図9】本発明の熱交換器に使用する金属波板の斜視図FIG. 9 is a perspective view of a metal corrugated sheet used in the heat exchanger of the present invention.

【図10】同じく他の金属波板の部分斜視図FIG. 10 is a partial perspective view of another metal corrugated sheet.

【図11】図8において円筒体を小径化した形態の端面
FIG. 11 is an end view of the form in which the diameter of the cylindrical body is reduced in FIG. 8;

【図12】図8において円筒体を中空化した形態の端面
FIG. 12 is an end view of a form in which a cylindrical body is hollowed in FIG. 8;

【図13】熱交換効率を移動熱量指数で示した比較モデ
ルグラフ図
FIG. 13 is a comparative model graph showing heat exchange efficiency as a moving calorie index.

【符号の説明】[Explanation of symbols]

12 内管 14 外管 22 伝熱フィン 24、24A 波板 26、26A、16B 円柱体(環状オリフィス形成手
段)
12 Inner tube 14 Outer tube 22 Heat transfer fin 24, 24A Corrugated plate 26, 26A, 16B Cylinder (annular orifice forming means)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 内管と外管とを備え、前記内管側および
外管側に、それぞれ、高温側流体通路および低温側流体
通路のどちらか一方づつを備えている二重管式熱交換器
において、 前記内管に、横断面放射状の波形チューブで形成された
伝熱フィンを前記内管の管壁内側に接して配し、 該伝熱フィンの内側に、内管中心部を閉塞して環状オリ
フィスを形成する環状オリフィス形成手段を配すること
を特徴とする二重管式熱交換器。
1. A double-pipe heat exchange system comprising an inner tube and an outer tube, wherein the inner tube and the outer tube each have one of a high-temperature fluid passage and a low-temperature fluid passage. In the vessel, a heat transfer fin formed of a corrugated tube having a radial cross section is disposed in contact with the inner wall of the inner pipe, and a central portion of the inner pipe is closed inside the heat transfer fin. An annular orifice forming means for forming an annular orifice by heating.
【請求項2】 前記環状オリフィス形成手段が、内管中
心部に配された柱体であることを特徴とする請求項1記
載の二重管式熱交換器。
2. The double-pipe heat exchanger according to claim 1, wherein said annular orifice forming means is a column disposed at the center of the inner pipe.
【請求項3】 前記環状オリフィス形成手段である柱体
が円柱体であることを特徴とする請求項1記載の二重管
式熱交換器。
3. The double-pipe heat exchanger according to claim 1, wherein the column as the annular orifice forming means is a column.
【請求項4】 前記柱体が両端閉じの中空体とされ、該
中空体に前記外管内側と同一流体通路の配管が接続され
ていることを特徴とする請求項2又は3記載の二重管式
熱交換器。
4. The double according to claim 2, wherein the column is a hollow body having both ends closed, and a pipe having the same fluid passage as the inside of the outer tube is connected to the hollow body. Tube heat exchanger.
JP34881497A 1997-12-18 1997-12-18 Double piped heat exchanger Withdrawn JPH11183062A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34881497A JPH11183062A (en) 1997-12-18 1997-12-18 Double piped heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34881497A JPH11183062A (en) 1997-12-18 1997-12-18 Double piped heat exchanger

Publications (1)

Publication Number Publication Date
JPH11183062A true JPH11183062A (en) 1999-07-06

Family

ID=18399557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34881497A Withdrawn JPH11183062A (en) 1997-12-18 1997-12-18 Double piped heat exchanger

Country Status (1)

Country Link
JP (1) JPH11183062A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083741A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Air conditioner having heat exchanger and refrigerant switching means
JP2007003115A (en) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp Heat exchanger and manufacturing method of the same
JP2008256350A (en) * 2007-04-06 2008-10-23 Samsung Electronics Co Ltd Refrigerant cycle device
KR101005419B1 (en) 2003-09-15 2010-12-30 엘지전자 주식회사 Liquid-to-Suction Heat Exchanger
CN102278244A (en) * 2011-07-22 2011-12-14 北京北机机电工业有限责任公司 Fin-type heterogeneous metal heat exchanger for fuel oil and gas heater
CN102425971A (en) * 2011-11-10 2012-04-25 上海交通大学 Heat exchanger tube with staggered fins as well as manufacturing method and application of heat exchange tube
JP2013143983A (en) * 2012-01-13 2013-07-25 Midori Anzen Co Ltd Heat pipe and liquid heater
CN103437106A (en) * 2013-09-10 2013-12-11 吴江涵辉纺织有限公司 Heat exchange pipe of tentering forming machine
KR101421606B1 (en) * 2013-08-08 2014-07-24 주식회사 코렌스 Heat exchanger in waste heat recovery system
JP2015017762A (en) * 2013-07-11 2015-01-29 株式会社ケーヒン・サーマル・テクノロジー Double-tube type heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083741A (en) * 2003-09-05 2005-03-31 Lg Electronics Inc Air conditioner having heat exchanger and refrigerant switching means
KR101005419B1 (en) 2003-09-15 2010-12-30 엘지전자 주식회사 Liquid-to-Suction Heat Exchanger
JP2007003115A (en) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp Heat exchanger and manufacturing method of the same
JP4680696B2 (en) * 2005-06-24 2011-05-11 三菱電機株式会社 Heat exchanger and heat exchanger manufacturing method
JP2008256350A (en) * 2007-04-06 2008-10-23 Samsung Electronics Co Ltd Refrigerant cycle device
US8099977B2 (en) 2007-04-06 2012-01-24 Samsung Electronics Co., Ltd. Refrigerant cycle device
CN102278244A (en) * 2011-07-22 2011-12-14 北京北机机电工业有限责任公司 Fin-type heterogeneous metal heat exchanger for fuel oil and gas heater
CN102425971A (en) * 2011-11-10 2012-04-25 上海交通大学 Heat exchanger tube with staggered fins as well as manufacturing method and application of heat exchange tube
JP2013143983A (en) * 2012-01-13 2013-07-25 Midori Anzen Co Ltd Heat pipe and liquid heater
JP2015017762A (en) * 2013-07-11 2015-01-29 株式会社ケーヒン・サーマル・テクノロジー Double-tube type heat exchanger
KR101421606B1 (en) * 2013-08-08 2014-07-24 주식회사 코렌스 Heat exchanger in waste heat recovery system
CN103437106A (en) * 2013-09-10 2013-12-11 吴江涵辉纺织有限公司 Heat exchange pipe of tentering forming machine

Similar Documents

Publication Publication Date Title
JP4756585B2 (en) Heat exchanger tube for heat exchanger
EP1682839B1 (en) Tube bundle heat exchanger comprising tubes with expanded sections
US8069905B2 (en) EGR gas cooling device
JP3774843B2 (en) Multi-tube heat exchanger
JP5509466B2 (en) Finned cylindrical heat exchanger
US20160018168A1 (en) Angled Tube Fins to Support Shell Side Flow
JP2007170271A (en) Multipipe heat exchanger for exhaust gas cooling device
US20020088611A1 (en) Heat exchanger for liquid and gaseous media
JPH11183062A (en) Double piped heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JPH10306995A (en) Heat transfer pipe and egr gas-cooler using it
JP2002350071A (en) Double pipe heat exchanger
JPH1038479A (en) Double tube type heat exchanger
JP2001248980A (en) Multitubular heat exchanger
JPH03207993A (en) Multitube type heat exchanger
JPH08247684A (en) Heat exchanger
JP2694894B2 (en) Heat exchanger
JPH04194595A (en) Shell and tube type heat exchanger
JPH0926281A (en) Heat exchanger
JPS59112197A (en) Heat exchanger
JPS5923969Y2 (en) Heat exchanger
JPS5833091A (en) Double pipe type heat exchanger
JPS5937576Y2 (en) Shell-and-tube heat exchanger
JPH11257879A (en) Gas-gas heat exchanger
RU46841U1 (en) HEAT EXCHANGER

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301