JP2008014566A - Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube - Google Patents
Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube Download PDFInfo
- Publication number
- JP2008014566A JP2008014566A JP2006186131A JP2006186131A JP2008014566A JP 2008014566 A JP2008014566 A JP 2008014566A JP 2006186131 A JP2006186131 A JP 2006186131A JP 2006186131 A JP2006186131 A JP 2006186131A JP 2008014566 A JP2008014566 A JP 2008014566A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- transfer tube
- heat exchanger
- flat
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、所謂シェルアンドチューブ型の排気ガス冷却装置における熱交換器用伝熱管に係り、詳しくは該熱交換器に複数配設されて排気ガス流路を形成する断面形状が偏平の伝熱管であって、該偏平伝熱管の内周面に内装され、管内を通流する排気ガスの流路を小流路に分割して、熱交換性能の向上を促す断面チャンネル形状のコルゲートフィンを、金属製薄板材に対して所定の加工を施すことによって、比較的低コストで提供することを可能とするものであり、得られた該コルゲートフィンをその内周壁面に接して内装した熱交換器用の偏平伝熱管と、該偏平伝熱管を複数組込んだ多管式熱交換器、並びに該多管式熱交換をEGR再循環システムにおけるガス流路に組込んだEGRガス冷却装置に関する。 The present invention relates to a heat exchanger tube for a heat exchanger in a so-called shell-and-tube type exhaust gas cooling device, and more specifically, a heat exchanger tube having a flat cross-sectional shape that is disposed in the heat exchanger and forms an exhaust gas passage. A corrugated fin having a cross-sectional channel shape that is incorporated in the inner peripheral surface of the flat heat transfer tube and that divides the flow path of the exhaust gas flowing through the pipe into small flow paths to improve heat exchange performance. It is possible to provide a relatively low cost by performing predetermined processing on the thin plate material, and for the heat exchanger in which the obtained corrugated fin is installed in contact with the inner peripheral wall surface. The present invention relates to a flat heat transfer tube, a multi-tube heat exchanger in which a plurality of the flat heat transfer tubes are incorporated, and an EGR gas cooling device in which the multi-tube heat exchange is incorporated in a gas flow path in an EGR recirculation system.
ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上など、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。 A method of taking a part of the exhaust gas from the exhaust system of the diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation), which is the NOx (nitrogen oxide) Many effects such as suppression of generation, reduction of pump loss, reduction of heat dissipation loss to coolant due to lowering of combustion gas temperature, increase of specific heat ratio due to change of working gas amount and composition, and improvement of cycle efficiency associated with it Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.
ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が劣化し、早期に破損する虞れが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られたり、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風などによってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案され使用されている。この気−液熱交換タイプのEGRガス冷却装置の中でも、構造がシンプルで狭隘な設置空間においても容易に取付けが可能な、2重管式熱交換タイプのEGRガス冷却装置に依然として根強い需要があり、例えば高温のEGRガスを通す内管の外側に液体を通す外管を配設し、ガスと液体間で熱交換を行う交換器において、内管内に金属コルゲート板がフィンとして挿入されている2重管式熱交換器(例えば、特許文献1参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設された熱応力緩和機能を有する放熱フィンとから構成された2重管式熱交換器(例えば、特許文献2参照)をはじめとして、フィン構造体に対する様々な改良が施された数多くの2重管式熱交換器が提案され、その構造が簡略でコンパクトであるにも拘らず、それなりに優れた冷却効率が期待できるために、小型自動車など設置空間に限りのあるEGRガス冷却用の熱交換器として、既に数多く実用に供されているが、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換効率においては充足し得ないという未解決な課題が残されていた。 However, if the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve deteriorates due to its thermal action, and there is a risk of early breakage. There is a need for a structure, and as the intake air temperature rises, the charging efficiency is lowered and the fuel consumption is lowered. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioner refrigerant or cooling air is used, and in particular, gas-liquid that cools EGR gas, which is a gas, with engine coolant. Many heat exchange type EGR gas cooling devices have been proposed and used. Among these gas-liquid heat exchange type EGR gas cooling devices, there is still a strong demand for double-tube heat exchange type EGR gas cooling devices that have a simple structure and can be easily installed even in narrow installation spaces. For example, in an exchanger that arranges an outer tube through which liquid passes outside the inner tube through which high-temperature EGR gas passes and performs heat exchange between the gas and the liquid, a metal corrugated plate is inserted as a fin in the inner tube 2 A double-pipe heat exchanger (see, for example, Patent Document 1), an inner pipe through which a medium to be cooled is circulated, an outer pipe provided so as to surround and surround the outer circumference of the inner pipe, and the inner pipe Numerous improvements have been made to the fin structure, including a double-pipe heat exchanger (see, for example, Patent Document 2) that includes a heat dissipating fin having a thermal stress relaxation function disposed inside. Double pipe heat exchange In spite of its simple and compact structure, it can be expected to have excellent cooling efficiency. As a heat exchanger for EGR gas cooling, which has limited installation space, such as small cars, there are already many Although it is put into practical use, because of its compact structure, the absolute amount of fluid that flows is naturally limited, resulting in an unsolved problem that the total heat exchange efficiency cannot be satisfied. It was.
斯かる課題を解消するためには構造上多少複雑で大型化が余儀なくされても、所謂シェルアンドチューブ型の多管式熱交換器を採用せざるを得ず、これらの熱交換器についても様々な改良がなされている。例えば、図10に示すシェルアンドチューブ型の多管式熱交換器によれば、冷却ジャケットを構成するシェル本体40の外周部に、冷却水入口70−1と冷却水出口70−2となる冷却水用ノズルがそれぞれ備えられ、該シェル本体40の内周部には左右の両端部に取付けられたヘッダープレート30を介して、その内周面にマルチエントリー型の波型フィン10を内装した、複数の偏平チューブ20からなる伝熱管が間隔を隔てて装着され、さらにその両端部のヘッダープレート30の外側には、排気ガスの導入口80−1および排出口80−2となるガス配管を備えたボンネット50が、それぞれ一体として取付けられた排気ガス冷却装置用の多管式熱交換器100が提案され(例えば、特許文献3参照)、偏平チューブからなる伝熱管の内周面に内装されるマルチエントリー型の波形フィンの作用により、優れた伝熱性能が得られた旨報告されている。また、本願出願人が先に出願した特願2005−203906号の発明においては、熱交換器用の偏平伝熱管内に内装され、該伝熱管内を通流する被冷却媒体若しくは冷却媒体からなる流体の流路を、複数の小流路に区画する断面が矩形で長手方向に自由形状を有するプレートフィンからなり、該プレートフィンの側面若しくは上下の壁面に、少なくとも1以上の切り欠き部、貫通孔、切起こし部、凹凸状部等を形成することにより、隣接する小流路間において通流する流体同士が相互に連通し、均一な流速を維持し易い構造の偏平伝熱管を開発し、高いレベルでの熱交換性能が得られることが確認された旨開示されている。
上記各従来技術において、特許文献1〜2に開示されている2重管タイプのEGRガス冷却装置の場合は、上記のようにその構造が簡略でコンパクトであるにも拘らず、それなりに優れた冷却効率が期待できるために、小型自動車など設置空間に限りのあるEGRガス冷却用の熱交換器としては、既に数多く実用に供されているが、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換効率においては未解決な課題が残されていた。斯かる課題を解消するための上記特許文献3における、シェルアンドチューブタイプの多管式熱交換型EGRガス冷却装置においては、該熱交換器本体に間隔を隔てて複数配設され、被冷却媒体である排気ガス流路を形成する伝熱管を、より広い伝熱面積を有する偏平チューブとし、加えて該偏平チューブの内面にマルチエントリー型のコルゲートフィンを内装させて伝熱管を形成し、該伝熱管内を通流する高温のEGRガスに対する撹拌作用を促すことにより、該伝熱管壁面を介しての熱交換が促進されるよう構成されている。ここで伝熱管内面に内装される上記コルゲートフィンと、該伝熱管内面とは通常ろう付によって一体として接合されるが、当該ろう接面に部分的な欠陥があって非ろう付部が生じた場合、交換熱量の低下が懸念されるために、上記特許文献3による偏平チューブへのフィンの内装手段は、接合面となる偏平チューブ内面とフィンとの間隙を100μm以下に維持し、その間にろう材を介装させてろう付することによって均一なろう付面が得られ、ろう付の信頼性を確保しつつ熱交換性能を向上した旨報告されている。然しながら、偏平管の内周面やそれに接するコルゲート状のフィンの頂部は、必ずしも面一に相対してはおらず、広汎な接触面の間隙を100μm以下で均一に維持することは意に反して容易なことではなく、該間隙を100μm以下の精度を確保しつつで均一に維持するように仕上げるためには、極めて高度な加工技術が必要となり、結果として著しいコスト上昇を招くことになる。一方、本出願人の先願になる特願2005−203906号の発明によるプレートフィンにおいては、該プレートフィンの側面や上下の壁面に形成される少なくとも1以上の切り欠き部、貫通孔、切起こし部、凹凸状部等の作用により、高いレベルでの熱交換性能が得られることが確認されているが、該プレートフィンに対する切り欠き部、貫通孔、切起こし部、凹凸状部等の加工方法や、加えてこれを断面矩形で長手方向に自由形状とするための加工手段に難があり、得られるフィン構造体そのものが高価とならざるを得ず、結果としてこれを内装する伝熱管、並びに該伝熱管を組込む熱交換器等のコスト上昇を招き、早急に改善を求められる大きな課題であった。 In each of the above prior arts, in the case of the EGR gas cooling device of the double pipe type disclosed in Patent Documents 1 and 2, the structure is simple and compact as described above, but it is excellent as such. Since cooling efficiency can be expected, many heat exchangers for EGR gas cooling that have limited installation space, such as small automobiles, have already been put to practical use. The absolute amount is naturally limited, and as a result, unsolved problems remain in the total heat exchange efficiency. In the shell-and-tube type multi-tube heat exchange type EGR gas cooling device in Patent Document 3 for solving such a problem, a plurality of media are arranged at intervals in the heat exchanger body, The heat transfer tube forming the exhaust gas flow path is a flat tube having a larger heat transfer area, and in addition, a multi-entry type corrugated fin is provided on the inner surface of the flat tube to form a heat transfer tube. By promoting the stirring action on the high-temperature EGR gas flowing through the heat pipe, heat exchange through the heat transfer pipe wall surface is promoted. Here, the corrugated fin and the inner surface of the heat transfer tube, which are installed on the inner surface of the heat transfer tube, are usually joined together by brazing, but the brazed surface has a partial defect and a non-brazed portion is generated. In this case, since there is a concern about a decrease in the amount of heat exchanged, the internal means for fins in the flat tube according to Patent Document 3 maintains the gap between the flat tube inner surface and the fin, which becomes the joining surface, at 100 μm or less, It has been reported that a uniform brazed surface is obtained by brazing with a material interposed, and that heat exchange performance is improved while ensuring the reliability of brazing. However, the inner peripheral surface of the flat tube and the top of the corrugated fin in contact therewith are not necessarily flush with each other, and it is easy to make it difficult to maintain a uniform gap between the wide contact surfaces at 100 μm or less. However, in order to finish the gap so as to keep it uniform while ensuring the accuracy of 100 μm or less, an extremely advanced processing technique is required, resulting in a significant increase in cost. On the other hand, in the plate fin according to the invention of Japanese Patent Application No. 2005-203906 which is the prior application of the present applicant, at least one notch, a through hole, a cut and raised formed on the side surface and upper and lower wall surfaces of the plate fin. It has been confirmed that heat exchange performance at a high level can be obtained by the action of the portion, the concavo-convex portion, etc. In addition, there is a difficulty in processing means for making this a free-form shape in the longitudinal direction with a rectangular cross section, and the resulting fin structure itself has to be expensive, and as a result, a heat transfer tube that incorporates this, and This was a major issue that led to an increase in the cost of a heat exchanger or the like incorporating the heat transfer tube, and which required immediate improvement.
本発明は上記課題を解決することを所期の目的とし、伝熱管に内装されるコルゲートフィンの形成素材として、金属製薄板による好ましくはフープ材に着目し、該フープ材に対する打ち抜きなどの簡略な加工方法によって、予めスリット状の切り欠き部を設け、しかる後に所定の折り曲げ加工を施すことによって、矩形断面を有するチャンネル形状のコルゲートフィンを、極めて低い加工コストによって形成し、このようにして得られた該コルゲートフィンの少なくとも1本を、偏平伝熱管内周面に内装させることによって、高い伝熱性能を有しながらも、比較的低コストでの熱交換器用偏平伝熱管を得ることに成功して本発明を完成した。即ち本発明は金属製薄板からなるフープ材に対する簡略な加工方法を施すことにより、低コストで矩形断面を有するコルゲートフィンを形成し、得られた該コルゲートフィンを内装した熱交換器用の偏平伝熱管と、該伝熱管を少なくとも2本以上配設した多管式熱交換器、さらには熱交換型ガス冷却装置を提供しようとするものである。 The present invention is intended to solve the above problems, and as a forming material of a corrugated fin installed in a heat transfer tube, it preferably focuses on a hoop material made of a thin metal plate, and a simple punching of the hoop material or the like. Depending on the processing method, a slit-shaped notch is provided in advance, and then a predetermined bending process is performed, whereby a channel-shaped corrugated fin having a rectangular cross section is formed at an extremely low processing cost. In addition, by installing at least one of the corrugated fins on the inner peripheral surface of the flat heat transfer tube, it has succeeded in obtaining a flat heat transfer tube for a heat exchanger at a relatively low cost while having high heat transfer performance. The present invention has been completed. That is, the present invention forms a corrugated fin having a rectangular cross section at a low cost by applying a simple processing method to a hoop material made of a thin metal plate, and the obtained flat heat transfer tube for a heat exchanger having the corrugated fin provided therein. And a multi-tube heat exchanger in which at least two heat transfer tubes are arranged, and further a heat exchange type gas cooling device.
上記課題を解決するための本発明による伝熱管は、内周面にコルゲートフィンを内装してなる断面略長円形のレーストラック形状、若しくは略長方形を含む矩形断面の熱交換器用偏平伝熱管において、該偏平伝熱管の内周面に内装される前記コルゲートフィンが金属性薄板からなり、該金属性薄板材に対して所定の間隔で穴開け加工を施すことによって多行多列に複数のスリット状の切り欠き部を形成し、次いで該金属性薄板材を所定の寸法で折り曲げることにより、断面略矩形のチャンネル形状で、長手方向に直線状若しくは自由波形状のコルゲートフィンを形成し、得られた該コルゲートフィンの少なくとも1本が、その内周壁面に接して内装され、相互に通流可能な流体の小流路を形成することを特徴的構成要件とする熱交換器用偏平伝熱管を要旨とするものである。 The heat transfer tube according to the present invention for solving the above problems is a flat heat transfer tube for a heat exchanger having a substantially elliptical cross section with a corrugated fin on the inner peripheral surface, or a rectangular cross section including a substantially rectangular shape, The corrugated fins provided on the inner peripheral surface of the flat heat transfer tube are made of a metallic thin plate, and a plurality of slits are formed in multiple rows and multiple rows by drilling the metallic thin plate material at predetermined intervals. A corrugated fin having a substantially rectangular channel shape and a linear or free wave shape in the longitudinal direction was obtained by bending the metal thin plate material with a predetermined dimension. A flat shape for a heat exchanger characterized in that at least one of the corrugated fins is provided in contact with the inner peripheral wall surface thereof and forms a small flow path of fluid that can flow mutually. It is an gist heat pipe.
また、本発明による上記熱交換器用偏平伝熱管において、内装される波形状のコルゲートフィンが金属性薄板からなり、該金属性薄板にて形成される多行多列のスリット状の切り欠き部が、長方形若しくは長円形或いはそれに準ずる任意の形状に形成され、該切り欠き部の行間若しくは列間毎の配列が、任意所望の形態に形成されることを特徴とするものである。 Further, in the above-described flat heat exchanger tube for heat exchanger according to the present invention, the corrugated fins in the shape of corrugated fins are made of a thin metal plate, and multi-row, multi-row slit-shaped notches formed by the thin metal plate are provided. Further, it is formed in a rectangular shape, an oval shape, or an arbitrary shape equivalent thereto, and the arrangement of the notch portions between rows or columns is formed in any desired shape.
さらに、本発明による上記熱交換器用偏平伝熱管において、内装される波形状のコルゲートフィンは、前記金属製薄板に対するスリット状の切り欠き部の形成手段が、プレスによる打ち抜きその他の機械的加工方法若しくはエッチングを含む化学的加工方法のいずれかであり、また該金属性薄板材に対する断面矩形で長手方向に自由形状とする波形の曲げ加工手段が、プレス成形加工であることを好ましい態様とするものである。 Further, in the flat heat transfer tube for a heat exchanger according to the present invention, the corrugated fin having a corrugated shape is formed by a punching or other mechanical processing method using a press as a means for forming a slit-shaped notch portion on the metal thin plate. It is one of chemical processing methods including etching, and the preferred embodiment is that the corrugated bending means having a rectangular cross section and a free shape in the longitudinal direction with respect to the metallic thin plate material is press forming. is there.
本発明による上記熱交換機用偏平伝熱管はまた、内装されるコルゲートフィンを形成する前記金属製薄板が、SUS304、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールからなり、その板厚が0.05〜0.3mmであることを好ましい態様とするものである。 In the flat heat transfer tube for a heat exchanger according to the present invention, the metal thin plate forming the corrugated fin to be installed is made of austenitic stainless steel such as SUS304, SUS304L, SUS316, SUS316L, and the thickness thereof is 0.05. The preferred embodiment is that it is -0.3 mm.
本発明による上記熱交換器用偏平伝熱管はさらに、前記偏平伝熱管が、内装される前記コルゲートフィンと同一の金属性素材からなり、該金属製素材による円筒管を圧延した偏平管、該金属性素材を予め偏平にロールフォーミングして電縫溶接した偏平管、プレス成形した上板と下板とを最中合せにして接合した偏平管等であることを好ましい態様とするものである。 The flat heat transfer tube for a heat exchanger according to the present invention further comprises a flat tube obtained by rolling a cylindrical tube made of the metal material, the flat heat transfer tube being made of the same metal material as the corrugated fins incorporated therein. A preferred embodiment is a flat tube formed by roll forming a material in advance and electro-welded and a flat tube formed by joining a press-formed upper plate and a lower plate together in the middle.
本発明による上記熱交換器用伝熱管において、前記コルゲートフィンの偏平伝熱管内周面への内装手段が、ろう付け、溶接、拡散接合、接着剤を用いた接着、その他の接合手段の中から適宜選択され、該偏平伝熱管内周壁面へ接して、一体として密着固定されることを好ましい態様とするものである。 In the heat exchanger tube according to the present invention, the inner means of the corrugated fin on the inner peripheral surface of the flat heat exchanger tube is appropriately selected from brazing, welding, diffusion bonding, bonding using an adhesive, and other bonding means. It is preferable that the selected flat plate is in close contact with the inner peripheral wall surface of the flat heat transfer tube and fixed as a unit.
本発明による上記シェルアンドチューブ型の多管式熱交換器は、上記の熱交換器用偏平伝熱管の少なくとも2以上がシェル本体内に組込まれ、該偏平伝熱管内に内装されたコルゲートフィンによって隔てられた小流路間を、相互に通流可能に被冷却媒体であるガス体が流過することを特徴的構成要件とする多管式熱交換器を要旨とするものである。 In the shell-and-tube type multi-tube heat exchanger according to the present invention, at least two or more of the above-described flat heat transfer tubes for heat exchanger are incorporated in the shell body, and are separated by corrugated fins built in the flat heat transfer tubes. The gist of the present invention is a multi-tubular heat exchanger characterized in that a gas body as a cooling medium flows between the small flow paths so as to be able to flow through each other.
本発明による上記EGRガス冷却装置は、前記熱交換器用偏平伝熱管内を流過するガス体がEGRガスであり、該偏平伝熱管を組込んだシェルアンドチューブ型の多管式熱交換器が、EGR再循環システムにおけるガス流路に組込まれることを特徴的構成要件とするEGR冷却装置を要旨とするものである。 In the EGR gas cooling device according to the present invention, the gas body flowing through the heat exchanger flat heat transfer tube is EGR gas, and a shell-and-tube type multi-tube heat exchanger incorporating the flat heat transfer tube is provided. The gist of the EGR cooling apparatus is characterized by being incorporated into a gas flow path in an EGR recirculation system.
本発明に係る上記熱交換器用偏平伝熱管は、該偏平伝熱管内の排気ガス流路が、内装される断面が略矩形のチャンネル形状のコルゲートフィンによって、複数の小流路に隔てられ、しかも該コルゲートフィンに形成された複数のスリット状の切り欠き部により、該流路内を流過する排気ガスは隣接する流路間を相互に通流可能となるために、流体圧力が均一化されることにより、該伝熱管内における小流路に分割された全ての流路間で、その伝熱性能がほぼ均等な状態で向上する。さらに該切り欠き部によって流体の流線が複雑に撹乱され、乱流や渦流を生起せしめられて効果的な攪拌が繰返されると同時に、そのエッジ効果が作用して層流が至るところで剥離されて、偏平伝熱管の内外を通流する流体は繰返し該伝熱管壁面と接触し、伝熱管外周面における冷却媒体若しくは被冷却媒体との熱交換が効率的に促進され、優れた冷却効率が確保される。また、上記コルゲートフィンを内装した本発明による偏平伝熱管が、少なくとも2本以上配設された本発明による多管式熱交換器、或いは該多管式熱交換器をEGR再循環システムにおけるガス流路に組込んだEGRガス冷却装置は、該偏平伝熱管内を流過する高温の排気ガスが、該伝熱管壁面との接触を繰返されることによって、伝熱管外周面を流れる冷却媒体への熱交換が効率的に促進され、優れた冷却効率が確保される。さらにその優れた熱交換性能がそれら装置の小型軽量化に寄与し、該装置のコンパクト化を可能として、限られたスペースに容易に設置することを可能とする。一方、本発明に係る上記熱交換器用偏平伝熱管は、内装されるコルゲートフィンが、金属製薄板からなる好ましくはフープ材に対して予め所定の形状に打ち抜き加工を施し、多行多列に複数のスリット状の切り欠き部を形成した後、該フープ材を所定の寸法形状に折り曲げるという、省略された工程による極めて簡素な加工手段によって得られるものであるところから、その加工コストが大幅に削減され、結果としてこれを内装する偏平伝熱管のコストも低価格に抑えることができ、優れた伝熱性能を有しながらも比較的低コストの熱交換器用偏平伝熱管として市場に提供することができる。従って該伝熱管を複数配設してなる多管式熱交換器、さらにはEGRガス冷却装置の価格をも大幅に削減することができるという多大の効果がもたらされる。また、波形コルゲートフィンを使用すると更に伝熱性能の向上が図られる。 In the flat heat transfer tube for a heat exchanger according to the present invention, the exhaust gas flow path in the flat heat transfer pipe is divided into a plurality of small flow paths by a corrugated fin having a channel shape with a substantially rectangular cross section. The plurality of slit-shaped notches formed in the corrugated fin allow exhaust gas flowing through the flow path to flow between adjacent flow paths, so that the fluid pressure is made uniform. As a result, the heat transfer performance is improved in an almost uniform state between all the flow paths divided into the small flow paths in the heat transfer tube. Furthermore, the fluid streamlines are complicatedly disturbed by the notches, and turbulence and vortex are generated, and effective stirring is repeated. At the same time, the edge effect acts and the laminar flow is separated everywhere. The fluid flowing inside and outside the flat heat transfer tube repeatedly contacts the wall surface of the heat transfer tube, and heat exchange with the cooling medium or the cooled medium on the outer surface of the heat transfer tube is efficiently promoted, and excellent cooling efficiency is ensured. The Also, the multi-tube heat exchanger according to the present invention in which at least two flat heat transfer tubes according to the present invention having the corrugated fins installed therein are provided, or the multi-tube heat exchanger is used as a gas flow in the EGR recirculation system. The EGR gas cooling device incorporated in the passage is such that the high-temperature exhaust gas flowing through the flat heat transfer tube is repeatedly brought into contact with the wall surface of the heat transfer tube, whereby heat to the cooling medium flowing on the outer peripheral surface of the heat transfer tube is obtained. The exchange is efficiently promoted and excellent cooling efficiency is ensured. Furthermore, the excellent heat exchange performance contributes to the reduction of the size and weight of the devices, making the devices compact and enabling easy installation in a limited space. On the other hand, in the flat heat transfer tube for a heat exchanger according to the present invention, the corrugated fins provided therein are preferably punched into a predetermined shape in advance for a hoop material made of a thin metal plate, and a plurality of multi-row multi-rows are provided. After the slit-shaped notch is formed, the hoop material is bent into a predetermined size and shape, which is obtained by an extremely simple processing means by an omitted process, so that the processing cost is greatly reduced. As a result, the cost of the flat heat transfer tube that embeds it can be kept at a low price, and it can be provided to the market as a flat heat transfer tube for a heat exchanger with excellent heat transfer performance but relatively low cost. it can. Therefore, a great effect is obtained that the cost of a multi-tube heat exchanger in which a plurality of the heat transfer tubes are arranged, and also the cost of the EGR gas cooling device can be greatly reduced. Further, the use of corrugated corrugated fins further improves the heat transfer performance.
以下、本発明の実施の形態について添付した図面並びに実施例に基づいて更に詳細に、且つ具体的に説明するが、本発明はこれによって拘束されるものではなく、得られる偏平伝熱管や該伝熱管に内装されるコルゲートフィンの構造や形状を含め、本発明の主旨の範囲内で自由に設計変更が可能である。 Hereinafter, the embodiments of the present invention will be described in more detail and specifically with reference to the accompanying drawings and examples. However, the present invention is not limited thereto, and the obtained flat heat transfer tube and the heat transfer tube will be described. The design can be freely changed within the scope of the present invention, including the structure and shape of the corrugated fins installed in the heat pipe.
図1は本発明に係る第1実施例による熱交換器用偏平伝熱管を模式的に示す要部拡大斜視図、図2は同実施例において、金属製薄板からなるフープ材に対して所定の間隔で穴あけ加工を施し、スリット状の切り欠き部を形成した状態を示す要部拡大平面図、図3は同実施例において、切り欠き部が形成された前記フープ材に対してプレス成形による折り曲げ加工を施し、断面チャンネル形状のコルゲートフィンを形成した状態を模式的に示す要部拡大斜視図、図4は本発明に係る第2実施例において、フープ材に対して交互に異なる形状に穴あけ加工施し、スリット状の切り欠き部を形成した状態を示す要部拡大平面図、図5は同実施例において、切り欠き部が形成された前記フープ材に対してプレス成形による折り曲げ加工を施し、断面チャンネル形状のコルゲートフィンを形成した状態を模式的に示す要部拡大斜視図、図6は本発明に係る第3実施例において、フープ材に対して千鳥状に穴あけ加工を施し、スリット状の切り欠き部を形成した状態を示す要部拡大平面図、図7は同実施例において、千鳥状に切り欠き部が形成された前記フープ材に対してプレス成形加工を施し、断面チャンネル形状の波形コルゲートフィンを形成した状態を模式的に示す要部拡大斜視図、図8は本発明に係る第4実施例において、フープ材に対して位置や形状がそれぞれ異なる穴あけ加工を施し、スリット状の切り欠き部を形成した状態を示す要部拡大平面図、図9は本発明に係る第5実施例による波形コルゲートフィンを内装した熱交換器用偏平伝熱管を模式的に示す要部拡大斜視図である。 FIG. 1 is an enlarged perspective view of a main part schematically showing a flat heat transfer tube for a heat exchanger according to a first embodiment of the present invention, and FIG. 2 shows a predetermined interval with respect to a hoop material made of a thin metal plate in the same embodiment. 3 is an enlarged plan view of a main part showing a state in which a slit-like cutout is formed, and FIG. 3 is a diagram illustrating a bending process by press molding of the hoop material in which the cutout is formed in the same embodiment. 4 is an enlarged perspective view of a main part schematically showing a state in which a corrugated fin having a channel shape in cross section is formed, and FIG. 4 is a second embodiment according to the present invention, in which a hoop material is alternately drilled into different shapes. FIG. 5 is an enlarged plan view of a main part showing a state in which a slit-like cutout is formed. FIG. 5 is a cross-sectional view of the hoop material in which the cutout is formed according to the same embodiment. FIG. 6 is an enlarged perspective view of a main portion schematically showing a state in which a tunnel-shaped corrugated fin is formed. FIG. 6 is a third embodiment according to the present invention. FIG. 7 is an enlarged plan view of a main part showing a state in which a notch is formed. FIG. 7 is a corrugated corrugation having a cross-sectional channel shape by press-forming the hoop material in which the notch is formed in a staggered manner FIG. 8 is an enlarged perspective view of a main part schematically showing a state in which fins are formed, and FIG. 8 is a slit-like cutout in the fourth embodiment according to the present invention, in which hole processing is performed at different positions and shapes on the hoop material. FIG. 9 is an enlarged perspective view of an essential part schematically showing a flat heat transfer tube for a heat exchanger equipped with a corrugated fin according to a fifth embodiment of the present invention.
本発明に係る第1実施例による熱交換器用偏平伝熱管は、図1に要部を拡大して示すように断面形状が略長円形のレーストラック形状で、板厚が0.5mmのSUS304Lオーステナイト系ステンレススチールを素材として形成された偏平管であって、その内周面に断面矩形のチャンネル形状であって、長手方向に所定の間隔で切り欠き部4が形成されたコルゲートフィン2が内装され、該偏平伝熱管内を通流する流体の流路を、複数の小流路に区画するように構成されている。ここで本実施例による上記熱交換器用偏平伝熱管に内装される流体攪拌用のコルゲートフィン2は、図2に示すように板厚が0.05mmの同種のSUS304Lオーステナイト系ステンレススチールからなるフープ材3からなり、該フープ材3に対して所定の間隔で且つ多行多列に、プレスによる打ち抜きによって穴開け加工を施して、予め長方形のスリット状の切り欠き部4を形成し、次いで後該フープ材3に対してプレス成形による屈曲部5を繰り返した折りの曲げ加工を施して、図3に示すように断面が矩形のチャンネル形状で、長手方向に多行多列の切り欠き部4が形成されたコルゲートフィン2が形成される。形成された本実施例によるコルゲートフィン2は、上記偏平伝熱管1に内装され、その内周面にろう付によって一体として固着され、該偏平伝熱管1内における流体の流路を複数の小流路に区画すると同時に、長手方向に多行多列に設けられた前記多数の切り欠き部4によって、区画された該小流路内を通流する流体は相互に自由に行き来を繰り返すことが可能となり、各流路間における流速の偏りが効果的に解消される。また、形成された複数の切り欠き部4のエッジ作用によって層流が至るところで剥離され、該偏平伝熱管1の外側を流れる冷却媒体に対する熱交換が促進されることにより、その伝熱性能が著しく向上することとなる。このようにして形成された本実施例による偏平伝熱管1を複数用意し、図示を省略する排気ガス冷却装置用の多管式熱交換器におけるガス流路として組込み、排気ガスの冷却性能試験に供した結果、内装されているコルゲートフィン2が設計値どおりに機能して、熱交換器としての伝熱効率が極めて高いレベルに到達していることが実証され、さらに該熱交換器をEGR再循環システムにおけるガス流路に組込むことにより、高温のEGRガスが初期の設定温度まで効率的に冷却されることが確認された。なお、フープ材ではなく、伝熱管の長さに整合させて切断された平板材から折り曲げ成形してコルゲートフィン2を製作してもよい。 A flat heat transfer tube for a heat exchanger according to a first embodiment of the present invention is a SUS304L austenite having a racetrack shape with a substantially oval cross-section and a plate thickness of 0.5 mm as shown in FIG. Corrugated fin 2 having a channel shape with a rectangular cross section on the inner peripheral surface and formed with notches 4 at predetermined intervals in the longitudinal direction. The flow path of the fluid flowing through the flat heat transfer tube is divided into a plurality of small flow paths. Here, the corrugated fin 2 for fluid agitation installed in the flat heat transfer tube for heat exchanger according to the present embodiment is a hoop material made of the same kind of SUS304L austenitic stainless steel having a thickness of 0.05 mm as shown in FIG. 3 to form a rectangular slit-shaped cutout portion 4 in advance by punching by punching with a press at predetermined intervals and in multiple rows and multiple rows with respect to the hoop material 3. The hoop material 3 is subjected to bending processing by repeatedly bending the bent portion 5 by press molding, and as shown in FIG. 3, the channel section has a rectangular cross section and multi-row, multi-row cutout portions 4 are formed in the longitudinal direction. The formed corrugated fin 2 is formed. The formed corrugated fin 2 according to the present embodiment is internally mounted in the flat heat transfer tube 1 and is integrally fixed to the inner peripheral surface thereof by brazing, and the fluid flow path in the flat heat transfer tube 1 is divided into a plurality of small flow streams. At the same time as dividing into the passages, the fluids flowing through the partitioned small flow paths can freely move back and forth with each other by the plurality of cutout portions 4 provided in multi-rows and multi-columns in the longitudinal direction. Thus, the uneven flow velocity between the channels is effectively eliminated. Further, the laminar flow is separated by the edge action of the formed notches 4 and heat exchange with the cooling medium flowing outside the flat heat transfer tube 1 is promoted, so that the heat transfer performance is remarkably increased. Will be improved. A plurality of flat heat transfer tubes 1 according to the present embodiment formed in this way are prepared and incorporated as gas flow paths in a multi-tube heat exchanger for an exhaust gas cooling device (not shown) for exhaust gas cooling performance tests. As a result, it was proved that the built-in corrugated fins 2 functioned as designed, and the heat transfer efficiency as a heat exchanger reached an extremely high level, and the heat exchanger was further recirculated by EGR. It was confirmed that the hot EGR gas was efficiently cooled to the initial set temperature by incorporating it into the gas flow path in the system. Note that the corrugated fins 2 may be manufactured by bending from a flat plate material that is cut in conformity with the length of the heat transfer tube instead of the hoop material.
フープ材3aをプレスによって打ち抜いて、多行多列の穴開け加工を施す際に、図4に示すように各行に所定の間隔を隔てて、長円形の切り欠き部4aと長方形の切り欠き部4bとをそれぞれ各列交互に、且つ隣接する行間において各列を位相ずらして形成した以外は、上記実施例1と同様にして図5に示すような断面が矩形のチャンネル形状で、長手方向に多行多列の切り欠き部4aおよび4bが多数形成されたコルゲートフィン2aを形成し、次いで該コルゲートフィン2aを実施例1と同様にして偏平管に内装して、本実施例による熱交換器用偏平伝熱管(図示を省略)を得た。得られた本実施例による該熱交換器用偏平伝熱管複数を用意し、上記実施例1と同一にして排気ガス冷却装置用の多管式熱交換器におけるガス流路として組込み、同一の条件で排気ガスの冷却性能試験に供した結果、内装されているコルゲートフィン2aが優れた機能を示し、熱交換器の伝熱効率が実施例1と同様極めて高いレベルに到達していることが実証され、さらに該熱交換器をEGR再循環システムにおけるガス流路に組込むことにより、実施例1とほぼ同等の冷却効率を得られることが確認された。 When punching the hoop material 3a by a press and performing multi-row and multi-row drilling, as shown in FIG. 4, an oval cut-out portion 4a and a rectangular cut-out portion are provided at predetermined intervals in each row. 4b is formed in the shape of a channel having a rectangular cross section as shown in FIG. 5 in the longitudinal direction in the same manner as in Example 1 except that each column is alternately formed in each column and each column is shifted in phase between adjacent rows. A corrugated fin 2a having a large number of multi-row, multi-row cutouts 4a and 4b is formed, and then the corrugated fin 2a is mounted in a flat tube in the same manner as in the first embodiment, and is used for the heat exchanger according to the present embodiment. A flat heat transfer tube (not shown) was obtained. A plurality of the flat heat transfer tubes for the heat exchanger according to the present example obtained were prepared and incorporated as a gas flow path in a multi-tube heat exchanger for an exhaust gas cooling device in the same manner as in Example 1 above, under the same conditions. As a result of the exhaust gas cooling performance test, it was demonstrated that the corrugated fins 2a incorporated therein showed an excellent function, and the heat transfer efficiency of the heat exchanger reached an extremely high level as in Example 1, Furthermore, it was confirmed that a cooling efficiency substantially equivalent to that of Example 1 can be obtained by incorporating the heat exchanger into the gas flow path in the EGR recirculation system.
フープ材3bをプレスによって打ち抜いて、多行多列の穴開け加工を施す際に、図6に示すように各行に間隔を隔てて形成される長方形の切り欠き部4cの間に、隣接する行間に連なり、且つ各列を千鳥状に位相ずらして長方形の切り欠き部4d形成した以外は、上記実施例1と同様にして図7に示すような断面が矩形のチャンネル形状で、長手方向に多行多列の切り欠き部4cおよび4dが多数形成されたコルゲートフィン2bを形成し、次いで該コルゲートフィン2bを実施例1と同様にして偏平管に内装して、本実施例による熱交換器用偏平伝熱管(図示を省略)を得た。得られた本実施例による該熱交換器用偏平伝熱管複数を用意し、上記実施例1と同一にして排気ガス冷却装置用の多管式熱交換器(図示を省略)におけるガス流路として組込み、同一の条件で排気ガスの冷却性能試験に供した結果、内装されているコルゲートフィン2bに千鳥状に形成された切り欠き部4cおよび4dが、特有の優れた機能を発揮し、伝熱管の上面並びに下面側を通流する冷却媒体とほぼ均等に熱交換され、熱交換器としての伝熱効率が実施例1と同等以上の、極めて高いレベルに到達していることが実証され、さらに該熱交換器をEGR再循環システムにおけるガス流路に組込むことにより、実施例1を上回る冷却効率を得られることが確認された。 When punching the hoop material 3b by a press and performing multi-row multi-row drilling, as shown in FIG. 6, between the rectangular notches 4c formed at intervals in each row, adjacent rows 7 except that the rectangular cutouts 4d are formed by staggering the rows in a zigzag manner and having a rectangular channel shape as shown in FIG. A corrugated fin 2b in which a large number of row notches 4c and 4d are formed is formed, and then the corrugated fin 2b is mounted in a flat tube in the same manner as in the first embodiment. A heat transfer tube (not shown) was obtained. A plurality of the flat heat transfer tubes for the heat exchanger according to the present embodiment obtained are prepared and incorporated as a gas flow path in a multi-tube heat exchanger (not shown) for an exhaust gas cooling device in the same manner as in the first embodiment. As a result of the exhaust gas cooling performance test under the same conditions, the cutout portions 4c and 4d formed in a zigzag shape in the corrugated fin 2b provided in the interior exhibit a unique and excellent function, and the heat transfer tube It has been proved that heat is exchanged almost evenly with the cooling medium flowing through the upper surface and the lower surface side, and the heat transfer efficiency as a heat exchanger has reached a very high level equivalent to or higher than that of the first embodiment. It was confirmed that a cooling efficiency higher than that of Example 1 can be obtained by incorporating the exchanger into the gas flow path in the EGR recirculation system.
フープ材3cをプレスによって打ち抜いて、多行多列の穴開け加工を施す際に、図8に示すように各行に間隔を隔てて形成される長方形の切り欠き部4e、前方に凹部を有する切り欠き部4f、前方に凸部を有する切り欠き部4g等を、隣接する行間で適宜に位相ずらして形成した以外は、上記実施例1と同様にして断面が矩形のチャンネル形状で、長手方向に多行多列の切り欠き部4e、4fおよび4gが形成されたコルゲートフィン(図示を省略)を形成し、次いで該コルゲートフィンを実施例1と同様にして偏平管に内装して、本実施例による熱交換器用偏平伝熱管(図示を省略)を得た。得られた本実施例による該熱交換器用偏平伝熱管を複数用意し、上記実施例1と同一にして排気ガス冷却装置用の多管式熱交換器(図示を省略)におけるガス流路として組込み、同一の条件で排気ガスの冷却性能試験に供した結果、内装されているコルゲートフィンに形成された切り欠き部4e、4fおよび4gが、それぞれ特有の作用を示し、通流するガスは複雑に撹拌され、層流の剥離はさらに進行して、伝熱管の外側を流れる冷却媒体と効果的に熱交換され、熱交換器としての伝熱効率が実施例1と同等以上の極めて高いレベルに到達していることが実証され、さらに該熱交換器をEGR再循環システムにおけるガス流路に組込むことにより、実施例1を上回る冷却効率を得られることが確認された。 When punching the hoop material 3c with a press to perform multi-row multi-row drilling, rectangular notches 4e formed at intervals in each row as shown in FIG. Except that the notch portion 4f, the notch portion 4g having a convex portion on the front, and the like are formed by appropriately shifting the phase between adjacent rows, the channel shape has a rectangular cross section in the longitudinal direction as in the first embodiment. A corrugated fin (not shown) in which multi-row, multi-column cutouts 4e, 4f and 4g are formed is formed, and then the corrugated fin is mounted in a flat tube in the same manner as in the first embodiment. A flat heat transfer tube for heat exchanger (not shown) was obtained. A plurality of flat heat transfer tubes for the heat exchanger according to the present embodiment obtained are prepared and incorporated as a gas flow path in a multi-tube heat exchanger (not shown) for an exhaust gas cooling device in the same manner as in the first embodiment. As a result of being subjected to the exhaust gas cooling performance test under the same conditions, the notches 4e, 4f and 4g formed in the corrugated fins that are built in each show unique actions, and the flowing gas is complicated The agitation and laminar flow further proceed and heat exchange is effectively performed with the cooling medium flowing outside the heat transfer tube, and the heat transfer efficiency as a heat exchanger reaches a very high level equal to or higher than that of the first embodiment. Further, it was confirmed that the cooling efficiency higher than that of Example 1 can be obtained by incorporating the heat exchanger into the gas flow path in the EGR recirculation system.
実施例1によって形成されたコルゲートフィン2に対して、さらにドローベント加工を施すことによって、図9に示すような長手方向に所定のピッチ間隔で、波形のうねりが形成された波形コルゲートフィン2cを形成し、次いで該コルゲートフィンを実施例1と同様にして偏平管に内装して、図9に示すような本実施例による熱交換器用偏平伝熱管1aを得た。得られた本実施例による該熱交換器用偏平伝熱管1aを複数用意し、上記実施例1と同様にして排気ガス冷却装置用の多管式熱交換器(図示を省略)におけるガス流路として組込み、同一の条件で排気ガスの冷却性能試験に供した結果、内装されている波形コルゲートフィン2cに形成された切り欠き部4と、長手方向に所定のピッチ間隔で形成されたうねりとが相乗効果をもたらし、熱交換器としての伝熱効率が実施例1以上の極めて高いレベルに到達していることが実証され、さらに該熱交換器をEGR再循環システムにおけるガス流路に組込むことにより、実施例1をさらに上回る冷却効率を得られることが確認された。 The corrugated fin 2c formed with corrugated undulations at predetermined pitch intervals in the longitudinal direction as shown in FIG. 9 by further drawing the corrugated fin 2 formed in the first embodiment. After that, the corrugated fin was installed in a flat tube in the same manner as in Example 1 to obtain a heat exchanger flat heat transfer tube 1a according to this example as shown in FIG. A plurality of the flat heat transfer tubes 1a for the heat exchanger according to the present example obtained are prepared, and as a gas flow path in a multi-tube heat exchanger (not shown) for an exhaust gas cooling device in the same manner as in Example 1 above. As a result of the built-in and exhaust gas cooling performance test under the same conditions, the notch 4 formed in the corrugated corrugated fin 2c provided in the interior and the undulation formed at a predetermined pitch interval in the longitudinal direction are synergistic. It is demonstrated that the heat transfer efficiency as a heat exchanger has reached an extremely high level as compared with Example 1, and the heat exchanger is incorporated into the gas flow path in the EGR recirculation system. It was confirmed that a cooling efficiency higher than Example 1 could be obtained.
本発明に基づく上記各実施例において、偏平伝熱管に内装されるコルゲートフィンを形成する金属製薄板からなるフープ材としては、板厚が0.05mmのSUS304Lオーステナイト系ステンレススチールを素材として採用しているが、該フープ材はこれに限定されるものではなく、板厚が0.05〜0.5mmのその他のステンレススチール、例えば、SUS304、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールのなかから適宜に選択して用いることも可能であり、偏平伝熱管を形成する偏平管は、基本的にそれより板厚が上回る同種の素材によって形成されることが好ましく、円筒管を圧延して断面形状が略長円形のレーストラック形状に形成したものの他に、該金属性素材を予め偏平にロールフォーミングして電縫溶接した偏平管、プレス成形した上板と下板とを最中合せにして接合した偏平管等を好ましく採用することも可能である。また、フープ材に対するスリット状の穴開け加工は、上記各実施例におけるプレスによる打ち抜きの他に、他の機械的加工手段やエッチングによる化学的加工手段等を適宜に選択することもでき、形成されるスリット状の切り欠き部の形状や配列の形態等については、本発明の目的を達成し得る範囲内において任意に変更することを妨げない。さらに該コルゲートフィンの偏平伝熱管内周面への内装手段は、上記実施例におけるろう付のほかに溶接、拡散接合、接着剤による接合等の中から任意に選択することも可能である。 In each of the above embodiments based on the present invention, SUS304L austenitic stainless steel having a thickness of 0.05 mm is used as a material as a hoop material made of a thin metal plate forming a corrugated fin installed in a flat heat transfer tube. However, the hoop material is not limited to this, and other stainless steel having a thickness of 0.05 to 0.5 mm, for example, austenitic stainless steel such as SUS304, SUS304L, SUS316, SUS316L, etc. It is also possible to select and use appropriately, and the flat tube forming the flat heat transfer tube is preferably formed of the same kind of material whose plate thickness is basically higher than that, and the cylindrical tube is rolled to obtain a cross-sectional shape. In addition to those formed in the shape of a substantially oval race track, the metallic material is previously flattened. Flattened tube with electric resistance welding by roll forming, it is possible to preferably adopt a flattened tube or the like bonded in the combined during the press-molded upper and lower plate. Further, the slit-like drilling process for the hoop material can be formed by appropriately selecting other mechanical processing means, chemical processing means by etching, etc. in addition to punching by press in each of the above embodiments. The shape of the slit-like cutouts, the form of the arrangement, and the like are not prevented from being arbitrarily changed within a range in which the object of the present invention can be achieved. Furthermore, the interior means of the corrugated fin on the inner peripheral surface of the flat heat transfer tube may be arbitrarily selected from welding, diffusion bonding, bonding with an adhesive, etc. in addition to brazing in the above embodiment.
上記各実施例からも明らかなように本発明による熱交換器用偏平伝熱管は、該偏平伝熱管内における排気ガス流路が、内装される断面が略矩形のチャンネル形状で、長手方向に直線状若しくは自由形状を有するコルゲートフィンによって、複数の小流路に隔てられ、しかも該コルゲートフィンに形成された複数のスリット状の切り欠き部により、該流路内を流過する排気ガスは隣接する流路間を相互に通流可能となるために、流体圧力が均一化されることにより、該伝熱管内における小流路に分割された全ての流路間で、その伝熱性能がほぼ均等な状態で向上する。さらに該切り欠き部のエッジ効果によって流体の流線が複雑に撹乱され、乱流や渦流を生起せしめられて効果的な攪拌が繰返されると同時に、そのエッジ効果が作用して層流が至るところで剥離されて、偏平伝熱管の内外を流過する流体は繰返し該伝熱管壁面と接触し、伝熱管外周面における冷却媒体若しくは被冷却媒体との熱交換が効率的に促進され、優れた冷却効率が確保される。また、上記コルゲートフィンを内装した本発明による偏平伝熱管が、少なくとも2本以上配設された本発明による多管式熱交換器、或いは該多管式熱交換器をEGR再循環システムにおけるガス流路に組込んだEGRガス冷却装置は、該偏平伝熱管内を流過する高温の排気ガスが、該伝熱管壁面との接触を繰返されることによって、伝熱管外周面を流れる冷却媒体への熱交換が効率的に促進され、優れた冷却効率が確保される。さらにその優れた熱交換性能がそれら装置の小型軽量化に寄与し、該装置のコンパクト化を可能として、限られたスペースに容易に設置することを可能とする。一方、本発明に係る上記熱交換器用偏平伝熱管は、内装されるコルゲートフィンが、金属製薄板からなるフープ材に対して予め所定の形状に打ち抜き加工を施し、多行多列に複数のスリット状の切り欠き部を形成した後、該フープ材を所定の寸法形状に折り曲げるという、省略された工程による極めて簡素な加工手段によって得られるものであるところから、その加工コストが大幅に削減され、結果としてこれを内装する偏平伝熱管のコストも低価格に抑えることができ、優れた伝熱性能を有しながらも比較的低コストの熱交換器用偏平伝熱管として市場に提供することを可能とし、該伝熱管を複数配設してなる多管式熱交換器、さらには該多管式熱交換器を装着したEGRガス冷却装置の価格をも大幅に削減することができる。さらに、本発明による上記コルゲートフィンを内装した偏平伝熱管を搭載することにより、熱交換型の冷却装置の構造が簡略化されるにも拘らず、優れた冷却効率を示すところから、それら装置の軽量・小型化を可能とするため前記自動車用のEGRガス冷却装置のみならず、被冷却媒体と冷却媒体との対象条件が、気体−気体、気体−液体、液体−液体に変換されるなど、その粘性や温度に変化が生じた場合においてもフレキシブルに対応することが可能で、他のガス冷却装置、オイルや燃料等液体の冷却装置としても十分に転用することが可能であり、当業界における幅広い用途に期待が持たれる。 As is clear from the above embodiments, the flat heat transfer tube for a heat exchanger according to the present invention has a channel shape in which the exhaust gas flow path in the flat heat transfer tube has a substantially rectangular cross section and is linear in the longitudinal direction. Alternatively, the exhaust gas flowing through the channel is separated by a plurality of slit-shaped notches formed in the corrugated fin by the corrugated fin having a free shape. In order to allow mutual flow between the channels, the fluid pressure is made uniform so that the heat transfer performance is almost uniform among all the channels divided into the small channels in the heat transfer tube. Improve in condition. In addition, the streamline of the fluid is complexly disturbed by the edge effect of the notch, and turbulent flow and vortex flow are generated, and effective stirring is repeated. At the same time, the edge effect acts to reach laminar flow. The fluid that has been peeled off and flows through the inside and outside of the flat heat transfer tube repeatedly contacts the heat transfer tube wall surface, and heat exchange with the cooling medium or the medium to be cooled on the outer peripheral surface of the heat transfer tube is efficiently promoted, resulting in excellent cooling efficiency. Is secured. Also, the multi-tube heat exchanger according to the present invention in which at least two flat heat transfer tubes according to the present invention having the corrugated fins installed therein are provided, or the multi-tube heat exchanger is used as a gas flow in the EGR recirculation system. The EGR gas cooling device incorporated in the passage is such that the high-temperature exhaust gas flowing through the flat heat transfer tube is repeatedly brought into contact with the wall surface of the heat transfer tube, whereby heat to the cooling medium flowing on the outer peripheral surface of the heat transfer tube is obtained. The exchange is efficiently promoted and excellent cooling efficiency is ensured. Furthermore, the excellent heat exchange performance contributes to the reduction of the size and weight of the devices, making the devices compact and enabling easy installation in a limited space. On the other hand, the flat heat transfer tube for a heat exchanger according to the present invention includes a corrugated fin that is punched into a predetermined shape in advance for a hoop material made of a thin metal plate, and has a plurality of slits in multiple rows and multiple rows. After the formation of the cut-out portion in the shape, the hoop material is bent into a predetermined dimensional shape, which is obtained by an extremely simple processing means by an omitted process, the processing cost is greatly reduced, As a result, the cost of the flat heat transfer tube that houses it can be kept low, and it can be offered to the market as a relatively low cost flat heat transfer tube for heat exchangers while having excellent heat transfer performance. The price of a multi-tube heat exchanger in which a plurality of the heat transfer tubes are arranged, and also an EGR gas cooling apparatus equipped with the multi-tube heat exchanger can be greatly reduced. Furthermore, although the structure of the heat exchange type cooling device is simplified by mounting the flat heat transfer tube with the corrugated fin according to the present invention, the cooling efficiency of these devices is improved. In order to enable light weight and downsizing, not only the EGR gas cooling device for automobiles but also the target condition of the medium to be cooled and the cooling medium is converted into gas-gas, gas-liquid, liquid-liquid, etc. It is possible to flexibly cope with changes in viscosity and temperature, and it can be used as a cooling device for other gas cooling devices and liquids such as oil and fuel. Expectations for a wide range of applications.
1、1a 偏平伝熱管
2、2a、2b コルゲートフィン
2c 波形コルゲートフィン
3、3a、3b、3c フープ材
4、4a、4b、4c、4d、4e、4f、4g 切り欠き部
5、5a、5c、5d 屈曲部
1, 1a Flat heat transfer tube 2, 2a, 2b Corrugated fin 2c Corrugated corrugated fin 3, 3a, 3b, 3c Hoop material 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g Notch 5, 5a, 5c, 5d bent part
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006186131A JP2008014566A (en) | 2006-07-05 | 2006-07-05 | Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006186131A JP2008014566A (en) | 2006-07-05 | 2006-07-05 | Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008014566A true JP2008014566A (en) | 2008-01-24 |
Family
ID=39071753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006186131A Pending JP2008014566A (en) | 2006-07-05 | 2006-07-05 | Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008014566A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204182A (en) * | 2008-02-26 | 2009-09-10 | Denso Corp | Heat exchanger |
US20100000722A1 (en) * | 2008-07-03 | 2010-01-07 | Arun Muley | heat exchanger fin containing notches |
JP2010257754A (en) * | 2009-04-24 | 2010-11-11 | Toyota Motor Corp | Gas flow passage metal plate of fuel cell, its manufacturing device, and manufacturing method |
JP2011112331A (en) * | 2009-11-30 | 2011-06-09 | T Rad Co Ltd | Heat exchanger for exhaust gas |
JP2011214786A (en) * | 2010-03-31 | 2011-10-27 | Yutaka Giken Co Ltd | Heat exchanger |
JP2019176107A (en) * | 2018-03-29 | 2019-10-10 | 古河電気工業株式会社 | Assemble fin |
JP2019198823A (en) * | 2018-05-16 | 2019-11-21 | モリテックスチール株式会社 | Metal foil, and laminate having the same |
CN112470329A (en) * | 2018-07-27 | 2021-03-09 | 日本轻金属株式会社 | Cooling device |
WO2024024372A1 (en) * | 2022-07-25 | 2024-02-01 | ローム株式会社 | Semiconductor device, electric power conversion unit and method for manufacturing semiconductor device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002137054A (en) * | 2000-10-26 | 2002-05-14 | Toyo Radiator Co Ltd | Heat exchanger and its production method |
JP2006105577A (en) * | 2004-09-08 | 2006-04-20 | Usui Kokusai Sangyo Kaisha Ltd | Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein |
-
2006
- 2006-07-05 JP JP2006186131A patent/JP2008014566A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002137054A (en) * | 2000-10-26 | 2002-05-14 | Toyo Radiator Co Ltd | Heat exchanger and its production method |
JP2006105577A (en) * | 2004-09-08 | 2006-04-20 | Usui Kokusai Sangyo Kaisha Ltd | Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009204182A (en) * | 2008-02-26 | 2009-09-10 | Denso Corp | Heat exchanger |
US20100000722A1 (en) * | 2008-07-03 | 2010-01-07 | Arun Muley | heat exchanger fin containing notches |
US8327924B2 (en) * | 2008-07-03 | 2012-12-11 | Honeywell International Inc. | Heat exchanger fin containing notches |
JP2010257754A (en) * | 2009-04-24 | 2010-11-11 | Toyota Motor Corp | Gas flow passage metal plate of fuel cell, its manufacturing device, and manufacturing method |
JP2011112331A (en) * | 2009-11-30 | 2011-06-09 | T Rad Co Ltd | Heat exchanger for exhaust gas |
JP2011214786A (en) * | 2010-03-31 | 2011-10-27 | Yutaka Giken Co Ltd | Heat exchanger |
JP2019176107A (en) * | 2018-03-29 | 2019-10-10 | 古河電気工業株式会社 | Assemble fin |
JP7133960B2 (en) | 2018-03-29 | 2022-09-09 | 古河電気工業株式会社 | assembled fins |
JP2019198823A (en) * | 2018-05-16 | 2019-11-21 | モリテックスチール株式会社 | Metal foil, and laminate having the same |
CN112470329A (en) * | 2018-07-27 | 2021-03-09 | 日本轻金属株式会社 | Cooling device |
CN112470329B (en) * | 2018-07-27 | 2024-02-06 | 日本轻金属株式会社 | Cooling device |
WO2024024372A1 (en) * | 2022-07-25 | 2024-02-01 | ローム株式会社 | Semiconductor device, electric power conversion unit and method for manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4756585B2 (en) | Heat exchanger tube for heat exchanger | |
JP2008014566A (en) | Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube | |
JP2006105577A (en) | Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein | |
JP4614266B2 (en) | Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins | |
US8069905B2 (en) | EGR gas cooling device | |
US20200208917A1 (en) | Oil cooler | |
US8651170B2 (en) | Exhaust gas heat exchanger | |
US7011150B2 (en) | Tube structure of multitubular heat exchanger | |
US8418753B2 (en) | Heat exchange tube | |
JP2006038304A5 (en) | ||
JP5394405B2 (en) | Heat exchanger | |
US20070017661A1 (en) | Heat exchanger | |
CN102037307A (en) | Tube for a heat exchanger | |
JP2007046890A (en) | Tubular heat exchanger for egr gas cooler | |
JP2007064514A (en) | Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube | |
US20070000652A1 (en) | Heat exchanger with dimpled tube surfaces | |
JP2008145024A (en) | Manufacturing method of flat heat transfer tube, flat heat transfer tube obtained by method, and gas cooling device incorporating flat heat transfer tube | |
JP2008202846A (en) | Heat transfer tube for heat exchanger and egr gas cooling device using the same | |
JP2007113795A (en) | Multitubular heat exchanger for exhaust gas cooling device | |
JP4122670B2 (en) | Heat exchanger | |
JP2008232142A (en) | Cooled egr system and heat exchanger for system thereof | |
JP2006084078A (en) | Thin heat transfer tube unit of thin multitubular heat exchanger | |
JP2007225137A (en) | Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device | |
US20160363380A1 (en) | Heat exchanger | |
US6209629B1 (en) | Beaded plate for a heat exchanger and method of making same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110526 |
|
A02 | Decision of refusal |
Effective date: 20111014 Free format text: JAPANESE INTERMEDIATE CODE: A02 |