JP2006138538A - Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube - Google Patents

Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube Download PDF

Info

Publication number
JP2006138538A
JP2006138538A JP2004328269A JP2004328269A JP2006138538A JP 2006138538 A JP2006138538 A JP 2006138538A JP 2004328269 A JP2004328269 A JP 2004328269A JP 2004328269 A JP2004328269 A JP 2004328269A JP 2006138538 A JP2006138538 A JP 2006138538A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
flat heat
coil spring
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004328269A
Other languages
Japanese (ja)
Inventor
Masayoshi Usui
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2004328269A priority Critical patent/JP2006138538A/en
Publication of JP2006138538A publication Critical patent/JP2006138538A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • F28F1/405Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element and being formed of wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger tube, a multitubular heat exchanger, and a multitubular heat exchange type EGR gas cooling device providing superior cooling efficiency by uniforming distribution and a flow velocity of a fluid in addition to turbulization and an agitating effect to a medium to be cooled or a coolant flowing through a tube, and promoting efficient heat exchange action. <P>SOLUTION: The flat heat exchanger tube, and the multitubular heat exchanger and multitubular heat exchange type EGR gas cooling device comprised by incorporating the heat exchanger tube is comprised by internally providing at least one coil spring comprised by spirally winding a wire and flatly forming a wound cross sectional shape in the tube carrying the medium to be cooled or the coolant. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、通常多管式熱交換器並びに多管式熱交換型冷却装置に内装され、被冷却媒体若しくは冷却媒体を通流するための伝熱管に係り、詳しくは該伝熱管内を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起させ、伝熱管壁面と流体の接触を大ならしめると共に、該伝熱管内を通流する前記流体の流速や流量を均一化することによって、優れた熱交換性能が得られる偏平伝熱管と、該偏平伝熱管を組込んでなる多管式熱交換器並びに多管式熱交換型EGRガス冷却装置に関する。   The present invention relates to a heat transfer tube that is usually installed in a multi-tube heat exchanger and a multi-tube heat exchange type cooling device, and flows through the medium to be cooled or the cooling medium. The fluid to be cooled or the fluid composed of the cooling medium causes a turbulent or vortex stirring action to increase the contact between the heat transfer tube wall surface and the fluid, and the flow velocity of the fluid flowing through the heat transfer tube The present invention relates to a flat heat transfer tube in which excellent heat exchange performance can be obtained by equalizing the flow rate, a multi-tube heat exchanger incorporating the flat heat transfer tube, and a multi-tube heat exchange type EGR gas cooling device.

近年、自動車の排気ガス再循環用のEGRクーラーを初め、燃料クーラー、オイルクーラー、インタークーラーなどの液−液、液−気体、気体−気体等、様々な形態の流体に対する熱交換器が多用されているが、これらの流体が通流する伝熱管内には、該流体の保有する熱を効率的に放熱したり、或いは吸収したりするために様々な工夫がなされている。例えば、ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上など、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。   In recent years, heat exchangers for various forms of fluids such as EGR coolers for automobile exhaust gas recirculation, liquid-liquid, liquid-gas, gas-gas, etc., such as fuel coolers, oil coolers, and intercoolers have been widely used. However, in the heat transfer tubes through which these fluids flow, various devices have been made to efficiently radiate or absorb the heat held by the fluids. For example, a method of taking a part of exhaust gas from an exhaust system of a diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation) and is called NOx (nitrogen oxide) ), Reducing pump loss, reducing heat dissipation loss to the coolant due to lowering of combustion gas temperature, increasing specific heat ratio due to working gas volume / composition change, and accompanying improvement in cycle efficiency Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.

ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が低下し、早期に破損する惧れが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られたり、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風などによってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案され、その熱交換性能を向上させるための手段として、EGRガスが通流する管内に様々な形態のフィンを内装させている。例えば、ガスを通す内管の外側に液体を通す外管を配設し、ガスと液体間で熱交換を行う交換器において、内管内に金属コルゲート板がフィンとして挿入されている2重管式熱交換器(例えば、特許文献1参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設された熱応力緩和機能を有する放熱フィンとから構成された2重管式熱交換器(例えば、特許文献2参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設されたクロスフィンとから構成された2重管式熱交換器(例えば、特許文献3参照)等が提案されている。
特開平11−23181号公報(第1〜6頁、図1〜2) 特開2000−111277号公報(第1〜12頁、図1〜12) 特開2003−21478号公報(第1〜8頁、図1〜7)
However, when the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve decreases due to its thermal action, and there is a risk that it will be damaged at an early stage. There is a need for a structure, and as the intake air temperature rises, the charging efficiency is lowered and the fuel consumption is lowered. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioner refrigerant or cooling air is used, and in particular, gas-liquid that cools EGR gas, which is a gas, with engine coolant. Many heat exchange type EGR gas cooling devices have been proposed, and as means for improving the heat exchange performance, various forms of fins are provided in the pipe through which the EGR gas flows. For example, a double pipe type in which an outer pipe through which a liquid is passed is disposed outside an inner pipe through which a gas passes, and a metal corrugated plate is inserted as a fin in the inner pipe in an exchanger for exchanging heat between the gas and the liquid. A heat exchanger (see, for example, Patent Document 1), an inner pipe for circulating a medium to be cooled inside, an outer pipe provided so as to surround and surround the outer circumference of the inner pipe, and an inside of the inner pipe A double-pipe heat exchanger (for example, refer to Patent Document 2) composed of a radiating fin having a thermal stress relaxation function, an inner pipe for circulating a medium to be cooled, and an outer periphery of the inner pipe A double-pipe heat exchanger (for example, see Patent Document 3) composed of an outer tube provided so as to surround and be separated and a cross fin disposed inside the inner tube has been proposed. Yes.
Japanese Patent Laid-Open No. 11-23181 (pages 1-6, FIGS. 1-2) JP 2000-1111277 A (pages 1 to 12, FIGS. 1 to 12) JP 2003-21478 A (pages 1-8, FIGS. 1-7)

上記各従来技術において、特許文献1〜3に開示されている2重管タイプのEGRガス冷却器の場合は、コルゲートフィンやクロスフィンを内装させることによって、ガスの流れを細流化してフィンに対する接触面積の増大を図る点においては、それなりの成果が期待されるものの、EGRガス流路を構成するパイプの内面は、長さ方向の全長に渡ってその内周面が平滑となっているものが多く、パイプの中心付近における熱伝達が不十分となり、その上ガス流がEGRガス配管に沿ってストレートに流れるため、ガス流の乱流化が不十分となり、伝熱面の境界層が十分に薄くならず、伝熱性能が若干不足するという問題が残されていた。   In each of the above prior arts, in the case of the double-tube type EGR gas cooler disclosed in Patent Documents 1 to 3, the corrugated fins and the cross fins are provided so as to trickle the gas flow and make contact with the fins. In terms of increasing the area, although some results are expected, the inner surface of the pipe constituting the EGR gas flow path has a smooth inner peripheral surface over the entire length. In many cases, the heat transfer near the center of the pipe becomes insufficient, and the gas flow flows straight along the EGR gas pipe, so that the turbulence of the gas flow becomes insufficient and the boundary layer of the heat transfer surface is sufficient. There was a problem that the heat transfer performance was slightly insufficient without being thinned.

さらに、近時上記EGRガス冷却装置に止まらず、該EGRガス冷却装置を含む他の熱交換タイプの冷却装置の一例として、図15に示すようなシェルアンドチューブ型の多管式熱交換器200が幅広く採用され、冷却水が通流するシェル201内に、チューブシート205を介して複数の伝熱管群203が形成され、ボンネット202−1に設けられた被冷却媒体入口g1から導入された高温の流体が、反対側のボンネット202−2に設けられた被冷却媒体出口g2から排出されるまでの間に、該伝熱管群203を形成する伝熱管の管壁を介して、前記シェル201内を被冷却媒体の流れに対して直交状態で通流する冷却水に熱交換され、所定温度にまで冷却される構造となっている。また、該伝熱管群203を形成する個々の伝熱管203−1を、図16(a)および(b)に示すような偏平管とすることによって、その接触面積を広くしたり、該偏平伝熱管203−1内に断面が矩形で、長手方向に自由形状を有するのコルゲート状のプレートフィン206を内装して、被冷却媒体である高温流体の流路を複数の小流路に区画したり、該プレートフィン206を図16(c)に示すような波形に形成して、該小流路内を通流する流体を蛇行させることによって、熱伝達面積をさらに大ならしめ、熱交換効率の一層の向上を図るためのフィン構造体が提案され、それぞれ初期の成果を達成している。  Furthermore, as an example of another heat exchange type cooling device including the EGR gas cooling device, the shell and tube type multi-tube heat exchanger 200 as shown in FIG. 15 is not limited to the EGR gas cooling device recently. Is widely adopted and a plurality of heat transfer tube groups 203 are formed through a tube sheet 205 in a shell 201 through which cooling water flows, and a high temperature introduced from a cooling medium inlet g1 provided in the bonnet 202-1. In the shell 201 through the tube wall of the heat transfer tube forming the heat transfer tube group 203 until the fluid is discharged from the cooled medium outlet g2 provided in the opposite bonnet 202-2. Is cooled to a predetermined temperature by heat exchange with cooling water flowing in a state orthogonal to the flow of the medium to be cooled. Further, by making the individual heat transfer tubes 203-1 forming the heat transfer tube group 203 into flat tubes as shown in FIGS. 16 (a) and (b), the contact area can be increased, A corrugated plate fin 206 having a rectangular cross section in the heat pipe 203-1 and having a free shape in the longitudinal direction is housed, and the flow path of the high-temperature fluid that is the cooling medium is partitioned into a plurality of small flow paths. The plate fin 206 is formed in a waveform as shown in FIG. 16 (c), and the fluid flowing through the small flow path is meandered, thereby further increasing the heat transfer area and improving the heat exchange efficiency. Fin structures for further improvement have been proposed, each achieving initial results.

然しながら、偏平伝熱管内に一枚の金属製薄板からなるプレート材料に、特殊な塑性加工を施すことによって形成された上記フィン構造体を内装した上記伝熱管においても、該フィン構造体によって形成された小流路内における流体の圧力損失が低く、該小流路間を通流する流体の分配が均等にならず、流速に不均一な分布が発生し、しかも一枚の金属性薄板によって成形されたプレートフィンによって分割された上記小流路は、それぞれに独立した流路を形成し、相互に連通していないため、一旦発生した流速の分布の不均一を解消させることは不可能となり、この流速分布の偏りに起因して熱交換効率が著しく低下するという未解決な課題が残されていた。また、上記伝熱管において分割された小流路における流体分配の不均一は、過剰量の流体が通流した場合には所望の温度域にまで冷却することが不可能となり、一方、流体流量が設計値より少ない場合においては、流体の冷却は進行するものの所定流量に達しないため、結果として交換熱量は減少することとなる。即ち、熱交換効率を向上させるべく改善された上記フィン構造体においても、煩雑な塑性加工などその加工や取付け方法に困難を要し、装置そのものが高コストとなるのに比し、十分な性能を得るまでには至らず、更に改良を望まれる大きな課題が残されていた。本発明は斯かる課題を解決することを所期の目的として種々検討した結果、偏平伝熱管に装入される従来のフィン構造体に代えて、線材をスパイラル状に巻き回して得た断面形状が偏平のコイルスプリングを内装せしめることにより、該偏平伝熱管内を通流する流体に対して間歇的なエッジ効果が連続して多数発生するとともに、同時に連続的なカルマンの渦列が形成されるという知見を得、該知見に基づいて簡略な構造であるにも拘らず熱交換効率が優れる偏平伝熱管を開発し、該偏平伝熱管を組み込むことによって冷却効率が著しく向上した多管式熱交換器、並びに多管式熱交換型EGRガス冷却装置を提供することに成功した。  However, the heat transfer tube in which the fin structure formed by applying special plastic processing to a plate material made of a single metal thin plate in the flat heat transfer tube is also formed by the fin structure. The pressure loss of the fluid in the small flow path is low, the distribution of the fluid flowing between the small flow paths is not uniform, the flow velocity is unevenly distributed, and it is formed by a single metal sheet Since the small flow paths divided by the plate fins formed independent flow paths for each other and are not in communication with each other, it becomes impossible to eliminate the uneven distribution of the flow velocity once generated, The unsolved problem that the heat exchange efficiency is remarkably lowered due to the uneven flow velocity distribution remains. Further, the non-uniformity of fluid distribution in the small flow path divided in the heat transfer tube makes it impossible to cool to a desired temperature range when an excessive amount of fluid flows, while the fluid flow rate is In the case of less than the design value, although the cooling of the fluid proceeds, the predetermined flow rate is not reached, and as a result, the exchange heat quantity is reduced. That is, even in the fin structure improved to improve the heat exchange efficiency, it is difficult to process and attach it, such as complicated plastic processing, and the performance is sufficient compared to the high cost of the device itself. However, there remains a big problem that further improvement is desired. As a result of various investigations for the purpose of the present invention to solve such problems, a cross-sectional shape obtained by winding a wire rod in a spiral shape instead of a conventional fin structure inserted in a flat heat transfer tube By installing a flat coil spring, a large number of intermittent edge effects occur continuously with respect to the fluid flowing through the flat heat transfer tube, and at the same time, a continuous Karman vortex street is formed. Based on this knowledge, we have developed a flat heat transfer tube with excellent heat exchange efficiency despite its simple structure. By incorporating this flat heat transfer tube, the cooling efficiency has been significantly improved. As well as a multi-tube heat exchange type EGR gas cooling device.

上記課題を解決するための本発明による偏平伝熱管は、線材をスパイラル状に巻回すと共に、その巻回した断面形状を偏平に形成した少なくとも1本のコイルスプリングを、被冷却媒体もしくは冷却媒体が通流する管内に内装してなることを特徴的構成要件とする偏平伝熱管を要旨とするものである。   A flat heat transfer tube according to the present invention for solving the above-described problems is obtained by winding a wire rod in a spiral shape and including at least one coil spring having a flattened cross-sectional shape as a cooling medium or a cooling medium. The gist of the present invention is a flat heat transfer tube that is characterized by being internally provided in a flowing tube.

また、本発明による上記偏平伝熱管は、前記コイルスプリングが、線材間に特定の間隔を保持して巻き回され、偏平に形成されるその巻回した断面形状が略長円形、略楕円形、略長方形のいずれかであることを特徴とするものである。   Further, in the flat heat transfer tube according to the present invention, the coil spring is wound while maintaining a specific interval between the wires, and the wound cross-sectional shape formed into a flat shape is substantially oval, substantially oval, It is one of substantially rectangular shapes.

さらに、本発明による前記コイルスプリングが、線材を円形のスパイラル状に巻き回してコイルスプリングを形成し、その後該コイルスプリングを平行面で押圧することにより、巻回した断面形状を偏平に形成したことを特徴とするものである。   Furthermore, the coil spring according to the present invention is formed by winding a wire rod in a circular spiral shape to form a coil spring, and then pressing the coil spring with a parallel surface to form a flattened cross-sectional shape. It is characterized by.

上記本発明による偏平伝熱管において、前記コイルスプリングを形成する線材の断面が、円形若しくは該円形を基に任意に変形された略楕円形や略長円形、三角形、正方形若しくは該正方形を基に任意に変形された略長方形、略五角形、略六角形、略多角形、または星形などから選択される断面形状を有することを好ましい態様とするものである。   In the above-described flat heat transfer tube according to the present invention, the cross-section of the wire forming the coil spring is circular or approximately elliptical, arbitrarily elongated based on the circular shape, substantially elliptical, triangular, square, or arbitrarily based on the square It is preferable to have a cross-sectional shape selected from a substantially rectangular shape, a substantially pentagonal shape, a substantially hexagonal shape, a substantially polygonal shape, a star shape, or the like that is deformed into a shape.

本発明による上記偏平伝熱管において、前記コイルスプリングを形成する線材の断面形状が長方形であることをさらに好ましい態様とするものである。   In the above-described flat heat transfer tube according to the present invention, it is preferable that the cross-sectional shape of the wire forming the coil spring is a rectangle.

また、上記本発明による偏平伝熱管において、前記コイルスプリングの偏平伝熱管内への内装形態が、該偏平伝熱管の管軸方向に対して平行、波状、垂直、斜めから選択されるいずれかの形態、若しくはこれらの形態を任意に組み合わせて内装されることを特徴とするものである。   Further, in the above-described flat heat transfer tube according to the present invention, the inner form of the coil spring in the flat heat transfer tube is any one selected from parallel, wavy, vertical, and oblique to the tube axis direction of the flat heat transfer tube. It is characterized in that the interior is configured by arbitrarily combining these forms or these forms.

さらに、本発明による前記偏平伝熱管の断面形状が、略長円形若しくは略長方形であることを特徴とするものである。   Furthermore, the cross-sectional shape of the flat heat transfer tube according to the present invention is substantially oval or substantially rectangular.

本発明による上記偏平伝熱管において、該偏平伝熱管の少なくとも一方の内周壁面に凹溝が形成され、該凹溝に前記コイルスプリングが嵌装されるようにして内装することを特徴とするものである。   The flat heat transfer tube according to the present invention is characterized in that a concave groove is formed in at least one inner wall surface of the flat heat transfer tube, and the coil spring is fitted into the concave groove. It is.

本発明による上記偏平伝熱管において、該偏平伝熱管へのコイルスプリングの内装手段が溶接、拡散接合、ろう付けその他の接合手段の中から適宜選択され、一体として接合されることを好ましい態様とするものである。   In the above-described flat heat transfer tube according to the present invention, it is preferable that the internal means of the coil spring to the flat heat transfer tube is appropriately selected from welding, diffusion bonding, brazing and other bonding means and is integrally bonded. Is.

また、本発明による上記偏平伝熱管において、該偏平伝熱管へのコイルスプリングの内装手段が、ろう付けであることをさらに好ましい態様とするものだある。   Further, in the flat heat transfer tube according to the present invention, it is further preferable that the internal means of the coil spring to the flat heat transfer tube is brazing.

本願に係る他の発明による多管式熱交換器は、上記発明によって得られた偏平伝熱管を、少なくとも2つ以上組み込んでなることを特徴的構成要件とするものである。   A multi-tube heat exchanger according to another invention according to the present application is characterized by incorporating at least two flat heat transfer tubes obtained by the above invention.

前記の発明に係る多管式熱交換器において、組み込まれる前記偏平伝熱管内に、被冷却媒体を通流させることを好ましい態様とするものである。   In the multitubular heat exchanger according to the invention described above, it is preferable that the medium to be cooled is caused to flow through the flat heat transfer tube to be incorporated.

前記の発明に係る多管式熱交換器において、前記偏平伝熱管内を通流する被冷却媒体が、ガス体であることを好ましい態様とするものである。   In the multitubular heat exchanger according to the invention described above, it is preferable that the medium to be cooled flowing through the flat heat transfer tube is a gas body.

本願に係るさらに他の発明による多管式熱交換型EGRガス冷却装置は、内装される前記偏平伝熱管内に、被冷却媒体としてEGRガスを通流させてなることを特徴的構成要件とするものである。   A multi-tube heat exchange type EGR gas cooling device according to still another invention of the present application is characterized in that EGR gas is allowed to flow as a medium to be cooled in the flat heat transfer tube provided therein. Is.

本発明に係る上記偏平伝熱管によれば、該偏平伝熱管内に内装される巻回した断面形状が偏平のコイルスプリングが、該伝熱管内を通流する被冷却媒体或いは冷却媒体からなる流体の流路に介在することにより、多数のエッジ部が間歇的にかつ途切れることなく連続して存在して該流体に対するエッジ効果を生じさせ、加えてスパイラル状に形成される線材毎に、カルマンの渦列が連続的に形成され、大きな攪拌効果と共に該伝熱管内における流体の流速に偏りがなくなり、それに伴い不均一な流速の分布が解消されて均一な流速が維持し易い構造となる。従ってそれぞれの流路間にあって流体の圧力も均一となり、流体の分配も平均化され、伝熱性能が飛躍的に向上して優れた熱交換性能が確保される。また、本発明によるコイルスプリングを内装した上記偏平伝熱管によれば、スパイラル状に形成された該コイルスプリングによって、通流する流体間の混合、衝突が頻繁に発生し、作動流体の乱流化や渦流化が期待でき、流体は、その流線が複雑に撹乱され、層流は剥離されて効果的な攪拌が繰り返され、伝熱管内を通流する流体は繰返し該伝熱管壁面やコイルスプリングと接触して効果的な熱交換が促進される。   According to the flat heat transfer tube according to the present invention, a coil spring having a flat cross-sectional shape wound in the flat heat transfer tube is a fluid composed of a medium to be cooled or a cooling medium flowing through the heat transfer tube. By interposing it in the flow path, a large number of edge portions exist intermittently and without interruption, causing an edge effect on the fluid, and for each wire formed in a spiral shape, A vortex row is continuously formed, and the flow velocity of the fluid in the heat transfer tube is not biased with a large stirring effect. Accordingly, the non-uniform flow velocity distribution is eliminated, and a uniform flow velocity is easily maintained. Therefore, the pressure of the fluid is uniform between the flow paths, the fluid distribution is averaged, the heat transfer performance is dramatically improved, and excellent heat exchange performance is ensured. Further, according to the above flat heat transfer tube having the coil spring according to the present invention, the spirally formed coil spring frequently causes mixing and collision between fluids flowing therethrough, thereby making the working fluid turbulent. The fluid flow is complicated and the laminar flow is separated and effective stirring is repeated, and the fluid flowing through the heat transfer tube repeatedly repeats the heat transfer tube wall surface and coil spring. Effective heat exchange is promoted in contact with.

本発明における上記偏平伝熱管において、該伝熱管の少なくとも一方の、好ましくは両方の内周壁面に凹溝を形成し、該凹溝にコイルスプリングを嵌装させるようにして内装すると、組込みが容易で炉内ろう付などによる連続製造がし易くなって、製造コストを大幅に削減することができると共に、偏平伝熱管そのものの補強効果が加味してその耐振性が向上し、かつ固定手段をろう付とすることにより、コイルスプリングから伝熱管壁面への伝熱性が更に向上する。また、コイルスプリングを形成する線材の断面形状を、長円形等の偏平状とすることによりコイルスプリング自体の伝熱面積が増大して、それを組み込んだ偏平伝熱管の伝熱性能が一層向上する。従って本発明による偏平伝熱管は、多管式の熱交換型冷却装置は勿論のこと、燃料用クーラーやオイルクーラー更にはインタークーラー等の熱交換器用伝熱管として好適に内装し得ると同時に、前記コイルスプリングを内装した伝熱管は、その優れた熱交換性能によってそれらの装置の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換器を、比較的安価に提供することができる。   In the flat heat transfer tube according to the present invention, if a groove is formed on the inner peripheral wall surface of at least one of the heat transfer tubes, preferably both, and a coil spring is fitted in the groove, it is easy to incorporate. This makes it easier to continuously manufacture by brazing in the furnace, which can greatly reduce the manufacturing cost, improve the vibration resistance of the flat heat transfer tube itself, and improve the vibration resistance. By being attached, the heat transfer from the coil spring to the heat transfer tube wall surface is further improved. Further, by making the cross-sectional shape of the wire forming the coil spring into a flat shape such as an oval, the heat transfer area of the coil spring itself is increased, and the heat transfer performance of the flat heat transfer tube incorporating the coil spring is further improved. . Therefore, the flat heat transfer tube according to the present invention can be suitably installed as a heat transfer tube for a heat exchanger such as a fuel cooler, an oil cooler, or an intercooler as well as a multi-tube heat exchange type cooling device, and at the same time The heat transfer tubes with springs make it possible to reduce the size and weight of these devices due to their excellent heat exchange performance, contributing to the compactness of the devices and enabling easy installation in a limited space. Can be provided relatively inexpensively.

以下、本発明の実施の形態について添付した図面に基づいて更に詳細に説明する。
図1は本発明の一実施例に係る偏平伝熱管の単体を模式的に示し、(a)はコイルスプリングを内装した偏平伝熱管の一部省略斜視図、(b)はコイルスプリング単体の一部省略斜視図、図2は本発明の他の実施例に係る偏平伝熱管の単体を模式的に示し、(a)はコイルスプリングを内装した偏平伝熱管の一部省略斜視図、(b)はコイルスプリング単体の一部省略斜視図、図3は本発明の更に他の実施例に係る偏平伝熱管の単体を模式的に示す一部省略斜視図、図4は本発明に係るコイルスプリングの巻回した断面形状を示し、(a)〜(e)はその巻回した断面形状を偏平に形成した状態を例示した正面図、図5は本発明における上記コイルスプリングを形成する線材の断面形状を示し、(a)〜(h)は該伝面形状を例示した断面図、図6は本発明におけるコイルスプリング単体の側面を示す2面図で、(a)は線材同士が密着した状態を示し、(b)は線材同士が特定の間隔を保った状態をそれぞれ示す一部省略側面図、図7は本発明に係る一実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図、図8は本発明に係る他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図、図9は本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す2面図で、(a)はその一部拡大平面図、(b)はその一部拡大正面図、図10は本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図、図11は本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図、図12は本発明に係る一実施例において、偏平伝熱管に内装されるコイルスプリングの組合せの状況を模式的に示す一部拡大平面図、図13は本発明に係る多管式熱交換器において、コイルスプリングを内装した偏平伝熱管を組み込んだ状態を模式的に示す正面図、図14は本発明に係る多管式熱交換型EGRガス冷却装置において、コイルスプリングを内装した偏平伝熱管を組込んだ状態を模式的に示す一部省略側面図である。
[実施例]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 schematically shows a single flat heat transfer tube according to an embodiment of the present invention, in which (a) is a partially omitted perspective view of the flat heat transfer tube with a coil spring installed therein, and (b) is a single coil spring. FIG. 2 schematically shows a single unit of a flat heat transfer tube according to another embodiment of the present invention, and FIG. 2A is a perspective view with a part omitted of the flat heat transfer tube with a coil spring installed therein. Is a partially omitted perspective view of a single coil spring, FIG. 3 is a partially omitted perspective view schematically showing a flat heat transfer tube according to still another embodiment of the present invention, and FIG. 4 is a perspective view of the coil spring according to the present invention. FIGS. 5A to 5E are front views illustrating a state in which the wound cross-sectional shape is formed flat, and FIG. 5 is a cross-sectional shape of the wire forming the coil spring in the present invention. (A) to (h) are cross-sectional views illustrating the transmission surface shape. FIG. 6 is a two-sided view showing a side surface of a coil spring according to the present invention, in which (a) shows a state where the wires are in close contact with each other, and (b) is a part showing a state where the wires are kept at a specific interval FIG. 7 is an abbreviated side view, FIG. 7 is a partially enlarged plan view schematically showing a state of arrangement of coil springs installed in a flat heat transfer tube, and FIG. 8 is another embodiment according to the present invention. FIG. 9 is a partially enlarged plan view schematically showing the state of arrangement of coil springs installed in a flat heat transfer tube in an example, and FIG. 9 is a coil spring installed in a flat heat transfer tube in still another embodiment of the present invention. (A) is a partially enlarged plan view thereof, (b) is a partially enlarged front view thereof, and FIG. 10 is a still another embodiment according to the present invention. Arrangement of coil springs installed in flat heat transfer tubes FIG. 11 is a partially enlarged plan view schematically showing a situation of arrangement of coil springs installed in a flat heat transfer tube in still another embodiment according to the present invention, FIG. 12 is a partially enlarged plan view schematically showing a state of a combination of coil springs installed in a flat heat transfer tube in one embodiment according to the present invention, and FIG. 13 is a multi-tube heat exchanger according to the present invention. FIG. 14 is a front view schematically showing a state in which a flat heat transfer tube with a coil spring installed therein is assembled. FIG. 14 shows a multi-tube heat exchange type EGR gas cooling device according to the present invention in which a flat heat transfer tube with a coil spring is assembled. FIG.
[Example]

以下本発明を実施例により更に具体的に説明するが、本発明はこれによって拘束されるものではなく、本発明の主旨の範囲内において自由に設計変更が可能である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto, and can be freely modified within the scope of the gist of the present invention.

冷間引き抜き加工によって厚さ0.3mm、幅3mmの断面形状が偏平楕円形に加工されたSUS316オーステナイト系ステンレス鋼からなる線材を用意し、該線材に対して密着巻き線加工を施すことによって巻回した断面形状が円形のコイル状に成形した後、金型による平行面間による押圧加工を施し、図1(b)に示すような巻回した断面形状が略長円形の偏平コイルスプリング1を得た。一方、厚さ0.5mmのSUS316オーステナイト系ステンレス鋼からなる円形チューブを用意し、金型による押圧加工を施して断面形状が略長方形の偏平管とした後、更に金型による押圧加工を施して図1(a)に示すような内周壁面に凹溝2−1が形成された偏平伝熱管2を得た。次いで該伝熱管2の凹溝2−1に前記コイルスプリング1を、線材同士が特定の間隔を保つようにして嵌装し、ろう付によって一体として接合して、本発明による巻回した断面形状が偏平のコイルスプリング1を内装した偏平伝熱管2を得た。このようにして得られた偏平伝熱管2を8本準備して、図14に示すような多管式熱交換型EGRガス冷却装置20に組み込み、該EGRガスgの冷却性能試験に供した結果を、従来の同種の多管式熱交換型EGRガス冷却装置と比較して表1に示す。表1に示される結果によって明らかなように、本発明に基づく実施例によって構成される前記EGRガス冷却装置20によれば、EGRガスg流入口のボンネット20−3を介して流入した高温のEGRガスgは、偏平伝熱管2内に内装されたコイルスプリング1のエッジ効果によって効果的に攪拌され、一方、該コイルスプリング1が作用してカルマンの渦列が連続的に形成され、該伝熱管内を通流するEGRガスgの流れが乱流化されて大きな攪拌作用を受けながらも、該EGRガス流の流速分布が均一化されるため、伝熱管壁面に対する接触が偏り無く繰り返されて、効果的な熱交換が促進され、優れた冷却性能と高い温度効率が得られることが確認された。

A wire made of SUS316 austenitic stainless steel with a cross-sectional shape of 0.3 mm thickness and 3 mm width processed into a flat ellipse by cold drawing is prepared, and the wire is wound by applying tight winding to the wire. After the turned cross-sectional shape is formed into a circular coil shape, the flat coil spring 1 having a substantially elliptical cross-sectional shape as shown in FIG. Obtained. On the other hand, after preparing a circular tube made of SUS316 austenitic stainless steel with a thickness of 0.5 mm and applying a pressing process using a mold to form a flat tube having a substantially rectangular cross-sectional shape, a pressing process using a mold is further performed. A flat heat transfer tube 2 having a groove 2-1 formed on the inner peripheral wall surface as shown in FIG. Next, the coil spring 1 is fitted into the concave groove 2-1 of the heat transfer tube 2 so that the wires are kept at a specific interval, and joined together by brazing, and the wound cross-sectional shape according to the present invention is used. A flat heat transfer tube 2 having a flat coil spring 1 was obtained. As a result of preparing eight flat heat transfer tubes 2 obtained in this way and incorporating them into a multi-tube heat exchange type EGR gas cooling device 20 as shown in FIG. 14, the results were provided for a cooling performance test of the EGR gas g. Is shown in Table 1 in comparison with a conventional multi-tube heat exchange type EGR gas cooling device of the same kind. As is apparent from the results shown in Table 1, according to the EGR gas cooling device 20 configured according to the embodiment of the present invention, the high-temperature EGR flowed through the hood 20-3 of the EGR gas g inlet port. The gas g is effectively agitated by the edge effect of the coil spring 1 incorporated in the flat heat transfer tube 2, while the coil spring 1 acts to continuously form a Karman vortex, and the heat transfer While the flow of the EGR gas g flowing through the pipe is turbulent and undergoes a large stirring action, the flow velocity distribution of the EGR gas flow is made uniform, so that the contact with the heat transfer tube wall surface is repeated without deviation, It was confirmed that effective heat exchange was promoted, and excellent cooling performance and high temperature efficiency were obtained.

Figure 2006138538
Figure 2006138538

本実施例による上記偏平伝熱管2と該偏平伝熱管2に内装されるコイルスプリング1を形成する線材として、SUS316オーステナイト系ステンレス鋼を採用したが、一定の機械的強度を有し、耐熱性と耐食性並びに伝熱性に優れ、かつ加工性が良好な素材であれば、その他の金属材料から適宜選択することを妨げない。更に、本実施例における前記線材の形成手段を冷間引き抜き加工によって得られる線材としたが、その他の方法で得られた線材であっても差し支えはない。また、扁平伝熱管2の形成手段が円形チューブを用いた金型による押圧加工としたが、平板を用いた板金加工などにより、例えば最中合せタイプ(片合せ、両合せ)を採用することも妨げない。一方、偏平伝熱管2に対するコイルスプリング1の接合手段を、本実施例においてはろう付を採用したが、本発明はこれに限定されるものではなく、溶接、拡散接合その他の接合手段を適宜に採用することも可能であり、また、ろう付においては、コイルスプリング1もしくは偏平伝熱管2の接合壁面のうち、少なくともいずれか一方に、予めめっきを施しておいても良く、ペースト、線材、箔等を接合面に供給することも可能である。   SUS316 austenitic stainless steel is used as the wire material for forming the flat heat transfer tube 2 and the coil spring 1 installed in the flat heat transfer tube 2 according to the present embodiment, but has a certain mechanical strength, As long as the material is excellent in corrosion resistance and heat transfer and has good workability, it is not hindered to appropriately select from other metal materials. Furthermore, although the wire forming means in the present embodiment is a wire obtained by cold drawing, a wire obtained by other methods can be used. Further, the flat heat transfer tube 2 is formed by pressing with a mold using a circular tube, but it is also possible to adopt, for example, a middle-matching type (one-sided or two-sided) by sheet metal processing using a flat plate. I do not disturb. On the other hand, the joining means of the coil spring 1 to the flat heat transfer tube 2 is brazed in this embodiment, but the present invention is not limited to this, and welding, diffusion joining and other joining means are appropriately used. In addition, in brazing, at least one of the joining wall surfaces of the coil spring 1 or the flat heat transfer tube 2 may be plated in advance, and a paste, wire, foil Etc. can also be supplied to the joint surface.

偏平伝熱管2aの形状を図2(a)に示すように形成し、内装されるコイルスプリング1aの巻回した断面形状を同図(b)に示すように略長方形の偏平形状とした以外は、実施例1と同様にして巻回した断面形状が偏平のコイルスプリング1a内装した偏平伝熱管2aを得、該偏平伝熱管2aを8本準備して、実施例1と同様にして多管式熱交換型EGRガス冷却装置20に組込み、実施例1と同一の条件で冷却試験に供した結果、実施例1とほぼ同等の冷却効率を得られることが確認された。   Except that the shape of the flat heat transfer tube 2a is formed as shown in FIG. 2 (a), and the cross-sectional shape of the coil spring 1a wound inside is a substantially rectangular flat shape as shown in FIG. 2 (b). Then, a flat heat transfer tube 2a having a coil spring 1a with a flat cross-sectional shape wound in the same manner as in Example 1 is obtained, and eight flat heat transfer tubes 2a are prepared. As a result of being incorporated in the heat exchange type EGR gas cooling device 20 and subjected to a cooling test under the same conditions as in Example 1, it was confirmed that substantially the same cooling efficiency as in Example 1 could be obtained.

厚さ0.5mmのSUS316オーステナイト系ステンレス鋼製の板材を用意し、金型を用いた板金加工による最中合せ加工を施し、図3に示すような偏平伝熱管2bを作製した。一方、該扁平伝熱管2bに内装されるコイルスプリング1bの巻回した断面形状を、同図に示すような変形長方形とし、それ以外は実施例2と同様にして図3に示すような巻回した断面形状が偏平のコイルスプリング1bを内装した偏平伝熱管2bを得た。次いで該偏平伝熱管2bを8本準備して、実施例1と同様にして多管式熱交換型EGRガス冷却装置20に組込み、実施例1と同一の条件で冷却試験に供した結果、実施例1とほぼ同等の冷却効率を得られることが確認された。   A plate material made of SUS316 austenitic stainless steel having a thickness of 0.5 mm was prepared and subjected to a mid-process by sheet metal working using a mold to produce a flat heat transfer tube 2b as shown in FIG. On the other hand, the wound cross-sectional shape of the coil spring 1b housed in the flat heat transfer tube 2b is a deformed rectangle as shown in the same figure, and the other windings are as shown in FIG. A flat heat transfer tube 2b having a coil spring 1b with a flat cross-sectional shape was obtained. Next, eight flat heat transfer tubes 2b were prepared and installed in a multi-tube heat exchange type EGR gas cooling device 20 in the same manner as in Example 1 and subjected to a cooling test under the same conditions as in Example 1. It was confirmed that substantially the same cooling efficiency as in Example 1 could be obtained.

本発明における偏平伝熱管に内装されるコイルスプリングは、その巻回した断面形状が偏平に形成されたものであれば特に制限されるものではなく、例えば図4の(a)に示す略長円形、同図(b)に示す略楕円形、同図(c)に示す略長方形、同図(d)に示す略変形六角形、同図(e)に示す略変形くの字状長方形が例示されるが、本発明の目的に沿うものであればその他の形状であっても自由に採用することが可能である。また、本発明におけるコイルスプリングは前記実施例からも明らかなように、当初円形の密着巻き線コイルとして形成され、偏平伝熱管に内装される際には、金型を用いた平行面間による押圧加工が施されて、所望の巻回し断面形状が偏平のコイルスプリングに形成されるが、該コイルスプリングは図6(a)に示すように密着巻き線状態で偏平伝熱管に内装されることを妨げないが、効果的なエッジ効果と連続的カルマンの渦列を形成するためと価格や重量のためには、同図(b)に示すように線材同士に特定の間隔を保った非密着型であることが望ましい。   The coil spring incorporated in the flat heat transfer tube in the present invention is not particularly limited as long as the wound cross-sectional shape is formed flat, and for example, a substantially oval shape shown in FIG. The substantially elliptical shape shown in FIG. 6B, the substantially rectangular shape shown in FIG. 10C, the substantially deformed hexagon shown in FIG. 10D, and the substantially deformed rectangular shape shown in FIG. However, other shapes can be freely adopted as long as they meet the object of the present invention. Further, as is clear from the above embodiment, the coil spring according to the present invention is initially formed as a circular tightly wound coil, and when it is installed in a flat heat transfer tube, it is pressed between parallel surfaces using a mold. After being processed, a coil spring having a desired winding cross-sectional shape is formed into a flat coil spring, and the coil spring is installed in the flat heat transfer tube in a tightly wound state as shown in FIG. Although not obstructing, in order to form an effective edge effect and continuous Karman vortex street, and for price and weight, non-contact type with a specific spacing between the wires as shown in FIG. It is desirable that

本発明における上記コイルスプリングを形成する線材は、コイルスプリングを形成することが可能な線材であればその断面形状を特に規定しないが、例えば図5(a)に示す円形、同図(b)に示す略楕円形、同図(c)に示す略長円形、同図(d)に示す略正方形、同図(e)に示す略長方形、同図(f)に示す略五角形、同図(g)に示す略六角形、同図(h)に示す略星形等が例示されるが、本発明の目的に沿うものであればその他の形状であっても自由に採用することが可能である。   The wire material forming the coil spring in the present invention is not particularly limited in cross section as long as it is a wire material capable of forming the coil spring. For example, the wire shown in FIG. A substantially oval shape shown in FIG. 2C, a substantially square shape shown in FIG. 1D, a substantially rectangular shape shown in FIG. 1E, a substantially pentagon shape shown in FIG. ), A substantially star shape shown in FIG. 11 (h), and the like, but other shapes can be freely adopted as long as they meet the object of the present invention. .

本発明において、コイルスプリングの偏平伝熱管への配置方法は任意であり特に制限するものではないが、例えば図7に示すように被冷却媒体であるガスの流れ方向gに対して直線状に配置したり、図8に示すように波状に配置したり、図9に示すように直角に配置することも可能であり、さらには図10に示すようにコイルスプリングが間隔を設けることによって間歇的に配置されたり、図11に示すように偏平伝熱管内に蛇腹状に配置して固定することも可能である。また、偏平伝熱管内におけるコイルスプリングの上記の配置は、それぞれを組み合わせて設けることも可能であり、例えば図12に示すように直角と傾斜を交互に組み合わせて配置することも可能である   In the present invention, the arrangement method of the coil spring on the flat heat transfer tube is arbitrary and not particularly limited. For example, as shown in FIG. 7, the coil spring is arranged linearly with respect to the flow direction g of the gas to be cooled. 8 can be arranged in a wave shape as shown in FIG. 8, or can be arranged at a right angle as shown in FIG. 9. Further, as shown in FIG. It is also possible to arrange them or to fix them by arranging them in a bellows shape in a flat heat transfer tube as shown in FIG. Further, the above arrangement of the coil springs in the flat heat transfer tube can be provided in combination with each other. For example, as shown in FIG.

上記の如くして巻回した断面形状が偏平のコイルスプリングを内装することによって、本発明による偏平伝熱管が得られるが、該偏平伝熱管2xの複数本が冷却ジャケットを形成するシェル10−1内に組込まれることによって、図13に示すような本発明の多管式熱交換器10が構成される。組込まれる偏平伝熱管は、同一のコイルスプリングを同一の配置によって内装されたものである必要はなく、図13に示すように内装されるコイルスプリングが略長円形のコイルスプリング1cであったり、略長方形のコイルスプリング1eであったりすることも任意であり、その配置や組合せについても自由に選択することができる。   By incorporating a coil spring having a flat cross-sectional shape wound as described above, a flat heat transfer tube according to the present invention can be obtained, and a plurality of the flat heat transfer tubes 2x form a cooling jacket 10-1. The multi-tube heat exchanger 10 of the present invention as shown in FIG. The flat heat transfer tubes to be incorporated do not have to be provided with the same coil springs arranged in the same arrangement. As shown in FIG. 13, the coil springs installed are substantially oval coil springs 1c, The rectangular coil spring 1e can be arbitrarily selected, and the arrangement and combination thereof can be freely selected.

本発明による上記偏平伝熱管を複数本組込むことよって、前記実施例において用いられた図14に示す本発明の多管式熱交換型EGRガス冷却装置が構成されるが、該EGRガス冷却装置は冷却ジャケットとなる本体20−1の両端部にチューブシート20−2が設けられ、該チューブシートを介して複数の偏平伝熱管2xが組込まれる。該偏平伝熱管には巻回した断面形状が偏平のコイルスプリングが内装され、EGRガス入口側のボンネット20−3を介して流入した高温のEGRガスが、前記偏平伝熱管内を通流してEGRガス出口側のボンネット(図示を省略)を介して流去する間に、約1/3の温度レベルまで冷却されることが確認されているが、係る温度効率を可能とするのは扁平伝熱管に内装されるコイルスプリングによってもたらされるエッジ効果と、連続的に形成されるカルマンの渦列が貢献する熱伝導効率の著しい向上に、その要因が存在するものと前記実施例において確認されている。   By incorporating a plurality of the above flat heat transfer tubes according to the present invention, the multi-tube heat exchange type EGR gas cooling device of the present invention shown in FIG. 14 used in the above-described embodiment is constructed. Tube sheets 20-2 are provided at both ends of the main body 20-1 serving as a cooling jacket, and a plurality of flat heat transfer tubes 2x are assembled via the tube sheets. The flat heat transfer tube is internally provided with a coil spring having a flat cross-sectional shape, and hot EGR gas flowing in through the hood 20-3 on the EGR gas inlet side flows through the flat heat transfer tube and passes through the EGR. While it has been confirmed that it is cooled to a temperature level of about 1/3 while flowing out through a bonnet (not shown) on the gas outlet side, it is a flat heat transfer tube that enables such temperature efficiency. It has been confirmed in the above-mentioned embodiment that the factor exists in the edge effect brought about by the coil spring installed in the inner wall and the remarkable improvement in the heat conduction efficiency contributed by the Karman vortex array formed continuously.

本発明における上記偏平伝熱管、該伝熱管に内装されるコイルスプリング並びに多管式熱交換器やEGRガス冷却装置等の材質は、装置内を通流する被冷却媒体や冷却媒体の腐食性や加工性などを考慮して適宜に選択されるが、通常オーステナイト系ステンレス鋼、一般鋼材である炭素鋼、銅、アルミニウム、チタン、ニッケルおよびこれらを基とする合金などが例示されるが、一定の耐食性と優れた剛性とを有し、ろう付などの接合にも好適に対応できるところからオーステナイト系ステンレス鋼が好ましく用いられる。   In the present invention, the flat heat transfer tube, the coil spring incorporated in the heat transfer tube, and the materials such as the multi-tube heat exchanger and the EGR gas cooling device are corrosive to the medium to be cooled and the cooling medium flowing through the device. Although it is appropriately selected in consideration of workability, etc., usually austenitic stainless steel, carbon steel as a general steel material, copper, aluminum, titanium, nickel and alloys based on these are exemplified, but certain Austenitic stainless steel is preferably used because it has corrosion resistance and excellent rigidity and can be suitably used for joining such as brazing.

上記実施例からも明らかなように、本発明に係る上記偏平伝熱管によれば、該偏平伝熱管内に内装される巻回した断面形状が偏平のコイルスプリングが、該伝熱管内を通流する被冷却媒体或いは冷却媒体からなる流体の流路に介在することにより、多数のエッジ部が間歇的にかつ途切れることなく連続して存在して該流体に対するエッジ効果を生じさせ、加えてスパイラル状に形成される線材毎に、カルマンの渦列が連続的に形成され、大きな攪拌効果と共に該伝熱管内における流体の流速に偏りがなくなり、それに伴い不均一な流速の分布が解消されて均一な流速が維持し易い構造となる。従ってそれぞれの流路間にあって流体の圧力も均一となり、流体の分配も平均化され、伝熱性能が飛躍的に向上して優れた熱交換性能が確保される。また、本発明によるコイルスプリングを内装した上記偏平伝熱管によれば、スパイラル状に形成された該コイルスプリングによって、通流する流体間の混合、衝突が頻繁に発生し、作動流体の乱流化や渦流化が期待でき、流体は、その流線が複雑に撹乱され、層流は剥離されて効果的な攪拌が繰り返され、伝熱管内を通流する流体は繰返し該伝熱管壁面やコイルスプリングと接触して効果的な熱交換が促進される。   As is clear from the above embodiment, according to the flat heat transfer tube according to the present invention, a coil spring having a flat cross-sectional shape wound inside the flat heat transfer tube flows through the heat transfer tube. By interposing in the flow path of the medium to be cooled or the fluid consisting of the cooling medium, a large number of edge portions are present intermittently and without interruption, causing an edge effect on the fluid, and in addition, spiral shape For each wire formed, a Karman vortex street is continuously formed, and the flow velocity of the fluid in the heat transfer tube is not biased with a large stirring effect, and accordingly, the uneven flow velocity distribution is eliminated and uniform. The flow rate is easy to maintain. Therefore, the pressure of the fluid is uniform between the flow paths, the fluid distribution is averaged, the heat transfer performance is dramatically improved, and excellent heat exchange performance is ensured. Further, according to the above flat heat transfer tube having the coil spring according to the present invention, the spirally formed coil spring frequently causes mixing and collision between fluids flowing therethrough, thereby making the working fluid turbulent. The fluid flow is complicated and the laminar flow is separated and effective stirring is repeated, and the fluid flowing through the heat transfer tube repeatedly repeats the heat transfer tube wall surface and coil spring. Effective heat exchange is promoted in contact with.

本発明における上記偏平伝熱管において、該伝熱管の内周壁面に凹溝を形成し、該凹溝にコイルスプリングを嵌装させるようにして内装すると、組込みが容易で炉内ろう付などによる連続製造がし易くなって、製造コストを大幅に削減することができると共に、偏平伝熱管そのものの補強効果が加味されてその耐振性が向上し、かつ固定手段をろう付とすることにより、コイルスプリングから伝熱管壁面への伝熱性が更に向上する。また、コイルスプリングを形成する線材の断面形状を、長円形等の偏平状とすることによりコイルスプリング自体の伝熱面積が増大して、それを組み込んだ偏平伝熱管の伝熱性能が一層向上する。従って本発明による偏平伝熱管は、多管式の熱交換型冷却装置は勿論のこと、燃料用クーラーやオイルクーラー更にはインタークーラー等の熱交換器用伝熱管として好適に内装し得ると同時に、前記コイルスプリングを内装した伝熱管は、その優れた熱交換性能によってそれらの装置の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換器を、比較的安価に提供することができるため、当該産業分野における幅広い用途が期待される。   In the flat heat transfer tube according to the present invention, if a groove is formed on the inner peripheral wall surface of the heat transfer tube and a coil spring is fitted in the groove, the assembly is easy and continuous by brazing in the furnace or the like. Coil springs can be manufactured easily, and the manufacturing cost can be greatly reduced, the vibration resistance is improved by taking into account the reinforcing effect of the flat heat transfer tube itself, and the fixing means is brazed. The heat transfer from the heat transfer tube to the wall surface is further improved. Further, by making the cross-sectional shape of the wire forming the coil spring into a flat shape such as an oval, the heat transfer area of the coil spring itself is increased, and the heat transfer performance of the flat heat transfer tube incorporating the coil spring is further improved. . Therefore, the flat heat transfer tube according to the present invention can be suitably installed as a heat transfer tube for a heat exchanger such as a fuel cooler, an oil cooler, or an intercooler as well as a multi-tube heat exchange type cooling device, and at the same time The heat transfer tubes with springs make it possible to reduce the size and weight of these devices due to their excellent heat exchange performance, contributing to the compactness of the devices and enabling easy installation in a limited space. Since the container can be provided at a relatively low cost, a wide range of applications in the industrial field is expected.

本発明の一実施例に係る偏平伝熱管の単体を模式的に示し、(a)はコイルスプリングを内装した偏平伝熱管の一部省略斜視図、(b)はコイルスプリング単体の一部省略斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 schematically shows a single unit of a flat heat transfer tube according to an embodiment of the present invention, in which (a) is a partially omitted perspective view of a flat heat transfer tube with a coil spring installed therein, and (b) is a partially omitted perspective view of a coil spring unit. FIG. 本発明の他の実施例に係る偏平伝熱管の単体を模式的に示し、(a)はコイルスプリングを内装した偏平伝熱管の一部省略斜視図、(b)はコイルスプリング単体の一部省略斜視図である。The flat heat transfer tube which concerns on the other Example of this invention is shown typically. The (a) is a partially omitted perspective view of the flat heat transfer tube with a coil spring built therein, and (b) is a partially omitted coil spring. It is a perspective view. 本発明の更に他の実施例に係る偏平伝熱管の単体を模式的に示す一部省略斜視図である。It is a partially-omission perspective view which shows typically the simple substance of the flat heat exchanger tube which concerns on the further another Example of this invention. 本発明に係るコイルスプリングの巻回した断面形状を示し、(a)〜(e)はその巻回した断面形状を偏平に形成した状態を例示したそれぞれの正面図である。The coiled spring which concerns on this invention is shown, and (a)-(e) is each front view which illustrated the state which formed the wound cross-sectional shape flatly. 本発明における上記コイルスプリングを形成する線材の断面形状を示し、(a)〜(h)は該伝面形状を例示したそれぞれの断面図である。The cross-sectional shape of the wire which forms the said coil spring in this invention is shown, (a)-(h) is each sectional drawing which illustrated this transmission surface shape. 本発明におけるコイルスプリング単体の側面を示す2面図で、(a)は線材同士が密着した状態を示し、(b)は線材同士が特定の間隔を保った状態をそれぞれ示す一部省略側面図である。It is a 2nd page figure which shows the side surface of the coil spring single-piece | unit in this invention, (a) shows the state which wires contact | adhered, (b) is a partially abbreviated side view which respectively shows the state with which wire materials maintained specific space | interval It is. 本発明に係る一実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図である。In one Example which concerns on this invention, it is a partially expanded plan view which shows typically the condition of arrangement | positioning of the coil spring built in a flat heat exchanger tube. 本発明に係る他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図である。In the other Example which concerns on this invention, it is a partially expanded plan view which shows typically the condition of arrangement | positioning of the coil spring built in a flat heat exchanger tube. 本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す2面図で、(a)はその一部拡大平面図、(b)はその一部拡大正面図である。In the other Example which concerns on this invention, it is a 2nd page figure which shows typically the condition of arrangement | positioning of the coil spring built in a flat heat exchanger tube, (a) is the partially expanded plan view, (b) is the It is a partially expanded front view. 本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図である。In the other Example which concerns on this invention, it is a partially expanded plan view which shows typically the condition of arrangement | positioning of the coil spring internally equipped by a flat heat exchanger tube. 本発明に係る更に他の実施例において、偏平伝熱管に内装されるコイルスプリングの配置の状況を模式的に示す一部拡大平面図である。In the other Example which concerns on this invention, it is a partially expanded plan view which shows typically the condition of arrangement | positioning of the coil spring internally equipped by a flat heat exchanger tube. 本発明に係る一実施例において、偏平伝熱管に内装されるコイルスプリングの組合せの状況を模式的に示す一部拡大平面図である。In one Example which concerns on this invention, it is a partially expanded plan view which shows typically the condition of the combination of the coil springs with which a flat heat exchanger tube is equipped. 本発明に係る多管式熱交換器において、コイルスプリングを内装した偏平伝熱管を組み込んだ状態を模式的に示す正面図である。In the multi-tube heat exchanger according to the present invention, it is a front view schematically showing a state in which a flat heat transfer tube having a coil spring incorporated therein is incorporated. 本発明に係る多管式熱交換型EGRガス冷却装置において、コイルスプリングを内装した偏平伝熱管を組込んだ状態を模式的に示す一部省略側面図である。In the multi-tube heat exchange type EGR gas cooling device according to the present invention, it is a partially omitted side view schematically showing a state in which a flat heat transfer tube having a coil spring incorporated therein is incorporated. 従来のシェルアンドチューブ型の多管式熱交換器を説明するための模式的な側面図である。It is a typical side view for demonstrating the conventional shell and tube type multi-tube heat exchanger. 上記熱交換器に搭載される断面矩形のコルゲート状プレートフィンを内装した偏平伝熱管と、冷却ジャケット(シェル本体)を示し、(a)はその正面図、(b)は偏平伝熱管単体を示す正面図、(c)は該偏平伝熱管に内装されるプレートフィンの平面図である。2 shows a flat heat transfer tube with a corrugated plate fin having a rectangular cross section mounted on the heat exchanger and a cooling jacket (shell body), (a) is a front view thereof, and (b) is a flat heat transfer tube alone. A front view and (c) are top views of the plate fin built in this flat heat exchanger tube.

符号の説明Explanation of symbols

1、1a、1b、1c、1d、1e、1f、1g コイルスプリング
2、2a、2b、2x 偏平伝熱管
2−1 凹溝
2−2、2a−2 内周壁面
2b−3 最中合せ部
4、4a、4b、4c、4d、4e、4f、4g、4h 線材
10 多管式熱交換器
10−1 シェル(冷却ジャケット)
20 EGRガス冷却装置
20−1 本体
20−2 チューブシート
20−3 ボンネット
W−1、W−1a 冷却水入口
W−2、 冷却水出口

1, 1a, 1b, 1c, 1d, 1e, 1f, 1g Coil spring 2, 2a, 2b, 2x Flat heat transfer tube 2-1 Groove 2-2, 2a-2 Inner peripheral wall surface 2b-3 4a, 4b, 4c, 4d, 4e, 4f, 4g, 4h Wire material 10 Multi-tube heat exchanger 10-1 Shell (cooling jacket)
20 EGR gas cooling device 20-1 main body 20-2 tube sheet 20-3 bonnet W-1, W-1a Cooling water inlet W-2, cooling water outlet

Claims (14)

線材をスパイラル状に巻回すと共に、その巻回した断面形状を偏平に形成した少なくとも1本のコイルスプリングを、被冷却媒体もしくは冷却媒体が通流する管内に内装してなることを特徴とする偏平伝熱管。 A flat wire is formed by winding a wire rod in a spiral shape, and at least one coil spring having a flattened cross-sectional shape is housed in a cooling medium or a pipe through which the cooling medium flows. Heat transfer tube. 前記コイルスプリングが、線材間に特定の間隔を保持して巻き回され、偏平に形成されるその巻回し断面形状が略長円形、略楕円形、略長方形のいずれかであることを特徴とする請求項1に記載偏平伝熱管。 The coil spring is wound while maintaining a specific interval between wire rods, and the winding cross-sectional shape formed into a flat shape is any one of a substantially oval shape, a substantially oval shape, and a substantially rectangular shape. The flat heat transfer tube according to claim 1. 前記コイルスプリングが、線材を円形のスパイラル状に巻き回してコイルスプリングを形成し、その後該コイルスプリングを平行面で押圧することにより、巻回した断面形状が偏平に形成されたことを特徴とする請求項1または2に記載の偏平伝熱管。 The coil spring is formed by winding a wire rod in a circular spiral shape to form a coil spring, and then pressing the coil spring with a parallel surface so that the wound cross-sectional shape is formed flat. The flat heat exchanger tube according to claim 1 or 2. 前記コイルスプリングを形成する線材の断面が、円形若しくは該円形を基に任意に変形された略楕円形や略長円形、三角形、正方形若しくは該正方形を基に任意に変形された略長方形、略五角形、略六角形、略多角形、または星形などから選択される断面形状を有することを特徴とする請求項1乃至3のいずれか1項に記載の偏平伝熱管。 The cross-section of the wire forming the coil spring is a circle or a substantially oval, a substantially oval, a triangle, a square, or a substantially rectangular or a substantially pentagon that is arbitrarily deformed based on the square. The flat heat transfer tube according to any one of claims 1 to 3, wherein the flat heat transfer tube has a cross-sectional shape selected from a substantially hexagonal shape, a substantially polygonal shape, or a star shape. 前記コイルスプリングを形成する線材の断面形状が長方形であることを特徴とする請求項1乃至4のいずれか1項に記載偏平伝熱管。 The flat heat transfer tube according to any one of claims 1 to 4, wherein a cross-sectional shape of a wire forming the coil spring is a rectangle. 前記コイルスプリングの偏平伝熱管内への内装形態が、該偏平伝熱管の管軸方向に対して平行、波状、垂直、斜めから選択されるいずれかの形態、若しくはこれらの形態を任意に組み合わせて内装されたことを特徴とする請求項1乃至5のいずれか1項に記載の偏平伝熱管。 The interior configuration of the coil spring in the flat heat transfer tube is any one selected from parallel, wavy, vertical, and diagonal with respect to the tube axis direction of the flat heat transfer tube, or any combination thereof. The flat heat transfer tube according to any one of claims 1 to 5, wherein the flat heat transfer tube is internally provided. 前記偏平伝熱管の断面形状が略長円形若しくは略長方形であることを特徴とする請求項1乃至6のいずれか1項に記載偏平伝熱管。 The flat heat transfer tube according to any one of claims 1 to 6, wherein a cross-sectional shape of the flat heat transfer tube is substantially oval or substantially rectangular. 前記偏平伝熱管の少なくとも一方の内周壁面に凹溝が形成され、該凹溝に前記コイルスプリングを嵌装するようにして内装されたことを特徴とする請求項1乃至7のいずれか1項に記載偏平伝熱管。 8. The groove according to claim 1, wherein a concave groove is formed on at least one inner wall surface of the flat heat transfer tube, and the coil spring is fitted into the concave groove. Described in flat heat transfer tube. 前記偏平伝熱管へのコイルスプリングの内装手段が溶接、拡散接合、ろう付けその他の接合手段の中から適宜選択され、一体として接合されたことを特徴とする請求項1乃至8のいずれか1項に記載の偏平伝熱管。 9. The interior means of the coil spring to the flat heat transfer tube is appropriately selected from welding, diffusion joining, brazing and other joining means, and joined as a unit. The flat heat transfer tube described in 1. 前記偏平伝熱管へのコイルスプリングの内装手段が、ろう付けであることを特徴とする請求項1乃至9のいずれか1項に記載の偏平伝熱管。 The flat heat transfer tube according to any one of claims 1 to 9, wherein the internal means of the coil spring to the flat heat transfer tube is brazing. 請求項1乃至10のいずれかに記載の偏平伝熱管を、少なくとも2以上組み込んでなることを特徴とする多管式熱交換器。 A multi-tube heat exchanger comprising at least two flat heat transfer tubes according to any one of claims 1 to 10. 前記偏平伝熱管内に被冷却媒体を通流させたことを特徴とする請求項11に記載の多管式熱交換器。 The multi-tube heat exchanger according to claim 11, wherein a medium to be cooled is caused to flow through the flat heat transfer tube. 前記被冷却媒体がガス体であることを特徴とする請求項11または12に記載の多管式熱交換器。 The multi-tube heat exchanger according to claim 11 or 12, wherein the medium to be cooled is a gas body. 前記偏平伝熱管内に被冷却媒体としてEGRガスを通流させてなることを特徴とする請求項11乃至13のいずれか1項に記載の多管式熱交換型EGRガス冷却装置。


14. The multi-tube heat exchange type EGR gas cooling device according to claim 11, wherein an EGR gas is allowed to flow as a cooled medium in the flat heat transfer tube.


JP2004328269A 2004-11-11 2004-11-11 Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube Pending JP2006138538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328269A JP2006138538A (en) 2004-11-11 2004-11-11 Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328269A JP2006138538A (en) 2004-11-11 2004-11-11 Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube

Publications (1)

Publication Number Publication Date
JP2006138538A true JP2006138538A (en) 2006-06-01

Family

ID=36619471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328269A Pending JP2006138538A (en) 2004-11-11 2004-11-11 Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube

Country Status (1)

Country Link
JP (1) JP2006138538A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232142A (en) * 2007-02-20 2008-10-02 Usui Kokusai Sangyo Kaisha Ltd Cooled egr system and heat exchanger for system thereof
JP2009192191A (en) * 2008-02-18 2009-08-27 Hitachi Cable Ltd Heat exchanger and its manufacturing method
DE102008013018A1 (en) * 2008-03-07 2009-09-10 Modine Manufacturing Co., Racine Flat tube for heat exchanger, has corrugated rib that is arranged in tube such that wave crest and/or wave trough cooperates with groove, where groove is arranged in tube wall and contact rib
JP2011106770A (en) * 2009-11-19 2011-06-02 Panasonic Corp Heat exchanger and refrigerating cycle device
ITVR20110008A1 (en) * 2011-01-18 2012-07-19 Unical Ag Spa TURBULATOR FOR CONVEYANCE TUBE OF FUMES IN HEAT EXCHANGE APPLIANCE
EP3037770A1 (en) * 2014-12-22 2016-06-29 Hamilton Sundstrand Corporation Pins for heat exchangers
US20160341493A1 (en) * 2014-01-20 2016-11-24 Apex International Holding B.V. Wire spacer for a plate type heat exchanger, plate type heat exchanger provided with such a wire spacer, and method of upgrading a heat exchanger
JP2021500527A (en) * 2017-10-24 2021-01-07 マイクロ タービン テクノロジー ベー.フェー. Heat exchanger with stack of cells

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149688U (en) * 1985-03-08 1986-09-16
JPS63267891A (en) * 1988-04-07 1988-11-04 Furukawa Electric Co Ltd:The Manufacture of flat heat pipe
JPH0650618A (en) * 1992-07-31 1994-02-25 Daikin Ind Ltd Cryogenic freezer
JP2000161888A (en) * 1998-12-01 2000-06-16 Sanden Corp Heat exchanger
JP2003049666A (en) * 2001-08-08 2003-02-21 Kansai Tlo Kk Regenerative heat exchanger for micro gas turbine and its manufacturing method
JP2004069255A (en) * 2002-08-09 2004-03-04 Maruyasu Industries Co Ltd Multipipe heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61149688U (en) * 1985-03-08 1986-09-16
JPS63267891A (en) * 1988-04-07 1988-11-04 Furukawa Electric Co Ltd:The Manufacture of flat heat pipe
JPH0650618A (en) * 1992-07-31 1994-02-25 Daikin Ind Ltd Cryogenic freezer
JP2000161888A (en) * 1998-12-01 2000-06-16 Sanden Corp Heat exchanger
JP2003049666A (en) * 2001-08-08 2003-02-21 Kansai Tlo Kk Regenerative heat exchanger for micro gas turbine and its manufacturing method
JP2004069255A (en) * 2002-08-09 2004-03-04 Maruyasu Industries Co Ltd Multipipe heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232142A (en) * 2007-02-20 2008-10-02 Usui Kokusai Sangyo Kaisha Ltd Cooled egr system and heat exchanger for system thereof
JP2009192191A (en) * 2008-02-18 2009-08-27 Hitachi Cable Ltd Heat exchanger and its manufacturing method
DE102008013018A1 (en) * 2008-03-07 2009-09-10 Modine Manufacturing Co., Racine Flat tube for heat exchanger, has corrugated rib that is arranged in tube such that wave crest and/or wave trough cooperates with groove, where groove is arranged in tube wall and contact rib
JP2011106770A (en) * 2009-11-19 2011-06-02 Panasonic Corp Heat exchanger and refrigerating cycle device
ITVR20110008A1 (en) * 2011-01-18 2012-07-19 Unical Ag Spa TURBULATOR FOR CONVEYANCE TUBE OF FUMES IN HEAT EXCHANGE APPLIANCE
US20160341493A1 (en) * 2014-01-20 2016-11-24 Apex International Holding B.V. Wire spacer for a plate type heat exchanger, plate type heat exchanger provided with such a wire spacer, and method of upgrading a heat exchanger
EP3037770A1 (en) * 2014-12-22 2016-06-29 Hamilton Sundstrand Corporation Pins for heat exchangers
US10048019B2 (en) 2014-12-22 2018-08-14 Hamilton Sundstrand Corporation Pins for heat exchangers
US11139221B2 (en) 2014-12-22 2021-10-05 Hamilton Sundstrand Corporation Pins for heat exchangers
US11933554B2 (en) 2014-12-22 2024-03-19 Hamilton Sundstrand Corporation Pins for heat exchangers
JP2021500527A (en) * 2017-10-24 2021-01-07 マイクロ タービン テクノロジー ベー.フェー. Heat exchanger with stack of cells
JP7299902B2 (en) 2017-10-24 2023-06-28 マイクロ タービン テクノロジー ベー.フェー. heat exchanger with stack of cells

Similar Documents

Publication Publication Date Title
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US8069905B2 (en) EGR gas cooling device
JP4614266B2 (en) Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
KR100809514B1 (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP2007064514A (en) Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
JP2007046890A (en) Tubular heat exchanger for egr gas cooler
JP2006038304A5 (en)
US20070017661A1 (en) Heat exchanger
US20080185130A1 (en) Heat exchanger with extruded cooling tubes
JP2008232142A (en) Cooled egr system and heat exchanger for system thereof
JP2008014566A (en) Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube
JP2008202846A (en) Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP2011112331A (en) Heat exchanger for exhaust gas
JP2007113795A (en) Multitubular heat exchanger for exhaust gas cooling device
JP2006118436A (en) Bonnet for egr gas cooling device
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP3956097B2 (en) Exhaust heat exchanger
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP4266741B2 (en) Heat transfer tube with fins
JP2008128600A (en) Fin structure, its manufacturing method, and heat transfer tube using the fin structure
JPH11223484A (en) Heat exchanger
JP2000265908A (en) Egr gas cooling device
JP2001304049A (en) Multiple pipe type egr gas cooling device
JPH0412373Y2 (en)
JP2006118425A (en) Hood for egr gas cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071109

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100623