JP2006038304A5 - - Google Patents

Download PDF

Info

Publication number
JP2006038304A5
JP2006038304A5 JP2004216526A JP2004216526A JP2006038304A5 JP 2006038304 A5 JP2006038304 A5 JP 2006038304A5 JP 2004216526 A JP2004216526 A JP 2004216526A JP 2004216526 A JP2004216526 A JP 2004216526A JP 2006038304 A5 JP2006038304 A5 JP 2006038304A5
Authority
JP
Japan
Prior art keywords
plate
heat transfer
fin
transfer tube
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004216526A
Other languages
Japanese (ja)
Other versions
JP4614266B2 (en
JP2006038304A (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2004216526A external-priority patent/JP4614266B2/en
Priority to JP2004216526A priority Critical patent/JP4614266B2/en
Priority to US11/186,576 priority patent/US20060016582A1/en
Priority to FR0552268A priority patent/FR2873433A1/en
Priority to CNA2005100922804A priority patent/CN1755316A/en
Priority to DE102005035258A priority patent/DE102005035258A1/en
Publication of JP2006038304A publication Critical patent/JP2006038304A/en
Publication of JP2006038304A5 publication Critical patent/JP2006038304A5/ja
Publication of JP4614266B2 publication Critical patent/JP4614266B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

流体攪拌用フィンおよびその製造方法並びに該フィンを内装した伝熱管および熱交換器または熱交換型ガス冷却装置Fin for fluid agitation, method for producing the same, heat transfer tube and heat exchanger or heat exchange type gas cooling device with the fin installed therein

本発明は、熱交換器における流体攪拌用フィン構造に係り、詳しくは熱交換型冷却装置における伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめ、伝熱管壁面と流体の接触を大ならしめることによって、優れた熱交換性能が得られる流体攪拌用プレートフィンと、該プレートフィンの製造方法並びに該プレートフィンを内装した伝熱管と、該伝熱管を少なくとも1本配設してなる熱交換器または熱交換型ガス冷却装置に関する。   The present invention relates to a fin structure for fluid agitation in a heat exchanger, and more specifically, a medium to be cooled that is mounted inside or inside and outside the heat transfer tube in the heat exchange type cooling device and flows inside or outside the heat transfer tube. Alternatively, a fluid agitation plate fin capable of providing excellent heat exchange performance by causing a turbulent or vortex agitating action to a fluid made of a cooling medium and increasing the contact between the heat transfer tube wall surface and the fluid; The present invention relates to a plate fin manufacturing method, a heat transfer tube in which the plate fin is installed, and a heat exchanger or a heat exchange type gas cooling apparatus in which at least one heat transfer tube is provided.

近年、自動車の排気ガス再循環用のEGRクーラーを初め、燃料クーラー、オイルクーラー、インタークーラーなどの液−液、液−気体、気体−気体等、様々な形態の流体に対する熱交換器が多用されているが、これらの流体が通流する伝熱管内には、該流体の保有する熱を効率的に放熱したり、或いは吸収したりするために様々な工夫がなされている。例えば、ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上など、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。   In recent years, heat exchangers for various forms of fluids such as EGR coolers for automobile exhaust gas recirculation, liquid-liquid, liquid-gas, gas-gas, etc., such as fuel coolers, oil coolers, and intercoolers have been widely used. However, in the heat transfer tubes through which these fluids flow, various devices have been made to efficiently radiate or absorb the heat held by the fluids. For example, a method of taking a part of exhaust gas from an exhaust system of a diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation) and is called NOx (nitrogen oxide) ), Reducing pump loss, reducing heat dissipation loss to the coolant due to lowering of combustion gas temperature, increasing specific heat ratio due to working gas volume / composition change, and accompanying improvement in cycle efficiency Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.

ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が劣化し、早期に破損する惧れが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られるなど、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風によってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案され、その熱交換性能を向上させるための手段として、EGRガスが通流する管内に様々な形態のフィンを内装させている。例えば、ガスを通す内管の外側に液体を通す外管を配設し、ガスと液体間で熱交換を行う交換器において、内管内に金属コルゲート板がフィンとして挿入されている2重管式熱交換器(例えば、特許文献1参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設された熱応力緩和機能を有する放熱フィンとから構成された2重管式熱交換器(例えば、特許文献2参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設されたクロスフィンとから構成された2重管式熱交換器(例えば、特許文献3参照)等がある。
特開平11−23181号公報(第1〜6頁、図1〜2) 特開2000−111277号公報(第1〜12頁、図1〜12) 特開2003−21478号公報(第1〜8頁、図1〜7)
However, if the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve deteriorates due to its thermal action, and there is a possibility that it will be damaged early. For example, it is necessary to use a structure, and this leads to a phenomenon in which the charging efficiency is lowered and the fuel consumption is lowered as the intake air temperature rises. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioning refrigerant or cooling air is used, and in particular, gas-liquid heat for cooling gas EGR gas with engine coolant. Many exchange-type EGR gas cooling devices have been proposed, and as means for improving the heat exchange performance, various forms of fins are provided in a pipe through which EGR gas flows. For example, a double pipe type in which an outer pipe through which a liquid is passed is disposed outside an inner pipe through which a gas passes, and a metal corrugated plate is inserted as a fin in the inner pipe in an exchanger for exchanging heat between the gas and the liquid. A heat exchanger (see, for example, Patent Document 1), an inner pipe for circulating a medium to be cooled inside, an outer pipe provided so as to surround and surround the outer circumference of the inner pipe, and an inside of the inner pipe A double-pipe heat exchanger (for example, refer to Patent Document 2) composed of a radiating fin having a thermal stress relaxation function, an inner pipe for circulating a medium to be cooled, and an outer periphery of the inner pipe There are a double-pipe heat exchanger (see, for example, Patent Document 3) composed of an outer tube provided so as to surround and be separated, and a cross fin disposed inside the inner tube.
Japanese Patent Laid-Open No. 11-23181 (pages 1-6, FIGS. 1-2) JP 2000-1111277 A (pages 1 to 12, FIGS. 1 to 12) JP 2003-21478 A (pages 1-8, FIGS. 1-7)

上記各従来技術において、特許文献1〜3に開示されている2重管タイプのEGRガス冷却器の場合は、コルゲートフィンやクロスフィンを内装させることによって、ガスの流れを細流化してフィンに対する接触面積の増大を図る点においては、それなりの成果が期待されるものの、EGRガス流路を構成するパイプの内面は、長さ方向の全長に渡ってその内周面が平滑となっているものが多く、パイプの中心付近における熱伝達が不十分となり、その上ガス流がEGRガス配管に沿ってストレートに流れるため、ガス流の乱流化が不十分となり、伝熱面の境界層が十分に薄くならず、伝熱性能が若干不足するという問題が残されていた。   In each of the above prior arts, in the case of the double-tube type EGR gas cooler disclosed in Patent Documents 1 to 3, the corrugated fins and the cross fins are provided so as to trickle the gas flow and make contact with the fins. In terms of increasing the area, although some results are expected, the inner surface of the pipe constituting the EGR gas flow path has a smooth inner peripheral surface over the entire length. In many cases, the heat transfer near the center of the pipe becomes insufficient, and the gas flow flows straight along the EGR gas pipe, so that the turbulence of the gas flow becomes insufficient and the boundary layer of the heat transfer surface is sufficient. There was a problem that the heat transfer performance was slightly insufficient without being thinned.

さらに、近時上記EGRガス冷却装置に止まらず、該EGRガス冷却装置を含むその他の熱交換タイプの冷却装置に搭載される各種伝熱管において、図16(a)〜(d)に示すように該伝熱管内に内装され、通流する主として被冷却媒体からなる流体に対して攪拌作用を生起せしめ、熱交換効率の一層の向上を図るためのフィン構造体が数多く提案され、それぞれ初期の成果を達成している。例えば図16(a)においては、偏平の伝熱管50内面に多数の突起30を設けることにより、管内を流れる被冷却媒体gに攪拌作用に伴う乱流を生起させ、該伝熱管50外周面の冷却媒体への熱交換性能の向上が図られている。また、同図(b)においては偏平伝熱管50a内へ波型プレートフィン30aを内装し、管内を通流する被冷却媒体gを蛇行させるよう構成されており、同図(c)においては円筒状伝熱管50b内に螺旋状のフィン30bを内装させて、被冷却媒体gを旋回させて渦流を生起させており、同図(d)においては偏平伝熱管50c内にバッフル30cを組み込むことにより、該伝熱管50c内を通流する被冷却媒体gが交互に蛇行するよう強制して、管内の滞留時間を延長させて、効率的な熱交換効率を促進させるよう図られている。このように従来から伝熱管内面に直接凹凸やしわを形成させたり、各種形状のプレートフィンやバッフルを内装させたりして、該伝熱管内を通流する被冷却媒体等に強制的に乱流や渦流を生起させて、熱交換効率の向上を促進させるべく工夫が施されているが、その加工や取付け方法に困難を要するのに比して、十分な性能を得るまでには至らず、更に改良を望まれる大きな課題が残されていた。本発明は斯かる課題を解決することを所期の目的とし、極めて簡単に加工され、簡略な構造であるにも拘らず冷却効率が優れ、しかも形の異なる伝熱管に容易に組込みが可能な流体攪拌用フィンと、該フィンの製造方法並びに該フィンを内装した伝熱管と、該伝熱管を少なくとも1本配設した熱交換器または熱交換型ガス冷却装置を提供するものである。   Furthermore, in various heat transfer tubes mounted on other heat exchange type cooling devices including the EGR gas cooling device, as shown in FIGS. 16 (a) to 16 (d). A number of fin structures have been proposed for the purpose of further improving the heat exchange efficiency by agitating the fluid consisting mainly of the medium to be cooled, which is built in the heat transfer tube, and each of the initial results. Has achieved. For example, in FIG. 16A, by providing a large number of protrusions 30 on the inner surface of the flat heat transfer tube 50, a turbulent flow caused by the stirring action is generated in the cooled medium g flowing in the tube, and the outer peripheral surface of the heat transfer tube 50 is Improvement of the heat exchange performance to the cooling medium is achieved. Further, in the same figure (b), a corrugated plate fin 30a is built into the flat heat transfer tube 50a, and the cooling medium g flowing through the inside of the pipe is meandered, and in FIG. A spiral fin 30b is housed in the cylindrical heat transfer tube 50b, and the cooling medium g is swirled to generate a vortex flow. In FIG. 4D, the baffle 30c is incorporated in the flat heat transfer tube 50c. The cooling medium g flowing through the heat transfer tube 50c is forced to meander alternately, thereby extending the residence time in the tube and promoting efficient heat exchange efficiency. Conventionally, irregularities and wrinkles have been formed directly on the inner surface of the heat transfer tube, or plate fins and baffles of various shapes have been used to forcibly turbulently flow through the medium to be cooled flowing through the heat transfer tube. It has been devised to generate heat and eddy currents, and to promote the improvement of heat exchange efficiency, but it does not reach sufficient performance compared to the difficulty in processing and mounting methods, Further, there remains a big problem for improvement. The present invention is intended to solve such a problem, and is extremely easily processed, has a simple structure, has excellent cooling efficiency, and can be easily incorporated into heat transfer tubes having different shapes. The present invention provides a fin for fluid agitation, a method for producing the fin, a heat transfer tube in which the fin is installed, and a heat exchanger or a heat exchange type gas cooling device provided with at least one heat transfer tube.

上記課題を解決するための本発明の第1の実施態様による流体攪拌用プレートフィンは、伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして伝熱管の内部又は内外部に装着されることを特徴とするものである。   The plate fin for fluid agitation according to the first embodiment of the present invention for solving the above-described problem is mounted on the inside or inside and outside of the heat transfer tube, and the medium to be cooled flowing through the inside or inside and outside of the heat transfer tube or A plate fin for fluid agitation for causing a turbulent or vortex agitating action with respect to a fluid made of a cooling medium, the fin blade edges of the plate fin being opposed to each other in the vertical direction, and each of the abutted blade edges However, it is mounted inside or outside the heat transfer tube so as to cross.

また、本発明による前記流体攪拌用プレートフィンにおいて、前記プレート材料となる薄板が、金属製薄板であることを特徴とする。   In the fluid stirring plate fin according to the present invention, the thin plate used as the plate material is a metal thin plate.

本発明はまた、前記流体攪拌用プレートフィンにおいて、前記上下に刃先をクロスするように対向して伝熱管に内装される前記流体攪拌用プレートフィンが、上下それぞれ個別に加工されたものであることを特徴とする。     According to the present invention, in the fluid agitation plate fin, the fluid agitation plate fins, which are installed in the heat transfer tube so as to face each other so as to cross the blade edge in the vertical direction, are individually processed in the vertical direction. It is characterized by.

本発明は更に、前記流体攪拌用プレートフィンにおいて、前記上下に刃先をクロスするように対向して伝熱管に内装される流体攪拌用プレートフィンが、前記プレート材料に上下それぞれ同時に加工され、その中心部を折り曲げることによって内装されることを特徴とする。   According to the present invention, in the fluid agitation plate fin, the fluid agitation plate fins, which are installed in the heat transfer tube so as to face each other so as to cross the blade edge in the vertical direction, are simultaneously processed in the vertical direction on the plate material. It is characterized in that it is furnished by bending the part.

また、本発明は前記流体攪拌用プレートフィンにおいて、上下に刃先をクロスするように対向して伝熱管に内装される前記流体攪拌用プレートフィンにおいて、該刃先が面圧を以って重ねられて内装されるか、若しくはそれぞれの刃先に間隔をおいて内装されることを特徴とする。   Further, the present invention provides the fluid stirring plate fin, wherein the blade tip is overlapped with a surface pressure in the fluid stirring plate fin that is installed in the heat transfer tube so as to cross the blade tip vertically. It is characterized in that it is built in or is provided with an interval between each cutting edge.

さらに、本発明による前記プレートフィンにおいて、上下に刃先を対向してクロスする部分が予測される場合、該クロスすると予測される部分に予め切り欠き、凹凸等の接合部を形成し、該接合部を介して上下のプレートフィンを、一体に接合することが好ましい。     Further, in the plate fin according to the present invention, when a portion where the blade edges are crossed facing each other in the vertical direction is predicted, a notched portion such as an uneven portion is formed in the portion predicted to cross, and the joint portion is formed. It is preferable that the upper and lower plate fins are joined together via the.

また、本発明による前記プレートフィンにおいて、前記プレートフィンの刃先の形状が、長さ方向直線状または曲線状であっても良く、該プレートフィンのクロス方向も同一または交互のいずれかであることが好ましい。   In the plate fin according to the present invention, the shape of the blade edge of the plate fin may be linear or curved in the length direction, and the cross direction of the plate fin is either the same or alternate. preferable.

更に、本発明による前記プレートフィンにおいて、前記プレートフィンを内装する伝熱管が偏平管、丸管またはその他の異形管であることが好ましい。   Furthermore, in the plate fin according to the present invention, it is preferable that the heat transfer tube that houses the plate fin is a flat tube, a round tube, or other modified tubes.

更にまた、本発明による前記プレートフィンにおいて、前記プレートフィンの伝熱管内へ装着手段がろう付け、溶接、接着剤を用いた接着、その他の接合手段の中から適宜選択されることが好ましい。   Furthermore, in the plate fin according to the present invention, it is preferable that the mounting means is appropriately selected from brazing, welding, adhesion using an adhesive, and other joining means in the heat transfer tube of the plate fin.

また、本発明の第2の実施態様による流体攪拌用プレートフィンの製造方法は、伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、薄板からなるプレート材料に所定の切り欠き部を複数形成し、該切り欠き部の切欠き残部を前記プレート材料の表面に対して直角に起こすことにより、該プレート材料の表面に複数の流体攪拌用フィンを形成せしめることを特徴とするものである。 In addition, the method for manufacturing the fluid stirring plate fin according to the second embodiment of the present invention is a cooling medium or cooling medium that is mounted inside or inside and outside the heat transfer tube and flows inside or outside the heat transfer tube. A plate fin for fluid agitation for causing a turbulent or vortex agitating action on a fluid comprising a plurality of predetermined notches formed in a thin plate material, and the notches in the notches A plurality of fins for fluid agitation are formed on the surface of the plate material by raising the remainder perpendicular to the surface of the plate material.

本発明はさらに、前記流体攪拌用プレートフィンの製造方法において、プレート材料への切り欠き部の形成手段が、プレス加工その他の機械的加工方法若しくは食刻等による化学的加工方法、レーザー光による光学的加工方法などのいずれかであることを特徴とする。   Further, the present invention provides the method for producing a plate fin for fluid agitation, wherein the notch forming means for the plate material is a press working or other mechanical working method or a chemical working method such as etching, or an optical method using a laser beam. It is any one of the mechanical processing methods.

更に本発明の第3の実施態様による熱交換器は、伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、該プレートフィンのフィン刃先が上下に対向してき突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして装着された伝熱管を、少なくとも1本配設せしめたことを特徴とするものである。     Furthermore, the heat exchanger according to the third embodiment of the present invention is attached to the inside or outside of the heat transfer tube, and with respect to the fluid composed of the cooling medium or the cooling medium flowing through the inside or outside of the heat transfer tube, A plate fin for fluid agitation for generating a turbulent or vortex agitating action, the fin blade edges of the plate fin being opposed to each other in the vertical direction, and each of the abutted blade edges being mounted so as to cross. In addition, at least one heat transfer tube is provided.

また本発明の第4の実施態様に係る熱交換型ガス冷却装置は、ガス配管内を通流するガスの流れ方向に交差して、冷却媒体が通流する伝熱管が少なくとも1本以上配設され、該伝熱管の外周に隣接して流体攪拌用プレートフィンが装着されてなる熱交換型ガス冷却装置において、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして装着されることを特徴とするものである。     In the heat exchange type gas cooling device according to the fourth embodiment of the present invention, at least one heat transfer tube through which the cooling medium flows is disposed so as to intersect the flow direction of the gas flowing through the gas pipe. In the heat exchange type gas cooling apparatus in which fluid stirring plate fins are mounted adjacent to the outer periphery of the heat transfer tube, the fin edges of the plate fins are opposed to each other in the vertical direction, and the respective blade edges that are abutted However, it is mounted so as to cross.

本発明の第5の実施態様による上記伝熱管は、管内を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンを内装してなる伝熱管において、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして内装されることを特徴とするものである。     The heat transfer tube according to the fifth embodiment of the present invention includes a plate fin for fluid agitation for causing a turbulent or vortex agitating action with respect to a fluid consisting of a cooled medium or a cooling medium flowing through the tube. In the heat transfer tube thus formed, the fin blade edges of the plate fins are opposed to each other in the up-and-down direction, and the respective blade edges that are abutted are arranged so as to cross each other.

本発明に係る上記流体攪拌用プレートフィンは、被冷却媒体或いは冷却媒体が通流する伝熱管の内部又は内外部へ装着される際に、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされるそれぞれの刃先が、クロスするようにして組み込まれるため、伝熱管の内部又は内外部を通流する気体または液体からなる流体は、その流線が複雑に撹乱されて乱流や渦流を生起して、層流は剥離されて効果的な攪拌が繰り返される。従って伝熱管の内部又は内外部を通流する流体は繰返し該伝熱管壁面と接触し、伝熱管外周面における冷却媒体若しくは被冷却媒体との熱交換が効率的に促進され、優れた冷却効率が確保される。また、上記プレートフィンを内装した本発明による伝熱管を、少なくとも1本配設した本発明による熱交換器は、伝熱管内を通流する流体が繰返し該伝熱管壁面と接触し、伝熱管外周面の冷却媒体への熱交換が効率的に促進され、優れた冷却効率が確保される。更に本発明による流体攪拌用プレートフィンの製造方法は、薄板からなるプレート材料に所定の切り欠き部を複数形成し、該切り欠き部の切欠き残部を、該プレート材料の表面に対して直角に起こすことにより、該プレート材料の表面に複数の流体攪拌用フィンを形成するという、極めて簡略な加工手段によるものであり、加えて伝熱管への組付けも偏平伝熱管のみならず、丸管や異形管であっても容易に内装することができるため、上記熱交換型冷却装置は勿論のこと、燃料用クーラー、オイルクーラー、インタークーラー等の熱交換器用伝熱管の内部又は内外部に装着される流体攪拌用プレートフィンとして好適に装着し得ると同時に、その優れた熱交換性能と、プレートフィンそのものがコアを形成することによって、装置の堅牢化に寄与してその小型軽量化を可能とし、該装置のコンパクト化を実現して、限られたスペースに容易に設置することができる。   When the plate fin for fluid agitation according to the present invention is mounted inside or inside or outside the heat transfer tube through which the cooling medium or the cooling medium flows, the fin blade edges of the plate fin face each other up and down. Since each blade edge to be abutted is incorporated so as to cross, the fluid consisting of gas or liquid flowing through the inside or outside of the heat transfer tube is disturbed complicatedly, and the turbulence and vortex flow are complicated. The laminar flow is separated and effective stirring is repeated. Therefore, the fluid flowing through the inside or outside of the heat transfer tube repeatedly comes into contact with the wall surface of the heat transfer tube, and heat exchange with the cooling medium or the medium to be cooled on the outer peripheral surface of the heat transfer tube is efficiently promoted, resulting in excellent cooling efficiency. Secured. Further, the heat exchanger according to the present invention in which at least one heat transfer tube according to the present invention having the above-described plate fins is provided, the fluid flowing through the heat transfer tube repeatedly contacts the wall surface of the heat transfer tube, Heat exchange with the cooling medium on the surface is efficiently promoted, and excellent cooling efficiency is ensured. Furthermore, in the method for manufacturing a plate fin for fluid agitation according to the present invention, a plurality of predetermined notch portions are formed in a plate material made of a thin plate, and the remaining notch portions of the notch portions are perpendicular to the surface of the plate material. This is due to the extremely simple processing means of forming a plurality of fluid stirring fins on the surface of the plate material. In addition, the assembly to the heat transfer tube is not only a flat heat transfer tube, Since it can be easily installed even if it is a deformed tube, it can be installed inside or outside the heat exchanger tube for a heat exchanger such as a fuel cooler, oil cooler, intercooler, etc. It can be suitably installed as a plate fin for fluid agitation, and at the same time, its excellent heat exchange performance and the plate fin itself forms a core, which makes the device robust. Given and by allowing the size and weight, to achieve compactness of the device can be easily installed in a limited space.

以下、本発明の実施の形態について添付した図面に基づいて更に詳細に説明する。
図1は本発明の一実施例に係る流体攪拌用プレートフィンを説明するための模式的な一部拡大斜視図で、(a)は薄板のプレート材料にプレス加工による切り欠き部を設けた状態を示し、(b)は該切り欠き部をプレート材料の表面に対して直角に起こして複数のプレートフィンを形成した状態を示し、図2は同実施例によって得られたプレートフィンを偏平伝熱管内へ挿入した状態を示す正面図、図3は図2におけるA−A線上の一部拡大平面図、図4は同実施例に基づく応用例によって得られたプレートフィンを偏平伝熱管に挿入した状態を示す一部拡大正面図、図5は本発明に係る他の実施例による流体攪拌用プレートフィンの加工状態を模式的に示す一部拡大斜視図で、(a)は刃先を突き合わせて重ね合わせる前の状態を示し、(b)はそれを重ね合わせた状態を示す、図6は同実施例に基づく応用例における流体攪拌用プレートフィンの刃先の突き合わせ状態を部分的に例示する一部拡大正面図で、(a)は刃先に隙間がある状態、(b)は刃先に隙間が無い状態、(c)は刃先に設けた突起によって上下一体に填め合わせた状態、(d)は同じく嵌合した状態を示し、図7は本発明に係る更に他の実施例を模式的に示す一部拡大斜視図、図8は本発明に係るプレートフィンの伝熱管への取付け方法の一例を示す一部拡大正面図、図9は本発明に係る更に他の実施例による流体攪拌用プレートフィンの一部拡大斜視図、図10は本発明に係る更に他の実施例の流体攪拌用プレートフィンを模式的に示す一部拡大斜視図で、(a)は該プレートフィンが同一方向に形成され、(b)は該プレートフィンが交互にクロスして形成されたものを示し、図11は本発明の流体攪拌用プレートフィンを偏平伝熱管に内装し、更に複数の該伝熱管をEGRクーラーに組み込んだ状態を模式的に示す斜視図、図12は本発明の流体攪拌用プレートフィンを偏平伝熱管に内装し、該伝熱管単体を用いたオイルクーラーを示し、(a)はラジエーターボトムジャケットに組み込む前の伝熱管単体の状態を模式的に示す斜視図、(b)は同伝熱管単体をラジエーターボトムジャケット内に組み込んでオイルクーラーを形成した状態を模式的に示す側面図、図13は本発明に係る更に他の実施例で、流体攪拌用プレートフィンをEGRガス冷却装置の偏平伝熱管の外周面に装着した状態を示す縦断側面図、図14は同実施例の横断正面図、図15は本発明に係るプレートフィンを、プレート式熱交換器に組み込んだ実施例を示す一部破断斜視図である。
[実施例]
Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 is a schematic partially enlarged perspective view for explaining a fluid stirring plate fin according to an embodiment of the present invention. FIG. 1 (a) shows a state in which a notch portion is provided by pressing on a thin plate material. FIG. 2 (b) shows a state in which the notches are raised at right angles to the surface of the plate material to form a plurality of plate fins, and FIG. 2 shows a flat heat transfer to the plate fins obtained by the same embodiment. FIG. 3 is a partially enlarged plan view on the line AA in FIG. 2, and FIG. 4 is a plan view showing a state where the plate fin obtained by the application example based on the embodiment is inserted into the flat heat transfer tube. FIG. 5 is a partially enlarged perspective view schematically showing a machining state of a fluid agitating plate fin according to another embodiment of the present invention, and FIG. Shows the state before matching, ( FIG. 6 is a partially enlarged front view partially illustrating the abutting state of the blade tips of the fluid agitating plate fins in an application example based on the embodiment, and FIG. Fig. 7 shows a state in which there is a gap, (b) shows a state in which there is no gap in the blade edge, (c) shows a state in which the protrusions provided on the blade edge are fitted together vertically, and (d) shows a state in which they are fitted together. FIG. 8 is a partially enlarged perspective view schematically showing still another embodiment according to the present invention, FIG. 8 is a partially enlarged front view showing an example of a method for attaching the plate fin to the heat transfer tube according to the present invention, and FIG. FIG. 10 is a partially enlarged perspective view schematically showing a fluid agitating plate fin according to still another embodiment of the present invention. FIG. 10 is a partially enlarged perspective view schematically showing a fluid agitating plate fin according to still another embodiment of the present invention. (A) shows that the plate fins are formed in the same direction. FIGS. 11A and 11B show the plate fins formed by alternately crossing the plate fins. FIG. 11 shows that the fluid stirring plate fins of the present invention are installed in a flat heat transfer tube, and a plurality of the heat transfer tubes are installed in an EGR cooler. FIG. 12 is a perspective view schematically showing the assembled state, FIG. 12 shows an oil cooler in which the fluid stirring plate fin of the present invention is mounted in a flat heat transfer tube, and the heat transfer tube alone is used, and (a) is a radiator bottom jacket. FIG. 13B is a side view schematically showing a state in which an oil cooler is formed by incorporating the heat transfer tube into the radiator bottom jacket. FIG. FIG. 14 is a longitudinal sectional side view showing a state in which the fluid stirring plate fin is mounted on the outer peripheral surface of the flat heat transfer tube of the EGR gas cooling device in another embodiment according to the invention. FIG. 15 and FIG. 15 are partially broken perspective views showing an embodiment in which the plate fin according to the present invention is incorporated in a plate heat exchanger.
[Example]

以下本発明を実施例により更に具体的に説明するが、本発明はこれによって拘束されるものではなく、本発明の主旨の範囲内において自由に設計変更が可能である。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto, and can be freely modified within the scope of the gist of the present invention.

本発明に係る第1実施例による流体攪拌用プレートフィン3は、図1に示すように厚さが0.1〜0.5mm程度のSUS304、SUS316などのオーステナイト系ステンレス鋼からなる薄板を、所定の寸法の方形に加工して複数のプレート材を得、該プレート材の2枚に対してプレス加工を施し、図1(a)に示すように交互に方向が異なる所定の寸法の略コの字形状をした切り欠き部2を複数形成した。次いで該切り欠き部2の切り欠き残部をプレート材の表面に対して直角となるように切り起こし、刃先4が長手方向に直線で各列ごとに交互に方向の異なる流体攪拌用プレートフィン3が形成されたプレート1を得た。その後得られたプレート1を2枚用意し、各々の該プレート1に形成されたプレートフィン3の刃先4が、それぞれ上下に対向するように突き合わせて偏平伝熱管5内に挿入することにより、図2に示すような上下に重なり合うように流体攪拌用フィン3を内装する偏平伝熱管5が完成した。該伝熱管5内におけるプレートフィン3の刃先4は、図3に示すようにそれぞれ上下にクロスして組み込み、必要に応じて伸管や加圧によって刃先を密着させることにより形成された偏平伝熱管複数を用意し、図11に示すようなEGRガス冷却装置(多管式熱交換器)10におけるガス流路として冷却ジャケットC内に組み込み、冷却性能試験に供した結果、ボンネットD−1を介して伝熱管5d内に流入した高温のEGRガスgは、内装されている流体攪拌用プレートフィンの作用によって複雑に撹乱され、ガスgの流線に乱流や渦流を生起して、層流はことごとく剥離されて、伝熱管外周の冷却ジャケットCへの熱交換が効果的に促進され、出口側のボンネットD−2に至ったEGRガスgは初期の設定温度まで効果的に冷却されていることが確認された。   The plate fin 3 for fluid agitation according to the first embodiment of the present invention is a thin plate made of austenitic stainless steel such as SUS304 or SUS316 having a thickness of about 0.1 to 0.5 mm as shown in FIG. A plurality of plate materials are obtained by processing into a square having the dimensions of, and press processing is performed on two of the plate materials. As shown in FIG. A plurality of cutout portions 2 each having a letter shape were formed. Next, the notch remaining portion of the notch 2 is cut and raised so as to be perpendicular to the surface of the plate material, and the blade tips 4 are straight in the longitudinal direction and the fluid stirring plate fins 3 having different directions alternately for each row are formed. The formed plate 1 was obtained. Two plates 1 obtained thereafter were prepared, and the blade tips 4 of the plate fins 3 formed on the respective plates 1 were butted against each other so as to face each other vertically and inserted into the flat heat transfer tube 5. As shown in FIG. 2, the flat heat transfer tube 5 in which the fluid stirring fins 3 are provided so as to overlap vertically is completed. The blade tips 4 of the plate fins 3 in the heat transfer tube 5 are flat heat transfer tubes formed by crossing them up and down as shown in FIG. A plurality are prepared and incorporated in the cooling jacket C as a gas flow path in an EGR gas cooling device (multi-tube heat exchanger) 10 as shown in FIG. 11 and subjected to a cooling performance test. The high-temperature EGR gas g flowing into the heat transfer tube 5d is complicatedly disturbed by the action of the fluid stirring plate fin, and turbulent flow and vortex flow are generated in the flow line of the gas g. The EGR gas g that has been peeled off and is effectively promoted to the cooling jacket C on the outer periphery of the heat transfer tube and reaches the bonnet D-2 on the outlet side is effectively cooled to the initial set temperature. It has been confirmed.

本実施例による流体攪拌用プレートフィン3は、上下に対向して付き合わされるフィンの高さがそれぞれ同じ高さに形成されているが、本発明はこれによって制限されるものではなく、例えば図4に示すように上下のフィンの高さh−1、h−2のように異なった高さであることを妨げない。但し、この場合フィンの高さの和(h−1+h−2)が、偏平伝熱管の短径部の内径h−3を超えない範囲であることが必須となる。また、本実施例においてはフィンを形成するプレート材料として、オーステナイト系ステンレス鋼の薄板を採用したが、一定の機械的強度を有し、耐熱性と耐食性並びに伝熱性に優れ、かつ加工性が良好な素材であれば、その他の金属材料から適宜選択することを妨げない。更に、本実施例における切り欠き部2の形成手段は、プレス加工によって効率的に成形したが、該切り欠き部の成形加工方法としては機械的に切削することも可能であり、さらには所定のマスキングを施して、プレート材料に対する腐食性溶液中での化学的手段による食刻によって成形することも可能である。   The fluid agitating plate fins 3 according to the present embodiment are formed so that the heights of the fins facing each other in the vertical direction are the same, but the present invention is not limited thereto. As shown in FIG. 4, it does not prevent the upper and lower fins from having different heights such as heights h-1 and h-2. However, in this case, it is essential that the sum of the heights of the fins (h-1 + h-2) is in a range not exceeding the inner diameter h-3 of the short diameter portion of the flat heat transfer tube. In this example, a thin plate of austenitic stainless steel was adopted as the plate material for forming the fins, but it has a certain mechanical strength, excellent heat resistance, corrosion resistance and heat transfer, and good workability. As long as it is a simple material, it is not hindered to appropriately select from other metal materials. Furthermore, the means for forming the notch 2 in this embodiment is efficiently formed by press working. However, as a method for forming the notch, it can be mechanically cut, and further, a predetermined cutting method can be used. It is also possible to mold by masking and etching by chemical means in a corrosive solution to the plate material.

実施例1におけるプレート材料を長手方向に2枚に繋ぎ合わせたようなプレート材料を用意し、中央折り曲げ部1a−3を境にその左右のプレート材料に、所定の切り欠き部を設け、外切り欠き部の切り欠き残部を切り起こして図5(a)に示すような流体攪拌用フィン3aを形成した後、中央折り曲げ部1a−3で折り曲げ、プレート1(1a−1)およびプレート2(1a−2)に形成された流体攪拌用フィン3aの、それぞれの刃先4aが対向して付き合わせた以外は、実施例1と同様にして図5(b)に示すような流体攪拌用プレートフィン3aを得、実施例1と同様にして該プレートフィン3aを内装した伝熱管を完成させ、実施例1と同様にしてEGRガス冷却装置(多管式熱交換器)による冷却試験に供した結果、実施例1とほぼ同等の冷却効率を得られることが確認された。   A plate material in which the plate materials in Example 1 are joined together in the longitudinal direction is prepared, and predetermined cutout portions are provided on the left and right plate materials with the central bent portion 1a-3 as a boundary, After the notch remaining part of the notch is cut and raised to form the fluid stirring fin 3a as shown in FIG. 5A, the center is bent at the center bent part 1a-3, and the plate 1 (1a-1) and the plate 2 (1a -2) Except that the respective blade tips 4a of the fluid stirring fins 3a formed in FIG. As a result of completing the heat transfer tube with the plate fin 3a built in the same manner as in Example 1, and subjecting it to a cooling test with an EGR gas cooling device (multi-tube heat exchanger) as in Example 1, Example 1 URN to obtain the same cooling efficiency was confirmed.

プレート材料に形成される流体攪拌プレートフィンの形状を、実施例1または実施例2によって得られた流体攪拌用プレートフィン3および3aに代えて、刃先4bの形状が長手方向に湾曲させて形成させた以外は、実施例1と同様にして流体攪拌用プレートフィン3bを得、該フィン3bを用いて流体攪拌用フィン3bが内装される伝熱管を構成し、実施例1と同様にしてEGRガス冷却装置に搭載しての冷却試験に供したところ、実施例1に比較して冷却効率がより一層向上させられることが確認された。   Instead of the fluid stirring plate fins 3 and 3a obtained in Example 1 or Example 2, the shape of the blade 4b is curved in the longitudinal direction. Except for the above, the plate fin 3b for fluid agitation was obtained in the same manner as in Example 1, and the heat transfer tube in which the fluid agitation fin 3b was built using the fin 3b was used. When subjected to a cooling test mounted on a cooling device, it was confirmed that the cooling efficiency was further improved as compared with Example 1.

実施例2における長方形プレート材における横幅方向の中央折り曲げ部1a−3での折り曲げ重ねあわせに代えて、図10(a)に示すようにプレート材1eの長手方向を縦割りするように折り曲げ部1e−3を設け、刃先4eの形状が左右同一方向とした以外は、実施例2と同様にして流体攪拌用プレートフィンを形成し、実施例2と概略同一の条件で冷却試験に供した結果、実施例2に準ずる性能が得られることを確認した。なお、図10(b)に示す流体攪拌用フィンは本実施例の応用例であり、左右のフィン3fが交互にクロスするようにして形成される以外は、実施例4と同一にして流体攪拌用プレートフィンを形成し、同一の条件で冷却試験に供した結果、同実施例を上回る冷却性能が確認された。
[その他の応用例]
In place of the folding at the central bent portion 1a-3 in the lateral width direction in the rectangular plate material in the second embodiment, the bent portion 1e is divided so that the longitudinal direction of the plate material 1e is vertically divided as shown in FIG. -3, and the shape of the blade edge 4e is the same in the left and right direction, the fluid stirring plate fin was formed in the same manner as in Example 2, and subjected to a cooling test under substantially the same conditions as in Example 2, It was confirmed that the performance according to Example 2 was obtained. Note that the fluid agitation fin shown in FIG. 10B is an application example of the present example, and the fluid agitation is performed in the same manner as in Example 4 except that the left and right fins 3f are alternately crossed. As a result of forming plate fins for use and subjecting them to a cooling test under the same conditions, it was confirmed that the cooling performance was superior to that of the same example.
[Other application examples]

図6に示されるものは、本発明の各実施例における流体攪拌用プレートフィンの刃先の状態を例示するものであり、(a)は刃先4に一定の隙間を有するものであり、(b)は刃先4が一定の面圧を以って突き合され、隙間無く密着されている。(c)および(d)に図示される刃先には、事前にクロスする部分が予測される場合において、(c)に示す突起部4xと切り欠き4y、(d)に示す突起部4x−1と切り欠き4y−1のように、予め所定の接合部を設けることによって、伝熱管内などに内装される際には該接合部を介して上下一体に組み込まれる。従って薄板で形成されるプレートフィン同士並びに外枠を形成する伝熱管との間において、支持体(コア)を形成することによって剛性(堅牢性)が向上して他の補強体を要さず、トータル的な装置の小型軽量化に寄与する。   FIG. 6 illustrates the state of the blade edge of the fluid agitating plate fin in each embodiment of the present invention, wherein (a) has a certain gap in the blade edge 4; (b) The blade edge 4 is abutted with a constant surface pressure and is in close contact with no gap. In the cutting edge shown in (c) and (d), when a crossing portion is predicted in advance, the protrusion 4x and the notch 4y shown in (c), and the protrusion 4x-1 shown in (d) As in the notch 4y-1, by providing a predetermined joint portion in advance, when the interior is installed in the heat transfer tube or the like, it is integrated vertically through the joint portion. Therefore, between the plate fins formed of thin plates and the heat transfer tube forming the outer frame, by forming a support (core), the rigidity (robustness) is improved and no other reinforcing body is required, Contributes to reducing the overall size and weight of the device.

図7には円形管からなる伝熱管5bに、本発明の流体攪拌用プレートフィン3bが内装される状態を示し、本例における該プレートフィン3bは、例えば実施例1において得られたプレート1を円形に丸めて挿入することによっても内装されるが、該プレート1を少なくとも2枚挿入し、プレートフィン3bの刃先4bがクロスするように対向して突き合わされて内装されることにより、円形伝熱管であっても実施例1における偏平伝熱管に匹敵する熱交換性能を得ることができる。   FIG. 7 shows a state where a plate fin 3b for fluid agitation according to the present invention is installed in a heat transfer tube 5b made of a circular tube, and the plate fin 3b in this example is, for example, the plate 1 obtained in the first embodiment. It is also installed by rounding and inserting it into a circle, but at least two plates 1 are inserted, and the blades 4b of the plate fins 3b are faced to face each other so as to cross, so that a circular heat transfer tube Even so, the heat exchange performance comparable to the flat heat transfer tube in the first embodiment can be obtained.

本発明に基づく上記各実施例で得られた流体攪拌用プレートフィンを、各種の伝熱管に固着する手段は任意であり特に制限しないが、例えば、偏平伝熱管5cへの取付け手段は図8に示すように、接合部6および6−1に対するろう付け、溶接および接着剤による接合その他の手段によって適宜実施し得る。また、本発明に係る上記各実施例においては、伝熱管内を通流する流体は被冷却媒体であるEGRガスのみが例示されているが、他の実施例においては、例えば図13および図14に示すように伝熱管内5fに冷却媒体たる冷却水を通流し、該伝熱管5fの外側を被冷却媒体たるガス流路gとすることも可能であり、この場合においては伝熱管5fの外周面を通流するEGRガスに乱流や渦流を生起せしめ、該伝熱間5fの外周面に接触するEGRガスの熱を効率的に熱交換させることが可能となる。   The means for fixing the fluid agitating plate fins obtained in the above embodiments according to the present invention to various heat transfer tubes is arbitrary and is not particularly limited. For example, the attachment means to the flat heat transfer tube 5c is shown in FIG. As shown, it can be carried out as appropriate by brazing, welding and bonding with adhesives, and other means for the joints 6 and 6-1. Further, in each of the above embodiments according to the present invention, only the EGR gas that is the cooling medium is illustrated as the fluid flowing through the heat transfer tube, but in other embodiments, for example, FIG. 13 and FIG. As shown in FIG. 5, it is possible to pass cooling water as a cooling medium through the heat transfer pipe 5f and to form a gas flow path g as a cooling medium on the outside of the heat transfer pipe 5f. In this case, the outer periphery of the heat transfer pipe 5f A turbulent flow or a vortex flow is generated in the EGR gas flowing through the surface, and the heat of the EGR gas contacting the outer peripheral surface of the heat transfer interval 5f can be efficiently exchanged.

本発明に基づく上記各実施例によって得られた流体攪拌用プレートフィンを内装した、例えば偏平伝熱管の単体5eに、図12(a)に示すようなオイル入口5e−5とオイル出口5e−6を設け、両サイドの開放部に側蓋5e−1および5e−2を取付け、加締め若しくは溶接などによって封鎖し、全体をろう付けにより同図(b)に示すようにラジエーターボトムジャケット6内に浸漬して固定することにより、オイルクーラー20を構成した。偏平伝熱管単体5eに設けられたオイル入口5e−5から流入した被冷却媒体たる高温のオイルは、該伝熱間5eに内装された複数の流体攪拌用フィン3gによって攪拌され、乱流や渦流を生起して伝熱管5eの壁面に繰返し接触し、伝熱管外周面の冷却媒体たる冷却水Cへ効果的に熱交換され、オイル出口5e−6から流出する際にはほぼ初期の設定温度に冷却されていることが確認された。   An oil inlet 5e-5 and an oil outlet 5e-6 as shown in FIG. 12 (a) are provided in, for example, a single flat heat transfer tube 5e equipped with fluid stirring plate fins obtained by the above embodiments of the present invention. The side lids 5e-1 and 5e-2 are attached to the open parts on both sides, sealed by caulking or welding, etc., and the whole is brazed into the radiator bottom jacket 6 as shown in FIG. The oil cooler 20 was configured by dipping and fixing. The high-temperature oil that is the medium to be cooled that has flowed from the oil inlet 5e-5 provided in the flat heat transfer tube 5e is agitated by the plurality of fluid agitation fins 3g provided in the heat transfer space 5e, and is turbulent or swirled. Is repeatedly brought into contact with the wall surface of the heat transfer tube 5e, effectively exchanging heat with the cooling water C as the cooling medium on the outer peripheral surface of the heat transfer tube, and when it flows out from the oil outlet 5e-6, the temperature is almost the initial set temperature. It was confirmed that it was cooled.

なお、上記実施例2における図5および実施例5における図10においては、切り欠き部方向を中央折り曲げ部1a−3および1e−3で左右対称としたが、同一方向でも良く、フィンの切り起こし方向は問わない。   In FIG. 5 in the second embodiment and FIG. 10 in the fifth embodiment, the direction of the notch is symmetrical with the center bent portions 1a-3 and 1e-3, but the same direction may be used and the fins are cut and raised. The direction is not important.

本発明に基づく更に他の応用例として、流体攪拌用フィン3hをプレート式熱交換器40に内装した状態を図15に示すが、本例によれば天板40−4と底板40−5を複数に区切る平板40−3間に設けたガス流路40−2と冷却媒体流路40−1に、本発明の流体攪拌用フィン3hを内装させたものであり、これにより該平板40−3間を通流する被冷却媒体たるガスgと、冷却媒体たる冷却水Cの双方に渦流や乱流を生起せしめ、該平板40−3を介しての熱交換が効果的に促進し、優れた冷却効率を実現し得ることが確認され、加えて該流体攪拌用フィン3hが、天板40−4若しくは底板40−5と平板40−3間、或いは平板40−3同士の間でコアを形成して装置の堅牢化に寄与し、熱交換器本体40の小型軽量化を実現することが実証された。   As still another application example based on the present invention, FIG. 15 shows a state in which the fluid stirring fins 3h are installed in the plate heat exchanger 40. According to this example, the top plate 40-4 and the bottom plate 40-5 are provided. The gas flow path 40-2 and the cooling medium flow path 40-1 provided between the flat plates 40-3 divided into a plurality are provided with the fluid stirring fins 3h of the present invention, whereby the flat plate 40-3. The vortex and turbulent flow are generated in both the cooling medium C, which is a medium to be cooled, and the cooling water C, and the heat exchange through the flat plate 40-3 is effectively promoted. It is confirmed that the cooling efficiency can be realized, and in addition, the fluid stirring fin 3h forms a core between the top plate 40-4 or the bottom plate 40-5 and the flat plate 40-3, or between the flat plates 40-3. This contributes to the robustness of the device and realizes the heat exchanger body 40 to be small and light. Theft has been demonstrated.

上記各実施例並びにその応用例からも明らかなように、本発明に係る流体攪拌用プレートフィンは、プレートフィンそのものの加工が極めて容易で、しかも該プレートフィンは偏平伝熱管のみならず円形管その他の異形管からなる伝熱管へも容易に内装することができる。また、本発明によって得られた上記流体攪拌用プレートフィンを内装した伝熱管を搭載することにより、EGRガス冷却装置を初めとする熱交換型の冷却装置は、その構造が簡略であるにも拘らず、優れた冷却効率を発揮する。従って、装置の軽量・小型化を可能とするため自動車用のEGRガス冷却装置のみならず、非冷却媒体と冷却媒体との対象条件が、気体−気体、気体−液体、液体−液体に変換されるなど、その粘性や温度に変化が生じた場合においてもフレキシブルに対応することが可能で、他のガス冷却装置、オイルや燃料等液体の冷却装置としても十分に転用することが可能であるなど、幅広い用途が期待できる。   As is clear from the above embodiments and application examples thereof, the plate fin for fluid agitation according to the present invention is very easy to process, and the plate fin is not only a flat heat transfer tube but also a circular tube or the like. It can also be easily installed in a heat transfer tube consisting of a deformed tube. In addition, the heat exchange type cooling device such as the EGR gas cooling device is equipped with the heat transfer tube with the fluid stirring plate fin obtained by the present invention, although the structure thereof is simple. It exhibits excellent cooling efficiency. Therefore, in order to make the device lighter and smaller, not only the EGR gas cooling device for automobiles but also the target conditions of non-cooling medium and cooling medium are converted into gas-gas, gas-liquid, liquid-liquid. It is possible to respond flexibly even when the viscosity or temperature changes, and it can be used as another gas cooling device or a cooling device for liquids such as oil and fuel. A wide range of applications can be expected.

本発明の一実施例に係る流体攪拌用プレートフィンを説明するための模式的な一部拡大斜視図で、(a)は薄板のプレート材料にプレス加工による切り欠き部を設けた状態を示し、(b)は該切り欠き部をプレート材料の表面に対して直角に起こして複数のプレートフィンを形成した状態を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic partially enlarged perspective view for explaining a fluid stirring plate fin according to an embodiment of the present invention, in which (a) shows a state in which a notch portion is provided by pressing in a thin plate material; (B) is a perspective view showing a state in which a plurality of plate fins are formed by raising the notches perpendicularly to the surface of the plate material. 同実施例によって得られたプレートフィンを偏平伝熱管内へ挿入した状態を示す正面図である。It is a front view which shows the state which inserted the plate fin obtained by the Example into the flat heat exchanger tube. 上記図2におけるA−A線上の一部拡大平面図である。It is a partially expanded plan view on the AA line in the said FIG. 同実施例に基づく応用例によって得られたプレートフィンを偏平伝熱管に挿入した状態を示す一部拡大正面図である。It is a partially expanded front view which shows the state which inserted the plate fin obtained by the application example based on the Example into the flat heat exchanger tube. 本発明に係る他の実施例による流体攪拌用プレートフィンの加工状態を模式的に示す一部拡大斜視図で、(a)は刃先を突き合わせて重ねる前の状態を示し、(b)はそれを重ね合わせた状態を示す斜視図である。It is a partial expanded perspective view which shows typically the processing state of the plate fin for fluid stirring by other Example which concerns on this invention, (a) shows the state before butting a blade edge | tip, and (b) shows it. It is a perspective view which shows the state piled up. 同実施例に基づく応用例における流体攪拌用プレートフィンの刃先の突き合わせた状態を部分的に例示する一部拡大正面図で、(a)は刃先に隙間がある状態、(b)は刃先に隙間が無い状態、(c)は刃先に設けた突起によって上下一体に填め合わせた状態、(d)は同じく嵌合した状態を示す正面図である。FIG. 4 is a partially enlarged front view partially illustrating a state in which the blade tips of the fluid agitation plate fins meet in an application example based on the same embodiment, where (a) shows a state where there is a gap in the blade tip, and (b) shows a gap in the blade tip. (C) is a front view showing a state in which the protrusions provided on the blade edge are integrally fitted together, and (d) is a front view showing the same fitting state. 本発明に係る更に他の実施例を模式的に示す一部拡大斜視図である。It is a partially expanded perspective view which shows typically the further another Example which concerns on this invention. 本発明に係るプレートフィンの伝熱管への取付け方法の一例を示す一部拡大正面図である。It is a partially expanded front view which shows an example of the attachment method to the heat exchanger tube of the plate fin which concerns on this invention. 本発明に係る更に他の実施例による流体攪拌用プレートフィンの一部拡大斜視図である。It is a partially expanded perspective view of the plate fin for fluid stirring by the further another Example which concerns on this invention. 本発明に係る更に他の実施例の流体攪拌用プレートフィンを模式的に示す一部拡大斜視図で、(a)は該プレートフィンが同一方向に形成され、(b)は該プレートフィンが交互にクロスして形成されたものを示す斜視図である。FIG. 5 is a partially enlarged perspective view schematically showing a fluid stirring plate fin according to still another embodiment of the present invention, in which (a) shows that the plate fins are formed in the same direction, and (b) shows that the plate fins alternate. It is a perspective view which shows what was crossed and formed. 本発明の流体攪拌用プレートフィンを偏平伝熱管に内装し、更に複数の該伝熱管をEGRクーラー(多管式熱交換器)に組み込んだ状態を模式的に示す斜視図である。It is a perspective view which shows typically the state which built the plate fin for fluid agitation of the present invention in a flat heat exchanger tube, and also incorporated a plurality of these heat exchanger tubes in an EGR cooler (multi-tubular heat exchanger). 本発明の流体攪拌用プレートフィンを偏平伝熱管に内装し、該伝熱管単体を用いたオイルクーラーを示し、(a)はラジエーターボトムジャケットに組み込む前の伝熱管単体の状態を模式的に示す斜視図、(b)は同伝熱管単体をラジエーターボトムジャケット内に組み込んでオイルクーラーを形成した状態を模式的に示す側面図である。1 is a perspective view schematically showing a state of a single heat transfer tube before being incorporated in a radiator bottom jacket, wherein the fluid agitation plate fin of the present invention is installed in a flat heat transfer tube and the heat transfer tube is used alone. FIG. 2B is a side view schematically showing a state in which the single heat transfer tube is incorporated in a radiator bottom jacket to form an oil cooler. 本発明に係る更に他の実施例で、流体攪拌用プレートフィンをEGRガス冷却装置の偏平伝熱管の外周面に装着した状態を示す縦断側面図である。It is a vertical side view which shows the state which attached the plate fin for fluid stirring to the outer peripheral surface of the flat heat exchanger tube of an EGR gas cooling device in the further another Example which concerns on this invention. 同実施例におけるEGRガス冷却装置の横断正面図である。It is a cross-sectional front view of the EGR gas cooling device in the same Example. 本発明に係るプレートフィンを、プレート式熱交換器に組み込んだ実施例を示す一部破断斜視図である。It is a partially broken perspective view which shows the Example which incorporated the plate fin which concerns on this invention in the plate type heat exchanger. 従来の攪拌フィン構造体を内装した伝熱管を説明するための模式的な斜視図であり、(a)は伝熱管壁面へ突起を形成させた偏平伝熱管、(b)偏平伝熱管に波型のプレートフィンを内装させた状態を示し、(c)は円形伝熱管の内周面に螺旋状に帯形フィンを内装せしめたもの、(d)は偏平伝熱管の内周面にバッフルを形成せしめたものを示すそれぞれ斜視図である。It is a typical perspective view for demonstrating the heat exchanger tube which equipped with the conventional stirring fin structure, (a) is a flat heat exchanger tube which formed the protrusion in the heat exchanger tube wall surface, (b) It is a wave type to a flat heat exchanger tube. (C) shows a state in which strip-shaped fins are spirally installed on the inner peripheral surface of a circular heat transfer tube, and (d) shows a baffle formed on the inner peripheral surface of a flat heat transfer tube. It is each perspective view which shows what was shown.

符号の説明Explanation of symbols

1、1a、1b、1c、1d、1e、1f、1g、1h プレート
2、2a、2b、2c、2d、2e、2f 切り欠き部
3、3a、3b、3c、3d、3e、3f、3g、3h 流体攪拌用フィン
4、4a、4b、4c、4d、4e、4f フィン刃先
5、5a、5c、5d、5e、5f 偏平伝熱管
5b 円形管
5e−1、5e−2 側蓋
5e−3、5e−4 Oリング
5e−5 オイル入口
5e−6 オイル出口
6 ラジエーターボトムジャケット
5−6、5−7、5−8、5−9、5−10 チャンネルフィン
6 溶着部
10 EGRクーラー本体
(多管式熱交換器)
20 オイルクーラー本体
30 EGRクーラー本体
30−1 ガス配管
30−2 冷却ジャケット
30−3 セパレーター
30−4 バッフル
40 プレート式熱交換器本体
40−1 冷却媒体流路
40−2 ガス流路
40−3 平板
40−4 天板
40−5 底板
D−1、D−2 ダスト
g EGRガス
C、W 冷却水
1, 1a, 1b, 1c, 1d, 1e, 1f, 1g, 1h Plate 2, 2a, 2b, 2c, 2d, 2e, 2f Notch 3, 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h Fins for fluid agitation 4, 4a, 4b, 4c, 4d, 4e, 4f Fin cutting edge 5, 5a, 5c, 5d, 5e, 5f Flat heat transfer tube 5b Circular tube 5e-1, 5e-2 Side lid 5e-3, 5e-4 O-ring 5e-5 Oil inlet 5e-6 Oil outlet 6 Radiator bottom jacket 5-6, 5-7, 5-8, 5-9, 5-10 Channel fin 6 Welding part 10 EGR cooler body (multi-tube Type heat exchanger)
DESCRIPTION OF SYMBOLS 20 Oil cooler main body 30 EGR cooler main body 30-1 Gas piping 30-2 Cooling jacket 30-3 Separator 30-4 Baffle 40 Plate type heat exchanger main body 40-1 Cooling medium flow path 40-2 Gas flow path 40-3 Flat plate 40-4 Top plate 40-5 Bottom plate D-1, D-2 Dust g EGR gas C, W Cooling water

Claims (14)

伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして伝熱管の内部又は内外部に装着されることを特徴とする流体攪拌用プレートフィン。 For fluid agitation, which is mounted inside or outside the heat transfer tube and causes a turbulent or vortex agitating action to occur in the fluid consisting of the medium to be cooled or the cooling medium flowing inside or outside the heat transfer tube It is a plate fin, The fin blade edge | tip of this plate fin is faced | matched up and down, and each blade edge | tip faced | matched is mounted inside or inside and outside of a heat exchanger tube so that it may cross. Plate fin for fluid agitation. 前記プレート材料となる薄板が、金属製薄板であることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 The plate fin for fluid agitation according to claim 1, wherein the thin plate used as the plate material is a metal thin plate. 前記上下に刃先をクロスするように対向して伝熱管に内装される前記流体攪拌用プレートフィンが、上下それぞれ個別に加工されたものであることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 The fluid agitation plate according to claim 1, wherein the fluid agitation plate fins, which are installed in the heat transfer pipe so as to face each other so as to cross the blade edge, are individually processed in the upper and lower sides. fin. 前記上下に刃先をクロスするように対向して伝熱管に内装される流体攪拌用プレートフィンが、前記プレート材料に上下それぞれ同時に加工され、その中心部を折り曲げることによって内装されることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 The plate agitator for fluid agitation mounted in the heat transfer tube so as to cross the blade edge in the up and down direction is simultaneously processed in the upper and lower sides of the plate material, and is installed by bending the center portion thereof. A plate fin for fluid agitation according to claim 1. 上下に刃先をクロスするように対向して伝熱管に内装される前記流体攪拌用プレートフィンが、刃先が面圧を以って重ねられて内装されるか、若しくはそれぞれの刃先に間隔をおいて内装されることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 The fluid agitating plate fins, which are installed in the heat transfer tube so as to face each other so as to cross the blades up and down, are built up with the blades overlapped with a surface pressure, or spaced from each other. The plate fin for fluid agitation according to claim 1, wherein the plate fin for fluid agitation is provided. 前記プレートフィンにおいて、上下に刃先を対向してクロスする部分が予測される場合、該クロスする部分にあらかじめ切り欠き、凹凸等の接合部を形成し、該接合部を介して上下のプレートフィンを、一体に接合することを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 In the plate fin, when a portion where the blade edges are crossed facing each other in the up and down direction is predicted, a notched portion such as an uneven portion is formed in the crossing portion in advance, and the upper and lower plate fins are interposed via the joint portion. The plate fin for fluid agitation according to claim 1, which is integrally joined. 前記プレートフィンの刃先の形状が、長さ方向直線状または曲線状であっても良く、該プレートフィンのクロス方向も同一または交互のいずれかであることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 The shape of the blade edge of the plate fin may be linear or curved in the length direction, and the cross direction of the plate fin is either the same or alternating. Plate fins. 前記プレートフィンを内装する伝熱管が偏平管、丸管またはその他の異形管であることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 2. The plate fin for fluid agitation according to claim 1, wherein the heat transfer tube in which the plate fin is housed is a flat tube, a round tube, or other deformed tubes. 前記プレートフィンの伝熱管内へ装着手段がろう付け、溶接、接着剤を用いた接着、その他の接合手段の中から適宜選択されることを特徴とするクレーム1に記載の流体攪拌用プレートフィン。 2. The plate fin for fluid agitation according to claim 1, wherein the mounting means is suitably selected from brazing, welding, adhesion using an adhesive, and other joining means in the heat transfer tube of the plate fin. 伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、薄板からなるプレート材料に所定の切り欠き部を複数形成し、該切り欠き部の切欠き残部を前記プレート材料の表面に対して直角に起こすことにより、該プレート材料の表面に複数の流体攪拌用フィンを形成せしめることを特徴とする流体攪拌用プレートフィンの製造方法。 For fluid agitation, which is mounted inside or outside the heat transfer tube and causes a turbulent or vortex agitating action to occur in the fluid consisting of the medium to be cooled or the cooling medium flowing inside or outside the heat transfer tube A plate fin, wherein a plurality of predetermined notches are formed in a plate material made of a thin plate, and a notch portion of the notch is raised at a right angle to the surface of the plate material. A method of manufacturing a plate fin for fluid agitation, wherein a plurality of fins for fluid agitation are formed on the substrate. 前記プレート材料への切り欠き部の形成手段が、プレス加工その他の機械的加工方法若しくは食刻等による化学的加工方法あるいはレーザービームなどの光学的方法、いずれかであることを特徴とするクレーム10に記載の流体攪拌用プレートフィンの製造方法。 Claim 10 characterized in that the means for forming the notch in the plate material is any one of press processing, other mechanical processing methods, chemical processing methods such as etching, or optical methods such as laser beams. The manufacturing method of the plate fin for fluid stirring as described in 2 above. 伝熱管の内部又は内外部に装着され、該伝熱管の内部又は内外部を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンであって、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして装着された伝熱管を、少なくとも1本配設せしめたことを特徴とする熱交換器。 For fluid agitation, which is mounted inside or outside the heat transfer tube and causes a turbulent or vortex agitating action to occur in the fluid consisting of the medium to be cooled or the cooling medium flowing inside or outside the heat transfer tube It is a plate fin, and the fin blade edges of the plate fin are abutted against each other in the vertical direction, and at least one heat transfer tube mounted so that the abutted blade edges cross each other is disposed. Features heat exchanger. ガス配管内を通流するガスの流れ方向に交差して、冷却媒体が通流する伝熱管が少なくとも1本以上配設され、該伝熱管の外周に隣接して流体攪拌用プレートフィンが装着されてなる熱交換型ガス冷却装置において、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして装着されることを特徴とする熱交換型ガス冷却装置。 At least one heat transfer tube through which the cooling medium flows is arranged so as to intersect the flow direction of the gas flowing through the gas pipe, and a fluid stirring plate fin is mounted adjacent to the outer periphery of the heat transfer tube. In the heat exchange type gas cooling apparatus, the fin blade edges of the plate fins are opposed to each other in the vertical direction, and the respective blade edges that are abutted are mounted so as to cross each other. Cooling system. 管内を通流する被冷却媒体若しくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起せしめるための流体攪拌用プレートフィンを内装してなる伝熱管において、該プレートフィンのフィン刃先が上下に対向して突き合わされ、突き合わされたそれぞれの刃先が、クロスするようにして内装されることを特徴とする伝熱管。 In a heat transfer tube having fluid stirring plate fins for causing a turbulent or vortex stirrer to act on a fluid to be cooled or a fluid consisting of a cooling medium flowing in the tube, the fin blade tip of the plate fin has A heat transfer tube characterized in that it is faced up and down, and the blade edges that are faced are housed so as to cross each other.
JP2004216526A 2004-07-23 2004-07-23 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins Expired - Fee Related JP4614266B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004216526A JP4614266B2 (en) 2004-07-23 2004-07-23 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
US11/186,576 US20060016582A1 (en) 2004-07-23 2005-07-21 Fluid agitating fin, method of fabricating the same and heat exchanger tube and heat exchanger or heat exchanging type gas cooling apparatus inwardly mounted with the fin
FR0552268A FR2873433A1 (en) 2004-07-23 2005-07-22 FLUID AGITATOR FIN, METHOD FOR MANUFACTURING THE SAME, AND HEAT EXCHANGER TUBE, AND HEAT EXCHANGER OR HEAT EXCHANGER GAS COOLING APPARATUS HAVING THE INSIDE INSIDE
CNA2005100922804A CN1755316A (en) 2004-07-23 2005-07-22 Fin, method of fabricating the same and heat exchanger tube, heat exchanger and gas cooling apparatus
DE102005035258A DE102005035258A1 (en) 2004-07-23 2005-07-25 Fluid conducting ribbed plate, method of making the same and heat exchanger tube and heat exchanger or gas cooling device of the heat exchanger type with a ribbed plate in the interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004216526A JP4614266B2 (en) 2004-07-23 2004-07-23 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins

Publications (3)

Publication Number Publication Date
JP2006038304A JP2006038304A (en) 2006-02-09
JP2006038304A5 true JP2006038304A5 (en) 2007-09-06
JP4614266B2 JP4614266B2 (en) 2011-01-19

Family

ID=35520167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004216526A Expired - Fee Related JP4614266B2 (en) 2004-07-23 2004-07-23 Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins

Country Status (5)

Country Link
US (1) US20060016582A1 (en)
JP (1) JP4614266B2 (en)
CN (1) CN1755316A (en)
DE (1) DE102005035258A1 (en)
FR (1) FR2873433A1 (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7373778B2 (en) * 2004-08-26 2008-05-20 General Electric Company Combustor cooling with angled segmented surfaces
JP4881583B2 (en) * 2005-06-27 2012-02-22 株式会社豊田自動織機 Power module heat sink
GB0601418D0 (en) * 2006-01-25 2006-03-08 Rolls Royce Plc Wall elements for gas turbine engine combustors
US20070204972A1 (en) * 2006-03-01 2007-09-06 Sensis Corporation Method and apparatus for dissipating heat
DE102006033570A1 (en) * 2006-07-20 2008-01-24 Modine Manufacturing Co., Racine Shallow heat exchange tube, has inner insert designed and arranged for spiral flow of medium in tube
JP4907251B2 (en) * 2006-07-26 2012-03-28 フルタ電機株式会社 Air blow device heat dissipation mechanism
US20080041087A1 (en) * 2006-08-18 2008-02-21 Jaeggi/Guntner (Schweiz) Ltd. Hybrid dry cooler heat exchange with water-droplet slit and water-droplet splitting louver for heat exchangers with primarily latent heat transfer
KR101426559B1 (en) * 2007-11-12 2014-08-05 엘지전자 주식회사 Cooling fan and cooling apparatus for note-pad computer
US8267163B2 (en) * 2008-03-17 2012-09-18 Visteon Global Technologies, Inc. Radiator tube dimple pattern
US20130199760A1 (en) * 2008-08-06 2013-08-08 Delphi Technologies, Inc. Heat exchanger assembly having split mini-louvered fins
US8997846B2 (en) 2008-10-20 2015-04-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heat dissipation system with boundary layer disruption
TWI377333B (en) * 2009-02-05 2012-11-21 Wistron Corp Heat dissipation device
US9557119B2 (en) * 2009-05-08 2017-01-31 Arvos Inc. Heat transfer sheet for rotary regenerative heat exchanger
TWI401406B (en) * 2009-06-26 2013-07-11 Cpumate Inc Method of producing heat dissipating fin and structure thereof and method of producing heat dissipating device comprising the heat dissipating fin and structure thereof
WO2011016221A1 (en) * 2009-08-07 2011-02-10 古河スカイ株式会社 Heat sink
DE102009039569A1 (en) * 2009-09-01 2011-03-03 Behr Gmbh & Co. Kg Gas cooler for an internal combustion engine
CN101782341B (en) * 2010-03-11 2012-05-16 宁波汇富机电制造有限公司 Aluminum plate-fin type heat exchanger and vacuum braze welding process method thereof
US8881500B2 (en) * 2010-08-31 2014-11-11 General Electric Company Duplex tab obstacles for enhancement of deflagration-to-detonation transition
JP2012083026A (en) * 2010-10-12 2012-04-26 Isuzu Motors Ltd Heat exchanger
KR101304470B1 (en) * 2011-04-26 2013-09-05 캄텍주식회사 Exhaust Gas Reciculation Cooler for Vehicle
WO2013002529A2 (en) * 2011-06-30 2013-01-03 한라공조 주식회사 Air conditioning device for vehicle
DE102011080813A1 (en) * 2011-08-11 2013-02-14 Behr Gmbh & Co. Kg Temperature control device e.g. cooling plate has fluid-guiding channel that is provided for guiding tempering fluid between outer wall elements
US9643391B2 (en) 2011-08-11 2017-05-09 Mahle International Gmbh Device for controlling the temperature of an energy accumulator, more particularly for a vehicle, and method for production thereof
JP5768795B2 (en) * 2011-10-18 2015-08-26 カルソニックカンセイ株式会社 Exhaust heat exchanger
CN102374012A (en) * 2011-11-08 2012-03-14 天津大学 Gasoline engine intake swirl generating device with exhaust gas recirculation (EGR)
CN102607005A (en) * 2012-03-21 2012-07-25 武汉宏健环保厨房设备有限公司 Dual-purpose machine for generating steam and hot water
DK2904344T3 (en) * 2012-10-04 2020-03-09 Parker Hannifin Mfg France Sas Frame comprising two ribs and heat exchanger comprising frame
US10006662B2 (en) * 2013-01-21 2018-06-26 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
TW201437599A (en) * 2013-03-25 2014-10-01 He Ju Technology Co Ltd Flat tube plate and convection heat exchanger
DE102013005796A1 (en) * 2013-04-04 2014-10-09 Modine Manufacturing Co. Nozzle connection for heat exchangers
JP6046558B2 (en) * 2013-05-23 2016-12-14 カルソニックカンセイ株式会社 Heat exchanger
DE102013211579A1 (en) * 2013-06-19 2014-12-24 Behr Gmbh & Co. Kg Heat exchanger device and heater
US20180106558A9 (en) * 2013-06-27 2018-04-19 Dana Canada Corporation Fluid channels having performance enhancement features and devices incorporating same
CN103742298A (en) * 2013-12-24 2014-04-23 广西科技大学 Internal combustion engine exhaust gas recirculation cooler
US9677828B2 (en) * 2014-06-05 2017-06-13 Zoneflow Reactor Technologies, Llp Engineered packing for heat exchange and systems and methods constructing the same
JP6436529B2 (en) * 2014-11-18 2018-12-12 株式会社アタゴ製作所 Heat exchanger
CN104515421A (en) * 2015-01-05 2015-04-15 无锡马山永红换热器有限公司 Clamping piece structure for mounting of fin in moisture separator
CN104868640A (en) * 2015-06-10 2015-08-26 常熟市第二特种电机有限公司 Efficient heat radiation motor
ES2630754B1 (en) * 2016-02-19 2018-03-07 Valeo Térmico, S. A. CIRCULATION CHANNEL FOR DRIVING A FLUID OF A HEAT EXCHANGER, AND HEAT EXCHANGER
JP6390638B2 (en) * 2016-02-25 2018-09-19 トヨタ自動車株式会社 Fuel cell vehicle equipped with a reactor unit and a reactor unit
JP6662696B2 (en) * 2016-04-21 2020-03-11 リンナイ株式会社 Turbulence generator
US10208604B2 (en) * 2016-04-27 2019-02-19 United Technologies Corporation Cooling features with three dimensional chevron geometry
US20170336153A1 (en) * 2016-05-12 2017-11-23 Price Industries Limited Gas turbulator for an indirect gas-fired air handling unit
US10385769B2 (en) * 2016-08-30 2019-08-20 Caterpillar Inc. Fuel reformer cooler
KR102207962B1 (en) * 2016-09-09 2021-01-26 주식회사 경동나비엔 Tube assembly for tube frame type heat exchanger and Tube frame type heat exchanger including the same
EP3511665B1 (en) * 2016-09-09 2023-12-13 Kyungdong Navien Co., Ltd. Tube assembly for tubular heat exchanger, and tubular heat exchanger comprising same
US10458336B2 (en) * 2017-02-13 2019-10-29 General Electric Company Apparatus including heat exchanger and sound attenuator for gas turbine engine
KR102371237B1 (en) * 2017-05-11 2022-03-04 현대자동차 주식회사 Water-cooled egr cooler, and the manufacutring method thereof
DE102017208324A1 (en) * 2017-05-17 2018-11-22 Mahle International Gmbh Heat exchanger
DE112018006027T5 (en) * 2017-11-27 2020-09-17 Dana Canada Corporation IMPROVED HEAT TRANSFER AREA
DE102017131418A1 (en) 2017-12-29 2019-07-04 Ehrfeld Mikrotechnik Gmbh Turbulence generator and channel and process engineering apparatus with a turbulence generator
CN109990638B (en) * 2017-12-29 2021-08-24 杭州三花微通道换热器有限公司 Flat tube, heat exchanger and manufacturing method of flat tube
KR102364011B1 (en) * 2017-12-29 2022-02-17 주식회사 경동나비엔 Smoke tube type boiler
CN108161375B (en) * 2018-02-11 2019-06-14 广汉天空动力机械有限责任公司 A kind of processing technology being vortexed device assembly
JP7133960B2 (en) * 2018-03-29 2022-09-09 古河電気工業株式会社 assembled fins
DE102018115791B4 (en) * 2018-06-29 2022-05-05 Webasto SE Tempering element for tempering an electrical energy store
KR102146403B1 (en) * 2018-12-24 2020-08-20 일광정밀 주식회사 Manufacturing method of vortex generator for exhaust pipe
JP7023040B2 (en) * 2019-01-22 2022-02-21 三恵技研工業株式会社 Heat exchanger
CN114041037B (en) * 2019-07-03 2023-10-13 三菱电机株式会社 Heat exchanger and refrigeration cycle device
US11566855B2 (en) * 2019-08-09 2023-01-31 Mikutay Corporation Tube and chamber heat exchange apparatus having a medium directing assembly with enhanced medium directing panels
CN110541869B (en) * 2019-08-28 2024-04-26 射阳远景能源科技有限公司 Telescopic vortex generator and operation method thereof
JP7136757B2 (en) * 2019-09-27 2022-09-13 株式会社ユタカ技研 Heat exchanger
CN111059647B (en) * 2019-12-31 2021-11-26 江苏铁鑫能源科技有限公司 Planning method for air source and ground source heat pump air conditioning system
EP3890184A1 (en) * 2020-04-03 2021-10-06 The Provost, Fellows, Scholars and other Members of Board of Trinity College Dublin A heat sink and uses thereof
US11391522B2 (en) * 2020-04-20 2022-07-19 Mikutay Corporation Tube and chamber type heat exchange apparatus having an enhanced medium directing assembly
CN111776191B (en) * 2020-07-03 2022-05-17 北海市景泰达科技有限公司 Novel shell and tube heat exchanger and marine refrigerating system
KR102268791B1 (en) * 2020-10-15 2021-06-24 주식회사 디큐에너지 Vortex occuring apparatus for duct line
CN112708429A (en) * 2020-12-10 2021-04-27 胡进 Energy-saving thermal cracking reaction kettle for treating organic solid waste

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2017201A (en) * 1931-11-27 1935-10-15 Modine Mfg Co Condenser tube
US3554150A (en) * 1969-01-30 1971-01-12 Air Preheater Method of forming heat exchange tubes
US4262659A (en) * 1980-01-24 1981-04-21 Valley Industries, Inc. Solar radiation absorbing panel
JPS5842582U (en) * 1981-09-11 1983-03-22 株式会社東芝 Heat exchanger
JPS6252785U (en) * 1985-09-19 1987-04-02
JPH01184399A (en) * 1988-01-18 1989-07-24 Nippon Denso Co Ltd Tube for heat exchanger
US5275237A (en) * 1992-06-12 1994-01-04 Micron Technology, Inc. Liquid filled hot plate for precise temperature control
JP2932846B2 (en) * 1992-08-24 1999-08-09 株式会社デンソー Stacked heat exchanger and method of manufacturing the same
DE19540683A1 (en) * 1995-11-01 1997-05-07 Behr Gmbh & Co Heat exchanger for cooling exhaust gas
JP3822279B2 (en) * 1996-05-22 2006-09-13 臼井国際産業株式会社 EGR gas cooling device
JPH10274489A (en) * 1997-03-28 1998-10-13 Sanden Corp Tube for heat exchanger and its manufacture
JP2001174169A (en) * 1999-12-20 2001-06-29 Denso Corp Heat exchanger
JP2002071288A (en) * 2000-06-16 2002-03-08 Sumitomo Precision Prod Co Ltd Plate fin type heat exchanger
JP3774843B2 (en) * 2001-05-25 2006-05-17 マルヤス工業株式会社 Multi-tube heat exchanger

Similar Documents

Publication Publication Date Title
JP4614266B2 (en) Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
JP2006038304A5 (en)
KR100809514B1 (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP6199809B2 (en) Heat exchanger and its housing
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US7195060B2 (en) Stacked-tube heat exchanger
JP2007046890A (en) Tubular heat exchanger for egr gas cooler
US20050098307A1 (en) Gas cooling device
JP2007170271A (en) Multipipe heat exchanger for exhaust gas cooling device
JP2007064514A (en) Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
JP4830132B2 (en) Micro heat exchanger
US20070017661A1 (en) Heat exchanger
JP2008202846A (en) Heat transfer tube for heat exchanger and egr gas cooling device using the same
WO2007005479A1 (en) Heat exchanger with dimpled tube surfaces
JP3558131B2 (en) Double tube heat exchanger
JP2007113795A (en) Multitubular heat exchanger for exhaust gas cooling device
US20070131400A1 (en) Heat exchanger for gases, especially for engine exhaust gases
US20080105415A1 (en) Chamber For Holding A Fluid For A Heat Exchanger, Heat Exchanger, More Particularly For A Heat Exchange Unit, And A Heat Exchange Unit, In Particular In The Form Of A Monoblock
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2003106790A (en) Exhaust heat exchanger
JP2008128600A (en) Fin structure, its manufacturing method, and heat transfer tube using the fin structure
JP4266741B2 (en) Heat transfer tube with fins
US20100294474A1 (en) Heat exchanger tube
EP1331462A2 (en) Automotive heat exchanger
JP4256217B2 (en) Heat transfer tube