JP2008128600A - Fin structure, its manufacturing method, and heat transfer tube using the fin structure - Google Patents

Fin structure, its manufacturing method, and heat transfer tube using the fin structure Download PDF

Info

Publication number
JP2008128600A
JP2008128600A JP2006316020A JP2006316020A JP2008128600A JP 2008128600 A JP2008128600 A JP 2008128600A JP 2006316020 A JP2006316020 A JP 2006316020A JP 2006316020 A JP2006316020 A JP 2006316020A JP 2008128600 A JP2008128600 A JP 2008128600A
Authority
JP
Japan
Prior art keywords
fin structure
edge
heat transfer
predetermined
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006316020A
Other languages
Japanese (ja)
Inventor
Masayoshi Usui
正佳 臼井
Yasuaki Hashimoto
康明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2006316020A priority Critical patent/JP2008128600A/en
Publication of JP2008128600A publication Critical patent/JP2008128600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide fin structure, and a heat transfer tube for a heat exchanger using the fin structure capable of providing superior cooling efficiency by promoting an efficient heat exchanging. <P>SOLUTION: In the fin structure, by linearly folding up with respect to a rectangular metal sheet by a portion equivalent to a predetermined height with predetermined intervals, two of the sheets are joined on surfaces of the metal sheets, and plural linear edges are formed with the predetermined intervals with the predetermined height. The heat transfer tube is composed by attaching the fin structure on an inner side or an outer side of the tube, or both. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱交換器における流体攪拌用のフィン構造体に係り、詳しくは熱交換型冷却装置における伝熱管に内装され、該伝熱管内を通流する被冷却媒体もしくは冷却媒体からなる流体に対し、乱流や渦流の攪拌作用を生起させ、伝熱管壁面と流体の接触を大ならしめると共に、該伝熱管内を通流する前記流体の層流を効果的に剥離することによって優れた熱交換性能が得られる、フィン構造体とその製造方法、並びに該フィン構造体を用いた伝熱管に関する。   The present invention relates to a fin structure for fluid agitation in a heat exchanger, and more specifically, to a fluid composed of a cooling medium or a cooling medium that is built in a heat transfer tube in a heat exchange type cooling device and flows through the heat transfer tube. On the other hand, excellent heat is generated by agitating the turbulent flow and vortex, increasing the contact between the heat transfer tube wall surface and the fluid, and effectively separating the laminar flow of the fluid flowing through the heat transfer tube. The present invention relates to a fin structure, a method for manufacturing the fin structure, and a heat transfer tube using the fin structure, in which exchange performance is obtained.

近年、自動車の排気ガス再循環用のEGRクーラーを初め、排気ガスクーラー、燃料クーラー、オイルクーラー、インタークーラーなどの液−液、液−気体、気体−気体等、様々な形態の流体に対する熱交換器が多用されているが、これらの流体が通流する伝熱管内には、該流体の保有する熱を効率的に放熱したり、或いは吸収したりするために様々な工夫がなされている。例えば、ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上など、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。   In recent years, heat exchangers for various forms of fluids such as liquid-liquid, liquid-gas, gas-gas, etc. such as EGR cooler for automobile exhaust gas recirculation, exhaust gas cooler, fuel cooler, oil cooler, intercooler, etc. However, in the heat transfer tubes through which these fluids flow, various devices have been made in order to efficiently radiate or absorb the heat held by the fluids. For example, a method of taking a part of exhaust gas from the exhaust system of a diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation) and is called NOx (nitrogen oxide) ), Reducing pump loss, reducing heat dissipation loss to the coolant due to lowering of combustion gas temperature, increasing specific heat ratio due to working gas volume / composition change, and accompanying improvement in cycle efficiency Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.

ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が劣化し、早期に破損する虞れが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られたり、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風などによってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案され、その熱交換性能を向上させるための手段として、EGRガスが通流する管内に様々な形態のフィンを内装させている。この気−液熱交換タイプのEGRガス冷却装置の中でも、構造がシンプルで狭隘な設置空間においても容易に取付けが可能な、2重管式熱交換タイプのEGRガス冷却装置に依然として根強い需要があり、例えば高温のEGRガスを通す内管の外側に液体を通す外管を配設し、ガスと液体間で熱交換を行う交換器において、内管内に金属コルゲート板がフィンとして挿入されている2重管式熱交換器(例えば、特許文献1参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設された熱応力緩和機能を有する放熱フィンとから構成された2重管式熱交換器(例えば、特許文献2参照)をはじめとして、数多くの2重管式熱交換器が提案されている。   However, if the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve deteriorates due to its thermal action, and there is a risk of early breakage. There is a need for a structure, and as the intake air temperature rises, the charging efficiency is lowered and the fuel consumption is lowered. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioner refrigerant or cooling air is used, and in particular, gas-liquid that cools EGR gas, which is a gas, with engine coolant. Many heat exchange type EGR gas cooling devices have been proposed, and as means for improving the heat exchange performance, various forms of fins are provided in the pipe through which the EGR gas flows. Among these gas-liquid heat exchange type EGR gas cooling devices, there is still a strong demand for double-tube heat exchange type EGR gas cooling devices that have a simple structure and can be easily installed even in narrow installation spaces. For example, in an exchanger that arranges an outer tube through which liquid passes outside the inner tube through which high-temperature EGR gas passes and performs heat exchange between the gas and the liquid, a metal corrugated plate is inserted as a fin in the inner tube 2 A double-pipe heat exchanger (see, for example, Patent Document 1), an inner pipe through which a medium to be cooled is circulated, an outer pipe provided so as to surround and surround the outer circumference of the inner pipe, and the inner pipe A number of double-pipe heat exchangers have been proposed, including a double-pipe heat exchanger (see, for example, Patent Document 2) that is composed of heat dissipating fins having a thermal stress relaxation function disposed inside. ing.

上記のように種々の改良が施されたフィン構造体を内装した2重管式熱交換器によれば、その構造が簡略でコンパクトであるにも拘らず、それなりに優れた冷却効率が期待できるために、小型自動車など設置空間に限りのあるEGRガス冷却用の熱交換器としては、既に数多く実用に供されているが、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換量が不足するという未解決な課題が残されていた。
かかる課題を解消するためには構造上多少複雑で大型化が余儀なくされても、いわゆるシェルアンドチューブ型の多管式熱交換器を採用せざるを得ず、これらの熱交換器についても数多くの提案があり、かつ様々な改良がなされている。
シェルアンドチューブ型の多管式熱交換器の一例としては、冷却ジャケットを構成するシェル本体の外周部の一端に冷却水入口と、その他端に冷却水出口となるノズルがそれぞれ取付けられ、該シェル本体における長手方向の一端には高温のEGRガス導入用の、その他端には熱交換されたEGRガス排出用のボンネットがそれぞれ一体として設けられ、それぞれのボンネットの内側に取付けられたチューブシートを介して、複数の偏平伝熱管が間隔を隔てて取付けられ、該偏平伝熱管内を高温のEGRガスが、前記シェル本体内を通流する冷却水に対して交差するように通流し、かつ複数の偏平伝熱管によって形成される広い伝熱面積に加え、図10にその要部を拡大して示すように、該偏平伝熱管50の内周面に断面コの字型のプレートフィン40を内装して、通流するEGRガス流を細流化すると同時に、その伝熱面積の更なる増大を図って、優れた熱交換効率が得られるとする多管式熱交換器(例えば、特許文献3参照)が開示されている。
According to the double-pipe heat exchanger having the fin structure with various improvements as described above, although its structure is simple and compact, excellent cooling efficiency can be expected. Therefore, many heat exchangers for EGR gas cooling that have limited installation space, such as small automobiles, have already been put to practical use, but because of their compact structure, the absolute amount of fluid that flows is naturally There was an unresolved problem that there was a limit and as a result the total heat exchange amount was insufficient.
In order to solve such problems, even if the structure is somewhat complicated and the size must be increased, so-called shell-and-tube multi-tubular heat exchangers must be adopted, and many of these heat exchangers are also used. There are proposals and various improvements have been made.
As an example of a shell-and-tube type multi-tube heat exchanger, a nozzle serving as a cooling water inlet and a cooling water outlet at one end of the outer peripheral portion of the shell main body constituting the cooling jacket are respectively attached to the shell. A bonnet for introducing high-temperature EGR gas is integrally provided at one end in the longitudinal direction of the main body, and a heat-exchanged EGR gas discharging bonnet is integrally provided at the other end via tube sheets attached to the inside of each bonnet. A plurality of flat heat transfer tubes are attached at intervals, and hot EGR gas flows through the flat heat transfer tubes so as to intersect with the cooling water flowing through the shell body, and In addition to the wide heat transfer area formed by the flat heat transfer tube, as shown in an enlarged view of the main part in FIG. A multi-tubular heat exchanger (for example, an excellent heat exchange efficiency can be obtained by increasing the heat transfer area at the same time as reducing the flow of the EGR gas flowing through the interior of the heat sink 40) Patent Document 3) is disclosed.

また、シェルアンドチューブ型多管熱交換器の他の例として、図11に示すように、シェル本体20aの両端部に冷却水入口C1−aおよび出口C2−bがそれぞれ設けられ、該シェル本体20bの内部に複数の偏平チューブ23a−1が積層され、該偏平チューブ23a−1の内側の流路を通流する高温のEGRガスを、該偏平チューブ23a−1の管壁を介して熱交換する多管式のEGRクーラーにおいて、偏平チューブ23a−1の構造が同図(b)に示すように第1プレート23a−1aと、第2プレート23a−1bとからなり、該2つのプレート間に長手方向に波形形状の断面矩形のインナーフィン26aが設けられると共に、前記第1プレート23a−1aおよび第2プレート23a−1bの、該インナーフィン26aにおける波型の稜線26a−1に相当する部分を乱流形成部23a−4とし、同図(c)に示すように該乱流形成部23a−4に凹部23a−4aもしくは同図(d)に示すように該乱流形成部23a−4に凸部23a−4bを形成して、該偏平チューブ23a−1内周面を通流する高温のEGRガスと、その外側を通流する冷却水の双方に乱流を生起させて熱交換性能を向上させると同時に、該偏平チューブ23a−1内にEGRガスの煤の付着を防止した熱交換器(例えば、特許文献4参照)が提案されている。
特開平11−23181号公報 特開2000−111277号公報 特開2002−107091号公報 特開2004- 263616号公報
As another example of the shell-and-tube multi-tube heat exchanger, as shown in FIG. 11, a cooling water inlet C1-a and an outlet C2-b are respectively provided at both ends of the shell body 20a, and the shell body A plurality of flat tubes 23a-1 are stacked inside 20b, and the high-temperature EGR gas flowing through the flow path inside the flat tubes 23a-1 is subjected to heat exchange via the tube wall of the flat tubes 23a-1. In the multi-tube type EGR cooler, the structure of the flat tube 23a-1 is composed of a first plate 23a-1a and a second plate 23a-1b as shown in FIG. An inner fin 26a having a rectangular cross section in the longitudinal direction is provided, and the inner fin 26a of the first plate 23a-1a and the second plate 23a-1b is provided in the inner fin 26a. A portion corresponding to the corrugated ridge line 26a-1 is defined as a turbulent flow forming portion 23a-4, and as shown in FIG. 5C, the turbulent flow forming portion 23a-4 is formed in the concave portion 23a-4a or FIG. As shown, the turbulent flow forming portion 23a-4 is formed with convex portions 23a-4b, and hot EGR gas flowing through the inner peripheral surface of the flat tube 23a-1 and cooling water flowing outside thereof. There has been proposed a heat exchanger (see, for example, Patent Document 4) in which turbulence is generated in both sides to improve heat exchange performance and at the same time, prevention of adhesion of soot of EGR gas in the flat tube 23a-1. .
Japanese Patent Laid-Open No. 11-23181 JP 2000-1111277 A JP 2002-107091 A JP 2004-263616 A

上記各従来技術において、特許文献1〜2に開示されている2重管タイプのEGRガス冷却器の場合は、コルゲートフィンやクロスフィンを内装させることによって、ガスの流れを細流化してフィンに対する接触面積の増大を図る点においては、それなりの成果が期待されるものの、EGRガス流路を構成するパイプの内面は、長さ方向の全長に渡ってその内周面が平滑となっているものが多く、パイプの中心付近における熱伝達が不十分となり、その上ガス流がEGRガス配管に沿ってストレートに流れるため、ガス流の乱流化が不十分となり、伝熱面の境界層が十分に薄くならず、伝熱性能が若干不足する上、コンパクトな2重管構造がわざわいして交換熱量の絶対量において不足するという問題が残されており、特許文献3に開示される多管式熱交換器においては、偏平チューブに内装される断面コの字型のプレートフィンが、ガスの流れに対してストレートに形成されているため、流体に対する攪拌が不十分となり、流体に対する層流の剥離や攪拌効果においてなお十分なものとは言えなかった。   In each of the above prior arts, in the case of the double-tube type EGR gas cooler disclosed in Patent Documents 1 and 2, by corrugated fins and cross fins, the gas flow is trickled to make contact with the fins. In terms of increasing the area, although some results are expected, the inner surface of the pipe constituting the EGR gas flow path has a smooth inner peripheral surface over the entire length. In many cases, the heat transfer near the center of the pipe becomes insufficient, and the gas flow flows straight along the EGR gas pipe, so that the turbulence of the gas flow becomes insufficient and the boundary layer of the heat transfer surface is sufficient. There is still a problem that the heat transfer performance does not become thin and the heat transfer performance is slightly insufficient, and the compact double pipe structure is bothersome and the absolute amount of exchange heat is insufficient. In multi-tube heat exchangers, the U-shaped plate fins built in the flat tube are formed straight with respect to the gas flow. It could not be said that the flow separation or stirring effect was sufficient.

一方、特許文献4の多管式熱交換器の場合は、複数の伝熱管が配列されて伝熱管群を形成する個々の伝熱管を、偏平管とすることによってその接触面積を広くする上に、該偏平伝熱管内に内装されるインナーフィンとしてのフィン構造体が、断面形状が矩形で長手方向に波形の自由形状としたコルゲート状のプレートフィンであるため、被冷却媒体である高温流体の流路を複数の小流路に区画し、その流れを蛇行させることによって熱伝達面積の増大を図り、かつ流体の流れ方向における波形の稜線部分を乱流の形成部分とすると同時に、該インナーフィンが当接しない上下のプレートに、乱流形成部としての凸部や凹部を点在せしめるようにしたものであるところから、熱交換効率においては初期の成果を達成している。   On the other hand, in the case of the multi-tube heat exchanger of Patent Document 4, the contact area is increased by making each heat transfer tube in which a plurality of heat transfer tubes are arranged to form a heat transfer tube group into a flat tube. The fin structure as an inner fin installed in the flat heat transfer tube is a corrugated plate fin having a rectangular cross section and a corrugated shape in the longitudinal direction. The flow path is divided into a plurality of small flow paths, and the flow is meandered to increase the heat transfer area, and the corrugated ridge line portion in the fluid flow direction is used as a turbulent flow formation portion, and at the same time, the inner fin Since the upper and lower plates that are not in contact with each other are made to be dotted with convex portions and concave portions as turbulent flow forming portions, initial results are achieved in heat exchange efficiency.

しかしながら、一枚の金属製薄板からなるプレート材料に、特殊な塑性加工を施すことによって形成された上記フィン構造体を内装した上記偏平伝熱管内においても、該フィン構造体によって形成された小流路内における流体の圧力損失は思いのほか低く、しかも該流路内における気体もしくは液体の流線は、一端層流を生ずるとその慣性に従って流下する性質があり、十分な攪拌作用を受けずに系外に排出されるために、発熱体である高温流体から効率良く熱を吸収して、フィン先端に熱を導くまでには至らず、それに起因して十分な熱交換効率が得られないという問題が残されていた。即ち、熱交換効率を向上させるべく改善された上記フィン構造体においても、煩雑な塑性加工などその加工や取付け方法に困難を要するのに比して、十分な性能を得るまでには至らず、更に改善を望まれる大きな課題が残されていた。   However, even in the flat heat transfer tube in which the fin structure formed by applying a special plastic processing to a plate material made of a single metal thin plate is used, a small flow formed by the fin structure is used. The pressure loss of the fluid in the channel is unexpectedly low, and the gas or liquid streamline in the channel has the property of flowing down according to its inertia once a laminar flow is generated. Therefore, the heat is not efficiently absorbed from the high-temperature fluid that is the heating element, and the heat is not led to the tip of the fin, resulting in a problem that sufficient heat exchange efficiency cannot be obtained. It was left. That is, even in the fin structure that has been improved to improve the heat exchange efficiency, it does not lead to obtaining sufficient performance as compared to the difficulty in processing and mounting methods such as complicated plastic processing, There were still major issues that were desired to be improved.

本発明はかかる課題を解決することを所期の目的とし、熱交換器用の伝熱管の内外に装着されるフィン構造体をさらに改善することにより、簡略な構造であるにも拘らず、熱交換効率が優れるフィン構造体とその製造方法、並びに該フィン構造体を用いた熱交換器用の伝熱管を提供するものである。   The present invention is intended to solve such problems, and by further improving the fin structure mounted inside and outside the heat exchanger tube for the heat exchanger, the heat exchange is performed despite the simple structure. The present invention provides a fin structure having excellent efficiency, a method for producing the same, and a heat transfer tube for a heat exchanger using the fin structure.

本発明に係るフィン構造体は、方形の金属製薄板に対して所定の間隔を以って、直線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで、複数の直線状のエッジが形成されたものを基本とし、その変形として、前記直線状エッジの高さに相当する部分の全て、若しくは任意の高さ部分が波形に成形されたウェイブエッジを有するフィン構造体、方形の金属製薄板に対して所定の間隔を以って、曲線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで形成された複数の曲線状エッジの高さに相当する部分の全て、若しくは任意の高さ部分が小ピッチの波形に成形されたマイクロウェイブエッジを有するフィン構造体、前記直線状エッジの高さに相当する部分の全て、若しくは高さ方向先端の頂部から山裾部分に向かう任意の深さに、所定の間隔で複数の切り込みを設け、当該切り込み部分から左右交互に円弧状に折曲げることによって形成された分割片形エッジを有するフィン構造体を要旨とするものである。   The fin structure according to the present invention is formed on the surface of the metal thin plate by folding it in a straight line by a predetermined height with a predetermined interval with respect to the rectangular metal thin plate. Basically, two thin plates are combined and a plurality of linear edges are formed at a predetermined height with a predetermined interval, and the deformation corresponds to the height of the linear edges. The fin structure having wave edges whose entire height or any height is formed in a corrugated shape, with a predetermined distance from a rectangular metal sheet, corresponding to a predetermined height in a curved line By folding the sheet as much as possible, two sheets of the thin plate are combined on the surface of the thin metal plate, which corresponds to the height of a plurality of curved edges formed at a predetermined height with a predetermined interval. All parts or any height part has a small pitch waveform A plurality of fin structures having a microwave edge formed, a plurality of portions corresponding to the height of the linear edge, or a plurality of depths at predetermined intervals from the top of the height direction tip to the skirt portion. The gist of the present invention is a fin structure having divided piece-shaped edges formed by providing cuts and alternately bending left and right into arcs from the cut parts.

また、前記した本発明に係る直線状もしくは曲線状のエッジ、マイクロウェイブエッジ、分割片形エッジを有するフィン構造体の各エッジにおいて、該エッジにおける所定の高さに相当する部分の全て、もしくは任意の高さ部分の断面が山裾部分から高さ方向先端の頂部に向かって、順次薄くなるように成形されていることを特徴とするものである。   In addition, in each edge of the fin structure having the linear or curved edge, the microwave edge, and the divided piece-shaped edge according to the present invention described above, all the portions corresponding to a predetermined height in the edge, or arbitrary The cross section of the height portion is shaped so as to become thinner gradually from the mountain skirt portion toward the top of the tip in the height direction.

次に、本発明に係るフィン構造体の製造方法は、金属製薄板からなる定幅の定尺または長尺コイルの幅方向に、プレス成形を施すことによって該金属製薄板の表面に、直線状もしくは曲線状に断面が略三角形状もしくは平丸形状であって、所定の高さでかつ所定の間隔を以って複数のエッジ部を成形し、次いで該エッジ部を2枚重ねにして相互に密着せしめた後、左右一対の成形ローラーにて当該エッジ部の山裾部分から高さ方向の頂部に向かい、順次薄くなるように成形することを特徴とするものである。   Next, the manufacturing method of the fin structure according to the present invention is a method for producing a linear structure on the surface of a thin metal plate by performing press molding in a constant width or long width direction made of a thin metal plate. Alternatively, the curved cross section has a substantially triangular or flat round shape, and a plurality of edge portions are formed at a predetermined height and at a predetermined interval, and then the two edge portions are overlapped to adhere to each other. After the caulking, the pair of left and right forming rollers are formed so as to gradually become thinner from the crest of the edge portion toward the top in the height direction.

また、このフィン構造体の製造方法において、前記一対の成形ローラーによる成形加工に際し、該成形ローラーを所定の幅で左右に揺動させることにより、該エッジ部を波形に成形することを特徴とするものである。   Further, in the method of manufacturing the fin structure, the edge portion is formed into a corrugated shape by swinging the forming roller to the left and right with a predetermined width when forming with the pair of forming rollers. Is.

さらに、本発明に係る伝熱管は、前記本発明の直線状エッジが形成されたフィン構造体、ウェイブエッジを有するフィン構造体、マイクロウェイブエッジを有するフィン構造体、分割片形エッジを有するフィン構造体の少なくとも一つを、管本体の内側または外側もしくはその双方に装着して構成されたことを特徴とするものである。この伝熱管におけるフィン構造体は、溶接またはろう付その他の接合手段によって伝熱管へ装着されることを好ましい態様とするものである。   Furthermore, the heat transfer tube according to the present invention includes a fin structure having a linear edge according to the present invention, a fin structure having a wave edge, a fin structure having a microwave edge, and a fin structure having a split piece-shaped edge. It is characterized in that at least one body is attached to the inside or outside of the tube main body or both. The fin structure in the heat transfer tube is preferably attached to the heat transfer tube by welding, brazing, or other joining means.

本発明に係るさらに他の伝熱管は、所定の長さを有する前記フィン構造体を2枚用い、該2枚のフィン構造体のそれぞれの左右両サイドにおける一方の端部もしくは双方の端部を円弧状に折り曲げ、2枚一対として双方のエッジ部を交互に突き合わせると共に、各フィン構造体の両サイドの端部を接合することにより、前記エッジ部が交互に配置されて流体流路を形成したことを特徴とするものである。   Still another heat transfer tube according to the present invention uses two pieces of the fin structure having a predetermined length, and has one end or both ends on the left and right sides of each of the two fin structures. Folded into a circular arc shape, but the two edge portions are alternately butted together, and the edge portions are alternately arranged to form a fluid flow path by joining the end portions on both sides of each fin structure. It is characterized by that.

本発明に係る伝熱管はまた、所定の長さを有する前記フィン構造体を二つ折にしてエッジ部を交互に突き合わせてその端部を接合することにより、前記エッジ部が交互に配置されて流体流路を形成したしたことを特徴とするものである。   In the heat transfer tube according to the present invention, the fin structure having a predetermined length is folded in two, the edge portions are alternately butted and the ends thereof are joined, whereby the edge portions are alternately arranged and the fluid is transferred. The flow path is formed.

なお、前記本発明に係る伝熱管におけるフィン構造体の端部における接合手段としては、溶接、ろう付け、カシメ等の接合手段の中から適宜選択して用いる。   The joining means at the end of the fin structure in the heat transfer tube according to the present invention is appropriately selected from joining means such as welding, brazing and caulking.

本発明に係るフィン構造体は、1枚の金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さに形成された複数の直線状エッジもしくは曲線状エッジを有するものを基本的な構成要件とし、この直線状エッジもしくは曲線状のエッジの高さに相当する部分の全て、もしくは任意の高さ部分を成形ローラーによって波形に成形することによってウェイブエッジあるいはマイクロウェイブエッジとしたもの、前記直線状のエッジの高さに相当する部分の全て、若しくは高さ方向先端の頂部から山裾部分に向かう任意の深さに、所定の間隔で複数の切り込みを設け、当該切り込み部分から交互に相反する方向に円弧状に折曲げることによって分割片形エッジとなしたもの、さらには前記直線状もしくは曲線状のエッジ部の厚みがその山裾部分から高さ方向の頂部に向かって順次薄くなるように成形したこと等を特徴とするものである。
かかる構造のフィン構造体は、例えば高温のEGRガス冷却装置用熱交換器に組込まれて、該EGRガスの流体流路となる偏平伝熱管に内装した場合、該伝熱管内を通流する被冷却媒体であるEGRガス流路を、基本的には形成されたエッジ部によって、断面が矩形で長手方向に自由形状を有する複数の小流路に分割して、いわゆるプレートフィンとして作用するが、この際、当該フィン構造体は、ウェイブエッジ、マイクロウェイブエッジ、分割片形エッジ、頂部の厚さを山裾部分より薄肉としたエッジの作用によって、エッジの長さが長くかつ伝熱面積が増大して熱の伝達が効果的に促進され、優れた熱交換性能を示すと共に、流路内を通流する流体はその層流がことごとく剥離されて乱流化し、十分に攪拌されて伝熱管の壁面との接触を繰り返し、その外側を流れる冷却媒体に効率良く熱伝達され、熱交換性能が一段と向上する。
The fin structure according to the present invention has a plurality of linear edges or curves formed by joining two thin plates on the surface of one metal thin plate and having a predetermined interval and a predetermined height. Wave edge by forming a part with a curved edge as a basic component and forming all or a part corresponding to the height of this linear edge or curved edge into a corrugated shape with a forming roller Alternatively, a plurality of cuts are provided at predetermined intervals in a microwave edge, all of the portion corresponding to the height of the linear edge, or an arbitrary depth from the top of the height direction tip to the mountain hem portion. , One obtained by dividing the cut portion into a circular arc in opposite directions, and forming a split piece-shaped edge, and the straight or curved edge portion. It is characterized in such that the thickness was molded into a gradually decrease towards the top in the height direction from the foot of the mountain part.
For example, when the fin structure having such a structure is incorporated in a heat exchanger for a high-temperature EGR gas cooling device and is installed in a flat heat transfer tube serving as a fluid flow path of the EGR gas, the fin structure is passed through the heat transfer tube. The EGR gas flow path that is a cooling medium is basically divided by a formed edge portion into a plurality of small flow paths having a rectangular cross section and a free shape in the longitudinal direction, and acts as a so-called plate fin. At this time, the fin structure has a longer edge length and a larger heat transfer area due to the action of the wave edge, the micro wave edge, the split piece edge, and the edge whose top portion is thinner than the skirt portion. The heat transfer is effectively promoted and excellent heat exchange performance is exhibited, and the fluid flowing through the flow path is separated and turbulent in all the laminar flow, and is sufficiently stirred so that the wall surface of the heat transfer tube Contact with Repeatedly, it is efficiently heat transfer to the cooling medium flowing through the outer heat exchange performance is further improved.

また、本発明に係る前記フィン構造体の製造方法は、例えば金属製薄板からなる定尺または長尺コイルの幅方向に、直線状もしくは曲線状に、断面が略三角形状もしくは平丸形状に所定の高さで、かつ所定の間隔を以ってプレス成形し、次いでその三角形状もしくは平丸形状のエッジ部を2枚重ねにして相互に密着せしめることによって、金属製薄板の表面に所定の高さで、かつ所定の間隔を以って複数のエッジ部を形成し、さらにそのエッジ部を成形ローラーで該エッジ部の山裾部分から高さ方向先端の頂部に向かって順次薄くなるように成形する方法であり、さらに前記成形ローラーを、所定の幅で左右に揺動させることによってウェイブエッジとする方法であり、フィン構造体を塑性加工のみで製造できることから、その製造コストを大幅に削減することができる。   Further, the method for manufacturing the fin structure according to the present invention includes a predetermined shape such as a straight line or a curved line in a width direction of a standard or long coil made of a metal thin plate, and a substantially triangular or flat round cross section. At a predetermined height on the surface of the thin metal plate by press-molding at a height and with a predetermined interval, and then adhering the triangular or flat-round edge portions to each other in a stacked manner And forming a plurality of edge portions with a predetermined interval, and further forming the edge portions with a forming roller so that the edge portions gradually become thinner from the crest of the edge portion toward the top of the tip in the height direction. Further, it is a method of making the forming roller a wave edge by swinging left and right with a predetermined width, and since the fin structure can be manufactured only by plastic working, its manufacturing cost is reduced. It can be reduced in width.

さらに本発明に係る伝熱管は、前記の各種フィン構造体の単体をそれぞれ対向させてその左右の両端部を接合したり、二つ折りにしてその端部を接合することにより、前記エッジ部が交互に配置されて流体流路を形成したものであるから、フィン構造体の作用により熱の伝達が効果的に促進され、優れた熱交換性能を示すと共に、流路内を通流する流体はその層流がことごとく剥離され、十分に攪拌されて伝熱管の壁面との接触を繰り返し、その外側を流れる冷却媒体に効率良く熱伝達され、優れた熱交換性能が得られる。したがって、本発明に係る伝熱管によれば、その優れた熱交換性能によって、EGRガス再循環システムに配設される多管式熱交換器用は勿論のこと、排気ガスクーラー、EGRガスクーラー、燃料用クーラー、オイルクーラー、インタークーラー等の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換器を、比較的低コストで提供することができる。   Furthermore, in the heat transfer tube according to the present invention, the edge portions are alternately formed by joining the left and right end portions of each of the various fin structure bodies so as to face each other, or by folding the two fin portions and joining the end portions. Since the fluid flow path is formed by the arrangement of the fin, the heat transfer is effectively promoted by the action of the fin structure, and excellent heat exchange performance is exhibited. All laminar flows are peeled off, sufficiently agitated and repeatedly contacted with the wall surface of the heat transfer tube, and heat is efficiently transferred to the cooling medium flowing outside thereof, thereby obtaining excellent heat exchange performance. Therefore, according to the heat transfer tube according to the present invention, the exhaust gas cooler, the EGR gas cooler, the fuel as well as for the multi-tube heat exchanger disposed in the EGR gas recirculation system due to its excellent heat exchange performance. A heat exchanger that can be reduced in size and weight, such as an air cooler, oil cooler, and intercooler, contributes to the compactness of the device, and can be easily installed in a limited space, at a relatively low cost. be able to.

以下、本発明の実施の形態について添付した図面並びに実施例に基づいて更に詳細に説明するが、本発明はこれによって拘束されるものではなく、本発明の主旨の範囲内において自由に設計変更が可能である。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings and examples. However, the present invention is not restricted thereby, and design changes can be freely made within the scope of the gist of the present invention. Is possible.

図1は本発明の第1実施例に係るフィン構造体を示すもので、(a)はエッジ部が直線状に成形されたフィン構造体を模式的に示す要部斜視図、(b)は同図(a)におけるエッジ部の単体を拡大して示す正面図、図2は本発明の第2実施例に係るフィン構造体(ウェイブエッジを有するフィン構造体)およびその製造手順を示すもので、(a)は前記直線状エッジ部に対する成形ローラーによるウェイブエッジ成形加工状態を模式的に示す要部斜視図、(d)はウェイブエッジ単体を模式的に示す正面図、(e)はそのウェイブエッジ単体の形態を説明するための模式的な平面図、図3は本発明の第3実施例に係るフィン構造体(マイクロウェイブエッジを有するフィン構造体)およびその製造手順を示し、(a)はエッジ部が曲線状に成形された状態を模式的に示す要部斜視図、(b)は同図(a)における曲線状のエッジ部に対する成形ローラーによるマイクロウェイブエッジ成形加工状態を模式的に示す要部斜視図、(c)は同図(b)におけるマイクロウェイブエッジ成形加工状態をより具体的に説明するため模式的な要部拡大正面図、(d)はそのマイクロウェイブエッジ単体を模式的に示す正面図、(e)はそのマイクロウェイブエッジ単体の形態を説明するための模式的な平面図、図4は本発明の第4実施例に係るフィン構造体(分割片形エッジを有するフィン構造体)およびその製造手順を示し、(a)はエッジ部が直線状に成形されたフィン構造体を模式的に示す要部斜視図、(b)はその分割片形エッジ部の単体を示す要部拡大正面図、(c)はその要部斜視図、図5は本発明に係る基本的なフィン構造体の製造方法の一例を示したもので、(a)はその一例を説明するための成形装置を模式的に示す側面図、(b)は同図(a)に示す装置によって成形されたフィン構造体の単体を模式的に示す拡大正面図、図6は図5に示すフィン構造体の製造方法における他のプレス成形装置用金型による成形方法を示す概略側面図、図7は図1に示す直線状エッジを有するフィン構造体を用いた伝熱管を例示したもので、(a)は同一肉厚の直線状エッジを有するフィン構造体を用いた伝熱管の一例を示す概略正面図、(b)は図5に示す肉厚の異なる直線状エッジを有するフィン構造体を用いた伝熱管の一例を示す概略正面図、図8は同一肉厚の直線状エッジを有するフィン構造体を用いた伝熱管の他の例を示したもので、(a)はその組み立て前の状態を模式的に示す正面図、(b)は組み上がった伝熱管を示す概略正面図、図9は図1、図2に示すものとほぼ同様のフィン構造体を装着した伝熱管を例示したもので、(a)〜(f)は管の内側または外側もしくはその両方に、該フィン構造体を装着した伝熱管の一例を示す要部拡大正面図である。   FIG. 1 shows a fin structure according to a first embodiment of the present invention. FIG. 1 (a) is a perspective view schematically showing a main part of a fin structure in which an edge portion is formed linearly, and FIG. FIG. 2A is an enlarged front view showing a single edge portion in FIG. 2A, and FIG. 2 shows a fin structure (fin structure having a wave edge) according to a second embodiment of the present invention and its manufacturing procedure. (A) is a principal part perspective view which shows typically the wave edge shaping | molding processing state by the forming roller with respect to the said linear edge part, (d) is a front view which shows typically a wave edge single-piece | unit, (e) is the wave. FIG. 3 is a schematic plan view for explaining the form of a single edge, and FIG. 3 shows a fin structure (fin structure having a microwave edge) according to a third embodiment of the present invention, and its manufacturing procedure, (a) Has a curved edge. The principal part perspective view which shows typically the state performed, (b) is a principal part perspective view which shows typically the micro wave edge shaping | molding processing state by the shaping | molding roller with respect to the curvilinear edge part in the figure (a), (c) ) Is a schematic enlarged front view of the main part for more specifically explaining the micro wave edge molding state in FIG. 4B, FIG. 4D is a front view schematically showing the micro wave edge alone, ) Is a schematic plan view for explaining the form of the single microwave edge, and FIG. 4 is a fin structure (fin structure having divided piece-shaped edges) according to the fourth embodiment of the present invention and its manufacturing procedure. (A) is a principal part perspective view schematically showing a fin structure in which the edge part is formed in a straight line shape, (b) is a principal part enlarged front view showing a single piece of the split piece edge part, c) The main part 5A and 5B show an example of a basic method for manufacturing a fin structure according to the present invention. FIG. 5A is a side view schematically showing a molding apparatus for explaining the example. FIG. Fig. 6 is an enlarged front view schematically showing a single unit of the fin structure formed by the apparatus shown in Fig. 6A, and Fig. 6 is another mold for a press forming apparatus in the manufacturing method of the fin structure shown in Fig. 5. FIG. 7 is a schematic side view showing a forming method, FIG. 7 illustrates a heat transfer tube using a fin structure having a straight edge shown in FIG. 1, and (a) is a fin structure having a straight edge having the same thickness. FIG. 8B is a schematic front view showing an example of a heat transfer tube using the heat transfer tube. FIG. 8B is a schematic front view showing an example of a heat transfer tube using a fin structure having linear edges with different thicknesses shown in FIG. Another example of heat transfer tube using fin structure with thick straight edge (A) is a front view schematically showing the state before the assembly, (b) is a schematic front view showing the assembled heat transfer tube, and FIG. 9 is shown in FIGS. 1 and 2. The heat transfer tube which mounted | wore with the substantially same fin structure was illustrated, (a)-(f) is the principal part which shows an example of the heat transfer tube which mounted this fin structure on the inner side or the outer side, or both It is an enlarged front view.

本発明に係るフィン構造体は、基本的に方形の金属製薄板からなり、例えば定幅の定尺コイルまたは長尺コイルを素材とし、その幅方向にプレス成形、ロール成形加工等を施すことによって成形されるが、該素材となる定尺または長尺コイルとしては通常板厚が0.05〜0.5mm程度のSUS303、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールの中から適宜に選択して採用される。   The fin structure according to the present invention is basically composed of a rectangular metal thin plate, for example, by using a constant-width or long-length coil as a raw material, and performing press forming, roll forming, or the like in the width direction. Although it is molded, the standard or long coil used as the material is normally selected from austenitic stainless steel such as SUS303, SUS304L, SUS316, SUS316L, etc. with a plate thickness of about 0.05 to 0.5 mm. Adopted.

図1に示す本発明の第1実施例に係るフィン構造体1は、素材となる金属製薄板1−1に対してプレス成形により当該薄板1−1の横幅方向に図1(a)に示すように所定の間隔を設けて、かつ所定の高さhを以って頂部1−2aの断面が平丸形状の垂直な直線状エッジ1−2を形成し、かつ同時に該直線状エッジ1−2の底部1−2bを閉じて、該金属製薄板1−1が2枚重ねとなって相互に密着した直線状エッジ1−2を有している。   The fin structure 1 according to the first embodiment of the present invention shown in FIG. 1 is shown in FIG. 1A in the lateral width direction of the thin plate 1-1 by press-molding a metal thin plate 1-1 as a material. In this way, a vertical straight edge 1-2 is formed with a predetermined interval, and the top 1-2a has a flat round shape with a predetermined height h, and at the same time, the straight edge 1-2. The bottom portion 1-2b of the metal plate 1-1 is closed, and the two thin metal plates 1-1 are overlapped to have a linear edge 1-2 closely adhered to each other.

図2に示す本発明の第2実施例に係るフィン構造体2は、図1に示す実施例と同様に、素材となる金属製薄板2−1に対してプレス成形により当該薄板2−1の横幅方向に所定の間隔を設けて、かつ所定の高さを以って頂部2−2aの断面が平丸形状の垂直な直線状のエッジ(図1a参照)を形成すると共に、該直線状エッジの底部2−2bを閉じて、該金属製薄板2−1が2枚重ねとなって相互に密着した直線状エッジ(図面省略)とした後、該直線状エッジに対して、予め所定の角度に調整された左右一対の成形ローラーR1によって、その2枚重ねにされた直線状エッジが、その山裾部分2−2cから高さ方向先端の頂部2−2aに向かって徐々に薄くなるように成形加工すると同時に、前記成形ローラーR1を所定の幅で左右に揺動させながら長さ方向に移動させて成形加工を施すことによって、当該エッジの高さ方向先端の頂部2−2aから山裾部分2−2cにかけて、所定の幅で左右に揺れるウェイブ2−2dを有するウェイブエッジ2−2を有している。
すなわち、このウェイブエッジ2−2を有するフィン構造体2は、同図(c)に模式的にその形態を示すように、素材となる金属製薄板1の横幅方向に、ウェイブエッジ2−2における底部2−2bおよび山裾部分2−2cが直線状であって、高さ方向先端の頂部2−2aから山裾部分2−2cに向かって所定のピッチ間隔でウェイブ2−2dが成形されたものである。
The fin structure 2 according to the second embodiment of the present invention shown in FIG. 2 is similar to the embodiment shown in FIG. 1 in that the thin plate 2-1 is formed by press-molding the metal thin plate 2-1. A vertical straight edge (see FIG. 1 a) having a predetermined interval in the width direction and having a predetermined height and a cross section of the top portion 2-2 a having a flat round shape is formed. After the bottom 2-2b is closed and the two metal thin plates 2-1 are overlapped to form a linear edge (not shown) that is in close contact with each other, a predetermined angle with respect to the linear edge is previously set. By the pair of left and right forming rollers R1 adjusted, the linear edge formed by overlapping the two sheets is formed so as to gradually become thinner from the mountain hem portion 2-2c toward the top portion 2-2a at the tip in the height direction. At the same time, the forming roller R1 is swung left and right with a predetermined width. The wave having a wave 2-2d that swings to the left and right with a predetermined width from the top 2-2a at the front end of the edge in the height direction to the crest 2-2c by being moved in the length direction. It has an edge 2-2.
That is, the fin structure 2 having the wave edge 2-2 is formed in the wave edge 2-2 in the lateral width direction of the metal thin plate 1 as a material, as schematically shown in FIG. The bottom portion 2-2b and the mountain skirt portion 2-2c are linear, and the wave 2-2d is formed at a predetermined pitch interval from the top portion 2-2a at the tip in the height direction toward the mountain skirt portion 2-2c. is there.

図3に示す本発明の第3実施例に係るフィン構造体3は、図1、図2に示す実施例とほぼ同様の工程で、素材となる金属製薄板3−1に対してプレス成形により当該薄板3−1の横幅方向に所定の間隔を設けて、かつ所定の高さを以って頂部3−2aの断面が平丸形状の垂直な曲線状エッジ3−2を形成すると同時に、該曲線状エッジの底部3−2bを閉じて、該金属製薄板3−1が2枚重ねとなって相互に密着した曲線状エッジ3−2とした後、該曲線状エッジ3−2対して、予め所定の角度に調整された左右一対の成形ローラーR2によって、その2枚重ねにされた曲線状エッジ3−2が、その山裾部分3−2cから高さ方向先端の頂部3−2aに向かって徐々に薄くなるように成形加工されると同時に、前記成形ローラーR2を同図(c)に示すように所定の幅wで左右に揺動させながら長さ方向に移動させて成形加工を施すことによって、当該エッジの高さ方向先端の頂部3−2aから山裾部分3−2cにかけて、所定の幅で左右に揺れる曲線状のマイクロウェイブ3−2dが成形される。なお、成形ローラーR2にはギヤローラーを用いてもよい。
すなわち、このマイクロウェイブ3−2dを有する曲線状エッジ3−2を有するフィン構造体3は、同図(d)(e)に示すように、素材となる金属製薄板1の横幅方向に、曲線状エッジ3−2における底部3−2cが曲線状であって、高さ方向先端の頂部3−2aから山裾部分3−2cに向かって所定のピッチ間隔で左右に揺れるマイクロウェイブ3−2dが成形されたものである。
The fin structure 3 according to the third embodiment of the present invention shown in FIG. 3 is formed by press molding a metal thin plate 3-1 as a material in substantially the same process as the embodiment shown in FIGS. 1 and 2. At the same time as forming a vertical curved edge 3-2 in which the cross section of the apex 3-2a is flat with a predetermined height in the horizontal width direction of the thin plate 3-1, the curve The bottom edge 3-2b of the curved edge is closed to form a curved edge 3-2 in which the two metal thin plates 3-1 are stacked and adhered to each other, The pair of left and right forming rollers R2 adjusted to a predetermined angle causes the curved edge 3-2, which is overlapped by two sheets, to gradually rise from the crest portion 3-2c toward the top portion 3-2a at the tip in the height direction. At the same time, the molding roller R2 is formed into the same figure ( ) By moving in the length direction while swinging left and right with a predetermined width w, as shown in FIG. 3, from the top 3-2a at the tip of the edge in the height direction to the crest portion 3-2c, A curved microwave 3-2d that swings left and right with a predetermined width is formed. A gear roller may be used as the forming roller R2.
That is, the fin structure 3 having the curved edge 3-2 having the microwave 3-2d is curved in the lateral width direction of the metal thin plate 1 as a material, as shown in FIGS. The bottom portion 3-2c of the curved edge 3-2 is curved, and a microwave 3-2d is formed that swings to the left and right at a predetermined pitch interval from the top portion 3-2a at the tip in the height direction toward the mountain bottom portion 3-2c. It has been done.

図4に示す本発明の第4実施例に係るフィン構造体4は、前記と同様、素材となる金属製薄板4−1に対してプレス成形により当該薄板4−1の横幅方向に所定の間隔を設けて、かつ所定の高さを以って頂部4−2aの断面が平丸形状の垂直な直線状のエッジ4−2を形成すると同時に、該直線状エッジの底部4−2bを閉じて、該金属製薄板4−1が2枚重ねとなって相互に密着した直線状エッジ4−2とした後、該直線状エッジに対して、前記図2に示すものと同様の所定の角度に調整された左右一対の成形ローラー(図面省略)によって、その2枚重ねにされた直線状エッジが、その山裾部分4−2cから高さ方向先端の頂部4−2aに向かって徐々に薄くなるように前記成形ローラーを移動させながら成形加工し、しかる後該直線状エッジ4−2の高さに相当する部分の全て、もしくは高さ方向先端の頂部4−2aから、山裾部分4−2cに向かう任意の深さに、所定の間隔で複数の切り込み4−2dを設け、該切り込み4−2d部分から当該エッジ4−2を左右交互に円弧状に折曲げることによって、左右交互に円弧状に折曲げられた所定幅の分割片形エッジ4−2eを有している。
この分割片形エッジ4−2eを有するフィン構造体4の当該分割片形エッジ4−2eの幅は、当該フィン構造体4の大きさや該フィン構造体4を用いる伝熱管のサイズ等に応じて設定することとし、また必要に応じて分割片形エッジ4−2e自体にさらに切り込みを入れて同様の小さい分割片形エッジを形成してもよい。なお、複数の切り込み4−2dは、プレス成形による折り曲げ加工の前、あるいは成形ローラーによる成形加工の前に加工してもよい。
The fin structure 4 according to the fourth embodiment of the present invention shown in FIG. 4 has a predetermined interval in the width direction of the thin plate 4-1 by press forming on the metal thin plate 4-1 as a material, as described above. And at the same time forming a vertical straight edge 4-2 having a flat cross section at the top 4-2a with a predetermined height, and simultaneously closing the bottom 4-2b of the straight edge, After the two metal thin plates 4-1 are stacked to form a linear edge 4-2 in close contact with each other, the linear edge is adjusted to a predetermined angle similar to that shown in FIG. By the pair of left and right forming rollers (not shown), the two straight edges are gradually thinned from the crest 4-2c toward the top 4-2a at the tip in the height direction. Forming while moving the forming roller, then the linear shape A plurality of cuts 4-2d at a predetermined interval from the entire portion corresponding to the height of the wedge 4-2 or an arbitrary depth from the apex portion 4-2a at the tip in the height direction toward the mountain skirt portion 4-2c. And by dividing the edge 4-2 alternately left and right in the arc shape from the notch 4-2d portion, it has divided piece-shaped edges 4-2e having a predetermined width that are alternately bent left and right in the arc shape. ing.
The width of the divided piece-shaped edge 4-2e of the fin structure 4 having the divided piece-shaped edge 4-2e depends on the size of the fin structure 4, the size of the heat transfer tube using the fin structure 4, and the like. In addition, if necessary, the divided piece-shaped edge 4-2e itself may be further cut to form a similar small divided piece-shaped edge. The plurality of cuts 4-2d may be processed before the bending process by press molding or before the molding process by the molding roller.

次に、本発明に係るフィン構造体の製造方法について、図5、図6に基づいて説明する。
例えばSUS304Lのオーステナイト系ステンレススチールからなる所定の幅の長尺コイルの金属製薄板5−1(以下、説明の便宜上「薄板」と略称する)に対し、図5(a)に示す断面形状が三角形状で、所定の高さに調整された直線状の山形の凸面を有する雄型(下型)6−1と、該雄型6−1に対応して断面形状が三角形状の凹面を有する雌型(上型)6−2とを装着したプレス成形機6によって、前記薄板5−1の幅方向に所定の間隔でプレス成形を施すことによって、略三角形状のエッジ部5−2を形成し、次いで該エッジ部5−2に対して圧接加工を施し、その山裾部分5−2bを閉じることによって2枚重ねとして相互に密着せしめ、該薄板5−1の表面横幅方向にほぼ直角または適切な角度に所定の高さで、かつ所定の間隔を以って複数のエッジ部5−2を形成し、さらに該エッジ部5−2を略直角のコーナー7−1を有するガイド7上に移動し、その底部5−2cを該ガイド7のコーナー7−1に当接して折り曲げ、該コーナー7−1上に突出したエッジ部5−2に対して、所定の角度に調整された左右一対の成形ローラーR3によって、両サイドから挟持するようにして成形加工を施すことによって、該エッジ部5−2の山裾部分5−2bから高さ方向先端の頂部5−2aに向かって、その板厚が次第に薄くなるように成形することによって、金属製薄板の表面に複数の直線状のエッジ部5−2が形成されたフィン構造体5を得ることができる。
Next, the manufacturing method of the fin structure which concerns on this invention is demonstrated based on FIG. 5, FIG.
For example, the cross-sectional shape shown in FIG. 5A is triangular with respect to a metal thin plate 5-1 (hereinafter, abbreviated as “thin plate” for convenience of explanation) having a long coil made of SUS304L austenitic stainless steel and having a predetermined width. A male mold (lower mold) 6-1 having a linear chevron convex surface adjusted to a predetermined height, and a female having a triangular concave section corresponding to the male mold 6-1. A substantially triangular edge portion 5-2 is formed by performing press molding at a predetermined interval in the width direction of the thin plate 5-1 by a press molding machine 6 equipped with a mold (upper mold) 6-2. Then, the edge portion 5-2 is subjected to pressure contact processing, and the mountain skirt portion 5-2b is closed so as to adhere to each other as a two-layer stack, and is almost perpendicular to the surface lateral width direction of the thin plate 5-1. At a given height at an angle and for a given time A plurality of edge portions 5-2 are formed, and the edge portions 5-2 are further moved onto a guide 7 having a substantially right-angled corner 7-1, and the bottom portion 5-2c is moved to the corner of the guide 7. The edge portion 5-2 that protrudes on the corner 7-1 is bent from both sides by a pair of left and right forming rollers R3 adjusted to a predetermined angle. A thin metal plate is formed by forming so that the plate thickness gradually decreases from the crest 5-2b of the edge portion 5-2 toward the top portion 5-2a at the tip in the height direction. The fin structure 5 in which a plurality of linear edge portions 5-2 are formed on the surface can be obtained.

得られたフィン構造体5の断面形状は図5(b)に拡大して示すように、素材となる薄板5−1の板厚tに対し、該薄板5−1を2枚重ねとしたその山裾部分5−2bの厚みは2tであり、その頂部5−2aはほぼ板厚と同様のtないし0.5tとなるように成形加工されることが望ましい。なおこの際の成形加工により、該フィン構造体5の頂部5−2aには0.5t〜1tへの減肉に相当する伸びが生ずるが、該伸びはそのまま歪となって不規則な波形に形成されるが、前記の成形加工に際して左右一対の前記成形ローラーR3を、図5(a)に示すように所定の幅wで左右に揺動させることにより、該フィン構造体5の頂部に所定のピッチ間隔で、一定の波幅の波形(ウェイブ)を形成することができ、かつこのウェイブは当該フィン構造体5の高さ方向先端の頂部5−2aにおいて規則的に形成されることが可能となる。   The cross-sectional shape of the obtained fin structure 5 is an enlarged view of FIG. 5 (b), in which the two thin plates 5-1 are stacked on the thickness t of the thin plate 5-1. The thickness of the mountain skirt portion 5-2b is 2t, and it is desirable that the top portion 5-2a be formed and processed so as to have the same thickness t to 0.5t. In addition, although the elongation corresponding to the thinning to 0.5t-1t arises in the top part 5-2a of this fin structure 5 by the shaping | molding process in this case, this elongation becomes distortion as it is and becomes an irregular waveform. In this molding process, the pair of left and right molding rollers R3 are swung left and right with a predetermined width w as shown in FIG. A wave having a constant wave width (wave) can be formed at a pitch interval of 5 mm, and this wave can be regularly formed at the apex portion 5-2a at the tip of the fin structure 5 in the height direction. Become.

前記のフィン構造体5はエッジ部5−2を形成する際のプレス成形機6に、断面形状が三角山形の金型6−1、6−2を装着してプレス成形を施したが、該金型に代えて図6に示すように断面形状が平丸形状で、所定の高さに調整された直線状の山形の凸面を有する雄型(下型)6a−1と、該雄型6a−1に対応して断面形状が平丸形状の凹面を有する雌型(上型)6a−2を装着してプレス成形を施し、それ以降は前記と同様の手順によってフィン構造体を得ることもできる。なお、プレス成形に際して前記一対の金型を、予め所定のピッチで波形の凹凸を有する金型に代えることにより、図3に示すように薄板3−1の表面に形成されるエッジ部3−2が、該薄板3−1の横幅方向に波形の曲線状に形成することも可能であり、この場合のフィン構造体3の形状は図3(a)〜(e)に示すように、フィン構造体3の頂部3−2aのみならず、その山裾部分3−2cも所定のピッチ間隔で波形に形成されることとなる。   The fin structure 5 was press-molded by attaching the molds 6-1 and 6-2 having a triangular cross section to the press molding machine 6 for forming the edge portion 5-2. Instead of the mold, as shown in FIG. 6, a male mold (lower mold) 6 a-1 having a flat circular shape in cross-sectional shape and adjusted to a predetermined height, and the male mold 6 a- Corresponding to 1, a female mold (upper mold) 6a-2 having a flat round concave surface is mounted and press-molded. Thereafter, the fin structure can be obtained by the same procedure as described above. Note that the edge portion 3-2 formed on the surface of the thin plate 3-1 as shown in FIG. 3 is obtained by replacing the pair of dies with a die having corrugated irregularities at a predetermined pitch in advance during press molding. However, the shape of the fin structure 3 in this case may be a fin structure as shown in FIGS. 3 (a) to 3 (e). Not only the top part 3-2a of the body 3 but also the crest part 3-2c thereof is formed into a waveform at a predetermined pitch interval.

このようにして形成された本発明に係るフィン構造体は、図7〜図9に例示した各種伝熱管10〜18を構成することができる。
まず、図7に示す伝熱管10、11は、前記図1に示す直線状エッジを有するフィン構造体1と同様のものを用いて構成したもので、同図(a)に示す伝熱管10は、同一肉厚の直線状エッジ10−2を有する2個のフィン構造体10−1をそれぞれの直線状エッジ10−2が交互に配置されるように重ね、その左右の端部10−3を接合することによって、2個のフィン構造体10−1の直線状エッジ10−2によって複数の流体流路10−4を形成したものである。
また、同図(b)に示す伝熱管11は、エッジ部の山裾部分から高さ方向先端の頂部に向かってその板厚が次第に薄くなるように成形された直線状エッジ11−2を有する2個のフィン構造体11−1をそれぞれの直線状エッジ11−2が交互に配置されるように重ね、その左右の端部11−3を接合することによって、2個のフィン構造体11−1の直線状エッジ11−2によって複数の流体流路10−4を形成したものである。なお、エッジの頂部は対向するフィン構造体の非エッジ部と当接してもよく、さらに該当接部は接合されていてもよい。
The fin structure according to the present invention formed as described above can constitute the various heat transfer tubes 10 to 18 illustrated in FIGS.
First, the heat transfer tubes 10 and 11 shown in FIG. 7 are configured using the same fin structure 1 having a linear edge as shown in FIG. 1, and the heat transfer tube 10 shown in FIG. The two fin structures 10-1 having straight edges 10-2 having the same thickness are overlapped so that the straight edges 10-2 are alternately arranged, and the left and right end portions 10-3 are overlapped. By joining, a plurality of fluid flow paths 10-4 are formed by the straight edges 10-2 of the two fin structures 10-1.
Further, the heat transfer tube 11 shown in FIG. 2B has a straight edge 11-2 formed so that its plate thickness gradually decreases from the crest portion of the edge portion toward the top of the tip in the height direction. The two fin structures 11-1 are stacked by overlapping the fin structures 11-1 so that the respective linear edges 11-2 are alternately arranged, and joining the left and right ends 11-3 thereof. A plurality of fluid flow paths 10-4 are formed by the straight edges 11-2. In addition, the top part of an edge may contact | abut with the non-edge part of the fin structure which opposes, and the applicable contact part may be joined.

図8に示す伝熱管12は、同一肉厚の直線状エッジ12−2を有する1個のフィン構造体12−1を用いて構成したもので、ほぼ中央部に直線状エッジ12−2の間隔を大きく形成した所定長さのフィン構造体12−1を用い、該フィン構造体12−1を直線状エッジ12−2が交互に配置されるようにほぼ中央部で内側に二つに折曲げ、その両端部12−3を接合することにより、前記直線状エッジ12−2によって複数の流体流路12−4を形成したものである。なお、エッジの頂部は対向するフィン構造体の非エッジ部と当接してもよく、さらに該当接部は接合されていてもよい。   The heat transfer tube 12 shown in FIG. 8 is configured by using one fin structure 12-1 having a straight edge 12-2 having the same thickness, and the interval between the straight edges 12-2 is substantially at the center. The fin structure 12-1 having a predetermined length and a large length is used, and the fin structure 12-1 is folded inward at approximately the center so that the linear edges 12-2 are alternately arranged. A plurality of fluid flow paths 12-4 are formed by the linear edges 12-2 by joining both end portions 12-3. In addition, the top part of an edge may contact | abut with the non-edge part of the fin structure which opposes, and the applicable contact part may be joined.

なお、前記図7、図8に示す伝熱管10、11、12におけるフィン構造体12−1の端部の接合に際しては、所定の耐圧性を以って気密を保持した状態で接合されることが必要であり、通常溶接、ろう付またはカシメ等を単独もしくは組合わせによって接合することが望ましい。また、各エッジの合せ部分は相互にろう付けしてもよい。   In addition, when joining the end portions of the fin structure 12-1 in the heat transfer tubes 10, 11, and 12 shown in FIGS. 7 and 8, they are joined in a state of maintaining airtightness with a predetermined pressure resistance. In general, it is desirable to join by welding, brazing, caulking or the like alone or in combination. Moreover, you may braze the joining part of each edge mutually.

さらに、図9に示す伝熱管13〜18は、各種フィン構造体を伝熱管の内側または外側もしくはその双方に装着して構成したもので、同図(a)〜(d)に示す伝熱管13〜16はフィン構造体を管体の内側に、同図(e)に示す伝熱管17はフィン構造体を管体の外側に、同図(f)に示す伝熱管18はフィン構造体を管体の内側および外側の両方に、それぞれ装着して構成したものである。
すなわち、図9(a)に示す伝熱管13は、前記図1に示すフィン構造体とほぼ同じ直線状エッジ13a−1を有するフィン構造体13aを内側に屈曲して筒形に形成したものを管体13−1の内周面に装着したもの、同図(b)に示す伝熱管14は、ウェイブエッジ14a−1を有するフィン構造体14aを当該エッジが相互に対向するように偏平伝熱管14−1に内装固定したもの、同図(c)に示す伝熱管15は、ウェイブエッジ15a−1を有するフィン構造体15aを当該エッジの位置を交互にずらして偏平伝熱管15−1に内装固定したもの、同図(d)に示す伝熱管16は、ウェイブエッジ16a−1を有するフィン構造体16aを、当該フィン構造体16aとほぼ同一厚さの偏平伝熱管16−1に内装固定したもの、同図(e)に示す伝熱管17は、ウェイブエッジ17a−1を有するフィン構造体17aを管体17−1の外周面に装着したもの、同図(f)に示す伝熱管18は、偏平伝熱管18−1の内周面および外周面にウェイブエッジ18a−1を有するフィン構造体18aを装着したものを、それぞれ示したものである。なお、フィンと管はろう付けや溶接等により接合することが好ましい。
Furthermore, the heat transfer tubes 13 to 18 shown in FIG. 9 are configured by mounting various fin structures on the inside or the outside of the heat transfer tubes or both, and the heat transfer tubes 13 shown in FIGS. 16 to 16 show the fin structure inside the tube, the heat transfer tube 17 shown in FIG. 8E shows the fin structure outside the tube, and the heat transfer tube 18 shown in FIG. It is configured to be worn on both the inside and outside of the body.
That is, the heat transfer tube 13 shown in FIG. 9A has a tubular structure in which a fin structure 13a having substantially the same linear edge 13a-1 as the fin structure shown in FIG. 1 is bent inward. The heat transfer tube 14 attached to the inner peripheral surface of the tube 13-1, shown in FIG. 5B, is a flat heat transfer tube such that the fin structures 14a having the wave edges 14a-1 are opposed to each other. The heat transfer tube 15 shown in FIG. 14 (c), which is internally fixed to 14-1, is provided in the flat heat transfer tube 15-1 by alternately shifting the positions of the edges of the fin structure 15a having the wave edge 15a-1. The fixed one, the heat transfer tube 16 shown in FIG. 2D, has the fin structure 16a having the wave edge 16a-1 internally fixed to the flat heat transfer tube 16-1 having the same thickness as the fin structure 16a. Thing, figure ( The heat transfer tube 17 shown in FIG. 4 is a tube structure 17a having a fin structure 17a having a wave edge 17a-1 attached to the outer peripheral surface of the tube 17-1, and the heat transfer tube 18 shown in FIG. 1 shows a state in which a fin structure 18a having a wave edge 18a-1 is mounted on the inner peripheral surface and the outer peripheral surface of FIG. The fin and the pipe are preferably joined by brazing or welding.

前記した本発明の各種伝熱管は、その内装されたフィン構造体によって効率的な熱伝達が促進されると共に、管内を通流するEGRガス等の層流の剥離および攪拌が効果的に行われ、優れた熱交換性能が得られる。さらに、管の内周面および外周面の両方にフィン構造体を装着した伝熱管の場合は、外周面のフィン構造体の放熱作用も付加されてより優れた熱交換性能が得られる。   In the various heat transfer tubes of the present invention described above, efficient heat transfer is promoted by the fin structure incorporated therein, and the laminar flow such as EGR gas flowing through the tube is effectively separated and stirred. Excellent heat exchange performance can be obtained. Furthermore, in the case of the heat transfer tube having the fin structure mounted on both the inner peripheral surface and the outer peripheral surface of the tube, the heat dissipating action of the fin structure on the outer peripheral surface is also added, so that more excellent heat exchange performance can be obtained.

本発明に係る上記フィン構造体によれば、偏平管を含む各種伝熱管の内周面若しくは外周面、またはその双方に装着され、あるいはフィン構造体そのものが独自に伝熱管を形成して、該伝熱管の内外を通流する被冷却媒体或いは冷却媒体からなる流体の流路を、断面が略矩形で長手方向に自由形状を有する複数の小流路に分割すると同時に、該フィン構造体の先端を薄く成形することにより、フィンの先端を通しての熱伝達が効率良く促進されると共に、流路内を通流する流体に対する層流の剥離を進行させ、併せて波形に形成された流路によってもたらされる攪拌作用が付加され、伝熱管内外での熱交換性能が一段と向上する。   According to the above fin structure according to the present invention, it is attached to the inner peripheral surface or the outer peripheral surface of various heat transfer tubes including flat tubes, or both, or the fin structure itself forms a heat transfer tube independently, The flow path of the fluid to be cooled or flowing through the inside and outside of the heat transfer tube is divided into a plurality of small flow paths having a substantially rectangular cross section and a free shape in the longitudinal direction, and at the same time, the tip of the fin structure The heat transfer through the tip of the fin is efficiently promoted, and the laminar flow is separated from the fluid flowing through the flow path. The heat exchanging performance inside and outside the heat transfer tube is further improved.

さらに、本発明による上記フィン構造体は、1枚の金属製薄板に対するプレス成形と圧延加工による2段階の加工手段で、容易にかつ効率的に製造可能であるところから、その製造コストを大幅に低減することが可能であり、加えて得られるフィン構造体を装着した伝熱管の熱交換性能は、極めて優れたものであるところから、多管式の熱交換型冷却装置は勿論のこと、具体的には排気ガスからの廃熱回収用熱交換器、EGRガスクーラー、燃料用クーラーやオイルクーラー、さらにはインタークーラー等の熱交換器用伝熱管として好適に組込まれると同時に、該フィン構造体を内装した伝熱管並びに該伝熱管を組込んだ多管式熱交換器は、その優れた熱交換性能によってそれらの装置の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換器を、比較的安価に提供することができるため、当業界における幅広い用途に期待が広がる。   Furthermore, the fin structure according to the present invention can be manufactured easily and efficiently by two-stage processing means by press forming and rolling on a single metal thin plate, greatly increasing the manufacturing cost. In addition, the heat exchange performance of the heat transfer tubes equipped with the fin structure obtained in addition is extremely excellent. In particular, it is suitable for heat exchangers for exhaust heat recovery from exhaust gas, EGR gas coolers, fuel coolers and oil coolers, and heat exchanger tubes for intercoolers, etc. Heat transfer tubes and multi-tube heat exchangers incorporating the heat transfer tubes enable their devices to be smaller and lighter due to their excellent heat exchange performance, contributing to the compactness of the devices Te, the heat exchanger can be easily installed in a limited space, it is possible to provide a relatively low cost, expected spread in a wide range of applications in the art.

本発明の第1実施例に係るフィン構造体を示すもので、(a)はエッジ部が直線状に成形されたフィン構造体を模式的に示す要部斜視図、(b)は同図(a)におけるエッジ部の単体を拡大して示す正面図である。The fin structure which concerns on 1st Example of this invention is shown, (a) is a principal part perspective view which shows typically the fin structure in which the edge part was shape | molded linearly, (b) is the figure ( It is a front view which expands and shows the simple substance of the edge part in a). 本発明の第2実施例に係るフィン構造体(ウェイブエッジを有するフィン構造体)およびその製造手順を示すもので、(a)は前記直線状エッジ部に対する成形ローラーによるウェイブエッジ成形加工状態を模式的に示す要部斜視図、(d)はウェイブエッジ単体を模式的に示す正面図、(c)はそのウェイブエッジ単体の形態を説明するための模式的な平面図である。The fin structure (fin structure which has a wave edge) which concerns on 2nd Example of this invention, and its manufacturing procedure are shown, (a) is a wave edge shaping | molding process state with the shaping | molding roller with respect to the said linear edge part. (D) is a front view schematically showing a single wave edge, and (c) is a schematic plan view for explaining the form of the single wave edge. 本発明の第3実施例に係るフィン構造体(マイクロウェイブエッジを有するフィン構造体)およびその製造手順を示し、(a)はエッジ部が曲線状に成形された状態を模式的に示す要部斜視図、(b)は同図(a)における曲線状のエッジ部に対する成形ローラーによるマイクロウェイブエッジ成形加工状態を模式的に示す要部斜視図、(c)は同図(b)におけるマイクロウェイブエッジ成形加工状態をより具体的に説明するため模式的な要部拡大正面図、(d)はそのマイクロウェイブエッジ単体を模式的に示す正面図、(e)はそのマイクロウェイブエッジ単体の形態を説明するための模式的な平面図である。The fin structure (fin structure which has a microwave edge) which concerns on 3rd Example of this invention, and its manufacturing procedure are shown, (a) is the principal part which shows typically the state by which the edge part was shape | molded in curve shape. A perspective view, (b) is a principal part perspective view which shows typically the micro wave edge shaping | molding state by the shaping | molding roller with respect to the curvilinear edge part in the figure (a), (c) is the micro wave in the figure (b). In order to more specifically explain the state of edge forming, a schematic enlarged front view of the main part, (d) is a front view schematically showing the microwave edge unit, and (e) is a form of the microwave edge unit. It is a typical top view for demonstrating. 本発明の第4実施例に係るフィン構造体(分割片形エッジを有するフィン構造体)およびその製造手順を示し、(a)はエッジ部が直線状に成形されたフィン構造体を模式的に示す要部斜視図、(b)はその分割片形エッジ部の単体を示す要部拡大正面図、(c)はその要部斜視図である。The fin structure (fin structure which has a division | segmentation piece shape edge) which concerns on 4th Example of this invention, and its manufacturing procedure are shown, (a) is a fin structure with which the edge part was shape | molded linearly typically. The principal part perspective view shown, (b) is the principal part expansion front view which shows the single-piece | unit of the division | segmentation piece shape edge part, (c) is the principal part perspective view. 本発明に係る基本的なフィン構造体の製造方法の一例を示したもので、(a)はその一例を説明するための成形装置を模式的に示す側面図、(b)は同図(a)に示す装置によって成形されたフィン構造体の単体を模式的に示す拡大正面図である。An example of the manufacturing method of the basic fin structure which concerns on this invention is shown, (a) is a side view which shows typically the shaping | molding apparatus for demonstrating the example, (b) is the figure (a) It is an enlarged front view which shows typically the single-piece | unit of the fin structure shape | molded by the apparatus shown in FIG. 図5に示すフィン構造体の製造方法における他のプレス成形装置用金型による成形方法を示す概略側面図である。It is a schematic side view which shows the shaping | molding method by the metal mold | die for another press molding apparatus in the manufacturing method of the fin structure shown in FIG. 図1に示す直線状エッジを有するフィン構造体を用いた伝熱管を例示したもので、(a)は同一肉厚の直線状エッジを有するフィン構造体を用いた伝熱管の一例を示す概略正面図、(b)は図5に示す肉厚の異なる直線状エッジを有するフィン構造体を用いた伝熱管の一例を示す概略正面図である。FIG. 1 illustrates a heat transfer tube using a fin structure having a straight edge shown in FIG. 1, and (a) is a schematic front view illustrating an example of a heat transfer tube using a fin structure having a straight edge having the same thickness. FIG. 6B is a schematic front view showing an example of a heat transfer tube using a fin structure having linear edges with different thicknesses shown in FIG. 同一肉厚の直線状エッジを有するフィン構造体を用いた伝熱管の他の例を示したもので、(a)はその組み立て前の状態を模式的に示す正面図、(b)は組み上がった伝熱管を示す概略正面図である。The other example of the heat exchanger tube using the fin structure which has the straight edge of the same thickness is shown, (a) is a front view which shows the state before the assembly typically, (b) is an assembly. It is a schematic front view which shows the heat exchanger tube. 図1、図2に示すものとほぼ同様のフィン構造体を装着した伝熱管を例示したもので、(a)〜(f)は管の内側または外側もしくはその両方に、該フィン構造体を装着した伝熱管の一例を示す要部拡大正面図である。FIGS. 1 and 2 illustrate a heat transfer tube equipped with a fin structure substantially similar to that shown in FIGS. 1 and 2, wherein (a) to (f) are attached to the inside or outside of the tube or both. It is a principal part enlarged front view which shows an example of the made heat exchanger tube. 従来のフィン構造体を内装した伝熱管の要部拡大正面図である。It is a principal part enlarged front view of the heat exchanger tube which equipped the conventional fin structure. 従来の多管式熱交換器の一例を示し、(a)はその多管式熱交換器の一部破断斜視図、(b)その多管式熱交換器に内装される偏平伝熱管単体の分解斜視図、(c)は偏平伝熱管単体の断面図、(d)は同じく他の偏平伝熱管単体の断面図である。An example of a conventional multi-tube heat exchanger is shown, (a) is a partially broken perspective view of the multi-tube heat exchanger, and (b) a flat heat transfer tube alone installed in the multi-tube heat exchanger. An exploded perspective view, (c) is a cross-sectional view of a single flat heat transfer tube, and (d) is a cross-sectional view of another flat heat transfer tube.

符号の説明Explanation of symbols

1、5 直線状エッジを有するフィン構造体
1−1、2−1、3−1、4−1、5−1 金属製薄板
1−2 直線状エッジ
2 ウェイブエッジを有するフィン構造体
2−2 ウェイブエッジ
2−2d ウェイブ
3 マイクロウェイブエッジを有するフィン構造体
3−2 曲線状エッジ
3−2d マイクロウェイブ
4 分割片形エッジを有するフィン構造体
4−2 直線状エッジ
4−2e 分割片形エッジ
5−2 エッジ部
6 プレス成形機
6−1 雄型
6−2 雌型
7 ガイド
10〜18 伝熱管
10−1〜18−1 フィン構造体
10−4〜12−4 流体流路
13−1、17−1 管体
14−1、15−1、16−1、18−1 偏平伝熱管
10−2、11−2、12−2、13a−1 直線状エッジ
13a〜18a フィン構造体
14a−1〜18a−1 ウェイブエッジ
R1〜R3 成形ローラー
DESCRIPTION OF SYMBOLS 1, 5 Fin structure 1-12, 3-1, 4-1, 5-1 Metal thin plate 1-2 Straight edge 2 Fin structure 2-2 which has a wave edge Wave edge 2-2d Wave 3 Fin structure with micro wave edge 3-2 Curved edge 3-2d Micro wave 4 Fin structure with split piece edge 4-2 Straight edge 4-2e Split piece edge 5 -2 Edge part 6 Press molding machine 6-1 Male mold 6-2 Female mold 7 Guide 10-18 Heat transfer tube 10-1 to 18-1 Fin structure 10-4 to 12-4 Fluid flow path 13-1, 17 -1 Tubes 14-1, 15-1, 16-1, 18-1 Flat heat transfer tubes 10-2, 11-2, 12-2, 13a-1 Linear edges 13a-18a Fin structures 14a-1 18a-1 Wave edge R1-R3 Forming roller

Claims (12)

方形の金属製薄板に対して所定の間隔を以って、直線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで、複数の直線状のエッジが形成されたフィン構造体。   By folding the rectangular metal thin plate in a straight line by a predetermined height with a predetermined interval, the two thin plates are combined on the surface of the metal thin plate. A fin structure in which a plurality of linear edges are formed with a predetermined height and a predetermined height. 方形の金属製薄板に対して所定の間隔を以って、直線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで形成された複数の直線状エッジの高さに相当する部分の全て、若しくは任意の高さ部分が波形に成形されたウェイブエッジを有するフィン構造体。   By folding the rectangular metal thin plate in a straight line by a predetermined height with a predetermined interval, the two thin plates are combined on the surface of the metal thin plate. A fin structure having a wave edge in which all or a portion corresponding to the height of a plurality of linear edges formed at a predetermined height with a predetermined interval is formed into a waveform. 方形の金属製薄板に対して所定の間隔を以って、曲線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで形成された複数の曲線状エッジの高さに相当する部分の全て、若しくは任意の高さ部分が小ピッチの波形に成形されたマイクロウェイブエッジを有するフィン構造体。   By folding the rectangular metal thin plate at a predetermined interval and by an amount corresponding to a predetermined height, the two thin plates are combined on the surface of the metal thin plate. All of the portions corresponding to the heights of the plurality of curved edges formed at a predetermined height and at a predetermined height, or any height portion has a microwave edge formed into a small pitch waveform Fin structure. 方形の金属製薄板に対して所定の間隔を以って、直線状に所定の高さに相当する分だけ折り出すことにより、該金属製薄板の表面に該薄板が2枚合わせにされ、所定の間隔を以ってかつ所定の高さで形成された複数の直線状のエッジの高さに相当する部分の全て、若しくは高さ方向先端の頂部から山裾部分に向かう任意の深さに、所定の間隔で複数の切り込みを設け、当該切り込み部分から左右交互に円弧状に折曲げることによって形成された分割片形エッジを有するフィン構造体。   By folding the rectangular metal thin plate in a straight line by a predetermined height with a predetermined interval, the two thin plates are combined on the surface of the metal thin plate. At a predetermined depth to all of the portions corresponding to the heights of a plurality of linear edges formed at a predetermined height and at an arbitrary depth from the top of the height direction tip to the skirt portion. The fin structure which has the division | segmentation piece-shaped edge formed by providing several notches in the space | interval, and bend | folding in the circular arc shape from the said notch part alternately right and left. 金属製薄板を2枚合わせにして形成される前記直線状若しくは曲線状のエッジにおいて、該エッジにおける所定の高さに相当する部分の全て、もしくは任意の高さ部分の断面が山裾部分から高さ方向先端の頂部に向かって、順次薄くなるように成形されていることを特徴とする請求項1ないし4のいずれか1項に記載のフィン構造体。   In the straight or curved edge formed by combining two metal thin plates, all of a portion corresponding to a predetermined height at the edge, or a cross section of an arbitrary height portion is height from the mountain skirt portion. The fin structure according to any one of claims 1 to 4, wherein the fin structure is formed so as to be gradually thinner toward a top portion of a direction tip. 金属製薄板からなる定幅の定尺または長尺コイルの幅方向に、プレス成形を施すことによって該金属製薄板の表面に、直線状もしくは曲線状に断面が略三角形状もしくは平丸形状であって、所定の高さでかつ所定の間隔を以って複数のエッジ部を形成し、次いで該エッジ部を2枚重ねにして相互に密着せしめた後、左右一対の成形ローラーにて当該エッジ部の山裾部分から高さ方向の頂部に向かい、順次薄くなるように成形することを特徴とするフィン構造体の製造方法。   The surface of the metal thin plate is formed in a straight or curved shape by pressing in the width direction of a constant width or long coil made of a metal thin plate, and the cross-section is substantially triangular or flat round. After forming a plurality of edge portions at a predetermined height and with a predetermined interval, the two edge portions are overlapped and adhered to each other, and then the edge portions are formed with a pair of left and right forming rollers. A method for manufacturing a fin structure, wherein the fin structure is formed so as to be gradually thinner from a mountain skirt portion toward a top portion in a height direction. 前記一対の成形ローラーによる成形加工に際し、該成形ローラーを所定の幅で左右に揺動させることにより、該エッジ部を波形に成形することを特徴とする請求項6に記載のフィン構造体の製造方法。   The fin structure according to claim 6, wherein the edge portion is formed into a corrugated shape by swinging the forming roller left and right with a predetermined width when forming with the pair of forming rollers. Method. 前記直線状エッジが形成されたフィン構造体、ウェイブエッジを有するフィン構造体、マイクロウェイブエッジを有するフィン構造体、分割片形エッジを有するフィン構造体の少なくとも一つを管の内側または外側もしくはその双方に装着して構成された伝熱管。   At least one of the fin structure in which the straight edge is formed, the fin structure having a wave edge, the fin structure having a micro wave edge, and the fin structure having a divided piece-shaped edge is arranged inside or outside of the pipe or its A heat transfer tube mounted on both sides. 前記フィン構造体が溶接またはろう付その他の接合手段によって伝熱管に装着された請求項8に記載の伝熱管。   The heat transfer tube according to claim 8, wherein the fin structure is attached to the heat transfer tube by welding, brazing, or other joining means. 所定の長さを有する前記フィン構造体を2枚用い、該2枚のフィン構造体のそれぞれの左右両サイドにおける一方の端部もしくは双方の端部を円弧状に折り曲げ、2枚一対として双方のエッジ部を交互に突き合わせると共に、各フィン構造体の両サイドの端部を接合することにより、前記エッジ部が交互に配置されて流体流路を形成した伝熱管。   Two pieces of the fin structure having a predetermined length are used, and one or both ends of the two fin structures are bent in an arc shape on both the left and right sides of each of the two fin structures. A heat transfer tube in which the edge portions are alternately abutted and end portions on both sides of each fin structure are joined to form the fluid flow path by alternately arranging the edge portions. 所定の長さを有する前記フィン構造体を二つ折にしてエッジ部を交互に突き合わせてその端部を接合することにより、前記エッジ部が交互に配置されて流体流路を形成した伝熱管。   A heat transfer tube in which the edge portions are alternately arranged by joining the end portions by alternately folding the fin structure having a predetermined length into two, thereby forming a fluid flow path. 前記フィン構造体の端部における接合手段が溶接、ろう付け、カシメ等の接合手段の中から適宜選択されることを特徴とする請求項10または11に記載の伝熱管。   The heat transfer tube according to claim 10 or 11, wherein a joining means at an end portion of the fin structure is appropriately selected from joining means such as welding, brazing, and caulking.
JP2006316020A 2006-11-22 2006-11-22 Fin structure, its manufacturing method, and heat transfer tube using the fin structure Pending JP2008128600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006316020A JP2008128600A (en) 2006-11-22 2006-11-22 Fin structure, its manufacturing method, and heat transfer tube using the fin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006316020A JP2008128600A (en) 2006-11-22 2006-11-22 Fin structure, its manufacturing method, and heat transfer tube using the fin structure

Publications (1)

Publication Number Publication Date
JP2008128600A true JP2008128600A (en) 2008-06-05

Family

ID=39554604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006316020A Pending JP2008128600A (en) 2006-11-22 2006-11-22 Fin structure, its manufacturing method, and heat transfer tube using the fin structure

Country Status (1)

Country Link
JP (1) JP2008128600A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020073744A1 (en) * 2018-10-11 2020-04-16 丹佛斯有限公司 Pipe assembly and heat exchanger
CN111043893A (en) * 2018-10-11 2020-04-21 丹佛斯有限公司 Pipe assembly and heat exchanger
US11493283B2 (en) 2016-10-14 2022-11-08 Hanon Systems B-tube reform for improved thermal cycle performance
DE102017218346B4 (en) 2016-10-14 2024-02-29 Hanon Systems B-tube forming for improved performance of a heat cycle process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107222A (en) * 1981-12-21 1983-06-25 Hitachi Ltd Method for forming crease in part of band plate
JPS6183889A (en) * 1984-09-29 1986-04-28 Toshiba Corp Heat exchanger for freezing machine
JPH03248720A (en) * 1990-02-27 1991-11-06 Toyota Motor Corp Intrasurface bending method
JPH10258332A (en) * 1997-01-20 1998-09-29 Zexel Corp Heat exchanger and manufacture therefor
JP2000074586A (en) * 1998-08-31 2000-03-14 Toyo Radiator Co Ltd Flat tube for heat exchanger
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method
JP2003336802A (en) * 2002-05-20 2003-11-28 Toyo Radiator Co Ltd Steam generator
WO2006040118A1 (en) * 2004-10-12 2006-04-20 Behr Gmbh & Co. Kg Flat tube for a heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107222A (en) * 1981-12-21 1983-06-25 Hitachi Ltd Method for forming crease in part of band plate
JPS6183889A (en) * 1984-09-29 1986-04-28 Toshiba Corp Heat exchanger for freezing machine
JPH03248720A (en) * 1990-02-27 1991-11-06 Toyota Motor Corp Intrasurface bending method
JPH10258332A (en) * 1997-01-20 1998-09-29 Zexel Corp Heat exchanger and manufacture therefor
JP2000074586A (en) * 1998-08-31 2000-03-14 Toyo Radiator Co Ltd Flat tube for heat exchanger
JP2003071532A (en) * 2001-09-05 2003-03-11 Showa Denko Kk Method for manufacturing flattened tube and flattened tube manufactured by the same method
JP2003336802A (en) * 2002-05-20 2003-11-28 Toyo Radiator Co Ltd Steam generator
WO2006040118A1 (en) * 2004-10-12 2006-04-20 Behr Gmbh & Co. Kg Flat tube for a heat exchanger

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11493283B2 (en) 2016-10-14 2022-11-08 Hanon Systems B-tube reform for improved thermal cycle performance
DE102017218346B4 (en) 2016-10-14 2024-02-29 Hanon Systems B-tube forming for improved performance of a heat cycle process
WO2020073744A1 (en) * 2018-10-11 2020-04-16 丹佛斯有限公司 Pipe assembly and heat exchanger
CN111043893A (en) * 2018-10-11 2020-04-21 丹佛斯有限公司 Pipe assembly and heat exchanger
CN111043894A (en) * 2018-10-11 2020-04-21 丹佛斯有限公司 Pipe assembly and heat exchanger
CN111043893B (en) * 2018-10-11 2022-04-29 丹佛斯有限公司 Pipe assembly and heat exchanger

Similar Documents

Publication Publication Date Title
JP4614266B2 (en) Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US8069905B2 (en) EGR gas cooling device
US9459052B2 (en) Coaxial gas-liquid heat exchanger with thermal expansion connector
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP4143966B2 (en) Flat tube for EGR cooler
JP2005534888A (en) Flat tube heat exchanger
US20110000657A1 (en) Extruded tube for a heat exchanger
US20090133860A1 (en) Heat exchanger
JP2001038439A (en) Flat.turbulater for tube and its manufacture
US20120024511A1 (en) Intercooler
JP2008014566A (en) Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube
KR20170063543A (en) Corrugated fins for heat exchanger
JP2008145024A (en) Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube
JP2008128600A (en) Fin structure, its manufacturing method, and heat transfer tube using the fin structure
US20210123690A1 (en) Heat Exchange Tube, Heat Exchange Tube Manufacturing Method, and Heat Exchanger
JP2006118436A (en) Bonnet for egr gas cooling device
JP4122670B2 (en) Heat exchanger
JP2009236478A (en) Heat exchanger for high pressure refrigerant
US7243711B2 (en) Efficient heat exchanger and engine using same
US20110030936A1 (en) Heat Exchanging Apparatus and Method of Making Same
JP2007064515A (en) Flat heat transfer tube for heat exchanger, and its manufacturing method
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
CN108225088A (en) A kind of flat tube and the heat exchanger using the flat tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120315