JP4256217B2 - Heat transfer tube - Google Patents

Heat transfer tube Download PDF

Info

Publication number
JP4256217B2
JP4256217B2 JP2003199898A JP2003199898A JP4256217B2 JP 4256217 B2 JP4256217 B2 JP 4256217B2 JP 2003199898 A JP2003199898 A JP 2003199898A JP 2003199898 A JP2003199898 A JP 2003199898A JP 4256217 B2 JP4256217 B2 JP 4256217B2
Authority
JP
Japan
Prior art keywords
fin
piece
tube
heat transfer
raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003199898A
Other languages
Japanese (ja)
Other versions
JP2005042941A5 (en
JP2005042941A (en
Inventor
祐治 宮内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2003199898A priority Critical patent/JP4256217B2/en
Publication of JP2005042941A publication Critical patent/JP2005042941A/en
Publication of JP2005042941A5 publication Critical patent/JP2005042941A5/ja
Application granted granted Critical
Publication of JP4256217B2 publication Critical patent/JP4256217B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、EGRガス冷却装置等の多管式熱交換器、ラジエーター組込式オイルクーラー等の熱交換器にて、冷却水、冷却風、カーエアコン用冷媒、その他の冷媒液等の冷却媒体と、EGRガス、煤を含有する燃焼排気ガス等の被冷却高温熱媒体流体との熱交換を行うために用いるもの等、種々の用途の伝熱管に係るものである。
【0002】
【従来の技術】
【特許文献1】
特開平11−108578号公報
【特許文献2】
特開2000−179410号公報
【特許文献3】
特開2001−227413号公報
【特許文献4】
特開2002−295987号公報
【0003】
従来、自動車のエンジン等では、排気ガスの一部を排気ガス系から取り出して、再びエンジンの吸気系に戻し、混合気や吸入空気に加えるEGRシステムが、ガソリンエンジン、ディーゼルエンジンに用いられていた。EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムでは、排気ガス中のNOxを低減し、燃費の悪化を防止するとともに、過剰な温度上昇によるEGRバルブの機能低下や耐久性の低下を防止するため、高温化したEGRガスを冷却水、冷却風、カーエアコン用冷媒、その他の冷媒液等の冷却媒体で冷却するEGRガス冷却装置を設けている。
【0004】
そして、このEGRガス冷却装置として、上記特許文献1〜特許文献4の従来発明等に示す如く、内部をEGRガスが流通可能な複数の細径の伝熱管を配置し、この伝熱管の外側に冷却水や冷却風、冷媒液等の冷却媒体を流通させる事により、伝熱管を介してEGRガスと冷却媒体との熱交換を行うものが存在した。
【0005】
上述の如きEGRガス冷却装置で使用する伝熱管は、内周面が平滑な金属管が多く用いられているが、このような伝熱管ではEGRガスの殆どが伝熱管の軸中心部付近を高速に流動し、伝熱管の内周面側を通過するEGRガスから熱が伝導されるのみで、冷却媒体との熱交換が良好には行われにくかった。この熱交換性能の向上のため、前記特許文献1、2の従来発明では、内方に螺旋状又は環状に突出する突起を設けた金属製の素管内に、平板を螺旋状に捻って形成したフィン部材を挿入配設して伝熱管を形成している。また、特許文献3では、素管内に平板状のフィン部材を一体に突出して伝熱管を形成している。また、特許文献4では、素管の内径と略同一寸法の外径とする螺旋状フィン部材を素管内に挿入配設した後、素管に内方に螺旋状に突出する突起を設けて伝熱管を形成している。
【0006】
このように、素管内に螺旋状に捻ったフィン部材を配設したり平板状のフィン部材を一体に突設する事で、伝熱管の伝熱面積を増大させ、伝熱管の内表面を流動するEGRガスだけでなく、軸中心部付近を流動するEGRガスの熱をフィン部材に伝達させ、EGRガスからの伝熱管への熱伝導効率を高めようとしていた。更に、フィン部材によって伝熱管内のEGRガスの流れを乱流化して、EGRガスの伝熱管内の流動距離を長くし、伝熱管とEGRガスとの接触時間を長くするとともに、境界層を剥離して、伝熱管を介したEGRガスと冷却媒体との熱交換効率を高めようとするものであった。
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1、2の従来技術では、フィン部材と素管との接触は、フィン部材の両側縁と素管の内周面の突起部分との断続した点接触である。そのため、フィン部材と素管との接触面積が少なく、フィン部材がEGRガスの熱を受熱しても、このフィン部材から素管への熱伝達が十分に行われず、EGRガスと伝熱管の外周を流動する冷却媒体との熱交換効率を高めるには限界があった。また、螺旋のピッチを小さくしてフィン部材の分量を多くすれば、伝熱面積が多くなるが、伝熱管内を流動する流体への圧力抵抗が大きくなり、所定量の流体の流動ができなくなって、結果的に伝熱管の熱交換性能が向上しない可能性がある。
【0008】
これに対して、特許文献3では、素管と平板状フィン部材とを一体に設けているので、素管と板状フィンとは板状フィンの板厚分の面接触となっている。また、特許文献4でも、螺旋状フィン部材の外径を素管の内径と略同一寸法で形成する事で、素管とフィン部材とはフィン部材の板厚分の面接触が可能となっている。そのため、特許文献3、4では、特許文献1、2の点接触に比べて素管とフィン部材との熱伝導性は高くなる。
【0009】
しかしながら、特許文献1〜4の何れの場合でも、フィン部材を素管に面接触や断続した点接触で接続しただけなので、フィン部材の固定性が悪く、伝熱管の振動や流体の流動圧等により、フィン部材のブレや変形、更には歪みによる亀裂を生じる虞があり、伝熱管の熱交換機能や耐久性を損なう可能性もあった。
【0010】
本発明は上述の如き課題を解決しようとするものであって、伝熱管の素管内に挿入配設するフィン部材と素管との熱伝導性を高め、伝熱管の内外を流動する流体間の熱交換を効率的に行って、伝熱管の熱交換性能を向上させるものである。また、素管内でのフィン部材の固定性を高め、フィン部材のブレや変形、更には歪みによる亀裂等を抑制可能とし、伝熱管の耐久性を向上させ、優れた熱交換性能を維持する事を可能とするものである。また、この熱交換性能及び耐久性に優れる伝熱管を、容易に形成するものである。
【0011】
【課題を解決するための手段】
本発明は上述の如き課題を解決するため、第1の発明は、金属材製の素管内に、折曲部を介して一方片と他方片とを各々交差方向に配置した一方フィンと他方フィンとを挿入配設し、この一方フィン及び他方フィンは、一方片の形成長さを素管の内径の50%よりも長尺で75%よりも短尺とし、この一方フィンの一方片と他方フィンの一方片とを互いに面接触させるとともに、他方片の形成長さを素管の内径の50%よりも短尺で25%よりも長尺とし、素管内を管軸方向に4分割して、この一方フィンと他方フィンの一方片と他方片との先端側を素管の内周面に当接させるとともに、一方フィンと他方フィンとを折曲部方向の少なくとも一部で接触させたものである。
【0012】
また、第2の発明は、金属材製の素管内に、折曲部を介して一方片と他方片とを各々交差方向に配置した一方フィンと他方フィンとを挿入配設し、この一方フィンと他方フィンの一方片と他方片との先端側を素管の内周面に当接させるとともに、一方片と他方片の外面の少なくとも一部にストッパーを突設し、このストッパーに相手フィンの他方片又は一方片を当接させた状態で、一方フィンと他方フィンとを折曲部方向の少なくとも一部で接触させたものである。
【0013】
また、一方片及び/又は他方片は、先端側を素管の内周面の一部に対応させて折曲する事により密着面を形成し、この密着面を、素管の内周面に面接触により密着可能としても良い。
【0014】
また、一方片及び/又は他方片は、管軸方向に長尺で素管の円周方向の断面形状がV字形又はU字形の突条を設けても良い。
【0015】
また、素管は、内部に一方フィンと他方フィンとを配設した状態で、素管の内方に突出する螺旋溝を少なくとも一本設けても良い。
【0016】
また、一方片及び/又は他方片に設けた密着面は、素管の円周方向の形成幅を、素管の内周面の円周長の5%以上で20%以下としても良い。
【0017】
また、一方片及び他方片は、管軸を中心として円周方向に捻り形成しても良い。
【0018】
また、一方片及び/又は他方片は、一定長さのエンボス状の突起を複数個、突設しても良い。
【0019】
【作用】
本発明は上述の如く構成したものであり、第1及び/又は第2発明の発明の伝熱管は熱伝導性に優れる金属製の素管内に、金属材製の一方フィンと他方フィンとを配設しているので、伝熱管の伝熱面積を増大させる事ができる。また、一方フィンと他方フィンとは、各々の一方片と他方片との先端側の4箇所で、素管の内周面と少なくとも板厚分の面積で面接触しているので、従来の2箇所での接触に比較して素管と一方フィン及び他方フィンとの接触面積が多くなり、熱伝導性を向上させる事ができる。また、従来の螺旋状のフィン部材に比べて、流体への圧力抵抗が過度に大きくならず、所定の流量の流体を円滑に流動させる事ができる。従って、伝熱管の吸熱特性や放熱特性が向上し、伝熱管を介した内外流体の熱交換を効率的に行う事が可能となり、熱交換性能に優れた伝熱管を得る事ができる。
【0020】
また、本発明の伝熱管の製作工程は、素管内に一方フィンと他方フィンとを挿入配設した後、ろう付けや溶接等により素管と一方フィン及び他方フィンとを接続固定するものである。本発明では、一方フィンと他方フィンとを、素管への挿入時に一方片と他方片との先端側が素管の内周面に当接し、一方フィンと他方フィンとを折曲部方向の少なくとも一部で接触するような寸法合わせで形成しているので、素管内に挿入するだけで一方フィンと他方フィンとの位置合わせが完了するとともに、挿入過程で一方フィンと他方フィンとがバラバラに分離したり、位置ズレ等を生じる事がなく、安定した挿入作業が可能となる。
【0021】
そして、素管への挿入完了後に於いても、素管内での一方フィンと他方フィンの安定性が良好で、位置ズレや素管からの脱落を生じる事がない。従って、次工程の素管と一方フィン及び他方フィンとのろう付けや溶接作業も効率的に行う事が可能となる。また、このろう付けや溶接により、フィレットの幅分、一方フィン及び他方フィンと素管との接触面積が多くなるとともに冶金的に接触するものとなり、一方フィンと他方フィンの素管内での固定性だけでなく、双方の熱伝導性をも更に向上させる事ができる。
【0022】
また、伝熱管の固定性が良好であるから、伝熱管の使用時に、一方フィンと他方フィンに流体の流動圧や伝熱管の振動等が作用しても、一方フィンと他方フィン同士が接触部を介して互いに突き当たったり、一方片、他方片の先端が素管の内周面に突き当たる事により支持される。従って、一方フィン及び他方フィンのブレや変形が抑制され、伝熱管の耐久性が向上して、前記優れた熱交換性能を長期に持続させる事が可能となる。
【0023】
また、上述の如き伝熱管を組み付けた熱交換器は、自動車のエンジン、その他内燃機関、冷暖房等、熱交換を行う何れの熱交換器にも用いる事ができる。例えば、エンジンのEGRガス冷却装置、その他の多管式熱交換器を形成する事で、EGRガスの冷却を効率的に行う事ができる。従って、EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムに於いて、排気ガス中のNOxを低減できるとともに、燃費の悪化も防止する事ができる。また、過剰な温度上昇を防止して、EGRバルブの劣化や機能低下も確実に防止する事ができる。
【0024】
また、高温オイルを内部に流通させて、エンジン冷却水で冷却するラジエーターへの組込式オイルクーラー等に伝熱管を組付けても良く、優れた熱交換を行って、伝熱特性及び耐久性の高いオイルクーラーを得る事ができる。
【0025】
【実施例】
以下、自動車のクールドEGRシステムのEGRガス冷却装置に、本願の第1発明及び第2発明の伝熱管を組み込んだ実施例を図面に基づいて詳細に説明する。図1は第1実施例の伝熱管の斜視図で、一方片と他方片とを設けた端面L字形の一方フィンと他方フィンとを、略十文字形に素管内に挿入配設している。また、一方片と他方片に、円形の貫通孔を設けている。図2は図1の端面図である。また、図3は第2実施例の一方片の拡大斜視図で、一方片にコ字形の隆起部を設けて、貫通孔及び凹凸を形成している。
【0026】
また、図4は第3実施例の一方片の拡大斜視図で、一方片にルーバー部を設けて、貫通孔及び凹凸を形成している。図5は第4実施例の一方片の拡大斜視図で、一方片に矩形状の貫通孔を設けている。また、図6は第5実施例の伝熱管の斜視図で、一方フィンと他方フィンとを挿入配設した状態で、素管の外周に内方に突出する螺旋溝を設けている。図7は図6の伝熱管のA−A線断面図である。
【0027】
また、図8は第6実施例の伝熱管の端面図で、一方片と他方片の先端側に、素管の内周面に面接触させる密着面を設け、更に一方片と他方片に、素管の円周方向の断面形状がU字形の突条を設けている。図9は第7実施例の伝熱管の端面図で、第6実施例と同様に一方片と他方片に密着面と突条を設けているが、突条の形成幅を第6実施例よりも広幅としている。図10は第8実施例の伝熱管の端面図で、一方片と他方片との密着面と突条を、互いに対向するよう形成している。図11は第9実施例の伝熱管の端面図で、第8実施例と同様に一方片と他方片に密着面と突条を設けているが、突条の形成幅を第8実施例よりも広幅としている。
【0028】
また、図12は10実施例の伝熱管の円周方向の断面図で、一方フィンと他方フィンの一方片の外面にストッパーを突設し、このストッパーに相手フィンの他方片を当接させている。図13は12の一方フィンと他方フィンのストッパーとの係合状態を示す斜視図である。また、図14は11実施例の一方フィンと他方フィンとの斜視図で、一方フィンと他方フィンとを円周方向に捻り形成している。図15は、第12実施例の一方フィンと他方フィンとの斜視図で、一方片と他方片に、管軸に対して傾斜方向に一定長さのエンボス状の複数の突起を、互いに同一方向に突設している。図16は13実施例の一方フィンと他方フィンとの斜視図で、一方片と他方片のエンボス状の突起を、互いに異なる方向に突設している。図17は本発明の伝熱管を用いたEGRガス冷却装置の概略図である。
【0029】
まず、本願の第1発明における第1実施例を図1、図2、図17に基づいて詳細に説明すれば、(1)は伝熱管で、内部をEGRガスが流通可能な細径の金属製の素管(2)内に、管軸方向に長尺で端面形状を略L字形とする金属材製の一方フィン(3)と他方フィン(4)とを、端面形状が略十字形となるよう点対称に挿入配設している。
【0030】
また、上記素管(2)並びに一方フィン(3)及び他方フィン(4)は、銅、アルミニウム、黄銅、又はステンレス等を用いる事により、熱伝導性に優れる伝熱管(1)を得る事ができる。また、ステンレス等では、熱伝導性だけでなくEGRガス等に対する耐食性にも優れるものとなる。また、素管(2)並びに一方フィン(3)及び他方フィン(4)とを、使用目的やコスト等を考慮して、同一の金属で形成しても良いし、互いに異なる金属で形成しても良い。また、耐食性の信頼性を更に高めるため、前述の如き金属材に、亜鉛、銅、錫、錫−亜鉛合金、ニッケル、亜鉛−ニッケル合金等から成る1層のメッキ処理を行い、必要に応じクロメート被膜等を施しても良いし、金属材の外表面にニッケルをメッキし、このニッケルの外周面に更に亜鉛−ニッケル合金をメッキする等、2層以上のメッキ処理を行っても良い。
【0031】
また、一方フィン(3)及び他方フィン(4)並びに素管(2)との熱伝導性、素管(2)内での一方フィン(3)及び他方フィン(4)の固定性を考慮して、一方フィン(3)と他方フィン(4)とを形成する板部材の板厚を、素管(2)の内径の1%以上で15%以下で形成するのが好ましい。この板厚が、素管(2)の内径の1%よりも薄いと、一方フィン(3)と他方フィン(4)と、素管(2)との熱伝導性や固定性が低下する虞がある。また、板厚を素管(2)内径の15%よりも厚くすると、素管(2)内での一方フィン(3)と他方フィン(4)の占有容積が多くなり、EGRガスの流動空間が狭くなるので、所定量のEGRガスを流動させる事ができず、伝熱管(1)の熱交換性能が低下する虞がある。
【0032】
本実施例では、板部材の板厚を素管(2)の内径の3%で形成し、具体的には、図2に示す素管(2)の内径dを10mm、一方フィン(3)と他方フィン(4)の板厚tを0.3mmで形成している。このような板厚の板部材を略90°に折曲し、折曲部(5)を介して一方片(6)と他方片(7)とを設け、端面形状をL字形とする一方フィン(3)と他方フィン(4)とを各々形成している。
【0033】
また、この一方フィン(3)と他方フィン(4)とは同一形状、同一寸法で形成する事により、生産性の向上を図っている。そして、各々の一方片(6)の形成長さを素管(2)の内径の50%よりも長尺で75%よりも短尺とする事で、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)とを、素管(2)内で互いに面接触可能としている。また、他方片(7)は、形成長さを素管(2)の内径の50%よりも短尺で25%よりも長尺としている。具体的には、図2に示す如く、一方片(6)の形成長さaを6.0mmとして素管(2)の内径の60%とし、他方片(7)の形成長さbを4.9mmとして素管(2)の内径の49%としている。このような寸法とする事で、素管(2)への挿入配設時には、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)とが軸中心部(8)を介して面接触した状態で、一方フィン(3)と他方フィン(4)の各々の一方片(6)と他方片(7)の先端が素管(2)の内周面に当接可能となる。
【0034】
また、このような一方フィン(3)と他方フィン(4)の配設により、素管(2)内が管軸方向に4分割され、図2に示す如く、時計回り方向に、一方フィン(3)の一方片(6)と他方片(7)間の第1内部空間(10)と、一方フィン(3)の一方片(6)と他方フィン(4)の他方片(7)間の第2内部空間(11)と、他方フィン(4)の他方片(7)と一方片(6)間の第3内部空間(12)と、他方フィン(4)の一方片(6)と一方フィン(3)の他方片(7)間の第4内部空間(13)とが形成される。また、一方フィン(3)と他方フィン(4)は、一方片(6)と他方片(7)の複数箇所に円形の貫通孔(14)を開口する事により、隣接する第1〜第4内部空間(10)(11)(12)(13)間を連通し、EGRガスの出入りを可能としている。
【0035】
そして、上述の如き一方フィン(3)と他方フィン(4)とを素管(2)内に挿入配設して伝熱管(1)を形成するには、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)の折曲部(5)側を互いに面接触させながら、一方フィン(3)と他方フィン(4)とを素管(2)内に挿入する。この、一方フィン(3)と他方フィン(4)とを前述の如き寸法で形成しているから、一方フィン(3)と他方フィン(4)の各一方片(6)と他方片(7)の先端が素管(2)の内周面に当接し、この先端方向への一方フィン(3)又は他方フィン(4)の移動が阻止されるとともに、互いの一方片(6)が面接触して、素管(2)内部方向への移動も阻止される。そのため、一方フィン(3)と他方フィン(4)の位置合わせが確実となり、素管(2)への挿入工程にて一方フィン(3)と他方フィン(4)とがバラバラに分離したり、位置ズレ等を生じる事がなく、挿入完了位置まで安定した挿入作業が可能となる。従って、作業効率が向上するとともに挿入作業を行うだけで、一方フィン(3)と他方フィン(4)の位置合わせも完了するものとなる。
【0036】
上記挿入配設が完了すると、図1に示す如く、L字形の一方フィン(3)と他方フィン(4)とが、互いの一方片(6)を面接触した状態で素管(2)内に端面形状を略十字形に配設される。また、一方片(6)と他方片(7)の先端側が、素管(2)の内周面に面接触し、素管(2)内での一方フィン(3)と他方フィン(4)との安定した固定性が得られるとともに、素管(2)と一方フィン(3)及び他方フィン(4)との熱伝導が、板厚の4倍分の接触面積を介して、良好に行われるものとなる。
【0037】
次に、一方フィン(3)と他方フィン(4)の、各々一方片(6)と他方片(7)の先端縁と素管(2)の内周面とをろう付けする。このろう付けにより、一方片(6)及び他方片(7)と素管(2)の内周面とが、ろう材のフィレット(9)により確実に密着し、且つ図2に示す如く、ろう材のフィレット(9)の幅分、これらが広幅に面接触するとともに冶金的に接触するものとなり、一方フィン(3)及び他方フィン(4)と素管(2)との熱伝導性と固定性を更に高める事ができる。また、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)との接触部を、ろう付けしても良く、一方フィン(3)と他方フィン(4)との固定性が更に向上するとともに、フレッティングを防止する事ができる。尚、熱膨張による歪みを逃がすために、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)との接触部のろう付けを行わなくても良い。
【0038】
また、上記ろう付けの際は、素管(2)への挿入前に、予め一方フィン(3)と他方フィン(4)の少なくとも先端縁にろう材をメッキしておく。また、一方片(6)の接触面をろう付けする場合は、折曲部(5)の外面等にろう材をメッキしておく。このろう材のメッキは、好ましくは作業が容易な事から一方フィン(3)と他方フィン(4)の全表面に施しても良いし、素管(2)の内周面にろう材をメッキしても良い。また、一方フィン(3)と他方フィン(4)の形成素材である板部材にろう材をクラッドし、このクラッド材を加工して一方フィン(3)と他方フィン(4)とを形成しても良い。
【0039】
また、一方フィン(3)と他方フィン(4)の先端縁や折曲部(5)の外面にろう材付着用のバインダーを塗布した一方フィン(3)と他方フィン(4)とを素管(2)に挿入後、該素管(2)内にパウダー状のろう材を供給しても良い。他の方法として、一方片(6)と他方片(7)の先端縁にろう材ペーストを供給した一方フィン(3)と他方フィン(4)とを素管(2)へ挿入しても良いし、素管(2)内に一方フィン(3)と他方フィン(4)とを挿入後、該素管(2)内にろう材ペーストを供給しても良い。そして、伝熱管(1)の製作時にろう付けを行っても良いし、或いは伝熱管(1)を後述のEGRガス冷却装置(20)に組付け後に、ろう付けを行っても良い。
【0040】
そして、上述の如き伝熱管(1)を組付けたEGRガス冷却装置(20)は、図17に示す如く、円筒状の胴管(21)の両端にチューブシート(22)を一対接続し、内部を密閉可能としている。そして、一対のチューブシート(22)間に、本実施例の伝熱管(1)を複数本、チューブシート(22)を貫通して接続配置している。また、胴管(21)の両端には、EGRガスの導入口(24)と導出口(25)とを設けたボンネット(26)を接続している。
【0041】
更に、胴管(21)の外周には、エンジン冷却水や冷却風等の冷却媒体の流入口(27)と流出口(28)を設ける事により、一対のチューブシート(22)で仕切られた気密空間内を、冷却媒体が流通可能な冷却部(23)としている。また、この冷却部(23)内に、複数の支持板(30)を接合配置し、この支持板(30)に設けた挿通孔(29)に、伝熱管(1)を挿通する事により、バッフルプレートとして伝熱管(1)を安定的に支持するとともに、冷却部(23)内を流動する冷却媒体の流れを蛇行化している。
【0042】
上記EGRガス冷却装置(20)に於いて、導入口(24)から胴管(21)内に高温化したEGRガスを導入すると、このEGRガスは胴管(21)内に複数配置した伝熱管(1)内に流入する。この伝熱管(1)を配置した冷却部(23)では、予め伝熱管(1)の外部にエンジン冷却水等の冷却媒体を流通しているので、伝熱管(1)の外表面を介してEGRガスと冷却媒体とで熱交換が行われる。
【0043】
本発明の伝熱管(1)は、一方フィン(3)と他方フィン(4)の配設により、伝熱面積を増大させて、EGRガスとの接触頻度を高めている。更に、一方片(6)と他方片(7)の先端縁と素管(2)の内周面とを面接触させる事により、従来に比べて一方フィン(3)及び他方フィン(4)と、素管(2)との接触面積が多くなり、互いの熱伝導性が向上する。
【0044】
また、一方フィン(3)と他方フィン(4)とにより分割された4つの内部空間(10)(11)(12)(13)内を、EGRガスが一方フィン(3)と他方フィン(4)の内外表面と接触しながら分散して流動するので、流れの偏りを防ぐとともに、素管(2)の内周面側のEGRガスの熱だけでなく、中央付近を流動するEGRガスの熱も一方フィン(3)と他方フィン(4)に効率的に伝熱させる事ができる。
【0045】
更に本実施例では、一方片(6)と他方片(7)に貫通孔(14)を設けている。そのため、この貫通孔(14)を介してEGRガスが第1〜第4内部空間(10)(11)(12)(13)内を移動しながら流動先に流動するものとなり、EGRガスの乱流化を生じる。この乱流化により、伝熱管(1)内でのEGRガスの流動距離が長くなり、素管(2)の内周面や一方フィン(3)及び他方フィン(4)の表面との接触時間が長くなるとともに、EGRガスが撹拌されて、EGRガスの一部のみではなく全体が素管(2)並びに一方フィン(3)及び他方フィン(4)と繰り返し接触し、EGRガスから一方フィン(3)と他方フィン(4)への伝熱が更に促進されるものとなる。
【0046】
そして、一方フィン(3)と他方フィン(4)とで受熱したEGRガスの熱は、優れた熱伝導性により素管(2)の内表面に効率的に伝達された後、素管(2)の外表面を介して外周を流動する冷却媒体に放熱されるものとなる。従って、EGRガスの全体がムラ無く均一に冷却され、EGRガスへの優れた冷却効果が得られるものとなる。
【0047】
このように良好に冷却されたEGRガスは、導出口(25)を介してEGRガス冷却装置(20)から流出し、インテークマニホールド側に戻される。従って、EGRバルブの高温化を防止して、EGRバルブの優れた機能性と耐久性を得る事ができるとともに、吸入空気の温度を低下するのでNOxの低減と良好な燃費が可能となる。また、伝熱管(1)内でのEGRガスの乱流化により、EGRガスに混入する煤の剥離が促進されて、大きな塊となるのを防ぐ事ができ、目詰まり等に起因する冷却性能の劣化やエンジントラブルを防ぐ事も可能となる。
【0048】
次に、伝熱管(1)の振動や、伝熱管(1)内のEGRガスの流動圧に対する、伝熱管(1)の耐久性を説明する。まず、一方フィン(3)や他方フィン(4)に、素管(2)の外方向への移動力が作用した場合、一方フィン(3)と他方フィン(4)の、各々の一方片(6)及び/又は他方片(7)の先端が、素管(2)の内周面に突き当たる事により、外方向への移動が阻止される。
【0049】
また、一方フィン(3)と他方フィン(4)とに、素管(2)の内方向への移動力が作用した場合を説明すれば、一方フィン(3)と他方フィン(4)に、軸中心部(8)方向への移動力が作用した場合は、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)とが互いに面接触により突き当たる事により、軸中心部(8)方向への移動が阻止される。次に、一方片(6)と略平行方向、即ち一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)との、互いのスライド方向への移動力が作用した場合、一方フィン(3)、他方フィン(4)の移動先の第4内部空間(13)、第2内部空間(11)は、相手方の一方片(6)と素管(2)の円弧状の内周面とに囲まれ、他方片(7)の形成高さよりも狭幅な空間となっている。そのため、一方片(6)の折曲部(5)側が相手方の一方片(6)に支持された状態で、他方片(7)の先端縁が素管(2)の内周面にテーパー状に突き当たる事により、一方フィン(3)と他方フィン(4)は、互いのスライド方向への移動が阻止される。
【0050】
上述の如く、伝熱管(1)の振動やEGRガスの流動圧等が作用した際に各方向への移動が阻止される事により、一方フィン(3)と他方フィン(4)との固定性が向上し、ブレや変形等を良好に防止する事が可能となる。従って、伝熱管(1)並びにこの伝熱管(1)を組み付けたEGRガス冷却装置(20)の耐久性を向上させる事ができる。
【0051】
また、上記第1実施例では、一方片(6)と他方片(7)とに、円形の貫通孔(14)を開口しているが、第2実施例では図3に示す如く、一方片(6)及び他方片(7)に、EGRガスの流入側にコ字形に開口する隆起部(15)を設ける事で、一方片(6)と他方片(7)の表面に凹凸(16)を設けるとともに、この隆起部(15)の開口部を貫通孔(14)としている。この、隆起部(15)を設けた一方片(6)の拡大斜視図を図3に示している。尚、この図3並びに以降に記載する第3、第4実施例を示した図4、図5では、一方片(6)の拡大斜視図のみを表示しているが、他方片(7)も一方片(6)と同様の構成とするものである。
【0052】
また、他の異なる第3実施例では、図4に示す如く、一方片(6)と他方片(7)に、管軸方向にテーパー状に傾斜するルーバー部(17)を設けて、一方片(6)と他方片(7)の表面に凹凸(16)を設けるとともに貫通孔(14)を開口している。また、更に異なる第4実施例では、図5に示す如く、一方片(6)と他方片(7)に矩形状の貫通孔(14)を開口している。また、他の異なる実施例として、楕円形、長円形、三角形、五角形、その他の多角形等の形状で貫通孔(14)を開口しても良い。
【0053】
上記第2〜第4実施例の如き一方フィン(3)と他方フィン(4)を挿入配設した伝熱管(1)に於いても、優れた熱伝導性が得られるとともに、EGRガスが貫通孔(14)を通過したり凹凸(16)にガイドされながら流動し、且つエッヂ部が多くなるから、EGRガスの乱流化や撹拌作用が更に促進される。その結果、境界層の剥離によりEGRガスと伝熱管(1)との熱伝導効率を向上させる事ができ、熱交換性能に優れた伝熱管(1)を得る事ができる。また、これら貫通孔(14)、隆起部(15)、凹凸(16)、ルーバー部(17)等は、プレス加工等により容易に行う事ができ、伝熱管(1)の製造コストや生産性に影響を与える事がない。
【0054】
また、図6、図7に示す第5実施例では、第1実施例と同一形状の略L字形の一方フィン(3)と他方フィン(4)とを、互いの一方片(6)を面接触させて素管(2)内に挿入配設している。そして、第1実施例では、素管(2)の内外表面は何等凹凸のない平滑なものであるが、第5実施例では、前記一方フィン(3)と他方フィン(4)の挿入状態で、外側から素管(2)の壁面を螺旋状に押圧加工する事により、図6、図7に示す如く、素管(2)の外周に、該素管(2)の外側から内方に突出する螺旋溝(18)を一本、設けている。尚、第5実施例では、螺旋溝(18)を一本のみ設けているが、他の異なる実施例として、2本以上の螺旋溝(18)を素管(2)の外周に設けても良い。
【0055】
このような螺旋溝(18)を設ける事により、図7に示す如く、内方に突出した螺旋溝(18)の内周面が、一方片(6)や他方片(7)の先端を押圧変形しながら一方フィン(3)と他方フィン(4)を挟持固定するので、一方フィン(3)と他方フィン(4)の素管(2)内での固定性が更に向上し、伝熱管(1)の耐久性が高まるものとなる。更に、この螺旋溝(18)の形成位置で、素管(2)の内周面と、一方片(6)及び他方片(7)の表面とが部分的に面接触するものとなり、一方フィン(3)及び他方フィン(4)と、素管(2)との熱伝導性を更に高める事ができる。
【0056】
また、図8に示す第6実施例では、上記各実施例と同様に端面形状を略L字形とする一方フィン(3)と他方フィン(4)とを、互いの一方片(6)を面接触させて十字形に素管(2)内に挿入配設している。そして、反時計回り方向に、一方フィン(3)の一方片(6)と他方片(7)間を第1内部空間(10)とし、一方フィン(3)の一方片(6)と他方フィン(4)の他方片(7)間を第2内部空間(11)とし、他方フィン(4)の他方片(7)と一方片(6)間を第3内部空間(12)とし、他方フィン(4)の一方片(6)と一方フィン(3)の他方片(7)間を第4内部空間(13)としている。
【0057】
また、上記各実施例では、一方片(6)と他方片(7)の先端縁を素管(2)の内周面に密着させているが、第6実施例では、一方片(6)と他方片(7)の先端側を素管(2)の内周面の一部に対応させて反時計回り方向に折曲する事により、密着面(31)を形成している。そして、一方フィン(3)と他方フィン(4)との素管(2)内への挿入配設時に、この密着面(31)を素管(2)の内周面に面接触により密着させている。
【0058】
この密着面(31)の、素管(2)の内周面への密着により、一方フィン(3)及び他方フィン(4)と、素管(2)との熱伝達性を更に向上させる事ができるとともに、素管(2)内での一方フィン(3)と他方フィン(4)との固定性も向上し、伝熱管(1)の耐久性も高まるものとなる。
【0059】
尚、上記密着面(31)は、素管(2)の円周方向の形成幅を、素管(2)の内周面の円周長の5%以上で20%以下とするのが好ましい。この密着面(31)の形成幅を素管(2)の円周長の5%より少なくしても、密着面(31)を設けずに一方片(6)と他方片(7)の先端縁の板厚分のみの接触面積で密着固定させた場合と、さほど熱伝導性や固定性は変わるものではない。また、密着面(31)の形成幅を素管(2)の円周長の20%よりも多くしても、伝熱効果に差を生じない。更に、密着面(31)が隣接する一方片(6)又は他方片(7)に突き当たって湾曲し、素管(2)の内周面に対応させて密着できなくなったり、金属材の無駄を生じる虞がある。
【0060】
また、伝熱管(1)がEGRガスの高熱に常にさらされる事により、一方フィン(3)と他方フィン(4)とは熱膨張を生じ易いが、一方片(6)と他方片(7)とが多少湾曲する事などにより、多少の熱膨張を吸収する事が可能となる。しかしながら、一方片(6)と他方片(7)の先端をろう付けにより素管(2)の内周面に固定しているため、熱膨張が過大となった場合、一方片(6)と他方片(7)との歪みを逃す事ができなくなり、一方片(6)と他方片(7)とに亀裂を生じ、この亀裂がきっかけとなって素管(2)の亀裂をも生じる虞がある。
【0061】
上記過大な熱膨張による不具合を解消するため、第6実施例では、図8に示す如く、一方フィン(3)と他方フィン(4)とは、一方片(6)と他方片(7)の各々に、一面側から他面方向に突設する突条(32)を管軸方向に長尺に設けている。この突条(32)は、素管(2)の円周方向の断面形状をU字形とするとともに、図8に示す如く、素管(2)への配設時に全て反時計回り方向に突出するよう形成している。このように突条(32)を設ける事により、一方片(6)と他方片(7)とに熱膨張を生じても、突条(32)が内方に収縮して熱膨張を吸収する事により、一方片(6)と他方片(7)との歪みが抑えられ、亀裂の発生を防止する事ができる。
【0062】
また、上記突条(32)は、形成高さを一方フィン(3)及び他方フィン(4)の板厚以上で、素管(2)の内径の25%以下とするのが好ましい。突条(32)の形成高さが板厚よりも小さいと、突条(32)による一方片(6)と他方片(7)の熱膨張の吸収が効果的には行われないものとなる。逆に、素管(2)の内径の25%よりも大きくても、熱膨張の吸収性がそれ以上向上せず、材料の無駄を生じる。
【0063】
また、一方片(6)と他方片(7)に、素管(2)の内周面への密着面(31)と、熱膨張を吸収するための突条(32)とを設けた他の異なる第7〜第9実施例を、図9〜図11に示す。まず、図9に示す第7実施例では、第6実施例と同様に、一方片(6)と他方片(7)の先端に、反時計回り方向に密着面(31)を設けるとともに、端面U字形の突条(32)も反時計回り方向に突設しているが、この突条(32)の形成幅を、第6実施例よりも幅広に形成して、熱膨張の吸収力を高めている。
【0064】
また、図10に示す第8実施例では、一方片(6)の密着面(31)と突条(32)とを、時計回り方向に突設し、他方片(7)の密着面(31)と突条(32)とを、反時計回り方向に突設する事により、密着面(31)と突条(32)とを、一方片(6)と他方片(7)との内側に対向配置している。このように密着面(31)と突条(32)とを一方フィン(3)と他方フィン(4)の内側に配設する事により、密着面(31)が嵩張らず、素管(2)への配設前の一方フィン(3)と他方フィン(4)の保管や運搬等が容易となる。
【0065】
また、図11に示す第9実施例は、第8実施例と同様に一方片(6)の密着面(31)と突条(32)とを時計回り方向に突設し、他方片(7)の密着面(31)と突条(32)とを反時計回り方向に突設しているが、突条(32)の形成幅を、第8実施例よりも幅広に形成し、熱膨張の吸収力を高めている。
【0066】
また、前記第1〜第9実施例では、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)とを面接触させる事によって、一方フィン(3)と他方フィン(4)との固定性を高め、一方フィン(3)と他方フィン(4)とのブレや変形等を防止可能としている。これに対して、本願の第2発明である第10実施例では、第1〜第9実施例と同様に、一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)とを面接触させるだけでなく、更に一方フィン(3)の一方片(6)と他方フィン(4)の一方片(6)との外面に、相手方の他方片(7)を係合可能なストッパー(34)を複数個突設している。このストッパー(34)は、図13に示す如く、一方片(6)の一部を膨出させる事により形成し、このストッパー(34)に相手方の他方片(7)を係合する事により、一方フィン(3)と他方フィン(4)の、互いの一方片(6)のスライド方向への移動を防止する事が可能となる。
【0067】
また、図14に示す他の異なる第11実施例では、第1実施例と同様の形状で形成した一方フィン(3)と他方フィン(4)とを、更に管軸を中心として円周方向に捻り形成している。この捻り形成により、第1〜第4内部空間(10)(11)(12)(13)が蛇行化し、EGRガスの乱流化や撹拌作用が促進され、境界層の剥離によりEGRガスと伝熱管(1)との熱伝導効率を向上させる事ができるとともに、煤の堆積等も抑制する事が可能となる。
【0068】
また、図15に示す第12実施例及び図16に示す第13実施例では、一方フィン(3)と他方フィン(4)の、各一方片(6)と他方片(7)とに、管軸に対して傾斜方向に一定長さのエンボス状の突起(35)を複数個突設している。この突起(35)の突設により、一方片(6)と他方片(7)の両表面に複数の突部(36)と凹部(37)が形成される。また、これら突起(35)は、EGRガスの流入側の端部が中心軸方向に位置し、流出側の端部が外方に位置するような傾斜方向で配設するとともに、一方片(6)と他方片(7)とで互いに同一円周上に配置されないように、管軸方向に互い違いに突設している。
【0069】
また、12実施例では、図15に示す如く、一方片(6)の突起(35)と他方片(7)の突起(35)とを、各々反時計回り方向に突設している。一方、第13実施例では、図16に示す如く、一方片(6)の突起(35)を反時計回り方向に突設しているが、他方片(7)の突起(35)は時計回り方向に突設し、互いの突部(36)と凹部(37)とが対向するよう形成している。また、エンボス状の突起(35)は、必ずしも一方片(6)と他方片(7)の双方に設けなくても良いし、一定長さでエンボス状に形成すれば良く、図15、16に示すような形状に限定されるものではない。尚、エンボス状の突起(35)は、必ずしも管軸に対して傾斜して設けなくても良く、管軸に対して平行に設けても良いし、他の角度で設けても良い。
【0070】
上記第12、13実施例の如く一方フィン(3)と他方フィン(4)の、一方片(6)と他方片(7)とに突起(35)を突設した伝熱管(1)では、伝熱面積を増大させる事が可能となるとともに、一方フィン(3)及び他方フィン(4)の一方片(6)と他方片(7)の両表面に形成される一定長さの突部(36)と凹部(37)に沿ってEGRガスが流動するので、EGRガスの乱流化や撹拌作用を促進する効果が高い。その結果、境界層の剥離によりEGRガスと伝熱管(1)との熱伝導効率を向上させる事ができるとともに、煤の堆積等も抑制する事が可能となる。
【0071】
また、前記第5〜第10実施例に於いても、第1〜第4実施例の如く、一方フィン(3)と他方フィン(4)の、各一方片(6)と他方片(7)に、貫通孔(14)、隆起部(15)、凹凸(16)、ルーバー部(17)等を設けても良い。また、これらを一種類のみ設けても良いし、複数種を適宜組み合わせて、一方片(6)と他方片(7)に貫通孔(14)や凹凸(16)を設けても良い。また、第12、13実施例の如く、一方片(6)及び/又は他方片(7)に、管軸に対して平行又は傾斜方向又は他の角度で、一定長さのエンボス状の突起(35)を複数個設けても良い。
【0072】
また、第1〜第9実施例、第11〜13実施例に於いて、第10実施例の如く、一方フィン(3)と他方フィン(4)の一方片(6)や他方片(7)に、ストッパー(34)を設けても良い。また、第1〜第5実施例、第11〜13実施例に於いて、第6〜第10実施例の如く、一方片(6)や他方片(7)にU字形又はV字形の突条(32)を形成しても良い。更に、第1〜第5実施例、第11〜13実施例に於いて、第6〜第10実施例の如く、一方片(6)と他方片(7)の先端側を素管(2)の内周面の一部に対応させて折曲して密着面(31)を形成し、この密着面(31)を、素管(2)の内周面に面接触させても良い。
【0073】
また、第1〜第10実施例、第12、13実施例に於いて、第11実施例の如く、一方フィン(3)と他方フィン(4)とを、管軸を中心として円周方向に捻り形成しても良い。また、第1〜第4実施例、第6〜第13実施例に於いて、第5実施例の如く素管(2)の外周面に螺旋溝(18)を少なくとも一本設けても良い。
【0074】
また、上記各実施例では、一方フィン(3)と他方フィン(4)とを、同一形状で形成し、軸中心部(8)で互いに面接触するようにしているが、必ずしも同一形状で形成する必要はなく、一方フィン(3)と他方フィン(4)とを異なる形状や大きさで形成し、素管(2)内に於いて軸中心部(8)とは異なる位置で、互いに面接触させても良い。
【0075】
また、上記各実施例では、EGRガス冷却装置(20)に本発明の伝熱管(1)を組付けたものとして説明しているが、他の異なる多管式熱交換器に本発明の伝熱管(1)を用いても良く、優れた熱交換性能を得る事ができる。また、エンジンオイル、ミッションオイル、ATF、パワステオイル等の高温オイルを内部に流通させて、この高温オイルをエンジン冷却水で冷却するラジエーターへの組込式オイルクーラーに、本発明の伝熱管(1)を組付ける事もできる。そして、本発明の伝熱面積が広く且つ熱伝導性の高い伝熱管(1)を介して、伝熱管(1)内を流通するエンジン冷却水と伝熱管(1)外部を流通する被冷却オイルとの熱交換が促進され、被冷却オイルの冷却を均一且つ効率的に行えるものである。
【0076】
【発明の効果】
本発明は上述の如く構成したもので、熱伝導性に優れる金属製の素管内に、一方片と他方片とを交差方向に設けた一方フィンと他方フィンとを挿入配設しているので、伝熱管の伝熱面積を増大させる事ができ、更には一方フィン及び他方フィンと、素管との熱伝導性を高める事ができる。また、一方フィンと他方フィンの配設により、伝熱管の内部空間が複数に分割され、流体の流れの偏りを防ぐとともに、一方フィンと他方フィンとを介して伝熱管の中央付近を流動する流体との熱交換も促進される。従って、伝熱管の内外を流動する流体相互の熱交換を効率的に行う事ができ、熱交換性能の高い伝熱管を得る事ができる。
【0077】
更に、一方片と他方片の先端を素管の内周面に当接し、一方フィンと他方フィンとを少なくとも一部で接触させているから、一方フィンと他方フィンとの素管での固定性が向上し、伝熱管の振動や流体の流動圧等による一方フィンと他方フィンのブレや変形を防ぐとともに、一方フィンと他方フィンや、これらが接触している素管の壁面のフレッティング等を防いで、熱交換を円滑に行う事ができ、伝熱管の耐久性も向上する。
【0078】
また、上述の如き熱交換性能に優れた伝熱管を、煩雑な位置合わせや寸法合わせ等を必要とする事なく、一方フィンと他方フィンとを互いに接触させながら、素管内に挿入するだけで、位置合わせが完了するとともに位置ズレや素管からの脱落等も防止し、伝熱管を容易に形成する事ができる。そして、この熱交換性能に優れる伝熱管を、多管式熱交換器や、ラジエーター組込式オイルクーラー等に使用する事により、伝熱特性及び耐久性の高い製品を得る事ができる。
【図面の簡単な説明】
【図1】 本発明の第1実施例の伝熱管を示す斜視図。
【図2】 図1の端面図。
【図3】 第2実施例の一方片の拡大斜視図。
【図4】 第3実施例の一方片の拡大斜視図。
【図5】 第4実施例の一方片の拡大斜視図。
【図6】 第5実施例の伝熱管を示す斜視図。
【図7】 図6の伝熱管のA−A線断面図。
【図8】 第6実施例の伝熱管を示す端面図。
【図9】 第7実施例の伝熱管を示す端面図。
【図10】 第8実施例の伝熱管を示す端面図。
【図11】 第9実施例の伝熱管を示す端面図。
【図12】 第10実施例の伝熱管を示す円周方向の断面図。
【図13】 第10実施例の一方フィンと他方フィンのみの拡大斜視図。
【図14】 第11実施例の一方フィンと他方フィンのみの斜視図。
【図15】 第12実施例の一方フィンと他方フィンのみの斜視図。
【図16】 第13実施例の一方フィンと他方フィンのみの斜視図。
【図17】 本願の第1発明及び第2発明の伝熱管を組み付けたEGRガス冷却装置の一部切り欠き平面図。
【符号の説明】
2 素管
3 一方フィン
4 他方フィン
5 折曲部
6 一方片
7 他方片
18 螺旋溝
31 密着面
32 突条
33 接触片
34 ストッパー
35 突起
[0001]
[Industrial application fields]
  The present invention relates to a cooling medium such as cooling water, cooling air, a refrigerant for a car air conditioner, or other refrigerant liquid in a heat exchanger such as a multi-tube heat exchanger such as an EGR gas cooling device or a radiator built-in oil cooler. Heat transfer for various uses, such as those used for heat exchange with EGR gas, combustion exhaust gas containing soot, etc.On the tubeIt is related.
[0002]
[Prior art]
[Patent Document 1]
      JP-A-11-108578
[Patent Document 2]
      JP 2000-179410 A
[Patent Document 3]
      JP 2001-227413 A
[Patent Document 4]
      JP 2002-295987 A
[0003]
  Conventionally, in an automobile engine or the like, an EGR system in which a part of exhaust gas is extracted from the exhaust gas system, returned to the engine intake system, and added to the mixture or intake air has been used for gasoline engines and diesel engines. . EGR systems, especially cooled EGR systems with a high EGR rate for diesel engines, reduce NOx in exhaust gas, prevent fuel consumption deterioration and prevent deterioration of EGR valve function and durability due to excessive temperature rise. Therefore, an EGR gas cooling device that cools the heated EGR gas with a cooling medium such as cooling water, cooling air, a car air conditioner refrigerant, or other refrigerant liquid is provided.
[0004]
  And as this EGR gas cooling device, as shown in the conventional invention of the said patent document 1-patent document 4, etc., the several small diameter heat exchanger tube which can distribute | circulate an EGR gas is arrange | positioned inside, and this heat exchanger tube is outside. There exist some which perform heat exchange with EGR gas and a cooling medium via a heat exchanger tube by circulating cooling media, such as cooling water, cooling air, and a refrigerant liquid.
[0005]
  The heat transfer tube used in the EGR gas cooling apparatus as described above is often a metal tube with a smooth inner peripheral surface. However, in such a heat transfer tube, most of the EGR gas is high-speed around the axial center of the heat transfer tube. Heat is conducted only from the EGR gas flowing through the heat transfer tube and passing through the inner peripheral surface side of the heat transfer tube, and heat exchange with the cooling medium is difficult to be performed. In order to improve this heat exchange performance, in the conventional inventions of Patent Documents 1 and 2, a flat plate is spirally formed in a metal tube provided with a protrusion protruding inwardly in a spiral or annular shape. A fin member is inserted and disposed to form a heat transfer tube. Moreover, in patent document 3, the flat fin member is integrally protruded in the raw tube, and the heat exchanger tube is formed. In Patent Document 4, a helical fin member having an outer diameter substantially the same as the inner diameter of the raw tube is inserted and arranged in the raw tube, and then a protrusion protruding inwardly is provided on the raw tube. A heat pipe is formed.
[0006]
  In this way, by arranging a helically twisted fin member in the element tube or by projecting a flat fin member integrally, the heat transfer area of the heat transfer tube is increased and the inner surface of the heat transfer tube flows. In addition to the EGR gas, the heat of the EGR gas flowing in the vicinity of the center of the shaft is transmitted to the fin member to increase the efficiency of heat conduction from the EGR gas to the heat transfer tube. Furthermore, the flow of the EGR gas in the heat transfer tube is turbulent by the fin member, the flow distance of the EGR gas in the heat transfer tube is lengthened, the contact time between the heat transfer tube and the EGR gas is lengthened, and the boundary layer is peeled off Thus, the heat exchange efficiency between the EGR gas and the cooling medium via the heat transfer tube is to be increased.
[0007]
[Problems to be solved by the invention]
  However, in the prior arts of Patent Documents 1 and 2, the contact between the fin member and the raw pipe is an intermittent point contact between both side edges of the fin member and the protruding portion of the inner peripheral surface of the raw pipe. Therefore, the contact area between the fin member and the raw tube is small, and even if the fin member receives the heat of the EGR gas, the heat transfer from the fin member to the raw tube is not sufficiently performed, and the outer periphery of the EGR gas and the heat transfer tube There was a limit to increasing the efficiency of heat exchange with the flowing cooling medium. Also, if the helical pitch is reduced and the amount of fin members is increased, the heat transfer area increases, but the pressure resistance to the fluid flowing in the heat transfer tube increases, and a predetermined amount of fluid cannot flow. As a result, the heat exchange performance of the heat transfer tube may not be improved.
[0008]
  On the other hand, in patent document 3, since the raw pipe and the flat fin member are provided integrally, the raw pipe and the plate fin are in surface contact for the plate thickness of the plate fin. Also in Patent Document 4, by forming the outer diameter of the spiral fin member with substantially the same dimension as the inner diameter of the element tube, the element tube and the fin member can be brought into surface contact with the plate thickness of the fin member. Yes. Therefore, in patent documents 3 and 4, compared with the point contact of patent documents 1 and 2, thermal conductivity with an element pipe and a fin member becomes high.
[0009]
  However, in any case of Patent Documents 1 to 4, since the fin member is simply connected to the base tube by surface contact or intermittent point contact, the fixing property of the fin member is poor, the vibration of the heat transfer tube, the fluid flow pressure, etc. Therefore, there is a possibility that the fin member may be shaken or deformed, and further cracked due to distortion, and the heat exchange function and durability of the heat transfer tube may be impaired.
[0010]
  The present invention is intended to solve the above-described problems, and enhances the thermal conductivity between the fin member inserted and arranged in the elementary tube of the heat transfer tube and the fluid flowing inside and outside the heat transfer tube. Efficient heat exchange to transfer heatTubeThe heat exchange performance is improved. In addition, the fixing of the fin member in the raw tube is improved, and it is possible to suppress blurring and deformation of the fin member, as well as cracks due to distortion, etc.TubeIt is possible to improve durability and maintain excellent heat exchange performance. Moreover, the heat exchanger tube excellent in this heat exchange performance and durability is easily formed.
[0011]
[Means for Solving the Problems]
  In order to solve the above-described problems, the present invention provides a first fin and the other fin in which one piece and the other piece are arranged in a crossing direction through a bent portion in a metal tube. Insert and arrange thisThe one fin and the other fin are formed so that the length of the one piece is longer than 50% of the inner diameter of the base tube and shorter than 75%, and the one piece of the one fin and the one piece of the other fin are in surface contact with each other. In addition, the length of the other piece is shorter than 50% of the inner diameter of the raw tube and longer than 25%, and the inside of the raw tube is divided into four in the tube axis direction.The one end of the one fin and the other piece of the other fin are brought into contact with the inner peripheral surface of the raw tube, and the one fin and the other fin are brought into contact with each other at least in the bent portion direction.Withis there.
[0012]
  In addition, the second invention,One fin and the other fin, in which one piece and the other piece are arranged in the crossing direction, are inserted and arranged in a metal tube, and one piece and the other of the one fin and the other fin are inserted. The tip of the piece is brought into contact with the inner peripheral surface of the raw tube, and a stopper is provided on at least a part of the outer surface of the one piece and the other piece. In a state where the one fin and the other fin are brought into contact with each other at least in the bent portion directionIt is.
[0013]
  In addition, the one piece and / or the other piece is formed so that the tip side is bent so as to correspond to a part of the inner peripheral surface of the raw tube, and this close contact surface is formed on the inner peripheral surface of the raw tube. It may be possible to adhere by surface contact.
[0014]
  Further, the one piece and / or the other piece may be provided with a protrusion that is long in the tube axis direction and has a V-shaped or U-shaped cross-sectional shape in the circumferential direction of the raw tube.
[0015]
  The element tube may be provided with at least one spiral groove protruding inward of the element tube with one fin and the other fin disposed therein.
[0016]
  Further, the close contact surface provided on the one piece and / or the other piece may have a forming width in the circumferential direction of the raw tube of 5% or more and 20% or less of the circumferential length of the inner peripheral surface of the raw tube.
[0017]
  The one piece and the other piece may be twisted in the circumferential direction around the tube axis.
[0018]
  Further, the one piece and / or the other piece may be provided with a plurality of embossed protrusions having a certain length.
[0019]
[Action]
  The present invention is configured as described above.1 and / or second inventionIn the heat transfer tube of the invention, the one fin and the other fin made of a metal material are arranged in a metal base tube excellent in heat conductivity, so that the heat transfer area of the heat transfer tube can be increased. Further, the one fin and the other fin are in surface contact with the inner peripheral surface of the raw tube at least in the area of the plate thickness at four positions on the tip side of each one piece and the other piece. Compared with the contact at the location, the contact area between the raw tube and the one fin and the other fin is increased, and the thermal conductivity can be improved. Further, as compared with the conventional spiral fin member, the pressure resistance to the fluid is not excessively increased, and a fluid having a predetermined flow rate can be smoothly flowed. Therefore, the heat absorption characteristics and heat dissipation characteristics of the heat transfer tube are improved, and heat exchange between the internal and external fluids via the heat transfer tube can be performed efficiently, and a heat transfer tube excellent in heat exchange performance can be obtained.
[0020]
  In the heat transfer tube manufacturing process of the present invention, after the one fin and the other fin are inserted and disposed in the raw tube, the raw tube and the one fin and the other fin are connected and fixed by brazing, welding, or the like. . In the present invention, when the one fin and the other fin are inserted into the raw tube, the tip side of the one piece and the other piece comes into contact with the inner peripheral surface of the raw tube, and the one fin and the other fin are at least in the direction of the bent portion. Since it is formed with dimension matching so that it touches partly, alignment between one fin and the other fin is completed just by inserting it into the raw tube, and one fin and the other fin are separated apart during the insertion process Without causing any misalignment or misalignment, and stable insertion work is possible.
[0021]
  Even after the insertion into the raw tube, the stability of the one fin and the other fin in the raw tube is good, and there is no occurrence of positional displacement or dropping from the raw tube. Therefore, it is possible to efficiently perform brazing and welding work between the raw pipe and the one fin and the other fin in the next process. In addition, this brazing and welding increases the contact area between the fin and the one fin and the other fin and the element pipe and metallurgical contact, and the one fin and the other fin are fixed in the element pipe. In addition to this, both thermal conductivities can be further improved.
[0022]
  In addition, since the heat transfer tube is fixed, even if the fluid flow pressure or vibration of the heat transfer tube acts on the one fin and the other fin when the heat transfer tube is used, the one fin and the other fin are in contact with each other. And the ends of the one piece and the other piece are supported by abutting against the inner peripheral surface of the raw tube. Therefore, blurring and deformation of the one fin and the other fin are suppressed, the durability of the heat transfer tube is improved, and the excellent heat exchange performance can be maintained for a long time.
[0023]
  Also, install a heat transfer tube as described above.FeverThe exchanger can be used for any heat exchanger that performs heat exchange, such as an automobile engine, other internal combustion engines, and air conditioning. For example, by forming an EGR gas cooling device for an engine and other multi-tube heat exchangers, the EGR gas can be efficiently cooled. Therefore, in an EGR system, particularly a cooled EGR system with a high EGR rate of a diesel engine, NOx in the exhaust gas can be reduced and fuel consumption can also be prevented from deteriorating. In addition, it is possible to prevent an excessive increase in temperature and to surely prevent the EGR valve from deteriorating and functioning.
[0024]
  Also, heat transfer pipes may be installed in a built-in oil cooler to a radiator that circulates high-temperature oil inside and cools with engine cooling water, and performs excellent heat exchange, heat transfer characteristics and durability High oil cooler can be obtained.
[0025]
【Example】
  The following is an EGR gas cooling device for an automotive cooled EGR system.The heat transfer tubes of the first and second inventions of the present applicationThe incorporated embodiment will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a heat transfer tube according to the first embodiment, in which one end L-shaped fin and the other fin provided with one piece and the other piece are inserted and disposed in a substantially cross-shaped form in the raw tube. Moreover, the circular through-hole is provided in the one piece and the other piece. FIG. 2 is an end view of FIG. FIG. 3 is an enlarged perspective view of one piece of the second embodiment. A U-shaped raised portion is provided on one piece to form a through hole and irregularities.
[0026]
  FIG. 4 is an enlarged perspective view of one piece of the third embodiment. A louver portion is provided on one piece to form through holes and irregularities. FIG. 5 is an enlarged perspective view of one piece of the fourth embodiment, and a rectangular through hole is provided in the one piece. FIG. 6 is a perspective view of the heat transfer tube of the fifth embodiment. In the state where one fin and the other fin are inserted and arranged, a spiral groove projecting inward is provided on the outer periphery of the base tube. 7 is a cross-sectional view of the heat transfer tube of FIG. 6 along the line AA.
[0027]
  Further, FIG. 8 is an end view of the heat transfer tube of the sixth embodiment, provided on the tip end side of the one piece and the other piece with a close contact surface to be brought into surface contact with the inner peripheral surface of the raw tube, A protrusion having a U-shaped cross section in the circumferential direction of the base tube is provided. FIG. 9 is an end view of the heat transfer tube of the seventh embodiment. As in the sixth embodiment, the one piece and the other piece are provided with close contact surfaces and ridges. It is also wide. FIG. 10 is an end view of the heat transfer tube of the eighth embodiment, in which the contact surface and the ridge between the one piece and the other piece are formed so as to face each other. FIG. 11 is an end view of the heat transfer tube of the ninth embodiment. As in the eighth embodiment, the one piece and the other piece are provided with close contact surfaces and ridges. It is also wide.
[0028]
  Also figure12 isFirst10 fruitsFIG. 6 is a cross-sectional view in the circumferential direction of the heat transfer tube of the example, with a stopper projecting from the outer surface of one piece of one fin and the other fin, and the other piece of the mating fin abutting against the stopper. Figure13Figure12It is a perspective view which shows the engagement state of the stopper of one fin and the other fin. Also figure14 isFirst11 fruitsIn the perspective view of the one fin and the other fin of the embodiment, the one fin and the other fin are twisted in the circumferential direction. Figure15 isThe second12 fruitsIn the perspective view of the one fin and the other fin of the embodiment, a plurality of embossed protrusions having a fixed length in the inclined direction with respect to the tube axis are provided in the same direction on the one piece and the other piece. . Figure16 isFirst13 fruitsIn the perspective view of the one fin and the other fin of the embodiment, the embossed projections of the one piece and the other piece are provided in different directions. Figure17It is the schematic of the EGR gas cooling device using the heat exchanger tube of this invention.
[0029]
  First,First in the first invention of the present applicationFIG. 1, FIG. 2, FIG.To 17More specifically, (1) is a heat transfer tube, and the inside of the thin metal tube (2) through which EGR gas can flow is elongated in the tube axis direction and the end face shape is substantially L. The metal-made one fin (3) and the other fin (4) are inserted and arranged symmetrically in a point-symmetric manner so that the end surface has a substantially cross shape.
[0030]
  Moreover, the said pipe | tube (2), one fin (3), and the other fin (4) can obtain the heat exchanger tube (1) which is excellent in heat conductivity by using copper, aluminum, brass, stainless steel, etc. it can. Stainless steel or the like is excellent not only in thermal conductivity but also in corrosion resistance against EGR gas and the like. In addition, the raw tube (2) and the one fin (3) and the other fin (4) may be formed of the same metal in consideration of the purpose of use and cost, or may be formed of different metals. Also good. In addition, in order to further improve the reliability of corrosion resistance, the metal material as described above is subjected to a single-layer plating treatment of zinc, copper, tin, tin-zinc alloy, nickel, zinc-nickel alloy, etc., and chromate as necessary. A coating or the like may be applied, or two or more layers of plating may be performed, such as plating the outer surface of the metal material with nickel and further plating a zinc-nickel alloy on the outer peripheral surface of the nickel.
[0031]
  In addition, the heat conductivity with the one fin (3) and the other fin (4) and the element pipe (2) and the fixing property of the one fin (3) and the other fin (4) in the element pipe (2) are considered. Thus, it is preferable that the plate thickness of the plate member forming the one fin (3) and the other fin (4) is 1% or more and 15% or less of the inner diameter of the raw tube (2). If the plate thickness is thinner than 1% of the inner diameter of the raw tube (2), the thermal conductivity and the fixing property between the one fin (3), the other fin (4) and the raw tube (2) may be reduced. There is. Further, if the plate thickness is thicker than 15% of the inner diameter of the raw pipe (2), the occupied volume of the one fin (3) and the other fin (4) in the raw pipe (2) increases, and the EGR gas flow space Therefore, a predetermined amount of EGR gas cannot be flowed, and the heat exchange performance of the heat transfer tube (1) may be reduced.
[0032]
  In this embodiment, the plate member is formed with a plate thickness of 3% of the inner diameter of the blank tube (2). Specifically, the inner diameter d of the blank tube (2) shown in FIG. The other fin (4) has a plate thickness t of 0.3 mm. A plate member having such a thickness is bent at approximately 90 °, and provided with one piece (6) and the other piece (7) through a bent portion (5), and one fin having an L-shaped end surface. (3) and the other fin (4) are formed.
[0033]
  Further, the one fin (3) and the other fin (4) are formed in the same shape and the same size, thereby improving productivity. The length of each one piece (6) is longer than 50% of the inner diameter of the blank tube (2) and shorter than 75%, so that the one piece (6) of the one fin (3). And one piece (6) of the other fin (4) can be brought into surface contact with each other in the raw pipe (2). The other piece (7) has a length shorter than 50% of the inner diameter of the base tube (2) and longer than 25%. Specifically, as shown in FIG. 2, the formation length a of the one piece (6) is 6.0 mm, which is 60% of the inner diameter of the raw tube (2), and the formation length b of the other piece (7) is 4 .9 mm is 49% of the inner diameter of the tube (2). By adopting such dimensions, at the time of insertion and placement into the raw tube (2), the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) are in the axial center portion ( 8) In the state of surface contact via 8), the tip of each of the one piece (6) and the other piece (7) of the one fin (3) and the other fin (4) is brought into contact with the inner peripheral surface of the raw tube (2). It becomes possible to contact.
[0034]
  Further, by arranging the one fin (3) and the other fin (4), the inside of the raw pipe (2) is divided into four in the tube axis direction, and as shown in FIG. 3) between the first inner space (10) between the one piece (6) and the other piece (7), and between the one piece (6) of the one fin (3) and the other piece (7) of the other fin (4). The second internal space (11), the third internal space (12) between the other piece (7) and one piece (6) of the other fin (4), and the one piece (6) and one of the other fin (4) A fourth internal space (13) between the other pieces (7) of the fin (3) is formed. The one fin (3) and the other fin (4) are adjacent to each other by opening circular through holes (14) at a plurality of locations on the one piece (6) and the other piece (7). The internal spaces (10), (11), (12), and (13) communicate with each other to allow EGR gas to enter and exit.
[0035]
  Then, in order to form the heat transfer tube (1) by inserting and arranging the one fin (3) and the other fin (4) in the base tube (2) as described above, one piece of the one fin (3) ( 6) Insert the one fin (3) and the other fin (4) into the raw tube (2) while bringing the bent part (5) side of the one piece (6) of the other fin (4) into surface contact with each other. To do. Since the one fin (3) and the other fin (4) are formed as described above, each one piece (6) and the other piece (7) of the one fin (3) and the other fin (4) are formed. The tip of the tube abuts on the inner peripheral surface of the raw tube (2), and the movement of the one fin (3) or the other fin (4) in the direction of the tip is prevented, and the one piece (6) of each other is in surface contact. Thus, the movement toward the inside of the raw tube (2) is also prevented. Therefore, the positioning of the one fin (3) and the other fin (4) is ensured, and the one fin (3) and the other fin (4) are separated apart in the insertion process into the raw tube (2). There is no position shift or the like, and a stable insertion operation up to the insertion completion position is possible. Therefore, the working efficiency is improved and the alignment of the one fin (3) and the other fin (4) is completed only by performing the insertion work.
[0036]
  When the above insertion and arrangement are completed, as shown in FIG. 1, the L-shaped one fin (3) and the other fin (4) are in the raw tube (2) with the one piece (6) in surface contact with each other. The end face shape is arranged in a substantially cross shape. Further, the tip ends of the one piece (6) and the other piece (7) are in surface contact with the inner peripheral surface of the element pipe (2), and the one fin (3) and the other fin (4) in the element pipe (2). And the heat conduction between the raw tube (2) and the one fin (3) and the other fin (4) is performed well through a contact area equivalent to four times the plate thickness. It will be.
[0037]
  Next, the tip edges of the one piece (6) and the other piece (7) of the one fin (3) and the other fin (4) and the inner peripheral surface of the raw pipe (2) are brazed. By this brazing, the one piece (6) and the other piece (7) and the inner peripheral surface of the raw pipe (2) are securely brought into close contact with the fillet (9) of the brazing material, and as shown in FIG. The width of the fillet (9) of the material makes a wide surface contact and metallurgical contact. The sex can be further enhanced. Further, the contact portion between the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) may be brazed, and the one fin (3) and the other fin (4) As a result, the fixing property can be further improved and fretting can be prevented. In order to release the distortion due to thermal expansion, it is not necessary to braze the contact portion between the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4).
[0038]
  Further, at the time of brazing, a brazing material is plated on at least the tip edges of the one fin (3) and the other fin (4) in advance before insertion into the raw tube (2). When the contact surface of the one piece (6) is brazed, a brazing material is plated on the outer surface of the bent portion (5). The brazing material may be plated on the entire surface of the one fin (3) and the other fin (4) because it is easy to work. Alternatively, the brazing material may be plated on the inner peripheral surface of the base tube (2). You may do it. Also, a brazing material is clad on the plate member, which is a material for forming the one fin (3) and the other fin (4), and this clad material is processed to form one fin (3) and the other fin (4). Also good.
[0039]
  In addition, the one fin (3) and the other fin (4) in which a binder for adhering a brazing material is applied to the front edge of the one fin (3) and the other fin (4) and the outer surface of the bent portion (5) After insertion in (2), a powdery brazing material may be supplied into the raw tube (2). As another method, the one fin (3) and the other fin (4) supplied with brazing paste at the tip edges of the one piece (6) and the other piece (7) may be inserted into the raw tube (2). Then, after inserting the one fin (3) and the other fin (4) into the raw pipe (2), the brazing material paste may be supplied into the raw pipe (2). And it may braze at the time of manufacture of a heat exchanger tube (1), or may braze after attaching a heat exchanger tube (1) to the below-mentioned EGR gas cooling device (20).
[0040]
  And the EGR gas cooling device (20) assembled with the heat transfer tube (1) as described above is shown in FIG.To 17As shown, a pair of tube sheets (22) are connected to both ends of a cylindrical trunk tube (21) so that the inside can be sealed. And between the pair of tube sheets (22), a plurality of heat transfer tubes (1) of the present embodiment are connected and arranged through the tube sheet (22). Further, a bonnet (26) provided with an EGR gas inlet (24) and outlet (25) is connected to both ends of the trunk pipe (21).
[0041]
  Furthermore, the outer periphery of the trunk tube (21) is partitioned by a pair of tube sheets (22) by providing an inlet (27) and an outlet (28) for a cooling medium such as engine cooling water and cooling air. A cooling part (23) through which a cooling medium can flow is used in the airtight space. Further, a plurality of support plates (30) are joined and disposed in the cooling section (23), and the heat transfer tube (1) is inserted into the insertion hole (29) provided in the support plate (30). The heat transfer tube (1) is stably supported as a baffle plate, and the flow of the cooling medium flowing in the cooling unit (23) is meandered.
[0042]
  In the EGR gas cooling device (20), when high-temperature EGR gas is introduced into the trunk tube (21) from the introduction port (24), a plurality of the EGR gases are arranged in the trunk tube (21). It flows into (1). In the cooling part (23) in which the heat transfer tube (1) is arranged, a cooling medium such as engine cooling water is circulated in advance to the outside of the heat transfer tube (1). Heat exchange is performed between the EGR gas and the cooling medium.
[0043]
  The heat transfer tube (1) of the present invention increases the contact frequency with the EGR gas by increasing the heat transfer area by providing the one fin (3) and the other fin (4). Furthermore, by bringing the tip edges of the one piece (6) and the other piece (7) into contact with the inner peripheral surface of the raw tube (2), the one fin (3) and the other fin (4) are compared with the conventional one. The contact area with the base tube (2) increases, and the thermal conductivity of each other improves.
[0044]
  Further, EGR gas passes through the one fin (3) and the other fin (4) in the four internal spaces (10) (11) (12) (13) divided by the one fin (3) and the other fin (4). ) Is dispersed while flowing in contact with the inner and outer surfaces of the pipe, so that uneven flow is prevented, and not only the heat of the EGR gas on the inner peripheral surface side of the element tube (2) but also the heat of the EGR gas flowing near the center. In addition, heat can be efficiently transferred to the one fin (3) and the other fin (4).
[0045]
  Further, in the present embodiment, a through hole (14) is provided in one piece (6) and the other piece (7). For this reason, the EGR gas flows through the first through fourth inner spaces (10), (11), (12), and (13) through the through holes (14) and flows to the flow destination. Causes fluidization. By this turbulent flow, the flow distance of EGR gas in the heat transfer tube (1) becomes longer, and the contact time with the inner peripheral surface of the elementary tube (2) and the surfaces of the one fin (3) and the other fin (4). The EGR gas is agitated, and not only a part of the EGR gas but the entire EGR gas repeatedly comes into contact with the element pipe (2) and the one fin (3) and the other fin (4). Heat transfer to 3) and the other fin (4) is further promoted.
[0046]
  Then, the heat of the EGR gas received by the one fin (3) and the other fin (4) is efficiently transferred to the inner surface of the raw tube (2) by excellent thermal conductivity, and then the raw tube (2 The heat is dissipated to the cooling medium flowing on the outer periphery via the outer surface of). Therefore, the entire EGR gas is uniformly cooled without unevenness, and an excellent cooling effect on the EGR gas can be obtained.
[0047]
  The EGR gas thus well cooled flows out of the EGR gas cooling device (20) through the outlet port (25) and is returned to the intake manifold side. Accordingly, it is possible to prevent the EGR valve from being heated to high temperature and obtain the excellent functionality and durability of the EGR valve, and to reduce the temperature of the intake air, so that NOx can be reduced and good fuel consumption can be achieved. In addition, the turbulent flow of EGR gas in the heat transfer tube (1) promotes the separation of soot mixed in the EGR gas and prevents it from becoming a large lump. Cooling performance due to clogging, etc. It is possible to prevent deterioration and engine trouble.
[0048]
  Next, the durability of the heat transfer tube (1) against vibration of the heat transfer tube (1) and the flow pressure of EGR gas in the heat transfer tube (1) will be described. First, when an outward movement force of the raw tube (2) acts on the one fin (3) or the other fin (4), each one piece of the one fin (3) and the other fin (4) ( 6) and / or the tip of the other piece (7) abuts against the inner peripheral surface of the raw tube (2), so that the outward movement is prevented.
[0049]
  Moreover, if the case where the moving force to the inside of the raw tube (2) is applied to the one fin (3) and the other fin (4), the one fin (3) and the other fin (4) are When a moving force in the direction of the axial center (8) acts, the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) abut each other by surface contact, Movement in the axial center (8) direction is prevented. Next, the movement force in the direction parallel to the one piece (6), that is, the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) in the mutual sliding direction acts. In this case, the fourth inner space (13) and the second inner space (11) to which the one fin (3), the other fin (4) is moved are the circles of the other one piece (6) and the raw tube (2). The space surrounded by the arc-shaped inner peripheral surface is narrower than the formation height of the other piece (7). Therefore, in the state where the bent portion (5) side of the one piece (6) is supported by the other one piece (6), the tip edge of the other piece (7) is tapered to the inner peripheral surface of the element pipe (2). The one fin (3) and the other fin (4) are prevented from moving in the sliding direction with respect to each other.
[0050]
  As described above, when the vibration of the heat transfer tube (1), the flow pressure of EGR gas, or the like is applied, the movement in each direction is prevented, thereby fixing the one fin (3) and the other fin (4). As a result, it is possible to satisfactorily prevent blurring and deformation. Therefore, the durability of the heat transfer tube (1) and the EGR gas cooling device (20) assembled with the heat transfer tube (1) can be improved.
[0051]
  In the first embodiment, a circular through hole (14) is opened in one piece (6) and the other piece (7). In the second embodiment, as shown in FIG. (6) and the other piece (7) are provided with a raised portion (15) that opens in a U-shape on the inflow side of the EGR gas so that the surface of the one piece (6) and the other piece (7) is uneven (16) And the opening of the raised portion (15) serves as a through hole (14). FIG. 3 shows an enlarged perspective view of the one piece (6) provided with the raised portion (15). In FIG. 3 and FIGS. 4 and 5 showing the third and fourth embodiments described below, only an enlarged perspective view of one piece (6) is shown, but the other piece (7) is also shown. The one piece (6) has the same configuration.
[0052]
  In another different third embodiment, as shown in FIG. 4, the one piece (6) and the other piece (7) are provided with a louver portion (17) inclined in a taper shape in the tube axis direction. Concave and convex portions (16) are provided on the surfaces of (6) and the other piece (7), and a through hole (14) is opened. In a further different fourth embodiment, as shown in FIG. 5, a rectangular through hole (14) is opened in one piece (6) and the other piece (7). As another different embodiment, the through hole (14) may be opened in a shape such as an ellipse, an oval, a triangle, a pentagon, and other polygons.
[0053]
  In the heat transfer tube (1) in which the one fin (3) and the other fin (4) are inserted and disposed as in the second to fourth embodiments, excellent heat conductivity is obtained and the EGR gas penetrates. Since the fluid flows while passing through the holes (14) or being guided by the irregularities (16) and the edge portion increases, the turbulent flow of EGR gas and the stirring action are further promoted. As a result, the heat transfer efficiency between the EGR gas and the heat transfer tube (1) can be improved by peeling the boundary layer, and the heat transfer tube (1) having excellent heat exchange performance can be obtained. Moreover, these through holes (14), raised portions (15), irregularities (16), louvered portions (17), etc. can be easily performed by pressing or the like, and the manufacturing cost and productivity of the heat transfer tube (1) are improved. Will not be affected.
[0054]
  Further, in the fifth embodiment shown in FIGS. 6 and 7, the substantially fin-shaped one fin (3) and the other fin (4) having the same shape as that of the first embodiment are arranged with the one piece (6) facing each other. It is inserted and arranged in the raw pipe (2) in contact. In the first embodiment, the inner and outer surfaces of the raw tube (2) are smooth without any irregularities, but in the fifth embodiment, the one fin (3) and the other fin (4) are inserted. By pressing the wall surface of the raw tube (2) from the outside in a spiral shape, as shown in FIGS. 6 and 7, the outer surface of the raw tube (2) is moved inwardly from the outer side of the raw tube (2). One protruding spiral groove (18) is provided. In the fifth embodiment, only one spiral groove (18) is provided. However, as another different embodiment, two or more spiral grooves (18) may be provided on the outer periphery of the base tube (2). good.
[0055]
  By providing such a spiral groove (18), as shown in FIG. 7, the inner circumferential surface of the spiral groove (18) protruding inward presses the tip of one piece (6) or the other piece (7). Since the one fin (3) and the other fin (4) are clamped and fixed while being deformed, the fixability of the one fin (3) and the other fin (4) in the base tube (2) is further improved, and the heat transfer tube ( The durability of 1) is increased. Furthermore, at the position where the spiral groove (18) is formed, the inner peripheral surface of the blank tube (2) and the surfaces of the one piece (6) and the other piece (7) are in partial surface contact with each other. The thermal conductivity between (3) and the other fin (4) and the raw tube (2) can be further increased.
[0056]
  Further, in the sixth embodiment shown in FIG. 8, as in the above embodiments, the one fin (3) and the other fin (4) whose end face shape is substantially L-shaped, and the one piece (6) of each other are faced. It is placed in contact with the base tube (2) in a cruciform shape. Then, in the counterclockwise direction, the space between the one piece (6) and the other piece (7) of the one fin (3) is defined as a first internal space (10), and the one piece (6) and the other fin of the one fin (3) are arranged. Between the other piece (7) of (4) is the second internal space (11), and between the other piece (7) and one piece (6) of the other fin (4) is the third inner space (12), and the other fin A space between one piece (6) of (4) and the other piece (7) of one fin (3) is defined as a fourth internal space (13).
[0057]
  Moreover, in each said Example, although the front-end edge of one piece (6) and the other piece (7) is stuck to the inner peripheral surface of a raw pipe (2), in a 6th Example, one piece (6) Further, the close contact surface (31) is formed by bending the tip side of the other piece (7) in a counterclockwise direction so as to correspond to a part of the inner peripheral surface of the base tube (2). Then, when the one fin (3) and the other fin (4) are inserted into the raw pipe (2), the close contact surface (31) is brought into close contact with the inner peripheral surface of the raw pipe (2) by surface contact. ing.
[0058]
  By closely contacting the close contact surface (31) to the inner peripheral surface of the raw pipe (2), heat transfer between the one fin (3) and the other fin (4) and the raw pipe (2) can be further improved. In addition, the fixing property between the one fin (3) and the other fin (4) in the raw tube (2) is improved, and the durability of the heat transfer tube (1) is also increased.
[0059]
  In addition, it is preferable that the said contact surface (31) makes the formation width of the circumferential direction of a raw tube (2) into 5 to 20% of the circumferential length of the inner peripheral surface of a raw tube (2). . Even if the formation width of the contact surface (31) is less than 5% of the circumferential length of the blank tube (2), the tips of the one piece (6) and the other piece (7) without providing the contact surface (31) The thermal conductivity and fixability are not so different from those in the case where they are closely fixed with a contact area corresponding to the thickness of the edge. Moreover, even if the formation width of the contact surface (31) is larger than 20% of the circumferential length of the blank tube (2), there is no difference in the heat transfer effect. Furthermore, the close contact surface (31) abuts against the adjacent one piece (6) or the other piece (7) and curves, making it impossible to make contact with the inner peripheral surface of the raw tube (2), or wasting metal material. May occur.
[0060]
  Further, when the heat transfer tube (1) is constantly exposed to the high heat of the EGR gas, the one fin (3) and the other fin (4) are likely to undergo thermal expansion, but the one piece (6) and the other piece (7). It is possible to absorb some thermal expansion, for example, by bending slightly. However, since the tips of the one piece (6) and the other piece (7) are fixed to the inner peripheral surface of the element pipe (2) by brazing, if the thermal expansion becomes excessive, the one piece (6) The distortion with the other piece (7) cannot be missed, the one piece (6) and the other piece (7) are cracked, and this crack may cause a crack in the base tube (2). There is.
[0061]
  In order to eliminate the problem due to the excessive thermal expansion, in the sixth embodiment, as shown in FIG. 8, the one fin (3) and the other fin (4) are formed of one piece (6) and the other piece (7). Each is provided with a long ridge (32) projecting in the direction of the other surface from the one surface side in the tube axis direction. This protrusion (32) has a U-shaped cross section in the circumferential direction of the pipe (2), and as shown in FIG. 8, it protrudes all counterclockwise when installed in the pipe (2). It is formed to do. By providing the protrusion (32) in this way, even if thermal expansion occurs in the one piece (6) and the other piece (7), the protrusion (32) contracts inward to absorb the thermal expansion. As a result, the distortion of the one piece (6) and the other piece (7) can be suppressed, and the occurrence of cracks can be prevented.
[0062]
  Moreover, it is preferable that the protrusion (32) has a formation height that is not less than the plate thickness of the one fin (3) and the other fin (4) and not more than 25% of the inner diameter of the raw tube (2). If the height of the protrusion (32) is smaller than the plate thickness, the thermal expansion of the one piece (6) and the other piece (7) by the protrusion (32) is not effectively performed. . On the contrary, even if it is larger than 25% of the inner diameter of the raw tube (2), the thermal expansion absorbability is not improved any more, resulting in wasted material.
[0063]
  In addition, the one piece (6) and the other piece (7) are provided with a contact surface (31) to the inner peripheral surface of the base tube (2) and a ridge (32) for absorbing thermal expansion. FIGS. 9 to 11 show seventh to ninth embodiments having different configurations. First, in the seventh embodiment shown in FIG. 9, as in the sixth embodiment, an adhesion surface (31) is provided in the counterclockwise direction at the tips of the one piece (6) and the other piece (7). The U-shaped ridge (32) is also projected in the counterclockwise direction. The width of the ridge (32) is wider than that of the sixth embodiment, so that the thermal expansion absorption force is increased. It is increasing.
[0064]
  Further, in the eighth embodiment shown in FIG. 10, the contact surface (31) of the one piece (6) and the protrusion (32) are projected in the clockwise direction, and the contact surface (31 of the other piece (7)). ) And the ridge (32) are provided in a counterclockwise direction so that the contact surface (31) and the ridge (32) are placed inside the one piece (6) and the other piece (7). Oppositely arranged. By arranging the contact surface (31) and the protrusion (32) inside the one fin (3) and the other fin (4) in this way, the contact surface (31) is not bulky, and the raw tube (2) It becomes easy to store and transport the one fin (3) and the other fin (4) before being disposed on the front.
[0065]
  Further, in the ninth embodiment shown in FIG. 11, as in the eighth embodiment, the contact surface (31) and the protrusion (32) of the one piece (6) are projected in the clockwise direction, and the other piece (7 ) Are closely projecting in the counterclockwise direction, but the width of the protrusion (32) is wider than that of the eighth embodiment, and thermal expansion is achieved. Increases the absorption capacity.
[0066]
  In the first to ninth embodiments, the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) are brought into surface contact.,oneThe fixing property between the one fin (3) and the other fin (4) is improved, and the blurring or deformation of the one fin (3) and the other fin (4) can be prevented. On the contraryThe tenth fruit which is the second invention of the present applicationIn the embodiment, as in the first to ninth embodiments, not only the one piece (6) of the one fin (3) and the one piece (6) of the other fin (4) are brought into surface contact, but also the one fin (3). A plurality of stoppers (34) are provided on the outer surface of the one piece (6) of (3) and the one piece (6) of the other fin (4). . This stopper (34)13As shown, a part of one piece (6) is formed by bulging, and by engaging the other piece (7) of the other side with this stopper (34), one fin (3) and the other fin (4 ) Can be prevented from moving in the sliding direction of the one piece (6).
[0067]
  Also figure14Show other different number11 fruitsIn the embodiment, the one fin (3) and the other fin (4) formed in the same shape as in the first embodiment are further twisted in the circumferential direction around the tube axis. Due to the formation of the twist, the first to fourth inner spaces (10), (11), (12), and (13) meander, and the turbulent flow and stirring action of the EGR gas are promoted, and the boundary layer is separated from the EGR gas. The efficiency of heat conduction with the heat pipe (1) can be improved, and soot accumulation can be suppressed.
[0068]
  Also figureTo 15Show first12 fruitsExamples and figures16Show first13 fruitsIn the embodiment, embossed protrusions (35) having a fixed length in the inclined direction with respect to the tube axis are formed on each one piece (6) and the other piece (7) of the one fin (3) and the other fin (4). ) Are projected. By projecting the projection (35), a plurality of projections (36) and recesses (37) are formed on both surfaces of the one piece (6) and the other piece (7). These protrusions (35) are arranged in an inclined direction such that the end portion on the inflow side of EGR gas is located in the central axis direction and the end portion on the outflow side is located outward, and one piece (6 ) And the other piece (7) are alternately projected in the tube axis direction so as not to be arranged on the same circumference.
[0069]
  Also,First12 fruitsIn the example, figureTo 15As shown, the protrusion (35) of the one piece (6) and the protrusion (35) of the other piece (7) are each provided in a counterclockwise direction.. on the other handThe second13 fruitsIn the example, figure16As shown, the projection (35) of one piece (6) is projected in the counterclockwise direction, but the projection (35) of the other piece (7) is projected in the clockwise direction, and the projections ( 36) and the recess (37) are formed to face each other. Further, the embossed protrusion (35) is not necessarily provided on both the one piece (6) and the other piece (7), and may be formed in an embossed shape with a certain length.15,Figure16It is not limited to the shape as shown. It should be noted that the embossed protrusion (35) does not necessarily have to be inclined with respect to the tube axis, and may be provided in parallel to the tube axis or at another angle.
[0070]
  Above12,First13 fruitsIn the heat transfer tube (1) in which the protrusion (35) is provided on the one piece (6) and the other piece (7) of the one fin (3) and the other fin (4) as in the embodiment, the heat transfer area is increased. And a protrusion (36) having a fixed length formed on both surfaces of one piece (6) and the other piece (7) of the one fin (3) and the other fin (4) and a recess ( Since the EGR gas flows along 37), the effect of promoting the turbulent flow of EGR gas and the stirring action is high. As a result, it is possible to improve the heat conduction efficiency between the EGR gas and the heat transfer tube (1) by separating the boundary layer, and to suppress soot accumulation and the like.
[0071]
  The fifth to fifth10 fruitsIn the embodiment, as in the first to fourth embodiments, the through holes (14) are formed in the one piece (6) and the other piece (7) of the one fin (3) and the other fin (4). A raised portion (15), unevenness (16), louver portion (17), and the like may be provided. Further, only one kind of these may be provided, or a plurality of kinds may be appropriately combined, and the through hole (14) and the unevenness (16) may be provided in the one piece (6) and the other piece (7). The second12,First13 fruitsAs in the embodiment, the one piece (6) and / or the other piece (7) are provided with a plurality of embossed protrusions (35) of a certain length in parallel or inclined direction or other angle with respect to the tube axis. May be.
[0072]
  Also, first to first9th fruitExample, No.11-First13 fruitsIn the example,10 fruitsAs in the embodiment, a stopper (34) may be provided on one piece (6) and the other piece (7) of the one fin (3) and the other fin (4). Also, the first to fifth embodiments, the first11-First13 fruitsIn the examples, 6th to 4th10 fruitsAs in the embodiment, a U-shaped or V-shaped protrusion (32) may be formed on the one piece (6) or the other piece (7). Furthermore, the first to fifth embodiments, the first11-First13 fruitsIn the examples, 6th to 4th10 fruitsAs in the example, the tip end side of the one piece (6) and the other piece (7) is bent so as to correspond to a part of the inner peripheral surface of the base pipe (2) to form a close contact surface (31). The contact surface (31) may be brought into surface contact with the inner peripheral surface of the raw tube (2).
[0073]
  Also, first to first10 fruitsExample, No.12,First13 fruitsIn the example,11 fruitsAs in the embodiment, the one fin (3) and the other fin (4) may be twisted in the circumferential direction around the tube axis. Also, the first to fourth embodiments, the sixth to the fourth13 fruitsIn the embodiment, as in the fifth embodiment, at least one spiral groove (18) may be provided on the outer peripheral surface of the element pipe (2).
[0074]
  In each of the above embodiments, the one fin (3) and the other fin (4) are formed in the same shape and are in surface contact with each other at the shaft center (8). It is not necessary to form one fin (3) and the other fin (4) in different shapes and sizes, and in the raw tube (2), they face each other at a position different from the axial center portion (8). You may make it contact.
[0075]
  In each of the above embodiments, the EGR gas cooling device (20) is described as being assembled with the heat transfer tube (1) of the present invention. However, the heat transfer tube of the present invention is applied to another different multi-tube heat exchanger. A heat tube (1) may be used, and excellent heat exchange performance can be obtained. In addition, the heat transfer tube of the present invention (1) is installed in a built-in oil cooler for a radiator in which high-temperature oil such as engine oil, mission oil, ATF, and power steering oil is circulated inside and cooled with engine coolant. ) Can also be assembled. And through the heat transfer pipe (1) having a large heat transfer area and high heat conductivity of the present invention, the engine cooling water flowing in the heat transfer pipe (1) and the oil to be cooled flowing in the outside of the heat transfer pipe (1) Heat exchange with the oil is promoted, and the oil to be cooled can be cooled uniformly and efficiently.
[0076]
【The invention's effect】
  The present invention is configured as described above, and the one fin and the other fin provided with one piece and the other piece in the crossing direction are inserted and disposed in a metal base tube excellent in thermal conductivity. The heat transfer area of the heat transfer tube can be increased, and furthermore, the thermal conductivity between the one fin and the other fin and the base tube can be increased. Further, the arrangement of the one fin and the other fin divides the internal space of the heat transfer tube into a plurality of parts, and prevents the uneven flow of the fluid, and the fluid that flows near the center of the heat transfer tube through the one fin and the other fin Exchange of heat with is promoted. Therefore, heat exchange between the fluids flowing inside and outside the heat transfer tube can be performed efficiently, and a heat transfer tube with high heat exchange performance can be obtained.
[0077]
  Furthermore, since the tips of the one piece and the other piece are in contact with the inner peripheral surface of the raw tube and the one fin and the other fin are in contact with each other at least partly, the fixing property of the one fin and the other fin in the raw tube This prevents vibration and deformation of the one fin and the other fin due to vibration of the heat transfer tube, fluid flow pressure, etc., as well as fretting the one fin and the other fin, and the wall surface of the raw tube where they are in contact. The heat exchange can be performed smoothly and the durability of the heat transfer tube is improved.
[0078]
  In addition, the heat transfer tube having excellent heat exchange performance as described above, without requiring complicated alignment and dimensional adjustment, etc., by simply inserting the fin and the other fin into contact with each other, When the alignment is completed, it is possible to easily form a heat transfer tube by preventing misalignment or dropping from the raw tube. And by using this heat transfer tube excellent in heat exchange performance for a multi-tube heat exchanger, a radiator built-in oil cooler, etc., a product with high heat transfer characteristics and durability can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a heat transfer tube according to a first embodiment of the present invention.
FIG. 2 is an end view of FIG.
FIG. 3 is an enlarged perspective view of one piece of a second embodiment.
FIG. 4 is an enlarged perspective view of one piece of a third embodiment.
FIG. 5 is an enlarged perspective view of one piece of a fourth embodiment.
FIG. 6 is a perspective view showing a heat transfer tube of a fifth embodiment.
7 is a cross-sectional view of the heat transfer tube of FIG. 6 along the line AA.
FIG. 8 is an end view showing a heat transfer tube of a sixth embodiment.
FIG. 9 is an end view showing a heat transfer tube of a seventh embodiment.
FIG. 10 is an end view showing a heat transfer tube of an eighth embodiment.
FIG. 11 is an end view showing a heat transfer tube of a ninth embodiment.
FIG.Sectional drawing of the circumferential direction which shows the heat exchanger tube of 10th Example.
FIG. 13The expansion perspective view of only the one fin and other fin of 10th Example.
FIG. 14The perspective view of only one fin and the other fin of 11th Example.
FIG. 15The perspective view of only one fin and the other fin of 12th Example.
FIG. 16The perspective view of only one fin and the other fin of 13th Example.
FIG. 17The partial notch top view of the EGR gas cooling device which assembled | attached the heat exchanger tube of 1st invention of this application, and 2nd invention.
[Explanation of symbols]
  2 Elementary tube
  3 One fin
  4 Other fin
  5 bent part
  6 One piece
  7 The other piece
18 Spiral groove
31 Contact surface
32 ridges
33 Contact piece
34 Stopper
35 protrusions

Claims (8)

金属材製の素管内に、折曲部を介して一方片と他方片とを各々交差方向に配置した一方フィンと他方フィンとを挿入配設し、この一方フィン及び他方フィンは、一方片の形成長さを素管の内径の50%よりも長尺で75%よりも短尺とし、この一方フィンの一方片と他方フィンの一方片とを互いに面接触させるとともに、他方片の形成長さを素管の内径の50%よりも短尺で25%よりも長尺とし、素管内を管軸方向に4分割して、この一方フィンと他方フィンの一方片と他方片との先端側を素管の内周面に当接させるとともに、一方フィンと他方フィンとを折曲部方向の少なくとも一部で接触させた事を特徴とする伝熱管。One fin and the other fin, in which one piece and the other piece are arranged in a crossing direction, are inserted and arranged in a metal tube, and the one fin and the other fin are arranged in one piece. The forming length is longer than 50% of the inner diameter of the base tube and shorter than 75%, and the one piece of the one fin and the one piece of the other fin are brought into surface contact with each other, and the forming length of the other piece is set. The inner tube is shorter than 50% and longer than 25%, and the inside of the tube is divided into four in the direction of the tube axis. The heat transfer tube is characterized in that the one fin and the other fin are brought into contact with each other in at least a part in the bent portion direction. 金属材製の素管内に、折曲部を介して一方片と他方片とを各々交差方向に配置した一方フィンと他方フィンとを挿入配設し、この一方フィンと他方フィンの一方片と他方片との先端側を素管の内周面に当接させるとともに、一方片と他方片の外面の少なくとも一部にストッパーを突設し、このストッパーに相手フィンの他方片又は一方片を当接させた状態で、一方フィンと他方フィンとを折曲部方向の少なくとも一部で接触させた事を特徴とする伝熱管。One fin and the other fin, in which one piece and the other piece are arranged in the crossing direction, are inserted and arranged in a metal tube, and one piece and the other of the one fin and the other fin are inserted. The tip of the piece is brought into contact with the inner peripheral surface of the raw tube, and a stopper is provided on at least a part of the outer surface of the one piece and the other piece, and the other piece or one piece of the mating fin is brought into contact with the stopper. In this state, the one fin and the other fin are brought into contact with each other in at least a part in the direction of the bent portion. 一方片及び/又は他方片は、先端側を素管の内周面の一部に対応させて折曲する事により密着面を形成し、この密着面を、素管の内周面に面接触により密着可能とした事を特徴とする請求項1、又は2の伝熱管 The one piece and / or the other piece forms a close contact surface by bending the tip side corresponding to a part of the inner peripheral surface of the raw tube, and this close contact surface is in surface contact with the inner peripheral surface of the raw tube. The heat transfer tube according to claim 1, wherein the heat transfer tube can be closely attached . 一方片及び/又は他方片は、管軸方向に長尺で素管の円周方向の断面形状がV字形又はU字形の突条を設けた事を特徴とする請求項1、2、又は3の伝熱管。The one piece and / or the other piece is provided with a protrusion that is long in the tube axis direction and has a V-shaped or U-shaped cross section in the circumferential direction of the raw tube. Heat transfer tube. 素管は、内部に一方フィンと他方フィンとを配設した状態で、素管の内方に突出する螺旋溝を少なくとも一本設けた事を特徴とする請求項1、2、3、又は4の伝熱管。5. The raw tube is provided with at least one spiral groove protruding inward of the raw tube with one fin and the other fin disposed therein. Heat transfer tube. 一方片及び/又は他方片に設けた密着面は、素管の円周方向の形成幅を、素管の内周面の円周長の5%以上で20%以下とした事を特徴とする請求項3の伝熱管。The close contact surface provided on the one piece and / or the other piece is characterized in that the formation width in the circumferential direction of the raw tube is 5% or more and 20% or less of the circumferential length of the inner peripheral surface of the raw tube. The heat transfer tube according to claim 3. 一方片及び他方片は、管軸を中心として円周方向に捻り形成した事を特徴とする請求項1、2、3、4、5、又は6の伝熱管。The heat transfer tube according to claim 1, 2, 3, 4, 5 or 6, wherein the one piece and the other piece are twisted in the circumferential direction about the tube axis. 一方片及び/又は他方片は、一定長さのエンボス状の突起を複数個、突設した事を特徴とする請求項1、2、3、4、5、6、又は7の伝熱管。The heat transfer tube according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the one piece and / or the other piece are provided with a plurality of embossed protrusions having a fixed length.
JP2003199898A 2003-07-22 2003-07-22 Heat transfer tube Expired - Fee Related JP4256217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003199898A JP4256217B2 (en) 2003-07-22 2003-07-22 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003199898A JP4256217B2 (en) 2003-07-22 2003-07-22 Heat transfer tube

Publications (3)

Publication Number Publication Date
JP2005042941A JP2005042941A (en) 2005-02-17
JP2005042941A5 JP2005042941A5 (en) 2006-08-31
JP4256217B2 true JP4256217B2 (en) 2009-04-22

Family

ID=34260520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003199898A Expired - Fee Related JP4256217B2 (en) 2003-07-22 2003-07-22 Heat transfer tube

Country Status (1)

Country Link
JP (1) JP4256217B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6067094B2 (en) * 2013-02-19 2017-01-25 三菱電機株式会社 Heat exchanger and refrigeration cycle apparatus using the same
JP7036455B2 (en) * 2020-04-24 2022-03-15 丸越工業株式会社 Heat transfer promoter and its manufacturing method
CN112985156B (en) * 2021-02-25 2022-06-10 内蒙古工业大学 Fluid transposition mixing plug-in unit, fluid transposition mixing plug-in and heat absorption pipe
CN114290010B (en) * 2021-12-31 2024-01-30 江苏金荣森制冷科技有限公司 Twisting and pushing device

Also Published As

Publication number Publication date
JP2005042941A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP4143966B2 (en) Flat tube for EGR cooler
JP4756585B2 (en) Heat exchanger tube for heat exchanger
US8651170B2 (en) Exhaust gas heat exchanger
EP3133363B1 (en) Finned coaxial cooler
US20050098307A1 (en) Gas cooling device
US8136578B2 (en) Heat exchanger for EGR-gas
JP4681139B2 (en) Heat transfer tube, method for manufacturing the same, multi-tube heat exchanger using the heat transfer tube, and radiator built-in oil cooler
EP1906131A2 (en) Corrosion resistant, alloy-coated charge air cooler
JP4256217B2 (en) Heat transfer tube
JP4345470B2 (en) Engine EGR cooler
JP4266741B2 (en) Heat transfer tube with fins
JP4549033B2 (en) Heat transfer tube with fins
JP2007064606A (en) Heat exchanger tube for egr cooler
JP4208632B2 (en) Heat transfer tube with fins
JP2008128600A (en) Fin structure, its manufacturing method, and heat transfer tube using the fin structure
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2005351567A (en) Heat transfer tube internally provided with fin member and heat exchanger provided therewith
JP2004309075A (en) Heat transfer pipe internally having fin member and method of manufacturing the heat transfer pipe
JP2004069209A (en) Element tube for heat exchanger
JPH1123181A (en) Heat exchanger
JP4744746B2 (en) Heat transfer tube and multi-tube heat exchanger using this heat transfer tube and radiator built-in oil cooler
CN113383205B (en) Heat exchanger
JP2004340515A (en) Heat exchanger tube with internally mounted fin member and its manufacturing method
JP5471628B2 (en) EGR cooler and method for manufacturing EGR cooler

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees