JP2002350071A - Double pipe heat exchanger - Google Patents

Double pipe heat exchanger

Info

Publication number
JP2002350071A
JP2002350071A JP2001156106A JP2001156106A JP2002350071A JP 2002350071 A JP2002350071 A JP 2002350071A JP 2001156106 A JP2001156106 A JP 2001156106A JP 2001156106 A JP2001156106 A JP 2001156106A JP 2002350071 A JP2002350071 A JP 2002350071A
Authority
JP
Japan
Prior art keywords
pipe
heat exchanger
double
plate
inner pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001156106A
Other languages
Japanese (ja)
Inventor
Yasufumi Sakakibara
康文 榊原
Shigeki Harada
成樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maruyasu Industries Co Ltd
Original Assignee
Maruyasu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruyasu Industries Co Ltd filed Critical Maruyasu Industries Co Ltd
Priority to JP2001156106A priority Critical patent/JP2002350071A/en
Publication of JP2002350071A publication Critical patent/JP2002350071A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a double pipe heat exchanger that can be increased in heat-exchanging ability and can solve the problem of soot adhesion. SOLUTION: This double pipe heat exchanger is provided with an inner pipe 12 and an outer pipe 14 and a high-temperature side fluid passage and a low-temperature side fluid passage respectively on the sides of the pipes 12 and 14. On the internal wall surface of the inner pipe 12, plate-shaped or node-like projections 26 are formed at prescribed intervals (in prescribed pitch) in the longitudinal direction. Because of the projections 26, longitudinal vortexes are generated and the heat transfer efficiency of the inner pipe 12 increases when a high-speed fluid flows though the pipe 12.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、二重管式熱交換器
に関する。特に、内管に高速の高温ガス(気体)を、外
管に冷却水(液体)を通過させて熱交換を行う熱交換
器、例えば、内燃機関の排気ガスを冷却水により冷却す
る排気冷却器(高度の熱交換性能が要求される)等に好
適な発明である。
[0001] The present invention relates to a double-pipe heat exchanger. In particular, a heat exchanger that exchanges heat by passing high-speed high-temperature gas (gas) through the inner pipe and cooling water (liquid) through the outer pipe, for example, an exhaust cooler that cools exhaust gas of an internal combustion engine with cooling water (High heat exchange performance is required).

【0002】ここでは、外管に冷却水を、内管に高温高
速ガスを通過させて、熱交換を行う場合を例に採るが、
熱交換媒体の組み合わせは、これに限られるものではな
い。即ち、流体の組み合わせにおいて、液体/液体、気
体/気体、液体/気体、等任意であるとともに、高温側
/低温側の流体通路は、内管側/外管側のどちらにあっ
てもよい。
Here, a case where heat is exchanged by passing cooling water through an outer pipe and high-temperature high-speed gas through an inner pipe will be taken as an example.
The combination of heat exchange media is not limited to this. That is, the combination of fluids is arbitrary such as liquid / liquid, gas / gas, liquid / gas, and the fluid passage on the high-temperature side / low-temperature side may be on either the inner tube side or the outer tube side.

【0003】[0003]

【背景技術】二重管式熱交換器としては、図1・2に示
す如く、内管12を外管14に挿通させ、外管14の両
端部を内管12の外壁に接合(例えばろう付け)したも
のがある。外管14の両端部には、冷却水の入口ノズル
16及び出口ノズル18を向流/並流使用できるように
形成されている(図例では向流)。なお、20は管フラ
ンジである。
2. Description of the Related Art As a double-pipe heat exchanger, as shown in FIGS. 1 and 2, an inner pipe 12 is inserted into an outer pipe 14, and both ends of the outer pipe 14 are joined to an outer wall of the inner pipe 12 (for example, a wax). Attached). At both ends of the outer pipe 14, the inlet nozzle 16 and the outlet nozzle 18 of the cooling water are formed so as to be able to use countercurrent / cocurrent (countercurrent in the illustrated example). In addition, 20 is a pipe flange.

【0004】図1・2に示すような構成では、熱交換が
内管12の壁面だけであり、伝熱面積が小さく、かつ、
内管12の中心部側を流れる流体の熱交換が行い難く熱
交換効率が低い。即ち、全体として大きな熱交換性能を
得難かった。
In the configuration shown in FIGS. 1 and 2, heat exchange is performed only on the wall surface of the inner tube 12, the heat transfer area is small, and
Heat exchange of the fluid flowing through the center of the inner tube 12 is difficult, and the heat exchange efficiency is low. That is, it was difficult to obtain a large heat exchange performance as a whole.

【0005】このため、図3・4に示すような、複数本
(図例では4本)の細径の内管12Aを外管14の内側
に挿通させた多管式タイプが、通常、使用されている。
この構成では、伝熱面積が増大するとともに、中心部側
を流れる流体に対しても熱交換を行うことができ、大き
な熱交換性能を得易い。
For this reason, as shown in FIGS. 3 and 4, a multi-tube type in which a plurality (four in the illustrated example) of small-diameter inner tubes 12A are inserted into the outer tube 14 is usually used. Have been.
With this configuration, the heat transfer area is increased, and heat exchange can be performed with respect to the fluid flowing on the central portion side, and large heat exchange performance is easily obtained.

【0006】しかし、図3・4に示す多管式タイプのも
のでは、製造工数がかさみ、かつ、重量も増大する傾向
にある。
However, the multi-tube type shown in FIGS. 3 and 4 tends to increase the number of manufacturing steps and increase the weight.

【0007】このため、本願発明者らは、先に、図1・
2に示す構成の二重管式熱交換器において、図5に示す
如く、内管12に、横断面放射状の波形チューブ(通
常、波板からなる。)24で形成された伝熱フィン22
を、内管12の管壁内側に接して配した熱交換器を提案
した(特願平9−182571号:特開平11−231
81号公報)。伝熱面積の増大と内管12の中心部を流
れる流体の熱交換も可能として、熱交換性能を増大させ
る。
[0007] For this reason, the inventors of the present invention have previously described FIG.
In the double-pipe heat exchanger having the configuration shown in FIG. 2, as shown in FIG. 5, a heat transfer fin 22 formed of a corrugated tube (usually made of a corrugated plate) 24 having a radial cross section is formed in the inner pipe 12.
(In Japanese Patent Application No. 9-182571: Japanese Patent Application Laid-Open No. 11-231).
No. 81). The heat transfer area can be increased, and heat exchange of the fluid flowing through the center of the inner tube 12 is also possible, so that the heat exchange performance is increased.

【0008】図5に示す構成の熱交換器において、熱交
換効能をさらに増大させようとした場合、図6に示す如
く、伝熱フィン22Aを形成する波形チューブの波数を
増大させることにより、伝熱面積を増大させて対応する
ことが考えられる。
In the heat exchanger having the structure shown in FIG. 5, when the heat exchange efficiency is to be further increased, as shown in FIG. 6, the wave number of the corrugated tube forming the heat transfer fins 22A is increased to increase the heat transfer efficiency. It is conceivable to respond by increasing the thermal area.

【0009】しかし、本発明者が検討した結果、熱交換
性能が余り増大しないばかりか、伝熱壁面に汚れ(ス
ス、油汚れ等)が付着しやすくて、極端な場合は汚れに
よる目詰まりが部分的に発生して、大きな熱交換効率の
低下が発生し易いことが分かった。
However, as a result of the study by the present inventors, not only the heat exchange performance does not increase so much, but also dirt (soot, oil dirt, etc.) easily adheres to the heat transfer wall surface. It was found that the heat exchange efficiency partially occurred, and a large decrease in heat exchange efficiency was likely to occur.

【0010】[0010]

【発明の開示】本発明は、上記にかんがみて、伝熱面積
を増大させずに熱交換性能の増大が可能で、汚れ付着等
による大きな熱交換効率の低下の問題点も解決できる二
重管式熱交換器を提供することを目的とする。
DISCLOSURE OF THE INVENTION In view of the above, the present invention provides a double tube in which the heat exchange performance can be increased without increasing the heat transfer area, and the problem of a large decrease in heat exchange efficiency due to adhesion of dirt or the like can be solved. It is an object of the present invention to provide a heat exchanger.

【0011】上記目的を達成するために、鋭意開発に努
力をした結果、下記構成の二重管式熱交換器に想到し
た。
In order to achieve the above object, as a result of diligent development efforts, a double-pipe heat exchanger having the following structure has been conceived.

【0012】内管と外管とを備え、内管側および外管側
に、それぞれ、高温側流体通路および低温側流体通路の
どちらか一方ずつを備えた二重管式熱交換器において、
前記内管及び/又は外管に縦渦流発生手段が配されてい
ることを特徴とする。
[0012] In a double-pipe heat exchanger comprising an inner pipe and an outer pipe, each of which has one of a high-temperature fluid path and a low-temperature fluid path on the inner and outer pipe sides,
A vertical vortex generating means is arranged on the inner pipe and / or the outer pipe.

【0013】内管及び/又は外管に縦渦流発生手段を配
することにより、高速ガス流路である内管等を通過する
に際して、縦渦流が発生する。この渦流により高速ガス
等の通過流体が撹乱されて相対的に熱伝達率(熱交換効
率)が増大する。したがって、従来の如く、伝熱面積を
増大させる伝熱フィンを内管に組み込まなくても、熱交
換効率(冷却効率)を、増大させることができる。そし
て、縦渦流発生手段は、基本的に伝熱面積の増大で熱交
換効率を増大させるものではないため、伝熱壁面の汚れ
付着に伴う伝熱効率の低下度が低く、しかも、縦渦流の
発生により伝熱壁面に対する汚れ付着も相対的に小さく
なり、当然、汚れによる部分的な目詰まりも発生しな
い。したがって、経時的な熱交換効率の低下度が従来の
伝熱フィン組み込み式のものに比して小さくなる。即
ち、伝熱壁面に対する汚れ付着に伴う大きな熱交換効率
の低下の問題点が解消する。
By arranging the vertical vortex flow generating means in the inner pipe and / or the outer pipe, a vertical vortex is generated when passing through the inner pipe or the like which is a high-speed gas flow path. The passing fluid such as high-speed gas is disturbed by the vortex, and the heat transfer coefficient (heat exchange efficiency) relatively increases. Therefore, the heat exchange efficiency (cooling efficiency) can be increased without incorporating a heat transfer fin that increases the heat transfer area into the inner tube as in the related art. And, since the vertical eddy current generating means does not basically increase the heat exchange efficiency by increasing the heat transfer area, the degree of decrease in the heat transfer efficiency due to the adhesion of dirt on the heat transfer wall is low, and the vertical eddy flow is generated. Accordingly, the adhesion of dirt to the heat transfer wall surface is relatively reduced, and, of course, partial clogging due to dirt does not occur. Therefore, the degree of decrease in heat exchange efficiency over time is smaller than that of the conventional heat transfer fin built-in type. That is, the problem of a large decrease in heat exchange efficiency due to the attachment of dirt to the heat transfer wall surface is solved.

【0014】具体的には、内管の内壁面に、長手方向に
所定間隔(所定ピッチ)で板状又は瘤状の突起群を形成
して縦渦流発生手段とする。
More specifically, plate-shaped or bump-shaped projections are formed at predetermined intervals (predetermined pitches) in the longitudinal direction on the inner wall surface of the inner tube to serve as a vertical vortex generating means.

【0015】上記板状又は瘤状の突起群の形成は、内管
の壁面にプレス加工(スタンピング等)により直接形成
してもよいが、幅方向及び長手方向にそれぞれ所定間
隔(所定ピッチ)で板状又は瘤状の突起群が形成された
平板状薄板を、筒状に巻き回して、前記内管に嵌合させ
て組み付けることにより、又は、薄肉円筒体を周方向
及び長手方向にそれぞれ所定間隔(所定ピッチ)で板状
又は瘤状の突起群が形成された突起群加工筒体を、前記
内管に嵌合させて組み付けることにより、行うことが生
産性が良好となる。
The plate-shaped or bump-shaped projections may be formed directly on the wall surface of the inner tube by press working (stamping or the like), but at predetermined intervals (predetermined pitches) in the width direction and the longitudinal direction. A flat thin plate on which a plate-shaped or knob-shaped projection group is formed is wound into a cylindrical shape and fitted and assembled to the inner tube, or a thin-walled cylindrical body is formed in a predetermined direction in the circumferential direction and in the longitudinal direction, respectively. The productivity can be improved by fitting and assembling the projection group processing cylindrical body having the plate-like or knob-like projection groups formed at intervals (predetermined pitch) to the inner tube.

【0016】さらに上記において、平板状薄板をばね
鋼板とすることが、内管に巻き回して嵌合させたとき、
ばね弾性の広がり作用により内管に仮固定でき、生産性
がさらに良好となる。
Further, in the above, when the flat thin plate is made of a spring steel plate, when the flat thin plate is wound around and fitted to the inner tube,
It can be temporarily fixed to the inner tube by the spreading effect of the spring elasticity, and the productivity is further improved.

【0017】[0017]

【発明を実施するための最良の形態】以下、本発明の各
種実施形態を図例に基づいて説明をする。なお、前述例
と同一部分については、同一図符号を付して、それらの
説明の全部または一部を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of the present invention will be described below with reference to the drawings. The same parts as those in the above-described example are denoted by the same reference numerals, and all or part of the description thereof will be omitted.

【0018】図7に本発明の一実施形態の概略モデル横
断面図及び概略モデル縦断面部分図を示す。
FIG. 7 shows a schematic model transverse sectional view and a schematic model longitudinal sectional partial view of an embodiment of the present invention.

【0019】内管12と外管14とを備え、内管12側
および外管14側を、それぞれ、高温側流体通路および
低温側流体通路のいずれか一方ずつとする二重管式熱交
換器である。図例では内管12側が高温ガス流体通路と
され、外管14側が冷却水流体通路とされている。
A double-pipe heat exchanger including an inner pipe 12 and an outer pipe 14, wherein the inner pipe 12 side and the outer pipe 14 side are each one of a high-temperature side fluid passage and a low-temperature side fluid passage. It is. In the illustrated example, the inner pipe 12 side is a high-temperature gas fluid passage, and the outer pipe 14 side is a cooling water fluid passage.

【0020】そして、本実施形態では、内管12の内壁
面に多数個の瘤状突起26(突起群)が、周方向及び長
手方向に所定間隔(所定ピッチ)で形成されている。
In this embodiment, a large number of bumps 26 (projections) are formed on the inner wall surface of the inner tube 12 at predetermined intervals (predetermined pitches) in the circumferential direction and the longitudinal direction.

【0021】ここで、瘤状突起26の平面形状は長円
で、横断面形状は台形状であるが、これに限られること
なく、平面形状:丸型、矩形、ひし形、三角形等任意で
あり、横断面形状も、半円、半長円、矩形、三角形等任
意である。
Here, the planar shape of the knob-like projection 26 is an ellipse, and the cross-sectional shape is a trapezoidal shape. However, the present invention is not limited to this. The cross-sectional shape is also arbitrary such as a semicircle, a semi-ellipse, a rectangle, and a triangle.

【0022】また、周方向ピッチ及び長手方向ピッチ
は、さらには、瘤(突起)の大きさは、内管の内径及び
内管の通過する導通流体の速度、要求される縦渦流形態
等の各要素、即ち、熱交換器に要求される熱交換性能に
より異なる。
The pitch in the circumferential direction and the pitch in the longitudinal direction, and the size of the bump (projection) are determined by the inner diameter of the inner tube, the velocity of the conducting fluid passing through the inner tube, and the required vertical vortex form. It depends on the element, that is, the heat exchange performance required for the heat exchanger.

【0023】例えば、内管の内径20〜30mmとしたと
き、周方向ピッチは2〜6分割(角度で180°、90
°、60°、45°、30°;図例では180°)、長
手方向ピッチは、突起(瘤)の大きさによっても異なる
が、10〜30mmとする。
For example, when the inner diameter of the inner tube is 20 to 30 mm, the circumferential pitch is divided into 2 to 6 (180 °, 90 ° in angle).
°, 60 °, 45 °, 30 °; 180 ° in the illustrated example), and the longitudinal pitch is set to 10 to 30 mm, although it differs depending on the size of the projection (nodule).

【0024】また、突起(瘤)の大きさについて、高さ
は、内径の0.1〜0.5倍、望ましくは0.2〜0.
4倍とし、幅は2〜6mm、望ましくは3〜5mmとす
る。
Regarding the size of the projection (aneurysm), the height is 0.1 to 0.5 times the inner diameter, preferably 0.2 to 0.5.
The width is 4 times, and the width is 2 to 6 mm, preferably 3 to 5 mm.

【0025】この突起は、通常、プレス加工(通常、ス
タンピング)により形成し、図例では瘤状突起の配設方
向は、導通流体の流れ方向に対して平行(同方向)であ
るが、斜交方向であってもよい。このときの斜交角度
は、20〜70°、望ましくは45°前後とする。な
お、内管の肉厚は、0.3〜1.0mm、望ましくは
0.5mm前後とする。
The projections are usually formed by press working (usually stamping). In the illustrated example, the arrangement direction of the knob-shaped projections is parallel (same direction) to the flow direction of the conducting fluid, but is oblique. Intersecting directions may be used. The oblique angle at this time is set to 20 to 70 °, preferably about 45 °. In addition, the thickness of the inner tube is set to 0.3 to 1.0 mm, desirably about 0.5 mm.

【0026】上記では内管に突起群を直接的に形成した
が、突起群は、図8に示す如く、幅方向及び長手方向に
それぞれ所定間隔(所定ピッチ)で板状又は瘤状(図例
では板状)の突起群26Aが形成された平板状薄板28
を、筒状に巻き回して、内管12に嵌合させて組み付け
ることにより形成してもよい。このときの板状突起26
Aのピッチ及び大きさは前述と同様であり、切り起こし
形態が、軸線直交(迎え角度ほぼ90°)でかつ放射方向
(半径:法線方向)であるが、それぞれ斜交させてもよ
い(例えば迎え角度45°前後、法線交差角度:30°前
後とする。)なお、図例中、30は合わせ部(ジョイン
ト部)である。
In the above description, the projections are formed directly on the inner tube. However, as shown in FIG. 8, the projections are plate-shaped or bump-shaped at predetermined intervals (predetermined pitches) in the width direction and the longitudinal direction, respectively. Plate-like thin plate 28 on which a projection group 26A of
May be formed by winding it into a tubular shape, fitting it into the inner tube 12, and assembling it. The plate-like projection 26 at this time
The pitch and the size of A are the same as described above, and the cut-and-raised form is orthogonal to the axis (approximately 90 ° angle of attack) and radial (radius: normal direction). For example, the angle of attack is about 45 °, and the normal intersection angle is about 30 °.) In the example shown in the figure, reference numeral 30 denotes a joint (joint).

【0027】突起26Aの形成は、薄板(通常,0.1
〜0.3mmt)を打ち抜き、突起形成部位26aを切
り起こして行う。このとき、平板状薄板28は、ばね鋼
板とすることが望ましい。前述の如く、巻き回して筒体
として、内管12に挿入して、ろう付け等により固定し
て製造する際、ろう付け工程前のばね力により仮固定が
容易にできるためである。
The projection 26A is formed on a thin plate (usually 0.1 mm).
0.30.3 mmt), and the projection forming portion 26a is cut and raised. At this time, it is desirable that the flat thin plate 28 be a spring steel plate. As described above, when the rolled cylindrical body is inserted into the inner tube 12 and fixed by brazing or the like to be manufactured, temporary fixing can be easily performed by a spring force before the brazing step.

【0028】図8に示す筒体を、図9に示す如く、横断
分割体(図例では3分割体)28Aとして、周方向で所
定角度ずつずらして(例えば、図例の如く板状突起3つ
の場合、30°)、順次前記内管に嵌合させて組み付け
てもよい。なお、横断分割体28Aは、薄肉パイプを所
定長ずつに裁断したものをプレス等を使用して切り起こ
して形成しても勿論よい。
As shown in FIG. 9, the cylindrical body shown in FIG. 8 is formed into a transversely divided body (three divided bodies in the illustrated example) 28A which is shifted by a predetermined angle in the circumferential direction (for example, as shown in FIG. 9). In this case, 30 °) may be fitted to the inner pipe in order and assembled. The cross section 28A may be formed by cutting and raising a thin pipe cut into predetermined lengths by using a press or the like.

【0029】以上の説明では、ストレート状の内管に高
速の高温ガスを、外管に冷却水(液体)を通過させて熱
交換を行う熱交換器を例にとり説明したが、内管側及び
外管側を通過する流体の組み合わせは、熱交換可能な温
度差があれば、任意である。なお、熱交換器の内管を通
過させる自動車排気ガスは、通常、ガス流速:0〜50
m/s、ガス温度:120〜700℃である。
In the above description, a heat exchanger for exchanging heat by passing high-speed high-temperature gas through a straight inner pipe and cooling water (liquid) through an outer pipe has been described as an example. The combination of fluids passing through the outer tube side is arbitrary as long as there is a temperature difference at which heat can be exchanged. The vehicle exhaust gas passing through the inner tube of the heat exchanger usually has a gas flow rate of 0 to 50.
m / s, gas temperature: 120-700 ° C.

【0030】しかし、通常、第一流体(内管通過)と第
二流体(外管通過)の選択は、下記基準に基づいて行な
うことが望ましい。(化学工学協会編「化学工学辞典」
(昭和49年5月30日)丸善、p365〜366参
照)内管(管内)を通すべき流体:腐食性流体、管壁の
汚れの大きい流体、高圧流体、特殊材質を要求するよう
な高温流体。
However, it is usually desirable to select the first fluid (passing through the inner pipe) and the second fluid (passing through the outer pipe) based on the following criteria. (Chemical Engineering Dictionary, Chemical Engineering Dictionary)
(May 30, 1974) Maruzen, p. 365-366) Fluid to be passed through the inner pipe (inside the pipe): corrosive fluid, fluid with large stain on the pipe wall, high-pressure fluid, high-temperature fluid that requires special materials .

【0031】外管(管外)を通すべき流体:流量の小な
る流体、粘度の大なる流体、許容圧力損失の小なる流
体。
Fluid to be passed through the outer pipe (outside the pipe): a fluid having a small flow rate, a fluid having a large viscosity, and a fluid having a small allowable pressure loss.

【0032】なお、上記各実施形態では、縦渦流発生手
段は、内管にのみ設けたが、導通流体の流速が縦渦流が
発生するような高速の場合、外管のみさらには、内管と
外管の双方に設けてもよい。又、縦渦流発生手段は、壁
面に直接的又は間接的に接して形成される突起群とした
が、流路中央部に浮かして又は流路対向壁間に接してス
クリュー体やプロペラ体を連続的又は間欠的に配しても
よい。
In each of the above embodiments, the vertical vortex flow generating means is provided only in the inner pipe. However, when the flow velocity of the conducting fluid is high enough to generate a vertical vortex flow, only the outer pipe is further connected to the inner pipe. It may be provided on both of the outer tubes. The vertical vortex flow generating means is a group of projections formed directly or indirectly in contact with the wall surface. They may be arranged in a targeted or intermittent manner.

【0033】また、伝熱管群は、途中でベンデング(屈
曲)していても、さらには、U字形に屈曲して同一側に
両端が位置しているものにも本発明は適用可能である。
The present invention is also applicable to a heat transfer tube group that is bent (bent) on the way, and is further bent in a U-shape and has both ends on the same side.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の二重管式熱交換器を示す正面図FIG. 1 is a front view showing a conventional double tube heat exchanger.

【図2】図1の2−2線拡大断面図FIG. 2 is an enlarged sectional view taken along line 2-2 of FIG. 1;

【図3】従来の多管式熱交換器の一例を示す正面図FIG. 3 is a front view showing an example of a conventional multi-tube heat exchanger.

【図4】図3の4−4線断面図FIG. 4 is a sectional view taken along line 4-4 in FIG. 3;

【図5】図1において内管に波形チューブの伝熱フィン
を設けた図2に対応する拡大断面図
FIG. 5 is an enlarged sectional view corresponding to FIG. 2 in which a heat transfer fin of a corrugated tube is provided on the inner tube in FIG. 1;

【図6】図5において波形チューブの山数を増大させた
断面図
FIG. 6 is a cross-sectional view in which the number of peaks of the corrugated tube in FIG. 5 is increased.

【図7】本発明の熱交換器の一実施形態を示す横断面概
略図及び縦断面概略部分図
FIG. 7 is a schematic cross-sectional view and a partial vertical cross-sectional view showing one embodiment of the heat exchanger of the present invention.

【図8】本発明の別の実施形態において使用する製造方
法を示す説明図
FIG. 8 is an explanatory view showing a manufacturing method used in another embodiment of the present invention.

【図9】さらに突起群形成筒体が横断分割体とした場合
の斜視図
FIG. 9 is a perspective view when the projection group forming cylinder is a transversely divided body.

【符号の説明】[Explanation of symbols]

12 内管 14 外管 22 伝熱フィン 26、26A 突起 28 突起形成薄板 12 Inner tube 14 Outer tube 22 Heat transfer fin 26, 26A Projection 28 Projection-formed thin plate

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 内管と外管とを備え、前記内管側および
外管側に、それぞれ、高温側流体通路および低温側流体
通路のどちらか一方ずつを備えた二重管式熱交換器にお
いて、 前記内管及び/又は外管に縦渦流発生手段が配されてい
ることを特徴とする二重管式熱交換器。
1. A double-pipe heat exchanger including an inner pipe and an outer pipe, wherein the inner pipe side and the outer pipe side each include one of a high-temperature fluid passage and a low-temperature fluid passage. The double-pipe heat exchanger according to any one of claims 1 to 3, wherein a longitudinal vortex flow generating means is provided in the inner pipe and / or the outer pipe.
【請求項2】 内管と外管とを備え、前記内管側および
外管側に、それぞれ、高温側流体通路および低温側流体
通路のどちらか一方ずつを備えた二重管式熱交換器にお
いて、 前記内管の内壁面に、周方向及び長手方向に所定間隔
(所定ピッチ)で板状又は瘤状の突起群が形成されてい
ることを特徴とする二重管式熱交換器。
2. A double-pipe heat exchanger including an inner pipe and an outer pipe, wherein the inner pipe side and the outer pipe side each include one of a high-temperature fluid passage and a low-temperature fluid passage. The double-pipe heat exchanger according to any one of claims 1 to 3, wherein plate-shaped or bump-shaped projections are formed at predetermined intervals (predetermined pitches) in a circumferential direction and a longitudinal direction on an inner wall surface of the inner pipe.
【請求項3】 幅方向及び長手方向にそれぞれ所定間隔
(所定ピッチ)で板状又は瘤状の突起群が形成された平
板状薄板を、筒状に巻き回して、前記内管に嵌合させて
組み付けることにより、前記内管の内側壁面に、前記板
状又は瘤状の突起群が形成されていることを特徴とする
請求項2記載の二重管式熱交換器。
3. A flat thin plate having plate-shaped or bump-shaped projections formed at predetermined intervals (predetermined pitches) in a width direction and a longitudinal direction, respectively, is wound into a cylindrical shape, and fitted into the inner tube. The double-pipe heat exchanger according to claim 2, wherein the plate-shaped or knob-shaped projections are formed on an inner wall surface of the inner pipe by being assembled.
【請求項4】 前記平板状薄板がばね鋼板であることを
特徴とする請求項3記載の二重管式熱交換器。
4. The double-pipe heat exchanger according to claim 3, wherein said thin plate is a spring steel plate.
【請求項5】 薄肉円筒体の周方向及び長手方向にそれ
ぞれ所定間隔(所定ピッチ)で板状又は瘤状の突起群が
形成された突起群加工筒体を、前記内管に嵌合させて組
み付けることにより、前記内管の内側壁面に、前記板状
又は瘤状の突起群が形成されていることを特徴とする請
求項2記載の二重管式熱交換器。
5. A projection group processing cylinder body in which plate-like or knob-like projection groups are formed at predetermined intervals (predetermined pitches) in a circumferential direction and a longitudinal direction of a thin cylindrical body, respectively, and fitted to the inner tube. The double-pipe heat exchanger according to claim 2, wherein the plate-like or knob-like projections are formed on an inner wall surface of the inner pipe by being assembled.
【請求項6】 前記突起群加工筒体が、端縁を周方向に
所定ピッチで切り起こされた横断分割体を、周方向で所
定角度ずつずらして、順次前記内管に嵌合させて組み付
けたものであることを特徴とする請求項5記載の二重管
式熱交換器。
6. The projection group processing cylinder body is assembled by fitting the cross-sectioned body, the edge of which is cut and raised at a predetermined pitch in the circumferential direction, into the inner pipe sequentially by a predetermined angle in the circumferential direction. The double-pipe heat exchanger according to claim 5, wherein the heat exchanger is a heat exchanger.
JP2001156106A 2001-05-24 2001-05-24 Double pipe heat exchanger Withdrawn JP2002350071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001156106A JP2002350071A (en) 2001-05-24 2001-05-24 Double pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001156106A JP2002350071A (en) 2001-05-24 2001-05-24 Double pipe heat exchanger

Publications (1)

Publication Number Publication Date
JP2002350071A true JP2002350071A (en) 2002-12-04

Family

ID=19000162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001156106A Withdrawn JP2002350071A (en) 2001-05-24 2001-05-24 Double pipe heat exchanger

Country Status (1)

Country Link
JP (1) JP2002350071A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1810952A3 (en) * 2006-01-19 2007-12-19 Richard Weitz Assembly for re-vitalising water
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
JP2011191034A (en) * 2010-03-16 2011-09-29 Showa Denko Kk Dual-pipe heat exchanger
US8069905B2 (en) 2003-06-11 2011-12-06 Usui Kokusai Sangyo Kaisha Limited EGR gas cooling device
KR101091816B1 (en) * 2009-12-18 2011-12-12 (주)대주기계 After-cooler for a large-capacity compressor
CN104089516A (en) * 2014-05-08 2014-10-08 浙江杭特容器有限公司 U-shaped corrugated tube
WO2016072393A1 (en) * 2014-11-07 2016-05-12 シャープ株式会社 Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8069905B2 (en) 2003-06-11 2011-12-06 Usui Kokusai Sangyo Kaisha Limited EGR gas cooling device
EP1810952A3 (en) * 2006-01-19 2007-12-19 Richard Weitz Assembly for re-vitalising water
EP2305609A1 (en) * 2006-01-19 2011-04-06 Richard Weitz Assembly for re-vitalising water
RU2450975C2 (en) * 2006-01-19 2012-05-20 Рихард ВАЙТЦ Water vitalisation device
JP2009264644A (en) * 2008-04-24 2009-11-12 Panasonic Corp Heat exchanger
KR101091816B1 (en) * 2009-12-18 2011-12-12 (주)대주기계 After-cooler for a large-capacity compressor
JP2011191034A (en) * 2010-03-16 2011-09-29 Showa Denko Kk Dual-pipe heat exchanger
CN104089516A (en) * 2014-05-08 2014-10-08 浙江杭特容器有限公司 U-shaped corrugated tube
WO2016072393A1 (en) * 2014-11-07 2016-05-12 シャープ株式会社 Photovoltaic thermal hybrid panel and photovoltaic thermal hybrid system

Similar Documents

Publication Publication Date Title
JP4756585B2 (en) Heat exchanger tube for heat exchanger
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP3774843B2 (en) Multi-tube heat exchanger
JP6367869B2 (en) Counterflow heat exchanger with spiral passage
US8069905B2 (en) EGR gas cooling device
JP4143966B2 (en) Flat tube for EGR cooler
WO2004020928A1 (en) Egr cooler
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JP2008014566A (en) Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube
JP2001241872A (en) Multitubular heat exchanger
JP3744432B2 (en) Exhaust heat exchanger
JP2008145024A (en) Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube
JP2008202846A (en) Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP2002350071A (en) Double pipe heat exchanger
JP2003201923A (en) Exhaust heat exchanger
US20070131400A1 (en) Heat exchanger for gases, especially for engine exhaust gases
JP3903869B2 (en) Exhaust heat exchanger
JPH11183062A (en) Double piped heat exchanger
JP2007064606A (en) Heat exchanger tube for egr cooler
JP2004060920A (en) Heat exchanger
JP3939090B2 (en) Multi-tube heat exchanger
JP2005055153A (en) Heat exchanger
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2004085142A (en) Tube for heat exchanger, and heat exchanger
JP2007064515A (en) Flat heat transfer tube for heat exchanger, and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805