JP2008145024A - Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube - Google Patents

Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube Download PDF

Info

Publication number
JP2008145024A
JP2008145024A JP2006331133A JP2006331133A JP2008145024A JP 2008145024 A JP2008145024 A JP 2008145024A JP 2006331133 A JP2006331133 A JP 2006331133A JP 2006331133 A JP2006331133 A JP 2006331133A JP 2008145024 A JP2008145024 A JP 2008145024A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
flat
flat heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006331133A
Other languages
Japanese (ja)
Inventor
Koichi Hayashi
耕一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2006331133A priority Critical patent/JP2008145024A/en
Publication of JP2008145024A publication Critical patent/JP2008145024A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a flat heat transfer tube having high rigidity on a flat face, securing a wide heat transfer area, efficiently exchanging heat, and having high durability, and further to provide the flat heat transfer tube obtained by the manufacturing method, and a gas cooling device provided with the heat transfer tube. <P>SOLUTION: In this method of manufacturing the flat heat transfer tube by performing UO-forming to a square-shaped metallic thin plate, press molding is performed on parts where two sheets of metallic thin plates are joined to form flat faces in opposition to each other, to form a plurality of hollow ribs in advance, and then edge bending and folding by the UO-forming are performed to form the flat tube-shaped tube stoke, then an edge of the tube stock is butted over the whole length, and integrally joined. The flat heat transfer tube is obtained by the method, and further a gas cooling device provided with the heat transfer tube is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばEGRガス等に代表される高温ガス冷却装置に組込まれる伝熱管に係り、詳しくは熱交換型冷却装置に組込まれて、被冷却媒体である高温ガス等からなる流体の流路を形成し、優れた熱交換性能を示す偏平伝熱管の製造方法と、該製造方法によって得られた偏平伝熱管並びに該伝熱管を組込んだ高温ガス冷却装置に関する。   The present invention relates to a heat transfer tube incorporated in a high-temperature gas cooling device represented by, for example, EGR gas, and more specifically, a flow path of a fluid composed of a high-temperature gas or the like that is incorporated in a heat exchange type cooling device. The present invention relates to a flat heat transfer tube manufacturing method that exhibits excellent heat exchange performance, a flat heat transfer tube obtained by the manufacturing method, and a high-temperature gas cooling device incorporating the heat transfer tube.

近年、自動車の排気ガス再循環用のEGRクーラーを初め、排気ガスクーラー、燃料クーラー、オイルクーラー、インタークーラー、排熱回収熱交換器等の液−液、液−気体、気体−気体等、様々な形態の流体に対する熱交換器が多用されているが、これらの流体が通流する伝熱管は、該流体の保有する熱を効率的に放熱したり、或いは吸収したりするために様々な工夫がなされている。例えば、ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上等、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。   In recent years, various kinds of liquid-liquid, liquid-gas, gas-gas, etc. such as EGR cooler for automobile exhaust gas recirculation, exhaust gas cooler, fuel cooler, oil cooler, intercooler, exhaust heat recovery heat exchanger, etc. Although heat exchangers for fluids in the form are frequently used, heat transfer tubes through which these fluids flow are variously devised to efficiently radiate or absorb the heat held by the fluids. Has been made. For example, a method of taking a part of exhaust gas from the exhaust system of a diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation) and is called NOx (nitrogen oxide) ), Reducing pump loss, reducing heat dissipation loss to the coolant due to lowering of combustion gas temperature, increasing specific heat ratio due to working gas volume / composition change, and accompanying improvement in cycle efficiency, etc. Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.

ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が劣化し、早期に破損するおそれが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られたり、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風等によってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案されているが、この気−液熱交換タイプのEGRガス冷却装置の中でも、構造がシンプルで狭隘な設置空間においても容易に取付けが可能な、2重管式熱交換タイプのEGRガス冷却装置に依然として根強い需要があり、例えば管内にコルゲートフィンやクロスフィンを内装させることによって、ガスの流れを細流化してフィンに対する接触面積の増大を図る等の改良が施された内装した2重管式熱交換器が、その構造が簡略でコンパクトであるにもかかわらず、それなりに優れた冷却効率が期待できるところから、小型自動車等設置空間に限りのあるEGRガス冷却用の熱交換器として、既に数多く実用に供されている。   However, if the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve deteriorates due to its thermal action, and there is a risk that it will break early. This leads to a phenomenon that the fuel efficiency is lowered due to the lowering of the charging efficiency as the intake air temperature rises. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioner refrigerant or cooling air is used, and in particular, gas-liquid that cools EGR gas, which is a gas, with engine coolant. A number of heat exchange type EGR gas cooling devices have been proposed. Among these gas-liquid heat exchange type EGR gas cooling devices, a double structure that has a simple structure and can be easily installed even in a narrow installation space. There is still persistent demand for tube-type heat exchange type EGR gas cooling devices. For example, by installing corrugated fins and cross fins in the tube, the gas flow can be trickled to increase the contact area with the fins. Despite its simple and compact structure, the built-in double-tube heat exchanger has excellent cooling effect. There from where it can be expected, as a heat exchanger for EGR gas cooling with limited size automobiles installation space, have been put already numerous practical.

しかしながら、上記のような2重管式熱交換器は、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換量が不足するという未解決な課題が残されていた。かかる課題を解消する高温ガスの冷却装置としては、構造上多少複雑で大型化が余儀なくされても、所謂シェルアンドチューブ型の多管式熱交換器を採用せざるを得ず、これらの熱交換器についても従来から数多くの提案があり、かつ様々な改良がなされている。例えば図8(a)に示すシェルアンドチューブ型の多管式熱交換器200においては、冷却ジャケットを構成するシェル本体100の外周部の一端に冷却水入口120と、その他端に冷却水出口121となるノズルがそれぞれ取付けられ、該シェル本体100における長手方向の一端には高温のEGRガスgの流入口80、その他端には熱交換されたEGRガスgの流出口90となるボンネット70が、それぞれ一体として設けられ、それぞれのボンネット70の内側に取付けられたチューブシート30を介して、複数の伝熱管10が間隔を隔てて取付けられ、該伝熱管10内を高温のEGRガスgが、前記シェル本体100内を通流する冷却水Cに対して交差するように通流し、該複数の伝熱管10の壁面を介しての熱交換によって、前記ガス流入口80から導入された高温のEGRガスgを、前記ガス流出口90に達するまでの間に冷却して排出するように構成されている。このガス流入口から流出口に至るまでの距離は、レイアウト面における装置上の制約があり、より短いことが望まれるためにガス流路となる当該伝熱管には優れた熱交換性能が求められるが、上記の従来技術においては、同図(b)に示すように伝熱管10の外周面からその内周面に至る凸状の溝10−1を、螺旋状に形成することにより、通流する高温のEGRガスに対して乱流を生起せしめると共にカーボンの堆積を防止して管壁を通しての熱交換を効率的に促進せしめた旨報告されている(例えば、特許文献1参照)。   However, the double pipe heat exchanger as described above has a limit in the absolute amount of fluid that flows because it is compact in structure, and as a result, the total heat exchange amount is insufficient. There were still challenges. As a high-temperature gas cooling device that solves this problem, a so-called shell-and-tube multi-tubular heat exchanger must be adopted even if the structure is somewhat complicated and the size must be increased. There have been a number of proposals for various types of containers, and various improvements have been made. For example, in the shell-and-tube multitubular heat exchanger 200 shown in FIG. 8A, a cooling water inlet 120 is provided at one end of the outer peripheral portion of the shell body 100 constituting the cooling jacket, and a cooling water outlet 121 is provided at the other end. And a bonnet 70 serving as an outlet port 90 for the EGR gas g subjected to heat exchange at the other end thereof, and at one end in the longitudinal direction of the shell body 100, A plurality of heat transfer tubes 10 are attached at intervals via tube sheets 30 that are provided integrally with each other and are attached to the inside of each bonnet 70, and high-temperature EGR gas g passes through the heat transfer tubes 10. It flows so as to intersect with the cooling water C flowing through the shell main body 100, and the heat exchange through the wall surfaces of the plurality of heat transfer tubes 10, High temperature introduced from the scan inlet 80 of the EGR gas g, and is configured to discharge cooled until reaching the gas outlet 90. The distance from the gas inlet to the outlet is limited in terms of equipment in terms of layout, and since it is desired to be shorter, the heat transfer tube serving as the gas flow path is required to have excellent heat exchange performance. However, in the above prior art, as shown in FIG. 5B, the convex groove 10-1 extending from the outer peripheral surface of the heat transfer tube 10 to the inner peripheral surface is formed in a spiral shape, thereby allowing It has been reported that turbulent flow is generated in the high-temperature EGR gas that is generated and carbon is prevented from being deposited to effectively promote heat exchange through the tube wall (see, for example, Patent Document 1).

また、図9(a)に示す伝熱管10aにおいては、同図(b)に示すようにして素管10a−2の内周面に、該素管10a−2の内径と略等しい螺旋状に形成した平板状のフィン20を挿入し、このフィン20の挿入状態で素管10a−2の壁面に螺旋状の溝10a−1を形成することにより、素管10a−2の内周面と、前記螺旋状の平板状フィン20の幅方向における両側縁20−1とを当接させた伝熱管が開示(例えば、特許文献2参照)され、フィン20の両側縁20−1と素管10a−2の内周面とが確実に線接触し、同時に螺旋部分では面接触してフィン20と素管10a−2との接触面積が増大して優れた熱伝達が確保され、さらに挿入された螺旋状に形成されて平板状のフィン20の作用によって、該伝熱管10a内における流体の流れが乱流化されると共にカーボンの堆積がより防止されて、該伝熱管10a内における流体の流動距離が伸びたことと相まって、管内壁面を通しての流体同士の接触時間が長くなり、優れた熱交換性能が得られる旨報告されている。   Further, in the heat transfer tube 10a shown in FIG. 9 (a), as shown in FIG. 9 (b), on the inner peripheral surface of the elementary tube 10a-2, a spiral shape substantially equal to the inner diameter of the elementary tube 10a-2 is formed. By inserting the formed flat fin 20 and forming the spiral groove 10a-1 on the wall surface of the raw tube 10a-2 in the inserted state of the fin 20, the inner peripheral surface of the raw tube 10a-2, A heat transfer tube in which both side edges 20-1 in the width direction of the spiral flat fin 20 are brought into contact with each other is disclosed (see, for example, Patent Document 2), and both side edges 20-1 of the fin 20 and the raw tube 10a- are disclosed. 2 is in line contact with the inner peripheral surface reliably, and at the same time, in the spiral portion, the contact area between the fin 20 and the element tube 10a-2 is increased to ensure excellent heat transfer, and the inserted spiral. In the heat transfer tube 10a by the action of the flat fin 20 The flow of fluid is turbulent and carbon deposition is further prevented, and coupled with the increase of the fluid flow distance in the heat transfer tube 10a, the contact time between the fluids through the inner wall surface of the tube is increased, which is excellent. It has been reported that high heat exchange performance can be obtained.

一方、図示を省略する多管式熱交換器の他の例においては、シェル本体の内部に複数の偏平管が積層され、該偏平管の内側の流路を通流する高温のEGRガスを、該偏平管の管壁を介して熱交換する多管式のEGRクーラーが知られているが、該多管式のEGRクーラーに組込まれる偏平管10bおよび10cの構造が、図10(a)および同図(b)に開示されている。ここで前者の偏平管10bは、図10(a)に示すように第1プレート10b−1と第2プレート10b−2とからなり、該2つのプレート間に長手方向に波形形状を有する断面矩形のチャンネル状のフィン20aが挿入されると共に、前記第1プレート10b−1および第2プレート10b−2の、該チャンネル状フィン20aにおける波型の稜線に相当する部分をそれぞれ乱流形成部10b−3とし、同図に示すように該乱流形成部10b−3に複数の凹部もしくは凸部が半球面状に形成されており、また、偏平管10cの場合は、同図(b)に示すように第1プレート10c−1および第2プレート10c−2に形成される当該乱流形成部10c−3が、両プレートの幅方向に形成される複数の凹条からなり、それぞれの乱流形成部10b−3および10c−3の大きさや深さ等を適宜に調節することにより、該偏平管10bおよび10c内を通流する高温の排ガスに乱流を生起せしめると同時に、その外側を通流する冷却水等に適宜の撹拌作用を促進させて、優れた熱交換性能が得られた旨報告されている(例えば、特許文献3参照)。
特開平11−108578号公報 特開2002−295987号公報 特開2004−263616号公報
On the other hand, in another example of a multi-tube heat exchanger that is not shown, a plurality of flat tubes are stacked inside the shell body, and high-temperature EGR gas that flows through a flow path inside the flat tubes is used. A multi-tube EGR cooler that exchanges heat through the tube wall of the flat tube is known. The structures of the flat tubes 10b and 10c incorporated in the multi-tube EGR cooler are shown in FIG. This is disclosed in FIG. Here, the former flat tube 10b is composed of a first plate 10b-1 and a second plate 10b-2 as shown in FIG. 10A, and a rectangular cross section having a corrugated shape in the longitudinal direction between the two plates. The channel-shaped fins 20a are inserted, and portions of the first plate 10b-1 and the second plate 10b-2 corresponding to the wavy ridge lines of the channel-shaped fins 20a are respectively formed in the turbulent flow forming portions 10b- 3, the turbulent flow forming portion 10b-3 has a plurality of concave or convex portions formed in a hemispherical shape, and in the case of the flat tube 10c, the turbulent flow forming portion 10b-3 is shown in FIG. Thus, the turbulent flow forming portion 10c-3 formed in the first plate 10c-1 and the second plate 10c-2 is composed of a plurality of recesses formed in the width direction of both plates, and each turbulent flow is formed. Part 1 By appropriately adjusting the size, depth, etc. of b-3 and 10c-3, turbulence is generated in the high-temperature exhaust gas flowing through the flat tubes 10b and 10c, and at the same time, it flows through the outside thereof. It has been reported that excellent heat exchange performance was obtained by promoting appropriate stirring action in cooling water or the like (see, for example, Patent Document 3).
JP-A-11-108578 JP 2002-295987 A JP 2004-263616 A

上記各従来技術において、特許文献1および2に開示される多管式熱交換器においては、内装される伝熱管の内周面にスパイラル状の凸条を設けるか、もしくは該スパイラル状の凸条に接して平板状のフィンを挿入することによって、ガスの流れに乱流を生起せしめ、加えてその接触面積の増大を図って優れた熱交換性能が得られた旨報告されているが、伝熱管そのものが基本的に円筒管であるところから、接触面積には自ずと限界があり、接触面積を拡大してより優れた熱交換効率と低圧力損失を実現させるためには、内装される伝熱管としては偏平管が望ましく、上記特許文献3の多管式熱交換器においても、内装されて伝熱管群を形成する個々の伝熱管に偏平管を採用し、該偏平伝熱管に内装されるインナーフィンとしてのフィン構造体が、断面形状が矩形で長手方向に波形の自由形状が形成されたコルゲート状のプレートフィンであるため、被冷却媒体である高温流体の流路を複数の小流路に区画にし、その流れを蛇行させることによって熱伝達面積の増大を図り、かつ流体の流れ方向における波形の稜線部分を乱流の形成部分とすると同時に、該インナーフィンが当接しない上下のプレートに、乱流形成部としての凸部や凹部を点在せしめるようにしたものであるところから、熱交換効率においては初期の成果が達成されている。   In each of the prior arts described above, in the multi-tube heat exchanger disclosed in Patent Documents 1 and 2, a spiral ridge is provided on the inner peripheral surface of the heat transfer tube provided therein, or the spiral ridge is provided. It has been reported that by inserting flat fins in contact with the gas, turbulence was generated in the gas flow, and in addition, the contact area was increased, resulting in excellent heat exchange performance. Since the heat tube itself is basically a cylindrical tube, the contact area is naturally limited, and in order to expand the contact area and realize better heat exchange efficiency and low pressure loss, the heat transfer tube built in As a flat tube, the multi-tube heat exchanger disclosed in Patent Document 3 also employs a flat tube as an individual heat transfer tube that is built in to form a heat transfer tube group, and the inner tube is installed in the flat heat transfer tube. Fin structure as a fin However, since it is a corrugated plate fin with a rectangular cross section and a corrugated free shape formed in the longitudinal direction, the flow path of the high-temperature fluid that is the cooling medium is divided into a plurality of small flow paths, and the flow is The heat transfer area is increased by meandering, and the ridge portion of the corrugation in the fluid flow direction is used as a turbulent flow forming portion. Since the projections and depressions are scattered, initial results have been achieved in terms of heat exchange efficiency.

しかしながら、内周面に例えば上記の如きコルゲート状のインナーフィンが内装され、一体として接合された状態における偏平伝熱管は、インナーフィンそのものがリブ構造を代行してその剛性が維持されているが、肉厚が0.4〜0.5mmの金属製薄板に対してロールフォーミングやプレス成形を施すことによって形成される偏平管の製造過程においては、偏平管そのものは十分な剛性を有しておらず、しかも該偏平管をより幅広に形成してその伝熱面積を広く取ろうとする場合は、偏平管の偏平率がさらに大きくなり、その壁面における剛性はより一層低下して、製造過程における偏平管の形状が不安定となり、ASSY工程等に際して形状が一致せずに十分な接合ができないというおそれが生ずる。また、偏平管の剛性が低いことに起因してその壁面にはうねり状の歪みを生じて平坦度が悪化し、内装されるために挿入されたフィンと偏平管壁面との間に隙間が生じ、両者の接合が不十分となってフィンを介して偏平管壁面への熱伝達が低下するという不都合が生ずる等未解決な課題が残されていた。このような課題を解決して広い接触面積を有しながら、壁面の高い剛性を確保し得る偏平伝熱管の製造方法を確立することを所期の目的として種々検討を重ねた結果、偏平管はその構造上自らの壁面がリブ構造の役割を果すために長手方向における剛性は高度に維持されるが、横幅方向とりわけ捩れに対しては十分な強度を有していないことに着目し、この横幅方向に予めリブを形成するように中空状の凹みを設けてその剛性を確保し、しかもその中空状の凹みを偏平管の長手方向に対して、直交状態もしくは斜行状態で形成し、加えて該偏平管内壁面に内装されるフィンとの接合の妨げとならないように、内側から外側へ向かって突き出すように形成することによって、優れた伝熱性能を確保しながら十分な剛性を維持し得る偏平伝熱管の製造方法を見出して本発明を完成した。即ち本発明は、広い伝熱面積を有することによって優れた熱交換性能と低い流過抵抗を確保しながら、高い剛性を維持し得る偏平伝熱管の製造方法、該製造方法によって得られた偏平伝熱管並びに該伝熱管を組込んだガス冷却装置を提供するものである。   However, the corrugated inner fin as described above, for example, is provided on the inner peripheral surface, and the flat heat transfer tube in a state of being integrally joined maintains the rigidity of the inner fin itself instead of the rib structure. In the manufacturing process of a flat tube formed by roll forming or press forming on a thin metal plate having a thickness of 0.4 to 0.5 mm, the flat tube itself does not have sufficient rigidity. In addition, when the flat tube is formed wider so as to increase the heat transfer area, the flat tube has a higher flattening ratio, and the rigidity of the wall surface is further reduced. As a result, the shape becomes unstable, and the shape does not match during the ASSY process or the like, and there is a fear that sufficient bonding cannot be performed. In addition, due to the low rigidity of the flat tube, the wall surface is swelled and the flatness is deteriorated, and a gap is formed between the inserted fin and the flat tube wall surface. However, unsolved problems remain, such as inconvenience that bonding between the two becomes insufficient and heat transfer to the flat tube wall surface through the fins is reduced. As a result of various investigations aimed at establishing a manufacturing method of a flat heat transfer tube that can solve such problems and have a wide contact area while ensuring high rigidity of the wall surface, the flat tube is Since its wall surface plays the role of a rib structure in its structure, the rigidity in the longitudinal direction is maintained at a high level, but it is noted that it does not have sufficient strength in the width direction, particularly torsion. A hollow recess is provided so as to form a rib in advance in order to ensure its rigidity, and the hollow recess is formed in a perpendicular state or a skew state with respect to the longitudinal direction of the flat tube. Flatness that can maintain sufficient rigidity while ensuring excellent heat transfer performance by forming so as to protrude from the inside to the outside so as not to hinder the bonding with the fins installed on the inner wall surface of the flat tube Heat transfer tube And completed the present invention have found a production method. That is, the present invention provides a method for producing a flat heat transfer tube capable of maintaining high rigidity while ensuring excellent heat exchange performance and low flow resistance by having a wide heat transfer area, and a flat heat transfer obtained by the production method. The present invention provides a heat tube and a gas cooling device incorporating the heat transfer tube.

上記課題を解決するための本発明による偏平伝熱管の製造方法は、方形の金属製薄板に対してUOフォーミングによって偏平伝熱管を製造する方法において、金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって予め複数の中空リブを形成し、しかる後にUOフォーミングによる縁曲げ加工および折り曲げ加工を施すことによって偏平管状素管を形成し、次いで該素管の端縁を全長に渡って突き合せ、一体として接合する製造方法と、方形の金属製薄板に対してUOフォーミングを施すことによって偏平伝熱管を製造する方法において、金属製薄板に対してUOフォーミングによって予め縁曲げ加工を施した後、該金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって複数の中空リブを形成し、次いでUOフォーミングによる折り曲げ加工を施すことによって偏平管状素管を形成し、しかる後に該素管の端縁を全長にわたって突き合せ、一体として接合する方法を特徴的構成要件とするものである。   In order to solve the above problems, a flat heat transfer tube manufacturing method according to the present invention is a method of manufacturing a flat heat transfer tube by UO forming on a rectangular metal thin plate. A plurality of hollow ribs are formed in advance by press molding at each portion where a flat surface is formed facing each other, and then a flat tubular element tube is formed by performing edge bending and bending by UO forming. Then, in the manufacturing method in which the edge of the element tube is butted over the entire length and joined as a unit, and the method of manufacturing the flat heat transfer tube by applying UO forming to a rectangular metal thin plate, After pre-bending the thin plate by UO forming, the two metal thin plates are combined to form a flat surface facing each other. A plurality of hollow ribs are formed in each part by press forming, and then a flat tubular element tube is formed by bending by UO forming, and then the edge of the element tube is pushed over the entire length. The method of combining and joining together is a characteristic constituent requirement.

また、本発明による上記偏平伝熱管の製造方法において、前記中空リブの形成が、UOフォーミングによる縁曲げ加工と同時に行われることを特徴とするものである。   In the method for manufacturing a flat heat transfer tube according to the present invention, the hollow rib is formed simultaneously with edge bending by UO forming.

さらに、本発明による上記偏平伝熱管の製造方法において、前記接合が高エネルギービーム溶接によって行われることを好ましい態様とするものである。   Furthermore, in the method for manufacturing the flat heat transfer tube according to the present invention, it is preferable that the joining is performed by high energy beam welding.

本発明による上記偏平伝熱管の製造方法はまた、前記UOフォーミングによる偏平管状素管の形成時に、フィン部材が内装されること、前記フィン部材と共にろう材が供給されること、および内装されたフィン部材が偏平伝熱管の内面にろう付けされることを特徴とするものである。   The method for manufacturing the flat heat transfer tube according to the present invention also includes that a fin member is internally provided, a brazing material is supplied together with the fin member, and an internal fin is formed when the flat tubular element tube is formed by the UO forming. The member is brazed to the inner surface of the flat heat transfer tube.

本発明による上記偏平伝熱管の製造方法はさらに、前記中空リブが偏平伝熱管の長手方向における管軸に対し、直角にもしくは所定の角度で傾斜して、かつ直線状もしくは曲線状に形成されることを特徴とするものである。   In the method of manufacturing the flat heat transfer tube according to the present invention, the hollow rib is further formed to be linear or curved with a right angle or a predetermined angle with respect to the tube axis in the longitudinal direction of the flat heat transfer tube. It is characterized by this.

本発明による上記偏平伝熱管の製造方法において、前記中空リブが偏平伝熱管の長手方向における管軸に対し、1列にもしくは複数列形成されることを特徴とするものである。   In the method for manufacturing a flat heat transfer tube according to the present invention, the hollow rib is formed in one row or a plurality of rows with respect to a tube axis in a longitudinal direction of the flat heat transfer tube.

また、本発明による上記偏平伝熱管の製造方法において、前記中空リブの少なくとも2本が、偏平伝熱管の対抗する平担面間において、それぞれ相互に交差して形成されることを特徴とするものである。   Further, in the method for manufacturing a flat heat transfer tube according to the present invention, at least two of the hollow ribs are formed so as to intersect each other between the opposing flat surfaces of the flat heat transfer tube. It is.

さらに、本発明による上記偏平伝熱管の製造方法において、前記中空リブが偏平伝熱管の対向する平坦面間において、それぞれ相互に位相を変えて形成されることを特徴とするものである。   Furthermore, in the method for manufacturing the flat heat transfer tube according to the present invention, the hollow ribs are formed with mutually different phases between the flat surfaces facing the flat heat transfer tube.

本発明による上記偏平伝熱管の製造方法はまた、前記中空リブが偏平伝熱管の対向する平坦面間において、それぞれ相互に逆向きに傾斜して形成されることを特徴とするものである。   The method for manufacturing a flat heat transfer tube according to the present invention is also characterized in that the hollow ribs are formed to incline in opposite directions between flat surfaces facing each other.

上記課題を解決するための本発明による高温ガス冷却装置用の偏平伝熱管は、上記に記載されるいずれかの製造方法によって製造された偏平伝熱管を特徴的構成要件とするものである。   The flat heat transfer tube for a high-temperature gas cooling device according to the present invention for solving the above-mentioned problems is characterized in that the flat heat transfer tube manufactured by any one of the manufacturing methods described above is a characteristic component.

上記課題を解決するための本発明による高温ガス冷却装置は、前記偏平伝熱管の少なくとも1以上が、一体として組込まれてなることを特徴的構成要件とするものである。   The high-temperature gas cooling device according to the present invention for solving the above-described problems is characterized in that at least one or more of the flat heat transfer tubes are integrally incorporated.

また、本発明による上記高温ガス冷却装置において、前記高温ガスがEGRガスであることを特徴とするものである。   In the high-temperature gas cooling device according to the present invention, the high-temperature gas is an EGR gas.

本発明に係る上記偏平伝熱管によれば、方形の金属製薄板に対してUO成形を施すことによって偏平伝熱管を製造する方法において、該金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって予め複数の中空リブを形成し、その後UO成形による縁曲げ加工を行って偏平状素管を形成した後、該素管の端縁を全長にわたって突き合せ、高エネルギービーム溶接によって一体として接合することと、金属製薄板に対してUOフォーミングによって予め縁曲げ加工を施した後、該金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって複数の中空リブを形成し、次いでUOフォーミングによる折り曲げ加工を施すことによって偏平管状素管を形成し、しかる後に該素管の端縁を全長にわたって突き合せ、一体として接合することを基本的構成要件とするが、偏平状素管を形成する金属製薄板の横幅方向に、該素管の長手方向の管軸に対して直角に交わるように複数の中空リブが設けられることによって、いわゆるUOフォーミング時における平坦面の剛性が高くなり、長手方向側縁部における突き合せが安定し、その後に行われる高エネルギービーム溶接や、ASSY時における作業がスムースに進行して接合の信頼性が著しく向上する。しかも偏平管の平担面における剛性が高くその形状が安定することによって、より幅広で接触面積の大きい偏平伝熱管の製造が可能となり、また、内装されるフィン構造体とのろう付が均一に行われて優れた伝熱性が確保されると共に、より一層の剛性が増して耐久性に優れた偏平伝熱管を得ることができる。さらに、剛性アップにより薄肉化がはかられ、軽量で高性能の偏平伝熱管を得ることができる。またさらに、本発明は、偏平管内壁部における平坦面に、フィン構造体によって分割された小流路間に跨って中空リブが設けられることにより、該流路間を通流する例えばEGRガス等の高温流体が、隣接する流路間において相互に流通可能となり、流体の圧力損失が減少してその流速分布が均一となると共に格別に優れた熱交換性能を有する偏平伝熱管を得ることができる。
さらにまた、本発明の製造方法によれば、金属性薄板に対するUOフォーミングに際し、予めプレス成形を施すことによって前記中空リブを形成するか、UOフォーミングと同時にプレス成形を施して中空リブを形成するかのいずれかを任意に選択することが可能であるので、その製造工程を単純かつ簡略化することができ、その加工コストを大幅に削減することができることにより、高性能の偏平伝熱管を低コストで製造することができる。
このようにして製造された本発明による偏平伝熱管は、EGRガス再循環システムに配設される多管式熱交換器用伝熱管としては勿論のこと、排気ガスクーラー、EGRガスクーラー、燃料用クーラー、オイルクーラー、インタークーラー等の熱交換器用伝熱管として好適に内装し得ると同時に、本発明による偏平伝熱管を内装した上記クーラーは、その優れた熱交換性能によってそれらの装置の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換型冷却装置を、比較的低コストで提供することができる。
According to the above-described flat heat transfer tube according to the present invention, in the method of manufacturing a flat heat transfer tube by performing UO forming on a rectangular metal thin plate, the two metal thin plates are combined to face each other. After forming a plurality of hollow ribs in advance by press molding at each site where a flat surface is formed, and then performing edge bending by UO molding to form a flat element tube, The end edges are butted together over the entire length and joined together by high energy beam welding, and the metal thin plates are subjected to edge bending by UO forming in advance, and then the two metal thin plates are joined together. A plurality of hollow ribs are formed by press molding at each portion where a flat surface is formed opposite to each other, and then bent by UO forming. It is a basic constituent requirement to form a flat tubular element tube and then abut the end edges of the element tube over their entire length and join them together, but the width direction of the metal thin plate forming the flat element tube In addition, by providing a plurality of hollow ribs so as to intersect at right angles to the tube axis in the longitudinal direction of the element tube, the rigidity of the flat surface at the time of so-called UO forming is increased, and the butt at the side edge in the longitudinal direction is increased. Is stable, and subsequent high-energy beam welding and ASSY work proceed smoothly, and the reliability of joining is significantly improved. In addition, the flat tube has a high rigidity on the flat surface and its shape is stable, so that it is possible to manufacture a flat heat transfer tube with a wider width and a larger contact area. As a result, excellent heat transfer properties can be secured, and a flat heat transfer tube with even greater rigidity and excellent durability can be obtained. Furthermore, thinning is achieved by increasing the rigidity, and a lightweight and high performance flat heat transfer tube can be obtained. Furthermore, in the present invention, a hollow rib is provided across the small flow paths divided by the fin structure on the flat surface of the inner wall portion of the flat tube, so that, for example, EGR gas or the like flowing between the flow paths The high-temperature fluid can flow between adjacent flow paths, the pressure loss of the fluid is reduced, the flow velocity distribution becomes uniform, and a flat heat transfer tube having exceptionally excellent heat exchange performance can be obtained. .
Furthermore, according to the manufacturing method of the present invention, when UO forming is performed on a metallic thin plate, whether the hollow rib is formed in advance by press forming or whether the hollow rib is formed by press forming simultaneously with UO forming. Any one of these can be selected arbitrarily, so that the manufacturing process can be simplified and simplified, and the processing cost can be greatly reduced. Can be manufactured.
The flat heat transfer tube according to the present invention thus manufactured is not only a heat transfer tube for a multi-tube heat exchanger disposed in an EGR gas recirculation system, but also an exhaust gas cooler, an EGR gas cooler, and a fuel cooler. It can be suitably installed as heat exchanger tubes for heat exchangers such as oil coolers and intercoolers, and at the same time, the above-described cooler with flat heat transfer tubes according to the present invention can reduce the size and weight of these devices due to its excellent heat exchange performance. Thus, it is possible to provide a heat exchange type cooling device that contributes to downsizing of the device and can be easily installed in a limited space at a relatively low cost.

以下、本発明の実施の形態について添付した図面並びに実施例に基づいて更に詳細に説明するが、本発明はこれによって拘束されるものではなく、本発明の主旨の範囲内において自由に設計変更が可能である。     Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings and examples. However, the present invention is not restricted thereby, and design changes can be freely made within the scope of the gist of the present invention. Is possible.

図1は本発明に係る第1実施例によるフィン構造体を内装した偏平伝熱管の単体を示す斜視図、図2は本発明に係る第2実施例によるフィン構造体を内装した偏平伝熱管の単体を示す斜視図、図3は本発明に係わる第3実施例による偏平伝熱管の単体を示す斜視図、図4は本発明に係わる第4実施例による偏平伝熱管の単体を示す斜視図、図5は本発明に係る第5実施例による偏平伝熱管の単体を示す斜視図、図6は本発明に係る偏平伝熱管の製造方法の第1実施例を示し、(a)〜(d)はその製造過程を模式的に示す斜視図、図7は同じく本発明に係る偏平伝熱管の製造方法の第2実施例を示し、(a)〜(e)はその製造過程を模式的に示す斜視図である。   FIG. 1 is a perspective view showing a single unit of a flat heat transfer tube with a fin structure according to a first embodiment of the present invention. FIG. 2 shows a flat heat transfer tube with a fin structure according to a second embodiment of the present invention. 3 is a perspective view showing a single unit of a flat heat transfer tube according to a third embodiment of the present invention, FIG. 4 is a perspective view showing a single unit of a flat heat transfer tube according to a fourth embodiment of the present invention, FIG. FIG. 5 is a perspective view showing a single unit of a flat heat transfer tube according to a fifth embodiment of the present invention. FIG. 6 shows a first embodiment of a method for manufacturing a flat heat transfer tube according to the present invention. Is a perspective view schematically showing the manufacturing process, FIG. 7 is a second embodiment of a method for manufacturing a flat heat transfer tube according to the present invention, and FIGS. 7A to 7E schematically show the manufacturing process. It is a perspective view.

本発明による偏平伝熱管は、基本的に方形の金属性薄板からなり、例えば定幅の定尺コイルまたは長尺コイルを所定の寸法の方形に切断加工し、得られた金属製薄板からなる当該板材に対してUOフォーミングを施すことによって成形されるが、該素材となる定尺または長尺コイルとしては通常板厚が0.1〜0.7mm、好ましくは0.3〜0.5mm程度のSUS304、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールの中から適宜に選択して採用される。
選択されて所定の寸法に切断加工された例えばSUS304Lのオーステナイト系ステンレススチールからなる金属製薄板を素材として、偏平伝熱管を製造する方法としては、その第1実施例としての製造手順を図6に示すように、まず同図(a)に示す方形に切断された板材2eに対してプレス成形を施すことによって、同図(b)に示すように同板材2eの長手方向に対して直角に交わるように直線状に複数の中空リブ2e−1を形成し、次いで該板材2eの側縁部2e−5に対する縁曲げ加工を施し、その後該縁曲げ加工が施された板材をUOフォーミングによって当該板材2eの長手方向の中心部における折り曲げ部2e−6から二つ折りにするとともに、前記側縁部2e−5の両端縁2e−7を相互に突き合わす方向に接近させることによって同図(c)に示すように偏平管状素管1e−aを形成し、しかる後前記両端縁2e−7を相互に突き合わすことによって形成される突き合せ部2e−2を高エネルギービーム溶接によって一体として接合して同図(d)に示すように本発明による偏平伝熱管1eを製造する。
The flat heat transfer tube according to the present invention is basically composed of a rectangular metal thin plate, for example, a fixed coil or a long coil having a constant width is cut into a square having a predetermined dimension, and the resulting thin metal plate is used. It is formed by applying UO forming to a plate material. As a standard or long coil as the material, the plate thickness is usually 0.1 to 0.7 mm, preferably about 0.3 to 0.5 mm. An austenitic stainless steel such as SUS304, SUS304L, SUS316, or SUS316L is appropriately selected and employed.
As a method of manufacturing a flat heat transfer tube using a metal thin plate made of, for example, SUS304L austenitic stainless steel that has been selected and cut to a predetermined size, the manufacturing procedure as the first embodiment is shown in FIG. As shown in the drawing, first, the plate material 2e cut into a square shape shown in FIG. 5A is press-formed, so that it intersects at right angles to the longitudinal direction of the plate material 2e as shown in FIG. In this way, a plurality of hollow ribs 2e-1 are formed in a straight line, and then edge bending is performed on the side edge 2e-5 of the plate 2e, and then the plate subjected to the edge bending is subjected to UO forming. 2e is folded in half from the bent portion 2e-6 at the center in the longitudinal direction, and both end edges 2e-7 of the side edge 2e-5 are brought close to each other. As shown in FIG. 5C, a flat tubular element 1e-a is formed, and then the abutting portion 2e-2 formed by abutting the both end edges 2e-7 with each other is used as a high energy beam. A flat heat transfer tube 1e according to the present invention is manufactured as shown in FIG.

また、その第2実施例としての製造手順を図7に示すように、同図(a)に示す方形に切断された板材2eの側縁部2e−5に対してUOフォーミングを施すことによって同図(b)に示すように予め縁曲げ加工を施し、次いで同図(c)に示すように縁曲げ加工が施された板材2eの長手方向に対して直角に交わるように直線状に複数の中空リブ2e−1を形成し、その後該中空リブ2e−1が形成された板材をUOフォーミングによって当該板材2eの長手方向の中心部における折り曲げ部2e−6から二つ折りにするとともに、前記側縁部2e−5の両端縁2e−7を相互に突き合わす方向に接近させることによって同図(d)に示すように偏平管状素管1e−aを形成し、しかる後前記両端縁2e−7を相互に突き合わすことによって形成される突き合せ部2e−2を高エネルギービーム溶接によって一体として接合して同図(e)に示すように本発明による偏平伝熱管1eを製造する。   Further, as shown in FIG. 7, the manufacturing procedure as the second embodiment is the same by applying UO forming to the side edge 2e-5 of the plate 2e cut into a square shape shown in FIG. As shown in FIG. (B), edge bending is performed in advance, and then, as shown in FIG. (C), a plurality of straight lines are formed so as to intersect at right angles to the longitudinal direction of the plate material 2e subjected to edge bending. The hollow rib 2e-1 is formed, and then the plate member on which the hollow rib 2e-1 is formed is folded in two from the bent portion 2e-6 at the center in the longitudinal direction of the plate member 2e by UO forming, and the side edge The two end edges 2e-7 of the portion 2e-5 are brought close to each other in the direction of abutting each other to form a flat tubular element tube 1e-a, as shown in FIG. By matching each other The butted portion 2e-2 which is formed by joining integrally by a high-energy beam welding for producing a flat heat exchanger tube 1e according to the invention as shown in FIG. (E).

上記の実施の形態において、板材2eに対するプレス成形によって形成される前記中空リブ2e−1は、製造される偏平伝熱管1eにおける内壁面2e−3から外壁面2e−4に向かって突き出すように形成され、該内壁面2e−3においては平坦面から凹むようにして設けられ、外壁面2e−4においては凸状に突き出すようにして形成されるが、かかる構造により該偏平管1eの内周部に、例えば断面チャンネル形状の波型フィン構造体(図示を省略)を内装してろう付によって接合する場合、内壁面2e−3が平坦な状態で保たれていることによって均一な当接及び接合が保障され、該壁面を介しての優れた伝熱性が確保され、加えて高い信頼性を持って強固に接合されて、伝熱管そのものの剛性がより一層増してその耐久性が併せて確保される。一方、前記中空リブ2e−1によって偏平伝熱管1eの外壁面2e−4に形成される凸部は、例えばエンジン冷却水等の冷却媒体の流れに対して適宜に乱流や渦流を生起させ、その撹拌効果によって冷却効率の向上に付随的に寄与する。なお、上記の実施の形態においてはプレス成形による中空リブ2e−1の形成を、側縁部2e−5に対する縁曲げ加工の前に行ったが、中空リブ2e−1の形成と縁曲げ加工とを同時に行うことを妨げるものではなく、両者を同時に行った後、前記UOフォーミングを施すことによって偏平状素管1eを形成することも可能である。また、所望により上記のUOフォーミングによる偏平状素管1e−aの形成時に、併せてフィン構造体を内装させることも可能であり、形成される中空リブ2e−1は、偏平伝熱管1eの長手方向の管軸に対して所定の角度で傾斜するようにして設けるか、あるいは曲線状に設けることも可能である。   In said embodiment, the said hollow rib 2e-1 formed by press molding with respect to the board | plate material 2e is formed so that it may protrude toward the outer wall surface 2e-4 from the inner wall surface 2e-3 in the manufactured flat heat exchanger tube 1e. The inner wall surface 2e-3 is formed so as to be recessed from the flat surface, and the outer wall surface 2e-4 is formed so as to protrude in a convex shape. With such a structure, the inner peripheral portion of the flat tube 1e For example, when a corrugated fin structure having a cross-sectional channel shape (not shown) is installed and joined by brazing, uniform contact and joining are ensured by maintaining the inner wall surface 2e-3 in a flat state. Excellent heat transfer through the wall surface is ensured. In addition, it is firmly joined with high reliability, and the rigidity of the heat transfer tube itself is further increased and its durability is combined. It is coercive. On the other hand, the convex part formed on the outer wall surface 2e-4 of the flat heat transfer tube 1e by the hollow rib 2e-1 causes a turbulent flow and a vortex flow as appropriate to the flow of a cooling medium such as engine cooling water, The stirring effect contributes to the improvement of cooling efficiency. In the above embodiment, the hollow rib 2e-1 is formed by press molding before the edge bending process for the side edge 2e-5. However, the hollow rib 2e-1 is formed and the edge bending process is performed. However, it is also possible to form the flat element tube 1e by performing the UO forming after performing both at the same time. Further, if desired, when the flat element tube 1e-a is formed by the above UO forming, it is possible to incorporate a fin structure together, and the formed hollow rib 2e-1 is the longitudinal length of the flat heat transfer tube 1e. It can be provided so as to be inclined at a predetermined angle with respect to the tube axis in the direction, or can be provided in a curved shape.

本発明によって得られた上記の偏平伝熱管は各種熱交換器に組み込まれ、例えば、EGRガス再循環システム等におけるガス流路にセットされ、高温のEGRガスを冷却するためのガス冷却装置等に供されるが、本発明による該偏平伝熱管は、その壁面に形成された中空リブの作用により、偏平管壁面における二次モーメントが高くなって優れた剛性が保たれ、より広い熱伝達面積を安定的に確保することができると共に、中空リブ内をEGRガスが流れることによって熱伝達が効率的に促がれるため、これを組込んだ上記ガス冷却装置は、熱交換がより効果的に促進されて優れた熱交換性能を発揮し、当該冷却装置の小型軽量化とエネルギー損失の大幅な削減に貢献することができる。   The above-described flat heat transfer tube obtained by the present invention is incorporated in various heat exchangers, for example, set in a gas flow path in an EGR gas recirculation system or the like, and used in a gas cooling device or the like for cooling high-temperature EGR gas. However, the flat heat transfer tube according to the present invention has a higher secondary moment on the flat tube wall surface due to the action of the hollow rib formed on the wall surface, thereby maintaining excellent rigidity, and a wider heat transfer area. As well as being able to ensure stability, heat transfer is efficiently promoted by the flow of EGR gas through the hollow ribs, so the above gas cooling device incorporating this promotes heat exchange more effectively As a result, it exhibits excellent heat exchange performance and can contribute to a reduction in size and weight of the cooling device and a significant reduction in energy loss.

本発明に係る第1実施例による偏平伝熱管1は、厚さが0.4mmで所定の幅のSUS304オーステナイト系ステンレス鋼からなる定尺コイルを、予め所定の寸法に切断して方形の素材となる金属製薄板からなる板材2とし、該板材2が2枚合せにされて相互に対向して平坦面が形成される部位であって、図1に示すように偏平伝熱管1に形成された場合に内壁面2−3に相当する部分から、外壁面2−4に向かって凸状に突き出すようにしてプレス成形を施し、該板材2の横幅方向に所定の間隔を設けて、かつ該偏平管1の長手方向に相当する管軸に対して直角に交わるようにして、所定の高さの中空リブ2−1を直線状に複数形成した。また、本実施例においては上記中空リブ2−1の形成と同時に、該板材2の側縁部2−5に縁曲げ加工を施し、その後折り曲げ部2−6を中心として二つ折りに折り曲げるいわゆるUOフォーミング加工を施して、該板材2における両端縁2−7を突き合せて偏平管状素管を形成した。
なお、本実施例においては、上記偏平状素管の形成時に、同図に示すように断面チャンネル形状の波型フィン3を装入し、該偏平状素管の両端縁2−7における突き合せ部2−2の接合と同時に、偏平管内壁面2−3に対するろう付を行って一体として接合した。この際、前記端縁2−7における突き合せ部2−2は全長にわたって一致し、レーザー溶接、電子ビーム溶接、プラズマ溶接、TIG溶接などの高エネルギービーム溶接によって極めて高精度に接合され、また、偏平管内壁面2−3に対する波型フィン3のろう接も、均一な状態で隙間なく接合されていることが確認された。このようにして製造された本実施例による偏平伝熱管1は、中空リブ2−1の形成によって横幅方向の捩れに起因する変形が解消され、内壁面2−3における平坦面が健全な状態で維持されて、該壁面2−3に対する波型フィン3の接合が極めて高精度で、かつ均一な状態で行われることにより、得られる偏平伝熱管1の剛性が高度に保たれ、堅牢で信頼性に優れる偏平管に仕上がっていることが確認された。さらに本実施例によって得られた偏平伝熱管1は、ASSY工程に際しても相互の中空リブ2−1がスペーサーの役割を果し、その組付けが極めて容易になることも併せて実証された。このようにして得られた本実施例による偏平伝熱管1を多管式熱交換器(図示を省略)に装着して、EGRシステムにおけるガス流路のガス冷却装置に組込み、EGRガスの冷却性能試験に供した結果、該伝熱管1内を通流する高温のEGRガスは、広い熱伝達面積と内装されたフィン構造体3を介して効果的に熱伝達され、同時に波形に形成された流路内において、その圧力損失が極めて低く抑えられ、しかも中空リブ2−1によって形成される凹部を介して、隣接する流路間において流体相互の通流が可能となり、均一な流速分布が維持された状態で効果的な攪拌が繰返されて効率的に熱交換され、優れた冷却性能を得られることが確認された。
The flat heat transfer tube 1 according to the first embodiment of the present invention includes a rectangular material made by cutting a regular coil made of SUS304 austenitic stainless steel having a thickness of 0.4 mm and a predetermined width into a predetermined dimension in advance. The plate 2 is made of a thin metal plate, and the two plates 2 are combined to face each other to form a flat surface, which is formed in the flat heat transfer tube 1 as shown in FIG. In this case, press forming is performed so as to protrude from the portion corresponding to the inner wall surface 2-3 toward the outer wall surface 2-4, and a predetermined interval is provided in the lateral width direction of the plate member 2, and the flattening is performed. A plurality of hollow ribs 2-1 having a predetermined height were formed in a straight line so as to intersect at right angles to the tube axis corresponding to the longitudinal direction of the tube 1. Further, in this embodiment, simultaneously with the formation of the hollow rib 2-1, the side edge 2-5 of the plate member 2 is subjected to edge bending, and then folded into two folds around the bent portion 2-6. Forming was performed, and both end edges 2-7 of the plate member 2 were butted to form a flat tubular element tube.
In this embodiment, when forming the flat element tube, the corrugated fins 3 having a cross-sectional channel shape are inserted as shown in FIG. Simultaneously with the joining of the part 2-2, the flat tube inner wall surface 2-3 was brazed and joined together. At this time, the abutting portion 2-2 at the edge 2-7 coincides over the entire length, and is joined with extremely high accuracy by high energy beam welding such as laser welding, electron beam welding, plasma welding, TIG welding, It was confirmed that the brazing of the corrugated fins 3 to the flat tube inner wall surface 2-3 was also joined in a uniform state with no gaps. In the flat heat transfer tube 1 according to this embodiment manufactured in this way, the deformation due to the twist in the lateral width direction is eliminated by the formation of the hollow rib 2-1, and the flat surface of the inner wall surface 2-3 is in a healthy state. As a result, the wave-shaped fins 3 are joined to the wall surface 2-3 with extremely high accuracy and in a uniform state, so that the rigidity of the obtained flat heat transfer tube 1 is maintained at a high level, and is robust and reliable. It was confirmed that it was finished in a flat tube excellent in Furthermore, it was also proved that the flat heat transfer tube 1 obtained by the present example was extremely easy to assemble because the mutual hollow ribs 2-1 served as a spacer even in the ASSY process. The flat heat transfer tube 1 according to the present embodiment thus obtained is mounted on a multi-tube heat exchanger (not shown) and incorporated in a gas cooling device for a gas flow path in an EGR system to cool the EGR gas. As a result of the test, the high-temperature EGR gas flowing through the heat transfer tube 1 is effectively transferred through the wide heat transfer area and the fin structure 3 provided therein, and at the same time, the flow formed into a waveform. In the passage, the pressure loss can be kept extremely low, and fluid can flow between adjacent flow paths through the recess formed by the hollow rib 2-1, and a uniform flow velocity distribution is maintained. In this state, it was confirmed that effective stirring was repeated and heat was exchanged efficiently, and excellent cooling performance was obtained.

プレス成形によって形成される中空リブ2a−1が、板材2aの対向する平坦面間において、図2に示すように得られる偏平伝熱管1aの長手方向に相当する管軸に対して直角に交わるようにして、所定の高さの中空リブ2−1を曲線状に複数形成した以外は、実質的に上記実施例1と同様にして偏平伝熱管1aを製造した。得られた偏平伝熱管1aの剛性はより一層強化され、かつその熱伝達性能においても十分に優れたものであることが確認された。
また、このようにして得られた本実施例による偏平伝熱管1aを多管式熱交換器(図示を省略)に装着し、実施例1と同様のEGRシステムにおけるガス流路のガス冷却装置に組込み、実施例1と同一の条件でEGRガスの冷却性能試験に供した結果、本実施例においても実施例1と同様優れた冷却性能を得られることが確認された。
The hollow ribs 2a-1 formed by press molding intersect at right angles to the tube axis corresponding to the longitudinal direction of the flat heat transfer tube 1a obtained as shown in FIG. 2 between the flat surfaces facing each other of the plate 2a. Thus, a flat heat transfer tube 1a was manufactured in substantially the same manner as in Example 1 except that a plurality of hollow ribs 2-1 having a predetermined height were formed in a curved shape. It was confirmed that the rigidity of the obtained flat heat transfer tube 1a was further enhanced and the heat transfer performance was sufficiently excellent.
In addition, the flat heat transfer tube 1a according to the present embodiment obtained in this way is attached to a multi-tube heat exchanger (not shown), and the gas cooling device for the gas flow path in the EGR system similar to the first embodiment is used. As a result of the incorporation and the EGR gas cooling performance test under the same conditions as in Example 1, it was confirmed that the same excellent cooling performance as in Example 1 could be obtained in this example.

プレス成形によって形成される中空リブ2b−1が、板材2bの対向する平坦面間において、図3に示すようにそれぞれ直線状に交差して3組、所定の間隔で形成した以外は、実質的に上記実施例1と同様にして偏平伝熱管1bを製造した。得られた偏平伝熱管1bの剛性はさらに強化され、かつその熱伝達性能においても十分に優れたものであることが確認された。
また、このようにして得られた本実施例による偏平伝熱管1bを多管式熱交換器(図示を省略)に装着し、実施例1と同様のEGRシステムにおけるガス流路のガス冷却装置に組込み、実施例1と同一の条件でEGRガスの冷却性能試験に供した結果、本実施例においても実施例1と同様優れた冷却性能を得られることが確認された。
Except for the fact that the hollow ribs 2b-1 formed by press forming are formed in a predetermined interval at three sets, each intersecting linearly as shown in FIG. 3, between the opposing flat surfaces of the plate 2b. A flat heat transfer tube 1b was produced in the same manner as in Example 1 above. It was confirmed that the rigidity of the obtained flat heat transfer tube 1b was further strengthened and the heat transfer performance was sufficiently excellent.
In addition, the flat heat transfer tube 1b according to the present embodiment obtained in this way is attached to a multi-tube heat exchanger (not shown), and the gas cooling device for the gas flow path in the EGR system similar to the first embodiment is used. As a result of the incorporation and the EGR gas cooling performance test under the same conditions as in Example 1, it was confirmed that the same excellent cooling performance as in Example 1 could be obtained in this example.

プレス成形によって形成される中空リブ2c−1を、板材2cの対向する平坦面間において、図4に示すように形成される偏平伝熱管1cの長手方向における管軸に対して所定の角度で傾斜して、それぞれ2列が所定の間隔で形成した以外は、実質的に上記実施例1と同様にして偏平伝熱管1cを製造した。得られた偏平伝熱管1cの剛性は十分に強化され、かつその熱伝達性能においても十分に優れたものであることが確認された。
また、このようにして得られた本実施例による偏平伝熱管1cを多管式熱交換器(図示を省略)に装着し、実施例1と同様のEGRシステムにおけるガス流路のガス冷却装置に組込み、実施例1と同一の条件でEGRガスの冷却性能試験に供した結果、本実施例においても実施例1と同様優れた冷却性能を得られることが確認された。
The hollow rib 2c-1 formed by press molding is inclined at a predetermined angle with respect to the tube axis in the longitudinal direction of the flat heat transfer tube 1c formed as shown in FIG. 4 between the flat surfaces facing each other of the plate 2c. A flat heat transfer tube 1c was manufactured in substantially the same manner as in Example 1 except that two rows were formed at predetermined intervals. It was confirmed that the rigidity of the obtained flat heat transfer tube 1c was sufficiently strengthened and sufficiently excellent in heat transfer performance.
Further, the flat heat transfer tube 1c according to the present embodiment obtained in this way is attached to a multi-tube heat exchanger (not shown), and the gas cooling device for the gas flow path in the EGR system similar to the first embodiment is used. As a result of the incorporation and the EGR gas cooling performance test under the same conditions as in Example 1, it was confirmed that the same excellent cooling performance as in Example 1 could be obtained in this example.

プレス成形によって形成される中空リブ2d−1を、板材2dの対向する平坦面間において、図5に示すように形成される偏平伝熱管1dの長手方向における管軸に対して所定の角度で傾斜して、それぞれ2列を所定の間隔で形成すると同時に、対向する平坦面間において位相を変えて形成した以外は、実質的に上記実施例1と同様にして偏平伝熱管1dを製造した。得られた偏平伝熱管1dの剛性はより一層強化され、かつその熱伝達性能においても十分に優れたものであることが確認された。
また、このようにして得られた本実施例による偏平伝熱管1dを多管式熱交換器(図示を省略)に装着し、実施例1と同様のEGRシステムにおけるガス流路のガス冷却装置に組込み、実施例1と同一の条件でEGRガスの冷却性能試験に供した結果、本実施例においても実施例1と同様優れた冷却性能を得られることが確認された。
The hollow rib 2d-1 formed by press molding is inclined at a predetermined angle with respect to the tube axis in the longitudinal direction of the flat heat transfer tube 1d formed as shown in FIG. 5 between the opposing flat surfaces of the plate 2d. Thus, a flat heat transfer tube 1d was manufactured in substantially the same manner as in Example 1 except that two rows were formed at predetermined intervals and at the same time the phase was changed between the opposing flat surfaces. It was confirmed that the rigidity of the obtained flat heat transfer tube 1d was further enhanced and the heat transfer performance was sufficiently excellent.
Further, the flat heat transfer tube 1d according to the present embodiment obtained in this way is attached to a multi-tube heat exchanger (not shown), and the gas cooling device for the gas flow path in the EGR system similar to that of the first embodiment is used. As a result of the incorporation and the EGR gas cooling performance test under the same conditions as in Example 1, it was confirmed that the same excellent cooling performance as in Example 1 could be obtained in this example.

上記実施の形態並びに各実施例に詳述したように、本発明に係る偏平伝熱管は、偏平状素管を形成する金属製薄板の横幅方向に、該素管の長手方向の管軸に対して基本的には直角に交わるようにして複数の中空リブが設けられるが、このことによっていわゆるUOフォーミング時における平坦面の剛性が高くなり、長手方向の端縁部における突き合せが安定的に一致し、その後に行われる高エネルギービーム溶接や、ASSY時における作業がスムースに進行して接合の信頼性が著しく向上する。しかも偏平管の平担面における剛性が高くその形状が安定することによって、より幅広で流路断面積の大きい偏平伝熱管の製造が可能となり、また、内装されるフィン構造体とのろう付が均一に行われて優れた伝熱性が確保されると共に、より一層の剛性が増して耐久性に優れた偏平伝熱管を得ることができる。さらに偏平管内壁部における平坦面に、フィン構造体によって分割された小流路間に跨って中空リブが設けられることにより、該流路間を通流する例えばEGRガスなどの高温流体が、隣接する流路間において相互に流通可能となり、流体の圧力損失が減少してその流速分布が均一となり、格別に優れた熱交換性能を有する偏平伝熱管を得ることができる。
本発明の効果についてさらに付言すると、該偏平管の製造方法が金属性薄板に対するUOフォーミングに際し、予めプレス成形を施すことによって前記中空リブを形成するか、UOフォーミングと同時にプレス成形を施して中空リブを形成するかのいずれかを任意に選択することが可能であり、その製造工程は単純かつ簡略化されて加工コストを大幅に削減することができる。このようにして製造される本発明による偏平伝熱管は、クールドEGRシステムに配設される多管式熱交換器用伝熱管としては勿論のこと、排気ガスクーラー、EGRガスクーラー、燃料用クーラー、オイルクーラー、インタークーラー、排熱回収用ヒーター等の熱交換器用伝熱管として好適に装着し得ると同時に、本発明による偏平伝熱管を内装した上記の各冷却装置は、その優れた熱交換性能によってそれらの装置の小型軽量化を可能とし、該装置のコンパクト化に貢献して、限られたスペースに容易に設置することができる熱交換型ガス冷却装置を、比較的低コストで提供することができるため、当業界におけて幅広く用いられることが期待される。
As described in detail in the above embodiment and each example, the flat heat transfer tube according to the present invention is in the transverse width direction of the thin metal plate forming the flat element tube with respect to the tube axis in the longitudinal direction of the element tube. Basically, a plurality of hollow ribs are provided so as to intersect at right angles, but this improves the rigidity of the flat surface at the time of so-called UO forming, and the butt at the edge in the longitudinal direction is stably integrated. In addition, the subsequent high energy beam welding and ASSY operations proceed smoothly, and the reliability of bonding is significantly improved. In addition, since the flat surface of the flat tube has high rigidity and its shape is stable, it is possible to manufacture a flat heat transfer tube with a wider width and a larger cross-sectional area of the tube, and brazing with the fin structure incorporated therein. It is possible to obtain a flat heat transfer tube that is uniformly performed to ensure excellent heat transfer properties and that has even greater rigidity and excellent durability. Furthermore, by providing a hollow rib across the small flow paths divided by the fin structure on the flat surface of the inner wall portion of the flat tube, a high-temperature fluid such as EGR gas flowing between the flow paths is adjacent to the flat flow path. Therefore, it is possible to obtain a flat heat transfer tube having a particularly excellent heat exchange performance by reducing the pressure loss of the fluid and making the flow velocity distribution uniform.
The effect of the present invention will be further described. When the flat tube is manufactured by UO forming for a thin metal plate, the hollow rib is formed by press forming in advance, or the hollow rib is formed by press forming simultaneously with UO forming. Can be arbitrarily selected, and the manufacturing process can be simplified and simplified to greatly reduce the processing cost. The flat heat transfer tube according to the present invention thus manufactured is not only a heat transfer tube for a multi-tube heat exchanger disposed in a cooled EGR system, but also an exhaust gas cooler, an EGR gas cooler, a fuel cooler, an oil Each of the above cooling devices equipped with a flat heat transfer tube according to the present invention can be suitably mounted as a heat exchanger tube for a heat exchanger such as a cooler, an intercooler, a waste heat recovery heater, etc. Since it is possible to reduce the size and weight of the apparatus, contribute to the downsizing of the apparatus, and provide a heat exchange type gas cooling apparatus that can be easily installed in a limited space at a relatively low cost. It is expected to be widely used in the industry.

本発明に係る第1実施例によるフィン構造体を内装した偏平伝熱管の単体を示す斜視図である。It is a perspective view which shows the single body of the flat heat exchanger tube which equipped the fin structure by 1st Example which concerns on this invention internally. 本発明に係る第2実施例によるフィン構造体を内装した偏平伝熱管の単体を示す斜視図である。It is a perspective view which shows the single body of the flat heat exchanger tube which equipped the fin structure by 2nd Example which concerns on this invention internally. 本発明に係わる第3実施例による偏平伝熱管の単体を示す斜視図である。It is a perspective view which shows the single body of the flat heat exchanger tube by 3rd Example concerning this invention. 本発明に係わる第4実施例による偏平伝熱管の単体を示す斜視図である。It is a perspective view which shows the single body of the flat heat exchanger tube by 4th Example concerning this invention. 本発明に係る第5実施例による偏平伝熱管の単体を示す斜視図である。It is a perspective view which shows the single body of the flat heat exchanger tube by 5th Example which concerns on this invention. 本発明に係る偏平伝熱管の製造方法の第1実施例を示し、(a)〜(d)はその製造過程を模式的に示す斜視図である。1st Example of the manufacturing method of the flat heat exchanger tube which concerns on this invention is shown, (a)-(d) is a perspective view which shows the manufacturing process typically. 本発明に係る偏平伝熱管の製造方法の第2実施例を示し、(a)〜(e)はその製造過程を模式的に示す斜視図である。2nd Example of the manufacturing method of the flat heat exchanger tube which concerns on this invention is shown, (a)-(e) is a perspective view which shows the manufacturing process typically. 従来例による多管式熱交換器を示し、(a)はその一部破断縦断側面図、(b)は上記の熱交換器に内装される伝熱管単体の要部拡大斜視図である。The multi-tube heat exchanger by a prior art example is shown, (a) is the partially broken vertical side view, (b) is the principal part expansion perspective view of the heat exchanger tube single-piece | unit internally equipped in said heat exchanger. 他の従来例による伝熱管の単体を示し、(a)はその要部斜視図、(b)は同伝熱管においてフィンの挿入過程を示す斜視図である。FIG. 7 is a perspective view showing a principal part of a heat transfer tube according to another conventional example, and FIG. 5B is a perspective view showing a fin insertion process in the heat transfer tube. 他の従来例による偏平伝熱管を示し、(a)はその分解斜視図、(b)はさら他の従来例における偏平伝熱管の分解斜視図である。The flat heat exchanger tube by another conventional example is shown, (a) is the disassembled perspective view, (b) is the disassembled perspective view of the flat heat exchanger tube in still another conventional example.

符号の説明Explanation of symbols

1、1a、1b、1c、1d、1e 偏平伝熱管
2、2a、2b、2c、2d、2e 板材
2−1、2a−1、2b−1、2c−1、2d−1、2e−1 中空リブ
2−2、2a−2、2b−2、2c−2、2d−2、2e−2 突き合せ部
2−3、2a−3、2b−3、2c−3、2d−3、2e−3 内壁部
2−4、2a−4、2b−4、2c−4、2d−4、2e−4 外壁部
2−5、2a−5、2b−5、2c−5、2d−5、2e−5 側縁部
2−6、2a−6、2b−6、2c−6、2d−6、2e−6 折り曲げ部
2−7、2a−7、2b−7、2c−7、2d−7、2e−7 端縁
3、3a、3b、3c、3d、3e フィン構造体
3−1、3a−1、3b−1、3c−1、3d−1、3e−1 流路
1, 1a, 1b, 1c, 1d, 1e Flat heat transfer tube 2, 2a, 2b, 2c, 2d, 2e Plate material 2-1, 2a-1, 2b-1, 2c-1, 2d-1, 2e-1 Hollow Ribs 2-2, 2a-2, 2b-2, 2c-2, 2d-2, 2e-2 Butting sections 2-3, 2a-3, 2b-3, 2c-3, 2d-3, 2e-3 Inner wall 2-4, 2a-4, 2b-4, 2c-4, 2d-4, 2e-4 Outer wall 2-5, 2a-5, 2b-5, 2c-5, 2d-5, 2e-5 Side edges 2-6, 2a-6, 2b-6, 2c-6, 2d-6, 2e-6 Bending portions 2-7, 2a-7, 2b-7, 2c-7, 2d-7, 2e- 7 End edge 3, 3a, 3b, 3c, 3d, 3e Fin structure 3-1, 3a-1, 3b-1, 3c-1, 3d-1, 3e-1

Claims (15)

方形の金属製薄板に対してUOフォーミングを施すことによって偏平伝熱管を製造する方法において、金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって予め複数の中空リブを形成し、次いでUOフォーミングによる縁曲げ加工および折り曲げ加工を施すことによって偏平管状素管を形成し、しかる後に該素管の端縁を全長にわたって突き合せ、一体として接合することを特徴とする偏平伝熱管の製造方法。   In a method of manufacturing a flat heat transfer tube by performing UO forming on a rectangular metal thin plate, a press is applied to each portion where two metal thin plates are combined to form a flat surface opposite to each other. A plurality of hollow ribs are formed in advance by forming, and then a flat tubular element tube is formed by performing edge bending and bending processes by UO forming, and then the edges of the element tube are butted together over the entire length, A method of manufacturing a flat heat transfer tube, wherein the flat heat transfer tubes are joined together. 方形の金属製薄板に対してUOフォーミングを施すことによって偏平伝熱管を製造する方法において、金属製薄板に対してUOフォーミングによって予め縁曲げ加工を施した後、該金属製薄板が2枚合せにされて相互に対向して平坦面が形成されるそれぞれの部位に、プレス成形を施すことによって複数の中空リブを形成し、次いでUOフォーミングによる折り曲げ加工を施すことによって偏平管状素管を形成し、しかる後に該素管の端縁を全長にわたって突き合せ、一体として接合することを特徴とする偏平伝熱管の製造方法。   In a method of manufacturing a flat heat transfer tube by performing UO forming on a rectangular metal thin plate, the metal thin plate is preliminarily bent by UO forming and then the two metal thin plates are combined. A plurality of hollow ribs are formed by press molding at each portion where a flat surface is formed opposite to each other, and then a flat tubular element tube is formed by bending by UO forming; After that, the manufacturing method of the flat heat transfer tube is characterized in that the end edges of the raw tube are butted together over the entire length and joined together. 前記中空リブの形成が、UOフォーミングによる縁曲げ加工と同時に行われることを特徴とする請求項1または2に記載の偏平伝熱管の製造方法。   The method of manufacturing a flat heat transfer tube according to claim 1 or 2, wherein the formation of the hollow rib is performed simultaneously with edge bending by UO forming. 前記接合が高エネルギービーム溶接によって行われることを特徴する請求項1乃至3のいずれか1項に記載の偏平伝熱管の製造方法。   The method for manufacturing a flat heat transfer tube according to any one of claims 1 to 3, wherein the joining is performed by high energy beam welding. 前記UOフォーミングによる偏平管状素管の形成時に、フィン部材が内装されることを特徴とする請求項1乃至4のいずれか1項に記載の偏平伝熱管の製造方法。   The method for manufacturing a flat heat transfer tube according to any one of claims 1 to 4, wherein a fin member is internally provided when the flat tubular element tube is formed by UO forming. 前記フィン部材と共にろう材が供給されることを特徴とする請求項1乃至5のいずれか1項に記載の偏平伝熱管の製造方法。   The method for manufacturing a flat heat transfer tube according to any one of claims 1 to 5, wherein a brazing material is supplied together with the fin member. 内装されたフィン部材が偏平伝熱管の内面にろう付けされることを特徴とする請求項1乃至6のいずれか1項に記載の偏平伝熱管の製造方法。   The method for manufacturing a flat heat transfer tube according to any one of claims 1 to 6, wherein the fin member provided inside is brazed to the inner surface of the flat heat transfer tube. 前記中空リブが偏平伝熱管の長手方向における管軸に対し、直角に若しくは所定の角度で傾斜して、かつ直線状もしくは曲線状に形成されることを特徴とする請求項1乃至7のいずれか1項に記載の偏平伝熱管の製造方法。   8. The hollow rib according to claim 1, wherein the hollow rib is formed at a right angle or a predetermined angle with respect to a tube axis in a longitudinal direction of the flat heat transfer tube, and is formed in a linear shape or a curved shape. 2. A method for producing a flat heat transfer tube according to item 1. 前記中空リブが偏平伝熱管の長手方向における管軸に対し、1列にもしくは複数列形成されることを特徴とする請求項1乃至8のいずれか1項に記載の偏平伝熱管の製造方法。   The method for manufacturing a flat heat transfer tube according to any one of claims 1 to 8, wherein the hollow ribs are formed in one row or in a plurality of rows with respect to a tube axis in a longitudinal direction of the flat heat transfer tube. 前記中空リブの少なくとも2本が、偏平伝熱管の対抗する平担面間において、それぞれ相互に交差して形成されることを特徴とする請求項1乃至9のいずれか1項に記載の偏平伝熱管の製造方法。   The flat transmission according to any one of claims 1 to 9, wherein at least two of the hollow ribs are formed so as to intersect each other between flat surfaces facing each other of the flat heat transfer tube. Manufacturing method of heat tube. 前記中空リブが偏平伝熱管の対向する平坦面間において、それぞれ相互に位相を変えて形成されることを特徴とする請求項1乃至10のいずれか1項に記載の偏平伝熱管の製造方法。   The method of manufacturing a flat heat transfer tube according to any one of claims 1 to 10, wherein the hollow ribs are formed with mutually different phases between flat surfaces of the flat heat transfer tubes facing each other. 前記中空リブが偏平伝熱管の対向する平坦面間において、それぞれ相互に逆向きに傾斜して形成されることを特徴とする請求項1乃至11のいずれか1項に記載の偏平伝熱管の製造方法。   The manufacturing of a flat heat transfer tube according to any one of claims 1 to 11, wherein the hollow ribs are formed to incline in opposite directions between flat surfaces of the flat heat transfer tube. Method. 請求項1乃至12のいずれか1項に記載の製造方法によって得られることを特徴とする高温ガス冷却装置用偏平伝熱管。   A flat heat transfer tube for a high-temperature gas cooling apparatus, which is obtained by the manufacturing method according to any one of claims 1 to 12. 前記偏平伝熱管が、少なくとも1以上組込まれてなることを特徴とする高温ガス用冷却装置。   A cooling device for high-temperature gas, wherein at least one of the flat heat transfer tubes is incorporated. 前記高温ガスがEGRガスであることを特徴とする請求項14に記載の高温ガス用冷却装置。   The high-temperature gas cooling device according to claim 14, wherein the high-temperature gas is EGR gas.
JP2006331133A 2006-12-07 2006-12-07 Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube Pending JP2008145024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331133A JP2008145024A (en) 2006-12-07 2006-12-07 Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331133A JP2008145024A (en) 2006-12-07 2006-12-07 Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube

Publications (1)

Publication Number Publication Date
JP2008145024A true JP2008145024A (en) 2008-06-26

Family

ID=39605404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331133A Pending JP2008145024A (en) 2006-12-07 2006-12-07 Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube

Country Status (1)

Country Link
JP (1) JP2008145024A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174676A (en) * 2010-02-25 2011-09-08 Komatsu Ltd Corrugated fin and heat exchanger including the same
CN102564190A (en) * 2012-02-08 2012-07-11 浙江银轮机械股份有限公司 Combined corrugated flat cooling pipe and manufacturing method thereof
JP2013068132A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
JP2013068131A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
US8651170B2 (en) 2008-08-25 2014-02-18 Denso Corporation Exhaust gas heat exchanger
JP2017532519A (en) * 2014-09-17 2017-11-02 ヴァレオ システム テルミク Storage evaporator having corrugated plate structure to promote freezing of PCM
US20210215072A1 (en) * 2018-08-27 2021-07-15 Hanon Systems Heat exchanger of exhaust heat recovery apparatus
WO2024116495A1 (en) * 2022-11-30 2024-06-06 東京ラヂエーター製造株式会社 Heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204130A (en) * 1989-12-28 1991-09-05 Furukawa Alum Co Ltd Manufacture of flat tube for heat exchanger
JPH08187517A (en) * 1994-12-30 1996-07-23 Nakata Seisakusho:Kk Forming roll and clamp for pipe mill
JPH1183365A (en) * 1997-09-16 1999-03-26 Sanden Corp Tube for heat exchanger and its manufacture
JP2003294382A (en) * 2002-04-04 2003-10-15 Toyo Radiator Co Ltd Heat exchanger
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
JP2005055153A (en) * 2003-08-07 2005-03-03 Toyota Motor Corp Heat exchanger
WO2005052490A1 (en) * 2003-10-28 2005-06-09 Behr Gmbh & Co. Kg Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03204130A (en) * 1989-12-28 1991-09-05 Furukawa Alum Co Ltd Manufacture of flat tube for heat exchanger
JPH08187517A (en) * 1994-12-30 1996-07-23 Nakata Seisakusho:Kk Forming roll and clamp for pipe mill
JPH1183365A (en) * 1997-09-16 1999-03-26 Sanden Corp Tube for heat exchanger and its manufacture
JP2003294382A (en) * 2002-04-04 2003-10-15 Toyo Radiator Co Ltd Heat exchanger
JP2004263616A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Flat tube for egr cooler
JP2005055153A (en) * 2003-08-07 2005-03-03 Toyota Motor Corp Heat exchanger
WO2005052490A1 (en) * 2003-10-28 2005-06-09 Behr Gmbh & Co. Kg Flow channel for a heat exchanger, and heat exchanger comprising such flow channels

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651170B2 (en) 2008-08-25 2014-02-18 Denso Corporation Exhaust gas heat exchanger
JP2011174676A (en) * 2010-02-25 2011-09-08 Komatsu Ltd Corrugated fin and heat exchanger including the same
JP2013068132A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
JP2013068131A (en) * 2011-09-21 2013-04-18 Taiho Kogyo Co Ltd Swirl plate
CN102564190A (en) * 2012-02-08 2012-07-11 浙江银轮机械股份有限公司 Combined corrugated flat cooling pipe and manufacturing method thereof
JP2017532519A (en) * 2014-09-17 2017-11-02 ヴァレオ システム テルミク Storage evaporator having corrugated plate structure to promote freezing of PCM
US20210215072A1 (en) * 2018-08-27 2021-07-15 Hanon Systems Heat exchanger of exhaust heat recovery apparatus
US11603782B2 (en) * 2018-08-27 2023-03-14 Hanon Systems Heat exchanger of exhaust heat recovery apparatus
WO2024116495A1 (en) * 2022-11-30 2024-06-06 東京ラヂエーター製造株式会社 Heat exchanger

Similar Documents

Publication Publication Date Title
US9395121B2 (en) Heat exchanger having convoluted fin end and method of assembling the same
JP2008145024A (en) Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube
US7117936B2 (en) Tube for heat exchanger
US8516699B2 (en) Method of manufacturing a heat exchanger having a contoured insert
CA2734455C (en) Heat exchanger
KR101569829B1 (en) Heat exchanger having wavy fin plate for reducing differential pressure of egr gas
US8235098B2 (en) Heat exchanger flat tube with oblique elongate dimples
US8037930B2 (en) Heat exchanger
US20060016582A1 (en) Fluid agitating fin, method of fabricating the same and heat exchanger tube and heat exchanger or heat exchanging type gas cooling apparatus inwardly mounted with the fin
EP1906127A2 (en) Corrosion resistant bi-metal charge air cooler
KR20150003717A (en) Helical tube egr cooler
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
US9909475B2 (en) EGR cooler
US7690114B2 (en) Tube having reinforcing structures made of profile rolled metal and method of producing same
JP2008202846A (en) Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP4122670B2 (en) Heat exchanger
JP2001304787A (en) Exhaust heat exchanger
JP2007064606A (en) Heat exchanger tube for egr cooler
JP2007064515A (en) Flat heat transfer tube for heat exchanger, and its manufacturing method
JP2008128600A (en) Fin structure, its manufacturing method, and heat transfer tube using the fin structure
JP5187047B2 (en) Tube for heat exchanger
JP6463993B2 (en) Tube for heat exchanger
EP1331462A2 (en) Automotive heat exchanger
JP2002350071A (en) Double pipe heat exchanger
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110805

A131 Notification of reasons for refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20120510

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20120713

Free format text: JAPANESE INTERMEDIATE CODE: A912