JPH0650618A - Cryogenic freezer - Google Patents

Cryogenic freezer

Info

Publication number
JPH0650618A
JPH0650618A JP20517792A JP20517792A JPH0650618A JP H0650618 A JPH0650618 A JP H0650618A JP 20517792 A JP20517792 A JP 20517792A JP 20517792 A JP20517792 A JP 20517792A JP H0650618 A JPH0650618 A JP H0650618A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
cryogenic refrigerator
heat
turbulent flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20517792A
Other languages
Japanese (ja)
Other versions
JP2734893B2 (en
Inventor
Toshiyuki Kurihara
利行 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4205177A priority Critical patent/JP2734893B2/en
Publication of JPH0650618A publication Critical patent/JPH0650618A/en
Application granted granted Critical
Publication of JP2734893B2 publication Critical patent/JP2734893B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers

Abstract

PURPOSE:To increase the efficiency of heat transfer between a small heat transfer pipe formed of a capillary tube and high-pressure helium gas flowing through the heat transfer pipe, in a J-T heat exchanger of a very low temperature freezer comprising a J-T freezer. CONSTITUTION:A turbulence promoting body 31 to promote turbulence of helium gas is arranged at the interior of a heat transfer pipe 24 in a state to be adhered on the inner surface of the heat transfer pipe 24. The increase of incurring of a pressure loss on a whole is suppressed in a way that the turbulence promoting body 31 is arranged in a manner to be limited to a part on the low temperature side where incurring of a pressure loss is decreased as seen from the whole of heat exchangers 13-15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧縮されたヘリウム
等の冷媒ガスの断熱膨張により極低温レベルの寒冷を発
生させる極低温冷凍機に関し、特に、圧縮機からの高圧
冷媒ガスを圧縮機に戻る低圧低温の冷媒ガスと熱交換さ
せて冷却するようにした熱交換器の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cryogenic refrigerator that produces cryogenic levels of refrigeration by adiabatic expansion of compressed refrigerant gas such as helium, and more particularly to high pressure refrigerant gas from the compressor. The present invention relates to improvement of a heat exchanger that is cooled by exchanging heat with a low-pressure low-temperature refrigerant gas.

【0002】[0002]

【従来の技術】従来より、例えば4K程度の極低温レベ
ルで作動させる低温作動機器を同温度レベルまで冷却す
るための極低温冷凍機として、例えば米国特許第422
3540号等に記載されているように予冷冷凍機とJ−
T冷凍機とを組み合わせた冷凍機が知られている。
2. Description of the Related Art Conventionally, for example, US Pat. No. 422 has been used as a cryogenic refrigerator for cooling a low temperature operating device operated at a cryogenic level of about 4K to the same temperature level.
As described in No. 3540, a pre-cooling refrigerator and a J-
A refrigerator combined with a T refrigerator is known.

【0003】上記予冷冷凍機はGMサイクル(ギフォー
ド・マクマホンサイクル)や改良ソルベーサイクル等の
冷凍機からなり、圧縮機で圧縮されたヘリウムガス(冷
媒ガス)を膨張機で断熱膨張させてそのガスの温度降下
によりヒートステーションに極低温レベルの寒冷を発生
させる。
The above-mentioned pre-cooling refrigerator comprises a refrigerator such as a GM cycle (Gifford-McMahon cycle) or an improved Solvay cycle. Helium gas (refrigerant gas) compressed by a compressor is adiabatically expanded by an expander, and the gas Cryogenic cold is generated in the heat station by the temperature drop.

【0004】一方、J−T冷凍機は、圧縮機から供給さ
れたヘリウムガスを上記予冷冷凍機における膨張機のヒ
ートステーションとの間で熱交換して予冷する予冷器
と、ヘリウムガスをジュールトムソン膨張させるJ−T
弁とを閉回路に接続してなるJ−T回路を備えてなるも
ので、このJ−T回路において、圧縮機からのヘリウム
ガスを予冷器で予冷するとともに、該予冷されたヘリウ
ムガスをJ−T弁でジュールトムソン膨張させて4Kレ
ベルの寒冷を発生させるようになされている。
On the other hand, the JT refrigerator has a precooler for precooling by exchanging heat between the helium gas supplied from the compressor and the heat station of the expander in the precooling refrigerator, and the helium gas by Joule Thomson. Inflating JT
A valve is connected to a closed circuit to provide a JT circuit. In this JT circuit, the helium gas from the compressor is precooled by a precooler, and the precooled helium gas is cooled by the JT circuit. -The T-valve is used to expand Joule Thomson to generate 4K level cold.

【0005】ところで、上記J−T冷凍機はその回路に
J−T熱交換器と呼ばれる複数段の熱交換器を備えてお
り、この各熱交換器において、1次側及び2次側をそれ
ぞれ通過するヘリウムガス間で互いに熱交換させる。す
なわち、例えば同心状に接合した内外の円筒状シェル間
に伝熱管(高圧管)を螺旋状に配置し、伝熱管内部を、
圧縮機から膨張機に供給される高圧冷媒ガスを流す高圧
ガス流路(1次側)に形成する一方、伝熱管の周囲でシ
ェル間の空間を、膨張機から圧縮機に戻る低圧ガスを流
す低圧ガス流路(2次側)とし、圧縮機から膨張機に向
かって流れる高圧ガス流路内のガスを、膨張機から圧縮
機に戻る低圧ガス流路内の低温ガスとの間で熱交換させ
て冷却するようにしている。
By the way, the above J-T refrigerator is equipped with a plurality of stages of heat exchangers called J-T heat exchangers in its circuit. In each heat exchanger, the primary side and the secondary side are respectively provided. Heat is exchanged between the passing helium gases. That is, for example, a heat transfer tube (high-pressure tube) is spirally arranged between inner and outer cylindrical shells that are joined concentrically, and the inside of the heat transfer tube is
While forming in the high-pressure gas flow path (primary side) through which the high-pressure refrigerant gas supplied from the compressor to the expander flows, low-pressure gas returning from the expander to the compressor flows through the space between the shells around the heat transfer tube. The low-pressure gas channel (secondary side) is used, and the gas in the high-pressure gas channel that flows from the compressor to the expander exchanges heat with the low-temperature gas in the low-pressure gas channel that returns from the expander to the compressor. I am trying to cool it.

【0006】[0006]

【発明が解決しようとする課題】上記J−T熱交換器の
伝熱管は銅製のものが一般に使用されているが、熱交換
器の熱交換性能をさらに向上させるには、その伝熱管の
内部に伝熱促進のための加工を施すことが必要である。
The heat transfer tube of the JT heat exchanger is generally made of copper. To further improve the heat exchange performance of the heat exchanger, the inside of the heat transfer tube is to be improved. It is necessary to perform processing to accelerate heat transfer.

【0007】しかし、上記伝熱管は、通常、例えば外径
が3mmで内径が2mm程度の極めて細いキャピラリチュー
ブであり、内径が極めて小さいので、その内部を加工す
ることは実際には困難である。
However, the heat transfer tube is usually a very thin capillary tube having an outer diameter of 3 mm and an inner diameter of about 2 mm, and the inner diameter is extremely small, so that it is actually difficult to process the inside thereof.

【0008】本発明は斯かる点に鑑みてなされたもの
で、その目的とするところは、伝熱管内部に所定の構造
体を挿入することで、細いキャピラリチューブであって
も、その内部の冷媒ガスとの熱伝達効率を上昇させ得る
ようにすることにある。
The present invention has been made in view of the above problems, and an object of the present invention is to insert a predetermined structure into the heat transfer tube so that even if the capillary tube is a thin capillary tube, the refrigerant inside the tube is reduced. The purpose is to increase the efficiency of heat transfer with gas.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成すべ
く、請求項1の発明では、伝熱管内部に冷媒ガスの乱流
を促進する乱流促進体を配置することとした。
In order to achieve the above object, in the invention of claim 1, a turbulent flow promoting body for promoting the turbulent flow of the refrigerant gas is arranged inside the heat transfer tube.

【0010】すなわち、この発明では、図1〜図5に示
すように、冷媒ガスを圧縮する圧縮機と、この圧縮機か
ら吐出された高圧冷媒ガスを膨張させて極低温レベルの
寒冷を発生させる膨張手段(18)とを備え、さらに、
伝熱管(24)内部に、上記圧縮機から膨張手段(1
8)に供給される高圧冷媒ガスを流す高圧ガス流路(2
5)が形成される一方、伝熱管(24)の周囲に、膨張
手段(18)から圧縮機に戻る低圧ガスを流す低圧ガス
流路(26)が形成されてなり、高圧ガス流路(25)
内のガスを低圧ガス流路(26)内の低温ガスとの間で
熱交換させて冷却する熱交換器(13)〜(15)を備
えた極低温冷凍機が前提である。
That is, according to the present invention, as shown in FIGS. 1 to 5, a compressor for compressing a refrigerant gas and a high-pressure refrigerant gas discharged from the compressor are expanded to generate cryogenic cold. An expansion means (18), and
Inside the heat transfer tube (24), the expansion means (1
High pressure gas flow path (2) through which high pressure refrigerant gas supplied to
5) is formed, a low pressure gas flow path (26) for flowing low pressure gas returning from the expansion means (18) to the compressor is formed around the heat transfer tube (24), and the high pressure gas flow path (25) is formed. )
It is premised on a cryogenic refrigerator provided with heat exchangers (13) to (15) for exchanging heat with the low-temperature gas in the low-pressure gas flow path (26) to cool the gas therein.

【0011】そして、上記伝熱管(24)の内部に、伝
熱管(24)内面に密着しかつ高圧ガス流路(25)に
おける冷媒ガスの乱流を促進する乱流促進体(31)を
設ける。
Inside the heat transfer tube (24), there is provided a turbulent flow promoting body (31) which is in close contact with the inner surface of the heat transfer tube (24) and promotes the turbulent flow of the refrigerant gas in the high pressure gas passage (25). .

【0012】請求項2〜11の発明では、上記熱交換器
(13)〜(15)における乱流促進体(31)の具体
的構成を特定する。すなわち、請求項2の発明では、図
4(a)に示すように、乱流促進体(31)は、伝熱管
(24)内に伝熱管長さ方向に延びる少なくとも1対の
断面円形状の細管(32),(32),…を各対の細管
(32),同士が伝熱管(24)の1つの直径方向に略
平行に並ぶように圧入状態で嵌挿してなるものとする。
また、請求項3の発明では、図1に示すように、同様の
断面円形状の細管(32),(32),…を少なくとも
2対とし、この伝熱管長さ方向に隣り合う対の細管(3
2),(32)同士の並列方向が互いに伝熱管周方向に
ずれるように配置する。
In the inventions of claims 2 to 11, the specific structure of the turbulent flow promoting body (31) in the heat exchangers (13) to (15) is specified. That is, in the invention of claim 2, as shown in FIG. 4 (a), the turbulence promoting body (31) has at least one pair of circular cross-sections extending in the heat transfer tube length direction in the heat transfer tube (24). The thin tubes (32), (32), ... Are inserted in a press-fit state such that each pair of thin tubes (32) are aligned substantially parallel to one diametrical direction of the heat transfer tube (24).
Further, in the invention of claim 3, as shown in FIG. 1, at least two pairs of similar thin tubes (32), (32), ... having a circular cross section are provided, and a pair of thin tubes adjacent to each other in the length direction of the heat transfer tube. (3
2) and (32) are arranged so that the parallel directions of them are displaced from each other in the circumferential direction of the heat transfer tube.

【0013】請求項4の発明では、図4(b)に示す如
く、乱流促進体(31)は、伝熱管(24)内に伝熱管
長さ方向に延びる少なくとも1対の断面半割円形状の細
管(32),(32),…を各対の細管(32),(3
2)同士が半割面で接触して伝熱管(24)の1つの直
径方向に略平行に並ぶように圧入状態で嵌挿してなるも
のとする。
According to the fourth aspect of the present invention, as shown in FIG. 4 (b), the turbulent flow promoting body (31) has at least one pair of sectional half circles extending in the heat transfer tube length direction within the heat transfer tube (24). Shaped thin tubes (32), (32), ... Are each pair of thin tubes (32), (3
2) It is assumed that the heat transfer tubes (24) are fitted into each other in a press-fit state such that they are in contact with each other on a half-divided surface and arranged substantially parallel to one diametrical direction of the heat transfer tube (24).

【0014】請求項5の発明では、図4(c)に示すよ
うに、乱流促進体(31)は、伝熱管(24)内に伝熱
管長さ方向に延びる少なくとも1つの断面3角形状の細
管(32)をその3つの角部(32a),(32a),
…が伝熱管(24)内面に接触するように圧入状態で嵌
挿してなるものとする。請求項6の発明では、図4
(d)に示すように、上記断面3角形状の細管(32)
を複数とし、この伝熱管長さ方向に隣り合う細管(3
2),(32)同士の各角部(32a),(32a)の
位置が互いに伝熱管周方向にずれるように配置する。
In the fifth aspect of the invention, as shown in FIG. 4 (c), the turbulent flow promoting body (31) has at least one triangular cross section extending in the heat transfer tube length direction in the heat transfer tube (24). The thin tube (32) of the three corners (32a), (32a),
... are inserted in a press-fitted state so that they come into contact with the inner surface of the heat transfer tube (24). In the invention of claim 6, in FIG.
As shown in (d), the thin tube (32) having the triangular cross section.
And a plurality of thin tubes (3
2) The corner portions (32a) and (32a) of the (32) are arranged so that the positions thereof are displaced from each other in the circumferential direction of the heat transfer tube.

【0015】請求項7の発明では、図4(e)に示す如
く、乱流促進体(31)は、伝熱管(24)内に伝熱管
長さ方向に延びる少なくとも1つの断面長円形状の細管
(32)をその長軸方向両端部(32b),(32b)
が伝熱管(24)内面に接触するように圧入状態で嵌挿
してなるものとする。また、請求項8の発明では、図4
(f)に示すように、上記断面長円形状の細管(32)
を複数とし、この伝熱管長さ方向に隣り合う細管(3
2),(32)同士の長軸方向が互いに伝熱管周方向に
ずれるように配置する。
In the invention of claim 7, as shown in FIG. 4 (e), the turbulence promoting body (31) has at least one elliptical cross section extending in the heat transfer tube length direction in the heat transfer tube (24). The thin tube (32) is provided with its longitudinal ends (32b) and (32b).
Are inserted in a press-fitted state so as to contact the inner surface of the heat transfer tube (24). Further, in the invention of claim 8, in FIG.
As shown in (f), the thin tube (32) having the oval cross section.
And a plurality of thin tubes (3
2) and (32) are arranged such that the major axis directions of them are displaced from each other in the heat transfer tube circumferential direction.

【0016】請求項9の発明では、図4(g)〜(i)
に示すように、乱流促進体(31)は、伝熱管(24)
内に、伝熱管長さ方向に延びかつ断面形状が伝熱管(2
4)の中心位置から半径方向に放射状に延びる形状であ
る少なくとも1つの板材(35)を、該板材(35)の
外端部が伝熱管(24)内面に接触するように圧入状態
で嵌挿してなるものとする。
According to the invention of claim 9, FIGS. 4 (g) to 4 (i) are used.
As shown in, the turbulence promoter (31) is connected to the heat transfer tube (24).
Inside the heat transfer tube (2
4) At least one plate member (35) having a shape radially extending from the central position of the plate member (35) is press-fitted so that the outer end of the plate member (35) contacts the inner surface of the heat transfer tube (24). Shall be.

【0017】請求項10の発明では、図5(a)に示す
ように、乱流促進体(31)を、伝熱管(24)の内面
に突設されたフィン(33)で構成する。また、請求項
11の発明では、図5(b)に示す如く、乱流促進体
(31)を、伝熱管(24)に該伝熱管(24)内面に
密着するように充填された螺旋状ワイヤ(34)とす
る。
In the tenth aspect of the invention, as shown in FIG. 5 (a), the turbulent flow promoting body (31) is composed of fins (33) projecting from the inner surface of the heat transfer tube (24). Further, in the invention of claim 11, as shown in FIG. 5 (b), a turbulent flow promoting body (31) is spirally filled in the heat transfer tube (24) so as to be in close contact with the inner surface of the heat transfer tube (24). The wire (34).

【0018】請求項12の発明では、以上の各構成を持
つ乱流促進体(31)を熱交換器(13)〜(15)全
体における伝熱管(24)の低温側部分に配置する。
According to the twelfth aspect of the present invention, the turbulent flow promoting body (31) having each of the above configurations is arranged at the low temperature side portion of the heat transfer tube (24) in the entire heat exchangers (13) to (15).

【0019】[0019]

【作用】上記の構成により、請求項1の発明では、熱交
換器(13)〜(15)における伝熱管(24)内部に
冷媒ガスの乱流促進体(31)が設けられているので、
その乱流促進体(31)により高圧ガス流路(25)内
の高圧ガスの流れの乱れを促進することができる。しか
も、乱流促進体(31)の断面積分だけ高圧ガス流路
(25)の断面積が減少し、高圧ガスの流速を上昇でき
るとともに、乱流促進体(31)の伝熱管(24)内面
への密着により、その乱流促進体(31)自体でも伝熱
して全体の伝熱面積を増大させることができる。これら
により、伝熱管(24)が小径のキャピラリチューブで
構成されていても、その内部の高圧冷媒ガスとの熱伝達
効率を上昇させることができ、熱交換器(13)〜(1
5)の熱交換性能の向上を図ることができる。
With the above structure, in the invention of claim 1, the turbulent flow promoting body (31) for the refrigerant gas is provided inside the heat transfer tubes (24) in the heat exchangers (13) to (15).
The turbulence promoting body (31) can promote the turbulence of the flow of the high-pressure gas in the high-pressure gas channel (25). Moreover, the cross-sectional area of the high-pressure gas channel (25) is reduced by the cross-sectional integration of the turbulence promoter (31), the flow velocity of the high-pressure gas can be increased, and the inner surface of the heat transfer tube (24) of the turbulence promoter (31) can be increased. Due to the close contact with the turbulent flow promoting body (31) itself, heat can be transferred to increase the entire heat transfer area. With these, even if the heat transfer tube (24) is composed of a small-diameter capillary tube, the heat transfer efficiency with the high-pressure refrigerant gas therein can be increased, and the heat exchangers (13) to (1).
The heat exchange performance of 5) can be improved.

【0020】請求項2〜11の発明では、上記伝熱管
(24)が小径のキャピラリチューブである場合に好適
な乱流促進体(31)が容易に得られる。特に、請求項
3、6又は8の発明ではそれぞれ各隣り合う対の細管
(32),(32)同士の並列方向、隣り合う細管(3
2),(32)同士の各角部位置、又は隣り合う細管
(32),(32)同士の長軸方向が互いに伝熱管(2
4)の周方向にずれるように配置されているので、この
ずれ部分でガスの境界層が更新され、熱伝達の促進をさ
らに向上させることができる。
According to the inventions of claims 2 to 11, the turbulent flow promoting body (31) suitable for the case where the heat transfer tube (24) is a capillary tube having a small diameter can be easily obtained. In particular, in the invention of claim 3, 6 or 8, adjacent thin tubes (3) are arranged in the parallel direction of adjacent pairs of thin tubes (32), (32).
2), each corner position of (32), or the long axis direction of the adjacent thin tubes (32), (32) are mutually heat transfer tubes (2
Since they are arranged so as to be displaced in the circumferential direction of 4), the boundary layer of the gas is renewed at this displaced portion, and the promotion of heat transfer can be further improved.

【0021】そして、このような伝熱管(24)内への
乱流促進体(31)の配置により、反面では圧力損失の
増大が懸念されるが、この圧力損失は温度に比例して変
化し、温度が低くなるほど低下する。請求項12の発明
では、乱流促進体(31)が熱交換器(13)〜(1
5)全体からみて圧力損失の少ない低温側部分に限定し
て配置されているので、全体としての圧力損失の増大の
影響は少なく、バランスのよい熱交換器(13)〜(1
5)が得られる。
On the other hand, due to the arrangement of the turbulence promoting body (31) in the heat transfer tube (24), there is a concern that the pressure loss may increase. However, this pressure loss changes in proportion to the temperature. , The lower the temperature, the lower. In the invention of claim 12, the turbulent flow promoting body (31) includes the heat exchangers (13) to (1).
5) The heat exchangers (13) to (1) are well-balanced because they are arranged only in the low temperature side portion where the pressure loss is small as a whole, and the influence of the increase in the pressure loss as a whole is small.
5) is obtained.

【0022】[0022]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。この実施例では、図3に示すように、冷凍機
(R)は予冷冷凍機(1)とJ−T冷凍機(11)とを
組み合わせた冷凍機で構成されている。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, as shown in FIG. 3, the refrigerator (R) is composed of a refrigerator in which a pre-cooling refrigerator (1) and a JT refrigerator (11) are combined.

【0023】上記予冷冷凍機(1)は、G−M(ギフォ
ード・マクマホン)サイクルの冷凍機で構成されてい
て、J−T冷凍機(11)におけるヘリウムガス(冷媒
ガス)を予冷するためにヘリウムガスを圧縮膨張させ
る。この冷凍機(1)は図外の予冷用圧縮機と、クライ
オスタット(C)に取り付けられた膨張機(2)とを閉
回路に接続してなる。上記膨張機(2)は、クライオス
タット(C)の外部に配置される密閉円筒状のケース
(3)と、該ケース(3)の下部に連設された2段構造
のシリンダ(4)とを有する。上記ケース(3)には上
記予冷用圧縮機の吐出側に接続される高圧ガス入口
(5)と、同吸込側に接続される低圧ガス出口(6)と
が開口されている。また、シリンダ(4)は上記クライ
オスタット(C)の上壁を貫通してその内部に延びてお
り、その大径部(4a)の下端部は所定温度レベルに保
持される第1ヒートステーション(7)に、また小径部
(4b)の下端部は上記第1ヒートステーション(7)
よりも低い温度レベルに保持される第2ヒートステーシ
ョン(8)にそれぞれ形成されている。
The precooling refrigerator (1) is composed of a GM (Gifford-McMahon) cycle refrigerator, and is used to precool the helium gas (refrigerant gas) in the JT refrigerator (11). Helium gas is compressed and expanded. This refrigerator (1) comprises a pre-cooling compressor (not shown) and an expander (2) attached to a cryostat (C) connected in a closed circuit. The expander (2) includes a closed cylindrical case (3) arranged outside the cryostat (C), and a two-stage structure cylinder (4) connected to the lower part of the case (3). Have. The case (3) has a high pressure gas inlet (5) connected to the discharge side of the precooling compressor and a low pressure gas outlet (6) connected to the suction side thereof. Further, the cylinder (4) penetrates the upper wall of the cryostat (C) and extends inside thereof, and the lower end of the large diameter portion (4a) thereof is maintained at a predetermined temperature level in the first heat station (7). ), And the lower end of the small diameter portion (4b) is the first heat station (7).
The second heat station (8) is maintained at a lower temperature level.

【0024】すなわち、ここでは図示しないが、シリン
ダ(4)内には、シリンダ(4)内で上記各ヒートステ
ーション(7),(8)に対応する位置に膨張空間を区
画形成するディスプレーサ(置換器)が往復動可能に嵌
挿されている。一方、上記ケース(3)内には、回転す
る毎に開閉するロータリバルブと、該ロータリバルブを
駆動するバルブモータとが収容されている。ロータリバ
ルブは、上記高圧ガス入口(5)から流入したヘリウム
ガスを上記シリンダ(4)内の膨張空間に供給し、又は
膨張空間内で膨張したヘリウムガスを低圧ガス出口
(6)から排出するように切り換わる。そして、この膨
張機(2)におけるロータリバルブの開弁により高圧ヘ
リウムガスをシリンダ(4)内の膨張空間でサイモン膨
張させて、その膨張に伴う温度降下により極低温レベル
の寒冷を発生させ、その寒冷をシリンダ(4)における
第1及び第2ヒートステーション(7),(8)にて保
持する。つまり、予冷冷凍機(1)では、圧縮機から吐
出された高圧のヘリウムガスを膨張機(2)に供給し、
その膨張機(2)での断熱膨張によりヒートステーショ
ン(7),(8)の温度を低下させて、J−T冷凍機
(11)における後述の予冷器(16),(17)を予
冷するとともに、膨張した低圧ヘリウムガスを圧縮機に
戻して再圧縮するように構成されている。尚、上記シリ
ンダ(4)の第1ヒートステーション(7)にはクライ
オスタット(C)内に配置した略密閉円筒状の輻射シー
ルド(S)が伝熱可能に支持されている。
That is, although not shown here, in the cylinder (4), a displacer (replacement) for partitioning and forming an expansion space at a position corresponding to each of the heat stations (7) and (8) in the cylinder (4) is formed. Container) is reciprocatingly inserted. On the other hand, in the case (3), a rotary valve that opens and closes each time it rotates and a valve motor that drives the rotary valve are housed. The rotary valve supplies the helium gas flowing from the high pressure gas inlet (5) to the expansion space in the cylinder (4) or discharges the helium gas expanded in the expansion space from the low pressure gas outlet (6). Switch to. Then, by opening the rotary valve in the expander (2), the high-pressure helium gas is expanded in the expansion space in the cylinder (4) by Simon, and the temperature drop due to the expansion causes a cryogenic level of coldness. Cold is held at the first and second heat stations (7), (8) in the cylinder (4). That is, in the pre-cooling refrigerator (1), high-pressure helium gas discharged from the compressor is supplied to the expander (2),
The temperature of the heat stations (7) and (8) is lowered by the adiabatic expansion in the expander (2) to precool later-described precoolers (16) and (17) in the JT refrigerator (11). At the same time, the expanded low pressure helium gas is returned to the compressor and recompressed. The first heat station (7) of the cylinder (4) supports a radiation shield (S) having a substantially closed cylindrical shape arranged in the cryostat (C) so that heat can be transferred.

【0025】一方、上記J−T冷凍機(11)は、約4
Kレベルの寒冷を発生させるためにヘリウムガスを圧縮
してジュールトムソン膨張させる冷凍機であって、ヘリ
ウムガスを圧縮するJ−T圧縮機(図示せず)と、その
圧縮されたヘリウムガスをジュールトムソン膨張させる
膨張機(12)とを備えている。この膨張機(12)は
クライオスタット(C)における輻射シールド(S)内
に位置する第1〜第3のJ−T熱交換器(13)〜(1
5)を備えている。この各J−T熱交換器(13)〜
(15)は1次側(後述の伝熱管(24)内の高圧ガス
流路(25))及び2次側(同様の低圧ガス流路(2
6))をそれぞれ通過するヘリウムガス間で互いに熱交
換させるもので、第1J−T熱交換器(13)の1次側
はJ−T圧縮機の吐出側に接続されている。また、第1
及び第2のJ−T熱交換器(13),(14)の各1次
側同士はコンタミネーション除去用の吸着器(20
a)、及び上記予冷冷凍機(1)における膨張機(2)
の第1ヒートステーション(7)外周に配置した第1予
冷器(16)を介して接続されている。同様に、第2及
び第3J−T熱交換器(14),(15)の各1次側同
士は吸着器(20b)、及び膨張機(2)の第2ヒート
ステーション(8)外周に配置した第2予冷器(17)
を介して接続されている。さらに、上記第3J−T熱交
換器(15)の1次側は吸着器(20c)、及び高圧の
ヘリウムガスをジュールトムソン膨張させるJ−T弁
(18)を介して冷却器(19)に接続され、例えばこ
の冷却器(19)に冷却対象が銅製メッシュ線等の伝熱
部材(いずれも図示せず)を介して伝熱可能に接続され
ている。上記J−T弁(18)はクライオスタット
(C)外から操作ロッド(18a)によって開度が調整
される。上記冷却器(19)は上記第3及び第2J−T
熱交換器(15),(14)の各2次側を経て第1J−
T熱交換器(13)の2次側に接続され、該第1J−T
熱交換器(13)の2次側は上記J−T圧縮機の吸込側
に接続されている。
On the other hand, the JT refrigerator (11) has about 4
A refrigerator for compressing helium gas to expand Joule-Thomson to generate K-level cold, and a JT compressor (not shown) for compressing helium gas, and the compressed helium gas are used as joules. And an expander (12) for expanding the Thomson. The expander (12) is located in the radiation shield (S) of the cryostat (C) and is the first to third JT heat exchangers (13) to (1).
5) is provided. Each J-T heat exchanger (13)
(15) is a primary side (high pressure gas flow path (25) in a heat transfer tube (24) described later) and a secondary side (similar low pressure gas flow path (2)
6)) are mutually heat-exchanged between the helium gases passing through, and the primary side of the first JT heat exchanger (13) is connected to the discharge side of the JT compressor. Also, the first
And the primary sides of the second JT heat exchangers (13) and (14) are adsorbers (20) for removing contamination.
a) and the expander (2) in the pre-cooling refrigerator (1)
Are connected via a first precooler (16) arranged on the outer periphery of the first heat station (7). Similarly, the primary sides of the second and third J-T heat exchangers (14), (15) are arranged on the adsorber (20b) and the outer periphery of the second heat station (8) of the expander (2). Second precooler (17)
Connected through. Further, the primary side of the third JT heat exchanger (15) is connected to an adsorber (20c) and a cooler (19) via a JT valve (18) for Joule-Thomson expansion of high-pressure helium gas. For example, the object to be cooled is connected to the cooler (19) via a heat transfer member (not shown) such as a copper mesh wire so that heat can be transferred. The opening of the JT valve (18) is adjusted from outside the cryostat (C) by the operation rod (18a). The cooler (19) includes the third and second J-Ts.
After passing through the secondary sides of the heat exchangers (15) and (14), the first J-
The first J-T is connected to the secondary side of the T heat exchanger (13).
The secondary side of the heat exchanger (13) is connected to the suction side of the JT compressor.

【0026】よって、J−T冷凍機(11)では、J−
T圧縮機によりヘリウムガスを高圧に圧縮して膨張機
(12)に供給し、それを、膨張機(12)の第1〜第
3のJ−T熱交換器(13)〜(15)において、圧縮
機側に戻る低温低圧のヘリウムガスと熱交換させるとと
もに、第1及び第2予冷器(16),(17)でそれぞ
れ膨張機(2)の第1及び第2ヒートステーション
(7),(8)で冷却した後、J−T弁(18)でジュ
ールトムソン膨張させて冷却器(19)で1気圧、約4
Kの気液混合状態のヘリウムとなし、このヘリウムの蒸
発潜熱により冷却器(19)を極低温レベル(約4K)
に冷却する。しかる後、上記膨張によって低圧となった
ヘリウムガスを第1〜第3J−T熱交換器(13)〜
(15)の各2次側を通してJ−T圧縮機に吸入させて
再圧縮するように構成されている。
Therefore, in the J-T refrigerator (11), the J-
The helium gas is compressed to a high pressure by the T compressor and is supplied to the expander (12), which is then supplied to the first to third JT heat exchangers (13) to (15) of the expander (12). , Heat exchange with low-temperature low-pressure helium gas returning to the compressor side, and at the first and second precoolers (16) and (17), the first and second heat stations (7) of the expander (2), After cooling in (8), Joule-Thomson expansion is performed in the JT valve (18), and 1 atmosphere in the cooler (19), about 4
The helium in the gas-liquid mixed state of K is used, and the cooler (19) is brought to a cryogenic level (about 4K) by the latent heat of vaporization of this helium.
Cool to. Thereafter, the helium gas, which has been reduced in pressure by the expansion, is passed through the first to third J-T heat exchangers (13) to
It is configured such that it is sucked into the JT compressor and recompressed through each secondary side of (15).

【0027】上記第1〜第3J−T熱交換器(13)〜
(15)はいずれも同様の構成であり、図2に示すよう
に、例えば同心状に接合した内外の円筒状シェル(2
1),(22)間の空間に、フィン(23)を外周に取
り付けた伝熱管(24)(高圧管)が螺旋状に巻かれて
収容されてなる。この伝熱管(24)は、例えば2mの
長さのキャピラリチューブを直列に接合して所定長さの
伝熱管(24)とされる。そして、伝熱管(24)の内
部空間は、圧縮機から膨張機(13)のJ−T弁(1
8)ないし冷却器(19)に供給される高圧ヘリウムガ
スを流す高圧ガス流路(25)(1次側)に形成され、
一方、伝熱管(24)の周囲で内外シェル(21),
(22)間の空間は、J−T弁(18)ないし冷却器
(19)から圧縮機に戻る低圧ガスを流す低圧ガス流路
(26)(2次側)に設けられており、圧縮機からJ−
T弁(18)ないし冷却器(19)に向かって流れる高
圧ガス流路(25)内のガスを、J−T弁(18)ない
し冷却器(19)から圧縮機に戻る低圧ガス流路(2
6)内の低温ガスとの間で熱交換させて冷却する。そし
て、第1J−T熱交換器(13)では高圧ヘリウムガス
を例えば室温から50Kまで、また第2J−T熱交換器
(14)ではヘリウムガスを50Kから15Kまで、さ
らに第3J−T熱交換器(15)ではヘリウムガスを1
5Kから約5Kまでそれぞれ冷却するようにしている。
図2中、(27)は内側シェル(21)内に収容された
グラスウールである。
First to third J-T heat exchangers (13)-
(15) has the same structure, and as shown in FIG. 2, for example, the inner and outer cylindrical shells (2
In the space between 1) and (22), a heat transfer tube (24) (high pressure tube) having a fin (23) attached to the outer periphery is spirally wound and housed. The heat transfer tube (24) is a heat transfer tube (24) having a predetermined length, for example, by connecting capillary tubes having a length of 2 m in series. The internal space of the heat transfer tube (24) is connected to the JT valve (1) of the compressor to the expander (13).
8) or formed in the high pressure gas flow path (25) (primary side) through which the high pressure helium gas supplied to the cooler (19) flows,
Meanwhile, the inner and outer shells (21) around the heat transfer tube (24),
The space between (22) is provided in the low pressure gas flow path (26) (secondary side) through which the low pressure gas returning from the JT valve (18) or the cooler (19) to the compressor flows, and To J-
The low-pressure gas passage (the low-pressure gas passage (25) for returning the gas in the high-pressure gas passage (25) flowing toward the T valve (18) or the cooler (19) from the J-T valve (18) or the cooler (19) to the compressor. Two
6) It is cooled by heat exchange with the low temperature gas inside. Then, in the first J-T heat exchanger (13), high-pressure helium gas is heated from room temperature to 50 K, in the second J-T heat exchanger (14), helium gas is heated from 50 K to 15 K, and further in the third J-T heat exchange. In the vessel (15), add 1 helium gas
Each is cooled from 5K to about 5K.
In FIG. 2, (27) is glass wool contained in the inner shell (21).

【0028】この発明の特徴として、上記第1〜第3の
3つのJ−T熱交換器(13)〜(15)を1つの熱交
換器と考えたとき、その熱交換器全体の低温側部分、具
体的には例えば100K以下となる部分で、第1J−T
熱交換器(13)の1次側低温端部と、第2及び第3J
−T熱交換器(14),(15)の1次側全体とにおけ
る各伝熱管(24)内部には、図1に示すように、高圧
ヘリウムガスの乱流を促進するための乱流促進体(3
1)が充填されている。この乱流促進体(31)は、複
数のキャピラリチューブを接合して所定長さの伝熱管
(24)とする場合において、その接合前に各キャピラ
リチューブ内にキャピラリチューブつまり伝熱管(2
4)の長さ方向に延びる少なくとも2対の断面円形状の
細管(32),(32),…をキャピラリチューブ両側
から圧入状態で嵌挿してなるものであり、各対の細管
(32),(32)同士が伝熱管(24)の1つの直径
方向に略平行に並びかつ伝熱管(24)の長さ方向に隣
り合う対の細管(32),(32)同士の並列方向が互
いに伝熱管(24)の周方向に所定角度θ(図示例では
θ=90°)だけずれるように嵌挿されている。
As a feature of the present invention, when the first to third three JT heat exchangers (13) to (15) are considered to be one heat exchanger, the low temperature side of the whole heat exchanger is considered. The first J-T portion, specifically, a portion of 100K or less, for example.
Primary side low temperature end of heat exchanger (13) and second and third J
Inside the heat transfer tubes (24) in the entire primary side of the -T heat exchangers (14) and (15), as shown in FIG. 1, turbulent flow promotion for promoting turbulent flow of high-pressure helium gas. Body (3
1) is filled. When a plurality of capillary tubes are joined to form a heat transfer tube (24) having a predetermined length, the turbulent flow promoting body (31) has a capillary tube, that is, a heat transfer tube (2) in each capillary tube before the joining.
4) at least two pairs of thin tubes (32), (32) having a circular cross section, which extend in the lengthwise direction, are fitted in from both sides of the capillary tube in a press-fitted state, and each pair of thin tubes (32), The pair of thin tubes (32) arranged adjacent to each other in the diametrical direction of the heat transfer tube (24) and adjacent to each other in the longitudinal direction of the heat transfer tube (24) are transferred to each other in the parallel direction. The heat pipe (24) is fitted and inserted so as to be displaced by a predetermined angle θ (θ = 90 ° in the illustrated example) in the circumferential direction.

【0029】次に、上記実施例の作用について説明す
る。冷凍機(R)が定常運転状態になると、予冷冷凍機
(1)では、予冷用圧縮機から供給された高圧のヘリウ
ムガスが膨張機(2)で膨張し、このガスの膨張に伴う
温度降下によりシリンダ(4)の第1ヒートステーショ
ン(7)が55〜60Kの温度レベルに、また第2ヒー
トステーション(8)が15〜20Kの温度レベルにそ
れぞれ冷却される。上記第1ヒートステーション(7)
の冷却に伴い、該ヒートステーション(7)に伝熱可能
に接触している輻射シールド(S)の温度が第1ヒート
ステーション(7)と同じ温度レベルまで降下し、この
ことでクライオスタット(C)内の中心部が外部から輻
射シールドされる。
Next, the operation of the above embodiment will be described. When the refrigerator (R) is in a steady operation state, in the pre-cooling refrigerator (1), the high-pressure helium gas supplied from the pre-cooling compressor is expanded in the expander (2), and the temperature drop due to the expansion of this gas. This cools the first heat station (7) of the cylinder (4) to a temperature level of 55 to 60K and the second heat station (8) to a temperature level of 15 to 20K. The first heat station (7)
The temperature of the radiation shield (S) contacting the heat station (7) so as to be able to transfer heat drops to the same temperature level as that of the first heat station (7) as a result of the cooling of the heat station (7), which causes the cryostat (C). Radiation shield is applied to the center of the inside from the outside.

【0030】一方、これと同時に、J−T冷凍機(1
1)では、圧縮機から吐出された高圧のヘリウムガスが
第1J−T熱交換器(13)の1次側に入り、そこで圧
縮機側へ戻る2次側の低圧ヘリウムガスと熱交換されて
常温300Kから約50Kまで冷却され、その後、上記
膨張機(2)の第1ヒートステーション(7)外周の第
1予冷器(16)に入ってさらに冷却される。この冷却
されたガスは第2J−T熱交換器(14)の1次側に入
って、同様に2次側の低圧ヘリウムガスとの熱交換によ
り約15Kまで冷却された後、膨張機(2)の第2ヒー
トステーション(8)外周の第2予冷器(17)に入っ
てさらに冷却される。この後、ガスは第3J−T熱交換
器(15)の1次側に入って2次側の低圧ヘリウムガス
との熱交換により約5Kまで冷却され、しかる後にJ−
T弁(18)に至る。このJ−T弁(18)では高圧ヘ
リウムガスは絞られてジュールトムソン膨張し、1気
圧、約4Kの気液混合状態のヘリウムとなって冷却器
(19)へ供給される。そして、この冷却器(19)に
おいて、上記気液混合状態のヘリウムにおける液部分の
蒸発潜熱により冷却対象が4Kレベルの極低温に冷却さ
れる。
On the other hand, at the same time, the JT refrigerator (1
In 1), the high-pressure helium gas discharged from the compressor enters the primary side of the first JT heat exchanger (13) and is heat-exchanged with the secondary low-pressure helium gas returning to the compressor side. The temperature is cooled from 300 K to about 50 K at room temperature, and then, the first precooler (16) around the first heat station (7) of the expander (2) is further cooled. This cooled gas enters the primary side of the second J-T heat exchanger (14) and is cooled to about 15 K by heat exchange with the low pressure helium gas on the secondary side, and then expanded (2 The second precooler (17) around the second heat station (8) is further cooled. After this, the gas enters the primary side of the third J-T heat exchanger (15) and is cooled to about 5K by heat exchange with the low-pressure helium gas on the secondary side, and then J-
To the T valve (18). In this JT valve (18), the high-pressure helium gas is throttled and expanded by Joule-Thomson to become helium in a gas-liquid mixed state of 1 atm and about 4 K, and is supplied to the cooler (19). Then, in this cooler (19), the cooling target is cooled to an extremely low temperature of 4K level by the latent heat of vaporization of the liquid portion in the helium in the gas-liquid mixed state.

【0031】この実施例では、上記第1〜第3J−T熱
交換器(13)〜(15)における所定部分の伝熱管
(24)内部にヘリウムガスの乱流促進体(31)が充
填されているので、この乱流促進体(31)により、上
記圧縮機からJ−T弁(18)ないし冷却器(19)に
向かう高圧ガス流路(25)内の高圧ヘリウムガスの流
れの乱れが促進される。そのとき、乱流促進体(31)
は、伝熱管(24)を構成する各キャピラリチューブ内
に2対の断面円形状の細管(32),(32),…をチ
ューブ両側から圧入状態で嵌挿してなるもので、各対の
細管(32),(32)同士が伝熱管(24)の1つの
直径方向に略平行に並びかつ伝熱管(24)の長さ方向
に隣り合う対の細管(32),(32)同士の並列方向
が互いに伝熱管周方向に所定角度だけずれるように嵌挿
されているので、各隣り合う対の細管(32),(3
2)同士のずれ部分でガスの境界層が更新され、ガスの
乱れをさらに促進できる。また、伝熱管(24)内の高
圧ガス流路(25)においては、充填された乱流促進体
(31)の断面積分だけ高圧ガス流路(25)の断面積
が減少するので、高圧ガスの流速が上昇する。さらに、
乱流促進体(31)の各細管(32)が外周の一部にて
伝熱管(24)内面へ密着しているので、その各細管
(32)を経由して熱伝導が行え、伝熱面積を全体とし
て増大させることができる。これらの相乗的な作用によ
り、伝熱管(24)が小径のキャピラリチューブで構成
されていても、その内部の高圧ヘリウムガスとの熱伝達
効率を上昇させることができ、熱交換器(13)〜(1
5)の熱交換性能の向上を図ることができる。
In this embodiment, the turbulent flow promoting body (31) for helium gas is filled in the heat transfer tubes (24) at predetermined portions of the first to third JT heat exchangers (13) to (15). Therefore, due to the turbulence promoter (31), the turbulence of the flow of the high-pressure helium gas in the high-pressure gas passage (25) from the compressor to the JT valve (18) or the cooler (19) is disturbed. Be promoted. At that time, the turbulence promoter (31)
Is formed by inserting two pairs of thin tubes (32), (32) having a circular cross-section into each capillary tube constituting the heat transfer tube (24) in a press-fitted state from both sides of the tube. (32), a pair of thin tubes (32) arranged parallel to each other in the diametrical direction of the heat transfer tube (24) and adjacent to each other in the length direction of the heat transfer tube (24) Since the directions are fitted so as to be offset from each other by a predetermined angle in the circumferential direction of the heat transfer tube, each pair of adjacent thin tubes (32), (3
2) The boundary layer of the gas is renewed at the misaligned portions, and the turbulence of the gas can be further promoted. Further, in the high-pressure gas passage (25) in the heat transfer tube (24), since the cross-sectional area of the high-pressure gas passage (25) is reduced by the cross-sectional integration of the filled turbulence promoter (31), the high-pressure gas passage (25) The flow velocity of increases. further,
Since each thin tube (32) of the turbulence promoting body (31) is in close contact with the inner surface of the heat transfer tube (24) at a part of the outer circumference, heat conduction can be performed via each thin tube (32). The area can be increased as a whole. By these synergistic actions, even if the heat transfer tube (24) is composed of a small-diameter capillary tube, the heat transfer efficiency with the high-pressure helium gas therein can be increased, and the heat exchanger (13)- (1
The heat exchange performance of 5) can be improved.

【0032】また、上記乱流促進体(31)は、第1〜
第3の3つのJ−T熱交換器(13)〜(15)からな
る熱交換器全体の低温側部分、つまり例えば100K以
下となる部分であって、第1J−T熱交換器(13)の
1次側低温端部と、第2及び第3J−T熱交換器(1
4),(15)の1次側全体とに限定して配置され、そ
の配置部分での圧力損失はもともと小さいので、全体と
しての圧力損失の増大の影響は少なく、バランスのよい
熱交換器(13)〜(15)が得られる。
The turbulent flow promoting body (31) is composed of
The first J-T heat exchanger (13) is a low temperature side portion of the entire heat exchanger including the three third J-T heat exchangers (13) to (15), that is, a portion having a temperature of 100 K or less, for example. Primary side cold end and second and third J-T heat exchangers (1
4) and (15) are arranged only on the primary side as a whole, and the pressure loss at the arranged portion is originally small, so that the influence of the increase in the pressure loss as a whole is small and a well-balanced heat exchanger ( 13) to (15) are obtained.

【0033】(乱流促進体の変形例)尚、乱流促進体
(31)の構成は上記実施例以外に種々のものが考えら
れるが、伝熱管(24)が小径のキャピラリチューブで
構成されていることを考慮すると、その構造は限定され
る。この小径伝熱管(24)に対する充填が容易な乱流
促進体(31)としては図4又は図5に示すものが好ま
しい。
(Modification of Turbulent Flow Promoter) The turbulent flow promoter (31) may have various configurations other than the above embodiment, but the heat transfer tube (24) is formed of a capillary tube having a small diameter. However, its structure is limited. As the turbulent flow promoting body (31) which can be easily filled in the small diameter heat transfer tube (24), the one shown in FIG. 4 or 5 is preferable.

【0034】すなわち、図4(a)に示す例では、乱流
促進体(31)は上記実施例と同様の断面円形状の2対
の細管(32),(32),…が、隣り合う対の細管
(32),(32)同士の並列方向が同じとなるように
嵌挿されたものである。
That is, in the example shown in FIG. 4 (a), the turbulent flow promoting body (31) has two pairs of thin tubes (32), (32), ... The pair of thin tubes (32) and (32) are inserted so that the parallel directions are the same.

【0035】また、図4(b)に示す例では、伝熱管
(24)の長さ方向に延びる細管(32)が断面半割円
形状とされ、この1対の断面半割円形状の細管(3
2),(32)は伝熱管(24)内に各対の細管(3
2),(32)同士が半割面で接触して伝熱管(24)
の1つの直径方向に略平行に並ぶように圧入状態で嵌挿
されている。
Further, in the example shown in FIG. 4 (b), the thin tube (32) extending in the length direction of the heat transfer tube (24) has a semicircular cross section, and this pair of thin tubes having a semicircular cross section. (3
2) and (32) are each a pair of thin tubes (3) in the heat transfer tube (24).
2) and (32) are in contact with each other on a half-divided surface and the heat transfer tube (24)
Is inserted in a press-fitted state so as to be aligned substantially parallel to one diametrical direction.

【0036】図4(c)に示す例では、伝熱管(24)
の長さ方向に延びる少なくとも1つの細管(32)が断
面3角形状とされ、この細管(32)が伝熱管(24)
内に、その3つの角部(32a),(32a),…が伝
熱管(24)内面に接触するように圧入状態で嵌挿され
ている。このとき、図4(d)に示す如く、上記断面3
角形状の細管(32)を複数とし、上記実施例と同様
に、この複数の断面3角形状の細管(32),(3
2),…を伝熱管(24)内に、伝熱管(24)の長さ
方向に隣り合う細管(32),(32)同士の各角部
(32a),(32a)の位置が互いに所定角度θ(図
示例ではθ=60°)だけずれるように嵌挿してもよ
い。
In the example shown in FIG. 4 (c), the heat transfer tube (24)
At least one thin tube (32) extending in the longitudinal direction of the tube has a triangular cross section, and the thin tube (32) is a heat transfer tube (24).
The three corners (32a), (32a), ... Are inserted into the inside of the heat transfer tube (24) in a press-fitted state so as to come into contact with the inner surface. At this time, as shown in FIG.
A plurality of rectangular thin tubes (32) are provided, and the plurality of thin tubes (32), (3) having a triangular cross section are formed in the same manner as in the above embodiment.
2), ... Inside the heat transfer tube (24), the positions of the corner portions (32a), (32a) of the thin tubes (32), (32) adjacent to each other in the length direction of the heat transfer tube (24) are mutually predetermined. You may insert so that it may shift | deviate only by the angle (theta) (theta = 60 degrees in the example of illustration).

【0037】図4(e)に示す例では、細管(32)が
断面長円形状とされ、この断面長円形状の細管(32)
が伝熱管(24)内に、細管(32)の長軸方向両端部
(32b),(32b)が伝熱管(24)内面に接触す
るように圧入状態で嵌挿されている。また、このとき、
図4(f)に示すように、上記断面長円形状の細管(3
2)を複数とし、この複数の断面長円形状の細管(3
2),(32),…を、伝熱管長さ方向に隣り合う細管
(32),(32)同士の長軸方向が互いに所定角度θ
(図示例ではθ=90°)だけずれるように配置したも
のである。
In the example shown in FIG. 4 (e), the thin tube (32) has an oval cross section, and the thin tube (32) has an oval cross section.
In the heat transfer tube (24), both ends (32b), (32b) of the thin tube (32) in the long axis direction are press-fitted so as to contact the inner surface of the heat transfer tube (24). Also, at this time,
As shown in FIG. 4 (f), the thin tube (3
2) and a plurality of thin tubes (3
2), (32), ..., The long axis directions of the thin tubes (32), (32) adjacent to each other in the length direction of the heat transfer tube have a predetermined angle θ.
They are arranged so as to deviate by (θ = 90 ° in the illustrated example).

【0038】図4(g)〜(i)に示す例の乱流促進体
(31)では、上記細管(32)に代え、伝熱管(2
4)の長さ方向に延びかつ断面形状が伝熱管(24)の
中心位置から半径方向に放射状に延びる形状とされた少
なくとも1つの板材(35)を用い、この板材(35)
を伝熱管(24)内に、板材(35)の外端部が伝熱管
(24)内面に接触するように圧入状態で嵌挿してなる
ものとする。具体的には、図4(g)の乱流促進体(3
1)では断面十字状の板材(35)を使用する。そのと
き、図4(h)に示す如く、板材(35)の外端に伝熱
管(24)の内面との接触面積が増えるように折曲げ部
(35a)を形成してもよい。また、図4(i)の乱流
促進体(31)では断面略Y字状の板材(35)を使用
している。
In the turbulent flow promoting body (31) of the example shown in FIGS. 4 (g) to (i), the heat transfer tube (2) is used instead of the thin tube (32).
4) at least one plate member (35) having a cross-sectional shape that extends radially from the center of the heat transfer tube (24) in the radial direction is used.
Is inserted into the heat transfer tube (24) in a press-fitted state so that the outer end of the plate (35) contacts the inner surface of the heat transfer tube (24). Specifically, the turbulent flow promoting body (3
In 1), a plate material (35) having a cross-shaped cross section is used. At that time, as shown in FIG. 4 (h), a bent portion (35a) may be formed at the outer end of the plate material (35) so that the contact area with the inner surface of the heat transfer tube (24) increases. Further, the turbulent flow promoting body (31) of FIG. 4 (i) uses a plate material (35) having a substantially Y-shaped cross section.

【0039】さらに、図5(a)に示す乱流促進体(3
1)は、伝熱管(24)の内面に螺旋状に突設されたフ
ィン(33)で構成される。また、図5(b)に示す乱
流促進体(31)は、伝熱管(24)に該伝熱管(2
4)内面に密着するように充填された螺旋状ワイヤ(3
4)で構成されている。
Furthermore, the turbulence promoting body (3) shown in FIG.
1) is composed of fins (33) spirally protrudingly provided on the inner surface of the heat transfer tube (24). Further, the turbulent flow promoting body (31) shown in FIG. 5 (b) is installed in the heat transfer tube (24).
4) Spiral wire (3) packed so as to closely adhere to the inner surface
4).

【0040】したがって、これらの乱流促進体(31)
でも、上記実施例と同様の作用効果が得られる。
Therefore, these turbulence promoters (31)
However, the same effect as that of the above embodiment can be obtained.

【0041】[0041]

【発明の効果】以上説明したように、請求項1の発明に
よると、極低温冷凍機における熱交換器の伝熱管内部に
冷媒ガスの乱流促進体を設けたことにより、その乱流促
進体により高圧ガス流路内の高圧ガスの流れの乱れを促
進し、かつ乱流促進体の断面積分だけ高圧ガス流路の断
面積が減少して高圧ガスの流速を上昇し、さらには乱流
促進体の伝熱管内面への密着により全体の伝熱面積を増
大させることができ、伝熱管が小径のキャピラリチュー
ブであっても、その内部の高圧冷媒ガスとの熱伝達効率
を上昇させて、熱交換器の熱交換性能の向上を図ること
ができる。
As described above, according to the invention of claim 1, the turbulent flow promoting body is provided by providing the turbulent flow promoting body for the refrigerant gas inside the heat transfer tube of the heat exchanger in the cryogenic refrigerator. Turbulence of the flow of high-pressure gas in the high-pressure gas channel is promoted, and the cross-sectional area of the high-pressure gas channel is reduced by the cross-sectional integral of the turbulence promoting body to increase the flow velocity of high-pressure gas, and further turbulence promotion Adhesion of the body to the inner surface of the heat transfer tube can increase the overall heat transfer area, and even if the heat transfer tube is a capillary tube with a small diameter, it increases the heat transfer efficiency with the high pressure refrigerant gas inside it, The heat exchange performance of the exchanger can be improved.

【0042】請求項2〜11の発明によると、伝熱管が
小径のキャピラリチューブである場合に好適な乱流促進
体が容易に得られる。特に、請求項3、6又は8の発明
によれば、各隣り合う対の細管同士の並列方向、隣り合
う細管同士の各角部位置、又は隣り合う細管同士の長軸
方向を互いにずれるように配置したので、このずれ部分
でガスの境界層を更新して、熱伝達の促進のより一層の
向上を図ることができる。
According to the inventions of claims 2 to 11, a turbulent flow promoting body suitable for a case where the heat transfer tube is a small diameter capillary tube can be easily obtained. In particular, according to the invention of claim 3, 6 or 8, the parallel direction of the adjacent thin tubes, the respective corner positions of the adjacent thin tubes, or the long axis direction of the adjacent thin tubes are displaced from each other. Since it is arranged, the boundary layer of the gas can be renewed at this misaligned portion, and the promotion of heat transfer can be further improved.

【0043】請求項12の発明によれば、乱流促進体を
熱交換器全体からみて圧力損失の少ない低温側部分に限
定して配置したことにより、全体としての圧力損失の増
大を抑制でき、バランスのよい熱交換器が得られる。
According to the twelfth aspect of the invention, since the turbulence promoting body is arranged only in the low temperature side portion where the pressure loss is small when viewed from the entire heat exchanger, the increase of the pressure loss as a whole can be suppressed, A well-balanced heat exchanger can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における伝熱管の拡大断面図で
ある。
FIG. 1 is an enlarged cross-sectional view of a heat transfer tube according to an embodiment of the present invention.

【図2】J−T熱交換器の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of a JT heat exchanger.

【図3】極低温冷凍機の全体構成を示す冷媒回路図であ
る。
FIG. 3 is a refrigerant circuit diagram showing the overall configuration of a cryogenic refrigerator.

【図4】乱流促進体の変形例を示す図1相当図である。FIG. 4 is a view corresponding to FIG. 1 showing a modified example of the turbulent flow promoting body.

【図5】乱流促進体の他の変形例を概略的に示す断面図
である。
FIG. 5 is a cross-sectional view schematically showing another modification of the turbulent flow promoting body.

【符号の説明】[Explanation of symbols]

(R) 極低温冷凍機 (1) 予冷冷凍機 (11) J−T冷凍機 (12) 膨張機 (13)〜(15) J−T熱交換器 (18) J−T弁(膨張手段) (24) 伝熱管 (25) 高圧ガス流路 (26) 低圧ガス流路 (31) 乱流促進体 (32) 細管 (32a) 角部 (32b) 長軸方向端部 (33) フィン (34) ワイヤ (35) 板材 (R) Cryogenic refrigerator (1) Precooling refrigerator (11) JT refrigerator (12) Expander (13)-(15) JT heat exchanger (18) JT valve (expansion means) (24) Heat transfer tube (25) High pressure gas flow path (26) Low pressure gas flow path (31) Turbulence promoter (32) Capillary tube (32a) Corner (32b) Long axis direction end (33) Fin (34) Wire (35) Plate material

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 冷媒ガスを圧縮する圧縮機と、 上記圧縮機から吐出された高圧冷媒ガスを膨張させて極
低温レベルの寒冷を発生させる膨張手段(18)と、 伝熱管(24)内部に、上記圧縮機から膨張手段(1
8)に供給される高圧冷媒ガスを流す高圧ガス流路(2
5)が形成される一方、伝熱管(24)の周囲に、膨張
手段(18)から圧縮機に戻る低圧ガスを流す低圧ガス
流路(26)が形成されてなり、高圧ガス流路(25)
内のガスを低圧ガス流路(26)内の低温ガスとの間で
熱交換させて冷却する熱交換器(13)〜(15)とを
備えた極低温冷凍機において、 上記伝熱管(24)の内部に、伝熱管(24)内面に密
着しかつ高圧ガス流路(25)の冷媒ガスの乱流を促進
する乱流促進体(31)を設けたことを特徴とする極低
温冷凍機。
1. A compressor for compressing a refrigerant gas, an expansion means (18) for expanding a high-pressure refrigerant gas discharged from the compressor to generate a cryogenic level of cold, and a heat transfer tube (24) inside the heat transfer tube (24). , Expansion means (1
High pressure gas flow path (2) through which high pressure refrigerant gas supplied to
5) is formed, a low pressure gas flow path (26) for flowing low pressure gas returning from the expansion means (18) to the compressor is formed around the heat transfer tube (24), and the high pressure gas flow path (25) is formed. )
A cryogenic refrigerator comprising: heat exchangers (13) to (15) for cooling the internal gas by exchanging heat with a low temperature gas in a low pressure gas flow path (26), ), There is provided a turbulent flow promoting body (31) which is in close contact with the inner surface of the heat transfer tube (24) and promotes the turbulent flow of the refrigerant gas in the high pressure gas flow channel (25). .
【請求項2】 請求項1の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に伝熱管長さ方向に延びる少なくとも
1対の断面円形状の細管(32),(32),…を各対
の細管(32),(32)同士が伝熱管(24)の1つ
の直径方向に略平行に並ぶように圧入状態で嵌挿してな
るものであることを特徴とする極低温冷凍機。
2. The cryogenic refrigerator according to claim 1, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) is
Within the heat transfer tube (24), at least one pair of thin tubes (32), (32), ... each having a circular cross section, extending in the length direction of the heat transfer tube, each pair of thin tubes (32), (32) are heat transfer tubes (24). ), The cryogenic refrigerator characterized by being fitted and inserted in a press-fitted state so as to be arranged substantially parallel to one diametrical direction.
【請求項3】 請求項2の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に嵌挿された少なくとも2対の断面円
形状の細管(32),(32),…からなり、 伝熱管長さ方向に隣り合う対の細管(32),(32)
同士の並列方向が互いに伝熱管周方向にずれるように配
置されていることを特徴とする極低温冷凍機。
3. The cryogenic refrigerator according to claim 2, wherein the turbulence promoting body (31) of the heat exchangers (13) to (15) is
Comprising at least two pairs of thin tubes (32), (32), having a circular cross section, which are fitted into the heat transfer tube (24), and a pair of thin tubes (32), (32) adjacent to each other in the length direction of the heat transfer tube.
A cryogenic refrigerator, wherein the parallel directions of the two are arranged so as to be offset from each other in the circumferential direction of the heat transfer tube.
【請求項4】 請求項1の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に伝熱管長さ方向に延びる少なくとも
1対の断面半割円形状の細管(32),(32),…を
各対の細管(32),(32)同士が半割面で接触して
伝熱管(24)の1つの直径方向に略平行に並ぶように
圧入状態で嵌挿してなるものであることを特徴とする極
低温冷凍機。
4. The cryogenic refrigerator according to claim 1, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) is
At least one pair of thin tubes (32), (32), ... each having a semi-circular cross section and extending in the lengthwise direction of the heat transfer tube, are halved in each pair of thin tubes (32), (32). A cryogenic refrigerator characterized in that the heat transfer tubes (24) are fitted and inserted in a press-fit state so as to be aligned substantially parallel to one diametrical direction of the heat transfer tubes (24).
【請求項5】 請求項1の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に伝熱管長さ方向に延びる少なくとも
1つの断面3角形状の細管(32)を該細管(32)の
3つの角部(32a),(32a),…が伝熱管(2
4)内面に接触するように圧入状態で嵌挿してなるもの
であることを特徴とする極低温冷凍機。
5. The cryogenic refrigerator according to claim 1, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) is
At least one thin tube (32) having a triangular cross-section extending in the length direction of the heat transfer tube (24) has three corner portions (32a), (32a), ... Two
4) A cryogenic refrigerator characterized by being inserted in a press-fitted state so as to come into contact with the inner surface.
【請求項6】 請求項5の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に嵌挿された複数の断面3角形状の細
管(32),(32),…からなり、 伝熱管長さ方向に隣り合う細管(32),(32)同士
の各角部(32a),(32a)の位置が互いに伝熱管
周方向にずれるように配置されていることを特徴とする
極低温冷凍機。
6. The cryogenic refrigerator according to claim 5, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) comprises:
Each of the thin tubes (32), (32) adjacent to each other in the length direction of the heat transfer tube is composed of a plurality of thin tubes (32), (32), ... A cryogenic refrigerator characterized in that the corners (32a), (32a) are arranged such that the positions thereof are displaced from each other in the circumferential direction of the heat transfer tube.
【請求項7】 請求項1の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に伝熱管長さ方向に延びる少なくとも
1つの断面長円形状の細管(32)を該細管(32)の
長軸方向両端部(32b),(32b)が伝熱管(2
4)内面に接触するように圧入状態で嵌挿してなるもの
であることを特徴とする極低温冷凍機。
7. The cryogenic refrigerator according to claim 1, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) is
In the heat transfer tube (24), at least one thin tube (32) having an elliptical cross section extending in the length direction of the heat transfer tube is provided, and both ends (32b) and (32b) of the thin tube (32) in the long axis direction have the heat transfer tube (2).
4) A cryogenic refrigerator characterized by being inserted in a press-fitted state so as to come into contact with the inner surface.
【請求項8】 請求項7の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に嵌挿された複数の断面長円形状の細
管(32),(32),…からなり、 伝熱管長さ方向に隣り合う細管(32),(32)同士
の長軸方向が互いに伝熱管周方向にずれるように配置さ
れていることを特徴とする極低温冷凍機。
8. The cryogenic refrigerator according to claim 7, wherein the turbulent flow promoting body (31) of the heat exchangers (13) to (15) comprises:
The thin tubes (32), (32), ... Having a plurality of elliptical cross-sections inserted into the heat transfer tubes (24), and the lengths of the thin tubes (32), (32) adjacent to each other in the length direction of the heat transfer tube. A cryogenic refrigerator characterized in that they are arranged such that their axial directions are offset from each other in the circumferential direction of the heat transfer tube.
【請求項9】 請求項1の極低温冷凍機において、 熱交換器(13)〜(15)の乱流促進体(31)は、
伝熱管(24)内に、伝熱管長さ方向に延びかつ断面形
状が伝熱管(24)の中心位置から半径方向に放射状に
延びる形状である少なくとも1つの板材(35)を、該
板材(35)の外端部が伝熱管(24)内面に接触する
ように圧入状態で嵌挿してなるものであることを特徴と
する極低温冷凍機。
9. The cryogenic refrigerator according to claim 1, wherein the turbulence promoting bodies (31) of the heat exchangers (13) to (15) are:
In the heat transfer tube (24), at least one plate member (35) extending in the length direction of the heat transfer tube and having a cross-sectional shape radially extending radially from the central position of the heat transfer tube (24) is provided. (4) is a cryogenic refrigerator characterized by being fitted and inserted in a press-fitted state so that the outer end portion thereof comes into contact with the inner surface of the heat transfer tube (24).
【請求項10】 請求項1の極低温冷凍機において、 乱流促進体(31)は、伝熱管(24)の内面に突設さ
れたフィン(33)であることを特徴とする極低温冷凍
機。
10. The cryogenic refrigerator according to claim 1, wherein the turbulent flow promoting body (31) is a fin (33) protruding from the inner surface of the heat transfer tube (24). Machine.
【請求項11】 請求項1の極低温冷凍機において、 乱流促進体(31)は、伝熱管(24)に該伝熱管(2
4)内面に密着するように充填された螺旋状ワイヤ(3
4)であることを特徴とする極低温冷凍機。
11. The cryogenic refrigerator according to claim 1, wherein the turbulence promoter (31) is attached to the heat transfer tube (24).
4) Spiral wire (3) packed so as to closely adhere to the inner surface
4) A cryogenic refrigerator characterized in that
【請求項12】 請求項1、2、3、4、5、6、7、
8、9、10又は11の極低温冷凍機において、 乱流促進体(31)が熱交換器(13)〜(15)全体
における伝熱管(24)の低温側部分に配置されている
ことを特徴とする極低温冷凍機。
12. The method according to claim 1, 2, 3, 4, 5, 6, 7,
In the cryogenic refrigerator of 8, 9, 10 or 11, the turbulence promoter (31) is arranged at the low temperature side portion of the heat transfer tube (24) in the entire heat exchangers (13) to (15). A characteristic cryogenic refrigerator.
JP4205177A 1992-07-31 1992-07-31 Cryogenic refrigerator Expired - Fee Related JP2734893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4205177A JP2734893B2 (en) 1992-07-31 1992-07-31 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4205177A JP2734893B2 (en) 1992-07-31 1992-07-31 Cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH0650618A true JPH0650618A (en) 1994-02-25
JP2734893B2 JP2734893B2 (en) 1998-04-02

Family

ID=16502703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4205177A Expired - Fee Related JP2734893B2 (en) 1992-07-31 1992-07-31 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JP2734893B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006138538A (en) * 2004-11-11 2006-06-01 Usui Kokusai Sangyo Kaisha Ltd Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2007003115A (en) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp Heat exchanger and manufacturing method of the same
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
WO2020194426A1 (en) * 2019-03-25 2020-10-01 三菱電機株式会社 Water refrigerant heat-exchanger and heat pump device provided with water refrigerant heat-exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869457U (en) * 1971-12-07 1973-09-03
JPS4916035A (en) * 1972-06-03 1974-02-13
JPS51146507U (en) * 1975-05-20 1976-11-25
JPS5276847U (en) * 1975-12-07 1977-06-08
JPS5656591A (en) * 1979-10-15 1981-05-18 Kozo Nakamura Heat transfer pipe having screw fin
JPS56157574U (en) * 1980-04-25 1981-11-25
JPS6357855A (en) * 1986-08-29 1988-03-12 Aisin Seiki Co Ltd Stirling engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869457U (en) * 1971-12-07 1973-09-03
JPS4916035A (en) * 1972-06-03 1974-02-13
JPS51146507U (en) * 1975-05-20 1976-11-25
JPS5276847U (en) * 1975-12-07 1977-06-08
JPS5656591A (en) * 1979-10-15 1981-05-18 Kozo Nakamura Heat transfer pipe having screw fin
JPS56157574U (en) * 1980-04-25 1981-11-25
JPS6357855A (en) * 1986-08-29 1988-03-12 Aisin Seiki Co Ltd Stirling engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006046888A (en) * 2004-07-02 2006-02-16 Kobelco & Materials Copper Tube Inc Composite heat exchanger tube
JP2006138538A (en) * 2004-11-11 2006-06-01 Usui Kokusai Sangyo Kaisha Ltd Flat heat exchanger tube, and multitubular heat exchanger and multitubular heat exchange type egr gas cooling device comprised by incorporating the heat exchanger tube
JP2007003115A (en) * 2005-06-24 2007-01-11 Mitsubishi Electric Corp Heat exchanger and manufacturing method of the same
JP4680696B2 (en) * 2005-06-24 2011-05-11 三菱電機株式会社 Heat exchanger and heat exchanger manufacturing method
JP2007322069A (en) * 2006-06-01 2007-12-13 Hitachi Cable Ltd Coolant heat transfer tube for heat pump type heat exchanger, and gas cooler using it
WO2013150818A1 (en) * 2012-04-05 2013-10-10 シーアイ化成株式会社 Heat transfer tube, and heat exchanger using same
CN103363820A (en) * 2012-04-05 2013-10-23 C.I.化成株式会社 Heat transfer tubes and a heat exchanger using the same
JPWO2013150818A1 (en) * 2012-04-05 2015-12-17 シーアイ化成株式会社 Heat transfer tube and heat exchanger using it
WO2020194426A1 (en) * 2019-03-25 2020-10-01 三菱電機株式会社 Water refrigerant heat-exchanger and heat pump device provided with water refrigerant heat-exchanger

Also Published As

Publication number Publication date
JP2734893B2 (en) 1998-04-02

Similar Documents

Publication Publication Date Title
JP2000055488A (en) Refrigerating device
JPH0650618A (en) Cryogenic freezer
CN114739031B (en) Dilution refrigeration system
Alexeev et al. Mixed gas JT cryocooler with precooling stage
JP4720510B2 (en) Refrigerant cycle equipment
JP2891144B2 (en) Cryogenic refrigerator
JP3293538B2 (en) Cool storage refrigerator
JP2697476B2 (en) Cryogenic refrigerator heat exchanger
JP2720715B2 (en) Cryogenic refrigerator
JPH05126426A (en) Cryogenic refrigerator
JP3278973B2 (en) Cryogenic refrigerator
JP2008089252A (en) Cooling apparatus
JP2013002760A (en) Refrigerating machine, liquefying machine, and heat exchanger
JPH05332655A (en) Mounting device for cryogenic refrigerator
JP2001108320A (en) Cryostatic refrigerator
JP3109243B2 (en) Cryogenic refrigerator
KR100594423B1 (en) Refrigerating system using two stage refrigerating cycle
CN114087810B (en) Throttling refrigerator
US11371757B2 (en) Heating and cooling system
CN117847852A (en) Double-working-medium throttling refrigerator capable of shortening starting time and control method
WO2021117254A1 (en) Spot cooler device
JPH10220915A (en) Refrigerator
JPH0452467A (en) Cryogenic refrigerator
JPH11108476A (en) Cryostatic cooling device
JPH09236340A (en) Cryogenic refrigerating device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971202

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees