JP2007046890A - Tubular heat exchanger for egr gas cooler - Google Patents

Tubular heat exchanger for egr gas cooler Download PDF

Info

Publication number
JP2007046890A
JP2007046890A JP2006190844A JP2006190844A JP2007046890A JP 2007046890 A JP2007046890 A JP 2007046890A JP 2006190844 A JP2006190844 A JP 2006190844A JP 2006190844 A JP2006190844 A JP 2006190844A JP 2007046890 A JP2007046890 A JP 2007046890A
Authority
JP
Japan
Prior art keywords
egr gas
heat exchanger
guide plate
bonnet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006190844A
Other languages
Japanese (ja)
Inventor
Masayoshi Usui
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2006190844A priority Critical patent/JP2007046890A/en
Publication of JP2007046890A publication Critical patent/JP2007046890A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1653Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having a square or rectangular shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tubular heat exchanger providing excellent heat exchange efficiency, by introducing EGR gas into a plurality of heat transfer tubes arranged in the tubular heat exchanger for an EGR (Exhaust Gas Recirculation) gas cooler, at a uniform flow rate with a uniform flow velocity distribution. <P>SOLUTION: In this tubular heat exchanger for the EGR gas cooler, a bonnet connected integrally to an EGR gas inlet side of a shell main body constituting the tubular heat exchanger via a tube sheet to bring a cross-sectional shape into a substantially rectangular shape along an axial center of the shell main body, in the shell and tube type tubular heat exchanger in the EGR gas cooler, an EGR gas flow-in tube is provided along a radial direction of an outer circumferential face thereof, and a guide plate is provided on a wall face opposed to the tube sheet in the bonnet, with a prescribed distance from a flow-in port of the EGR gas flow-in tube. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、所謂シェルアンドチューブ型のEGRガス冷却装置用多管式熱交換器に係り、詳しくは熱交換型EGRガス冷却装置における多管式熱交換器のEGRガス流入管側に接続され、該EGRガス冷却装置へ被冷却媒体である高温のEGRガスを導入するボンネットに、特有の改良を施すことによって、該EGRガスを均一な流速分布を以って導入することを可能として、EGRガスの熱交換を効率良く促進するEGRガス冷却装置用多管式熱交換器に関する。   The present invention relates to a so-called shell and tube type multi-tube heat exchanger for an EGR gas cooling device, and more specifically, is connected to the EGR gas inflow pipe side of the multi-tube heat exchanger in the heat exchange type EGR gas cooling device, It is possible to introduce the EGR gas with a uniform flow velocity distribution by applying a specific improvement to a bonnet that introduces a high-temperature EGR gas that is a medium to be cooled to the EGR gas cooling device. The present invention relates to a multi-tubular heat exchanger for an EGR gas cooling device that efficiently promotes heat exchange.

ディーゼルエンジンの排気系から排気ガスの一部を取り出して再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称され、NOx(窒素酸化物)の発生を抑制し、ポンプ損失の低減や燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成変化による比熱比の増大と、それに伴うサイクル効率の向上など、多くの効果が得られるところから、ディーゼルエンジンの排気ガスの浄化や、熱効率を改善するための有効な方法として広く採り入れられている。   A method of taking a part of the exhaust gas from the exhaust system of the diesel engine, returning it to the intake system of the engine again, and adding it to the air-fuel mixture is called EGR (Exhaust Gas Recirculation), which is the NOx (nitrogen oxide) Many effects such as suppression of generation, reduction of pump loss, reduction of heat dissipation loss to coolant due to lowering of combustion gas temperature, increase of specific heat ratio due to change of working gas amount and composition, and improvement of cycle efficiency associated with it Therefore, it is widely adopted as an effective method for purifying exhaust gas from diesel engines and improving thermal efficiency.

ところが、EGRガスの温度が上昇し、EGRガス量が増大すると、その熱作用によってEGRバルブの耐久性が劣化し、早期に破損する虞れが生ずるため、その防止策として冷却系を設けて水冷構造とする必要に迫られたり、吸気温度の上昇に伴い充填効率が低下して燃費が低下するという現象を招来する。このような事態を回避するためにエンジンの冷却液、カーエアコン用冷媒または冷却風などによってEGRガスを冷却する装置が用いられ、とりわけ、気体であるEGRガスをエンジン冷却水で冷却する気−液熱交換タイプのEGRガス冷却装置が多数提案され使用されている。この気−液熱交換タイプのEGRガス冷却装置の中でも、構造がシンプルで狭隘な設置空間においても容易に取付けが可能な、2重管式熱交換タイプのEGRガス冷却装置に依然として根強い需要があり、例えば高温のEGRガスを通す内管の外側に液体を通す外管を配設し、ガスと液体間で熱交換を行う交換器において、内管内に金属コルゲート板がフィンとして挿入されている2重管式熱交換器(例えば、特許文献1参照)、内側に被冷却媒体を流通させる内管と、該内管の外周を離間して囲むように設けられた外管と、前記内管の内部に配設された熱応力緩和機能を有する放熱フィンとから構成された2重管式熱交換器(例えば、特許文献2参照)をはじめとして、数多くの2重管式熱交換器が提案されている。   However, if the temperature of the EGR gas rises and the amount of EGR gas increases, the durability of the EGR valve deteriorates due to its thermal action, and there is a risk of early breakage. There is a need for a structure, and as the intake air temperature rises, the charging efficiency is lowered and the fuel consumption is lowered. In order to avoid such a situation, a device for cooling EGR gas with engine coolant, car air-conditioner refrigerant or cooling air is used, and in particular, gas-liquid that cools EGR gas, which is a gas, with engine coolant. Many heat exchange type EGR gas cooling devices have been proposed and used. Among these gas-liquid heat exchange type EGR gas cooling devices, there is still a strong demand for double-tube heat exchange type EGR gas cooling devices that have a simple structure and can be easily installed even in narrow installation spaces. For example, in an exchanger that arranges an outer tube through which liquid passes outside the inner tube through which high-temperature EGR gas passes and performs heat exchange between the gas and the liquid, a metal corrugated plate is inserted as a fin in the inner tube 2 A double-pipe heat exchanger (see, for example, Patent Document 1), an inner pipe through which a medium to be cooled is circulated, an outer pipe provided so as to surround and surround the outer circumference of the inner pipe, and the inner pipe A number of double-pipe heat exchangers have been proposed, including a double-pipe heat exchanger (see, for example, Patent Document 2) that is composed of heat dissipating fins having a thermal stress relaxation function disposed inside. ing.

上記のように種々の改良が施されたフィン構造体を内装した2重管式熱交換器によれば、その構造が簡略でコンパクトであるにも拘らず、それなりに優れた冷却効率が期待できるために、小型自動車など設置空間に限りのあるEGRガス冷却用の熱交換器として、既に数多く実用に供されているが、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換効率においては未解決な課題が残されていた。斯かる課題を解消するためには構造上多少複雑で大型化が余儀なくされても、所謂シェルアンドチューブ型の多管式熱交換器を採用せざるを得ず、これらの熱交換器についても様々な改良がなされている。シェルアンドチューブ型の多管式熱交換器の一例としては、冷却ジャケットを構成するシェル本体の外周部の一端に冷却水入口と、その他端に冷却水出口となるノズルがそれぞれ取付けられ、該シェル本体における長手方向の一端には高温のEGRガス導入用の、その他端には熱交換されたEGRガス排出用のボンネットがそれぞれ一体として設けられ、それぞれのボンネットの内側に取付けられたチューブシートを介して、複数の偏平伝熱管が間隔を隔てて取付けられ、該偏平伝熱管内を高温のEGRガスが、前記シェル本体内を通流する冷却水に対して交差するように通流し、かつ複数の偏平伝熱管によって形成される広い伝熱面積に加え、該偏平伝熱管の内周面にコの字型のプレートフィンを内装して、通流するEGRガス流を細流化すると同時に、その伝熱面積の更なる増大を図って、優れた熱交換効率が得られたとする多管式熱交換器(例えば、特許文献3参照)が開示されている。   According to the double-pipe heat exchanger having the fin structure with various improvements as described above, although its structure is simple and compact, excellent cooling efficiency can be expected. Therefore, many heat exchangers for cooling EGR gas, such as small cars, that have limited installation space, have already been put to practical use, but the absolute amount of fluid that flows is naturally limited because of its compact structure. As a result, unsolved problems remain in the total heat exchange efficiency. In order to solve such problems, even if the structure is somewhat complicated and the size must be increased, so-called shell-and-tube type multi-tubular heat exchangers must be adopted, and various types of these heat exchangers can be used. Improvements have been made. As an example of a shell-and-tube type multi-tube heat exchanger, a nozzle serving as a cooling water inlet and a cooling water outlet at one end of the outer peripheral portion of the shell main body constituting the cooling jacket are respectively attached to the shell. A bonnet for introducing high-temperature EGR gas is integrally provided at one end in the longitudinal direction of the main body, and a heat-exchanged EGR gas discharging bonnet is integrally provided at the other end via tube sheets attached to the inside of each bonnet. A plurality of flat heat transfer tubes are attached at intervals, and hot EGR gas flows through the flat heat transfer tubes so as to intersect with the cooling water flowing through the shell body, and In addition to the wide heat transfer area formed by the flat heat transfer tube, a U-shaped plate fin is installed on the inner peripheral surface of the flat heat transfer tube to narrow the EGR gas flow that flows. That at the same time, the aim of further increase in the heat transfer area, a multi-tube heat exchanger to obtain excellent heat exchange efficiency (e.g., see Patent Document 3) are disclosed.

一方、上記シェルアンドチューブ型の多管式熱交換器においては、シェル内に間隔を隔てて多数配設されて伝熱管群を形成する各伝熱管に、均一な流量分布と流速を以って被冷却媒体であるEGRガスを通流させることが、熱交換効率を向上させるうえで大きな要件となるが、図16(a)に示すEGRガス冷却装置によれば、冷却ジャケットを構成するシェル本体10内に配設する伝熱管20を、同図(b)に示すように軸心に近い即ちEGRガスが流れやすい部位については、管径の細い伝熱管20aを配設し、EGRガスの流れ難い外側の部位には管径の太い伝熱管20をそれぞれ配設して、流量と流速のバランスを図るように配慮したEGRガス冷却装置(例えば、特許文献4参照)が提案され、また、図17に示す他の従来例による多管式熱交換器からなるEGRガス冷却装置100によれば、EGRガス流入口150側に、チューブシート160−1を介して接続されるボンネット170−1の全長L1を、EGRガス出口側のボンネット170−2に比較して、約2倍を超える長さとすることにより、該ボンネット170−1内に流入したEGRガスの流れに衝突・拡散など、所定距離の助走機会を与えることにより、流速の偏りを防いで冷却効率を高めたというEGRガス冷却装置(例えば、特許文献5参照)が提案されている。
特開平11−23181号公報(第1〜6頁、図1〜2) 特開2000−111277号公報(第1〜12頁、図1〜12) 特開2002−107091号公報(第1〜4頁、図1〜6) 特開平11−193992号公報(第1〜4頁、図1〜6) 特開平11−280563号公報(第1〜9頁、図1〜10)
On the other hand, in the shell-and-tube type multi-tube heat exchanger, a large number of the heat transfer tubes arranged in the shell at intervals are formed to form a heat transfer tube group with a uniform flow distribution and flow velocity. The passage of EGR gas as a medium to be cooled is a major requirement for improving the heat exchange efficiency. According to the EGR gas cooling device shown in FIG. 16 (a), the shell body constituting the cooling jacket As shown in FIG. 2B, the heat transfer tube 20 disposed in the portion 10 is close to the axial center, that is, the portion where the EGR gas flows easily, a heat transfer tube 20a having a small diameter is disposed, and the flow of the EGR gas An EGR gas cooling device (see, for example, Patent Document 4) is proposed in which a heat transfer tube 20 having a large tube diameter is disposed in each of the difficult outer portions so as to balance the flow rate and the flow velocity. According to another conventional example shown in FIG. According to the EGR gas cooling device 100 including a multi-tube heat exchanger, the entire length L1 of the bonnet 170-1 connected to the EGR gas inlet 150 side via the tube sheet 160-1 is connected to the EGR gas outlet side. By making the length more than about twice as long as that of the bonnet 170-2, the flow of the EGR gas flowing into the bonnet 170-1 is given a run-up opportunity of a predetermined distance such as collision / diffusion and the like. There has been proposed an EGR gas cooling device (see, for example, Patent Document 5) in which the cooling efficiency is improved by preventing the bias.
Japanese Patent Laid-Open No. 11-23181 (pages 1-6, FIGS. 1-2) JP 2000-1111277 A (pages 1 to 12, FIGS. 1 to 12) JP 2002-107091 A (pages 1 to 4, FIGS. 1 to 6) Japanese Patent Application Laid-Open No. 11-193992 (pages 1 to 4, FIGS. 1 to 6) Japanese Patent Laid-Open No. 11-280563 (pages 1 to 9, FIGS. 1 to 10)

上記各従来技術において、特許文献1〜2に開示されている2重管タイプのEGRガス冷却装置の場合は、上記のようにその構造が簡略でコンパクトであるにも拘らず、それなりに優れた冷却効率が期待できるために、小型自動車など設置空間に限りのあるEGRガス冷却用の熱交換器としては、既に数多く実用に供されているが、構造上コンパクトであるがゆえに通流する流体の絶対量においては自ずと限界があり、結果としてトータルの熱交換効率においては未解決な課題が残されていた。斯かる課題を解消するためのシェルアンドチューブ型の多管式熱交換器としての、上記特許文献3のEGRガス冷却装置によれば、シェル本体内に配設する伝熱管をより広い伝熱面積を有する偏平チューブとし、該偏平伝熱管に断面コの字形状のフィン構造体を内装して、優れた熱交換性能を発揮得た旨報告されているが、シェル本体内に導入されるEGRガスの流速や流量の均一化については特段の配慮はなされておらず、また、上記特許文献4に開示されるEGRガス冷却装置においては、シェル本体に配設する伝熱管の管径を軸心の周辺部分を細く、その外側に離れた部分を太くするという構成により、EGRガスの流速と流量分布の均一化を図り、所期の成果を挙げているが、管径の異なる複数の伝熱管を用意する必要があり、取付けられる伝熱管の管径や密度が一様でないためにチューブシートの加工が複雑となり、しかも組付け時に方向性の確保が煩雑となり、その上EGRガス流入管を含めたボンネットと、シェル本体の軸方向の長さが長尺となるためにレイアウト性に限界が生ずるなど、設計上や加工工程上に種々の課題が残されていた。さらに特許文献5のEGRガス冷却装置においては、EGRガス流入側のボンネットを、大幅に長くすることが必須の要件となるが、限られたスペースに配置されるEGRガス冷却装置は、よりコンパクトであることが望まれるところから、レイアウト上において更なる改善が望まれるという未解決な課題が残されていた。   In each of the above prior arts, in the case of the EGR gas cooling device of the double pipe type disclosed in Patent Documents 1 and 2, the structure is simple and compact as described above, but it is excellent as such. Since cooling efficiency can be expected, many heat exchangers for EGR gas cooling that have limited installation space, such as small automobiles, have already been put to practical use. The absolute amount is naturally limited, and as a result, unsolved problems remain in the total heat exchange efficiency. According to the EGR gas cooling device of Patent Document 3 as a shell-and-tube type multi-tube heat exchanger for solving such a problem, a heat transfer tube disposed in the shell body has a wider heat transfer area. It has been reported that the flat heat transfer tube is equipped with a U-shaped fin structure in the flat heat transfer tube and exhibits excellent heat exchange performance. However, EGR gas introduced into the shell body is reported. No special consideration has been given to equalizing the flow velocity and flow rate, and in the EGR gas cooling device disclosed in Patent Document 4, the diameter of the heat transfer tube disposed in the shell body is the center of the shaft. By making the peripheral part thinner and thicker the part away from it, the flow rate and flow rate distribution of the EGR gas are made uniform, and the expected results have been achieved. Need to be prepared, mounting Since the tube diameter and density of the heat transfer tubes to be produced are not uniform, the processing of the tube sheet is complicated, and it is difficult to secure the direction during assembly. In addition, the bonnet including the EGR gas inflow tube and the shaft of the shell body Various problems remain in the design and processing steps, such as a limitation in layout performance due to the length of the direction being long. Furthermore, in the EGR gas cooling device of Patent Document 5, it is an essential requirement that the hood on the EGR gas inflow side be significantly longer, but the EGR gas cooling device arranged in a limited space is more compact. From what is desired, there remains an unsolved problem that further improvement in layout is desired.

なお、上記各従来例において高温のEGRガスを導入するためのボンネットは、チューブシートを介してシェル本体に一体として接続されるが、該ボンネットを経由してシェル本体内に導入されるEGRガスの流速や流量分布は、その条件に変化がない限り一端発生するとその慣性に従って、修正されること無く継続されるという習性がある。本発明はこのような流体の慣性に着目し、EGRガス配管の流入管とボンネットとの接続部分、具体的にはEGRガス流入口付近に特定のガイド板を設けることにより、該ボンネット内に流入されるEGRガスの拡散・分配を促そうとしたものである。即ち本発明は、上記の課題を解決することを所期の目的とし、EGRガス流入側のボンネットに改良を加えることにより、簡略な構造であるにも拘らず、EGRガス冷却装置にEGRガスを均等に分配して導入することを可能とした、EGRガス冷却装置用の多管式熱交換器を提供するものである。   In each of the above conventional examples, the bonnet for introducing high-temperature EGR gas is integrally connected to the shell main body via the tube sheet, but the EGR gas introduced into the shell main body via the bonnet As long as there is no change in the conditions, the flow velocity and flow rate distribution have the habit of continuing without being corrected according to the inertia once generated. The present invention pays attention to such inertia of the fluid, and by providing a specific guide plate in the connection portion between the inflow pipe of the EGR gas pipe and the bonnet, specifically, in the vicinity of the EGR gas inlet, the inflow into the bonnet. It is intended to promote the diffusion and distribution of EGR gas. That is, the present invention is intended to solve the above-mentioned problems, and by adding an improvement to the hood on the EGR gas inflow side, the EGR gas cooling device is provided with EGR gas despite its simple structure. The present invention provides a multi-tube heat exchanger for an EGR gas cooling device that can be distributed and introduced evenly.

上記課題を解決するための本発明によるEGRガス冷却装置用多管式熱交換器は、EGRガス冷却装置におけるシェルアンドチューブ型の多管式熱交換器において、該多管式熱交換器を構成するシェル本体のEGRガス入口側に、チューブシートを介して一体として接続されるボンネットが、前記シェル本体の軸心に沿った断面形状を略矩形に形成され、EGRガス流入管をその外周面の半径方向に設けられると共に、該ボンネットにおける前記チューブシートと対向する壁面に、該EGRガス流入管の流入口から所定の距離を置くようにして、ガイド板を設けたことを特徴的構成要件とするEGRガス冷却装置用多管式熱交換器を要旨とするものである。   The multi-tube heat exchanger for an EGR gas cooling device according to the present invention for solving the above-mentioned problems is a shell-and-tube type multi-tube heat exchanger in the EGR gas cooling device and constitutes the multi-tube heat exchanger. A bonnet that is integrally connected to the EGR gas inlet side of the shell main body via a tube sheet is formed in a substantially rectangular cross-sectional shape along the axis of the shell main body, and the EGR gas inflow pipe is connected to the outer peripheral surface of the shell main body. A characteristic component is that a guide plate is provided on the wall surface of the bonnet facing the tube sheet so as to be a predetermined distance from the inlet of the EGR gas inlet pipe. A gist of a multi-tube heat exchanger for an EGR gas cooling device is provided.

また、本発明による上記EGRガス冷却装置用多管式熱交換器において、前記ボンネットのシェル本体の軸心に沿った断面形状が、略半円形、略台形或いは部分的に傾斜面若しくは湾曲面を以って形成されることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the cross-sectional shape along the axis of the shell body of the bonnet is substantially semicircular, substantially trapezoidal, or partially inclined or curved. Thus, it is characterized by being formed.

さらに、本発明による上記EGRガス冷却装置用多管式熱交換器において、前記ボンネットの横断面の断面形状が、シェル本体の横断面に対応して矩形、略矩形、略楕円形或いは部分的に傾斜面若しくは湾曲面を有する形状であることを特徴とするものである。   Furthermore, in the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the cross-sectional shape of the bonnet has a rectangular shape, a substantially rectangular shape, a substantially elliptical shape or a partial shape corresponding to the cross-sectional shape of the shell body. It is a shape having an inclined surface or a curved surface.

本発明による上記EGRガス冷却装置用多管式熱交換器はまた、前記ガイド板が、EGRガス流入管の軸心に対して同心かつ平行で、流入されるEGRガスの流れに対して波型に形成されることを特徴とするものである。   The multi-tube heat exchanger for an EGR gas cooling device according to the present invention is also configured such that the guide plate is concentric and parallel to the axis of the EGR gas inflow pipe and is corrugated with respect to the flow of the EGR gas that is introduced. It is formed in this.

本発明による上記EGRガス冷却装置用多管式熱交換器はさらに、前記ガイド板が、その頂部をEGRガス流入管の軸心の延長線上に有する、略V字状に形成されることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the guide plate is further formed in a substantially V shape having a top portion thereof on an extension line of the axis of the EGR gas inflow pipe. It is what.

本発明に係る上記EGRガス冷却装置用多管式熱交換器において、前記ガイド板が、EGRガス流入管の軸心に対して垂直な平板であることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the guide plate is a flat plate perpendicular to the axis of the EGR gas inflow tube.

また、本発明に係る上記EGRガス冷却装置用多管式熱交換器において、前記ガイド板が、EGRガス流入管の軸心に対して同心で、かつ垂直に設けられた平板であることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the guide plate is a flat plate provided concentrically and perpendicularly to the axis of the EGR gas inflow pipe. It is what.

さらに、上記本発明によるEGRガス冷却装置用多管式熱交換器において、
前記ガイド板が、EGRガス流入管の軸心に対して同心かつ垂直の、弓状曲面に形成されることを特徴とするものである。
Furthermore, in the multi-tube heat exchanger for an EGR gas cooling device according to the present invention,
The guide plate is formed in an arcuate curved surface that is concentric and perpendicular to the axis of the EGR gas inflow pipe.

また、上記本発明によるEGRガス冷却装置用多管式熱交換器において、前記ガイド板が、EGRガス流入管の軸心に対して傾斜して配設されることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the guide plate is disposed to be inclined with respect to the axis of the EGR gas inflow pipe.

上記本発明によるEGRガス冷却装置用多管式熱交換器において、前記ガイド板が、EGRガス流入口近傍におけるボンネット内周面との間に、所定の間隔で隙間が設けられることを特徴とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, a gap is provided at a predetermined interval between the guide plate and the inner peripheral surface of the bonnet in the vicinity of the EGR gas inlet. Is.

さらに、上記本発明によるEGRガス冷却装置用多管式熱交換器において、前記ガイド板に、少なくとも1以上の貫通孔もしくはスリットが形成されることを特徴とするものである。     Furthermore, in the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, at least one or more through holes or slits are formed in the guide plate.

上記本発明によるEGRガス冷却装置用多管式熱交換器において、前記ガイド板が金属製板材からなり、前記ボンネット内壁面への接合手段が、溶接、ろう付、貼着、その他の接合方法の中から適宜選択され、一体として接合されることを好ましい態様とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the guide plate is made of a metal plate material, and the joining means to the inner wall surface of the bonnet includes welding, brazing, sticking, and other joining methods. It is preferably selected from the above, and is preferably joined integrally.

本発明による上記EGRガス冷却装置用多管式熱交換器において、前記ガイド板を形成する前記金属製板材がSUS304、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールからなり、その板厚が0.2〜0.5mmであることを好ましい態様とするものである。   In the multi-tube heat exchanger for an EGR gas cooling device according to the present invention, the metal plate material forming the guide plate is made of austenitic stainless steel such as SUS304, SUS304L, SUS316, SUS316L, and the plate thickness is 0. The preferred embodiment is 2 to 0.5 mm.

本発明に係るEGRガス冷却装置用におけるシェルアンドチューブ型の多管式熱交換器によれば、該多管式熱交換器を構成するシェル本体のEGRガス入口側に、チューブシートを介して一体として接続されるボンネットが、前記シェル本体の軸心に沿った断面形状を略矩形、略半円形、略台形或いは部分的に傾斜若しくは湾曲面を以って形成されると共に、その横断面の断面形状が、シェル本体の横断面の断面形状に対応して矩形、略矩形、略楕円形或いは部分的に傾斜面若しくは湾曲面を有する形状に形成され、EGRガス流入管を該ボンネットの外周面の半径方向に設けられると共に、該ボンネット内の前記チューブシートと対向する壁面に、該EGRガス流入管の流入口から所定の距離を置くようにしてガイド板を設けることを構成上の特徴とするものであり、斯かる構造を有することにより、該EGRガス流入管を介して流入口に流入された高温のEGRガスの流れを整流して、前記シェル本体のチューブシートに一定の間隔を設けて配設された複数の伝熱管に、流入されたEGRガス流が均等に分配されて導入されるように構成したものである。このことにより伝熱管内を通流する高温のEGRガスの流量と流速分布を均一とし、全ての伝熱管で効率良くかつ偏り無く熱交換することができる。EGRガス等の流体は、もとより圧力損失の少ない方向に流れる性質を有し、一旦その流路が定まると、条件に変化がない限りその慣性によって同一の方向に流下するものであるから、部分的に設計値に対する過剰量のガスが通流する部位が生ずると、該ガス温が所定の温度域にまで冷却されないまま、系外に排出されるという不都合が生じ、反対に高温のEGRガスが少量しか流れない部位においては十分な冷却が進行するものの、流体流量が設計値に満たないために交換熱量は大幅に減少する。従って従来のEGRガス冷却装置においても、シェル本体に導入される以前のボンネットにおいて、流体の分配を均等に整流するためにボンネットそのものの形状に様々な工夫がなされているが、本発明においてはボンネットそのものの形状に上記のように種々の改善を施すことに加えて、EGRガス配管を介して導入されるEGRガスを、該ボンネットの外周面の半径方向に設けられた流入口のところで整流しようとするものであり、そのために該流入口から所定の距離を置いてガイド板を設けることを構造上の特徴とするものである。   According to the shell-and-tube type multi-tube heat exchanger for the EGR gas cooling device according to the present invention, the EGR gas inlet side of the shell body constituting the multi-tube heat exchanger is integrated with the tube sheet via the tube sheet. The bonnet connected as a cross-sectional shape along the axial center of the shell body is formed in a substantially rectangular, substantially semicircular, substantially trapezoidal shape or partially inclined or curved surface, and a cross-section of the transverse cross section The shape is formed in a rectangular shape, a substantially rectangular shape, a substantially elliptical shape, or a shape having a partially inclined surface or a curved surface corresponding to the cross-sectional shape of the cross section of the shell body, and the EGR gas inlet pipe is formed on the outer peripheral surface of the bonnet. A guide plate is provided in a radial direction and on a wall surface facing the tube sheet in the bonnet so as to be a predetermined distance from the inlet of the EGR gas inflow pipe. By having such a structure, the flow of high-temperature EGR gas that has flowed into the inlet through the EGR gas inlet pipe is rectified, and the tube body of the shell body has a constant amount. The flow of the EGR gas that has been introduced into the plurality of heat transfer tubes arranged at intervals is introduced so as to be evenly distributed. As a result, the flow rate and flow velocity distribution of the high-temperature EGR gas flowing through the heat transfer tube can be made uniform, and heat can be exchanged efficiently and evenly in all the heat transfer tubes. A fluid such as EGR gas has a property of flowing in a direction with less pressure loss from the beginning, and once the flow path is determined, it flows down in the same direction due to its inertia unless the condition is changed. If there is a part where an excessive amount of gas flows relative to the design value, the gas temperature is not cooled to a predetermined temperature range, but is discharged outside the system, and conversely, a high temperature EGR gas is small. Although sufficient cooling proceeds at the part where only the flow occurs, the amount of exchange heat is greatly reduced because the fluid flow rate is less than the design value. Therefore, even in the conventional EGR gas cooling device, in the bonnet before being introduced into the shell body, various contrivances have been made to the shape of the bonnet itself in order to evenly rectify the distribution of the fluid. In addition to various improvements as described above, the EGR gas introduced through the EGR gas pipe is rectified at the inlet provided in the radial direction of the outer peripheral surface of the bonnet. Therefore, a structural feature is that a guide plate is provided at a predetermined distance from the inflow port.

また、本発明に係る他の実施態様においては、前記ガイド板をEGRガス流入管の軸心に対して同心で、かつ流入するガスの流れに平行に形成された波型に形成したり、その頂部をEGRガス流入管の軸心の延長線上に有する略V字形状としたり、該ガイド板をEGRガス流入管の軸心に対して垂直な平板としたり、その平板を弓状曲面に形成したり、該ガイド板をEGRガス流入管の軸心に対して傾斜して設けたり、前記ガイド板と、ボンネット内周面との間に所定の間隔で隙間を設けたり、上記の各ガイド板に対して少なくとも1以上の貫通孔および/またはスリットを形成することが望ましいが、斯かる構成によってボンネット内に流入するEGRガスは効果的に拡散、分断され、結果としてEGRガス冷却装置に導入されるEGRガスが、偏り無く分配され、均一な流速分布を維持した状態で冷却装置本体に導入されるため、該EGRガス冷却装置が有する熱交換性能を最大限に発揮させ、優れた冷却効率を得ることができる。本発明による上記ガイド板は極めて簡略な加工によって製作可能であり、かつそのボンネットへの取付け手段も容易であるにも拘らず、得られる効果は著しく優れたものであるところから、これを取付けた多管式熱交換器はEGRガス冷却装置の小型軽量化を低コストで実現できるなど、省エネルギーの観点においても多大な貢献を期待することができる。   In another embodiment of the present invention, the guide plate may be formed in a corrugated shape that is concentric with the axis of the EGR gas inlet pipe and parallel to the flow of the flowing gas, The top has a substantially V shape with the EGR gas inflow pipe extending along the axis of the EGR gas inflow pipe, the guide plate is a flat plate perpendicular to the axis of the EGR gas inflow pipe, or the flat plate is formed into an arcuate curved surface. The guide plate is inclined with respect to the axis of the EGR gas inflow pipe, a gap is provided at a predetermined interval between the guide plate and the inner peripheral surface of the bonnet, On the other hand, it is desirable to form at least one or more through holes and / or slits. With such a configuration, the EGR gas flowing into the bonnet is effectively diffused and divided, and as a result, introduced into the EGR gas cooling device. EGR gas However, since it is distributed evenly and introduced into the cooling device main body with a uniform flow velocity distribution maintained, it is possible to maximize the heat exchange performance of the EGR gas cooling device and obtain excellent cooling efficiency. it can. The guide plate according to the present invention can be manufactured by a very simple process, and although the means for attaching it to the bonnet is easy, the obtained effect is remarkably excellent. The multi-tube heat exchanger can be expected to make a great contribution from the viewpoint of energy saving, such as being able to reduce the size and weight of the EGR gas cooling device at low cost.

以下、本発明の実施の形態について添付した図面並びに実施例に基づいて更に詳細に且つ具体的に説明するが、本発明はこれによって拘束されるものではなく、ボンネットの構造やガイド板の形状を含め、本発明の主旨の範囲内において自由に設計変更が可能である。     Hereinafter, embodiments of the present invention will be described in more detail and specifically based on the accompanying drawings and examples, but the present invention is not restricted thereby, and the structure of the bonnet and the shape of the guide plate are not limited. In addition, the design can be freely changed within the scope of the gist of the present invention.

図1は本発明の第1実施例に係る多管式熱交換器のシェル本体とボンネットとを模式的に示す要部側面図、図2は同実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図3は本発明に係る第2実施例のボンネットとガイド板と、EGRガスの流れを模式的に示す要部断面図、図4は本発明に係る第3実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図5は本発明に係る第4実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図6は本発明に係る他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図7は本発明に係る更に他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図8は本発明に係る更に他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図9は本発明に係る第5実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図10は本発明に係る第6実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットと、EGRガスの流れとを模式的に示す要部側面図、図11は本発明に係る第7実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットと、EGRガスの流れとを模式的に示す要部側面図、図12は本発明に係る第8実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットとを模式的に示す要部側面図、図13は本発明に係る第9実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットとを模式的に示す要部側面図、図14は本発明に係る第10実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図、図15は本発明に係る第11実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。   FIG. 1 is a side view of an essential part schematically showing a shell main body and a bonnet of a multi-tube heat exchanger according to a first embodiment of the present invention, and FIG. 2 is a diagram showing the hood, guide plate, and EGR gas in the same embodiment. FIG. 3 is a cross-sectional view of a main part schematically showing the flow of the EGR gas, FIG. 3 is a cross-sectional view of a main part schematically showing the flow of the bonnet, guide plate, and EGR gas according to the second embodiment of the present invention. FIG. 5 is a cross-sectional view of the main part schematically showing the bonnet, the guide plate, and the flow of EGR gas according to the third embodiment. FIG. 5 shows the bonnet, the guide plate, and the flow of EGR gas according to the fourth embodiment of the present invention. FIG. 6 is a cross-sectional view of an essential part schematically showing a bonnet, a guide plate, and a flow of EGR gas according to another embodiment of the present invention, and FIG. 7 is a cross-sectional view according to the present invention. Further, a bonnet, a guide plate, and a flow of EGR gas according to another embodiment are schematically shown. FIG. 8 is a fragmentary sectional view, FIG. 8 is a fragmentary sectional view schematically showing a bonnet, a guide plate, and a flow of EGR gas according to still another embodiment of the present invention. FIG. 9 is a fifth embodiment according to the present invention. FIG. 10 is a cross-sectional view of a main part schematically showing a bonnet, a guide plate, and a flow of EGR gas. FIG. 10 is a bonnet incorporating a shell main body and a guide plate of a multi-tubular heat exchanger according to a sixth embodiment of the present invention. FIG. 11 is a side view of an essential part schematically showing the flow of EGR gas, FIG. 11 is a shell body of a multitubular heat exchanger according to a seventh embodiment of the present invention, a bonnet incorporating a guide plate, and EGR gas. FIG. 12 is a main part schematically showing a shell body of a multi-tube heat exchanger according to an eighth embodiment of the present invention and a bonnet incorporating a guide plate. FIG. 13 is a side view, and FIG. 13 shows the multitubular heat according to the ninth embodiment of the present invention. FIG. 14 schematically shows the bonnet, the guide plate, and the flow of the EGR gas in the tenth embodiment according to the present invention. FIG. 15 is a fragmentary sectional view schematically showing a bonnet, a guide plate, and a flow of EGR gas in an eleventh embodiment according to the present invention.

本発明に係る第1実施例によるEGRガス冷却装置用多管式熱交換器1は、図1にその要部を示すようにシェル本体2の両サイドに、該シェル本体2内の気密を保持して接合されたチューブシート2−1(EGRガス出口側を省略して図示する。以下同様)に、特定の間隔を保って複数の伝熱管2−2が配設されて伝熱管群が形成され、該チューブシート2−1を介してその外側に、シェル本体2の軸心に沿った断面形状が略矩形のボンネット3が、一体として取付けられている。なお、本例における該ボンネット3の横断面の断面形状は、円筒状のシェル本体2の断面形状に対応して、図2に示すように円筒状に形成されている。該ボンネット3の側面、即ち半径方向にEGRガス流入管4が接合され、その接合部分にEGRガス流入口4−1が形成され、さらに該ボンネット3のチューブシート2−1と対向する垂直な壁面3−1に、前記EGRガス流入管4の軸心に対して同心で、該EGRガス流入口4−1から所定の距離をおいた位置に、前記EGRガス流入管4に平行するようにして、板厚0.5mmのSUS304Lオーステナイト系ステンレススチール製の波板が、ガイド板5として予め接合されているが、本実施例におけるガイド板5は、実質的には図2に示すようにEGRガス流入管4に対して同心かつ平行であって、EGRガス流入口4−1から所定の距離を離した位置で波型に形成されている。このようにして図1に一部省略して示すような本発明における第1実施例による多管式熱交換器1が形成され、得られた該多管式熱交換器1によってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、冷却性能試験に供した結果、EGRガス流入管4を通流してEGRガス流入口4−1からボンネット3内に流入した高温のEGRガスは、EGRガス流入管4に平行して流れようとする際、EGRガス流入口4−1から若干離れた位置に設けられた波型のガイド板5によってその流れを複雑に攪拌され、該ガイド板5を越えて円筒状のボンネット3内を循環する渦流を形成し、時間をかけて伝熱管2−2内に導入され、結果としてEGRガスの流速と流量の分配が均一化され、シェル本体2内の複数の伝熱管2−2にほぼ均等に分配にされて通流し、伝熱管外周の冷却ジャケットへの熱交換が効率良く促進され、EGRガス出口側のボンネットから排出されるEGRガスは、所定の温度域にまでに冷却されていることが確認された。   The multi-tube heat exchanger 1 for an EGR gas cooling apparatus according to the first embodiment of the present invention maintains airtightness in the shell body 2 on both sides of the shell body 2 as shown in FIG. A plurality of heat transfer tubes 2-2 are arranged on the tube sheet 2-1 joined together (illustrated with the EGR gas outlet side omitted, the same applies hereinafter) to form a heat transfer tube group. The bonnet 3 having a substantially rectangular cross-sectional shape along the axis of the shell body 2 is integrally attached to the outside via the tube sheet 2-1. In addition, the cross-sectional shape of the cross section of the bonnet 3 in this example is formed in a cylindrical shape corresponding to the cross-sectional shape of the cylindrical shell body 2 as shown in FIG. The side surface of the bonnet 3, that is, the EGR gas inflow pipe 4 is joined in the radial direction, the EGR gas inflow port 4-1 is formed at the joined part, and the vertical wall surface facing the tube sheet 2-1 of the bonnet 3. 3-1. Concentrically with the axis of the EGR gas inlet pipe 4 and at a predetermined distance from the EGR gas inlet 4-1 so as to be parallel to the EGR gas inlet pipe 4 A corrugated plate made of SUS304L austenitic stainless steel having a thickness of 0.5 mm is pre-joined as a guide plate 5, but the guide plate 5 in this embodiment is substantially an EGR gas as shown in FIG. It is concentric and parallel to the inflow pipe 4 and is formed in a wave shape at a position away from the EGR gas inlet 4-1 by a predetermined distance. Thus, the multi-tube heat exchanger 1 according to the first embodiment of the present invention as shown in FIG. 1 is partially omitted, and the obtained multi-tube heat exchanger 1 is used for the EGR gas cooling device. As a result of being incorporated in the gas flow path in the EGR gas cooling system and subjected to the cooling performance test, the high temperature EGR gas that flows through the EGR gas inlet pipe 4 and flows into the hood 3 from the EGR gas inlet 4-1 When flowing in parallel with the EGR gas inflow pipe 4, the flow is complicatedly stirred by the corrugated guide plate 5 provided at a position slightly away from the EGR gas inflow port 4-1. A vortex that circulates in the cylindrical bonnet 3 over the plate 5 is formed and introduced into the heat transfer tube 2-2 over time. As a result, the flow rate and flow rate distribution of the EGR gas are made uniform, and the shell body Heat transfer tubes 2- The EGR gas discharged from the hood on the EGR gas outlet side is cooled to a predetermined temperature range by efficiently exchanging heat to the cooling jacket on the outer periphery of the heat transfer tube. It was confirmed that

本実施例による円筒状のボンネット3の製造方法は、特に制限されるものではなく、各種ステンレススチールをはじめとする鋼管や鋳造物、鍛造物等を素材として製造され、EGRガス流入口4−1などはプレス加工、液圧バルヂ加工および鋳抜き加工によって形成される。また、前記チューブシート2−1とシェル本体2、該チューブシート2−1と伝熱管2−2、該チューブシート2−1と該ボンネット3との接合は、本例においては溶着を採用したが、該ボンネット3のシェル本体2への接合については、該ボンネット3のシェル2側にフランジを設け、同様にシェル本体2に予め取付けられたフランジとのボルト締めによる接続やろう付けも好ましく採用される。   The manufacturing method of the cylindrical bonnet 3 according to the present embodiment is not particularly limited, and is manufactured using various types of stainless steel and other steel pipes, castings, forgings, and the like as an EGR gas inlet 4-1. Are formed by pressing, hydraulic bulging, and casting. In addition, in the present example, welding is employed for joining the tube sheet 2-1 and the shell body 2, the tube sheet 2-1 and the heat transfer tube 2-2, and the tube sheet 2-1 and the bonnet 3. For joining the bonnet 3 to the shell body 2, a flange is provided on the shell 2 side of the bonnet 3, and similarly, a connection by bolting with a flange previously attached to the shell body 2 or brazing is preferably employed. The

図3に示すようにガイド板5aの形状を略V字形状に形成すると同時に、その板状面に任意に複数の貫通孔5a−1およびスリット5a−2を形成し、該V字状の頂部が、EGRガス流入管4aの軸心の延長線上で、かつ該EGRガス流入管4aに対して前記V字の中心線を略平行に設けた以外は、前記実施例1と同様にして多管式熱交換器1a(図示を省略、以下同様)を得た。得られた本例による多管式熱交換器1aを、EGRガス冷却系におけるガス流路に組込み、実施例1と同様の冷却試験に供した結果、V字形状のガイド板5aに加えて、板面に形成された複数の貫通孔5a−1やスリット5a−2が、EGRガスの流れに一層の攪拌作用を促し、実施例1に対して同等以上の冷却効率が得られることが確認された。   As shown in FIG. 3, the guide plate 5a is formed in a substantially V shape, and at the same time, a plurality of through holes 5a-1 and slits 5a-2 are arbitrarily formed on the plate-like surface, and the V-shaped top portion is formed. However, except that the V-shaped center line is provided substantially in parallel with the EGR gas inflow pipe 4a on the extension line of the axis of the EGR gas inflow pipe 4a, a multi-tube is provided. A heat exchanger 1a (not shown, the same applies below) was obtained. As a result of incorporating the obtained multi-tube heat exchanger 1a according to this example into the gas flow path in the EGR gas cooling system and subjecting it to the same cooling test as in Example 1, in addition to the V-shaped guide plate 5a, It is confirmed that the plurality of through holes 5a-1 and slits 5a-2 formed on the plate surface further promote the stirring action on the flow of EGR gas, and the cooling efficiency equal to or higher than that of Example 1 can be obtained. It was.

ガイド板5bの形状をEGRガス流入口4b−1から後方に湾曲する略弓状曲面に形成すると同時に、その弓状曲面を有する板状面に任意に複数の貫通孔5b−1およびスリット5b−2を形成し、図4に示すように該弓状曲面を有するガイド板5bの中心部が、EGRガス流入管4bの軸心の延長線上で、かつ該EGRガス流入管に対して垂直に設けた以外は、前記実施例2と同様にして多管式熱交換器1bを得た。得られた本例による多管式熱交換器1bを、EGRガス冷却系におけるガス流路に組込み、実施例2と同一の冷却試験に供した結果、弓状曲面を有するガイド板5bに加えて、その板面に形成された複数の貫通孔5b−1やスリット5b−2が、EGRガスの流れに攪拌作用を促し、前記実施例2に対してほぼ同等の冷却効率が得られることが確認された。   The guide plate 5b is formed into a substantially arcuate curved surface that curves backward from the EGR gas inlet 4b-1, and at the same time, a plurality of through holes 5b-1 and slits 5b- As shown in FIG. 4, the central portion of the guide plate 5b having an arcuate curved surface is provided on the extension line of the axis of the EGR gas inflow pipe 4b and perpendicular to the EGR gas inflow pipe. A multitubular heat exchanger 1b was obtained in the same manner as in Example 2 except that. The obtained multi-tube heat exchanger 1b according to the present example was incorporated into a gas flow path in the EGR gas cooling system and subjected to the same cooling test as in Example 2. As a result, in addition to the guide plate 5b having an arcuate curved surface, It is confirmed that the plurality of through holes 5b-1 and slits 5b-2 formed on the plate surface promote the stirring action on the flow of EGR gas and can obtain substantially the same cooling efficiency as in Example 2. It was done.

ガイド板5cが基本的に平板であり、図5に示すようにEGRガス流入管4cの軸心に対して傾斜して設けられると同時に、その板状面に任意に複数の貫通孔5c−1およびスリット5c−2を形成し、その他は前記実施例3と同様にして多管式熱交換器1cを得た。得られた本例による多管式熱交換器1cを、EGRガス冷却系におけるガス流路に組込み、実施例3と同一の冷却試験に供した結果、EGRガス流入口4c−1からボンネット3c内に流入したEGRガスは、傾斜して設けられたガイド板5cに沿って流れることにより負圧となり、該ガイド板5cとボンネット3c内周面との間に設けられた隙間5c−3により、ガイド板5cの背面の正圧部分に止まって滞留していたEGRガスは、その狭い隙間5c−3からの吸引作用が働き、該ガイド板5c背面でのカーボンの堆積を防止し、板面に形成された複数の貫通孔5c−1やスリット5c−2がもたらす攪拌作用が加味され、各伝熱管へ導入されるガス量と流速が一層均一化され、上記実施例3に対してほぼ同等の優れた冷却効率が得られることが確認された。   The guide plate 5c is basically a flat plate and is inclined with respect to the axis of the EGR gas inflow tube 4c as shown in FIG. 5, and at the same time, a plurality of through holes 5c-1 are arbitrarily formed on the plate-like surface. The slit 5c-2 was formed, and the others were the same as in Example 3 to obtain a multi-tube heat exchanger 1c. The obtained multi-tube heat exchanger 1c according to the present example was incorporated into a gas flow path in the EGR gas cooling system and subjected to the same cooling test as in Example 3, and as a result, the EGR gas inlet 4c-1 to the inside of the hood 3c The EGR gas that has flowed into the chamber becomes negative pressure by flowing along the inclined guide plate 5c, and is guided by the gap 5c-3 provided between the guide plate 5c and the inner peripheral surface of the bonnet 3c. The EGR gas staying in the positive pressure portion on the back surface of the plate 5c works to attract from the narrow gap 5c-3, and prevents carbon from accumulating on the back surface of the guide plate 5c to form on the plate surface. In consideration of the stirring action provided by the plurality of through holes 5c-1 and slits 5c-2, the amount of gas introduced into each heat transfer tube and the flow velocity are made more uniform, which is substantially equivalent to that of the third embodiment. Cooling efficiency It has been confirmed.

本実施例におけるボンネット3gは、横断面がほぼ正方形の矩形断面を有するシェル本体2d(図示を省略)の断面形状に対応して、ボンネット自体3gの横断面の断面形状が、図9に示すようにほぼ正方形の矩形断面に形成され、該ボンネット3gの側面における軸心部分の外周面3g−2を貫いてEGRガス流入管4gが接合され、その接合部分にEGRガス流入口4g−1が形成され、さらに該ボンネット3gのチューブシート2b−1と対向する垂直な壁面3g−1に、前記EGRガス流入管4gの軸心に対して同心で、該EGRガス流入口4g−1から所定の距離をおいた位置に、前記EGRガス流入管4gに平行するようにして、実施例1と略同様の波板からなるガイド板5gが、実質的には実施例1と略同様の形態で内蔵されている。このようにして本実施例による多管式熱交換器1d(図示を省略、以下同様)が形成され、得られた該多管式熱交換器1dによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例1と同一の条件で冷却性能試験に供した結果、EGRガス流入管4gを通流してEGRガス流入口4g−1からボンネット3g内に流入した高温のEGRガスは、EGRガス流入口4g−1から若干離れた位置に設けられた波型のガイド板5gによってその流れを複雑に攪拌され、該ガイド板5gを越えてほぼ正方形の矩形筒状のボンネット3g内を循環する渦流を形成し、結果としてEGRガスの流速と流量の分配が均一化され、シェル本体2d内の複数の伝熱管2d−2にほぼ均等に分配にされて通流し、伝熱管外周の冷却ジャケットへの熱交換が効率良く促進され、EGRガス出口側のボンネットから排出されるEGRガスは、所定の温度域にまでに冷却されていることが確認された。   The bonnet 3g in the present embodiment corresponds to the cross-sectional shape of the shell body 2d (not shown) having a rectangular cross section with a substantially square cross section, and the cross-sectional shape of the cross section of the bonnet 3g is as shown in FIG. The EGR gas inflow pipe 4g is joined through the outer peripheral surface 3g-2 of the axial center portion on the side surface of the bonnet 3g, and the EGR gas inlet 4g-1 is formed at the joined portion. Further, a predetermined distance from the EGR gas inlet 4g-1 is concentric with the vertical wall surface 3g-1 of the bonnet 3g facing the tube sheet 2b-1 and concentric with the axis of the EGR gas inlet pipe 4g. A guide plate 5g made of a corrugated plate substantially the same as that of the first embodiment is incorporated in substantially the same manner as in the first embodiment so as to be parallel to the EGR gas inlet pipe 4g. There. In this way, a multi-tube heat exchanger 1d (not shown, the same applies hereinafter) according to the present embodiment is formed, and the obtained multi-tube heat exchanger 1d constitutes an EGR gas cooling device, and EGR gas cooling As a result of being incorporated into the gas flow path in the system and subjected to the cooling performance test under the same conditions as in Example 1, the high temperature of the high temperature flowing through the EGR gas inlet pipe 4g and flowing into the bonnet 3g through the EGR gas inlet 4g-1 The EGR gas is agitated in a complicated manner by a corrugated guide plate 5g provided at a position slightly away from the EGR gas inlet 4g-1, and passes through the guide plate 5g to form a substantially square rectangular tubular bonnet. As a result, the flow rate and flow rate of the EGR gas are made uniform and distributed to the plurality of heat transfer tubes 2d-2 in the shell main body 2d almost uniformly, and the heat transfer tubes are formed. Outside Heat exchange to the cooling jacket is efficiently promoted, EGR gas discharged from the EGR gas outlet side of the hood, it was confirmed to be cooled to a predetermined temperature range.

ボンネット3hのシェル本体2eの軸心に沿った断面形状を、図10に示すように略台形に形成し、外周面の長手方向ほぼ中心部分の上方を貫いて円筒状のEGRガス流入管4hを接合し、EGRガス流入口4h−1を形成すると同時に、該EGRガス流入口4h−1から若干離れた位置に、前記ボンネット3hの側壁の内周面3h−3を介して、板面に任意所望の形態のスリット5h−2と貫通孔5h−1が形成された波形のガイド板5hを予め内臓せしめた以外は、前記実施例5とほぼ同様にして多管式熱交換器1eを形成し、得られた該多管式熱交換器1eによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例5と同一の条件で冷却性能試験に供した結果、ほぼ同等の優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape along the axis of the shell body 2e of the bonnet 3h is formed in a substantially trapezoidal shape as shown in FIG. 10, and a cylindrical EGR gas inflow pipe 4h is formed through substantially the central portion in the longitudinal direction of the outer peripheral surface. Joining and forming the EGR gas inlet 4h-1, at the same time, at a position slightly away from the EGR gas inlet 4h-1, the inner surface 3h-3 of the side wall of the bonnet 3h is arbitrarily attached to the plate surface A multi-tube heat exchanger 1e is formed in substantially the same manner as in Example 5 except that a corrugated guide plate 5h in which a slit 5h-2 and a through hole 5h-1 having a desired shape are formed is previously incorporated. The resulting multi-tube heat exchanger 1e constitutes an EGR gas cooling device, which is incorporated into a gas flow path in the EGR gas cooling system, and subjected to a cooling performance test under the same conditions as in Example 5, Equivalent excellent cooling efficiency It was confirmed that may be.

ボンネット3iのシェル本体2fの軸心に沿った断面形状を、図11に示すように半楕円形に形成し、外周面の長手方向ほぼ中心部分の上方を貫いて円筒状のEGRガス流入管4iを接合して、EGRガス流入口4i−1を形成すると同時に、該EGRガス流入口4i−1から若干離れた位置に、前記ボンネット3iの側壁の内周面3i−3を介して、板面に任意所望の形態のスリット5i−2と貫通孔5i−1が形成された湾曲した曲面を有するガイド板5iを予め内臓せしめた以外は、前記実施例6とほぼ同様にして多管式熱交換器1fを形成し、得られた該多管式熱交換器1fによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例6と同一の条件で冷却性能試験に供した結果、前記球状曲面を有する前記ガイド板5iと、内周面3i−3が半楕円形に形成された前記ボンネット3iとが相乗的に作用し、流入したEGRガスは当該ボンネット3i内で好適な旋廻流を生起しつつ撹拌され、多管式熱交換器1fに組込まれた伝熱管2f−2のそれぞれに、ほぼ均一な流速と流量を以って導入され、前記各実施例と同等若しくはそれ以上の、優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape along the axis of the shell main body 2f of the bonnet 3i is formed in a semi-elliptical shape as shown in FIG. 11, and passes through the upper part of the longitudinal center of the outer peripheral surface substantially in the longitudinal direction. To form the EGR gas inlet 4i-1, and at the same time, at a position slightly away from the EGR gas inlet 4i-1, via the inner peripheral surface 3i-3 of the side wall of the bonnet 3i, Except that the guide plate 5i having a curved surface in which slits 5i-2 and through-holes 5i-1 having any desired shape are formed is previously incorporated, a multi-tubular heat exchange is performed in substantially the same manner as in the sixth embodiment. An EGR gas cooling device is formed by the obtained multi-tube heat exchanger 1f, and is incorporated into a gas flow path in the EGR gas cooling system, and is used for a cooling performance test under the same conditions as in Example 6. As a result, the spherical music The guide plate 5i having the above and the bonnet 3i having the inner peripheral surface 3i-3 formed in a semi-elliptical shape act synergistically, and the inflowing EGR gas causes a suitable swirl flow in the bonnet 3i. Each of the heat transfer tubes 2f-2 that is stirred while being incorporated in the multi-tube heat exchanger 1f is introduced with a substantially uniform flow rate and flow rate, and is equivalent to or better than the above embodiments. It was confirmed that cooling efficiency could be achieved.

ボンネット3jのシェル本体2gの軸心に沿った断面形状を、図12に示すように半長円形に形成し、該ボンネット3jの側面、即ち半径方向にEGRガス流入管4jが接合されて、その接合部分にEGRガス流入口4j−1が形成され、さらに該ボンネット3jの内周面3j−3おけるチューブシート2g−1と対向する湾曲する壁面3j−1に、前記EGRガス流入管4jの軸心に対して同心で、該EGRガス流入口4j−1から所定の距離をおいた位置に、前記EGRガス流入管4jに平行するようにして、前記実施例1と実質的に同様の波板からなるガイド板5jを予め内臓せしめた以外は、前記実施例7とほぼ同様にして多管式熱交換器1gを形成し、得られた該多管式熱交換器1gによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例7と同一の条件で冷却性能試験に供した結果、前記実施例7と同等の優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape along the axis of the shell body 2g of the bonnet 3j is formed in a semi-oval shape as shown in FIG. 12, and the EGR gas inflow pipe 4j is joined to the side surface of the bonnet 3j, that is, in the radial direction. An EGR gas inlet 4j-1 is formed at the joint portion, and the curved wall surface 3j-1 facing the tube sheet 2g-1 on the inner peripheral surface 3j-3 of the bonnet 3j is connected to the shaft of the EGR gas inlet pipe 4j. A corrugated plate substantially the same as that of the first embodiment so as to be parallel to the EGR gas inlet pipe 4j at a predetermined distance from the EGR gas inlet 4j-1 and concentric with the heart. The multi-tube heat exchanger 1g is formed in substantially the same manner as in Example 7 except that the guide plate 5j made of is previously incorporated, and the EGR gas cooling device is formed by the obtained multi-tube heat exchanger 1g. Configure and EGR Incorporated into the gas flow path in scan cooling system, the result subjected to cooling performance tested under the same conditions as in Example 7, it was confirmed that can achieve excellent cooling efficiency comparable to Example 7.

ボンネット3kのシェル本体2hの軸心に沿った断面形状を、図13に示すように部分的に湾曲面を有する略半円形(ドーム型)に形成し、該ボンネット3kの側面、即ち半径方向にEGRガス流入管4kが接合されて、その接合部分にEGRガス流入口4k−1が形成され、さらに該ボンネット3kの内周面3k−3おけるチューブシート2h−1と対向するほぼ垂直の壁面3k−1に、前記EGRガス流入管4kの軸心に対して同心で、該EGRガス流入口4k−1から所定の距離をおいた位置に、前記EGRガス流入管4kに平行するようにして、前記実施例8と実質的に同様の波板からなるガイド板5kを予め内臓せしめた以外は、前記実施例8とほぼ同様にして多管式熱交換器1hを形成し、得られた該多管式熱交換器1hによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例8と同一の条件で冷却性能試験に供した結果、前記実施例8と同等の優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape along the axis of the shell body 2h of the bonnet 3k is formed in a substantially semicircular shape (dome shape) having a partially curved surface as shown in FIG. The EGR gas inflow pipe 4k is joined, an EGR gas inlet 4k-1 is formed at the joined portion, and a substantially vertical wall surface 3k facing the tube sheet 2h-1 on the inner peripheral surface 3k-3 of the bonnet 3k. -1, concentrically with the axis of the EGR gas inflow pipe 4k and at a predetermined distance from the EGR gas inflow port 4k-1 so as to be parallel to the EGR gas inflow pipe 4k, A multi-tubular heat exchanger 1h was formed in substantially the same manner as in Example 8 except that a guide plate 5k made of a corrugated plate substantially similar to that in Example 8 was previously incorporated. By tube type heat exchanger 1h As a result of configuring an EGR gas cooling device, incorporating it into a gas flow path in the EGR gas cooling system, and subjecting it to a cooling performance test under the same conditions as in Example 8, the same excellent cooling efficiency as in Example 8 was achieved. Confirmed to get.

ボンネット自体3lの横断面の断面形状が、シェル本体2i(図示を省略、以下同様)の横断面の断面形状に対応して、図14に示すように楕円形状の円筒状に形成され、該ボンネット3lの側面、即ち半径方向にEGRガス流入管4lが接合されて、その接合部分にEGRガス流入口4l−1が形成され、さらに該ボンネット3lの前記シェル本体2iのチューブシート2i−1と対向する垂直な壁面3l−1に、断面がV字型のガイド板5lが内蔵され、該ガイド板5lの板状面に任意に複数の貫通孔5l−1およびスリット5l−2を形成し、該V字状の頂部が、前記EGRガス流入管4lの軸心の延長線上で、かつ該EGRガス流入管4lに対して前記V字の中心線を略平行に設けた以外は、前記実施例1と同様にして多管式熱交換器1iを形成し、得られた該多管式熱交換器1iによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例1と同一の条件で冷却性能試験に供した結果、横断面の断面形状が楕円形状のボンネット3lと、断面形状V字型で板面に複数の貫通孔5i−1やスリット5i−2が設けられたガイド板5lが相乗的に作用し、流入したEGRガスは当該ボンネット3l内で好適な旋廻流を生起しつつ撹拌され、多管式熱交換器1iに組込まれた伝熱管2i−2のそれぞれに、ほぼ均一な流速と流量を以って導入され、前記実施例1と同等若しくはそれ以上の、優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape of the cross section of the bonnet 3l corresponds to the cross-sectional shape of the cross-section of the shell body 2i (not shown, the same applies hereinafter), and is formed into an elliptical cylindrical shape as shown in FIG. The EGR gas inflow pipe 4l is joined to the side of 3l, that is, in the radial direction, and an EGR gas inlet 4l-1 is formed at the joined part, and further, the tube sheet 2i-1 of the shell body 2i of the bonnet 3l is opposed. A guide plate 5l having a V-shaped cross section is built in the vertical wall surface 3l-1, and a plurality of through holes 5l-1 and slits 5l-2 are arbitrarily formed on the plate-like surface of the guide plate 5l. Example 1 except that the V-shaped top portion is provided on the extension line of the axis of the EGR gas inflow pipe 4l and the V-shaped center line is substantially parallel to the EGR gas inflow pipe 4l. Multi-tube heat exchange in the same way 1i is formed, and the obtained multi-tube heat exchanger 1i constitutes an EGR gas cooling device, which is incorporated into a gas flow path in the EGR gas cooling system, and is used for a cooling performance test under the same conditions as in Example 1. As a result, the bonnet 3l having an elliptical cross-sectional shape and the guide plate 5l having a V-shaped cross-section and provided with a plurality of through holes 5i-1 and slits 5i-2 on the plate surface act synergistically. The EGR gas that flowed in is stirred while generating a suitable swirling flow in the bonnet 3l, and has a substantially uniform flow velocity and flow rate in each of the heat transfer tubes 2i-2 incorporated in the multi-tube heat exchanger 1i. It was confirmed that excellent cooling efficiency equivalent to or higher than that of Example 1 can be achieved.

ボンネット自体3mの横断面の断面形状が、シェル本体2j(図示を省略、以下同様)の横断面の断面形状に対応して、図15に示すように長方形の矩形筒状に形成され、該ボンネット3mの前記シェル本体2jのチューブシート2j−1と対向する垂直な壁面3m−1に、前記実施例と実質的に同様の断面波形のガイド板5mが内蔵されている以外は、前記実施例1と同様にして多管式熱交換器1jを形成し、得られた該多管式熱交換器1jによってEGRガス冷却装置を構成し、EGRガス冷却系におけるガス流路に組み込み、前記実施例1と同一の条件で冷却性能試験に供した結果、前記実施例1と同等若しくはそれ以上の、優れた冷却効率を達成し得ることが確認された。   The cross-sectional shape of the cross section of the bonnet 3m itself is formed into a rectangular rectangular cylinder as shown in FIG. 15, corresponding to the cross-sectional shape of the cross-section of the shell body 2j (not shown, the same applies hereinafter). Example 1 except that a guide plate 5m having substantially the same cross-sectional waveform as that of the above example is incorporated in a vertical wall surface 3m-1 facing the tube sheet 2j-1 of the 3m shell body 2j. The multi-tube heat exchanger 1j is formed in the same manner as described above, and the obtained multi-tube heat exchanger 1j constitutes an EGR gas cooling device, which is incorporated in the gas flow path in the EGR gas cooling system, and the first embodiment. As a result of being subjected to a cooling performance test under the same conditions as in Example 1, it was confirmed that excellent cooling efficiency equivalent to or higher than that of Example 1 could be achieved.

本発明に係るガイド板は、所期の目的を達成することができる範囲内において、上記各実施例の他に様々な形態として設けることが可能であり、例えば上記実施例1の波型のガイド板5に、複数の貫通孔および/またはスリットを形成することにより、該ガイド板5の両面間における流体の相互流通を可能として、ボンネット3内におけるEGRガスの攪拌を促進することができ、実施例2におけるV字形状のガイド板5a、実施例3の弓状曲面を有するガイド板5bおよび実施例4における傾斜状のガイド板5cに、貫通孔やスリットを全く形成しないストレートの平板材としたり、貫通孔もしくはスリットのいずれか一方のみを形成するということも可能であり、或いは形成する貫通孔やスリットの形状や密度を適宜に変更することもできる。また、上記実施例1における波型のガイド板5において、波の高さや波形ピッチを適宜に変更することもでき、実施例2における略V字形状のガイド板5aの表面を波型形状としたり、そのV字角度を任意に変えることも可能であり、実施例3における弓状曲面を有するガイド板5bにおいて、湾曲されるR値を適宜に変更したり、曲率半径の異なる曲面を複合したり、場合によっては図8に示すように湾曲した弓状曲面を有しない、垂直の平板とすることも選択肢の一つであり、実施例4における傾斜して設けられるガイド板5cの該傾斜角を、任意に変更することも可能であり、図6に示すようにボンネット3dの内周面との間に隙間を設けなかったり、或いは図7に示すように該隙間5e−3を極端に狭くすると共に、ガイド板5eそのものに貫通孔やスリットを形成しないように設計することも可能である。なお、これらの形態は形成される多管式熱交換器の容量や要求される基準値に応じて適宜かつ適切に設計変更され、これら装置の機能を最大限に発揮することを可能とするものである。   The guide plate according to the present invention can be provided in various forms in addition to the above-described embodiments as long as the intended purpose can be achieved. For example, the corrugated guide of the above-described first embodiment By forming a plurality of through holes and / or slits in the plate 5, it is possible to allow fluid to flow between both surfaces of the guide plate 5, and to promote stirring of EGR gas in the bonnet 3. In the V-shaped guide plate 5a in Example 2, the guide plate 5b having an arcuate curved surface in Example 3, and the inclined guide plate 5c in Example 4, a straight flat plate material that does not form any through holes or slits is used. It is also possible to form only one of the through hole or slit, or the shape and density of the through hole or slit to be formed can be changed as appropriate. The Further, in the corrugated guide plate 5 in the first embodiment, the wave height and the corrugated pitch can be changed as appropriate, and the surface of the substantially V-shaped guide plate 5a in the second embodiment is corrugated. The V-shaped angle can be arbitrarily changed. In the guide plate 5b having an arcuate curved surface in the third embodiment, the curved R value can be appropriately changed, or curved surfaces having different curvature radii can be combined. In some cases, a vertical flat plate having no curved arcuate curved surface as shown in FIG. 8 is one option, and the inclination angle of the guide plate 5c provided in an inclined manner in the fourth embodiment is determined. It is also possible to arbitrarily change, and no gap is provided between the inner peripheral surface of the bonnet 3d as shown in FIG. 6, or the gap 5e-3 is extremely narrowed as shown in FIG. Along with the guide plate 5e It is also possible to design so as not to form a through-hole or a slit in ones. In addition, these forms are appropriately and appropriately changed in design according to the capacity of the multi-tubular heat exchanger to be formed and the required reference value, and can maximize the functions of these devices. It is.

上記各実施例からも明らかなように、本発明によるEGRガス冷却装置用のシェルアンドチューブ型の多管式熱交換器は、シェル本体のEGRガス流入側にチューブシートを介して接続されるボンネットの形状が、シェル本体の軸心に沿った断面形状において略台形を含む略矩形、略楕円を含む略半円形或いは部分的に傾斜面若しくは湾曲面を以って形成され、その横断面の断面形状がシェル本体の横断面の断面形状に対応して、正方形や長方形を含む略矩形断面の他、楕円形を含む略円形断面、或いは部分的に傾斜面若しくは湾曲面を有する形状に形成され、その外周面の半径方向にEGRガス流入管が設けられると共に、該ボンネット内における前記チューブシートと対向する壁面に、該EGRガス流入管のEGRガス流入口から所定の距離を置くようにして、基本的に金属製平板からなるガイド板を設けるという簡略な構造であるにも拘らず、ボンネット内に流入した高温のEGRガスの流れを整流して、前記シェル本体のチューブシートに一定の間隔をもうけて配設された複数の伝熱管に、流入されたEGRガス流が均等に分配されて導入されるように構成されている。従って、EGRガス冷却装置に導入されるEGRガスが、偏り無く分配され、均一な流速分布を維持した状態で冷却装置本体に導入されるため、該EGRガス冷却装置が有する熱交換性能を最大限に発揮させ、優れた冷却効率を得ることができるので、省エネルギー面においても多大に貢献する。また、本発明による上記ガイド板は極めて簡略な加工によって製作可能であり、かつそのボンネットへの取付け手段も容易であるにも拘らず、得られる効果は著しく優れたものであるところから、これを取付けた多管式熱交換器はEGRガス冷却装置の小型軽量化を低コストで実現できるなど、当該技術分野における多管式熱交換器として幅広く採用されることが期待される。   As is clear from the above embodiments, the shell-and-tube multi-tubular heat exchanger for the EGR gas cooling device according to the present invention is connected to the EGR gas inflow side of the shell body through a tube sheet. The cross section of the cross section of the cross section of the cross section of the cross section of the cross section of the cross section of the cross section of the cross section of the cross section along the axis of the shell body. Corresponding to the cross-sectional shape of the cross-section of the shell body, the shape is formed into a substantially circular cross section including a square or a rectangle, a substantially circular cross section including an ellipse, or a shape partially having an inclined surface or a curved surface, An EGR gas inflow pipe is provided in a radial direction of the outer peripheral surface, and a predetermined wall is provided on the wall surface of the bonnet facing the tube sheet from the EGR gas inflow port of the EGR gas inflow pipe. In spite of the simple structure of providing a guide plate consisting essentially of a metal flat plate, the flow of the high-temperature EGR gas flowing into the bonnet is rectified, The introduced EGR gas flow is configured to be evenly distributed and introduced into a plurality of heat transfer tubes arranged at regular intervals in the tube sheet. Therefore, the EGR gas introduced into the EGR gas cooling device is distributed evenly and introduced into the cooling device main body while maintaining a uniform flow velocity distribution, so that the heat exchange performance of the EGR gas cooling device is maximized. This makes it possible to achieve excellent cooling efficiency and contribute greatly to energy saving. In addition, the guide plate according to the present invention can be manufactured by a very simple process, and the obtained effect is remarkably excellent although the means for attaching the guide plate to the bonnet is easy. The attached multitubular heat exchanger is expected to be widely adopted as a multitubular heat exchanger in the technical field, such as being able to reduce the size and weight of the EGR gas cooling device at low cost.

本発明の第1実施例に係る多管式熱交換器のシェル本体とボンネットとを模式的に示す要部側面図である。It is a principal part side view which shows typically the shell main body and bonnet of the multi-tube heat exchanger which concerns on 1st Example of this invention. 同実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断正面図である。It is a principal part cutting front view which shows typically the bonnet of the Example, a guide plate, and the flow of EGR gas. 本発明に係る第2実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of the 2nd Example which concerns on this invention, a guide plate, and the flow of EGR gas. 本発明に係る第3実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of 3rd Example which concerns on this invention, a guide plate, and the flow of EGR gas. 本発明に係る第4実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of 4th Example which concerns on this invention, a guide plate, and the flow of EGR gas. 本発明に係る他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of another Example which concerns on this invention, the guide plate, and the flow of EGR gas. 本発明に係る更に他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of another Example based on this invention, the guide plate, and the flow of EGR gas. 本発明に係る更に他の実施例のボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet of another Example based on this invention, the guide plate, and the flow of EGR gas. 本発明に係る第5実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet in 5th Example which concerns on this invention, a guide plate, and the flow of EGR gas. 本発明に係る第6実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットと、EGRガスの流れとを模式的に示す要部側面図である。It is a principal part side view which shows typically the shell main body of the multitubular heat exchanger by 6th Example which concerns on this invention, the bonnet which incorporated the guide plate, and the flow of EGR gas. 本発明に係る第7実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットと、EGRガスの流れとを模式的に示す要部側面図である。It is a principal part side view which shows typically the shell main body, the bonnet which incorporated the guide plate, and the flow of EGR gas by the 7th Example by this invention. 本発明に係る第8実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットとを模式的に示す要部側面図である。It is a principal part side view which shows typically the shell main body and the bonnet which incorporated the guide plate of the multitubular heat exchanger by 8th Example which concerns on this invention. 本発明に係る第9実施例による多管式熱交換器のシェル本体と、ガイド板を内蔵したボンネットとを模式的に示す要部側面図である。It is a principal part side view which shows typically the shell main body of the multi-tube heat exchanger by 9th Example which concerns on this invention, and the bonnet which incorporated the guide plate. 本発明に係る第10実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet in the 10th Example which concerns on this invention, a guide plate, and the flow of EGR gas. 本発明に係る第11実施例におけるボンネットとガイド板と、EGRガスの流れとを模式的に示す要部断面図である。It is principal part sectional drawing which shows typically the bonnet in the 11th Example which concerns on this invention, a guide plate, and the flow of EGR gas. 従来の多管式EGRガス冷却装置を示し、(a)はその一部切欠き側面図、(b)はその要部に係る伝熱管の配列状態の一例を模式的に示す平面図である。A conventional multi-tube EGR gas cooling device is shown, (a) is a partially cutaway side view, and (b) is a plan view schematically showing an example of an arrangement state of heat transfer tubes according to the main part. 他の従来例の多管式EGRガス冷却装置を示し、(a)はその一部破断縦断側面図、(b)はその正面図、(c)は(a)におけるA−A線断面図である。The other multi-tube type EGR gas cooling device of another prior art example is shown, (a) is the partially broken longitudinal side view, (b) is the front view, (c) is the sectional view on the AA line in (a). is there.

符号の説明Explanation of symbols

1、1e、1f、1g、1h 多管式熱交換器
2、2e、2f、2g、2h シェル本体
2−1、2e−1、2f−1、2g−1、2h−1 チューブシート
2−2、2e−2、2f−2、2g−2、2h−2 伝熱管
3、3a、3b、3c、3d、3e、3f、3g、3h、
3i、3j、3k、3l、3m ボンネット
3−1、(3g−1)、3k−1 垂直壁面
3h−1 傾斜壁面
3i−1、3j−1 湾曲壁面
3−2、3g−2、3h−2、3i−2、3j−2、3k−2、
3l−2、3k−2 外周部
3−3、3g−3、3h−3、3i−3、3j−3、3k−3、
3l−3、3m−3 内周面
4、4a、4b、4c、4d、4e、4f、4g、
4h、4i、4j、4k、4l、4m EGRガス流入管
4−1、4a−1、4b−1、4c−1、4d−1、4e−1、4f−1、
4g−1、4h−1、4i−1、4j−1、4k−1、4l−1、
4m−1 EGRガス流入口
5、5a、5b、5c、5d、5e、5f、5g、5h、5i、
5j、5k、5l、5m ガイド板
5a−1、5b−1、5c−1、5h−1、5i−1、5l−1 貫通孔
5a−2、5b−2、5c−2、5h−2、5i−2、5l−2 スリット
5c−3、5e−3、5f−3、5f−4、5h−3、5i−3 隙間
g EGRガス
1, 1e, 1f, 1g, 1h Multi-tube heat exchanger 2, 2e, 2f, 2g, 2h Shell body 2-1, 2e-1, 2f-1, 2g-1, 2h-1 Tube sheet 2-2 2e-2, 2f-2, 2g-2, 2h-2 Heat transfer tubes 3, 3a, 3b, 3c, 3d, 3e, 3f, 3g, 3h,
3i, 3j, 3k, 3l, 3m Bonnet 3-1, (3g-1), 3k-1 Vertical wall surface 3h-1 Inclined wall surface 3i-1, 3j-1 Curved wall surface 3-2, 3g-2, 3h-2 3i-2, 3j-2, 3k-2,
3l-2, 3k-2 outer peripheral part 3-3, 3g-3, 3h-3, 3i-3, 3j-3, 3k-3,
3l-3, 3m-3 inner peripheral surface 4, 4a, 4b, 4c, 4d, 4e, 4f, 4g,
4h, 4i, 4j, 4k, 4l, 4m EGR gas inlet pipe 4-1, 4a-1, 4b-1, 4c-1, 4d-1, 4e-1, 4f-1,
4g-1, 4h-1, 4i-1, 4j-1, 4k-1, 4l-1,
4m-1 EGR gas inlet 5, 5a, 5b, 5c, 5d, 5e, 5f, 5g, 5h, 5i,
5j, 5k, 5l, 5m Guide plate 5a-1, 5b-1, 5c-1, 5h-1, 5i-1, 5l-1 Through hole 5a-2, 5b-2, 5c-2, 5h-2, 5i-2, 5l-2 slit 5c-3, 5e-3, 5f-3, 5f-4, 5h-3, 5i-3 gap g EGR gas

Claims (12)

EGRガス冷却装置におけるシェルアンドチューブ型の多管式熱交換器において、該多管式熱交換器を構成するシェル本体のEGRガス入口側に、チューブシートを介して一体として接続されるボンネットが、前記シェル本体の軸心に沿った断面形状を略矩形に形成され、EGRガス流入管をその外周面の半径方向に設けられると共に、該ボンネット内における前記チューブシートと対向する壁面に、該EGRガス流入管の流入口から所定の距離を置くようにして、ガイド板を設けたことを特徴とするEGRガス冷却装置用多管式熱交換器。 In the shell-and-tube type multi-tube heat exchanger in the EGR gas cooling device, a bonnet integrally connected to the EGR gas inlet side of the shell body constituting the multi-tube heat exchanger via a tube sheet, A cross-sectional shape along the axial center of the shell body is formed in a substantially rectangular shape, and an EGR gas inflow pipe is provided in the radial direction of the outer peripheral surface thereof, and the EGR gas is provided on a wall surface facing the tube sheet in the bonnet. A multi-tube heat exchanger for an EGR gas cooling apparatus, characterized in that a guide plate is provided so as to be a predetermined distance from the inlet of the inflow pipe. 前記ボンネットのシェル本体の軸心に沿った断面形状が、略半円形、略台形或いは部分的に傾斜面若しくは湾曲面を以って形成されることを特徴とする請求項1に記載のEGRガス冷却装置用多管式熱交換器。 2. The EGR gas according to claim 1, wherein a cross-sectional shape along the axis of the shell body of the bonnet is substantially semicircular, substantially trapezoidal, or partially formed with an inclined surface or a curved surface. Multi-tube heat exchanger for cooling equipment. 前記ボンネットの横断面の断面形状が、シェル本体の横断面の断面形状に対応して矩形、略矩形、略楕円形或いは部分的に傾斜面若しくは湾曲面を有する形状であることを特徴とする請求項1又は2に記載のEGRガス冷却装置用多管式熱交換器。 The cross-sectional shape of the cross section of the bonnet is a rectangle, a substantially rectangular shape, a substantially oval shape, or a shape having a partially inclined surface or a curved surface corresponding to the cross-sectional shape of the cross section of the shell body. Item 3. The multi-tube heat exchanger for an EGR gas cooling device according to Item 1 or 2. 前記ガイド板が、EGRガス流入管の軸心に対して同心かつ平行で、流入されるEGRガスの流れに対して波型に形成されることを特徴とする請求項1乃至3のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 4. The guide plate according to claim 1, wherein the guide plate is concentric and parallel to the axis of the EGR gas inflow pipe and has a wave shape with respect to the flow of the EGR gas that flows in. A multitubular heat exchanger for an EGR gas cooling device as described in the paragraph. 前記ガイド板が、その頂部をEGRガス流入管の軸心の延長線上に有する、略V字状に形成されることを特徴とする請求項1乃至4のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 5. The EGR gas cooling according to claim 1, wherein the guide plate is formed in a substantially V shape having a top portion thereof on an extension line of an axis of the EGR gas inflow pipe. Multi-tube heat exchanger for equipment. 前記ガイド板が、EGRガス流入管の軸心に対して同心で、かつ垂直に設けられた平板であることを特徴とする請求項1乃至5のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 6. The EGR gas cooling apparatus according to claim 1, wherein the guide plate is a flat plate provided concentrically and vertically with respect to an axis of the EGR gas inflow pipe. Multi-tube heat exchanger. 前記ガイド板が、EGRガス流入管の軸心に対して同心かつ垂直で、弓状曲面に形成されることを特徴とする請求項1乃至6のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The EGR gas cooling device according to any one of claims 1 to 6, wherein the guide plate is concentric and perpendicular to the axis of the EGR gas inflow pipe and has an arcuate curved surface. Multi-tube heat exchanger. 前記ガイド板が、EGRガス流入管の軸心に対して傾斜して設けられることを特徴とする請求項1乃至7のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The multi-tube heat exchanger for an EGR gas cooling apparatus according to any one of claims 1 to 7, wherein the guide plate is provided to be inclined with respect to an axis of the EGR gas inflow pipe. 前記ガイド板が、EGRガス流入口近傍におけるボンネット内周面との間に、所定の間隔で隙間が設けられることを特徴とする請求項1乃至8のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The EGR gas cooling device according to any one of claims 1 to 8, wherein a gap is provided at a predetermined interval between the guide plate and a bonnet inner peripheral surface in the vicinity of the EGR gas inlet. Multitubular heat exchanger. 前記ガイド板に、少なくとも1以上の貫通孔もしくはスリットが形成されることを特徴とする請求項1乃至9のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The multi-tubular heat exchanger for an EGR gas cooling apparatus according to any one of claims 1 to 9, wherein at least one through hole or slit is formed in the guide plate. 前記ガイド板が金属製板材からなり、前記ボンネット内壁面への接合手段が、溶接、ろう付、貼着、その他の接合方法の中から適宜選択され、一体として接合されることを特徴とする請求項1乃至10のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The guide plate is made of a metal plate material, and the joining means to the inner wall surface of the bonnet is appropriately selected from welding, brazing, sticking, and other joining methods, and joined together. Item 11. A multi-tube heat exchanger for an EGR gas cooling device according to any one of Items 1 to 10. 前記ガイド板を形成する金属製板材がSUS304、SUS304L、SUS316、SUS316L等のオーステナイト系ステンレススチールからなり、その板厚が0.2〜0.5mmであることを特徴とする請求項1乃至11のいずれか1項に記載のEGRガス冷却装置用多管式熱交換器。 The metal plate material forming the guide plate is made of austenitic stainless steel such as SUS304, SUS304L, SUS316, SUS316L, and the thickness thereof is 0.2 to 0.5 mm. The multi-tube heat exchanger for an EGR gas cooling device according to any one of the above.
JP2006190844A 2005-07-12 2006-07-11 Tubular heat exchanger for egr gas cooler Pending JP2007046890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006190844A JP2007046890A (en) 2005-07-12 2006-07-11 Tubular heat exchanger for egr gas cooler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005203510 2005-07-12
JP2006190844A JP2007046890A (en) 2005-07-12 2006-07-11 Tubular heat exchanger for egr gas cooler

Publications (1)

Publication Number Publication Date
JP2007046890A true JP2007046890A (en) 2007-02-22

Family

ID=37849840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190844A Pending JP2007046890A (en) 2005-07-12 2006-07-11 Tubular heat exchanger for egr gas cooler

Country Status (1)

Country Link
JP (1) JP2007046890A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098321A1 (en) * 2009-02-27 2010-09-02 株式会社小松製作所 Egr cooler
CN102012185A (en) * 2009-09-04 2011-04-13 摩丁制造公司 Heat exchanger having flow diverter and method of operating the same
JP2011112023A (en) * 2009-11-30 2011-06-09 Ud Trucks Corp Egr cooler
JP2012172907A (en) * 2011-02-22 2012-09-10 Cku:Kk Heat exchanger of shell-and-tube system with fin arranged in spiral staircase shape
EP2541180A1 (en) * 2011-06-27 2013-01-02 Rolls-Royce plc Heat exchanger
CN103104377A (en) * 2012-11-12 2013-05-15 无锡双翼汽车环保科技有限公司 Exhaust gas recirculation (EGR) cooler
WO2013153445A1 (en) * 2012-04-12 2013-10-17 Toyota Jidosha Kabushiki Kaisha Egr gas cooling apparatus
CN103836211A (en) * 2014-03-25 2014-06-04 浙江三花股份有限公司 Valve seat assembly of electronic expansion valve and manufacturing method of valve seat assembly
WO2014115332A1 (en) * 2013-01-28 2014-07-31 三菱電機株式会社 Heat exchanger and refrigeration cycle device
US20160084583A1 (en) * 2014-09-22 2016-03-24 Mahle International Gmbh Heat exchanger
EP3106820A3 (en) * 2015-06-15 2016-12-28 Mahle International GmbH Heat exchanger
JP2017036868A (en) * 2015-08-07 2017-02-16 カルソニックカンセイ株式会社 Heat exchanger
WO2017099692A1 (en) * 2015-12-11 2017-06-15 Kale Oto Radyator San. Ve Tic. A. S. An air spoiler distributing hot air homogeneously for vehicle's engines
WO2018221751A1 (en) * 2018-07-03 2018-12-06 株式会社小松製作所 Heat exchanger
WO2020031786A1 (en) * 2018-08-09 2020-02-13 愛三工業株式会社 Egr device
WO2022094549A1 (en) * 2020-10-27 2022-05-05 Cummins Inc. Hybrid flow heat exchangers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4325843Y1 (en) * 1965-08-11 1968-10-29
JPS49118449U (en) * 1973-02-05 1974-10-09
JPH1073383A (en) * 1996-08-28 1998-03-17 Daikin Ind Ltd Shell and tube heat exchanger
JP2000088477A (en) * 1998-09-14 2000-03-31 Calsonic Corp Apparatus for cooling egr gas
JP2001241883A (en) * 2000-02-25 2001-09-07 Nippon Shokubai Co Ltd Heat exchanger for gas containing easy-to-polymerize substance provided with gas diffuser and its using method
JP2002327996A (en) * 2001-04-26 2002-11-15 Denso Corp Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4325843Y1 (en) * 1965-08-11 1968-10-29
JPS49118449U (en) * 1973-02-05 1974-10-09
JPH1073383A (en) * 1996-08-28 1998-03-17 Daikin Ind Ltd Shell and tube heat exchanger
JP2000088477A (en) * 1998-09-14 2000-03-31 Calsonic Corp Apparatus for cooling egr gas
JP2001241883A (en) * 2000-02-25 2001-09-07 Nippon Shokubai Co Ltd Heat exchanger for gas containing easy-to-polymerize substance provided with gas diffuser and its using method
JP2002327996A (en) * 2001-04-26 2002-11-15 Denso Corp Heat exchanger

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196679A (en) * 2009-02-27 2010-09-09 Komatsu Ltd Egr cooler
CN102333949A (en) * 2009-02-27 2012-01-25 株式会社小松制作所 Egr cooler
WO2010098321A1 (en) * 2009-02-27 2010-09-02 株式会社小松製作所 Egr cooler
CN102012185A (en) * 2009-09-04 2011-04-13 摩丁制造公司 Heat exchanger having flow diverter and method of operating the same
JP2011112023A (en) * 2009-11-30 2011-06-09 Ud Trucks Corp Egr cooler
JP2012172907A (en) * 2011-02-22 2012-09-10 Cku:Kk Heat exchanger of shell-and-tube system with fin arranged in spiral staircase shape
EP2541180A1 (en) * 2011-06-27 2013-01-02 Rolls-Royce plc Heat exchanger
US8661783B2 (en) 2011-06-27 2014-03-04 Rolls-Royce Plc Heat exchanger having swirling means
WO2013153445A1 (en) * 2012-04-12 2013-10-17 Toyota Jidosha Kabushiki Kaisha Egr gas cooling apparatus
CN103104377A (en) * 2012-11-12 2013-05-15 无锡双翼汽车环保科技有限公司 Exhaust gas recirculation (EGR) cooler
JP6038186B2 (en) * 2013-01-28 2016-12-07 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus
WO2014115332A1 (en) * 2013-01-28 2014-07-31 三菱電機株式会社 Heat exchanger and refrigeration cycle device
CN103836211A (en) * 2014-03-25 2014-06-04 浙江三花股份有限公司 Valve seat assembly of electronic expansion valve and manufacturing method of valve seat assembly
US20160084583A1 (en) * 2014-09-22 2016-03-24 Mahle International Gmbh Heat exchanger
US10837708B2 (en) * 2014-09-22 2020-11-17 Mahle International Gmbh Plate type heat exchanger for exhaust gas
EP3106820A3 (en) * 2015-06-15 2016-12-28 Mahle International GmbH Heat exchanger
JP2017036868A (en) * 2015-08-07 2017-02-16 カルソニックカンセイ株式会社 Heat exchanger
WO2017099692A1 (en) * 2015-12-11 2017-06-15 Kale Oto Radyator San. Ve Tic. A. S. An air spoiler distributing hot air homogeneously for vehicle's engines
WO2018221751A1 (en) * 2018-07-03 2018-12-06 株式会社小松製作所 Heat exchanger
WO2020031786A1 (en) * 2018-08-09 2020-02-13 愛三工業株式会社 Egr device
JPWO2020031786A1 (en) * 2018-08-09 2021-08-02 愛三工業株式会社 EGR device
WO2022094549A1 (en) * 2020-10-27 2022-05-05 Cummins Inc. Hybrid flow heat exchangers

Similar Documents

Publication Publication Date Title
JP2007046890A (en) Tubular heat exchanger for egr gas cooler
JP4798655B2 (en) Multi-tube heat exchanger for exhaust gas cooling system
US8069905B2 (en) EGR gas cooling device
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US7303002B2 (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP4614266B2 (en) Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
JP4544575B2 (en) EGR gas cooling device
JP2006038304A5 (en)
JP2007064514A (en) Heat transfer tube for heat exchanger, and heat exchanger incorporating the heat transfer tube
US20070017661A1 (en) Heat exchanger
JP2007113795A (en) Multitubular heat exchanger for exhaust gas cooling device
JP3991786B2 (en) Exhaust heat exchanger
JP2008202846A (en) Heat transfer tube for heat exchanger and egr gas cooling device using the same
JP2008014566A (en) Flat heat transfer tube for heat exchanger, and multitubular heat exchanger and egr gas cooling apparatus incorporating the heat transfer tube
JP2006118436A (en) Bonnet for egr gas cooling device
JP2008232142A (en) Cooled egr system and heat exchanger for system thereof
JP2007225137A (en) Multitubular heat exchanger and heat transfer tube for exhaust gas cooling device
JP2001289583A (en) Egr gas cooler
JP2006057473A (en) Egr gas cooling device
JPH10306995A (en) Heat transfer pipe and egr gas-cooler using it
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JPH01134198A (en) Tube-fin type heat exchanger assembly
JP4753715B2 (en) Multi-tube heat exchanger for exhaust gas cooling system
CN106871689A (en) A kind of heat exchanger tube and heat exchanger with inner fin
JP2001248980A (en) Multitubular heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111004

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111215