JPS6183889A - Heat exchanger for freezing machine - Google Patents

Heat exchanger for freezing machine

Info

Publication number
JPS6183889A
JPS6183889A JP20443184A JP20443184A JPS6183889A JP S6183889 A JPS6183889 A JP S6183889A JP 20443184 A JP20443184 A JP 20443184A JP 20443184 A JP20443184 A JP 20443184A JP S6183889 A JPS6183889 A JP S6183889A
Authority
JP
Japan
Prior art keywords
tube
heater
pipe
refrigerant
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20443184A
Other languages
Japanese (ja)
Inventor
Katsuaki Yamagishi
勝明 山岸
Akio Mitani
三谷 明男
Masatoshi Shimura
志村 政利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20443184A priority Critical patent/JPS6183889A/en
Publication of JPS6183889A publication Critical patent/JPS6183889A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To achieve high efficiency, to reduce occupying space, to facilitate the manufacture and to reduce the defrosting energy by disposing more fin strips of refrigerating pipe and heater pipe fins near to the upstream side of the flow of heat exchanging fluid, and by bending or twisting the fin strips parallelly with the flow of the fluid. CONSTITUTION:Since the direction of protrusion of refrigerating pipe fins 15 and heater pipe fins 16 protruding from the surface of a refrigerating pipe 12 and a heater pipe 14 are different from the winding direction of a heat exchanging pipe 11, there is no restriction to the fins due to the winding, and as a result, the surface area can freely be set, a narrower winding pitch can be selected, and the occupying space can be reduced. Moreover, since the heat exchanging pipe 11 is wound parallelly with the airflow passing through a cooling chamber 5 and more number of fin strips 17, 18 are disposed near to the upstream side of fluid flow, a high heat exchanging efficiency can be obtained, and because the cooling effect of the upstream side fin strips which are prone to be frosted is lower than the downstream side, the uniform frosting will result, contributing to the reduction of the defrosting energy. Further, as the width of the fin strips in the pipe axial direction is constant, the manufacture can be facilitated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高効率化、専有体積の減少化、製作性の向上
化および除霜エネルギの減少化を図れるようにした冷凍
機械用熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides a heat exchanger for refrigeration machinery that achieves high efficiency, a reduction in exclusive volume, improved manufacturability, and a reduction in defrosting energy. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知のように、強制循環型の冷凍機械、たとえばファン
クール型の冷蔵庫やショーケースにあっては、冷蔵V(
あるいは冷凍至)と熱交換器を収容する冷却室とが別々
に設けられている。そして、同空間を連絡路を介して直
列に接続するとともに両室間において空気を強制循環さ
せることによって冷蔵室内を所定の温度に冷却するよう
にしている。
As is well known, in forced circulation type refrigeration machines, such as fan cool type refrigerators and showcases, refrigeration V (
Alternatively, a cooling chamber containing a heat exchanger and a cooling chamber are provided separately. The spaces are connected in series via a communication path, and air is forced to circulate between both rooms, thereby cooling the inside of the refrigerator compartment to a predetermined temperature.

ところで、このような冷凍機械に組込まれる蒸発用の熱
交換器としては、従来、プレートフィン型の熱交換器が
専ら使用されていた。しかし、最近では、冷媒管とフィ
ンとをアルミニウムの押出し一体成形加工で形成した熱
交換用管体を用いて熱交換器を構成することが提案され
ており、このようにして製作された熱交換器がすでに一
部の冷蔵庫に組込まれている。この一体成形型の熱交換
用管体で構成された熱交換器は、プレートフィン型のも
のに比べて、本質的に熱伝達率が高く、しかも圧力損失
が小さいと言う利点を備えている。
By the way, as an evaporation heat exchanger incorporated in such a refrigeration machine, a plate fin type heat exchanger has conventionally been used exclusively. However, recently, it has been proposed to construct a heat exchanger using a heat exchange tube body formed by integrally extruding aluminum refrigerant tubes and fins. The container is already built into some refrigerators. A heat exchanger constructed of this integrally molded heat exchange tube has the advantage of inherently higher heat transfer coefficient and lower pressure loss than a plate-fin type heat exchanger.

しかしながら、一体成形型の熱交換用管体を使用して構
成された従来の熱交換器にあっては、フィンの先端同志
が対向するように各フィンを設けているため、プレート
フィン型の熱交換器に比べて専有体積が大きく、この結
果、冷凍機械全体が大形化する問題があった。また、冷
凍機械を運転するときには、定期的あるいは不定期的に
熱交換器の表面に付着した霜を取り除く必要があるが、
従来の熱交換器にあっては、着霜が不均一であることが
原因して、除霜のインターバルが短いばかりか除霜に長
時間を要し、除霜効率が低いと言う問題もあった。
However, in conventional heat exchangers configured using integrally molded heat exchange tubes, each fin is provided so that the tips of the fins face each other. The dedicated volume is larger than that of the exchanger, and as a result, there is a problem in that the entire refrigeration machine becomes larger. Also, when operating a refrigeration machine, it is necessary to periodically or irregularly remove frost that has adhered to the surface of the heat exchanger.
Conventional heat exchangers have the problem of non-uniform frost formation, which not only shortens the defrost interval but also takes a long time to defrost, resulting in low defrosting efficiency. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、一体成形型の熱交換用管体を用
い、なおかつ高効率化、専有体積の減少化、製作性の向
上化および除霜エネルギの減少化を図れる冷凍機械用熱
交換器を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to use an integrally molded heat exchange tube body, and to achieve high efficiency, a reduction in the exclusive volume, and an improvement in manufacturability. An object of the present invention is to provide a heat exchanger for a refrigeration machine that can reduce defrosting energy and defrosting energy.

〔発明の概要〕[Summary of the invention]

本発明に係る冷凍機械用熱交換器は、冷媒管と、この冷
媒管に対して帯状の接続部を介して並列に接続され内部
に除霜用電気ヒータが挿設されるヒータ管と、このヒー
タ管の表面および前記冷媒管の表面で上記ヒータ管の中
心と上記冷媒管の中心とを結ぶ線上にそれぞれ突設され
た冷媒管側フィンおよび上記冷媒管側フィンの根本から
先端までの長さより短いヒータ管側フィンとを備え、ア
ルミニウムの一体押出し成形加工で形成されてなる熱交
換用管体を、上記冷媒管の中心と上記ヒータ管の中心と
を結ぶ線と直交する面上で、かつ上記冷媒管内を通流す
る冷媒と熱交換する熱交換流体の流れ方向と平行する面
上に蛇行配置して構成されたものであって、前記冷媒管
側フィンおよびヒータ管側フィンはそれぞれ管軸方向に
、上記管軸方向の幅が一定の複数の短冊状フィン片に分
離され、しかも各短冊状フィン片は上記熱交換流体の流
れ方向を基準にして上流側に位置するものほど上記短冊
状フィン片数が多い複数単位に区分けされて各単位の管
軸方向に隣接するものの先端部が互いに離間する方向に
、かつ上記熱交換流体の流れ方向とほぼ平行するように
根本部分が折り曲げ又は捻られたものとなっている。
A heat exchanger for a refrigeration machine according to the present invention includes a refrigerant pipe, a heater pipe connected in parallel to the refrigerant pipe via a strip-shaped connection part, and into which an electric heater for defrosting is inserted. From the length from the root to the tip of the refrigerant pipe-side fins and the refrigerant pipe-side fins that protrude on a line connecting the center of the heater pipe and the center of the refrigerant pipe on the surface of the heater pipe and the surface of the refrigerant pipe, respectively. A heat exchange tube body having short heater tube side fins and formed by integral extrusion of aluminum is placed on a surface perpendicular to a line connecting the center of the refrigerant tube and the center of the heater tube, and The refrigerant tube side fins and the heater tube side fins are arranged meanderingly on a plane parallel to the flow direction of the heat exchange fluid that exchanges heat with the refrigerant flowing through the refrigerant tube, and the refrigerant tube side fins and the heater tube side fins are respectively arranged along the tube axis. direction, the width in the tube axis direction is separated into a plurality of strip-shaped fin pieces, and the strip-shaped fin pieces are separated from each other into a plurality of strip-shaped fin pieces having a constant width in the direction of the tube axis, and each strip-shaped fin piece has a larger shape as it is located on the upstream side with respect to the flow direction of the heat exchange fluid. The fins are divided into a plurality of units having a large number of fins, and the tips of the units adjacent to each other in the tube axis direction are bent or twisted so that the tips thereof are separated from each other and the base portions are approximately parallel to the flow direction of the heat exchange fluid. It has become something that has been established.

〔発明の効果〕〔Effect of the invention〕

上記構成であると、冷媒管の表面およびヒータ管の表面
に突設されている冷媒管側フィンとヒータ管側フィンと
の突出方向は、熱交換用管体が蛇行進行する方向とは異
なっているため、各フィンの高さが蛇行に影響を与える
ことはないし、蛇行によってフィンの高さが制限を受け
るようなこともない。したがって、各フィンの表面積を
自由に設定できるし、また、蛇行ピッチを熱交換用管体
の工作限界まで狭くすることができる。このため、従来
のものに比べて専有体積を大幅に小さくすることができ
る。また、前記構成の熱交換用管体を用いているので、
十分高い熱交換効率を得ることができる。また短冊状フ
ィン片によって構成された単位は、熱交換流体の流れ方
向にほぼ平行で、かつ流れ方向に断続的に配置されてお
り、しかも、熱交換流体の流れ方向を基準にして上流側
に位置しているものほど幅が広い。このように配列され
ている各フィン片の熱伝達率は、平板境界層の前縁近傍
の値となるので、最も着霜が起り易い上流側に位置して
いる各短冊状フィン片の冷却効果は下流側に位置してい
るものより低くなる。このため、上流側から下流側に亙
ってほぼ均一に着霜させることができる。したがって、
目づまりになるまでの時間を長くでき、この結果、除霜
インターバルを長くできるので、省エネルギ化を図るこ
とができる。また、冷媒管側フィンの根本から先端まで
の長さ比べてヒータ管側フィンのそれをヒータ管が存在
している分だけ短くしたことによって、冷媒管の両側に
設けたフィン等の伝熱面積を等しくでき、両者の冷却効
果を揃えることができる。
With the above configuration, the protruding direction of the refrigerant pipe side fins and the heater pipe side fins protruding from the surface of the refrigerant pipe and the surface of the heater pipe is different from the direction in which the heat exchange pipe meanders. Therefore, the height of each fin does not affect the meandering, and the meandering does not limit the height of the fins. Therefore, the surface area of each fin can be set freely, and the meandering pitch can be narrowed to the maximum working limit of the heat exchange tube. Therefore, the exclusive volume can be significantly reduced compared to the conventional one. In addition, since the heat exchange tube having the above configuration is used,
Sufficiently high heat exchange efficiency can be obtained. In addition, the units constituted by the strip-shaped fin pieces are arranged approximately parallel to the flow direction of the heat exchange fluid and intermittently in the flow direction, and furthermore, are arranged on the upstream side with respect to the flow direction of the heat exchange fluid. The closer it is located, the wider it is. The heat transfer coefficient of each fin piece arranged in this way is the value near the leading edge of the flat plate boundary layer, so the cooling effect of each strip-shaped fin piece located on the upstream side where frost formation is most likely to occur is is lower than those located downstream. Therefore, frost can be formed almost uniformly from the upstream side to the downstream side. therefore,
It is possible to lengthen the time until clogging occurs, and as a result, the defrosting interval can be lengthened, resulting in energy savings. In addition, compared to the length from the root to the tip of the refrigerant pipe side fins, the heater pipe side fins are made shorter by the amount of the heater pipe, so that the heat transfer area of the fins etc. provided on both sides of the refrigerant pipes is reduced. can be made equal, and the cooling effects of both can be made equal.

このため、冷媒管側フィンの表面とヒータ管側フィンの
表面とにほぼ一様な厚さに着霜させることができるので
、一層除雪のインターバルを長くすることができる。ま
た、ヒータ管は冷媒管に沿って冷媒管に熱的に密接した
状態に設けられているので、除霜用ヒータで発生した熱
を速やかに冷媒管に伝えることができる。したがって、
なお一層除霜エネルギの減少化を図ることができる。さ
らに、短冊状フィン片の管軸方向の幅を一定にしている
ので、各短冊状フィン片を分離するための切り込み作業
を完全に機械化することができ、製作の容易化を図るこ
とができる。
Therefore, the surfaces of the refrigerant tube-side fins and the surfaces of the heater tube-side fins can be frosted to a substantially uniform thickness, making it possible to further lengthen the interval between snow removal operations. Moreover, since the heater tube is provided along the refrigerant tube in a thermally close state to the refrigerant tube, the heat generated by the defrosting heater can be quickly transferred to the refrigerant tube. therefore,
Furthermore, the defrosting energy can be further reduced. Furthermore, since the width of each strip-shaped fin piece in the tube axis direction is constant, the cutting operation for separating each strip-shaped fin piece can be completely mechanized, and manufacturing can be facilitated.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に係る熱交換器を組込んで構成された
ファンクール型の冷蔵庫を模式的に示すものである。
FIG. 1 schematically shows a fan-cooled refrigerator constructed by incorporating a heat exchanger according to the present invention.

すなわち、同図において、1は食品等を貯蔵する冷蔵室
を示している。この冷蔵室1には、開閉自在な112が
設けてあり、また対向する2つの側壁には冷気を導入す
るための導入口3および排出するための排出口4が設け
られている。そして、上記導入口3および排出口4は、
連絡路を介して冷却室5に通じている。冷却室5内には
、本発明に係る熱交換器6と、冷蔵室1内の空気を冷蔵
室1〜冷却至5〜冷蔵室1の経路で強制循環させるファ
ン7とが収容されている。
That is, in the figure, 1 indicates a refrigerating room in which foods and the like are stored. The refrigerator compartment 1 is provided with a door 112 that can be opened and closed, and two opposing side walls are provided with an inlet 3 for introducing cold air and an outlet 4 for discharging cold air. The inlet port 3 and the outlet port 4 are
It communicates with the cooling chamber 5 via a communication path. The cooling chamber 5 accommodates a heat exchanger 6 according to the present invention and a fan 7 that forcibly circulates the air in the refrigerator compartment 1 along a path from the refrigerator compartment 1 to cooling 5 to the refrigerator compartment 1.

しかして、熱交換器6は、第2図に示すように、蛇行配
置された熱交換用管体11を主体にして構成されている
。熱交換用管体11は、アルミニウムの一体押出し成形
加工によて形成されたもので、第3図に示すように、冷
媒管12と、この冷媒管12に対して帯状の接続部13
を介して並列に接続されたヒータ管14と、冷媒管12
の表面およびヒータ管14の表面でヒータ管14の中心
と冷媒管12の中心とを結ぶ線上にそれぞれ突設された
冷媒管側フィン15および上記冷媒管側フィン15の根
本から先端までの長さに比べてそれが短いヒータ管側フ
ィン16とで構成されている。冷媒管側フィン15およ
びヒータ管側フィン16には、管軸と直交する切り込み
が管軸方向に一定ピッチで設けてあり、この切り込みに
よって各フィン15.16は複数の短冊状フィン片17
.18に分離されている。各短圓状フィン片17.18
は、後述する熱交換流体の流れ方向を基準にして上流側
に位置するものほど短冊状フィン片数が多い複数の単位
Wに区分けされている。そして、各単位Wは、管軸方向
に延びる単位列が周方向に2列に亙って形成されるよう
に、その根本から交互に逆方向に折り曲げられている。
As shown in FIG. 2, the heat exchanger 6 is mainly composed of heat exchange tubes 11 arranged in a meandering manner. The heat exchange tube body 11 is formed by integral extrusion molding of aluminum, and as shown in FIG.
A heater pipe 14 and a refrigerant pipe 12 are connected in parallel via
and the length from the root to the tip of the refrigerant tube side fins 15 and the refrigerant tube side fins 15 protruding on the line connecting the center of the heater tube 14 and the center of the refrigerant tube 12 on the surface of the heater tube 14 and the surface of the heater tube 14, respectively. The heater tube side fins 16 are shorter than the heater tube side fins 16. The refrigerant tube side fins 15 and the heater tube side fins 16 are provided with notches perpendicular to the tube axis at a constant pitch in the tube axis direction, and each fin 15 and 16 is formed into a plurality of strip-shaped fin pieces 17 by these notches.
.. It is separated into 18 parts. Each short conical fin piece 17.18
is divided into a plurality of units W in which the number of strip-shaped fin pieces is larger as the unit is located on the upstream side with respect to the flow direction of the heat exchange fluid, which will be described later. Each unit W is bent alternately in opposite directions from its base so that two rows of units extending in the tube axis direction are formed in the circumferential direction.

このように構成された熱交換用管体11が、上記ヒータ
管14内に除霜用ヒータ19を挿設された後、冷媒管1
2の中心とヒータ管14の中心とを結ぶ線と直交する面
上で、かつ冷却室5内を通流する空気の流れ方向Yと平
行する方向に屈曲しながら上記流れ方向Yと直交する方
向に延びる関係に蛇行配置されて熱交換器6が構成され
ているのである。
After the defrosting heater 19 is inserted into the heat exchange tube 11 configured in this way, the defrosting heater 19 is inserted into the refrigerant tube 1.
2 and the center of the heater tube 14, and in a direction perpendicular to the flow direction Y while being bent in a direction parallel to the flow direction Y of the air flowing through the cooling chamber 5. The heat exchanger 6 is configured by being arranged in a meandering manner extending from the front to the right.

ここで、上記熱交換器6の製作過程を簡単に説明する。Here, the manufacturing process of the heat exchanger 6 will be briefly explained.

まず、アルミニウムの一体押出し成形加工によって、第
4図(a)に示すように冷媒管12と、帯状の接続部1
3と、ヒータ管14と、冷媒管側フィン15と、ヒータ
管側フィン16とが一体化された熱交換用管体11を製
作する。次に、同図(b)に示すように、冷媒管側フィ
ン15およびヒータ管側フィン16に管軸と直交する切
り込みPを一定で設ける。次に、切込みPによって管軸
方向に複数形成された短冊状フィン片17.18を、蛇
行形態を考慮に入れて複数の単位Wに区分けして、各単
位W毎に第3図に示すようにそれぞれの根本から交互に
逆方向に折り曲げる。しかる後に、熱交換用管体11を
前述した条件が満たされるように蛇行配置して熱交換器
6を形成する。
First, by integrally extruding aluminum, the refrigerant pipe 12 and the strip-shaped connecting portion 1 are assembled as shown in FIG. 4(a).
3, a heater tube 14, a refrigerant tube side fin 15, and a heater tube side fin 16 are integrated into a heat exchange tube body 11. Next, as shown in FIG. 4B, constant cuts P are provided in the refrigerant tube side fins 15 and the heater tube side fins 16, which are perpendicular to the tube axis. Next, the strip-shaped fin pieces 17, 18 formed in plurality in the tube axis direction by the cut P are divided into a plurality of units W, taking into consideration the meandering form, and each unit W is divided into a plurality of units W as shown in FIG. Alternately bend each piece in opposite directions from the base. Thereafter, the heat exchanger 6 is formed by arranging the heat exchange tubes 11 in a meandering manner so that the above-mentioned conditions are satisfied.

なお、この実施例では、蛇行配置するとき、蛇行によっ
て形成される曲り部Q同志の間の間隙Rを曲り部Qの直
径より小さく設定している。また、曲り部Qの部分での
圧力損失を減少させるために、この部分に位置する短冊
状フィン片17.18を流れの方向Yと平行するように
捻っている。
In this embodiment, when the meandering arrangement is performed, the gap R between the bent portions Q formed by the meandering is set smaller than the diameter of the bent portion Q. Further, in order to reduce the pressure loss at the bending portion Q, the strip-shaped fin pieces 17 and 18 located at this portion are twisted so as to be parallel to the flow direction Y.

しかして、上記のように構成され、上記のように冷却至
5内に収容された熱交換器6における冷媒管12の両端
部およびヒータ管140両端部は、それぞれ冷−却室5
の側壁を気密に貫通して外部に導かれている。そして、
冷媒管12の一端部は第1図に示すように圧縮機21、
凝縮器22、膨張弁23を直列に介して冷媒管12の他
端部に接続されている。また、冷却至5外に導かれた除
霜用電気ヒータ19の両端は、スイッチ24を介して電
源25に接続されている。そして、上記スイッチ24、
圧縮1121、ファン7は、図示しない制御装置によっ
て駆動制御される。制御装置は、冷蔵室1内に設けられ
た温度センサによりて冷蔵室1内の温度を検出し、この
温度が常に設定された範囲内の値となるように圧縮機2
1を0N16FF III III している。制御装
置は、熱交換器6の近傍に設けられた着霜センサによっ
て、熱交換器6の上流側表面に付着した霜の厚みを検出
し、この厚みが所定の値に達した時点で所定期間、圧縮
機21およびファン7をOFF、スイッチ24をONに
制御するようにしている。なお、除霜用電気ヒータ19
に通電すると熱交換器6の表面に付着している霜が溶は
水滴と成って冷却至5の底部に落下するが、この水滴は
公知の手段で外部に排出される。
Therefore, both ends of the refrigerant pipe 12 and both ends of the heater pipe 140 in the heat exchanger 6 configured as described above and housed in the cooling chamber 5 are connected to the cooling chamber 5, respectively.
It is led to the outside by passing through the side wall of the and,
One end of the refrigerant pipe 12 is connected to a compressor 21, as shown in FIG.
It is connected to the other end of the refrigerant pipe 12 via a condenser 22 and an expansion valve 23 in series. Further, both ends of the defrosting electric heater 19 led outside the cooling chamber 5 are connected to a power source 25 via a switch 24 . and the switch 24,
The compression 1121 and the fan 7 are driven and controlled by a control device (not shown). The control device detects the temperature inside the refrigerator compartment 1 using a temperature sensor installed in the refrigerator compartment 1, and controls the compressor 2 so that this temperature is always within a set range.
1 is 0N16FF III III. The control device detects the thickness of frost adhering to the upstream surface of the heat exchanger 6 using a frost sensor installed near the heat exchanger 6, and when this thickness reaches a predetermined value, the control device detects the thickness of the frost that has adhered to the upstream surface of the heat exchanger 6. , the compressor 21 and fan 7 are turned off, and the switch 24 is turned on. In addition, electric heater 19 for defrosting
When the heat exchanger 6 is energized, the frost adhering to the surface of the heat exchanger 6 melts and forms water droplets that fall to the bottom of the cooling chamber 5, but these water droplets are discharged to the outside by known means.

熱交換器6を上記のように構成しているので、熱交換器
6の効率の向上化および専有体積の減少化を図れ、もっ
て冷蔵庫の小型化を図ることができる。すなわち、一体
成形型の熱交換用管体11を用いているので、本質的に
熱交換効率を向上させることができる。また、冷媒管側
フィン15と。
Since the heat exchanger 6 is configured as described above, the efficiency of the heat exchanger 6 can be improved and the occupied volume can be reduced, thereby making it possible to downsize the refrigerator. That is, since the integrally molded heat exchange tube body 11 is used, the heat exchange efficiency can be essentially improved. Also, the refrigerant pipe side fins 15.

ヒータ管側フィン16とは、熱交換管体11の蛇行進行
方向とは異なる方向に突設されている。したがって、各
フィン15.16の高さが蛇行に影響を与えることはな
い。このため、各フィン15.16の表面積を自由に設
定できるし、また蛇行ピッチも十分に狭くすることがで
きる。したがって、専有体積を減少させることができる
The heater tube side fins 16 are provided to protrude in a direction different from the meandering direction of the heat exchange tube body 11 . Therefore, the height of each fin 15,16 does not affect the meandering. Therefore, the surface area of each fin 15, 16 can be set freely, and the meandering pitch can also be made sufficiently narrow. Therefore, the occupied volume can be reduced.

また、冷媒管側フィン15およびヒータ管側フィン16
を管軸方向に一定の幅を有した短冊状フィン片17.1
8に分離し、これら短冊状フィン片17.18をそれぞ
れ空気の流れ方向Yを基準にして上流側に位置するもの
ほど短冊状フィン序数の多い単位Wに区分けし、これら
各単位Wを折り曲げて空気の流れ方向Yに略平行な単位
列が複数形成されるように配列しているので、上流側に
位置する単位Wはと冷却効果が低く、この結果空気の流
れ方向に沿って着霜の均一化を図ることができる。した
がって、除霜インターバルを長くすることができる。す
なわち、流れに平行に置かれた平板の熱伝達率α3は、
次式で表わされる。
In addition, the refrigerant pipe side fins 15 and the heater pipe side fins 16
A strip-shaped fin piece 17.1 having a constant width in the tube axis direction
These strip-shaped fin pieces 17 and 18 are each divided into units W having a larger strip-shaped fin ordinal number as they are located on the upstream side with respect to the air flow direction Y, and each of these units W is bent. Since the arrangement is such that a plurality of unit rows are formed approximately parallel to the air flow direction Y, the units W located on the upstream side have a low cooling effect, and as a result, frost formation occurs along the air flow direction. Uniformity can be achieved. Therefore, the defrosting interval can be lengthened. In other words, the heat transfer coefficient α3 of a flat plate placed parallel to the flow is:
It is expressed by the following formula.

α8−(0,664λ成4)/P ただし、λは空気の熱伝達率、Pはピッチ、Reはレイ
ノルズ数、P、はプラントル数である。
α8-(0,664λ 4)/P where λ is the heat transfer coefficient of air, P is the pitch, Re is the Reynolds number, and P is the Prandtl number.

この式から分るようにピッチを変えることによって容易
に熱伝達率をコントロールすることができる。したがっ
て、単位Wの幅を上流側に位置するものほど、つまり着
霜し易い場所に位置しているものほどピッチが大きくし
であると、空気の流れ方向Yに沿ってほぼ均一に着霜さ
せることができることになる。このため、除霜のインタ
ーバルを長くできるので、省エネルギ化を図ることがで
きる。
As can be seen from this equation, the heat transfer coefficient can be easily controlled by changing the pitch. Therefore, if the width of the unit W is set on the upstream side, that is, in a place where frost is more likely to form, the pitch is larger, so that frost is formed almost uniformly along the air flow direction Y. You will be able to do that. For this reason, the defrosting interval can be lengthened, so energy savings can be achieved.

また、冷媒管側フィン15の根本から先端までの長さに
対し、ヒータ管側フィン16の根本から先端までの長さ
をヒータ管14が存在している分だけ短くしているので
、冷媒管12の中心を境にして、フィン15側とフィン
コロ側との冷却効果を等しく設定できる。したがって、
冷媒管側フイン15の表面とヒータ管側フィン16の表
面とに一様な厚さに着霜させることができ、これによっ
て一層除霜のインターバルを長くすることができる。ま
た、ヒータ管14を冷媒管12に熱的に密接させている
ので、除霜用電気ヒータ19で発生した熱を効率良く冷
媒管12に伝えることができ、この結果、なお一層除霜
エネルギの減少化を図ることができる。また、上述した
単位Wを形成するために一定幅の短冊状フィン片17.
18を形成し、これを区分けするようにしているので、
切り込みの形成を機械加工で行なうことができる。した
がって、製作の容易化も図ることができ、結局、前述し
た本発明の効果を発揮できることになる。
Furthermore, the length from the root to the tip of the heater tube side fin 16 is shorter than the length from the root to the tip of the refrigerant tube side fin 15 by the amount that the heater tube 14 is present. The cooling effect on the fin 15 side and the fin roller side can be set equally with respect to the center of the fin 12 as a boundary. therefore,
The surfaces of the refrigerant tube side fins 15 and the heater tube side fins 16 can be frosted to a uniform thickness, thereby making it possible to further lengthen the defrosting interval. Furthermore, since the heater pipe 14 is thermally brought into close contact with the refrigerant pipe 12, the heat generated by the defrosting electric heater 19 can be efficiently transmitted to the refrigerant pipe 12, and as a result, the defrosting energy is further reduced. It is possible to reduce the amount. Further, in order to form the above-mentioned unit W, a strip-shaped fin piece 17 of a constant width is provided.
18 is formed and this is divided into sections,
The notch can be formed by machining. Therefore, manufacturing can be facilitated, and as a result, the effects of the present invention described above can be achieved.

なお、本発明は上述した実施例に限定されるものではな
く、種々変形できる。すなわち、冷媒管側フィン15お
よびヒータ管側フィン16にロール圧延加工を施して薄
肉に展開して各フィンの表面積を増加させ、少ない材料
で熱交換効率を大幅に増加させるようにしてもよい。さ
らに、第5図に示すように熱交換用管体11が蛇行進行
する方向と同方向に熱交換流体を流すとともに各単位W
を流れの方向Yと平行するように捻ってもよい。
Note that the present invention is not limited to the embodiments described above, and can be modified in various ways. That is, the refrigerant tube-side fins 15 and the heater tube-side fins 16 may be rolled to make them thinner, increasing the surface area of each fin, and greatly increasing heat exchange efficiency with a small amount of material. Furthermore, as shown in FIG.
may be twisted parallel to the flow direction Y.

この場合、第6図に示すように各単位Wを交互にV字状
に折り曲げた後、根本を捻って空気の流れ方向と平行さ
せるようにしてもよい。また、圧力損失を少なくするた
めに曲り部Qに位Wする短冊状フィン片を除去するよう
にしてもよい。
In this case, as shown in FIG. 6, each unit W may be alternately bent into a V-shape and then twisted at its base so that it is parallel to the air flow direction. Further, in order to reduce pressure loss, the strip-shaped fin piece W located at the bent portion Q may be removed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る熱交換器を組込んだフ
ァンクール型冷蔵厚の模式的構成図。第2図は内冷yi
Aj[に組込まれた熱交換器を取出して示す斜視図、第
3図は同熱交換器を構成している熱交換用管体を局部的
に取出して示す斜視図、第4図は前記熱交換器の製作過
程を説明するための図、第5図および第6図は本発明の
変形例をそれぞれ説明するための図もある。 1・・・冷蔵室、5・・・冷却至、6・・・熱交換器、
7・・・ファン、11・・・熱交換用管体、12・・・
冷媒管、13・・・接続部、14・・・ヒー9t、15
=−・冷媒管側フィン、16・・・ヒータ管側フィン、
17.18・・・短冊状フィン片、1つ・・・除霜用電
気ヒータ、W・・・単位。 出願人代理人 弁理士 鈴江武彦 ?631 図 第2 図 第3図 第4図 (a)(b)
FIG. 1 is a schematic diagram of a fan-cool type refrigerator incorporating a heat exchanger according to an embodiment of the present invention. Figure 2 shows internal cooling yi
Figure 3 is a perspective view showing the heat exchanger incorporated in the heat exchanger taken out; Figure 4 is a perspective view showing the heat exchange tube partially taken out, and Figure 4 There are also diagrams for explaining the manufacturing process of the exchanger, and Figures 5 and 6 for explaining modified examples of the present invention. 1...Refrigerating room, 5...Cooling, 6...Heat exchanger,
7... Fan, 11... Heat exchange tube, 12...
Refrigerant pipe, 13... Connection part, 14... Heater 9t, 15
=- Refrigerant pipe side fin, 16... Heater pipe side fin,
17.18...Strip-shaped fin piece, 1...Electric heater for defrosting, W...Unit. Applicant's representative Patent attorney Takehiko Suzue? 631 Figure 2 Figure 3 Figure 4 (a) (b)

Claims (2)

【特許請求の範囲】[Claims] (1)冷媒管と、この冷媒管に対して帯状の接続部を介
して並列に接続され内部に除霜用電気ヒータが挿設され
るヒータ管と、このヒータ管の表面および前記冷媒管の
表面で上記ヒータ管の中心と上記冷媒管の中心とを結ぶ
線上にそれぞれ突設された冷媒管側フィンおよび上記冷
媒管側フィンの根本から先端までの長さより短いヒータ
管側フィンとを備え、アルミニウムの一体押出し成形加
工で形成されてなる熱交換用管体を、上記冷媒管の中心
と上記ヒータ管の中心とを結ぶ線と直交する面上で、か
つ上記冷媒管内を通流する冷媒と熱交換する熱交換流体
の流れ方向と平行する面上に蛇行配置して構成されたも
のであつて、前記冷媒管側フィンおよびヒータ管側フィ
ンはそれぞれ管軸方向に、上記管軸方向幅が一定の複数
の短冊状フィン片に分離され、しかも各短冊状フィン片
は上記熱交換流体の流れ方向を基準にして上流側に位置
するものほど上記短冊状フィン片数が多い複数単位に区
分けされて各単位の管軸方向に隣接するものの先端部が
互いに離間する方向に、かつ上記熱交換流体の流れ方向
とほぼ平行するように根本部分が折り曲げ又は捻られて
なることを特徴とする冷凍機械用熱交換器。
(1) A refrigerant pipe, a heater pipe that is connected in parallel to the refrigerant pipe via a strip-shaped connection part and into which an electric heater for defrosting is inserted; refrigerant tube side fins and heater tube side fins that are shorter than the length from the root to the tip of the refrigerant tube side fins, each protruding on a line connecting the center of the heater tube and the center of the refrigerant tube on the surface; A heat exchange tube formed by integral extrusion of aluminum is placed on a plane perpendicular to a line connecting the center of the refrigerant tube and the center of the heater tube, and with the refrigerant flowing through the refrigerant tube. The refrigerant tube side fins and the heater tube side fins are arranged in a meandering manner on a surface parallel to the flow direction of the heat exchange fluid to be heat exchanged, and each of the refrigerant tube side fins and the heater tube side fins has a width in the tube axis direction. The fins are separated into a fixed plurality of strip-shaped fin pieces, and each strip-shaped fin piece is divided into a plurality of units in which the number of strip-shaped fin pieces is larger as the fin pieces are located on the upstream side based on the flow direction of the heat exchange fluid. A refrigeration machine characterized in that the base portions of the units are bent or twisted so that the tips of adjacent units in the tube axis direction are separated from each other and substantially parallel to the flow direction of the heat exchange fluid. heat exchanger.
(2)前記熱交換用管体の前記蛇行によつて形成された
曲り部に位置する前記短冊状フィン片は、除去されてい
ることを特徴とする特許請求の範囲第1項記載の冷凍機
械用熱交換器。
(2) The refrigeration machine according to claim 1, wherein the strip-shaped fin piece located at the bent portion formed by the meandering of the heat exchange tube body is removed. heat exchanger.
JP20443184A 1984-09-29 1984-09-29 Heat exchanger for freezing machine Pending JPS6183889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20443184A JPS6183889A (en) 1984-09-29 1984-09-29 Heat exchanger for freezing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20443184A JPS6183889A (en) 1984-09-29 1984-09-29 Heat exchanger for freezing machine

Publications (1)

Publication Number Publication Date
JPS6183889A true JPS6183889A (en) 1986-04-28

Family

ID=16490420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20443184A Pending JPS6183889A (en) 1984-09-29 1984-09-29 Heat exchanger for freezing machine

Country Status (1)

Country Link
JP (1) JPS6183889A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128600A (en) * 2006-11-22 2008-06-05 Usui Kokusai Sangyo Kaisha Ltd Fin structure, its manufacturing method, and heat transfer tube using the fin structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128600A (en) * 2006-11-22 2008-06-05 Usui Kokusai Sangyo Kaisha Ltd Fin structure, its manufacturing method, and heat transfer tube using the fin structure

Similar Documents

Publication Publication Date Title
EP0637724B1 (en) Refrigerator
US7065982B2 (en) Evaporator for refrigeration systems
US3766976A (en) Integral fin evaporator
US7571760B2 (en) Condenser of refrigerator
JPH08178366A (en) Heat exchanger
JP3318381B2 (en) Refrigerator equipped with a spine-shaped refrigerator evaporator having a roughly elliptical spiral shape
US5067322A (en) Refrigerator with spine fin evaporator
JPS6183890A (en) Heat exchanger for freezing machine
JPS6183891A (en) Heat exchanger for freezing machine
JPS6183889A (en) Heat exchanger for freezing machine
JPH1089806A (en) Refrigerator
JPS6183888A (en) Heat exchanger for freezing machine
JPS6183887A (en) Heat exchanger for freezing machine
KR102061157B1 (en) Heat exchange and air conditioner having the same
JP2003075087A (en) Refrigerator
JPS6183886A (en) Heat exchanger for freezing machine
EP1771690B1 (en) Condenser of refrigerator
JPS6277573A (en) Heat exchanger for refrigerator
JPS5917342B2 (en) Evaporator for refrigeration equipment
KR100366451B1 (en) Evaporator combined with dual-tube and fins for refrigerator
KR100304876B1 (en) Heat exchanger for refrigerator
KR200148294Y1 (en) Evaporator in a refrigerator
KR100277990B1 (en) evaporator in refrigerator
JPH04356671A (en) Evaporator for freezing and refrigerating
KR100518855B1 (en) Heat exchanger