JP4208632B2 - Heat transfer tube with fins - Google Patents

Heat transfer tube with fins Download PDF

Info

Publication number
JP4208632B2
JP4208632B2 JP2003113915A JP2003113915A JP4208632B2 JP 4208632 B2 JP4208632 B2 JP 4208632B2 JP 2003113915 A JP2003113915 A JP 2003113915A JP 2003113915 A JP2003113915 A JP 2003113915A JP 4208632 B2 JP4208632 B2 JP 4208632B2
Authority
JP
Japan
Prior art keywords
tube
plate
fin member
fin
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003113915A
Other languages
Japanese (ja)
Other versions
JP2004317072A (en
Inventor
正一郎 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2003113915A priority Critical patent/JP4208632B2/en
Publication of JP2004317072A publication Critical patent/JP2004317072A/en
Application granted granted Critical
Publication of JP4208632B2 publication Critical patent/JP4208632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、EGRガス冷却装置等の多管式熱交換器、ラジエーター組込式オイルクーラーにて、冷却水、冷却風、カーエアコン用冷媒、その他の冷媒液等の冷却媒体と、EGRガス、煤を含有する燃焼排気ガス等の被冷却高温熱媒体流体との熱交換を行うために用いるもの等、種々の用途の伝熱管に係るものである。
【0002】
【従来の技術】
【特許文献1】
特開平11−108578号公報
【特許文献2】
特開2000−179410号公報
【特許文献3】
特開2001−227413号公報
【0003】
従来、自動車のエンジン等では、排気ガスの一部を排気ガス系から取り出して、再びエンジンの吸気系に戻し、混合気や吸入空気に加えるEGRシステムが、ガソリンエンジン、ディーゼルエンジンに用いられていた。EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムでは、排気ガス中のNOxを低減し、燃費の悪化を防止するとともに、過剰な温度上昇によるEGRバルブの機能低下や耐久性の低下を防止するため、高温化したEGRガスを冷却水、冷却風、カーエアコン用冷媒、その他の冷媒液等の冷却媒体で冷却するEGRガス冷却装置を設けている。
【0004】
そして、このEGRガス冷却装置として、上記特許文献1〜特許文献3の従来発明等に示す如く、内部をEGRガスが流通可能な複数の細径の伝熱管を配置し、この伝熱管の外側に冷却水や冷却風、冷媒液等の冷却媒体を流通させる事により、伝熱管を介してEGRガスと冷却媒体との熱交換を行うものが存在した。
【0005】
上述の如きEGRガス冷却装置で使用する伝熱管は、内周面が平滑な金属管が多く用いられているが、このような伝熱管ではEGRガスの殆どが伝熱管の中心付近を高速に流動し、伝熱管の内周面側を通過するEGRガスから熱が伝導されるのみで、冷却媒体との熱交換が良好に行われにくかった。この熱交換性能の向上のため、前記特許文献1、2の従来発明では、内周面に突起を突設した金属製の素管内に、平板を螺旋状に捻って形成したフィン部材を挿入配設して伝熱管を形成している。また、特許文献3では、素管内に平板状のフィン部材を一体に突出して伝熱管を形成している。
【0006】
このように、素管内に螺旋状に捻ったフィン部材を配設したり平板状のフィン部材を一体に突設する事で、伝熱管の伝熱面積を増大させ、伝熱管の中心付近の熱をフィン部材に伝達させる事で、EGRガスと伝熱管間の熱伝導性を高めていた。更に、フィン部材により伝熱管内のEGRガスの流れを乱流化して、EGRガスの伝熱管内の流動距離を長くし、伝熱管とEGRガスとの接触時間を長くする事で、伝熱管を介したEGRガスと冷却媒体との熱交換効率を高めようとしていた。
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1、2の従来技術では、フィン部材と素管との接触は、フィン部材の両側縁と、素管の内周面の突起部分との断続した点接触である。また、特許文献3の従来技術では、フィン部材の外周縁と素管の内周面との線接触である。そのため、何れもフィン部材と素管との接触面積が少なく、フィン部材がEGRガスの熱を受熱しても、フィン部材から素管への熱伝達が十分に行われず、EGRガスと伝熱管の外周を流動する冷却媒体との熱交換効率を高めるには限界があった。また、素管との接触が線接触や断続した点接触では、フィン部材の固定性が悪く、伝熱管の振動や流体の流動力により、各フィンやフィンが接触している素管の壁面のフレッティング等を生じ易く、伝熱管の熱交換機能や耐久性を損なう可能性もあった。
【0008】
本発明は上述の如き課題を解決しようとするものであって、伝熱管の素管内に挿入配設するフィン部材と素管との接触面積を多くする事により、フィン部材と素管との熱伝導性を高め、その結果、伝熱管内部を流動する流体と、該伝熱管の外部を流動する流体との熱交換性能を向上させようとするものである。また、伝熱管の内部を流動する流体に旋回流を発生させたり、流体の乱流化を生じさせるような構造でフィン部材を形成可能とし、素管の内周面付近に発生し易い境界層を剥離して、熱交換効率を高めるものである。更に、素管内でのフィン部材の固定性を高め、流体の流動や伝熱管の振動等による各フィンやフィンが接触している素管の壁面のフレッティング等を抑制して、伝熱管の使用性や耐久性を向上させる事を可能とするものである。
【0009】
【課題を解決するための手段】
本発明は上述の如き課題を解決するため、第1の発明は、金属製の素管内に挿入配設する金属製の板状フィン部材を、管軸方向に長尺で軸中心部から少なくとも2方向にフィンを突出して形成し、この板状フィン部材の外方向の先端側に、管軸方向に交差するスリットを複数設け、このスリット間を該フィンの表面と交差方向に捻る事により捻り片を形成し、この捻り片を素管の内周面の一部に対応した形状とする事により、捻り片の先端側に設けた密着面を、素管の内周面に面接触して密着固定させて成るものである。
【0010】
また、第2の発明は、金属製の素管内に挿入配設する金属製の板状フィン部材を、管軸方向に長尺で軸中心部から少なくとも2方向にフィンを突出して形成し、この板状フィン部材の外方向の先端側に、管軸方向に交差するスリットを複数設け、このスリット間を該フィンの表面と交差方向に捻る事により捻り片を形成するとともに、板状フィン部材の素管への挿入配設前は、捻り片の先端側が素管の内周面よりも外方に配置されるような直径で板状フィン部材を形成し、板状フィン部材の素管への挿入配設時は、捻り片が素管の内周面の一部に対応して軸中心部方向に変形する事で、捻り片の先端側に形成される密着面を素管の内周面に密着固定させて成るものである。
【0011】
また、板状フィン部材は、素管内を流動する流体が通過可能な窓部を少なくとも一個設けても良い。
【0012】
また、窓部は、内部に突片を一定間隔で突出しても良い。
【0013】
【作用】
本発明は上述の如く構成したものであり、第1の発明では、金属製の素管内に挿入配設する板状フィン部材は、管軸方向に長尺で軸中心部から少なくとも2方向にフィンを突出して形成している。この板状フィン部材の外方向の先端側に、管軸方向に交差するスリットを複数設け、このスリット間を該フィンの表面と交差方向に捻る事で捻り片を形成している。この捻り片の先端側を、素管の内周面の一部に対応させた形状とする事で、捻り片の先端側に、素管の内周面に面接触可能な密着面を形成する。このように形成した板状フィン部材を、素管内に挿入配設する事により、捻り片の密着面が素管の内周面に密着固定された伝熱管が得られる。
【0014】
このように板状フィン部材が密着面を介して素管の内周面と面接触する事により、従来の点接触や線接触のフィン部材に比べて、板状フィン部材と素管との熱伝導性を高める事ができる。また、伝熱管内を流動する流体の一部が、捻り片の交差した表面に沿って流動先に、旋回しながら或いは乱流化を生じながら流動する。この流体の旋回流や乱流化の発生により、素管の内周面付近に生じ易い境界層を剥離して、熱交換効率を向上させる事ができる。また、上記素管と密着面との面接触により、素管への板状フィン部材の固定性も向上し、各フィンやフィンを接触させている素管の壁面のフレッティングを防ぐ事ができる。
【0015】
次に、第2の発明では、第1の発明と同様に、少なくとも2方向に複数フィンを突出した板状フィン部材の先端側に、スリットを複数設け、このスリット間を交差方向に捻る事で、捻り片を形成している。そして、第1発明では、素管への挿入配設前に、捻り片を素管の内周面に対応する形状とする事で、密着面を形成している。しかし、第2の発明では、捻り片を素管の内周面と対応する形状とはせずに、素管への挿入配設前は、捻り片の先端側が素管の内周面よりも外方に配置されるような直径で板状フィン部材を形成している。
【0016】
上述の如き第2発明の板状フィン部材を、その直径よりも内径の小さな素管に挿入すると、捻り片が素管の内周面に押圧されて、内周面に対応した形状に変形する事で、素管の内周面に面接触可能な密着面が形成されるものとなる。従って、素管への挿入完了後は、素管の内周面に捻り片の密着面が弾性的に面接触するものとなり、板状フィン部材の素管への固定性を更に高める事ができる。
【0017】
上記第1発明及び第2発明の如き伝熱管は、熱伝導性に優れる金属製の素管内に、軸中心部から少なくとも2方向にフィンを突出して形成した金属製の板状フィン部材を挿入配設する事で、伝熱面積を増大させる事ができ、伝熱管の吸熱特性や放熱特性を向上させる事ができる。そして、従来のフィン部材を配設しない伝熱管では、素管の内周面付近を流動する一部の流体の熱のみが伝熱管に伝達され、大部分の流体は伝熱管に熱を伝達する事なく伝熱管の中央付近を高速に通過していたが、本発明の伝熱管では、軸中心部から少なくとも2方向にフィンを突設している事で、伝熱管の内部空間が分割され、流体の流れの偏りを防ぎ、流体は伝熱管内を素管の内周面だけでなく中心付近でも板状フィン部材の表面と接触しながら、分散して流動するものとなり、流体と伝熱管間の熱伝導を効率的に行う事ができる。
【0018】
また、板状フィン部材の外方向の先端側に設けた密着面を、素管の内周面に面接触させているので、特許文献1〜3の従来発明等の如く金属管と板状フィン部材とが点接触又は線接触する伝熱管に比べて、板状フィン部材と素管との互いの接触面積を多くする事ができ、板状フィン部材と素管との熱伝導性を高める事ができる。また、この面接触により、板状フィン部材の素管への固定性が高まり、流体の流動や伝熱管の振動等があっても、フィンやフィンが接触している素管の壁面のフレッティング等を良好に抑制して、熱交換を円滑に行う事ができるとともに、伝熱管の耐久性も向上する。
【0019】
また、板状フィン部材は、捻り片の先端を素管に面接触させているので、捻り片の基端部と素管の内周面との間に、流体が通過可能な流通間隙が断続的に生じる。従って、板状フィン部材により分割された複数の内部空間を、流体は捻り片の交差した表面及び流通間隙を通過しながら出入りを繰り返し、流動先に流動する。そのため、素管の内周面付近で流体が旋回しながら又は乱流化を生じながら流動するものとなり、境界層の剥離により伝熱管を介した内外流体の熱交換を促進する事ができる。
【0020】
従って、例えば本発明の伝熱管内に高温のEGRガスを流動させて冷媒液により冷却を行う際に、本発明の伝熱管では、EGRガスの熱を、素管の壁面だけでなく板状フィン部材に効率的に伝達させる事ができる。また、素管の内周面付近だけでなく中央を流動するEGRガスの熱も効率的に板状フィン部材に伝達するものとなる。そして、素管と面接触する板状フィン部材の密着面により、板状フィン部材から素管への熱の伝達が促進され、この熱が素管の内外表面を介して外部を流動する冷媒液に放熱される。その結果、冷媒液とEGRガスとの熱交換を効率的に行う事が可能となるとともに、EGRガスをムラ無く均一に冷却する事が可能となる。
【0021】
また、板状フィン部材は、前述の如く密着面が面接触により素管の内周面に密着固定されているので、素管内での固定性が良い。しかし、溶接やろう付け等により双方を接続固定すれば、素管内での板状フィン部材の固定性を更に高める事ができ、流体の流動や伝熱管の振動等による板状フィン部材のブレや変形を防ぐので、伝熱管の使用性や耐久性を向上させる事も可能となる。更に、素管の内周面に板状フィン部材の密着面をろう付けする場合は、板状フィン部材と素管の内周面との伝熱が、密着面だけでなくろう材のフィレットの肉厚をも含めた広い面積で行われるので、熱伝導性が更に高まり、伝熱管の熱交換性能を向上させる事ができる。
【0022】
また、板状フィン部材は、素管内を流動する流体が通過可能な窓部を少なくとも一個設ければ、窓部を設けた面積分だけ伝熱面積は減るが、より軽量な伝熱管を得る事ができる。また、伝熱管の分割された内部空間を流動する流体が、捻り片の基端部と素管との間の流通間隙での旋回流の発生だけでなく、窓部を通過して流体が流動する事により、流体の蛇行化や乱流化等が発生するものとなり、伝熱管内での流体の流動距離が長くなる。そして、素管の内周面や板状フィン部材の表面との接触時間が長くなるとともに、流体が撹拌されて、流体の一部のみではなく全体が素管や板状フィン部材と繰り返し接触するものとなる。従って、伝熱管の熱伝導性が高まり、窓部を設けて伝熱面積を少なくしても、内部を流動する流体と外部を流動する流体との熱交換効率を向上させる事ができる。
【0023】
また、板状フィン部材は、流体の流入元側を切り欠いて窓部と連通する開口部を設ければ、EGRガス等の流体が伝熱管内に流入する際に受ける流動抵抗を少なくする事ができ、流体の供給元から伝熱管内への円滑な流体の流入が可能となる。
【0024】
また、板状フィン部材に窓部を設けた場合でも、窓部の内部に突片を一定間隔で突出すれば、伝熱面積を多くする事が可能となるし、突片を設ける事で窓部に形成される凹凸により、流体の乱流化及び撹拌作用が更に促進されて、伝熱管の熱伝導性を高める事ができる。
【0025】
また、上記第1、第2の発明の伝熱管は何れも、自動車のエンジン、その他内燃機関、冷暖房等、熱交換を行う何れの装置にも用いる事ができる。そして、本発明の伝熱管を、エンジンのEGRガス冷却装置、その他の多管式熱交換器に組付ければ、EGRガスの冷却を効率的に行う事ができる。従って、EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムに於いて、排気ガス中のNOxを低減できるとともに、燃費の悪化も防止する事ができる。また、過剰な温度上昇を防止して、EGRバルブの劣化や機能低下も確実に防止する事ができる。
【0026】
また、高温オイルを内部に流通させて、エンジン冷却水で冷却するラジエーターへの組込式オイルクーラー等に本発明の伝熱管を組付けても良く、優れた熱交換を行って、伝熱特性の高いオイルクーラーを得る事ができる。
【0027】
【実施例】
以下、本発明の伝熱管を、自動車のクールドEGRシステムに於けるEGRガス冷却装置に使用した実施例を図面に於て詳細に説明する。図1は第1実施例の伝熱管の端面図で、金属製の素管内に、90°間隔で4方向にフィンを突設し、十字形とした板状フィン部材を配設している。そして、板状フィン部材の先端側に設けた捻り片を変形させて予め密着面を形成し、この密着面を素管の内周面に面接触させている。図2は第1実施例の板状フィン部材の製造過程を示し、板状フィン部材の各フィンの先端側に複数のスリットを形成し、各スリット間を捻って捻り片を形成している。尚、下端に示したフィンは捻り前の状態を示している。図3は、図1の一部切り欠き平面図である。
【0028】
また、図4は第2実施例の伝熱管の平断面図で、凹溝状のスリットを設けて捻り片を形成したものである。また、この第2実施例の板状フィン部材は、素管への挿入前は、捻り片の先端側が素管の内周面よりも外方に配設されるような直径で形成し、素管への挿入配設時に、素管の内周面により捻り片を変形させて素管への密着面を形成するものである。図5は、第2実施例の板状フィン部材の製造過程を示し、凹溝状のスリットを設け、捻り片の形成前の状態を示す板状フィン部材の斜視図である。図6は、図5で形成したスリット間を捻って捻り片を形成した状態の板状フィン部材の斜視図である。
【0029】
また、図7は第3実施例で、捻り片形成前の板状フィン部材の斜視図であり、各フィンに比較的小さな窓部を複数設けたものである。図8は第4実施例で、捻り片形成前の板状フィン部材の斜視図であり、各フィンに第3実施例よりも大きな窓部を複数設け、更に各窓部に突片を内方に突設したものである。図9は第5実施例で、捻り片形成前の板状フィン部材であり、各フィンに第3実施例よりも大きな窓部を複数設け、更に各フィンの流体の流入元側を切り欠いて、窓部と連通する開口部を設けたものである。図10は本発明の伝熱管を用いたEGRガス冷却装置の概略図である。
【0030】
そして、本発明の第1実施例を図1〜図3、図10を用いて詳細に説明すれば、(1)は伝熱管で、内部をEGRガスが流通可能な細径の金属製の素管(2)内部に、管軸方向に長尺で軸中心部から90°間隔で4方向に、放射状にフィン(3)を突出した金属製の板状フィン部材(4)を挿入配設して形成したものである。
【0031】
上記素管(2)及び板状フィン部材(4)は、銅、アルミニウム、黄銅、又はステンレス等を用いて形成する事により、熱伝導性に優れるとともにEGRガス等に対する耐食性にも優れた伝熱管(1)を得る事ができる。また、耐食性の信頼性を更に高めるため、前述の如き金属材に、亜鉛、銅、錫、錫−亜鉛合金、ニッケル、亜鉛−ニッケル合金等から成る1層のメッキ処理を行い、必要に応じクロメート被膜等を施しても良いし、金属材の外表面にニッケルをメッキし、このニッケルの外周面に更に亜鉛−ニッケル合金をメッキする等、2層以上のメッキ処理を行っても良い。尚、素管(2)と板状フィン部材(4)とは、同一の金属材で形成しても良いし、後述のろう付けや溶接を行う事が可能であれば、使用目的やコスト等に応じて、双方を異なる金属材で形成しても良い。
【0032】
そして、板状フィン部材(4)は、図2に示す如く、管軸方向に長尺な広幅板部材(5)の中央部の両面に垂直に、管軸方向に長尺で前記広幅板部材(5)よりも狭幅とする一対の狭幅板部材(6)を接続して、90°間隔を介して4方向にフィン(3)を突設している。また、広幅板部材(5)への狭幅板部材(6)の接続は、狭幅板部材(6)の一側を広幅板部材(5)と平行に折曲して、広幅板部材(5)と面接触する平坦な接続部(8)を形成し、図3に示す如く、各狭幅板部材(6)の接続部(8)を広幅板部材(5)に面接触させ、双方をろう付けしている。
【0033】
次に、板状フィン部材(4)の外方向の先端側に、管軸方向に交差するスリット(7)を複数設けている。図2では、広幅板部材(5)の一対のフィン(3)のうち、下端側のフィン(3)がスリット(7)のみを形成した状態を示している。このスリット(7)は、本実施例では板状フィン部材(4)の先端側に、管軸方向に交差して切込みを入れ、更にスリット(7)の基端部に管軸方向と平行に短尺な切込みを入れて、T字形に形成している。そして、このT字形の各スリット(7)間をフィン(3)の表面と交差方向に捻る事で、複数の捻り片(10)を形成している。また、第1実施例では、各フィン(3)のスリット(7)間を、中心軸に対して全て反時計回りの交差方向に捻って形成し、各フィン(3)の捻り方向を同一方向としている。
【0034】
また、捻り片(10)を形成した時点では、図3に二点鎖線で示す如く、板状フィン部材(4)の外径は素管(2)の内径よりも大径となっている。本実施例では、次に板状フィン部材(4)の各捻り片(10)を軸中心部方向に折曲変形させる事で、素管(2)への挿入配設の板状フィン部材(4)の直径を、素管(2)の内径と略同一に成形している。また、この折曲変形により素管(2)の内周面と略平行に配置される捻り片(10)の先端面が、素管(2)への密着面(11)となるが、この密着面(11)は、素管(2)の円弧状の内周面に対応させて円弧状に湾曲変形させるのが好ましい。このような成形後は、板状フィン部材(4)を素管(2)内に円滑に挿入する事ができるとともに、挿入完了後は、図3に示す如く、捻り片(10)の密着面(11)が素管(2)の内周面に面接触により密着固定されるものとなる。この面接触により、素管(2)内に板状フィン部材(4)が安定して固定される。
【0035】
また、素管(2)への板状フィン部材(4)の固定性及び熱伝導性を更に高めるため、密着面(11)と素管(2)の内周面とをろう付けしている。このろう付けにより、板状フィン部材(4)と素管(2)との熱伝導が、密着面(11)だけでなくろう材のフィレット(図示せず)をも介して行われ、双方の熱伝導性を高める事ができる。更に、密着面(11)と素管(2)の内周面との間に多少の隙間を生じた場合でも、この隙間がろう材のフィレット(図示せず)で閉塞されるので、密着面(11)と素管(2)の内周面との熱伝導が良好に行われるものとなる。また、素管(2)の内周面に対応させて密着面(11)を厳密に円弧状に形成する必要がなく、製作作業を簡易化する事ができる。
【0036】
更に、ろう付けにより、密着面(11)と素管(2)の内周面とが、強固に密着固定され、板状フィン部材(4)の固定性を高める事ができる。その結果、流体の流動や伝熱管の振動等による板状フィン部材(4)のブレや変形、並びに各フィン(3)やフィン(3)が接触している素管(2)の壁面のフレッティング等を抑制して、伝熱管(1)の使用性や耐久性を向上させる事が可能となる。
【0037】
また、このろう付けの際は、素管(2)への板状フィン部材(4)の挿入前に、予め板状フィン部材(4)の密着面(11)の少なくとも両側縁、或いは密着面(11)の表面全体にろう材をメッキしておく。また、このろう材のメッキは、好ましくは作業が容易な事から板状フィン部材(4)の全表面に施しても良いし、素管(2)の内周面にろう材をメッキしても良い。また、板状フィン部材(4)の形成素材である広幅板部材(5)と狭幅板部材(6)にろう材をクラッドし、このクラッド材を加工して板状フィン部材(4)を形成しても良い。
【0038】
また、密着面(11)の両側縁にろう材付着用のバインダーを塗布した板状フィン部材(4)を素管(2)に挿入後、該素管(2)内にパウダー状のろう材を供給しても良い。他の方法として、密着面(11)の両側縁にろう材ペーストを供給した板状フィン部材(4)を素管(2)へ挿入しても良いし、素管(2)内に板状フィン部材(4)を挿入後、該素管(2)内にろう材ペーストを供給しても良い。そして、伝熱管(1)の製作時にろう付けを行っても良いし、或いは伝熱管(1)を後述のEGRガス冷却装置(20)に組付け後に、ろう付けを行っても良い。
【0039】
上述の如く形成した伝熱管(1)では、軸中心部から4方向にフィン(3)を突設した板状フィン部材(4)の配設により、伝熱面積を増大させる事ができる。更に、各フィン(3)の先端側と素管(2)の内周面とを、従来技術の如き点接触又は線接触ではなく、密着面(11)を介して面接触させ、更に互いをろう付けしているので、板状フィン部材(4)と素管(2)との熱伝導性を高め、板状フィン部材(4)で受熱したEGRガスの熱を、素管(2)に効率的に伝達した後、外部に放熱する事ができる。
【0040】
また、板状フィン部材(4)の配設により、伝熱管(1)の内部空間(12)が4つに分割され、この4分割された内部空間(12)内を流体が分散して流動するので、流体の流れの偏りを防ぐものとなる。更に、内部空間(12)内を流体が素管(2)の内周面だけでなく板状フィン部材(4)の表面と接触しながら分散して流動する事により、流体と伝熱管(1)との伝熱を効率的に行う事ができる。また、図3に示す如く、素管(2)の内周面と捻り片(10)の基端部との間に、流体が通過可能な流通間隙(13)が断続的に形成され、流体はこの捻り片(10)の交差した表面及び流通間隙(13)を通過して、4つに分割された内部空間(12)内を出入りしながら流動先に流動する。そのため、素管(2)の内周面での流体が旋回して流動するものとなり、この旋回流による境界層の剥離により、流体と素管(2)との熱伝導性を高める事ができる。これらの作用により、伝熱管(1)の内外を流動する流体間の熱交換を効率的に行う事が可能となる。
【0041】
また、第1実施例では、前述の如く、各フィン(3)の全ての捻り片(10)を反時計回りの同一方向に捻り形成しているので、素管(2)の内周面とフィン(3)の先端側を旋回して流動する流体の旋回方向が同一となり、流体を流動先に円滑に流動させる事が可能となる。また、同一方向に捻る事で、捻り片(10)の加工作業も容易となるとともに、一対の狭幅板部材(6)を左右異なる形状で形成する必要がなく、同一のものを使用する事ができるので、板状フィン部材(4)の生産性を向上させる事ができる。
【0042】
そして、上述の如き伝熱管(1)を組付けたEGRガス冷却装置(20)は、図10に示す如く、円筒状の胴管(21)の両端にチューブシート(22)を一対接続し、内部を密閉可能としている。そして、一対のチューブシート(22)間に、本実施例の伝熱管(1)を複数本、チューブシート(22)を貫通して接続配置している。また、胴管(21)の両端には、EGRガスの流入口(24)と流出口(25)とを設けたボンネット(26)を接続している。
【0043】
更に、胴管(21)の外周には、エンジン冷却水や冷却風等の冷却媒体の導入路(27)と導出路(28)を設ける事により、一対のチューブシート(22)で仕切られた気密空間内を、冷却媒体が流通可能な熱交換部(23)としている。また、この熱交換部(23)内に、複数の支持板(30)を接合配置し、この支持板(30)に設けた挿通孔(29)に、伝熱管(1)を挿通する事により、バッフルプレートとして伝熱管(1)を安定的に支持するとともに、熱交換部(23)内を流動する冷却媒体の流れを蛇行化している。
【0044】
上記EGRガス冷却装置(20)に於いて、流入口(24)から胴管(21)内に高温化したEGRガスが導入されると、このEGRガスは胴管(21)内に複数配置した伝熱管(1)内に流入する。この伝熱管(1)を配置した熱交換部(23)では、予め伝熱管(1)の外部にエンジン冷却水等の冷却媒体を流通しているので、伝熱管(1)の外表面を介してEGRガスと冷却媒体とで熱交換が行われる。
【0045】
この伝熱管(1)は、前述の如く、板状フィン部材(4)の配設により伝熱面積を増大させて、EGRガスとの接触頻度を高めるとともに、板状フィン部材(4)と素管(2)とを面接触させて熱伝導性を高めている。そのため、素管(2)の内周面側のEGRガスの熱だけでなく、中央付近を流動するEGRガスの熱も、板状フィン部材(4)を介して素管(2)の内周面に効率的に伝熱された後、素管(2)の外周面を介して冷却媒体に放熱される。そして、EGRガスの全体がムラ無く均一に冷却されるものとなり、EGRガスへの優れた冷却効果が得られる。
【0046】
このように良好に冷却されたEGRガスは、流出口(25)を介してEGRガス冷却装置(20)から流出し、インテークマニホールド側に戻される。従って、EGRバルブの高温化を防止して、EGRバルブの優れた機能性と耐久性を得る事ができるとともに、吸入空気の温度を低下するのでNOxの低減と良好な燃費が可能となる。また、伝熱管(1)内でのEGRガスの旋回流の発生や乱流化により、EGRガスに混入する煤の剥離が促進されて、大きな塊となるのを防ぐ事ができ、目詰まり等に起因する冷却性能の劣化やエンジントラブルを防ぐ事も可能となる。
【0047】
また、上記第1実施例では、素管(2)への板状フィン部材(4)の挿入配設の際は、上述の如く、素管(2)への挿入前に予め捻り片(10)を軸中心部方向に折曲変形させて、素管(2)の内周面への密着面(11)を形成しているが、図4〜図6に示す第2実施例では、捻り片(10)を折曲変形せず、捻り片(10)の先端側が素管(2)の内周面よりも外方に配置されるような直径で板状フィン部材(4)を形成し、素管(2)への挿入時に、捻り片(10)を変形させて密着面(11)を形成している。
【0048】
その製造工程は、まず板状フィン部材(4)を形成する際に、第2実施例では、図5に示す如く、広幅板部材(5)のみを使用し、180°の方向の両端をフィン(3)とする簡素な板状フィン部材(4)としている。次に、各フィン(3)に複数のスリット(7)を間隔を設けて形成するが、第1実施例では板状フィン部材(4)のスリット(7)は、フィン(3)にT字形に切込みを入れて形成しているのに対して、第2実施例では、図5に示す如く、フィン(3)の先端側を凹溝状に切欠いてスリット(7)を設けている。この第2実施例の如き凹溝状のスリット(7)では、捻り片(10)の基端部が滑らかなものとなる。
【0049】
そして、上記凹溝状のスリット(7)間を、フィン(3)の表面と略交差方向に反時計回りで捻る事で、図6に示す如く、板状フィン部材(4)の外方向の先端側に複数の捻り片(10)を形成している。また、第2実施例では、素管(2)への挿入前に、この捻り片(10)を素管(2)の内周面に対応した形状に成形せず、素管(2)への挿入前の板状フィン部材(4)は、図4に二点鎖線で示す如く、板状フィン部材(4)の外径が素管(2)の内径よりも大径となっている。この板状フィン部材(4)を、その外径よりも小径な素管(2)内に挿入すると、素管(2)の内周面に押圧されて、この内周面に対応した形状に捻り片(10)が変形する事により、図4の右側に示す如く、捻り片(10)の先端側に素管(2)の内周面に面接触可能な密着面(11)が形成される。そして、素管(2)への挿入完了後は、密着面(11)の外方への弾性復元力が作用して、該密着面(11)が素管(2)の内周面に対応して強く密着固定するので、素管(2)と板状フィン部材(4)との良好な熱伝導性が保持されるとともに、素管(2)内での板状フィン部材(4)の固定性が向上し、更に安定するものとなる。
【0050】
上述の如く形成した第2実施例の伝熱管(1)に於いても、板状フィン部材(4)を配設した事により、伝熱管(1)の伝熱面積を増大させる事ができ、素管(2)の内周面だけでなく板状フィン部材(4)にEGRガスの熱を効率的に伝熱させる事ができる。更に、板状フィン部材(4)の外方向に設けた捻り片(10)の密着面(11)が、素管(2)の内周面に対応して面接触して密着しているので、板状フィン部材(4)の受熱した熱を素管(2)の内周面に効率的に伝熱させる事ができ、伝熱管(1)の内外を流動するEGRガスと冷却媒体との熱交換を効率的に行う事が可能となる。
【0051】
そして、第1実施例の如く、素管(2)への挿入前に予め捻り片(10)を素管(2)の内周面に対応させた形状に成形する製作手段は、硬質な金属材を用いたり金属材が肉厚で、素管(2)の内周面にて捻り片(10)を変形させにくい場合等に有効である。また、第2実施例の如く、素管(2)への挿入前に捻り片(10)を素管(2)の内周面に対応させた形状に成形せずに、素管(2)への挿入時に、素管(2)の内周面にて捻り片(10)を変形させて密着面(11)を形成する製作手段は、比較的軟質な金属材を用いたり、金属材が肉薄で、素管(2)の内周面にて捻り片(10)を容易に変形させる事が可能な場合等に有効である。
【0052】
また、上記第1、第2実施例では、各フィン(3)毎に捻り片(10)の捻り方向を反時計回りとする同一方向に捻っているが、他の異なる実施例として、隣接するフィン(3)同士又は管軸を介して対称となるフィン(3)同士の捻り方向を、一方を反時計回りに、他方を時計回りに捻って捻り片(10)を形成しても良い。また、一枚のフィン(3)のスリット(7)間を、交互に時計回り及び反時計回りに捻って捻り片(10)を形成しても良い。このように捻り片(10)の捻り方向を変える事により、内部を流動する流体の乱流化を促進させる事ができる。
【0053】
また、上記第1、2実施例では、板状フィン部材(4)の各フィン(3)には、窓部や開口部、凹凸等を何等設けていないが、他の異なる実施例として、図7に示す如く、広幅板部材(5)を用いる事で180°の間隔を介して2方向にフィン(3)を突出した板状フィン部材(4)を形成し、各フィン(3)に流体が通過可能な小さな窓部(14)を複数個開口している。このような窓部(14)を設ける事で、伝熱管(1)の内部空間(12)を流動するEGRガスが、複数の窓部(14)を通過しながら流動先に流動する事により、EGRガスの蛇行化や乱流化等が促進されるものとなる。
【0054】
また、伝熱管(1)内でのEGRガスの流動距離が長くなり、素管(2)の内周面や板状フィン部材(4)の表面との接触時間が長くなるとともに、EGRガスが撹拌されて、EGRガスの一部のみではなく全体が素管(2)や板状フィン部材(4)と繰り返し接触するものとなる。その結果、EGRガスの熱を伝熱管(1)に効率的に伝熱する事ができ、この熱を伝熱管(1)の外表面を介して冷却媒体に放熱する事で、熱交換性能の高いEGRガスの冷却が可能となる。
【0055】
また、他の異なる第4実施例では、各フィン(3)に、図8に示す如く、第3実施例よりも比較的大きな窓部(14)を複数個開口している。このような大きな窓部(14)を設ける事で、より軽量な板状フィン部材(4)を得る事ができる。従って、伝熱管(1)並びにこの伝熱管(1)を使用したEGRガス冷却装置(20)等の軽量化も可能となる。尚、窓部(14)を大きく設ける事で、伝熱面積が少なくなる可能性があるが、窓部(14)の内周面の肉厚分の面積を伝熱面とする事ができるとともに、本実施例では更に、各窓部(14)内に、所定間隔で複数の突片(15)を形成しているので、伝熱管(1)の伝熱面積を、従来に比べて多くする事ができる。
【0056】
また、第4実施例の伝熱管(1)に於いても、大きな窓部(14)の形成により、流体は内部空間(12)内を大きく蛇行しながら流動するものとなる。更に、第4実施例では、突片(15)を設けた事により、窓部(14)に凹凸が形成されるので、蛇行して流動する流体の乱流化や撹拌作用も促進されるものとなる。そのため、板状フィン部材(4)と流体との接触頻度が多くなり、EGRガスと冷却媒体との熱交換を効率的に行う事が可能な伝熱管(1)を得る事ができる。
【0057】
また、上記第3、第4実施例では、板状フィン部材(4)は、EGRガスの流入元側に開口部を設けず、先端面を平滑なものとしているが、図9に示す第5実施例では、板状フィン部材(4)の各フィン(3)に、比較的大きな窓部(14)を複数開口するとともに、各フィン(3)のEGRガスの流入元側を切り欠いて、流入元側の窓部(14)と連通する開口部(16)を設けている。
【0058】
このように、各フィン(3)のEGRガスの流入元側に、窓部(14)と連通する開口部(16)を設ける事により、EGRガスが伝熱管(1)に流入する際の流動抵抗を少なくする事ができ、EGRガスの流入口(24)から伝熱管(1)へのEGRガスの流入を、円滑に行う事が可能となる。
【0059】
そして、上記第3〜第5実施例の板状フィン部材(4)を用いて伝熱管(1)を形成する際は、第1実施例の如く、捻り片(10)を予め素管(2)の内周面に対応させた形状に成形し密着面(11)を設けて板状フィン部材(4)を形成し、この板状フィン部材(4)を素管(2)内に挿入する製作手段で形成しても良い。また、第2実施例の如く、捻り片(10)を予め素管(2)の内周面に対応させた形状に成形せずに、素管(2)への挿入前は素管(2)の内径よりも大径とする直径で板状フィン部材(4)を形成し、素管(2)への挿入配設時に、素管(2)の内周面により捻り片(10)を変形させて密着面(11)を形成し、素管(2)の内周面に密着させる製作手段で形成しても良い。
【0060】
また、上記第2〜第5実施例では、板状フィン部材(4)を広幅板部材(5)のみで形成し、180°方向の両端をフィン(3)としているが、他の異なる実施例として、第1実施例等と同様に、広幅板部材(5)と一対の狭幅板部材(6)とで形成し、90°間隔で4方向にフィン(3)を突出し断面形状を十字形とする板状フィン部材(4)としても良い。
【0061】
また、他の異なる実施例として、第1〜第5実施例の板状フィン部材(4)を、60°間隔で6方向にフィン(3)を突出し形成しても良いし、より狭い間隔で多くのフィン(3)を突出した板状フィン部材(4)を形成しても良い。更に異なる実施例として、隣接するフィン(3)同士の間隔を、互いに異なる間隔を介して突設しても良い。
【0062】
また、上記各実施例では、EGRガス冷却装置(20)に本発明の伝熱管(1)を組付けたものとして説明しているが、他の異なる多管式熱交換器に本発明の伝熱管(1)を用いても良く、優れた熱交換性能を得る事ができる。また、エンジンオイル、ミッションオイル、ATF、パワステオイル等の高温オイルを内部に流通させて、この高温オイルをエンジン冷却水で冷却するラジエーターへの組込式オイルクーラーに、本発明の伝熱管(1)を組付ける事もできる。そして、本発明の伝熱面積が広く且つ熱伝導性の高い伝熱管(1)を介して、伝熱管(1)内を流通するエンジン冷却水と伝熱管(1)外部を流通する被冷却オイルとの熱交換が促進され、被冷却オイルの冷却を均一且つ効率的に行えるものである。
【0063】
【発明の効果】
本発明は上述の如く構成したもので、熱伝導性に優れる金属製の素管内に、素管の軸中心部から少なくとも2方向にフィンを突設した金属製の板状フィン部材を配設しているので、伝熱管の伝熱面積を増大させる事ができる。更に、板状フィン部材の先端方向に捻り片を設け、この捻り片の先端に設けた密着面を素管の内周面に面接触させているので、素管と板状フィン部材との熱伝導性を高める事ができる。また、伝熱管の内部を流動する流体が、捻り片の交差した表面に沿って流動先に流動する事により、流体の旋回流や乱流化が生じ、境界層を剥離して、フィンと素管との熱伝導性を更に高める事ができる。従って、伝熱管の熱交換性能が向上し、伝熱管の内外を流動する流体相互の熱交換を効率的に行う事が可能となる。
【0064】
また、素管と板状フィン部材との面接触により、素管内での板状フィン部材の固定性が向上し、流体の流動や伝熱管の振動等によるフィンのヨレや変形を防ぐ事ができる。更に、各フィンやフィンが接触している素管の壁面のフレッティング等を防いで、熱交換を円滑に行う事ができ、伝熱管の耐久性も向上する。そして、この熱交換性能に優れる伝熱管を、多管式熱交換器や、ラジエーター組込式オイルクーラー等に使用する事により、伝熱特性の高い製品を得る事ができる。
【図面の簡単な説明】
【図1】本発明の第1実施例の伝熱管を示す端面図。
【図2】第1実施例の板状フィン部材の製造過程を示す平面図。
【図3】図1の一部切り欠き平面図。
【図4】第2実施例の伝熱管の製造過程を示す断面図。
【図5】第2実施例の板状フィン部材の製造過程の斜視図で、凹溝状のスリットを形成した状態を示す。
【図6】第2実施例の板状フィン部材の製造過程の斜視図で、スリット間を交差方向に捻って捻り片を形成した状態を示す。
【図7】第3実施例の板状フィン部材を示す斜視図。
【図8】第4実施例の板状フィン部材を示す斜視図。
【図9】第5実施例の板状フィン部材を示す斜視図。
【図10】本発明の伝熱管を組付けたEGRガス冷却装置の一部切り欠き平面図。
【符号の説明】
2 素管
3 フィン
4 板状フィン部材
7 スリット
10 捻り片
11 密着面
14 窓部
15 突片
[0001]
[Industrial application fields]
The present invention provides a multi-tube heat exchanger such as an EGR gas cooling device, a radiator built-in oil cooler, a cooling medium such as cooling water, cooling air, a refrigerant for a car air conditioner, other refrigerant liquid, EGR gas, The present invention relates to heat transfer tubes for various uses such as those used for heat exchange with a cooled high-temperature heat medium fluid such as combustion exhaust gas containing soot.
[0002]
[Prior art]
[Patent Document 1]
JP-A-11-108578
[Patent Document 2]
JP 2000-179410 A
[Patent Document 3]
JP 2001-227413 A
[0003]
Conventionally, in an automobile engine or the like, an EGR system in which a part of exhaust gas is extracted from the exhaust gas system, returned to the engine intake system, and added to the mixture or intake air has been used for gasoline engines and diesel engines. . EGR systems, especially cooled EGR systems with a high EGR rate for diesel engines, reduce NOx in exhaust gas, prevent fuel consumption deterioration and prevent deterioration of EGR valve function and durability due to excessive temperature rise. Therefore, an EGR gas cooling device that cools the heated EGR gas with a cooling medium such as cooling water, cooling air, a car air conditioner refrigerant, or other refrigerant liquid is provided.
[0004]
And as this EGR gas cooling device, as shown in the conventional invention of the said patent document 1-patent document 3, etc., the several small diameter heat exchanger tube which can distribute | circulate an EGR gas is arrange | positioned inside this heat exchanger tube. There exist some which perform heat exchange with EGR gas and a cooling medium via a heat exchanger tube by circulating cooling media, such as cooling water, cooling air, and a refrigerant liquid.
[0005]
The heat transfer tube used in the EGR gas cooling apparatus as described above is often a metal tube with a smooth inner peripheral surface, but in such a heat transfer tube, most of the EGR gas flows in the vicinity of the center of the heat transfer tube at high speed. However, heat is only conducted from the EGR gas passing through the inner peripheral surface of the heat transfer tube, and heat exchange with the cooling medium is difficult to be performed. In order to improve this heat exchange performance, in the conventional inventions of Patent Documents 1 and 2, a fin member formed by spirally twisting a flat plate is inserted and arranged in a metal element tube having a protrusion protruding on the inner peripheral surface. To form a heat transfer tube. Moreover, in patent document 3, the flat fin member is integrally protruded in the raw tube, and the heat exchanger tube is formed.
[0006]
In this way, by arranging a helically twisted fin member in the raw tube or by projecting a flat fin member integrally, the heat transfer area of the heat transfer tube is increased and the heat near the center of the heat transfer tube is increased. The heat conductivity between the EGR gas and the heat transfer tube was increased by transmitting the gas to the fin member. Furthermore, the flow of the EGR gas in the heat transfer tube is turbulent by the fin member, the flow distance of the EGR gas in the heat transfer tube is lengthened, and the contact time between the heat transfer tube and the EGR gas is lengthened. The heat exchange efficiency between the EGR gas and the cooling medium is increased.
[0007]
[Problems to be solved by the invention]
However, in the prior arts of Patent Documents 1 and 2, the contact between the fin member and the raw tube is an intermittent point contact between both side edges of the fin member and the protruding portion of the inner peripheral surface of the raw tube. Moreover, in the prior art of patent document 3, it is line contact with the outer peripheral edge of a fin member, and the internal peripheral surface of a raw material pipe | tube. Therefore, in any case, the contact area between the fin member and the raw tube is small, and even if the fin member receives the heat of the EGR gas, the heat transfer from the fin member to the raw tube is not sufficiently performed, and the EGR gas and the heat transfer tube There was a limit to increasing the efficiency of heat exchange with the cooling medium flowing on the outer periphery. Also, in the point contact where the contact with the raw tube is a line contact or intermittent contact, the fin member is poorly fixed, and due to the vibration of the heat transfer tube or the fluid flow force, each fin or fin wall surface is in contact. Fretting is likely to occur, and the heat exchange function and durability of the heat transfer tube may be impaired.
[0008]
The present invention is intended to solve the above-described problems, and by increasing the contact area between the fin member and the element tube inserted into the element tube of the heat transfer tube, the heat of the fin member and the element tube is increased. As a result, it is intended to improve the heat exchange performance between the fluid flowing inside the heat transfer tube and the fluid flowing outside the heat transfer tube. In addition, it is possible to form a fin member with a structure that generates a swirling flow in the fluid flowing inside the heat transfer tube or creates a turbulent flow of the fluid, and a boundary layer that is likely to occur near the inner peripheral surface of the elementary tube To increase the heat exchange efficiency. Furthermore, the use of heat transfer tubes is improved by improving the fixing of the fin members in the tube and suppressing the fretting of each fin and the wall surface of the tube in contact with the fins due to fluid flow and vibration of the heat transfer tube. It is possible to improve the property and durability.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides a metal plate-like fin member to be inserted and disposed in a metal base tube, which is long in the tube axis direction and at least 2 from the shaft center portion. A fin is formed by projecting a fin in the direction, and a plurality of slits intersecting the tube axis direction are provided on the outer end side of the plate-like fin member, and a twisted piece is obtained by twisting between the slits in the direction intersecting the surface of the fin. By forming the twisted piece into a shape corresponding to a part of the inner peripheral surface of the blank tube, the close contact surface provided on the tip side of the twisted piece is brought into surface contact with the inner peripheral surface of the blank tube. It is fixed.
[0010]
According to a second aspect of the present invention, a metal plate-like fin member inserted and disposed in a metal base tube is formed so as to be long in the tube axis direction and projecting the fin in at least two directions from the shaft center portion. A plurality of slits intersecting the tube axis direction are provided on the front end side of the plate-shaped fin member in the outer direction, and a twist piece is formed by twisting between the slits in the direction intersecting the surface of the fin. Before insertion and placement into the pipe, a plate-like fin member is formed with a diameter such that the tip side of the twisted piece is arranged outward from the inner peripheral surface of the pipe, and the plate-like fin member is attached to the pipe. At the time of insertion, the twisted piece deforms in the axial center direction corresponding to a part of the inner peripheral surface of the raw tube, so that the contact surface formed on the tip side of the twisted piece becomes the inner peripheral surface of the raw tube. It is made to adhere and fix to.
[0011]
Further, the plate-like fin member may be provided with at least one window portion through which a fluid flowing in the raw tube can pass.
[0012]
Moreover, the window part may protrude a protrusion piece inside at regular intervals.
[0013]
[Action]
The present invention is configured as described above. In the first invention, the plate-like fin member inserted and disposed in the metal base tube is long in the tube axis direction and is finned in at least two directions from the shaft center portion. Is formed protruding. A plurality of slits intersecting the tube axis direction are provided on the distal end side in the outer direction of the plate-like fin member, and twisted pieces are formed by twisting between the slits in the intersecting direction with the surface of the fin. By forming the tip side of the twisted piece into a shape corresponding to a part of the inner peripheral surface of the raw tube, a close contact surface that can be brought into surface contact with the inner peripheral surface of the raw tube is formed on the tip side of the twisted piece. . By inserting and disposing the plate-like fin member formed in this manner in the raw tube, a heat transfer tube in which the tight contact surface of the twisted piece is tightly fixed to the inner peripheral surface of the raw tube is obtained.
[0014]
In this way, the plate-like fin member is in surface contact with the inner peripheral surface of the raw tube through the contact surface, so that the heat of the plate-like fin member and the raw tube is higher than that of the conventional point contact or line contact fin member. The conductivity can be increased. Further, a part of the fluid flowing in the heat transfer tube flows while swirling or causing turbulence along the surface where the twist pieces intersect with each other. Due to the swirling flow and the turbulent flow of the fluid, the boundary layer that is likely to be generated in the vicinity of the inner peripheral surface of the raw pipe can be peeled off to improve the heat exchange efficiency. In addition, the surface contact between the element tube and the close contact surface improves the fixability of the plate-like fin member to the element tube, and can prevent fretting of the wall surface of the element tube in contact with each fin or fin. .
[0015]
Next, in the second invention, as in the first invention, a plurality of slits are provided on the front end side of the plate-like fin member projecting a plurality of fins in at least two directions, and the slits are twisted in the crossing direction. , Forming twisted pieces. And in the 1st invention, the adhesion side is formed by making a twist piece into the shape corresponding to the inner peripheral surface of a blank before inserting and arranging to a blank. However, in the second invention, the twisted piece does not have a shape corresponding to the inner peripheral surface of the raw tube, and the tip side of the twisted piece is more than the inner peripheral surface of the raw tube before being inserted into the raw tube. The plate-like fin member is formed with such a diameter as to be arranged outward.
[0016]
When the plate-like fin member of the second invention as described above is inserted into the element pipe having an inner diameter smaller than the diameter, the twisted piece is pressed against the inner peripheral surface of the element pipe and deformed into a shape corresponding to the inner peripheral surface. Thus, a close contact surface that can be brought into surface contact with the inner peripheral surface of the raw tube is formed. Accordingly, after the insertion into the raw tube is completed, the tight contact surface of the twisted piece is elastically brought into surface contact with the inner peripheral surface of the raw tube, and the fixability of the plate-like fin member to the raw tube can be further improved. .
[0017]
In the heat transfer tubes as in the first and second aspects of the present invention, a metal plate-like fin member formed by projecting fins in at least two directions from the axial center portion is inserted and arranged in a metal base tube excellent in thermal conductivity. By installing, the heat transfer area can be increased, and the heat absorption characteristics and heat dissipation characteristics of the heat transfer tube can be improved. And in the heat transfer pipe | tube which does not arrange | position the conventional fin member, only the heat | fever of the one part fluid which flows the inner peripheral surface vicinity of an elementary pipe is transmitted to a heat exchanger tube, and most fluids transmit heat to a heat exchanger tube. Although the center of the heat transfer tube was passed at high speed without any problems, in the heat transfer tube of the present invention, the internal space of the heat transfer tube is divided by projecting fins in at least two directions from the axial center, The flow of fluid is prevented, and the fluid flows in a dispersed manner while contacting the surface of the plate-like fin member not only in the inner peripheral surface of the elementary tube but also in the vicinity of the center in the heat transfer tube, and between the fluid and the heat transfer tube. Can be efficiently conducted.
[0018]
Further, since the close contact surface provided on the front end side in the outward direction of the plate-like fin member is brought into surface contact with the inner peripheral surface of the raw tube, the metal tube and the plate-like fin as in the conventional inventions of Patent Documents 1 to 3, etc. Compared to a heat transfer tube in which the member is in point contact or line contact, the contact area between the plate fin member and the raw tube can be increased, and the thermal conductivity between the plate fin member and the raw tube can be increased. Can do. In addition, the surface contact improves the fixing of the plate-like fin member to the raw tube, and even if there is fluid flow or heat transfer tube vibration, the fretting of the wall surface of the raw tube where the fin or fin is in contact. The heat exchange can be performed smoothly and the durability of the heat transfer tube is improved.
[0019]
Further, since the plate-like fin member has the tip of the twisted piece in surface contact with the raw tube, a flow gap through which fluid can pass is intermittent between the proximal end of the twisted piece and the inner peripheral surface of the raw tube. Will occur. Accordingly, the fluid repeatedly enters and exits through the plurality of internal spaces divided by the plate-like fin members while passing through the intersecting surfaces of the twist pieces and the flow gap, and flows to the flow destination. For this reason, the fluid flows while swirling or generating turbulence near the inner peripheral surface of the raw tube, and heat exchange between the inner and outer fluids via the heat transfer tube can be promoted by separation of the boundary layer.
[0020]
Therefore, for example, when high-temperature EGR gas is flowed into the heat transfer tube of the present invention and cooled by the refrigerant liquid, in the heat transfer tube of the present invention, not only the wall surface of the raw tube but also plate fins It can be efficiently transmitted to the member. In addition, the heat of the EGR gas flowing not only in the vicinity of the inner peripheral surface of the element pipe but also in the center is efficiently transmitted to the plate-like fin member. The close contact surface of the plate-like fin member that is in surface contact with the elemental tube promotes the transfer of heat from the plate-like fin member to the elemental tube, and this heat flows outside through the inner and outer surfaces of the elemental tube. Heat is dissipated. As a result, heat exchange between the refrigerant liquid and the EGR gas can be performed efficiently, and the EGR gas can be uniformly cooled without unevenness.
[0021]
Further, since the plate-like fin member is closely fixed to the inner peripheral surface of the raw tube by surface contact as described above, the fixing property in the raw tube is good. However, if both are connected and fixed by welding, brazing, etc., the fixability of the plate-like fin member in the raw pipe can be further enhanced, and the plate-like fin member may be shaken by fluid flow or heat transfer tube vibration. Since deformation is prevented, the usability and durability of the heat transfer tube can be improved. Furthermore, when brazing the close contact surface of the plate-like fin member to the inner peripheral surface of the raw tube, the heat transfer between the plate-like fin member and the inner peripheral surface of the raw tube is not limited to the close contact surface but the braze filler fillet. Since it is carried out over a wide area including the wall thickness, the thermal conductivity is further improved, and the heat exchange performance of the heat transfer tube can be improved.
[0022]
Further, if the plate-like fin member is provided with at least one window portion through which the fluid flowing in the raw tube can pass, the heat transfer area is reduced by the area provided with the window portion, but a lighter heat transfer tube can be obtained. Can do. In addition, the fluid flowing in the divided internal space of the heat transfer tube not only generates a swirling flow in the flow gap between the proximal end portion of the twisted piece and the raw tube, but also flows through the window portion. By doing so, meandering or turbulent flow of the fluid occurs, and the flow distance of the fluid in the heat transfer tube becomes long. And while the contact time with the inner peripheral surface of a raw pipe and the surface of a plate-like fin member becomes long, the fluid is stirred, and not only a part of the fluid but the whole comes into contact with the raw pipe and the plate-like fin member repeatedly. It will be a thing. Therefore, the heat conductivity of the heat transfer tube is increased, and the heat exchange efficiency between the fluid flowing inside and the fluid flowing outside can be improved even if the window is provided to reduce the heat transfer area.
[0023]
Further, if the plate-like fin member is provided with an opening communicating with the window portion by cutting out the fluid inflow source side, the flow resistance received when fluid such as EGR gas flows into the heat transfer tube is reduced. Therefore, the fluid can smoothly flow into the heat transfer tube from the fluid supply source.
[0024]
Moreover, even when a window portion is provided on the plate-like fin member, it is possible to increase the heat transfer area by projecting the projecting pieces at regular intervals inside the window portion. The unevenness formed in the part further promotes the turbulent flow and stirring action of the fluid, and can increase the thermal conductivity of the heat transfer tube.
[0025]
The heat transfer tubes of the first and second inventions can be used for any device that exchanges heat, such as an automobile engine, an internal combustion engine, and an air conditioner. And if the heat exchanger tube of this invention is assembled | attached to the EGR gas cooling device of an engine, and another multi-tube heat exchanger, cooling of EGR gas can be performed efficiently. Therefore, in an EGR system, particularly a cooled EGR system with a high EGR rate of a diesel engine, NOx in the exhaust gas can be reduced and fuel consumption can also be prevented from deteriorating. In addition, it is possible to prevent an excessive increase in temperature and to surely prevent the EGR valve from deteriorating and functioning.
[0026]
Also, the heat transfer tube of the present invention may be installed in an oil cooler built in a radiator that circulates high-temperature oil inside and cools with engine cooling water, and performs excellent heat exchange and heat transfer characteristics. High oil cooler can be obtained.
[0027]
【Example】
Hereinafter, an embodiment in which the heat transfer tube of the present invention is used in an EGR gas cooling apparatus in a cooled EGR system of an automobile will be described in detail with reference to the drawings. FIG. 1 is an end view of a heat transfer tube according to the first embodiment, and fins projecting in four directions at intervals of 90 ° are disposed in a metal base tube, and a cross-shaped plate-like fin member is disposed. And the twist piece provided in the front end side of the plate-like fin member is deformed to form a close contact surface in advance, and this close contact surface is brought into surface contact with the inner peripheral surface of the raw tube. FIG. 2 shows a manufacturing process of the plate-like fin member according to the first embodiment, in which a plurality of slits are formed on the tip side of each fin of the plate-like fin member, and a twisted piece is formed by twisting between the slits. In addition, the fin shown in the lower end has shown the state before twisting. FIG. 3 is a partially cutaway plan view of FIG.
[0028]
FIG. 4 is a plan sectional view of the heat transfer tube of the second embodiment, in which a grooved slit is provided to form a twisted piece. Further, the plate-like fin member of the second embodiment is formed with a diameter so that the tip end side of the twisted piece is disposed outward from the inner peripheral surface of the raw tube before being inserted into the raw tube. When the tube is inserted and arranged, the twisted piece is deformed by the inner peripheral surface of the tube to form a close contact surface with the tube. FIG. 5 is a perspective view of the plate-like fin member showing the state before the twisted piece is formed by providing a groove-like slit and showing the manufacturing process of the plate-like fin member of the second embodiment. FIG. 6 is a perspective view of the plate-like fin member in a state where twisted pieces are formed by twisting between the slits formed in FIG. 5.
[0029]
FIG. 7 is a perspective view of the plate-like fin member before twisted piece formation in the third embodiment, and a plurality of relatively small window portions are provided on each fin. FIG. 8 is a perspective view of the plate-like fin member before the twisted piece is formed in the fourth embodiment. Each fin is provided with a plurality of windows larger than those in the third embodiment, and the projecting pieces are provided inward in each window. Projected to FIG. 9 shows a plate-like fin member before the twisted piece is formed in the fifth embodiment. Each of the fins is provided with a plurality of windows larger than those in the third embodiment, and the inflow source side of each fin is cut away. An opening that communicates with the window is provided. FIG. 10 is a schematic view of an EGR gas cooling device using the heat transfer tube of the present invention.
[0030]
The first embodiment of the present invention will be described in detail with reference to FIGS. 1 to 3, and FIG. 10. (1) is a heat transfer tube, and a thin metal element through which EGR gas can flow. Inside the pipe (2), a metal plate-like fin member (4) which is long in the axial direction of the pipe and radially protrudes the fins (3) in four directions at intervals of 90 ° from the axial center is inserted and disposed. Is formed.
[0031]
The raw tube (2) and the plate-like fin member (4) are formed using copper, aluminum, brass, stainless steel, or the like, so that the heat transfer tube has excellent thermal conductivity and corrosion resistance against EGR gas and the like. (1) can be obtained. In addition, in order to further improve the reliability of corrosion resistance, the metal material as described above is subjected to a single-layer plating treatment of zinc, copper, tin, tin-zinc alloy, nickel, zinc-nickel alloy, etc., and chromate as necessary. A coating or the like may be applied, or two or more layers of plating may be performed, such as plating the outer surface of the metal material with nickel and further plating a zinc-nickel alloy on the outer peripheral surface of the nickel. The blank tube (2) and the plate-like fin member (4) may be formed of the same metal material, and if it can be brazed or welded as described later, the purpose of use, cost, etc. Depending on the case, both may be formed of different metal materials.
[0032]
As shown in FIG. 2, the plate-like fin member (4) is long in the tube axis direction and perpendicular to both surfaces of the central portion of the wide plate member (5) elongated in the tube axis direction. A pair of narrow plate members (6) having a narrower width than (5) is connected, and fins (3) are projected in four directions at intervals of 90 °. The narrow plate member (6) is connected to the wide plate member (5) by bending one side of the narrow plate member (6) in parallel with the wide plate member (5). 5) and a flat connecting portion (8) in surface contact with each other, and as shown in FIG. 3, the connecting portion (8) of each narrow plate member (6) is brought into surface contact with the wide plate member (5). Brazing.
[0033]
Next, a plurality of slits (7) intersecting the tube axis direction are provided on the distal end side of the plate-like fin member (4) in the outer direction. FIG. 2 shows a state in which the fin (3) on the lower end side of the pair of fins (3) of the wide plate member (5) only forms the slit (7). In this embodiment, the slit (7) is cut at the distal end side of the plate-like fin member (4) so as to cross the tube axis direction, and further, at the base end of the slit (7), parallel to the tube axis direction. A short cut is made to form a T-shape. A plurality of twist pieces (10) are formed by twisting between the T-shaped slits (7) in the direction intersecting the surface of the fin (3). In the first embodiment, the slits (7) of the fins (3) are all twisted in the counterclockwise crossing direction with respect to the central axis, and the twisting directions of the fins (3) are the same direction. It is said.
[0034]
Further, when the twisted piece (10) is formed, the outer diameter of the plate-like fin member (4) is larger than the inner diameter of the raw tube (2) as shown by a two-dot chain line in FIG. In this embodiment, each of the twisted pieces (10) of the plate-like fin member (4) is then bent and deformed in the axial center direction, so that the plate-like fin member (2) inserted into the element tube (2) ( The diameter of 4) is formed to be substantially the same as the inner diameter of the raw tube (2). In addition, due to this bending deformation, the tip end surface of the twisted piece (10) arranged substantially parallel to the inner peripheral surface of the element pipe (2) becomes the contact surface (11) to the element pipe (2). The contact surface (11) is preferably curved and deformed in an arc shape corresponding to the arc-shaped inner peripheral surface of the raw tube (2). After such molding, the plate-like fin member (4) can be smoothly inserted into the blank tube (2), and after the insertion is completed, as shown in FIG. (11) is tightly fixed to the inner peripheral surface of the raw tube (2) by surface contact. By this surface contact, the plate-like fin member (4) is stably fixed in the raw tube (2).
[0035]
Further, in order to further improve the fixing property and thermal conductivity of the plate-like fin member (4) to the raw tube (2), the contact surface (11) and the inner peripheral surface of the raw tube (2) are brazed. . By this brazing, the heat conduction between the plate-like fin member (4) and the raw tube (2) is performed not only through the contact surface (11) but also through the filler fillet (not shown). Thermal conductivity can be increased. Furthermore, even if a slight gap is formed between the close contact surface (11) and the inner peripheral surface of the blank tube (2), the close contact surface is closed by a filler fillet (not shown). The heat conduction between (11) and the inner peripheral surface of the raw tube (2) is performed well. Further, it is not necessary to form the close contact surface (11) in a strictly arcuate shape so as to correspond to the inner peripheral surface of the raw tube (2), and the manufacturing work can be simplified.
[0036]
Furthermore, the close contact surface (11) and the inner peripheral surface of the raw tube (2) are firmly fixed by brazing, and the fixability of the plate-like fin member (4) can be improved. As a result, vibration and deformation of the plate-like fin member (4) due to fluid flow, heat transfer tube vibration, and the like, and flapping of the wall surface of the elementary tube (2) with which the fins (3) and fins (3) are in contact, It is possible to improve the usability and durability of the heat transfer tube (1) by suppressing the ting and the like.
[0037]
Further, at the time of brazing, before inserting the plate-like fin member (4) into the blank tube (2), at least both side edges of the plate-like fin member (4) or the close-contact surface in advance. The brazing material is plated on the entire surface of (11). Further, the plating of the brazing material is preferably performed on the entire surface of the plate-like fin member (4) because it is easy to work, or the brazing material is plated on the inner peripheral surface of the base pipe (2). Also good. Also, a brazing material is clad on the wide plate member (5) and the narrow plate member (6), which are forming materials of the plate fin member (4), and the clad material is processed to form the plate fin member (4). It may be formed.
[0038]
Further, after inserting the plate-like fin member (4) coated with the binder for adhering the brazing material on both side edges of the contact surface (11) into the raw tube (2), the powdery brazing material is put into the raw tube (2). May be supplied. As another method, a plate-like fin member (4) supplied with brazing paste on both side edges of the contact surface (11) may be inserted into the raw tube (2), or a plate-like member may be inserted into the raw tube (2). After inserting the fin member (4), a brazing paste may be supplied into the raw tube (2). And it may braze at the time of manufacture of a heat exchanger tube (1), or may braze after attaching a heat exchanger tube (1) to the below-mentioned EGR gas cooling device (20).
[0039]
In the heat transfer tube (1) formed as described above, the heat transfer area can be increased by disposing the plate-like fin member (4) provided with the fins (3) projecting in four directions from the axial center. Furthermore, the tip side of each fin (3) and the inner peripheral surface of the raw pipe (2) are brought into surface contact via the contact surface (11), not the point contact or the line contact as in the prior art, and are further brought into contact with each other. Since it is brazed, the thermal conductivity between the plate-like fin member (4) and the raw tube (2) is increased, and the heat of the EGR gas received by the plate-like fin member (4) is transferred to the raw tube (2). After efficiently transmitting, heat can be dissipated to the outside.
[0040]
In addition, due to the arrangement of the plate-like fin member (4), the internal space (12) of the heat transfer tube (1) is divided into four, and the fluid is dispersed and flows in the four divided internal spaces (12). Therefore, it is possible to prevent the uneven flow of the fluid. Further, the fluid and the heat transfer tube (1) are dispersed in the internal space (12) while flowing in contact with the surface of the plate-like fin member (4) as well as the inner peripheral surface of the raw tube (2). ) Can be efficiently conducted. Further, as shown in FIG. 3, a flow gap (13) through which fluid can pass is intermittently formed between the inner peripheral surface of the raw tube (2) and the base end of the twisted piece (10). Passes through the intersecting surface of the twisted piece (10) and the flow gap (13) and flows into the flow destination while entering and leaving the interior space (12) divided into four. Therefore, the fluid on the inner peripheral surface of the raw pipe (2) swirls and flows, and the thermal conductivity between the fluid and the raw pipe (2) can be increased by the separation of the boundary layer by the swirling flow. . By these actions, it becomes possible to efficiently exchange heat between fluids flowing inside and outside the heat transfer tube (1).
[0041]
In the first embodiment, as described above, since all the twisted pieces (10) of the fins (3) are twisted in the same direction counterclockwise, the inner peripheral surface of the raw pipe (2) The swirling direction of the fluid flowing by swirling the tip side of the fin (3) is the same, and the fluid can smoothly flow to the flow destination. In addition, twisting in the same direction facilitates the processing of the twisted piece (10), and it is not necessary to form the pair of narrow-width plate members (6) in different shapes on the left and right, and the same one should be used. Therefore, the productivity of the plate-like fin member (4) can be improved.
[0042]
The EGR gas cooling device (20) assembled with the heat transfer tube (1) as described above has a pair of tube sheets (22) connected to both ends of a cylindrical body tube (21) as shown in FIG. The inside can be sealed. And between the pair of tube sheets (22), a plurality of heat transfer tubes (1) of the present embodiment are connected and arranged through the tube sheet (22). A bonnet (26) having an EGR gas inlet (24) and an outlet (25) is connected to both ends of the trunk pipe (21).
[0043]
Further, the outer periphery of the trunk tube (21) is partitioned by a pair of tube sheets (22) by providing an introduction passage (27) and an outlet passage (28) for a cooling medium such as engine cooling water and cooling air. A heat exchange section (23) through which a cooling medium can flow is used in the airtight space. Further, a plurality of support plates (30) are joined and arranged in the heat exchange section (23), and the heat transfer tube (1) is inserted into the insertion hole (29) provided in the support plate (30). The heat transfer tube (1) is stably supported as a baffle plate, and the flow of the cooling medium flowing in the heat exchanging portion (23) is meandered.
[0044]
In the EGR gas cooling device (20), when high-temperature EGR gas is introduced into the trunk pipe (21) from the inlet (24), a plurality of EGR gases are arranged in the trunk pipe (21). It flows into the heat transfer tube (1). In the heat exchange section (23) in which the heat transfer tube (1) is arranged, a cooling medium such as engine cooling water is circulated outside the heat transfer tube (1) in advance. Thus, heat exchange is performed between the EGR gas and the cooling medium.
[0045]
As described above, the heat transfer tube (1) increases the heat transfer area by arranging the plate-like fin member (4), thereby increasing the contact frequency with the EGR gas, and the plate-like fin member (4). The pipe (2) is brought into surface contact to increase thermal conductivity. Therefore, not only the heat of the EGR gas on the inner peripheral surface side of the raw pipe (2) but also the heat of the EGR gas flowing in the vicinity of the center is affected by the inner circumference of the raw pipe (2) via the plate-like fin member (4). After the heat is efficiently transferred to the surface, the heat is radiated to the cooling medium through the outer peripheral surface of the base tube (2). Then, the entire EGR gas is uniformly cooled without unevenness, and an excellent cooling effect on the EGR gas can be obtained.
[0046]
The EGR gas thus well cooled flows out of the EGR gas cooling device (20) through the outlet (25) and is returned to the intake manifold side. Accordingly, it is possible to prevent the EGR valve from being heated to high temperature and obtain the excellent functionality and durability of the EGR valve, and to reduce the temperature of the intake air, so that NOx can be reduced and good fuel consumption can be achieved. In addition, the generation of a swirling flow of EGR gas in the heat transfer tube (1) and the turbulent flow promote the separation of soot mixed in the EGR gas and prevent it from becoming a large lump. It is also possible to prevent deterioration of cooling performance and engine trouble caused by the engine.
[0047]
Further, in the first embodiment, when the plate-like fin member (4) is inserted into the raw pipe (2), as described above, the twisted piece (10) is inserted in advance before being inserted into the raw pipe (2). ) Is bent and deformed in the axial center direction to form a close contact surface (11) to the inner peripheral surface of the tube (2). In the second embodiment shown in FIGS. The plate-like fin member (4) is formed with such a diameter that the piece (10) is not bent and deformed, and the distal end side of the twisted piece (10) is arranged outward from the inner peripheral surface of the blank tube (2). The twisted piece (10) is deformed to form the contact surface (11) when inserted into the raw tube (2).
[0048]
In the manufacturing process, when the plate-like fin member (4) is first formed, the second embodiment uses only the wide plate member (5) as shown in FIG. It is set as the simple plate-shaped fin member (4) set to (3). Next, a plurality of slits (7) are formed at intervals in each fin (3). In the first embodiment, the slit (7) of the plate-like fin member (4) is T-shaped on the fin (3). In contrast to this, in the second embodiment, as shown in FIG. 5, the tip side of the fin (3) is cut into a concave groove shape to provide a slit (7). In the groove-shaped slit (7) as in the second embodiment, the base end portion of the twist piece (10) is smooth.
[0049]
Then, by twisting the groove-like slits (7) counterclockwise in a direction substantially intersecting the surface of the fin (3), as shown in FIG. 6, the outward direction of the plate-like fin member (4) is obtained. A plurality of twisted pieces (10) are formed on the distal end side. In the second embodiment, the twisted piece (10) is not formed into a shape corresponding to the inner peripheral surface of the raw pipe (2) before being inserted into the raw pipe (2). In the plate-like fin member (4) before insertion of the plate-like fin member (4), the outer diameter of the plate-like fin member (4) is larger than the inner diameter of the raw tube (2), as shown by a two-dot chain line in FIG. When the plate-like fin member (4) is inserted into the raw pipe (2) having a smaller diameter than the outer diameter, the plate-like fin member (4) is pressed against the inner peripheral surface of the raw pipe (2) to have a shape corresponding to the inner peripheral face. By deforming the twisted piece (10), as shown on the right side of FIG. 4, a close contact surface (11) is formed on the distal end side of the twisted piece (10) that can come into surface contact with the inner peripheral surface of the raw tube (2). The After the insertion into the tube (2), the elastic restoring force to the outside of the contact surface (11) acts, and the contact surface (11) corresponds to the inner peripheral surface of the tube (2). In this way, good thermal conductivity between the raw tube (2) and the plate-like fin member (4) is maintained, and the plate-like fin member (4) in the raw tube (2) is maintained. Fixability is improved and further stable.
[0050]
In the heat transfer tube (1) of the second embodiment formed as described above, the heat transfer area of the heat transfer tube (1) can be increased by arranging the plate-like fin member (4). The heat of EGR gas can be efficiently transferred not only to the inner peripheral surface of the raw tube (2) but also to the plate-like fin member (4). Furthermore, since the contact surface (11) of the twisted piece (10) provided in the outward direction of the plate-like fin member (4) is in close contact with the inner peripheral surface of the raw tube (2) and is in close contact. The heat received by the plate-like fin member (4) can be efficiently transferred to the inner peripheral surface of the base tube (2), and the EGR gas flowing inside and outside the heat transfer tube (1) and the cooling medium Heat exchange can be performed efficiently.
[0051]
And, as in the first embodiment, the manufacturing means for forming the twisted piece (10) into a shape corresponding to the inner peripheral surface of the raw pipe (2) before insertion into the raw pipe (2) is made of a hard metal. This is effective when a material is used or a metal material is thick and it is difficult to deform the twisted piece (10) on the inner peripheral surface of the base tube (2). Further, as in the second embodiment, the twisted piece (10) is not formed into a shape corresponding to the inner peripheral surface of the blank (2) before being inserted into the blank (2). The manufacturing means for forming the contact surface (11) by deforming the twisted piece (10) on the inner peripheral surface of the base tube (2) during insertion into the tube uses a relatively soft metal material, It is effective when it is thin and the twisted piece (10) can be easily deformed on the inner peripheral surface of the base tube (2).
[0052]
Moreover, in the said 1st, 2nd Example, although it twists in the same direction which makes the twist direction of the twist piece (10) counterclockwise for every fin (3), as another different Example, it adjoins. The twisted pieces (10) may be formed by twisting one of the fins (3) or the fins (3) that are symmetric with respect to the tube axis by twisting one counterclockwise and the other twisting clockwise. Alternatively, the twist pieces (10) may be formed by alternately twisting clockwise and counterclockwise between the slits (7) of one fin (3). By changing the twist direction of the twist piece (10) in this way, turbulence of the fluid flowing inside can be promoted.
[0053]
In the first and second embodiments, the fins (3) of the plate-like fin member (4) are not provided with any windows, openings, irregularities, or the like. As shown in FIG. 7, by using the wide plate member (5), a plate-like fin member (4) projecting the fin (3) in two directions through a 180 ° interval is formed, and a fluid is applied to each fin (3). A plurality of small windows (14) through which can pass is opened. By providing such a window (14), the EGR gas flowing in the internal space (12) of the heat transfer tube (1) flows to the flow destination while passing through the plurality of windows (14). The meandering and turbulence of the EGR gas are promoted.
[0054]
In addition, the EGR gas flow distance in the heat transfer tube (1) is increased, the contact time with the inner peripheral surface of the base tube (2) and the surface of the plate-like fin member (4) is increased, and the EGR gas is As a result of stirring, not only a part of the EGR gas but the whole is repeatedly brought into contact with the raw tube (2) and the plate-like fin member (4). As a result, the heat of the EGR gas can be efficiently transferred to the heat transfer tube (1), and this heat is dissipated to the cooling medium through the outer surface of the heat transfer tube (1), thereby improving the heat exchange performance. High EGR gas cooling is possible.
[0055]
In another different fourth embodiment, as shown in FIG. 8, a plurality of relatively large windows (14) are opened in each fin (3) as compared to the third embodiment. By providing such a large window (14), a lighter plate-like fin member (4) can be obtained. Accordingly, it is possible to reduce the weight of the heat transfer tube (1) and the EGR gas cooling device (20) using the heat transfer tube (1). Although the heat transfer area may be reduced by providing a large window (14), the area of the inner peripheral surface of the window (14) can be used as the heat transfer surface. Further, in this embodiment, since a plurality of projecting pieces (15) are formed at predetermined intervals in each window portion (14), the heat transfer area of the heat transfer tube (1) is increased as compared with the conventional case. I can do things.
[0056]
Also, in the heat transfer tube (1) of the fourth embodiment, the fluid flows while largely meandering in the internal space (12) due to the formation of the large window (14). Furthermore, in the fourth embodiment, since the projections (15) are provided, the windows (14) are uneven, so that the turbulent flow and the stirring action of the meandering fluid can be promoted. It becomes. Therefore, the contact frequency between the plate-like fin member (4) and the fluid is increased, and the heat transfer tube (1) capable of efficiently performing heat exchange between the EGR gas and the cooling medium can be obtained.
[0057]
Moreover, in the said 3rd, 4th Example, although the plate-shaped fin member (4) does not provide an opening part in the inflow origin side of EGR gas, and makes the front end surface smooth, 5th shown in FIG. In the embodiment, a plurality of relatively large windows (14) are opened in each fin (3) of the plate-like fin member (4), and the EGR gas inflow source side of each fin (3) is cut out. An opening (16) communicating with the window (14) on the inflow source side is provided.
[0058]
Thus, by providing the opening (16) communicating with the window (14) on the EGR gas inflow source side of each fin (3), the flow when the EGR gas flows into the heat transfer tube (1) is provided. The resistance can be reduced, and the EGR gas can flow smoothly from the EGR gas inlet (24) into the heat transfer tube (1).
[0059]
When the heat transfer tube (1) is formed using the plate-like fin members (4) of the third to fifth embodiments, the twisted piece (10) is preliminarily placed in the raw tube (2) as in the first embodiment. ) Is formed into a shape corresponding to the inner peripheral surface of the substrate, and a close contact surface (11) is provided to form a plate-like fin member (4), and this plate-like fin member (4) is inserted into the raw tube (2). It may be formed by production means. Further, as in the second embodiment, the twisted piece (10) is not previously formed into a shape corresponding to the inner peripheral surface of the element tube (2), and is inserted into the element tube (2) before being inserted into the element tube (2). The plate-like fin member (4) is formed with a diameter larger than the inner diameter of the inner tube (2), and the twisted piece (10) is placed on the inner peripheral surface of the elementary tube (2) when inserted into the elementary tube (2). The contact surface (11) may be formed by being deformed, and may be formed by a manufacturing means that is in close contact with the inner peripheral surface of the base tube (2).
[0060]
Moreover, in the said 2nd-5th Example, the plate-shaped fin member (4) is formed only by the wide-width plate member (5), and the both ends of a 180 degree direction are made into the fin (3), Other different Example As in the first embodiment, a wide plate member (5) and a pair of narrow plate members (6) are formed, and the fins (3) are projected in four directions at 90 ° intervals, and the cross-sectional shape is a cross shape. A plate-like fin member (4) may be used.
[0061]
As another different embodiment, the plate-like fin member (4) of the first to fifth embodiments may be formed by projecting the fin (3) in six directions at intervals of 60 °, or at a narrower interval. You may form the plate-shaped fin member (4) which protruded many fins (3). As a further different embodiment, the interval between the adjacent fins (3) may be projected through different intervals.
[0062]
In each of the above embodiments, the EGR gas cooling device (20) is described as being assembled with the heat transfer tube (1) of the present invention. However, the heat transfer tube of the present invention is applied to another different multi-tube heat exchanger. A heat tube (1) may be used, and excellent heat exchange performance can be obtained. In addition, a heat transfer tube (1) of the present invention is used in a built-in oil cooler for a radiator that circulates high-temperature oil such as engine oil, mission oil, ATF, and power steering oil and cools the high-temperature oil with engine cooling water. ) Can also be assembled. And through the heat transfer pipe (1) having a large heat transfer area and high heat conductivity of the present invention, the engine cooling water flowing in the heat transfer pipe (1) and the oil to be cooled flowing in the outside of the heat transfer pipe (1) Heat exchange with the oil is promoted, and the oil to be cooled can be cooled uniformly and efficiently.
[0063]
【The invention's effect】
The present invention is configured as described above, and a metal plate-like fin member having fins protruding in at least two directions from the axial center of the element tube is disposed in the metal element tube having excellent heat conductivity. As a result, the heat transfer area of the heat transfer tube can be increased. Further, a twisted piece is provided in the distal direction of the plate-like fin member, and the contact surface provided at the tip of the twisted piece is brought into surface contact with the inner peripheral surface of the elementary pipe. The conductivity can be increased. In addition, the fluid flowing inside the heat transfer tube flows to the flow destination along the intersecting surfaces of the twisted pieces, thereby causing the fluid to swirl or turbulently flow, peel off the boundary layer, and The thermal conductivity with the tube can be further increased. Therefore, the heat exchange performance of the heat transfer tube is improved, and the heat exchange between the fluids flowing inside and outside the heat transfer tube can be performed efficiently.
[0064]
In addition, the surface contact between the raw pipe and the plate-like fin member improves the fixability of the plate-like fin member in the raw pipe, and prevents the fin from being bent or deformed due to fluid flow or heat transfer pipe vibration. . Further, fretting of the fins and the wall surfaces of the raw pipes that are in contact with the fins can be prevented, heat exchange can be performed smoothly, and the durability of the heat transfer tubes is improved. And by using this heat transfer tube excellent in heat exchange performance for a multi-tube heat exchanger, a radiator built-in oil cooler, etc., a product with high heat transfer characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is an end view showing a heat transfer tube according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a manufacturing process of the plate-like fin member of the first embodiment.
FIG. 3 is a partially cutaway plan view of FIG. 1;
FIG. 4 is a cross-sectional view showing a manufacturing process of a heat transfer tube of a second embodiment.
FIG. 5 is a perspective view of the manufacturing process of the plate-like fin member according to the second embodiment, showing a state in which a groove-like slit is formed.
FIG. 6 is a perspective view of the manufacturing process of the plate-like fin member according to the second embodiment, showing a state in which twisted pieces are formed by twisting the slits in the crossing direction.
FIG. 7 is a perspective view showing a plate-like fin member according to a third embodiment.
FIG. 8 is a perspective view showing a plate-like fin member according to a fourth embodiment.
FIG. 9 is a perspective view showing a plate-like fin member of a fifth embodiment.
FIG. 10 is a partially cutaway plan view of an EGR gas cooling apparatus in which the heat transfer tube of the present invention is assembled.
[Explanation of symbols]
2 Elementary tube
3 Fin
4 Plate-shaped fin member
7 Slit
10 Twisted pieces
11 Contact surface
14 windows
15 Projection

Claims (4)

金属製の素管内に挿入配設する金属製の板状フィン部材を、管軸方向に長尺で軸中心部から少なくとも2方向にフィンを突出して形成し、この板状フィン部材の外方向の先端側に、管軸方向に交差するスリットを複数設け、このスリット間を該フィンの表面と交差方向に捻る事により捻り片を形成し、この捻り片を素管の内周面の一部に対応した形状とする事により、捻り片の先端側に設けた密着面を、素管の内周面に面接触して密着固定させる事を特徴とするフィン部材を内装した伝熱管。A metal plate-like fin member to be inserted and disposed in the metal base tube is formed by extending the fin in the tube axis direction and projecting the fin in at least two directions from the axial center portion. A plurality of slits intersecting the tube axis direction are provided on the distal end side, and a twisted piece is formed by twisting between the slits in the direction intersecting the surface of the fin, and this twisted piece is formed as a part of the inner peripheral surface of the raw tube A heat transfer tube with a fin member, which is characterized by having a close contact surface provided on the tip end side of the twisted piece in surface contact with the inner peripheral surface of the base tube and fixing it closely by adopting a corresponding shape. 金属製の素管内に挿入配設する金属製の板状フィン部材を、管軸方向に長尺で軸中心部から少なくとも2方向にフィンを突出して形成し、この板状フィン部材の外方向の先端側に、管軸方向に交差するスリットを複数設け、このスリット間を該フィンの表面と交差方向に捻る事により捻り片を形成するとともに、板状フィン部材の素管への挿入配設前は、捻り片の先端側が素管の内周面よりも外方に配置されるような直径で板状フィン部材を形成し、板状フィン部材の素管への挿入配設時は、捻り片が素管の内周面の一部に対応して軸中心部方向に変形する事で、捻り片の先端側に形成される密着面を素管の内周面に密着固定させる事を特徴とするフィン部材を内装した伝熱管。A metal plate-like fin member to be inserted and disposed in the metal base tube is formed by extending the fin in the tube axis direction and projecting the fin in at least two directions from the axial center portion. A plurality of slits intersecting the tube axis direction are provided on the distal end side, and twisted pieces are formed by twisting between the slits in the intersecting direction with the surface of the fin, and before the plate-like fin member is inserted into the raw tube. The plate-shaped fin member is formed with such a diameter that the distal end side of the twisted piece is arranged outward from the inner peripheral surface of the raw tube, and when the plate-like fin member is inserted into the raw tube, the twisted piece Is characterized by the fact that the contact surface formed on the tip side of the twisted piece is closely fixed to the inner peripheral surface of the raw tube by deforming in the axial center direction corresponding to a part of the inner peripheral surface of the raw tube. Heat transfer tube with an internal fin member. 板状フィン部材は、素管内を流動する流体が通過可能な窓部を少なくとも一個設けた事を特徴とする請求項1又は2のフィン部材を内装した伝熱管。The plate-like fin member is provided with at least one window portion through which a fluid flowing in the raw tube can pass. 窓部は、内部に突片を一定間隔で突出した事を特徴とする請求項3のフィン部材を内装した伝熱管。4. The heat transfer tube with the fin member according to claim 3, wherein the window part has protruding pieces protruding at regular intervals.
JP2003113915A 2003-04-18 2003-04-18 Heat transfer tube with fins Expired - Fee Related JP4208632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113915A JP4208632B2 (en) 2003-04-18 2003-04-18 Heat transfer tube with fins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113915A JP4208632B2 (en) 2003-04-18 2003-04-18 Heat transfer tube with fins

Publications (2)

Publication Number Publication Date
JP2004317072A JP2004317072A (en) 2004-11-11
JP4208632B2 true JP4208632B2 (en) 2009-01-14

Family

ID=33473661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113915A Expired - Fee Related JP4208632B2 (en) 2003-04-18 2003-04-18 Heat transfer tube with fins

Country Status (1)

Country Link
JP (1) JP4208632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008275183A (en) 2007-04-25 2008-11-13 Ihi Corp Heat exchanger, manufacturing method of heat exchanger and egr system
KR101946629B1 (en) * 2016-09-09 2019-02-11 주식회사 경동나비엔 Tube assembly for tube frame type heat exchanger
US11306943B2 (en) 2016-09-09 2022-04-19 Kyungdong Navien Co., Ltd. Tube assembly for tubular heat exchanger, and tubular heat exchanger comprising same

Also Published As

Publication number Publication date
JP2004317072A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP4756585B2 (en) Heat exchanger tube for heat exchanger
JP4143966B2 (en) Flat tube for EGR cooler
JP4614266B2 (en) Fins for fluid agitation, and heat transfer tubes and heat exchangers or heat exchange type gas cooling devices equipped with the fins
US8069905B2 (en) EGR gas cooling device
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
JP4681139B2 (en) Heat transfer tube, method for manufacturing the same, multi-tube heat exchanger using the heat transfer tube, and radiator built-in oil cooler
JP2006038304A5 (en)
JP2010096456A (en) Exhaust heat exchanging device
JPH0712489A (en) Heat exchanger with many pipelines, particularly for car
US20080078533A1 (en) Corrosion resistant, alloy-coated charge air cooler
JP3558131B2 (en) Double tube heat exchanger
JP4266741B2 (en) Heat transfer tube with fins
JP4208632B2 (en) Heat transfer tube with fins
JP4549033B2 (en) Heat transfer tube with fins
JP4256217B2 (en) Heat transfer tube
EP1388720A2 (en) Triple-tube type heat exchanger and method of producing same
JP2004060920A (en) Heat exchanger
WO2014119298A1 (en) Exhaust gas heat exchanger
JP2004309075A (en) Heat transfer pipe internally having fin member and method of manufacturing the heat transfer pipe
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP4009157B2 (en) Element tube for heat exchanger and heat exchanger using the same
JP2005351567A (en) Heat transfer tube internally provided with fin member and heat exchanger provided therewith
JP2004191034A (en) Heat transfer pipe internally provided with fin member made of resin material
JP2004340515A (en) Heat exchanger tube with internally mounted fin member and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees