JP2004191034A - Heat transfer pipe internally provided with fin member made of resin material - Google Patents

Heat transfer pipe internally provided with fin member made of resin material Download PDF

Info

Publication number
JP2004191034A
JP2004191034A JP2003333127A JP2003333127A JP2004191034A JP 2004191034 A JP2004191034 A JP 2004191034A JP 2003333127 A JP2003333127 A JP 2003333127A JP 2003333127 A JP2003333127 A JP 2003333127A JP 2004191034 A JP2004191034 A JP 2004191034A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
resin
fin member
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003333127A
Other languages
Japanese (ja)
Other versions
JP2004191034A5 (en
Inventor
Masayoshi Usui
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2003333127A priority Critical patent/JP2004191034A/en
Publication of JP2004191034A publication Critical patent/JP2004191034A/en
Publication of JP2004191034A5 publication Critical patent/JP2004191034A5/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details

Abstract

<P>PROBLEM TO BE SOLVED: To form a heat transfer pipe having thermal conductivity equal to that of a heat transfer pipe made only of metal materials by using resin materials, and to enable easy manufacturing of the lightweight and inexpensive heat transfer pipe with high corrosion resistance. <P>SOLUTION: Cylindrical fin members 3 made of resin materials are formed by projectingly providing a plurality of fins on an inner peripheral face of a base board 4. The heat transfer pipe 1 is formed by arranging one or the plurality of the cylindrical fin members 3 made of resin materials in series inside a metal pipe 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、EGRガス冷却装置等の多管式熱交換器にて、冷却水、冷却風、カーエアコン用冷媒、その他の冷却媒体と、EGRガス、煤を含有する燃焼排気ガス等との熱交換を行うために用いるもの等、種々の用途の伝熱管に係るものである。   The present invention relates to a heat exchanger for cooling water, cooling air, a refrigerant for a car air conditioner, and other cooling media, and a combustion exhaust gas containing EGR gas and soot in a multi-tube heat exchanger such as an EGR gas cooling device. The present invention relates to heat transfer tubes for various uses such as those used for replacement.

従来、自動車のエンジン等では、排気ガスの一部を排気ガス系から取り出して、再びエンジンの吸気系に戻し、混合気や吸入空気に加えるEGRシステムが、ガソリンエンジン、ディーゼルエンジンともに用いられていた。EGRシステム、特にディーゼルエンジンの高EGR率のクールドEGRシステムでは、排気ガス中のNOxを低減し、燃費の悪化を防止するとともに、過剰な温度上昇によるEGRバルブの機能低下や耐久性の低下を防止するため、高温化したEGRガスを冷却水、冷却風、カーエアコン用冷媒、その他の冷媒液で冷却するEGRガス冷却装置を設けている。   Conventionally, in an engine of an automobile, an EGR system in which a part of exhaust gas is taken out from an exhaust gas system, returned to an intake system of the engine, and added to an air-fuel mixture or intake air has been used for both a gasoline engine and a diesel engine. . EGR systems, especially cooled EGR systems with high EGR rates for diesel engines, reduce NOx in exhaust gas to prevent deterioration of fuel efficiency and prevent deterioration of EGR valve function and durability due to excessive temperature rise. For this purpose, an EGR gas cooling device is provided for cooling the EGR gas at a high temperature with cooling water, cooling air, a refrigerant for a car air conditioner, or another refrigerant liquid.

そして、このEGRガス冷却装置として、下記特許文献1の従来発明に示す如く、内部をEGRガスが流通可能な複数の細径の伝熱管を配置し、この伝熱管の外側に冷却水や冷却風、冷媒等の冷却媒体を流通させる事により、伝熱管を介してEGRガスと冷却媒体との熱交換を行うものが存在した。   As the EGR gas cooling device, a plurality of small-diameter heat transfer tubes through which EGR gas can flow are disposed as shown in the conventional invention of Patent Document 1 below, and cooling water or cooling air is provided outside the heat transfer tubes. In some cases, heat is exchanged between the EGR gas and the cooling medium through a heat transfer tube by flowing a cooling medium such as a refrigerant.

上述の如きEGRガス冷却装置で使用する伝熱管として、特許文献1及び下記特許文献2に記載の如きものが知られている。これらの伝熱管は、金属管の内部に、管軸方向に長尺な板状や螺旋状の金属材製フィン部材を内装する事により形成し、フィン部材により伝熱管の伝熱面積を増やすとともに伝熱管内のEGRガスの流れを乱流化する事で、伝熱管を介してEGRガスと冷却媒体との熱交換効率を高めようとしていた。
特開平11−108578号公報 特開2001−227413号公報
As a heat transfer tube used in the above-described EGR gas cooling device, those described in Patent Document 1 and Patent Document 2 below are known. These heat transfer tubes are formed by installing a long plate-shaped or spiral metal fin member in the tube axis direction inside the metal tube, and the fin member increases the heat transfer area of the heat transfer tube. By making the flow of the EGR gas in the heat transfer tube turbulent, the heat exchange efficiency between the EGR gas and the cooling medium is increased through the heat transfer tube.
JP-A-11-108578 JP 2001-227413 A

しかしながら、金属材は樹脂材に比べて高価であるし加工性に乏しいため、従来の金属材製のフィン部材では形状が制限され、表面積が多く放熱性に優れた複雑な形状とするのは困難であるし、軽量化にも限界があった。また、EGRガス中の水蒸気や未燃焼ガス、硫酸水、炭化水素等の凝縮液に対する耐食性を得るため、メッキ処理等を施す必要があったり、フィン部材のろう付けの手間があり、製造工程を増やしていた。そこで、本発明者らは、軽量で加工性に優れた樹脂材に注目し、金属材製の伝熱面と樹脂材製の伝熱面の熱交換性能の比較実験を行ったところ、金属材製伝熱面に比べて樹脂材製伝熱面は、条件にもよるが熱交換性能が4〜15%程度しか劣化しない事を見出した。この4〜15%程度の熱交換性能を補うためには、樹脂材製伝熱面の表面積を15%以上増加させれば、金属材製の伝熱面と同等若しくはそれ以上の熱交換性能を得る事が可能となると言う結論を得た。   However, metal materials are more expensive and less workable than resin materials, so the shape of conventional metal fin members is limited, and it is difficult to form a complex shape with a large surface area and excellent heat dissipation. However, there was a limit to weight reduction. Also, in order to obtain corrosion resistance to water vapor, unburned gas, sulfuric acid, and condensate such as hydrocarbons in the EGR gas, it is necessary to perform plating or the like, and it is troublesome to braze the fin members. Was increasing. Therefore, the present inventors focused on a resin material that is lightweight and excellent in workability, and conducted a comparative experiment of heat exchange performance between a heat transfer surface made of a metal material and a heat transfer surface made of a resin material. It has been found that the heat exchange surface made of a resin material deteriorates only about 4 to 15% in heat exchange performance as compared with the heat transfer surface made of a resin material, depending on conditions. In order to supplement the heat exchange performance of about 4 to 15%, if the surface area of the resin material heat transfer surface is increased by 15% or more, heat exchange performance equal to or greater than that of the metal heat transfer surface can be obtained. I came to the conclusion that I could get it.

本発明は上述の如き課題を解決しようとするものであって、薄肉化させた金属管の内部に樹脂材製フィン部材を内装して伝熱管を形成し、伝熱管の軽量化と低コスト化を可能とするとともに、樹脂材の優れた加工性により樹脂材製フィン部材の表面積を広く形成し、金属材製フィン部材と同等の熱伝導性を得ようとするものである。この優れた熱伝導性により、伝熱管内を流動する流体と伝熱管の外面を流動する熱交換用媒体との熱交換効率を向上させるものである。また、この優れた熱交換性能により、伝熱管並びに伝熱管を使用した多管式熱交換器の軽量化と小型化を可能とするものである。   An object of the present invention is to solve the problems as described above. A heat transfer tube is formed by mounting a resin material fin member inside a thinned metal tube, thereby reducing the weight and cost of the heat transfer tube. In addition to the above, the surface area of the resin fin member is increased by the excellent workability of the resin material, and the same thermal conductivity as that of the metal fin member is obtained. The excellent heat conductivity improves the heat exchange efficiency between the fluid flowing in the heat transfer tube and the heat exchange medium flowing on the outer surface of the heat transfer tube. The excellent heat exchange performance makes it possible to reduce the weight and size of the heat transfer tube and the multi-tube heat exchanger using the heat transfer tube.

本発明は上述の如き課題を解決するため、基板の内周面にフィンを複数突設した円筒形の樹脂材製フィン部材を、一個又は複数個直列に金属管内に配設して成るものである。   In order to solve the above-described problems, the present invention is configured by arranging one or more cylindrical resin fin members having a plurality of fins protruding from an inner peripheral surface of a substrate in a metal pipe in series or in series. is there.

また、樹脂材製フィン部材は、円周方向に継ぎ目の無い円筒形の基板の内周面に、複数のフィンを一体に突設しても良い。   The resin fin member may have a plurality of fins integrally projecting from the inner peripheral surface of a cylindrical substrate having no joint in the circumferential direction.

また、樹脂材製フィン部材は、帯状の基板の一面に複数のフィンを一体に突設し、このフィンを設けた一面を内側にして基板を円筒形に成形し、基板の両端縁を互いに当接させて円筒形の樹脂材製フィン部材としても良い。   The resin fin member is formed by integrally projecting a plurality of fins on one surface of a strip-shaped substrate, forming the substrate into a cylindrical shape with the one surface on which the fins are provided inside, and contacting both end edges of the substrate with each other. The cylindrical fin member made of a resin material may be brought into contact with the fin member.

また、フィンは、ピン状フィン及び/又は板状フィンであっても良い。   Further, the fin may be a pin-like fin and / or a plate-like fin.

また、板状フィンは、突起、貫通孔、凹凸、ピン、突条の何れか又は複数から成る乱流化手段を設けても良い。   Further, the plate-like fins may be provided with a turbulence generating means composed of any one or a plurality of protrusions, through holes, irregularities, pins, and ridges.

また、ピン状フィン及び/又はピン状の乱流化手段は、断面形状を円形、楕円形、多角形、星形、又はギア形としても良い。   Further, the pin-shaped fins and / or the pin-shaped turbulence generating means may have a circular, elliptical, polygonal, star-shaped, or gear-shaped cross section.

また、樹脂材製フィン部材は、この樹脂材製フィン部材を形成する樹脂材よりも熱伝導性の高い粒子及び/又は繊維を含有させても良い。   The resin fin member may contain particles and / or fibers having higher thermal conductivity than the resin material forming the resin fin member.

また、樹脂材製フィン部材は、この樹脂材製フィン部材を形成する樹脂材にカーボンナノファイバーを含有させても良い。   The resin fin member may include carbon nanofibers in a resin material forming the resin fin member.

また、カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させても良い。   Further, the carbon nanofibers may be contained at a content of more than 5 wt% and less than 30 wt%.

本発明は上述の如く構成したものであり、金属管に樹脂材製フィン部材を内装して伝熱管を形成しているので、樹脂材の優れた加工性を利用して、フィン部材の伝熱面積を増大させる事ができ、金属材のみで形成した伝熱管と同等の熱伝導性を有する伝熱管を得る事ができる。また、樹脂材を使用する事により、伝熱管の製造が容易となるとともに廉価で軽量な伝熱管を得る事ができるとともに、耐食性にも優れたものとなる。従って、このような熱交換効率に優れ軽量で廉価な伝熱管を使用する事により、EGRガス冷却装置、その他の多管式熱交換器の熱交換性能を向上させ、製品の品質を高める事ができ、優れた耐食性により製品の耐久性も向上するものとなる。また、優れた熱交換性能により、多管式熱交換器の小型化、軽量化が可能となり、車輌その他への設置時のレイアウトの自由度の高い製品となる。   The present invention is configured as described above, and since the heat transfer tube is formed by mounting the resin material fin member in the metal tube, the heat transfer of the fin member is performed by utilizing the excellent workability of the resin material. The area can be increased, and a heat transfer tube having the same thermal conductivity as a heat transfer tube formed only of a metal material can be obtained. In addition, by using a resin material, the heat transfer tube can be easily manufactured, a cheap and lightweight heat transfer tube can be obtained, and the heat transfer tube has excellent corrosion resistance. Therefore, by using such a heat transfer tube that is excellent in heat exchange efficiency and lightweight and inexpensive, the heat exchange performance of the EGR gas cooling device and other multi-tube heat exchangers can be improved, and the product quality can be improved. As a result, the durability of the product is improved due to the excellent corrosion resistance. In addition, due to the excellent heat exchange performance, it is possible to reduce the size and weight of the multi-tube heat exchanger, and the product has a high degree of freedom in layout when installed in a vehicle or the like.

本発明の伝熱管は上述の如く、基板の内周面にフィンを複数突設した円筒形の樹脂材製フィン部材を、一個又は複数個直列に金属管内に配設している。この樹脂材製フィン部材を金属管に内装する際は、金属管の内部に樹脂材製フィン部材を挿入配置し、金属管を伸管させる事で、金属管と樹脂材製フィン部材とを密着させても良いし、接着剤にて金属管の内周面に樹脂材製フィン部材を接着固定しても良い。また、樹脂材製フィン部材は、金属管と略同一の長さで形成し、金属管内に一個のみ配設するものであっても良いし、金属管よりも短尺な樹脂材製フィン部材を複数個、金属管の内部に隙間無く或いは間隔を設けて直列に配設するものであっても良い。   As described above, the heat transfer tube of the present invention includes one or more cylindrical resin fin members having a plurality of fins protruding from the inner peripheral surface of the substrate and arranged in series in the metal tube. When this resin material fin member is installed inside the metal tube, the resin material fin member is inserted and arranged inside the metal tube, and the metal tube is extended, so that the metal tube and the resin material fin member adhere to each other. Alternatively, a resin fin member may be bonded and fixed to the inner peripheral surface of the metal tube with an adhesive. Further, the resin fin member may be formed to have substantially the same length as the metal tube, and only one fin member may be provided in the metal tube, or a plurality of resin fin members shorter than the metal tube may be provided. The pipes may be arranged in series inside the metal pipe without any gaps or at intervals.

そして、フィン部材を樹脂材で形成する事により、廉価で軽量であるとともに、内部を流動する流体に対する耐食性にも優れた伝熱管を得る事ができる。更に、樹脂材の容易な加工性を利用して、より複雑な形状でより多くのフィンを設けたフィン部材を形成する事ができ、伝熱管の伝熱面積を増大させる事が可能となる。この伝熱面積の増大により、樹脂材製フィン部材であっても金属材製フィンと同等若しくはそれ以上の熱伝導性を得る事ができ、熱交換性能に優れた伝熱管を得る事ができる。また、フィンを複数突出する事で、伝熱管内を流動する流体に渦巻状の乱流を発生させるものとなり、境界層の剥離により、伝熱管を介した流体と熱交換媒体との熱交換を促進する事ができる。   Further, by forming the fin member from a resin material, it is possible to obtain a heat transfer tube which is inexpensive and lightweight and has excellent corrosion resistance to a fluid flowing inside. Furthermore, by utilizing the easy processability of the resin material, it is possible to form a fin member provided with more fins in a more complicated shape, and it is possible to increase the heat transfer area of the heat transfer tube. Due to the increase in the heat transfer area, even if the fin member is made of a resin material, it is possible to obtain heat conductivity equal to or higher than that of the fin made of a metal material, and it is possible to obtain a heat transfer tube having excellent heat exchange performance. In addition, by projecting a plurality of fins, a spiral turbulent flow is generated in the fluid flowing in the heat transfer tube, and heat exchange between the fluid and the heat exchange medium through the heat transfer tube is caused by separation of the boundary layer. Can be promoted.

また、この熱交換性能に優れ軽量で廉価な伝熱管を使用する事により、EGRガス冷却装置、その他の多管式熱交換器の熱交換性能を向上させる事ができ、これらの装置の軽量化や小型化も可能となる。そのため、狭い場所への設置も容易に行う事ができ、多管式熱交換器のレイアウトの自由度が高まる。また、樹脂材製フィン部材を内装する事で、優れた耐食性が得られるるので、例えばEGRガス中の水蒸気や未燃焼ガス、硫酸水、炭化水素等の凝縮液に対する耐食性が高まり、多管式熱交換器の耐久性を向上させる事ができる。また、伝熱管の樹脂材製の内周面には、EGRガス等に含有される煤が付着しにくいものとなり、煤による熱伝導性の低下を抑える事ができ、前記優れた熱交換性能を持続可能となる。   In addition, the use of lightweight and inexpensive heat transfer tubes with excellent heat exchange performance can improve the heat exchange performance of EGR gas cooling devices and other multi-tube heat exchangers, and reduce the weight of these devices. And miniaturization is also possible. Therefore, it can be easily installed in a narrow place, and the degree of freedom of the layout of the multi-tube heat exchanger is increased. In addition, since the resin-containing fin member is provided with excellent corrosion resistance, the corrosion resistance to condensate such as water vapor in EGR gas, unburned gas, sulfuric acid, and hydrocarbons is increased, and a multi-tube type is provided. The durability of the heat exchanger can be improved. In addition, the soot contained in the EGR gas and the like hardly adheres to the inner peripheral surface made of the resin material of the heat transfer tube, so that a decrease in heat conductivity due to the soot can be suppressed, and the excellent heat exchange performance is improved. Be sustainable.

また、樹脂材製フィン部材は、円周方向に継ぎ目の無い円筒形の基板の内周面に、複数のフィンを一体に突設すれば、樹脂材製フィン部材の製作及びこの樹脂材製フィン部材の金属管への配設作業を、少ない工程で容易に行う事ができる。   In addition, the resin fin member can be formed by integrally projecting a plurality of fins on the inner peripheral surface of a cylindrical substrate having no seams in the circumferential direction. The work of arranging the members on the metal pipe can be easily performed in a small number of steps.

また、上述の如く円筒形の基板を射出成形する際に、複数のフィンを一体に突設しようとすると、中子の形状や使用個数等が限定され、必然的にフィンの形状や形成個数が限定される可能性がある。そのため、樹脂材製フィン部材は、帯状の基板の一面に複数のフィンを一体に突設し、次にフィンを設けた一面を内側にして基板を円筒形に丸め、基板の両端縁を互いに当接させる事で円筒形の樹脂材製フィン部材を形成すれば、より複雑な形状で、より多くのフィンを基板に設けて樹脂材製フィン部材の伝熱面積を更に増大させる事ができる。そして、この円筒形の樹脂材製フィン部材を金属管に内装して伝熱管を形成すれば、熱交換性能に優れた製品を得る事ができる。   Further, when a plurality of fins are to be integrally protruded when injection molding a cylindrical substrate as described above, the shape and the number of cores used are limited, and the shape and the number of fins are inevitably reduced. May be limited. Therefore, the resin-made fin member is formed by integrally projecting a plurality of fins on one surface of a band-shaped substrate, then rolling the substrate into a cylindrical shape with the one surface on which the fins are provided inside, and contacting both edges of the substrate with each other. If a cylindrical resin fin member is formed by contact, a more complicated fin can be provided on the substrate to further increase the heat transfer area of the resin fin member. If the heat transfer tube is formed by mounting the cylindrical resin fin member in a metal tube, a product having excellent heat exchange performance can be obtained.

また、フィンは、何れの形状としても良いが、ピン状フィン及び/又は板状フィンとすれば、伝熱面積を増大させて放熱性や吸熱性を高める事ができる。また、板状フィンの場合は、平滑面を有する平板状としても良いし、側面形状が鋸形、波形等の凹凸面を有する形状としても良く、表面積のより広い板状フィンを得る事ができる。また、ピン状フィンの場合は、樹脂材を用いる事により、金属材製品に比べて、より極細で長尺なピン状フィンとする事ができ、放熱性や吸熱性の高い向上が可能となる。   Further, the fin may have any shape, but if it is a pin-like fin and / or a plate-like fin, the heat transfer area can be increased, and the heat dissipation and heat absorption can be increased. In the case of a plate-like fin, the plate-like fin may have a flat surface having a smooth surface, or may have a side surface having a concavo-convex surface such as a saw-like shape or a waveform, and a plate-like fin having a larger surface area can be obtained. . In the case of a pin-shaped fin, by using a resin material, it is possible to make the pin-shaped fin thinner and longer than a metal product, and it is possible to improve heat radiation and heat absorption. .

また、板状フィンは、突起、貫通孔、凹凸、ピン、突条の何れか又は複数から成る乱流化手段を設ける事により、伝熱管内周面の伝熱面積が更に増大するとともに、伝熱管内部を流動する流体の乱流化を更に促進し、境界層の剥離により、伝熱管を介した流体と熱交換媒体との熱交換効率を高める事ができる。また、このような複雑な形状であっても、樹脂材により容易な形成が可能となる。   In addition, the plate-shaped fin is provided with a turbulent flow means including any one or a plurality of protrusions, through holes, irregularities, pins, and ridges, thereby further increasing the heat transfer area of the inner peripheral surface of the heat transfer tube. Turbulence of the fluid flowing inside the heat tube is further promoted, and the heat exchange efficiency between the fluid and the heat exchange medium via the heat transfer tube can be increased by separating the boundary layer. Further, even with such a complicated shape, the resin material can be easily formed.

また、ピン状フィン及び/又はピン状の乱流化手段は、断面形状を円形、楕円形、多角形、星形、又はギア形とすれば、ピン状フィンの伝熱面積の増大が可能となり、熱交換効率の向上が可能となる。また、円形、楕円形等は、金属材でも形成可能であるが、樹脂材を用いる事により、金属材製品よりも極細で長尺な形状とする事もできるし、多角形、星形、又はギア形等のような複雑な形状でも容易な形成が可能となり、樹脂材製フィン部材の伝熱面積の更なる増大が可能となる。   The pin-shaped fins and / or the pin-shaped turbulence generating means can increase the heat transfer area of the pin-shaped fins if the cross-sectional shape is circular, elliptical, polygonal, star-shaped, or gear-shaped. Thus, the heat exchange efficiency can be improved. In addition, a circular shape, an elliptical shape, and the like can be formed of a metal material, but by using a resin material, it can be formed to be a finer and longer shape than a metal material product, or a polygon, a star, or Even a complicated shape such as a gear shape can be easily formed, and the heat transfer area of the resin fin member can be further increased.

また、上記樹脂材製フィン部材を形成する樹脂材に、カーボンナノファイバーを含有させれば、樹脂材製伝熱面の熱伝導性が更に高まり、伝熱管の内外を流動する流体相互の熱交換性能を更に向上させる事が可能となる。また、カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させれば、最良の熱伝導性を得る事ができる。このカーボンナノファイバーの含有量を5wt%以下とすると、伝熱効果の向上作用に乏しく、30wt%以上を樹脂材に含有させるのは困難で、生産性が低下するとともに高価で、伝熱効果に大きな差を生じない。   Also, if the resin material forming the resin material fin member contains carbon nanofibers, the heat conductivity of the resin material heat transfer surface is further increased, and heat exchange between fluids flowing inside and outside the heat transfer tube is achieved. The performance can be further improved. In addition, when the carbon nanofiber is contained in a content of more than 5 wt% and less than 30 wt%, the best thermal conductivity can be obtained. If the content of the carbon nanofibers is 5 wt% or less, the effect of improving the heat transfer effect is poor, and it is difficult to include 30 wt% or more in the resin material. No big difference.

尚、本明細書で言うカーボンナノファイバーとは、ナノテクノロジー分野に於いて、カーボンナノチューブ、カーボンナノホーン、その他ナノ単位のカーボン繊維を含んだ総称を示すものである。また、カーボンナノチューブ、カーボンナノホーン、その他を混在させて樹脂材に含有させても良いし、単体で含有させても良い。また、カーボンナノチューブを樹脂材に含有させる場合は、カーボンナノチューブが単層であっても良いし、複層であっても良い。更に、このカーボンナノチューブのアスペクト比は問わないものである。また、カーボンナノチューブの太さ、長さ等も問わないものである。   The term "carbon nanofiber" as used in the present specification indicates a general term including carbon nanotubes, carbon nanohorns, and other nano-unit carbon fibers in the field of nanotechnology. Further, carbon nanotubes, carbon nanohorns, and others may be mixed and contained in the resin material, or may be contained alone. When the carbon nanotube is contained in the resin material, the carbon nanotube may be a single layer or a multi-layer. Further, the aspect ratio of the carbon nanotube does not matter. Further, the thickness, length, and the like of the carbon nanotube are not limited.

また、黒色で黒体輻射効果のある樹脂材を使用すれば、樹脂材製フィン部材の熱伝導性が高まり、伝熱管の内外を流動する流体相互の熱交換性能を向上させる事ができる。また、樹脂材に熱伝導性の高い銅、アルミニウム、ステンレス鋼等の金属材製、カーボン材製又はガラス材製の粒子及び/又は繊維を含有したり、樹脂材の表面に前記金属材の粉末等を混合した塗料を塗布したり、金属材をめっき或いは蒸着等させても、熱交換性能の向上が可能となる。更には、黒色で黒体輻射効果のある樹脂材に前記金属材製、カーボン材製又はガラス材製の粒子や繊維、及び/又はカーボンナノファイバーを含有させれば、熱交換性能の更なる向上が可能となる。   In addition, when a resin material having a black body radiation effect is used in black, the heat conductivity of the resin material fin member is increased, and the heat exchange performance between fluids flowing inside and outside the heat transfer tube can be improved. The resin material may contain particles and / or fibers made of a metal material such as copper, aluminum, and stainless steel having high thermal conductivity, a carbon material, or a glass material, or a powder of the metal material may be formed on the surface of the resin material. The heat exchange performance can be improved by applying a coating material or the like or plating or depositing a metal material. Further, if the metal material, carbon material or glass material particles and fibers, and / or carbon nanofibers are contained in a resin material having a black body radiation effect in black, the heat exchange performance is further improved. Becomes possible.

以下、本発明の伝熱管を自動車のEGRガス冷却装置に使用した実施例を図面に於て詳細に説明する。図1は基板にピン状フィンを複数突設した円筒状の樹脂材製フィン部材を、金属管内に直列に複数配設した実施例1の伝熱管の斜視図で、図2は図1の樹脂材製フィン部材の円筒形への成形前のもので、一面にピン状フィンを複数突設した帯状の基板の斜視図である。また、図3は実施例2で、貫通孔から成る乱流化手段を設けた板状フィンを複数突設した帯状基板の斜視図である。図4は実施例3で、ピン状の乱流化手段を設けた板状フィンを、複数突設した帯状基板の斜視図である。図5は実施例4で、側面形状が波形の板状フィンを複数突設した帯状基板の斜視図である。   Hereinafter, an embodiment in which the heat transfer tube of the present invention is used for an EGR gas cooling device for a vehicle will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a heat transfer tube according to a first embodiment in which a plurality of cylindrical resin fin members having a plurality of pin-shaped fins protruded from a substrate are arranged in series in a metal tube. FIG. FIG. 4 is a perspective view of a band-shaped substrate in which a plurality of pin-shaped fins are provided on one surface, before a material fin member is formed into a cylindrical shape. FIG. 3 is a perspective view of a band-shaped substrate according to the second embodiment, in which a plurality of plate-shaped fins provided with turbulence generating means formed of through holes are provided. FIG. 4 is a perspective view of a strip-shaped substrate according to a third embodiment, in which a plurality of plate-shaped fins provided with pin-shaped turbulence generating means are protruded. FIG. 5 is a perspective view of a band-shaped substrate according to a fourth embodiment, in which a plurality of plate-shaped fins having a corrugated side shape are provided.

また、図6は実施例5で、板状フィンの両側面に突条を、円筒軸と交差方向に複数突出して乱流化手段を形成した樹脂材製フィン部材の斜視図である。図7は実施例6の樹脂材製フィン部材を内装した伝熱管の斜視図で、樹脂材製フィン部材は、円周方向に継ぎ目のない円筒形の基板の内周面に、円筒軸に平行な複数の突条を突出して乱流化手段とした板状フィンを設けている。図8は図7の平面図である。図9は実施例1の伝熱管を用いたEGRガス冷却装置の概略図である。また、図10は鋼管の外表面をPA樹脂でコートした配管、鋼管の外表面をPA樹脂とPP樹脂でコートした配管、鋼管のみで形成した配管の各々に於いて行った熱交換性能の比較実験の概念図で、図11はその比較実験結果をグラフ化したものである。   FIG. 6 is a perspective view of a fin member made of a resin material according to a fifth embodiment, in which a plurality of projections are protruded on both side surfaces of a plate-like fin in a direction intersecting a cylindrical axis to form a turbulent flow means. FIG. 7 is a perspective view of a heat transfer tube in which a resin material fin member of Example 6 is provided. The resin material fin member is parallel to the cylindrical axis on the inner peripheral surface of a cylindrical substrate having no circumferential joint. A plate-like fin is provided which protrudes a plurality of ridges and serves as a turbulent flow means. FIG. 8 is a plan view of FIG. FIG. 9 is a schematic diagram of an EGR gas cooling device using the heat transfer tube according to the first embodiment. FIG. 10 shows a comparison of the heat exchange performance of a pipe having an outer surface coated with a PA resin, a pipe having an outer surface coated with a PA resin and a PP resin, and a pipe formed of only a steel pipe. FIG. 11 is a conceptual diagram of the experiment, and FIG. 11 is a graph of the result of the comparative experiment.

まず、本発明をするにあたり、表面材質を樹脂材とした伝熱面の熱交換性能の比較実験を行った。この実験装置は、図10に示す如く、風洞部(31)内に直径8mm、長さ1900mmとした配管(32)を配置し、この配管(32)に、温度計(33)を設けた温水タンク(34)及びポンプ(35)、流量計(36)を接続し、前記配管(32)に0.9L/mの流量で温度約60℃の温水を流通させている。そして、前記風洞部(31)内にファン(37)にて冷却風を送風して、配管(32)を介して冷却風にて温水を冷却している。   First, in carrying out the present invention, a comparative experiment was conducted on the heat exchange performance of a heat transfer surface having a resin surface material. As shown in FIG. 10, in this experimental apparatus, a pipe (32) having a diameter of 8 mm and a length of 1900 mm was arranged in a wind tunnel (31), and a hot water provided with a thermometer (33) was provided in the pipe (32). A tank (34), a pump (35), and a flow meter (36) are connected, and hot water at a temperature of about 60 ° C. is flowed through the pipe (32) at a flow rate of 0.9 L / m. Cooling air is blown into the wind tunnel portion (31) by the fan (37), and the hot water is cooled by the cooling air through the pipe (32).

そして、冷却風と配管(32)内の温水との熱交換性能を、温水の入口温度と出口温度を計測して、その温度差を算出する事により測定する。その温度差及び風速との関係を下記表1及び図11のグラフに示した。実験には、肉厚0.7mmとする鋼管の外表面に13μmの亜鉛めっきとクロメート処理を施し、更に肉厚50μmのPA樹脂でコートした配管(32)(以下PAコート配管と言う)と、肉厚0.7mmとする鋼管の外表面に13μmの亜鉛めっきとクロメート処理を施し、更に肉厚50μmのPA樹脂及び肉厚1.0mmのPP樹脂でコートした配管(32)(以下PA+PPコート配管と言う)を使用した。また、比較実験として鋼管のみで形成した配管(32)の熱交換性能も測定した。この鋼管は、肉厚0.7mmとし、外表面には何等の表面処理も施していない。   Then, the heat exchange performance between the cooling air and the hot water in the pipe (32) is measured by measuring the inlet and outlet temperatures of the hot water and calculating the temperature difference. The relationship between the temperature difference and the wind speed is shown in Table 1 below and the graph of FIG. In the experiment, pipes (32) (hereinafter referred to as PA coated pipes) were prepared by subjecting the outer surface of a steel pipe having a wall thickness of 0.7 mm to zinc plating and chromate treatment of 13 μm and further coating with a PA resin having a wall thickness of 50 μm. A pipe (32) (13 mm) which is formed by applying 13 μm zinc plating and chromate treatment to the outer surface of a steel pipe having a thickness of 0.7 mm and further coating it with a PA resin having a thickness of 50 μm and a PP resin having a thickness of 1.0 mm. It was used. Further, as a comparative experiment, the heat exchange performance of a pipe (32) formed only of a steel pipe was also measured. This steel pipe had a wall thickness of 0.7 mm and had no outer surface subjected to any surface treatment.

尚、下記表1中で、風速(m/s)がPAコート配管、PA+PPコート配管、鋼管のみの配管で完全に一致していないのは、完全に一致する風速を得るのが技術的に困難である事による。そのため、近似した風速を生じさせ、これを計測して得たものが表1に示す風速である。   In Table 1 below, the reason why the wind speed (m / s) does not completely match between the PA-coated pipe, the PA + PP-coated pipe, and the pipe made of only the steel pipe is that it is technically difficult to obtain a completely matched wind velocity. Because it is. Therefore, an approximate wind speed is generated, and the wind speed shown in Table 1 is obtained by measuring the wind speed.

Figure 2004191034
Figure 2004191034

上述の実験により、従来の鋼管に比べて、PAコート配管及びPA+PPコート配管では、約6m/sの風速時に於いて熱交換性能が4〜15%程度しか劣化せず、優れた熱交換性能を示した。この実験結果より、樹脂材製の伝熱面の表面積を15%以上増加させれば、金属材製の伝熱面と同等若しくはそれ以上の熱交換性能を得られる事が判明した。この表面積を増加させる手段として、図1〜図8に示す実施例1〜6の如き樹脂材製フィン部材を内装した伝熱管を形成した。   According to the above-mentioned experiment, the heat exchange performance of the PA-coated pipe and the PA + PP-coated pipe is only deteriorated by about 4 to 15% at the wind speed of about 6 m / s. Indicated. From this experimental result, it was found that if the surface area of the heat transfer surface made of resin material was increased by 15% or more, heat exchange performance equal to or higher than that of the heat transfer surface made of metal material could be obtained. As a means for increasing the surface area, a heat transfer tube having a resin-made fin member as in Examples 1 to 6 shown in FIGS. 1 to 8 was formed.

尚、本発明を実施する際は、下記表2に示す如き樹脂材等を使用する事により、熱交換性能が優れるだけでなく、耐食性や耐熱性にも優れる伝熱管を得る事ができる。また、あまり耐熱性が必要でなければ、更に多くの種類の樹脂材を使用する事が可能となる。また、この伝熱管を使用する事で、EGRガス冷却装置、その他の多管式熱交換器の熱交換性能、耐食性、耐久性、表2の樹脂材にあっては耐熱性をも向上させる事ができる。   In carrying out the present invention, by using a resin material or the like as shown in Table 2 below, a heat transfer tube having not only excellent heat exchange performance but also excellent corrosion resistance and heat resistance can be obtained. Further, if heat resistance is not so required, more kinds of resin materials can be used. In addition, by using this heat transfer tube, the heat exchange performance, corrosion resistance and durability of the EGR gas cooling device and other multi-tube heat exchangers and the heat resistance of the resin materials shown in Table 2 can be improved. Can be.

Figure 2004191034
Figure 2004191034

上記樹脂材を用いた図1、図2、図9に示す実施例1を詳細に説明すると、(1)は伝熱管で、ステンレス鋼管その他の金属管(2)の内部に、該金属管(2)よりも短尺な円筒形の樹脂材製フィン部材(3)を複数直列に配設している。この伝熱管(1)の製造工程を説明すると、まずフィン部材(3)は、図2に示す如く、幅方向の長さaを、前記金属管(2)の内周面の円周長と略同一とし、縦方向の長さbを、金属管(2)の軸方向の長さよりも短尺に形成した長方形状の平滑な基板(4)を形成し、この基板(4)の一面に複数のピン状フィン(5)を一体に突設している。そして、樹脂材を用いて成形する事により、このようなピン状フィン(5)を無数に突設した基板(4)を容易に形成可能であるし、金属材では製作が困難な極細で長尺なピン状フィン(5)を密集させて成形する事も可能である。   The first embodiment shown in FIGS. 1, 2 and 9 using the above resin material will be described in detail. (1) is a heat transfer tube, and a metal tube (2) is provided inside a stainless steel tube or another metal tube (2). A plurality of cylindrical resin fin members (3) shorter than 2) are arranged in series. The manufacturing process of the heat transfer tube (1) will be described. First, as shown in FIG. 2, the fin member (3) has the length a in the width direction and the circumferential length of the inner circumferential surface of the metal tube (2). A rectangular smooth substrate (4) having substantially the same length and a length b in the longitudinal direction shorter than the length in the axial direction of the metal tube (2) is formed, and a plurality of substrates are formed on one surface of the substrate (4). The pin-shaped fins (5) are integrally protruded. By molding using a resin material, it is possible to easily form a substrate (4) having such a number of pin-shaped fins (5) protruding innumerably. It is also possible to compact the long pin-shaped fins (5).

次に、上述の如きピン状フィン(5)を設けた帯状の基板(4)を、ピン状フィン(5)を設けた一面を内側にして円筒形に丸め、該基板(4)の両端縁(6)を互いに当接させる事で、円筒形のフィン部材(3)を形成している。そして、この円筒形のフィン部材(3)を、図1に示す如く、金属管(2)内に直列に複数個、挿入配設する。この配設の際は、直列に隣接する円筒形のフィン部材(3)が互いに密着して隙間が形成されないようにする。その後、金属管(2)を伸管させる事で、金属管(2)と樹脂材製フィン部材(3)とを密着させて、伝熱管(1)を得るものである。また、金属管(2)と樹脂材製フィン部材(3)とは、金属管(2)を伸管させて密着するのではなく、接着剤にて金属管(2)の内周面と樹脂材製フィン部材(3)の外周面を接着する事により、互いを密着させても良い。   Next, the band-shaped substrate (4) provided with the pin-shaped fins (5) as described above is rounded into a cylindrical shape with one surface provided with the pin-shaped fins (5) inside, and both end edges of the substrate (4) are formed. (6) is brought into contact with each other to form a cylindrical fin member (3). Then, as shown in FIG. 1, a plurality of the cylindrical fin members (3) are inserted and arranged in series in the metal tube (2). In this arrangement, the cylindrical fin members (3) adjoining in series are in close contact with each other so that no gap is formed. Thereafter, the metal tube (2) is expanded to bring the metal tube (2) into close contact with the resin fin member (3) to obtain the heat transfer tube (1). Also, the metal pipe (2) and the resin material fin member (3) do not adhere to each other by extending the metal pipe (2), but are bonded to the inner peripheral surface of the metal pipe (2) with an adhesive. The outer peripheral surfaces of the material fin members (3) may be adhered to each other by bonding.

上述の如き樹脂材製フィン部材(3)を内装した伝熱管(1)では、極細のピン状フィン(5)を無数に形成する事で樹脂材製フィン部材(3)の内表面の伝熱面積を増大させる事ができる。そのため、金属材製のフィン部材を内装した従来の伝熱管と同等或いはそれ以上の熱伝導性を有する伝熱管(1)とする事ができるとともに、伝熱管(1)の軽量化及び低コスト化が可能となる。   In the heat transfer tube (1) in which the fin member (3) made of resin material as described above is installed, heat transfer on the inner surface of the fin member (3) made of resin material is achieved by forming an infinite number of fine pin-shaped fins (5). The area can be increased. Therefore, the heat transfer tube (1) having heat conductivity equal to or higher than that of the conventional heat transfer tube in which the metal fin member is installed can be obtained, and the heat transfer tube (1) can be reduced in weight and cost. Becomes possible.

そして、上述の如き伝熱管(1)を使用したEGRガス冷却装置(10)は、図9に示す如く、円筒状の胴管(11)の両端付近に、内部を密閉可能にチューブシート(12)を一対接続し、このチューブシート(12)で仕切られた気密空間内を、EGRガスと冷媒液との熱交換を行うための熱交換部(13)としている。そして、一対のチューブシート(12)間に、前記伝熱管(1)を複数本、チューブシート(12)を貫通して接続配置している。また、胴管(11)の両端には、EGRガスの流入口(14)と流出口(15)とを設けたボンネット(16)を各々接続している。   As shown in FIG. 9, the EGR gas cooling device (10) using the heat transfer tube (1) as described above is provided with a tube sheet (12) near both ends of a cylindrical body tube (11) so that the inside can be hermetically sealed. ) Are connected as a pair, and an airtight space partitioned by the tube sheet (12) serves as a heat exchange unit (13) for exchanging heat between the EGR gas and the refrigerant liquid. A plurality of the heat transfer tubes (1) are connected and arranged between the pair of tube sheets (12) through the tube sheet (12). A bonnet (16) provided with an inlet (14) and an outlet (15) for EGR gas is connected to both ends of the body tube (11).

また、胴管(11)には、冷媒液を熱交換部(13)に供給する導入路(17)と熱交換後の冷媒液を排出する導出路(18)を設け、熱交換部(13)内を冷媒液が流動可能としている。また、前記熱交換部(13)は、内部に複数の支持板(20)を接合配置し、この支持板(20)に設けた挿通孔(21)に伝熱管(1)を挿通する事により、バッフルプレートとして伝熱管(1)を安定的に支持するとともに、熱交換部(13)内を流動する冷媒液の流れを蛇行化し、伝熱管(1)の外表面に対する相対速度を速めている。   Further, the body pipe (11) is provided with an introduction path (17) for supplying the refrigerant liquid to the heat exchange section (13) and an outlet path (18) for discharging the refrigerant liquid after the heat exchange, and the heat exchange section (13). The refrigerant liquid is allowed to flow in the parentheses. Further, the heat exchange section (13) has a plurality of support plates (20) joined and arranged therein, and a heat transfer tube (1) is inserted through an insertion hole (21) provided in the support plate (20). In addition to stably supporting the heat transfer tube (1) as a baffle plate, the flow of the refrigerant liquid flowing in the heat exchange section (13) is meandering, and the relative speed to the outer surface of the heat transfer tube (1) is increased. .

上記のEGRガス冷却装置(10)では、伝熱管(1)の熱伝導性に優れた伝熱面を介して、EGRガスと冷媒液との熱交換が効率的に行われ、冷却効果を高める事ができる。また、この優れた冷却効果により、EGRガス冷却装置(10)の小型化が可能となるし、軽量で廉価な本発明の伝熱管(1)を用いる事により、EGRガス冷却装置(10)の軽量化と低コスト化も可能となる。また、この小型で軽量なEGRガス冷却装置(10)では、狭い場所への設置も可能で、レイアウトの自由度が増すものとなる。   In the above EGR gas cooling device (10), heat exchange between the EGR gas and the refrigerant liquid is efficiently performed through the heat transfer surface of the heat transfer tube (1) having excellent heat conductivity, and the cooling effect is enhanced. Can do things. In addition, this excellent cooling effect allows the size of the EGR gas cooling device (10) to be reduced, and the use of the light and inexpensive heat transfer tube (1) of the present invention allows the EGR gas cooling device (10) to be used. Weight reduction and cost reduction are also possible. In addition, the small and lightweight EGR gas cooling device (10) can be installed in a narrow place, thereby increasing the degree of freedom in layout.

また、EGRガスが流動する伝熱管(1)の内部に樹脂材製フィン部材(3)を内装しているので、EGRガス中の水蒸気や未燃焼ガス、硫酸水、炭化水素等の凝縮液に対する耐食性に優れるし、表2に示す如き樹脂材を使用する事で、高温のEGRガスに対する耐熱性にも優れ、EGRガス冷却装置(10)の耐久性を向上させる事ができる。また、内周面が樹脂材である事は、EGRガス中に含まれる煤が伝熱管(1)の付着・堆積を防止するものとなり、伝熱管(1)の熱伝導性の低下を抑制して、効率的な熱交換を持続させる事ができる。   In addition, since the resin material fin member (3) is provided inside the heat transfer tube (1) through which the EGR gas flows, the heat transfer tube (1) is capable of removing condensate such as water vapor, unburned gas, sulfuric acid, and hydrocarbons in the EGR gas. By using a resin material as shown in Table 2, it is excellent in heat resistance to high-temperature EGR gas, and the durability of the EGR gas cooling device (10) can be improved. In addition, the fact that the inner peripheral surface is made of a resin material prevents soot contained in the EGR gas from adhering and accumulating on the heat transfer tube (1), thereby suppressing a decrease in the thermal conductivity of the heat transfer tube (1). As a result, efficient heat exchange can be maintained.

また、上記実施例1の伝熱管(1)に内装したフィン部材(3)は、ピン状フィン(5)を突設しているが、他の異なる実施例2では、図3に示す如く、平板状の基板(4)の一面に、円筒軸と平行に板状フィン(7)を複数、一定間隔で基板(4)と一体に突設している。また、板状フィン(7)には、ランダムに貫通孔を開口する事により、乱流化手段(8)を設けている。   Further, the fin member (3) provided in the heat transfer tube (1) of the first embodiment has a pin-shaped fin (5) protruding therefrom. In another different second embodiment, as shown in FIG. A plurality of plate-like fins (7) are provided on one surface of the plate-like substrate (4) in parallel with the cylindrical axis and are integrally provided with the substrate (4) at regular intervals. The plate-like fin (7) is provided with a turbulent flow means (8) by randomly opening through holes.

また、図4に示す実施例3では、実施例2と同様に、基板(4)の一面に、一定間隔で複数の平板状の板状フィン(7)を一体に突設しているが、実施例3では、前記板状フィン(7)に、ピン状の乱流化手段(8)を突設している。この実施例2、3の如き乱流化手段(8)を設けた板状フィン(7)であっても、樹脂材を用いる事により容易な成形が可能となるし、樹脂材製フィン部材(3)の伝熱面積を増大させて、伝熱管(1)の熱交換性能を高める事ができる。   Further, in the third embodiment shown in FIG. 4, as in the second embodiment, a plurality of flat plate-like fins (7) are integrally protruded from one surface of the substrate (4) at regular intervals. In the third embodiment, a pin-shaped turbulent flow means (8) is protruded from the plate-like fin (7). Even in the case of the plate-like fin (7) provided with the turbulent flow means (8) as in the second and third embodiments, the use of a resin material enables easy molding, and the resin-made fin member ( By increasing the heat transfer area of 3), the heat exchange performance of the heat transfer tube (1) can be improved.

また、上記実施例2、3では、基板(4)に平板状の板状フィン(7)を突設しているが、他の異なる実施例4では、図5に示す如く、側面形状が波形の板状フィン(7)を突設している。このような波形の板状フィン(7)では、表面に形成される凹凸により伝熱面積を増大させる事ができるとともに、この凹凸が乱流化手段(8)として作用し、EGRガスの乱流化も高める事ができる。   In the second and third embodiments, the flat plate-like fins (7) are protruded from the substrate (4). However, in another different fourth embodiment, as shown in FIG. The plate-like fins (7) protrude. In the plate-like fin (7) having such a waveform, the heat transfer area can be increased by the unevenness formed on the surface, and the unevenness acts as the turbulent flow means (8), and the turbulent flow of the EGR gas is increased. Can be increased.

また、図6に示す実施例5では、平板状の基板(4)に板状フィン(7)を複数突設し、この板状フィン(7)の両側面に、円筒軸と交差方向に複数の突条を形成し、乱流化手段(8)としている。このような複雑な形状でも、樹脂材であれば容易な成形が可能となるとともに、伝熱面積の増大や流体の乱流化が可能となる。   In Embodiment 5 shown in FIG. 6, a plurality of plate-like fins (7) are protruded from a plate-like substrate (4), and a plurality of plate-like fins (7) are provided on both side surfaces in a direction intersecting the cylindrical axis. And a turbulent flow means (8). Even with such a complicated shape, if a resin material is used, easy molding can be performed, and a heat transfer area can be increased and a fluid can be made turbulent.

また、上記実施例1〜5では、平板状の基板(4)にピン状フィン(5)又は板状フィン(7)を突設成形した後、円筒形に丸めて樹脂材製フィン部材(3)を得ているが、図7、図8に示す実施例6では、基板(4)を予め円筒形に成形する事で、円周方向に継ぎ目のない円筒形のフィン部材(3)を得ている。また、このフィン部材(3)の成形時に、基板(4)の内周面に円筒軸と平行に複数の板状フィン(7)を一体に形成している。更に、この板状フィン(7)の両側面に、円筒形のフィン部材(3)の円筒軸と平行な突条を複数形成し、乱流化手段(8)としている。このように円筒形のフィン部材(3)の円筒軸方向と平行な突条により形成した乱流化手段(8)は、押出成形や、円筒形の金型の内部に中子を挿入配置し、金型に樹脂材を注入・固化後に、中子を軸方向に引き抜く事でも、簡単に形成可能である。   In the first to fifth embodiments, the pin-shaped fin (5) or the plate-shaped fin (7) is formed by projecting the plate-shaped substrate (4), and then rounded into a cylindrical shape to form the resin-made fin member (3). In Example 6 shown in FIGS. 7 and 8, the substrate (4) is formed into a cylindrical shape in advance to obtain a cylindrical fin member (3) having no seams in the circumferential direction. ing. In forming the fin member (3), a plurality of plate-like fins (7) are integrally formed on the inner peripheral surface of the substrate (4) in parallel with the cylindrical axis. Further, a plurality of ridges parallel to the cylindrical axis of the cylindrical fin member (3) are formed on both side surfaces of the plate-like fin (7) to serve as a turbulent flow means (8). The turbulence generating means (8) formed by the ridges parallel to the cylindrical axis direction of the cylindrical fin member (3) is formed by extrusion molding or by inserting a core into a cylindrical mold. Alternatively, the core can be easily formed by injecting the resin material into the mold and then solidifying the core in the axial direction.

また、上記各実施例では、基板(4)とピン状フィン(5)又は板状フィン(7)を、成形時に一体に形成しているが、他の異なる実施例として、基板(4)とピン状フィン(5)又は板状フィン(7)とを別個に形成し、樹脂材の溶着又は接着剤等による接着により、基板(4)とピン状フィン(5)又は板状フィン(7)とを一体化して樹脂材製フィン部材(3)を形成しても良い。尚、樹脂材製フィン部材(3)を形成する樹脂材には、熱伝導性の高い銅、アルミニウム、ステンレス鋼等の金属材の粉末、ガラス材の粉末や繊維、カーボン材の粉末や繊維等を混合したり、その表面に金属材の粉末等を混合した塗料を塗布したり、金属材をめっき或いは蒸着等させても良い。   Further, in each of the above embodiments, the substrate (4) and the pin-shaped fins (5) or the plate-shaped fins (7) are formed integrally at the time of molding. The pin-shaped fin (5) or the plate-shaped fin (7) is formed separately, and the substrate (4) and the pin-shaped fin (5) or the plate-shaped fin (7) are welded with a resin material or bonded by an adhesive or the like. May be integrated to form a resin material fin member (3). The resin material forming the fin member (3) made of a resin material includes powder of a metal material such as copper, aluminum, and stainless steel having a high thermal conductivity, powder and fiber of a glass material, powder and fiber of a carbon material, and the like. May be mixed, the surface may be coated with a paint mixed with a metal material powder or the like, or the metal material may be plated or vapor-deposited.

また、黒色で黒体輻射効果のある樹脂材を使用した場合でも、樹脂材製フィン部材(3)の伝熱面の熱伝導性が高まり、EGRガスへの冷却性能を向上させる事ができる。更には、黒色で黒体輻射効果のある樹脂材に前記金属材製、カーボン材製、ガラス材製の粒子や繊維、及び/又は後述のカーボンナノファイバーを含有させても良く、冷却効果の更なる向上が可能となる。   Further, even when a black resin material having a black body radiation effect is used, the heat conductivity of the heat transfer surface of the fin member (3) made of the resin material is increased, and the performance of cooling the EGR gas can be improved. Further, the resin material having a black body radiation effect in black may contain the above-mentioned metal material, carbon material, glass material particles and fibers, and / or carbon nanofibers described later, and further improve the cooling effect. A further improvement is possible.

また、樹脂材にカーボンナノファイバーを含有させる事により、樹脂材製フィン部材(3)の伝熱面の熱伝導性を更に向上させる事が可能となり、EGRガスへの冷却性能を効果的に向上させる事が可能となる。また、カーボンナノファイバーを樹脂材に含有させる場合は、5wt%より多く30wt%より少ない含有量で含有させる事で、最良の伝熱効果を得る事が可能となる。   In addition, by including carbon nanofibers in the resin material, it is possible to further improve the thermal conductivity of the heat transfer surface of the resin material fin member (3), thereby effectively improving the cooling performance to the EGR gas. It is possible to do. When carbon nanofibers are contained in a resin material, the best heat transfer effect can be obtained by containing carbon nanofibers in a content of more than 5 wt% and less than 30 wt%.

本発明の実施例1の伝熱管を示す斜視図。FIG. 1 is a perspective view showing a heat transfer tube according to a first embodiment of the present invention. 図1の伝熱管に内装したフィン部材の製造工程を示す斜視図。FIG. 2 is a perspective view showing a manufacturing process of a fin member housed in the heat transfer tube of FIG. 1. 実施例2の樹脂材製フィン部材の斜視図。FIG. 10 is a perspective view of a resin fin member according to the second embodiment. 実施例3の樹脂材製フィン部材の斜視図。FIG. 9 is a perspective view of a resin fin member according to a third embodiment. 実施例4の樹脂材製フィン部材の斜視図。FIG. 13 is a perspective view of a resin fin member according to a fourth embodiment. 実施例5の樹脂材製フィン部材の斜視図。FIG. 17 is a perspective view of a resin fin member according to a fifth embodiment. 実施例6の樹脂材製フィン部材を内装した伝熱管の斜視図。FIG. 17 is a perspective view of a heat transfer tube in which a resin fin member according to a sixth embodiment is provided. 図7の平面図。The top view of FIG. 伝熱管を使用したEGRガス冷却装置の概念図。The conceptual diagram of the EGR gas cooling device using the heat transfer tube. 熱交換性能実験の概念図。The conceptual diagram of a heat exchange performance experiment. 熱交換性能グラフ。Heat exchange performance graph.

符号の説明Explanation of reference numerals

1 伝熱管
2 金属管
3 フィン部材
4 基板
5 ピン状フィン(本発明のフィン)
6 両側縁
7 板状フィン(本発明のフィン)
8 乱流化手段
DESCRIPTION OF SYMBOLS 1 Heat transfer tube 2 Metal tube 3 Fin member 4 Substrate 5 Pin-shaped fin (fin of the present invention)
6 Side edges 7 Plate fin (fin of the present invention)
8 Turbulence measures

Claims (9)

基板の内周面にフィンを複数突設した円筒形の樹脂材製フィン部材を、一個又は複数個直列に金属管内に配設した事を特徴とする樹脂材製フィン部材を内装した伝熱管。 A heat transfer tube provided with a resin material fin member, wherein one or a plurality of cylindrical resin material fin members having a plurality of fins protruding from an inner peripheral surface of a substrate are disposed in series in a metal tube. 樹脂材製フィン部材は、円周方向に継ぎ目の無い円筒形の基板の内周面に、複数のフィンを一体に突設した事を特徴とする請求項1の樹脂材製フィン部材を内装した伝熱管。 The resin-made fin member according to claim 1, wherein a plurality of fins are integrally provided on an inner peripheral surface of a cylindrical substrate having no joint in the circumferential direction. Heat transfer tubes. 樹脂材製フィン部材は、帯状の基板の一面に複数のフィンを一体に突設し、このフィンを設けた一面を内側にして基板を円筒形に成形し、基板の両端縁を互いに当接させて円筒形の樹脂材製フィン部材とした事を特徴とする請求項1の樹脂材製フィン部材を内装した伝熱管。 The resin-made fin member is formed by integrally projecting a plurality of fins on one surface of a band-shaped substrate, forming the substrate into a cylindrical shape with the one surface on which the fins are provided inside, and bringing both ends of the substrate into contact with each other. 2. The heat transfer tube according to claim 1, wherein the heat transfer tube has a cylindrical fin member made of a resin material. フィンは、ピン状フィン及び/又は板状フィンである事を特徴とする請求項1、2又は3の樹脂材製フィン部材を内装した伝熱管。 The heat transfer tube according to claim 1, 2 or 3, wherein the fin is a pin-shaped fin and / or a plate-shaped fin. 板状フィンは、突起、貫通孔、凹凸、ピン、突条の何れか又は複数から成る乱流化手段を設けた事を特徴とする請求項4の樹脂材製フィン部材を内装した伝熱管。 5. The heat transfer tube according to claim 4, wherein the plate-like fin is provided with a turbulent flow means comprising any one or a plurality of protrusions, through holes, irregularities, pins, and ridges. ピン状フィン及び/又はピン状の乱流化手段は、断面形状を円形、楕円形、多角形、星形、又はギア形とした事を特徴とする請求項4又は5の樹脂材製フィン部材を内装した伝熱管。 6. The resin-made fin member according to claim 4, wherein the pin-shaped fins and / or the pin-shaped turbulence generating means have a cross-sectional shape of a circle, an ellipse, a polygon, a star, or a gear. Heat transfer tube with interior. 樹脂材製フィン部材は、この樹脂材製フィン部材を形成する樹脂材よりも熱伝導性の高い粒子及び/又は繊維を含有させた事を特徴とする請求項1、2、3、4、5又は6の樹脂材製フィン部材を内装した伝熱管。 The resin-made fin member contains particles and / or fibers having higher thermal conductivity than the resin material forming the resin-made fin member. Or a heat transfer tube containing the resin material fin member according to item 6. 樹脂材製フィン部材は、この樹脂材製フィン部材を形成する樹脂材にカーボンナノファイバーを含有させた事を特徴とする請求項1、2、3、4、5、6又は7の樹脂材製フィン部材を内装した伝熱管。 The resin-made fin member according to claim 1, 2, 3, 4, 5, 6, or 7, wherein a carbon nanofiber is contained in a resin material forming the resin-made fin member. Heat transfer tube with fin members inside. カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させた事を特徴とする請求項8の樹脂材製フィン部材を内装した伝熱管。 9. The heat transfer tube according to claim 8, wherein the carbon nanofiber is contained in a content of more than 5 wt% and less than 30 wt%.
JP2003333127A 2002-11-29 2003-09-25 Heat transfer pipe internally provided with fin member made of resin material Withdrawn JP2004191034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333127A JP2004191034A (en) 2002-11-29 2003-09-25 Heat transfer pipe internally provided with fin member made of resin material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002348861 2002-11-29
JP2003333127A JP2004191034A (en) 2002-11-29 2003-09-25 Heat transfer pipe internally provided with fin member made of resin material

Publications (2)

Publication Number Publication Date
JP2004191034A true JP2004191034A (en) 2004-07-08
JP2004191034A5 JP2004191034A5 (en) 2006-11-30

Family

ID=32774947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333127A Withdrawn JP2004191034A (en) 2002-11-29 2003-09-25 Heat transfer pipe internally provided with fin member made of resin material

Country Status (1)

Country Link
JP (1) JP2004191034A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852669A1 (en) * 2006-05-02 2007-11-07 Samsung Gwangju Electronics Co., Ltd. Heat exchanger for refrigerator and method for manufacturing a tube thereof
KR101194570B1 (en) 2010-06-15 2012-10-25 삼성중공업 주식회사 Turbulent pipe and heat exchanger having the same
KR101427045B1 (en) * 2013-04-30 2014-08-05 최성환 Heat exchanging fin having two of half shell connected with each other and Heat exchanging pipe having the same
JP2015028409A (en) * 2013-03-18 2015-02-12 松本 壽夫 Plate type heat exchanger and method of manufacturing the same
CN108562179A (en) * 2018-04-28 2018-09-21 中冶焦耐(大连)工程技术有限公司 A kind of spiral jet double-tube heat exchanger and its working method
WO2018212551A1 (en) * 2017-05-16 2018-11-22 엘지전자 주식회사 Flow disturbance device and air conditioner comprising same
JP2019219116A (en) * 2018-06-21 2019-12-26 株式会社宮村鐵工所 Steam heating device
CN111207618A (en) * 2020-01-15 2020-05-29 郑州轻工业大学 Boiling enhanced heat exchange tube with inserted bionic enhanced cone
CN108562179B (en) * 2018-04-28 2024-04-23 中冶焦耐(大连)工程技术有限公司 Spiral jet flow sleeve heat exchanger and working method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852669A1 (en) * 2006-05-02 2007-11-07 Samsung Gwangju Electronics Co., Ltd. Heat exchanger for refrigerator and method for manufacturing a tube thereof
KR101194570B1 (en) 2010-06-15 2012-10-25 삼성중공업 주식회사 Turbulent pipe and heat exchanger having the same
JP2015028409A (en) * 2013-03-18 2015-02-12 松本 壽夫 Plate type heat exchanger and method of manufacturing the same
KR101427045B1 (en) * 2013-04-30 2014-08-05 최성환 Heat exchanging fin having two of half shell connected with each other and Heat exchanging pipe having the same
WO2018212551A1 (en) * 2017-05-16 2018-11-22 엘지전자 주식회사 Flow disturbance device and air conditioner comprising same
US11365917B2 (en) 2017-05-16 2022-06-21 Lg Electronics Inc. Flow disturbance apparatus and air conditioner comprising the same
US11859883B2 (en) 2017-05-16 2024-01-02 Lg Electronics Inc. Flow disturbance apparatus and air conditioner comprising the same
CN108562179A (en) * 2018-04-28 2018-09-21 中冶焦耐(大连)工程技术有限公司 A kind of spiral jet double-tube heat exchanger and its working method
CN108562179B (en) * 2018-04-28 2024-04-23 中冶焦耐(大连)工程技术有限公司 Spiral jet flow sleeve heat exchanger and working method thereof
JP2019219116A (en) * 2018-06-21 2019-12-26 株式会社宮村鐵工所 Steam heating device
CN111207618A (en) * 2020-01-15 2020-05-29 郑州轻工业大学 Boiling enhanced heat exchange tube with inserted bionic enhanced cone

Similar Documents

Publication Publication Date Title
JP4707388B2 (en) Heat transfer tube for combustion exhaust gas containing soot and heat exchanger assembled with this heat transfer tube
JP2005201622A (en) Heat exchanger
JP2006105577A (en) Fin structure, heat-transfer tube having the fin structure housed therein, and heat exchanger having the heat-transfer tube assembled therein
US20150292812A1 (en) Heat exchanger
JPH11108578A (en) Egr gas cooler
US20080078533A1 (en) Corrosion resistant, alloy-coated charge air cooler
JP2009019580A (en) Egr cooler
JP2004191034A (en) Heat transfer pipe internally provided with fin member made of resin material
JP2002295987A (en) Heat transfer pipe and production for it and multitubular heat exchanger using heat transfer pipe and radiator contained oil cooler
JP2004239600A (en) Heat transfer pipe externally provided with resin fin member
CN107806376B (en) Water-cooled exhaust gas recirculation cooler
JP2004191035A (en) Heat transfer pipe internally provided with resin pipe
JP2004191036A (en) Heat transfer pipe internally provided with fin member made of resin material
JP4266741B2 (en) Heat transfer tube with fins
JP5227755B2 (en) EGR cooler
JP2004279021A (en) Heat transfer pipe with internally mounted resin fin member
JP2007064606A (en) Heat exchanger tube for egr cooler
JP2005030677A (en) Heat transfer tube armored with resin fin member
JP2006138538A (en) Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2004317060A (en) Heat transfer pipe with fin member internally mounted
JP2005351567A (en) Heat transfer tube internally provided with fin member and heat exchanger provided therewith
JP2004226056A (en) Resin water tube and radiator device using resin water tube
JP4208632B2 (en) Heat transfer tube with fins
JP4256217B2 (en) Heat transfer tube
JP2005077035A (en) Corrosion resisting heat transfer tube

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080515

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080603